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Abstract
In this paper, we derive an analytical solution to the dynamic optimal portfolio 
choice problem in the  case of an investor equipped with a power utility function 
of wealth. The results are established by solving the Bellman backward recursion 
under the assumption that the vector of asset returns follows a vector-autoregres-
sive process with predictable variables. In an empirical study, the performance of 
the derived solution is compared with the one obtained by applying the numerical 
method. The comparison is performed in terms of the final wealth and its expected 
utility. It is documented that the application of the analytical solution to the multi-
period portfolio choice problem leads to higher values of both the final wealth and 
the expected utility.

Keywords Finance · Power utility · CRRA  · Multi-period solution · Dynamic 
optimization

1 Introduction

With the development of the monetary system and the rise of market trading capac-
ity, portfolio theory has appeared to be an important approach in explaining the 
behaviour of stock prices and has provided a quantitative tool for strategic invest-
ment. Introduced in 1952 by Harry M. Markowitz, the optimal portfolio choice 
problem has become a popular topic in finance and applied statistics (see, e.g., Bod-
nar and Okhrin 2013; Bonaccolto et al. 2018; Consigli et al. 2019; Muhinyuza et al. 
2020; Bodnar et al. 2021; Mariani et al. 2022). It aims to minimize the variance of 
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the portfolio given some predefined level of the expected portfolio return called the 
mean-variance paradigm (see, Markowitz 1952; Merton 1972).

The mean-variance approach of Markowitz provides a simple way how to diver-
sify the investment portfolio that brings a trade-off between the expected return and 
the variance manually settable by an investor. On the other hand, there are some 
challenges that the Markowitz optimization problem meets. Namely, it can be only 
presented as an expected utility maximization of the quadratic or exponential utility 
functions and it may be considered as a second-order approximation for an arbitrary 
utility. Besides that, it provides a single-period solution, whereas most investment 
strategies have a multi-period setup with a portfolio rebalancing during the invest-
ment horizon (see, Brandt 2009; Meucci and Nicolosi 2016; Zhao et al. 2022).

In this paper, we concentrate on finding the multi-period portfolio strategy for the 
expected utility optimization problem. The concept of the expected utility of wealth 
has become and remains an intensively discussed branch of portfolio theory (see 
Brandt 2009; Pennacchi 2008; Campbell and Viceira 2002; Bodnar et al. 2018). The 
utility is defined as an increasing concave function, which fulfills four axioms and 
implies an investor who benefits from the maximization of its expected value (see, 
Pennacchi 2008; Campbell and Viceira 2002). As such, several approaches can be 
used to specify the utility function and the investor has to choose one of them. To 
classify and understand different utility functions, one can employ the concept of 
“risk premium” which is usually presented by absolute risk aversion (ARA) and rel-
ative risk aversion (RRA). For instance, as discussed by J. Pratt (see, Pratt (1964)), 
the constant absolute risk aversion represents an individual willing to pay some 
fixed amount of money to avoid risk. On the other side, a willingness to sacrifice a 
percentage of the investor wealth characterizes the concept of relative risk aversion 
(Pennacchi 2008; Campbell and Viceira 2002). The exponential utility is a common 
example of the utility function with constant absolute risk aversion (CARA), while 
the power utility represents the constant relative risk aversion (CRRA) utility (see, 
Brandt 2009; Pennacchi 2008). Chronopoulos et al. (2011) developed a utility-based 
framework for optimal investment and made use of the CRRA utility function to 
determine the optimal time of investment. Finally, the other popular utility function 
used in the financial literature is the quadratic utility which is neither CARA nor 
CRRA (see, Li and Ng 2000).

