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a b s t r a c t

In this paper, we consider a block Jacobi preconditioner and various deflation techniques
applied in the Deflated Preconditioned Conjugate Gradient (DPCG) method for solving
a sparse system of linear equations derived from a statistical linear mixed model
that analyses simultaneously phenotypic and pedigree information of genotyped and
ungenotyped animals with Single Polymorphism Nucleotide genotypes of genotyped
animals. In livestock production systems, evaluating the genetic merit of the animals
through such a model is a key process to ensure an improvement of animals for some
characteristics of interest at each generation. First, we propose to define the deflation
vectors using a subdomain deflation approach that considers some biological properties
of the genotypes. Using simulated data, this approach reduces the number of iterations
by up to 87% in comparison to a Preconditioned Conjugate Gradient method with a
Jacobi preconditioner. Furthermore, compared to a DPCG method with same number
of subdomains but defined randomly, this approach reduces the number of iterations
by up to 20% for the same computational costs of one DPCG iteration. The properties
of the resulting systems show that this approach annihilates the largest eigenvalues of
the preconditioned coefficient matrix. Second, we propose the use of solution vectors
of 12 systems of equations that include between 0.25% and 3% less data, as deflation
vectors. For reducing the computational costs, we also consider a Proper Orthogonal
Decomposition-reduced set of these 12 vectors. The properties of the resulting systems
show that this recycling information approach annihilates the smallest eigenvalues
of the preconditioned coefficient matrix, and results in a reduction of up to 39% in
comparison to the PCG method. Finally, based on our experiment, the combination of
the subdomain deflation approach relying on biological properties and of the POD-based
approach to recycle previous solution vectors, for defining the deflation vectors, results
in annihilating both the smallest and largest eigenvalues, and in a reduction of up to 88
% of the number of iterations in comparison to the PCG method.
© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

In livestock production systems, animal breeding has an important role because it ensures an improvement of animals
t each generation through a selection process in order to meet breeding objectives that reflect the market demands. This
election process requires the ranking of the animals for the characteristics of interest, called traits (e.g., milk production).
he best animals are thereafter selected to be parents of the next generation. Currently, evaluating and ranking animals is
ased on so-called breeding values, that are the average additive effects of the genes that an individual receives from both
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parents for a particular trait. Since the breeding values cannot be directly observed, they are estimated through a genetic
evaluation based on three types of information: the performance records of the animals (hereafter called phenotypes), the
pedigree, and since a decade, the Single Nucleotide Polymorphism (SNP) genotypes of a portion of the population [1,2].

The genetic evaluation of animals relies on a statistical linear model of the form [1]:

y = Xβ + Wu + e (1)

where y ∈ Rnp is the vector of phenotypes, β ∈ Rnβ is the vector of nfixed fixed effects, u ∈ Rnu is the vector of random
additive genetic effects (i.e. the breeding values), and e ∈ Rnp is the vector of random residual effects. The incidence
matrices X ∈ Rnp×nβ and W ∈ Rnp×nu relate the phenotypes to the fixed and random additive genetic effects, respectively.
It is assumed that the expectations of the random effects are zero, that the residual effects are independently distributed,
and that the variance–covariance matrix of the random additive genetic effects is a symmetric positive definite matrix
proportional to a relationship matrix among all animals.

Before the advent of SNP genotypes at a large scale, the relationship matrix was traditionally computed only from the
pedigree of the animals [1]. When genotypes of animals became available, animal breeders developed the so-called single-
step genomic Best Linear Unbiased Prediction (ssGBLUP), in which the pedigree-based relationship matrix is replaced by a
relationship matrix computed from both the pedigree and the SNP genotypes of the animals [2–4]. Because ssGBLUP can
be easily implemented in existing software used in animal breeding, it quickly became the method of choice to analyse
simultaneously phenotypic and pedigree information of genotyped and ungenotyped animals with genomic information
of genotyped animals.

However, with the increasing amounts of genomic information, the initial ssGBLUP system of linear equations shows
some computational limitations. For example, its solving needs the inversion of a dense symmetric genomic relationship
matrix computed from the SNP genotypes of all genotyped animals and of size usually greater than 100,000 nowadays.
Therefore, several approaches have been proposed to overcome these computational limitations, e.g., by approximating
the inverse of the genomic relationship matrix [5], or by implicitly computing its inverse using the Woodbury matrix
identity [6]. Some equivalent systems of equations that do not rely on a genomic relationship matrix, called hereafter
single-step SNP BLUP (ssSNPBLUP), were also proposed in the literature [6–10]. These ssSNPBLUP approaches rely on the
estimation of the effects of the SNP markers that compose the genotypes of the animals.

The ssSNPBLUP approaches are associated with systems of linear equations with sparse and symmetric positive (semi-
)definite (SPSD) coefficient matrices. Because the Preconditioned Conjugate Gradient (PCG) method is commonly used
in animal breeding for solving linear systems [11,12], the PCG method was the primarily choice for solving ssSNPBLUP
systems. However, applying the PCG method to ssSNPBLUP systems showed convergence issues [10,13]. Vandenplas
et al. [13] reported that the poor convergence behaviours of the PCG methods are associated with poor effective spectral
condition numbers of the coefficient matrices of ssSNPBLUP preconditioned with a Jacobi preconditioner. In this study,
the effective spectral condition number of a coefficient matrix C ∈ Rneq×neq is defined as the ratio between the largest and
the smallest non-zero eigenvalue of C [14]. Using a Deflated PCG (DPCG) method with a subdomain deflation approach,
these authors showed that the DPCG method applied to ssSNPBLUP resulted in a deflation of the largest eigenvalues of the
preconditioned coefficient matrix, in a smaller effective spectral condition number, and therefore in faster convergence.
However, their proposed definition for the deflation-subspace matrix may result in large and dense symmetric matrices
for large genomic evaluations [13,15].

Based on these previous results, the first aim of this study is therefore to investigate different definitions of the
subdomains that results in a more efficient DPCG method. Our second aim is to investigate the efficiency of recycling
information from previous PCG methods applied on a subset of the data. Indeed, in practice, genomic evaluations are
performed on a routinely basis, after the addition of phenotypic, genomic, and pedigree information, collected after the
last genomic evaluation.

This work is divided into six sections. In Section 2, we describe the system of linear equations of ssSNPBLUP proposed by
Gengler et al. [16] and by Liu et al. [7]. Section 3 proposes a brief description of the preconditioners and the DPCG method
used in this study. In Section 4, we present various definitions of the deflation-subspace matrix proposed by Nguyen [17].
In Section 5, we describe the simulated data used in the numerical experiments and we present the results related to
the efficiency of the different iterative methods using the simulated data. The last section reports our conclusions and
recommendations.

2. Single-step genomic mixed model equations

In this study, we investigate different Preconditioned Conjugate Gradient-based methods for solving the ssSNPBLUP
mixed model equations proposed by Gengler et al. [16] and by Liu et al. [7]. The ssSNPBLUP system of linear equations
associated with Eq. (1) can be summarized as follows:

Cx = b, (2)

where C ∈ Rneq×neq is a symmetric positive (semi-)definite coefficient matrix, x ∈ Rneq is the vector of solutions, and
neq
b ∈ R is the right-hand side of the linear system.

2
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v

For simplicity, and without loss of generality, the different matrices and vectors for the ssSNPBLUP system are described
elow for a univariate animal model. Following Liu et al. [7], the coefficient matrix C is equal to:

C =

⎡⎢⎢⎢⎢⎢⎣
X′R−1X X′

nR−1
n Wn X′

gR−1
g Wg 0

W′
nR−1

n Xn W′
nR−1

n Wn + Annσ−2
u Angσ−2

u 0

W′
gR−1

g Xg Agnσ−2
u W′

gR−1
g Wg + (Agg

+ Σ11) σ−2
u Σ12σ

−2
u

0 0 Σ21σ
−2
u Σ22σ

−2
u

⎤⎥⎥⎥⎥⎥⎦ ,

where the subscripts g and n refer to ng genotyped and nn non-genotyped animals, respectively, the matrix R−1
=

R−1
n 0
0 R−1

g

]
is the inverse of the diagonal residual (co)variance structure matrix, A−1

=

[
Ann Ang

Agn Agg

]
is the

inverse of the pedigree-based relationship matrix of size nu = ng + nn, σ−2
u is the inverse of the additive genetic

ariance, the matrix Σ of size ng + ns (with ns being the number of SNP markers) is equal to Σ =

[
Σ11 Σ12
Σ21 Σ22

]
=[ ( 1

w
− 1

)
A−1
gg −

1
w
A−1
gg Z

−
1
w
Z′A−1

gg
1
w
Z′A−1

gg Z +
m

1−w
I

]
, the matrix Agg is the pedigree-based relationship between genotyped animals,

w is the proportion of variance (due to additive genetic effects) considered as residual polygenic effects, and m =

2
∑

po (1 − po) with po being the allele frequency of the oth SNP marker. The ng ×ns matrix Z contains the SNP genotypes
(coded as 0 for one homozygous genotype, 1 for the heterozygous genotype, or 2 for the alternate homozygous genotype)
centred by their observed means.

The vector x is equal to x =

⎡⎢⎣ β
un
ug
g

⎤⎥⎦ where β is the vector of fixed effects, un is the vector of additive genetic effects

for nn non-genotyped animals, ug is the vector of additive genetic effects for ng genotyped animals, and g is the vector of
ns SNP effects.

Finally, the vector b is equal to b =

⎡⎢⎢⎢⎣
X′R−1y
W′

nR−1
n yn

W′
gR−1

g yg
0

⎤⎥⎥⎥⎦.

Assuming an univariate animal model with only one random effect (that corresponds to u), an upper bound of the

number of non-zero elements in the sparse matrix
[

X′R−1X X′R−1W
W′R−1X W′R−1W

]
of size nβ +nu is equal to np ∗

(
nfixed + 1

)2; an
upper bound of the number of non-zero elements in the sparse matrix A−1 is equal to 7∗nu [18]; and the number of non-
zero elements in the dense matrix Σ is equal to

(
ng + ns

)2, because both the matrices A−1
gg and Z are dense matrices [19].

Summing up the different upper bounds results in an upper bound of the number of non-zero elements in the coefficient
matrix C equal to np ∗

(
nfixed + 1

)2
+ 7nu +

(
ng + ns

)2. Values for np, nfixed, nu, ng and ns vary largely in practice. For
example, by using the numbers provided in Vandenplas et al. [13] for a field dataset, the number of equations was larger
than 6.45 ∗ 106, np = 3, 882, 772, nfixed = 7, nu = 6, 130, 519, ng = 90,963, and ns = 37,995, resulting in an upper bound
of the number of non-zero elements of the coefficient matrix C for a single trait larger than 16.9 ∗ 109 and in a density
of C of approximately 0.05%.

3. Iterative solvers

The system of linear equations (2) is usually solved with the PCG method with a Jacobi preconditioner
[10–13]. However, the PCG method applied to the ssSNPBLUP system results in convergence issues. Recently, Vandenplas
et al. [13,15] showed that a DPCG method can improve the convergence behaviour. Similar convergence improvements
were also achieved with a block-diagonal Jacobi preconditioner [20] with a dense matrix of size ns. In this section, we
give an overview of the different preconditioners and of the DPCG method used in this study.