The application of the power utility in portfolio selection problems has some 
advantages over other utility functions. For example, it obeys a decreasing ARA, 
which implies that with increasing wealth the investor would increase the number 
of dollars in the risky assets held in the portfolio. This is not the case, however, 
for the quadratic utility, which exhibits an increasing ARA, causing an unrealis-
tic behaviour of investors on the market. Although the exponential utility obeys a 
constant ARA, which is more plausible than the increasing ARA in the case of the 
quadratic utility, it still lies behind the power utility because of the experimental 
and empirical evidences, which mostly justify a decreasing ARA (see, Friend and 
Blume (1975)). Moreover, the power utility investor would have an optimal strat-
egy which is independent of the initial value of the wealth. This constitutes another 
very appealing property of the power utility. There are also some criticisms on the 
power utility, e.g., it seems to have an impact on the equity premium puzzle (see, 
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Mehra and Prescott (1985)) and it is unbounded, while the exponential utility does 
not possess such issues (see, Alpanda and Woglom (2007) for more details). Even 
though we have focused solely on the power utility, we believe that a proper combi-
nation of both exponential and power utilities can potentially lead to a “better” util-
ity function. Moreover, the methodology developed in the paper can be generalized 
to a more general class of utility functions, like hyperbolic absolute risk aversion 
(HARA) utility. This important and challenging problem has been left for future 
research.

Most of the results derived in the literature about the dynamic optimal portfo-
lio choice problem are obtained in the continuous time scenario by using a Markov 
decision process with the asset prices that follow a geometric Brownian motion (see 
Vigna 2009; Çanakoğlu and Özekici 2012; Chronopoulos et  al. 2011; Lioui and 
Poncet 2013; Moreno-Bromberg et al. 2013). Besides that, the quadratic utility func-
tion has appeared to be the most popular utility (see, Li and Ng (2000), Bodnar et al. 
(2015a)), while the exponential utility is another popular choice which is usually 
accompanied by the assumption that the asset returns are normally distributed (cf., 
Liu (2004), Soyer and Tanyeri (2006), Bodnar et al. (2015b)). On the other side, Li 
et al. (2001) argued that solving a dynamic optimal portfolio choice problem in the 
discrete-time setup is a considerably more difficult task. In the current paper, we 
present the solution for the power utility in the discrete-time case. Our findings com-
plement the existent analytical solutions for multi-period portfolio choice problems 
derived when the expected quadratic utility function (cf., Li and Ng (2000), Bodnar 
et al. (2015a)) or the exponential utility (see, e.g., Bodnar et al. (2015b)) are used. 
Also, it generalizes the numerical solution which is obtained by applying the Taylor 
series expansion to the utility or value function (see, Brandt et al. 2005; Garlappi 
and Skoulakis 2011).

In the derivation of the theoretical results, it is assumed that the asset returns fol-
low a vector auto-regressive model of order one with Gaussian error terms. The lat-
ter is a popular approach for modelling the behaviour of stock returns in financial 
literature (Brandt et  al. 2005; Campbell et  al. 2003). Applying the Bellman equa-
tion we obtain the dynamic solution of the multi-period maximization problem. In 
an empirical illustration, the new approach is compared to the well-known numeri-
cal solution suggested in Brandt et al. (2005), where the weights were obtained by 
the Taylor series expansion of the value function. The predictable model is fitted 
to weekly stock returns, while we consider an investor with an investment hori-
zon of 1 month (4 weeks), 2 months, 3 months and 4 months who rebalances the 
holding portfolio on a weekly basis. The results of the simulation study show that 
the new solution provides a higher average utility compared to the numerical one. 
These results hold independently of the value of the risk-aversion coefficient and 
the investment horizon. Moreover, when the investment horizon increases, our find-
ings become more pronounced. In particular, for the investment horizon of 3 and 
4 months, we find that with a probability of about 80% the expected utility of the 
final wealth is larger than −0.1 when the closed-form solution is used, and the prob-
ability of such an event is close to zero for the numeric approximation. As such, 
the dynamic investment strategy based on the closed-form solution outperforms 
the investment strategy based on the numeric approximation. On the other side, it 
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should be noted that the closed-form investment strategy is obtained under some 
model assumptions imposed on the data-generating process. The violation of these 
assumptions may lead to the strategy, which is not optimal any longer. Thus, an 
investor should first validate the model before applying the derived optimal portfolio 
strategy in practice. To this end, we also point out that both the closed-form strat-
egy and the one based on the numeric approximation are explicitly derived for the 
investor who maximizes the power utility function. The solutions of dynamic opti-
mal portfolio choice problems under other utility functions, like the quadratic utility 
and exponential utility, can be found in Çanakoğlu and Özekici (2010), Li and Ng 
(2000), Bodnar et al. (2015a), Bodnar et al. (2015b), among others.

The rest of the paper is structured as follows. Section 2 presents a framework and 
a problem formulation considered in the paper. The analytical solution of the util-
ity maximization problem based on the power utility function is deduced in Theo-
rem 1 of Sect. 3. Section 4 provides an empirical study investigating the practical 
relevance of the derived results. Section 5 summarises the theoretical and empirical 
findings obtained in the paper, while the proof of Theorem 1 can be found in the 
“Appendix” (Sect. 6).

2  Framework

Let rt denotes a k-dimensional random vector of simple returns on risky assets and 
let rft  be the non-random simple return on a risk-free asset at time t. We also con-
sider predictable variables �t as a n-dimensional vector and assume that the com-
bined vector Xt =

(
r
�
t
, ��

t

)� follows a vector autoregressive process (VAR) of order 
one given by

It is assumed that {�̃�t} are independent random vectors with �̃�t ∼ N(�, �̃t) where 
�̃t defines (k + n) × (k + n)-dimensional positive definite deterministic covariance 
matrix possibly dependent on t. In practice, this matrix can be fitted by employ-
ing the results from Xu and Phillips (2008) and Bodnar and Zabolotskyy (2011), 
who considered autoregressive models with time-varying unconditional variances. 
Moreover, Xu and Phillips (2008) pointed out that the time series models with 
time-depending variances are more flexible and they usually provide a better fit in 
practice. The predictable variable is often interpreted as the most correlated ele-
ment with rt (see, Brandt and Santa-Clara 2006; Campbell et al. 2003; Bodnar et al. 
2015b). It could be, for example, dividend yield, term spread, or even another asset 
return. Here we assume that the whole wealth is solely invested in the risky assets rt 
and in the risk-free asset, but not in the vector of predictable variables �t.

To recover the vector of returns one can multiply Xt by the dimension-reduction 
matrix � = [�k�k,n] which consists of the k-dimensional identity matrix �k and the 
k × n-dimensional zero matrix �k,n . Let 𝜑 = ��̃� , Φ = �Φ̃ and 𝜀t = ��̃�t . Then, it 
holds that

(1)Xt = �̃� + Φ̃Xt−1 + �̃�t.
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We denote the conditional mean vector of rt by

and its conditional covariance matrix by

given the information set Ft−1 available at a time point t − 1 . Hence, we get 
rt|Ft−1 ∼ N(�t,�t) . Note that �t is assumed to be deterministic, while �t can be ran-
dom as a measurable function of Ft−1.

By �t we denote the vector of portfolio weights at time t. Let rP,t denote the port-
folio simple return at time t and let r̃P,t be the portfolio log return at time t, i.e., 
r̃P,t = ln(1 + rP,t) . Then the wealth evolution process of the investor is given by

or using the approximation of the portfolio log return by the simple asset returns we 
get

for t = 1,… , T  . Consequently,

where W0 stands for the initial wealth.

Remark 1 It has to be noted that (3) holds only approximately and it is based on the 
approximation of the portfolio log return by the corresponding linear combination of 
the asset log returns. This approximation works usually very well in practice and it 
is a standard approach in financial literature (see, Tsay 2005, p.5).

The classical multi-period portfolio choice problem aims to maximize the 
expected utility U(⋅) of the final wealth WT received after the last investment period 
T. Namely,

Let

Then it holds

(2)rt = �Xt = ��̃� + �Φ̃Xt−1 + ��̃�t = 𝜑 + ΦXt−1 + 𝜀t.