3.1. PCG method and preconditioners

The PCG method consists in transforming the linear system (2) with the inverse of a symmetric positive definite matrix
M, called preconditioner, into an equivalent system of linear equations for which the resulting system matrix, M−1C, called
the preconditioned coefficient matrix, has an effective spectral condition number, κ(M−1C), smaller than the effective
spectral condition number of C, κ C [14,21]. Briefly, the PCG method generates a sequence of solution vectors xk, such
( )

3
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w

i
g

3

r

d

w

that the error of xk is bounded by [21]:

∥x − xk∥C ≤ 2

(√
κ(M−1C) − 1√
κ(M−1C) + 1

)k

∥x − x0∥C (3)

where x0 is a starting solution vector, r0 is the residual vector defined as r0 = b − Cx0.
In animal breeding, matrix-free iterative solvers are commonly used [11–13]. Therefore, diagonal preconditioners, also

called Jacobi preconditioners and defined as M = diag (C), are preferred because they can be easily constructed and
their associated systems of equations are easy to solve [11–13,22]. More complex models that involve multiple traits or
correlated effects will require block Jacobi preconditioners with blocks of small dimensions (typically of size equal to the
number of traits or correlated effects) [23].

The first implementations of the PCG solvers with a Jacobi preconditioner applied to ssSNPBLUP systems showed
convergence issues [10,13]. Therefore, Konstantinov and Goddard [20] proposed the following block Jacobi preconditioner
to improve the convergence behaviour of the PCG method applied to the ssSNPBLUP system:

Mk =

[
diag (Coo) 0

0
( 1

w
Z′A−1

gg Z +
m

1−w
I
)
σ 2
u

]
here Coo contains the diagonal elements of C corresponding to the equations of β, un, and ug .
While Konstantinov and Goddard [20] reported acceptable convergence behaviours, some limitations for applying Mk

n large evaluations can be the time required for its computation, especially in matrix-free solvers using compressed
enotype matrices Z (e.g., [18]), and its size with large numbers of SNP markers.

.2. Deflated preconditioned conjugate gradient method

Deflation methods aim to annihilate the effect of unfavourable eigenvalues on the convergence of the PCG method,
esulting in Deflated Preconditioned Conjugate Gradient (DPCG) methods [24,25].

Given a full rank deflation-subspace matrix, Zd ∈ Rneq×md with md < neq − d where d is equal to dim (N (C)), the
eflation matrix P ∈ Rneq×neq is defined as:

P = I − CQ (4)

here the matrix Q ∈ Rneq×neq is defined as Q = ZdE−1ZT
d , with the matrix E ∈ Rmd×md being the Galerkin matrix defined

as E = ZT
dCZd. The columns of the deflation-subspace matrix Zd are called deflation vectors and are chosen such that E is

an invertible matrix. Hence the matrix Zd is chosen such that N (C) ⊈ R(Zd)[26].
The deflation method can be applied to the preconditioned system M−1Cx = M−1b, as follows:

M−1PCx = M−1Pb (5)

The algorithm of the DPCG method used for solving the linear system (5) is described in Algorithm 1 [27]. The error
upper bound of the DPCG method is given by [27]:

∥x − xk∥C ≤ 2

(√
κ(M−1PC) − 1√
κ(M−1PC) + 1

)k

∥x − x0∥C (6)

Therefore, as for to the PCG method, the convergence depends on the effective spectral condition number of M−1PC,
κ(M−1PC).
Algorithm 1: Deflated Preconditioned Conjugate Gradient method for solving Cx = b
1 Choose x0

2 r0 = b − Cx0

3 r̂ = Pr0

4 Solve Mz0 = r̂0

5 p0
= z0

6 for k = 0, 1, . . . , until convergence do
7 ŵk

= PCpk

8 αk =
<r̂k,zk>
<pk,ŵk>

9 x̂k+1
= x̂k + αkpk

10 r̂k+1
= r̂k − αkŵk

11 Solve Mzk+1
= r̂k+1

12 βk =
<r̂k+1,zk+1>

<r̂k,zk>
13 pk+1

= zk+1
+ βkpk

14 xfinal = Qb + PT x̂k+1;
4
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4. Computation of the deflation-subspace matrix

The deflation vectors of the deflation-subspace matrix Zd can be defined following several techniques based on,
.g., approximated eigenvectors [28], recycling information of previous Krylov subspaces [25], or subdomain deflation
ectors [29]. In this study, we investigate the techniques based on subdomain deflation and on recycling information of
revious Krylov subspaces.

.1. Subdomain deflation

For solving ssSNPBLUP systems, Vandenplas et al. [13] defined the deflation vectors following a subdomain deflation
pproach. Their proposed approach relies on grouping SNP effects in non-overlapping subdomains to annihilate the
ffect of the largest unfavourable eigenvalues of the preconditioned coefficient matrix on the convergence. Briefly, the
sSNPBLUP domain of a univariate system is divided as follows: (1) all fixed and random effects other than the SNP effects
re included in a separate subdomain, and (2) each set of a fixed amount of randomly chosen (without replacement) SNP
ffects are included in the same subdomain. Therefore, each deflation vector, that is each column of Zd, which corresponds
o a subdomain, contains values of 1 for the entries associated with an equation included in the corresponding subdomain,
nd 0 otherwise. Following this definition, each row of Zd contains only one non-zero element, and each column of
d contains as many non-zero elements as the amount of equations associated with the corresponding subdomain. For
ulti-trait ssSNPBLUP systems, this division is applied within each trait (see Vandenplas et al. [13] for more details).
Based on this proposed approach, multiple divisions of the computational domain of the ssSNPBLUP system into a