�t = ��̃t = �Et−1

[
Xt

]
= Et−1

[
rt

]
= 𝜑 + ΦXt−1

�t = Vart−1
[
rt

]
= ��̃t�

�

Wt = Wt−1(1 + rP,t) = Wt−1 exp(r̃P,t),

(3)Wt = Wt−1 exp
(
r
f

t + �
�
t−1

(
rt − r

f

t 1

))
,

WT = W0 exp

(
T∑
t=1

(
r
f

t + �
�
t−1

(
rt − r

f

t 1

)))
,

(4)V0 = max
{�s}

T−1
s=0

E0

[
U
(
WT

)]
.

(5)Vt = max
{�s}

T−1
s=t

Et

[
U
(
WT

)]
.
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In the literature, Vt is often called the value function.
According to Brandt (2009) and Pennacchi (2008) problem (4) can be solved 

using the Bellman equation expressed as

Equation (8) determines a backward recursive scheme where the optimal weights are 
calculated by starting from the last investment period and ending up with the first 
one.

In this paper, we consider the utility of wealth given by a power function, also 
known as constant relative risk aversion (CRRA) utility, which belongs to the 
HARA family (see, LiCalzi and Sorato 2006). The power utility is defined by

It should also be noted that in the limiting case, i.e., when � = 1 , then U(WT ) 
becomes the logarithmic utility function given by

The CRRA utility implies the behaviour of an investor such that his/her decisions 
are independent of the initial wealth, which appears to be a very attractive property.

The multi-period optimization problem for the power utility is solved in the 
continuous-time setting by assuming the geometric Brownian motion for the stock 
prices and the Markov processes for the market states (see, Çanakoğlu and Özekici 
2010, 2012). Moreover, in the case of short time intervals and in the case of the 
single-period investment the log-normal distribution is used to model the portfo-
lio return (see, Campbell and Viceira 2002; Bodnar et al. 2020). In our framework 
we consider the discrete-time case assuming that the asset returns are modelled by 
the vector autoregressive process (1) and provide the analytic solution of the multi-
period optimal portfolio choice problem (8).

3  Multi‑period optimal portfolio: closed‑form solution

Under the power utility function (9) and the assumption of VAR process (1) imposed 
on the asset returns, the multi-period optimal portfolio selection problem has a 
solution presented in Theorem 1. Henceforward, we will call it the "closed-form" 
solution.

(6)VT =U
(
WT

)
,

(7)VT−1 =max
�T−1

ET−1

[
U
(
WT

)]
.

(8)Vt = max
{�s}

T−1
s=t

Et

[
U
(
WT

)]
= max

�t

Et

[
max

{�s}
T−1
s=t+1

Et+1

[
U
(
WT

)]]
= max

�t

Et

[
Vt+1

]
.

(9)U(WT ) =
W

1−𝛾

T

1 − 𝛾
, 𝛾 > 0.

U(WT ) = lnWT .
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Theorem 1 Let the join vector of asset returns and predictable variables follow a 
VAR(1) process as defined in (1). Then for 𝛾 > 1 the optimal portfolio weights, which 
solve (4), are given by

for t ∈ 3,… , T ,

and

The proof of Theorem 1 is given in the “Appendix” (see, Sect. 6). The follow-
ing two corollaries formulate the results obtained under several important special 
cases of model (1).

Corollary 1 If no predictable variable is present in (1), the optimal weights in Theo-
rem 1 can be simplified to

for t ∈ 2,… , T  , and

Corollary 1 corresponds the statement of Theorem 1 with n = 0 , i.e., when the 
matrix L is replaced by the identity matrix and, thus, �̃t = �t, �̃� = 𝜑 , and Φ̃ = Φ.

Corollary 2 Let the vectors of asset returns rt be stochastically independent over 
time. Then, the optimal weights for the multi-period portfolio choice problem (4) 
with 𝛾 > 1 are given by

for t ∈ 1,… , T .

The statement of Corollary 2 follows from Corollary 1 by setting Φ = �.