ame amount of non-overlapping subdomains are possible. Following Vuik et al. [27], the optimal division may depend
n the properties of the system of linear equations. For example, Vuik et al. [27] defined the subdomains based on the
roperties of the eigenvectors associated with the smallest eigenvalues of M−1C for a class of layered problems with
xtreme contrasts in C. In this study, we investigate the potential benefit of a division of the computational domain of
sSNPBLUP based on biological properties of the SNP genotypes. Indeed, the associations between alleles of SNP markers
n a population are not completely associated randomly due to many factors (e.g., population structure, selection). This
on-random association of alleles at different SNP markers in a population is called linkage disequilibrium, and the level of
inkage disequilibrium among all SNP markers can be approximated by the correlation matrix associated with the centred
enotype matrix Z [30]. Assuming that correlated SNP markers are associated with similar estimated SNP effects (in sign
nd value), the division of the ssSNPBLUP domain based on groups of highly correlated SNP markers might be more
ppropriate than a division of the ssSNPBLUP domain based on groups of random SNP effects, as proposed by Vandenplas
t al. [13]. In this study, the K-means++ algorithm [31] is applied on the correlation matrix associated with Z to define
lusters of SNP markers associated with the same subdomain. The number of clusters is determined such that the total
mount of subdomains is the same as the amount of subdomains based on the approach assigning SNPs to a subdomain
andomly.

.2. Recycling information from previous ssSNPBLUP evaluations

In genetic evaluation centers, genomic evaluations using models such as the ssSNPBLUP models are performed on a
outinely basis (e.g., each 3–4 months in a dairy cattle context). Each genomic evaluation includes phenotypes, genotypes,
nd pedigree of the previous genomic evaluation, as well as information collected after this previous genomic evaluation.
owever, while the system of equations is growing at each new evaluation, the newly collected information represent
nly a small part of all the datasets considered by the system (usually less than 1%). Therefore, solution vectors obtained
rom previous genomic evaluations could be recycled as initial solution vector for a PCG-based algorithm, or as snapshots
or defining a deflation-subspace matrix Zd [32].

It is worth noting that the addition of new information to a genomic evaluation will generate additional equations
hat were not included in previous genomic evaluations (e.g., for animals born after the last genomic evaluation). In this
tudy, this issue is avoided by assuming a same set of levels (e.g., animals) for all fixed and random effects. For the genetic
ffects, this is equivalent to the replacement of a missing entry corresponding to an animal’s genomic breeding value in
he solution vector by the mean of its parents’ genomic breeding values.

.3. Proper orthogonal decomposition deflation vectors

Following Diaz Cortes et al. [32], deflation vectors can be computed by applying the proper orthogonal decomposition
POD) method to a set of snapshots. In this study, the snapshots are solution vectors of previous ssSNPBLUP systems.
he POD method applied to a set of snapshots generates a small set of orthonormal basis vectors {φ1, φ2, . . . , φp} with
i ∈ Rneq and p ∈ N. The basis vectors φi are eigenvectors that correspond to the p largest eigenvalues of the data matrix
efined as:

Rs =
1

s − 1
SST

where S =
[
x̂ x̂ . . . x̂

]
∈ Rneq×s with x̂ ∈ Rneq being the ith snapshot.
1 2 s i
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In practice, the eigenvectors of Rs can be easily obtained by applying a singular value decomposition on the matrix
1

s−1S
TS, which is a matrix of a much smaller size than Rs, as detailed by Diaz Cortes et al. [32]. In this study, the two first

vectors that contain the largest part of the variability of the snapshots are chosen as deflation vectors.

5. Numerical experiments

In this section, we present briefly the simulated dataset used for generating a ssSNPBLUP linear system. Then, details
and performances of each approach used for solving the ssSNPBLUP system are provided.

5.1. Data

Datasets are simulated using the QMSim software [33], that is a software for simulating livestock pedigree, SNP
genotypes and phenotypes. The parameter file needed for QMSim is the one provided by Bradford et al. [34]. Briefly, this
simulation aims to mimic a dairy cattle population under selection for a female-limited trait associated with a heritability
of 0.30. The final datasets include 164,500 animals in the pedigree, among which 18,678 animals are genotyped for 13,100
SNP markers on 5 chromosomes. A total of 12,446 SNP markers with a minor allele frequency higher than 0.1 are retained
for ssSNPBLUP after filtering. A total of 82,440 phenotypes for only female individuals are available. More details on the
simulation procedure can be found in Bradford et al. [34]. These pedigree, genotype, and phenotype datasets are referred
below to as full datasets, and result in a ssSNPBLUP system with 176,947 equations and a density of C equal to 2.9%.

To simulate a real scenario in which datasets are incremented routinely, reduced phenotype and genotype datasets are
reated by removing between 0.25% and 3.00% of most recent records, by step of 0.25%. Therefore, a total of 12 phenotype
nd genotype reduced datasets are generated from the full datasets.

.2. Implementation

The calculations are performed with the programming language Julia Version 1.7.3 [35]. The Julia package Clustering.jl
https://juliastats.org/Clustering.jl/stable/) is used to apply the K-means++ algorithm on the correlation matrix associated
ith Z. The Julia package TimerOutputs.jl
(https://github.com/KristofferC/TimerOutputs.jl) is used to report wall clock times of different sections. The scripts

o generate the datasets and the analyses are available at https://doi.org/10.4121/19153742 and at WUR Gitlab https:
/git.wur.nl/vande018/vandenplas_dpcg_2022.git.

.3. Evaluations

For all the experiments, the ssSNPBLUP system (2) is set up using the full datasets, and a Jacobi preconditioner is used
n all the cases.

For all iterative methods, the termination criterion is the relative residual defined as follows:

∥rk∥
∥b∥

≤ 10−6 (7)

with ∥rk∥ being the 2-norm of the residual of the kth iteration.
For all ssSNPBLUP systems, the smallest and largest Ritz values are computed with the Lanczos algorithm based on

information obtained from the (D)PCG methods [21,36,37]. These extremal Ritz values are used for estimating the smallest
and largest non-zero eigenvalues that influence the convergence of the (D)PCG methods, as well as the effective spectral
condition number of the (deflated) preconditioned coefficient matrices.

All computations were performed on a cluster with nodes with 376 GB and an Intel Xeon Gold 6130 (2.10 GHz)
processor with 32 cores.

5.3.1. The PCG method with a Jacobi preconditioner
The PCG method with a Jacobi preconditioner is commonly used in animal breeding to solve iteratively linear

systems [11,12]. Therefore, this is considered as a reference method in this study for solving iteratively a ssSNPBLUP
system.

The number of iterations to reach the termination criterion and Ritz values of the ssSNPBLUP preconditioned coefficient
matrix, are in Table 1. The number of iterations to reach convergence is equal to 1742 with a zero initial solution vector,
and reduces by 36% when the initial solution vector is the solution vector of a ssSNPBLUP evaluation for which the latest
0.25% of genomic and phenotypic information were removed (Fig. 1; Table 1). For both evaluations, the smallest and
largest Ritz values are about 1.6 ∗ 10−3 and 276.6, leading to an estimated effective spectral condition number of around
1.69 ∗ 106.
6
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Fig. 1. Convergence plots for the PCG method with a Jacobi preconditioner (PCG) or a block Jacobi preconditioner (B-PCG), and with a zero initial
olution vector (0) or with a solution vector from a previous evaluation (0.25%).

Table 1
Number of iterations to reach the termination criterion and Ritz values of different PCG-based approaches applied on a ssSNPBLUP linear system.
Approacha Deflation # def. vect. Init. sol. # iter. Smallest Ritz Largest Ritz

PCG – – 0 1742 1.635 ∗ 10−3 276.633
PCG – – 0.25% 1122 1.685 ∗ 10−3 276.633
PCG-B – – 0 262 1.447 ∗ 10−3 2.622
PCG-B – – 0.25% 167 1.492 ∗ 10−3 2.622
DPCG Random 1246 0 376 1.734 ∗ 10−3 7.627
DPCG Random 126 0 1113 1.709 ∗ 10−3 80.279
DPCG Random 1246 0.25% 240 1.717 ∗ 10−3 7.627
DPCG Random 126 0.25% 727 1.701 ∗ 10−3 80.279
DPCG K-means 1246 0 337 1.743 ∗ 10−3 6.760
DPCG K-means 126 0 890 1.710 ∗ 10−3 45.440
DPCG K-means 1246 0.25% 217 1.722 ∗ 10−3 6.760
DPCG K-means 126 0.25% 580 1.702 ∗ 10−3 45.440
DPCG Snapshots 12 0 1057 1.809 ∗ 10−3 276.491
DPCG Snapshots 12 0.25% 1052 1.810 ∗ 10−3 276.491
DPCG POD 2 0 1215 2.001 ∗ 10−3 276.605
DPCG POD 2 0.25% 1029 1.761 ∗ 10−3 276.605
DPCG K-means + POD 1248 0.25% 207 1.785 ∗ 10−3 6.760
DPCG K-means + POD 128 0.25% 563 1.765 ∗ 10−3 45.440

aPCG-B = PCG with a block Jacobi preconditioner; DPCG = deflated PCG.

5.3.2. The PCG method with a block Jacobi preconditioner
In this study, the block Jacobi preconditioner Mk [20] is also tested. In our implementation, a Bunch–Kaufman

factorization [38] of the dense matrix
( 1

w
Z′A−1

gg Z +
m

1−w
I
)
σ 2
u included in Mk is performed and stored before starting the

CG iterative process for allowing an efficient solving of the associated system of equations.
With Mk, the number of iterations to reach convergence is equal to 262 with a zero initial solution vector, and to 167

ith an initial solution vector being the solution vector of a previous evaluation with 0.25% less genotypes and phenotypes
Fig. 1; Table 1). For both scenarios, this is a reduction of 85% of the number of iterations of the corresponding PCG method
ith a Jacobi preconditioner. This reduction is also reflected mainly by a reduction of the largest Ritz values that become
qual to 2.6 in both scenarios ( Table 1).

.3.3. The DPCG method based on a subdomain deflation approach
In this study, two approaches for defining the deflation vectors are investigated. The first approach consists of grouping

andomly the SNP effects in non-overlapping subdomains of same size, as proposed by Vandenplas et al. [13,15]. The
7
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Fig. 2. Convergence plots for the DPCG method with 1246 deflation vectors, with a zero initial solution vector (0) or with a solution vector from a
previous evaluation (0.25%). The deflation vectors were defined based on a subdomain deflation approach with subdomains defined randomly (Rand.)
or based on a K-means++ algorithm (Kmeans).

second approach consists of grouping the SNP effects in non-overlapping subdomains based on the clusters defined by
the K-means++ algorithm applied on the correlation matrix associated with Z, as explained in Section 3. For evaluating
he efficiency of the K-means algorithm-based approach over the random assignments approach, the number of clusters
o be determined by the K-means++ algorithm is set to the number of subdomains obtained with the approach based on
andom assignments. In this study, a Jacobi preconditioner is always used in the DPCG method.