(10)
�t−3 =

1

𝛾 − 1
�

(
�̃
−1

t−2

(
�̃t−2 − r

f

t−2
�
�
1

)

− Φ̃�
�̃
−1

t−1

(
�̃� + r

f

t−2
Φ̃�

�
1 − r

f

t−1
�
�
1

))

(11)
�T−2 =

1

𝛾 − 1
�

(
�̃
−1

T−1

(
�̃T−1 − r

f

T−1
�
�
1

)

− Φ�
�
−1
T

(
𝜑 + r

f

T−1
Φ�

�
1 − r

f

T
1

))
,

(12)�T−1 =
1

� − 1
�
−1
T

(
�T − r

f

T
1

)
.

(13)�t−2 =
1

� − 1

(
�
−1
t−1

(
�t−1 − r

f

t−1
1

)
− Φ�

�
−1
t

(
� + r

f

t−1
Φ1 − r

f

t 1

))

(14)�T−1 =
1

� − 1
�
−1
T

(
�T − r

f

T
1

)
.

(15)�t−1 =
1

� − 1
�
−1
t

(
�t − r

f

t 1

)
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As expected, we receive that all the formulas for the optimal portfolio weights do 
not depend on the wealth component, implying that the optimal portfolio weights of 
the investor equipped with the power utility function are independent of the amount 
of initial wealth (see Campbell and Viceira 2002; Pennacchi 2008). One should also 
point out that the result obtained in Corollary 2 has a similar form to the optimal 
portfolio rule for a power utility derived by Marín-Solano and Navas (2010), where 
the asset prices are assumed to follow a geometric Brownian motion. On the other 
side, under a weaker assumption of the vector auto-regressive process, an additional 
term is appeared caused by the model-specific dependence structure.

4  Empirical illustration

In order to present the relevance of the obtained results in practice, we use the 
VAR(1) model estimated by the weekly returns of five stock market indices, i.e., 
Belgium, Germany, Japan, the UK and the USA, from January 4, 2002, to December 
4, 2009 (see, Bodnar et al. 2015b).

The parameters of the model (1) for the considered data are estimated in (see 
Bodnar et al. 2015b, p.532) and they are given by

The fitted autoregression matrix Φ̃ displays larger values of the coefficients which 
correspond to the lagged values of the U.S. market return in comparison to the 
lagged values of the return on each capital market itself. As such, the return of the 
U.S. stock market is considered to be a predictable variable in our model and we 
use the returns of the other four capital markets to construct a dynamic four-dimen-
sional optimal portfolio. Without loss of generality, we set the initial wealth to be 
equal one, i.e., W0 = 1 , and the weekly return of a hypothetical risk-free asset rft  is 
assumed to be 0.06%, corresponding to the annual return of around 3%.

The performance of the closed-form solution derived in Theorem 1 is compared 
to the one obtained by the numerical solution presented in Brandt et al. (2005). The 
numerical approximation of the weights of the dynamic optimal portfolio is obtained 