Using the random assignments approach, 10 and 100 SNP effects are randomly assigned to the same subdomain,
esulting in 1245 and 125 subdomains associated with SNP effects, respectively. For the K-means algorithm-based
pproach, a total of 1245 and 125 clusters of SNPs are defined using the K-means++ algorithm, and each cluster
orresponds to a subdomain associated with SNP effects. The first set of 1245 subdomains includes on average 10 SNP
ffects, with the smallest subdomain of this division being associated with only 1 SNP effect, and the largest subdomain
eing associated with 118 SNP effects. Similarly, the second set of 125 subdomains includes on average 100 SNP effects per
ubdomain, with at least 21 SNP effects per subdomain and at most 700 SNP effects per subdomain. Finally, by considering
he subdomain associated to all effects other than the SNP effects, a total of 1246 and of 126 subdomains are defined using
oth the random assignments and the K-means algorithm-based approaches. It is worth noting that the computational
ost for one DPCG iteration is the same with both subdomain definitions when using the same number of subdomains,
ecause the deflation-subspace matrices have the same size and same number of non-zero elements for both approaches.
With 126 subdomains and a zero vector as initial solution vector, the number of iterations to reach convergence is

qual to 1113 with the random assignments approach and reduces by about 20% when the K-means algorithm-based
pproach is used (i.e., 890 iterations; Figs. 2–3; Table 1). This confirms our expectation, also stated in Vandenplas et al.
13], that a definition of the subdomains based on properties of the genomic information can lead to a more efficient
PCG method with the same computational costs per iteration.
Increasing the number of subdomains to 1246 results in an additional decrease of the number of iterations to reach

onvergence. Indeed, only 376 iterations with the random assignments approach and 337 iterations with the K-means
lgorithm-based approach are needed to reach convergence (Figs. 2–3; Table 1). The smaller difference in terms of
terations between the two approaches can be explained by the fact that smaller subdomains yield to similar deflation
ectors defined by both approaches.
Similarly to the PCG solver, using the solution vector of a previous evaluation with 0.25% less genotypes and phenotypes

s initial solution vector, results in around 35% less iterations to reach convergence for both approaches and for all the
cenarios (Figs. 2–3; Table 1).
Regarding the Ritz values, the smallest Ritz values of the deflated preconditioned coefficient matrices are about 1.7 ∗

0−3 for all DPCG approaches, and similar to the smallest Ritz values obtained from the PCG methods. However, variations
f the largest Ritz values are observed across the different approaches. Indeed, the largest Ritz value decreases from 276.6
ith the PCG method to 80.3 with the DPCG method and 126 subdomains defined with the random assignments approach.
8
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Fig. 3. Convergence plots for the DPCG method with 126 deflation vectors, with a zero initial solution vector (0) or with a solution vector from a
previous evaluation (0.25%). The deflation vectors were defined based on a subdomain deflation approach with subdomains defined randomly (Rand.)
or based on a K-means++ algorithm (Kmeans).

Refining the definition of the 126 subdomains with the K-means algorithm-based approach leads to a reduction of the
largest Ritz value to 45.4. The increase of the number of subdomains results in additional reductions of the largest Ritz
values, i.e. to 7.6 with the random assignments approach and to 6.8 with the K-means algorithm-based approach ( Table 1).

5.3.4. The DPCG method based on recycling information from previous systems
As described in Section 3, genomic evaluations are performed routinely, with the addition of newly collected

nformation at each evaluation. To simulate such a real scenario, solution vectors for 12 ssSNPBLUP systems are computed
sing reduced phenotype and genotype datasets obtained by removing from the full phenotype and genotype datasets
etween 0.25% and 3.00% of the most recent records.
First, the 12 solution vectors are used as snapshots for defining a deflation-subspace matrix Zd. The resulting DPCG

ethod with a zero vector as initial solution vector converges in 1057 iterations. Using the solution vector of a ssSNPBLUP
ystem with 0.25% data resulted in a similar number of iterations to reach convergence (i.e., 1052 iterations; Fig. 4;
able 1). Following Lemma 5.1, the number of iterations to reach convergence should be the same for both methods,
nd the difference observed in the number of iterations could be due to floating point errors.

emma 5.1. Let C ∈ Rneq×neq be a symmetric positive semi-definite (SPSD) matrix, Zd ∈ Rneq×md be a full rank deflation-
ubspace matrix and chosen such that N (C) ⊈ R (Zd), and the vector y ∈ Rneq be a linear combination of the deflation vectors
f Zd, defined as y = Zdw with w ∈ Rmd . The invertible Galerkin matrix E ∈ Rmd×md and the deflation matrix P ∈ Rneq×neq are

defined as E = Z′

dCZd and P = I − CZdE−1Z′

d, respectively [26]. Using x0 = y as initial solution vector in Algorithm 1 results
in the same iterative process of a DPCG method using x0 = 0 as initial solution vector.

Proof. Since PCZd = 0, it follows that for any vector y = Zdw:

PCy = PCZdw = 0w = 0

Using this equality, it can be easily proved that the iterative process of the DPCG algorithm is the same when using the
initial solution vector x0 = y or x0 = 0 in Algorithm 1. Indeed, since PCx0 = 0 with x0 = y and with x0 = 0, it results
that r̂0 = Pb in the third line of Algorithm 1, leading to the same iterative process.

Second, the two first vectors associated with the largest singular values of Rs are computed using the set of 12 snapshots
and are considered as deflation vectors, as described in Section 4. The two selected eigenvectors explain more than 99.9%
of the variability of the 12 snapshots. The resulting DPCG method with a zero vector as initial solution vector converges
in 1215 iterations (Fig. 4; Table 1). Based on these results, we conclude that the variability not captured by the two
POD vectors slightly deteriorates the convergence in comparison to using all the 12 snapshots as deflation vectors, while
9
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Fig. 4. Convergence plots for the DPCG method with the deflation vectors corresponding to 12 snapshots (Snap.) or to 2 POD vectors (POD), as
well as in combination with deflation vectors defined with a subdomain deflation approach (Kmeans). The DPCG methods used either a zero initial
solution vector (0) or a solution vector from a previous evaluation (0.25%).

they explain more than 99.9% of the variability of the 12 snapshots. However, using the solution vector of a previous
evaluation with 0.25% less genotypes and phenotypes as initial solution vector in addition to the POD vectors, results
in a number of iterations to reach convergence (i.e. 1029; Fig. 4; Table 1) similar to the amount of iterations needed
when the 12 snapshots are used. This is interesting because this POD approach with a non-zero initial solution vector is
computationally more efficient as only two deflation vectors are needed instead of 12 for a similar convergence rate.

Regarding the Ritz values, recycling snapshots, or using the POD vectors derived from them, as deflation vectors do not
ffect the largest Ritz values, since they remain similar to the largest Ritz values obtained with the PCG method. However,
e observe that the smallest Ritz values slightly increase in comparison to the PCG method, when snapshots are recycled

nto deflation vectors. This is the opposite of the DPCG method using the subdomain deflation approach, as this approach
esults in a decrease of the largest Ritz values.

.3.5. The DPCG method based on subdomain deflation and recycling information approaches
Based on the observations that the subdomain deflation approach results in a decrease of the largest Ritz values and

hat the recycling information approach results in a slight increase of the smallest Ritz values, we combine the 2 POD-
ased deflation vectors with the subdomain deflation vectors obtained from the K-means algorithm-based approach into
single deflation-subspace matrix Zd.
As observed in Fig. 4 and Table 1, the combination of both approaches results in the lowest numbers of iterations to

each convergence. Indeed, 207 and 563 iterations are needed when 1245 and 125 subdomains are defined for the SNP
ffects, respectively. The combined deflation-subspace matrices result in smallest Ritz values similar to the smallest Ritz
alues obtained with the POD approach, and in largest Ritz values similar to the largest Ritz values obtained with the
-means algorithm-based approach. These results show that both approaches to define the deflation-subspace matrix
an be combined if both approaches result in annihilating different extreme eigenvalues of the preconditioned coefficient
atrices.

.4. Computational costs of the different PCG and DPCG approaches

In this section, we investigate first the computational costs of the PCG and DPCG approaches using small datasets, as in
his study. Second, we discuss the computational costs of the PCG and DPCG approaches applied to large datasets (e.g., as
n Vandenplas et al. [15]).

.4.1. Small datasets
When small datasets include only a few tens of thousands of genotypes and SNPs, the matrices M, Mk, C, E−1, and

˜
 = CZd, can be computed explicitly and stored into Random Access Memory (RAM). In this case, the differences of the

10
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Table 2
Wall clock times for different steps of different PCG-based approaches applied on a ssSNPBLUP linear system.
Approacha Deflation # def. vect. Init. sol. Setup M (s) Iterative process

Totalb (s) Iterationc (s) Mv = rd (ms) Setup P (s) Pve (ms)

PCG – – 0 0.2 2621 1.50 6 – –
PCG – – 0.25% 0.4 1869 1.66 6 – –
PCG-B – – 0 10.5 406 1.54 102 – –
PCG-B – – 0.25% 12.2 343 2.04 146 – –
DPCG Random 1246 0 <0.1 640 1.68 5 2.5 236
DPCG Random 126 0 <0.1 1615 1.45 5 1.9 9
DPCG Random 1246 0.25% <0.1 457 1.84 5 3.3 239
DPCG Random 126 0.25% <0.1 1106 1.51 5 1.9 9
DPCG K-means 1246 0 0.3 577 1.68 5 5.7 234
DPCG K-means 126 0 0.3 1310 1.46 5 5.2 9
DPCG K-means 1246 0.25% <0.1 384 1.74 5 2.3 233
DPCG K-means 126 0.25% <0.1 871 1.49 5 2.0 9
DPCG Snapshots 12 0 <0.1 1608 1.50 5 17.0 2
DPCG Snapshots 12 0.25% <0.1 1811 1.70 7 17.4 2
DPCG POD 2 0 <0.1 1811 1.49 5 2.8 1
DPCG POD 2 0.25% <0.1 1535 1.49 5 3.2 1
DPCG K-means + POD 1248 0.25% <0.1 367 1.73 5 5.6 233
DPCG K-means + POD 128 0.25% <0.1 850 1.49 5 5.5 10

aPCG-B = PCG with a block Jacobi preconditioner; DPCG = deflated PCG.
bWall clock time in seconds for the whole iterative solver, except the computation of the preconditioner M.
Average wall clock time in seconds for one iteration.
Average wall clock time in milliseconds for solving the preconditioning system.
Average wall clock time in milliseconds for one multiplication Pv.

computational costs between different PCG-based methods are mainly due to differences between M and Mk, and among
the different sizes of E−1 and Z̃.