�̃� =

⎡⎢⎢⎢⎢⎣

4.83 × 10−4

1.20 × 10−3

6.74 × 10−4

5.54 × 10−4

2.79 × 10−5

⎤⎥⎥⎥⎥⎦
,

Φ̃ =

⎡⎢⎢⎢⎢⎣

0.2011 − 0.1592 0.01892 − 0.196 0.455

0.3139 − 0.1231 − 0.00191 − 0.511 0.434

0.0487 0.0888 − 0.12131 − 0.224 0.343

0.1829 − 0.0889 0.00988 − 0.441 0.382

0.0766 − 0.0643 − 0.03049 − 0.114 0.113

⎤⎥⎥⎥⎥⎦
,

�̃t =

⎡⎢⎢⎢⎢⎣

13.08519 10.54450 4.36575 9.12037 6.78129

10.54450 13.83354 5.64824 10.21854 8.33231

4.36575 5.64824 7.99434 4.73337 3.66701

9.12037 10.21854 4.73337 10.17679 6.92725

6.78129 8.33231 3.66701 6.92725 7.24223

⎤⎥⎥⎥⎥⎦
× 10−4.
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by the 4th order Taylor series expansion of the value function (see, Ivasiuk 2019). 
The comparison is done by simulating the return path and calculating the weights 
corresponding to the numerical and closed-form solutions, which then are used in 
the computation of the final utility. All values reported in the table and figures are 
based on 10000 independent repetitions. The simulations are performed for several 
combinations of the relative risk aversion parameter � ∈ {4, 6, 9, 12} and time hori-
zon T ∈ {4, 8, 12, 16} . The choice of the risk aversion coefficient is motivated by the 
findings documented in Barsky et al. (1997), Elminejad et al. (2022), and Pennac-
chi (2008, p.21). In particular, Barsky et al. (1997) and Pennacchi (2008) pointed 
out that the median relative risk aversion is approximately equal to 7, while Elm-
inejad et al. (2022) argued that the most common values of the risk aversion coef-
ficient lie between 2 and 7 in the financial applications. Motivated by these results, 
we set � = 4 and � = 6 , and also add two further values corresponding to a more 
risk-averse investor.

The results are depicted in Table 1 and in Figs. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 
and 12. Table 1 demonstrates the values of the sample mean and sample median of 
the power utility of the final wealth together with the mean absolute deviation and 
the median absolute deviation, respectively, for several values of � and T described 
above. Both the sample median and the sample median absolute deviations are 
robust estimators for the location and scale parameters of a probability distribu-
tion. On the other side, the sample mean and the mean absolute deviation can be 
affected by extreme observations. As such, to robustify these two measures, their 
95% trimmed versions are used.

We observe that all the sample means and the sample medians of the final util-
ity corresponding to the numerical solution are always smaller than those obtained 
by using the analytical solution derived in Theorem 1. The differences between the 
values increase as the investment horizon becomes larger. Very pronounced results 
are documented when the sample median is used as the centrality measure. In this 
case, for T = 4 the application of the analytical solution leads to the values of the 
final utility which are three times as larger as the corresponding values computed 
by applying the numerical solution, while for T = 16 they are more than 200 times 
larger indicating a considerable improvement when the analytical solution is used. 
The values of the median absolute deviation are also significantly smaller in the 
case when the closed-form solution is used with the exception for T ∈ {12, 16} . For 
the sample means, the differences are not so large, although even in this case the 
closed-form solution outperforms the strategy based on the numerical solution. On 
the other side, the mean standard deviations computed for the closed-form solution 
are considerably larger than the ones obtained for the numerical solution. Such a 
result is also observable in Figs. 1, 2, 3, and 4, where the histograms of final wealth 
are plotted for the considered values of � and T. In all plots, the histograms created 
for the closed-form strategies are right skewed with the range of final wealth that 
includes values considerably larger than one, the point where the histograms for the 
numerical solution are concentrated. As such, large values of the final wealth have 
a strong impact on the computed mean absolute deviation in the case of the closed-
form solution. To this end, we also compute the p-values of the two sample t-test 
for comparing the means and the medians of the two samples. Interestingly, all the 
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p-values appear to be close to zero leading to the conclusion that the differences in 
the means and the medians are statistically significant in all of the considered cases. 
Finally, the increase of the investment horizon leads to opposite effects on the two 
dynamic trading strategies. While the numerical solution becomes more volatile, the 
application of the closed-form solution considerably reduces the uncertainty in the 
stochastic behaviour of the final utility.

The point is further investigated in Figs. 5, 6, 7, 8, 9, 10, 11 and 12, where the 
empirical cumulative distribution functions (ecdf) of the final wealth obtained by the 

Table 1  The sample mean, the sample median, the mean absolute deviation and the median absolute 
deviation of the power utility of the final wealth for the numerical solution and the closed-form strategy 
for � ∈ {4, 6, 9, 12} and T ∈ {4, 8, 12, 16}

The largest value of the sample mean and sample median is highlighted bold in each box

T �

4 6 9 12 Measure Weights

4 − 0.28104
− 0.33062

− 0.13666
− 0.19723

− 0.07794
− 0.12242

− 0.05451
− 0.08842

Mean Closed-from
numerical
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0.01198