First, in this study, the computation of M takes only a few milliseconds, and the computation of Mk takes between 10
nd 12 s due to the Bunch–Kaufman factorization [38] (Section 5.3.2; Table 2). Similarly, the preconditioning system is
olved within 7 ms on average with M, and in around 146 ms with Mk ( Table 2).
Second, the storage in RAM of C and Z̃ = CZd allows the implementation of PCpk in the DPCG method as follows [39]:

PCpk
= yk −

[
Z̃
[
E−1 [Z′

dy
k]]] (8)

here the brackets [.] indicate the order of the matrix–vector operations, yk = Cpk. Excluding the time required for
omputing yk = Cpk, performing Eq. (8) takes less than 10 ms with up to 126 deflation vectors, and around 240 ms with
bout 1250 deflation vectors ( Table 2).
Finally, these different times result in slightly different wall clock times per iteration across the different PCG-based

mplementations. Thereby, one iteration takes on average between 1.5 and 2.0 s for all PCG-based methods ( Table 2), and
he efficiency of the different solvers is highly related to the wall clock times required for the computation of M (or Mk),
−1 and Z̃, and the number of iterations to reach convergence. Based on these criteria, a PCG method with a block Jacobi
reconditioner or a DPCG method based on subdomain deflation and recycling information approaches can be advised
or solving ssSNPBLUP systems with small datasets.

.4.2. Large datasets
When large datasets include several hundreds of thousand genotypes and tens of thousand SNP markers, the compu-

ational strategies discussed in Section 5.4.1 might not possible. First, for the PCG methods, the computation of the block
acobi preconditionerMk may require large amounts of RAM for large ns, as it involves a dense matrix

( 1
w
Z′A−1

gg Z +
m

1−w
I
)

∈

Rns×ns . Furthermore, its computation might be challenging in matrix-free solvers that use compressed forms of the dense
matrix Z (e.g., [18]). Although the efficiency of Mk is attractive, its implementation for large datasets requires further
research.

Second, the computational costs of the DPCG method compared to those of the PCG methods will also depend on how
the product PCpk in Algorithm 1 is implemented with large datasets. The implementation of the product PCpk in this
tudy (Eq. (8)) can be also used when the number of deflation vectors is limited because the matrices Zd, E−1, and Z̃ can
e stored in-memory and allow parallelized matrix–vector operations. This is the case for the DPCG method based on
ecycling information from previous systems.

However, this approach is not possible with the subdomain deflation approach because thousands of deflation vectors
re required for real genomic evaluations, resulting in a matrix Z̃ too large to be stored in-memory [13]. For such a case,
11
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Vandenplas et al. [13] proposed to store the deflation subspace matrix Zd in-memory as a sparse matrix and to compute
he product PCpk as follows [30]:

PCpk
= yk −

[
C
[
Zd
[
E−1 [Z′

dy
k]]]] (9)

This approach has the downside that the multiplication of C by a vector must be performed twice per iteration. Assuming
that the costs of an iteration is dominated by the multiplication of C by a vector, the DPCG method that implements
Eq. (9) is therefore more efficient than the PCG method if a reduction of the number of iterations by a factor greater than
two is observed. Thereby, Eq. (8) should be preferred when the multiplication of Z̃ by a vector is less expensive than the
multiplication of C by a vector.

Regarding the computational costs of the DCPG method relying on the K-means algorithm-based approach, the
additional costs of the K-means++ algorithm can be neglected. Indeed, in practice, genomic evaluations are performed
routinely, and while the size of phenotypic, genomic, and pedigree information increase over time, we can assume that
the correlation matrix associated with the genotype matrix remains similar across evaluations and across similar sets of
animals [30,40]. Therefore, the K-means++ analysis of the genotype matrix could be performed only once for several
genomic evaluations that use approximately the same pedigree and genomic information. Thereby, the computation
costs of the DPCG method decreases linearly with the decrease of the number of DPCG iterations when using K-means
algorithm-based approach, in comparison to the random assignment approach.

Regarding the computational costs of the DPCG method based on recycling information from previous systems, it is
obvious that the DPCG method using the POD basis as deflation vectors require less operations per iteration than the
DPCG method using snapshots. For a similar convergence rate, as observed in this study, the POD-based approach should
therefore be preferred, because the extra work needed to compute the POD basis can be limited as detailed in Section 3
and by Diaz Cortes et al. [32].

6. Conclusions

In this study, we show that the convergence rate of the DPCG method applied to a ssSNPBLUP system can be improved
by refining the definition of the deflation vectors based on the properties of the genomic information. This acceleration
of the convergence is due to the annihilation of the largest eigenvalues of the ssSNPBLUP preconditioned coefficient
matrix. Furthermore, the convergence rate of the DPCG method is accelerated by recycling solution vectors of previous
ssSNPBLUP systems. The POD vectors obtained from solution vectors of previous systems can be used as deflation vectors
to annihilate the smallest eigenvalues of the ssSNPBLUP preconditioned coefficient matrix. Finally, the DPCG method
relying on both approaches for defining the deflation vectors and with the use of the solution vector of a previous
ssSNPBLUP system, results in a reduction of the number of iterations up to 88% in comparison to the PCG method with a
Jacobi preconditioner. Similar improvements are also observed with the PCG method using a block Jacobi preocondioner.
Therefore, we recommend the PCG method with a block Jacobi preconditioner and the DPCG method that combines the
subdomain deflation approach based on the properties of the genomic information and the POD-based approach recycling
previous solution vectors for solving efficiently a ssSNPBLUP system of linear equations.

Data availability

The scripts to generate the datasets and the analyses are available at https://doi.org/10.4121/19153742 and at WUR
Gitlab https://git.wur.nl/vande018/vandenplas_dpcg_2022.git.
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