0.12887
0.01114

0.07310
0.00565

0.05102
0.00437

Mean absolute deviation Closed-from
numerical
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− 0.19676
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Mean absolute deviation Closed-from
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application of the two considered dynamic trading strategies are depicted in Figs. 5, 
6, 7 and 8, while the ecdfs of the corresponding utilities are shown in Figs. 9, 10, 11 
and 12. In Figs. 5, 6, 7 and 8, we observe that the final wealth obtained by applying 
the numerical solution is tightly spread around one, whereas the closed-form port-
folio has its wealth mostly larger with some amount of values being smaller. More 
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Fig. 1  Histogram of the final wealth for the closed-form solution and the numerical solution for 
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precisely, the intersection points on the curves of two ecdfs reveal that the probabil-
ity of receiving larger final wealth is larger when the closed-form solution is used. 
The impact becomes more pronounced when both T and � increase.

A similar relationship between the performance of the two considered dynamic trad-
ing strategies is observed in Figs. 9, 10, 11 and 12 with ecdfs constructed for the final 
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utility. This result holds uniformly over the considered values for the risk aversion coef-
ficient � and the investment horizon T, with higher impact when T and � increase. In 
contrast to the figures with the final wealth, we observe more volatile behavior for the 
utility of the final wealth computed by using the numerical solution. Also, the ecdfs 
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Fig. 3  Histogram of the final wealth for the closed-form solution and the numerical solution for 
� = 9 and T ∈ {4, 8, 12, 16}
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of the utility of the final wealth obtained by employing the closed-form solution are 
concave and show high concentration of probability around the maximum value of 
the expected utility. Especially, when the investment horizon is large, like T = 12 and 
T = 16 , with probability of about 80% the value of the utility is larger than −0.1 when 
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Fig. 5  Empirical distribution function of the final wealth for the closed-form solution and the numerical 
solution for � = 4 and T ∈ {4, 8, 12, 16}
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Fig. 6  Empirical distribution function of the final wealth for the closed-form solution and the numerical 
solution for � = 6 and T ∈ {4, 8, 12, 16}



 T. Bodnar et al.

1 3

    4  Page 16 of 27

0 1 2 3 4

0.0

0.2

0.4

0.6

0.8

1.0

γ=9, T=4

final wealth, W

di
st

rib
ut

io
n 

fu
nc

tio
n,

 F
(W

)

closed−form
numerical

0 1 2 3 4

0.0

0.2

0.4

0.6

0.8

1.0

γ=9, T=8

final wealth, W

di
st

rib
ut

io
n 

fu
nc

tio
n,

 F
(W

)

closed−form
numerical

0 1 2 3 4

0.0

0.2

0.4

0.6

0.8

1.0

γ=9, T=12

final wealth, W

di
st

rib
ut

io
n 

fu
nc

tio
n,

 F
(W

)

closed−form
numerical

0 1 2 3 4

0.0

0.2

0.4

0.6

0.8

1.0

γ=9, T=16

final wealth, W

di
st

rib
ut

io
n 

fu
nc

tio
n,

 F
(W

)

closed−form
numerical

Fig. 7  Empirical distribution function of the final wealth for the closed-form solution and the numerical 
solution for � = 9 and T ∈ {4, 8, 12, 16}
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Fig. 8  Empirical distribution function of the final wealth for the closed-form solution and the numerical 
solution for � = 12 and T ∈ {4, 8, 12, 16}
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Fig. 9  Empirical distribution function of the power utility for the closed-form solution and the numerical 
solution for � = 4 and T ∈ {4, 8, 12, 16}
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Fig. 10  Empirical distribution function of the power utility for the closed-form solution and the numeri-
cal solution for � = 6 and T ∈ {4, 8, 12, 16}
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Fig. 11  Empirical distribution function of the power utility for the closed-form solution and the numeri-
cal solution for � = 9 and T ∈ {4, 8, 12, 16}
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Fig. 12  Empirical distribution function of the power utility for the closed-form solution and the numeri-
cal solution for � = 12 and T ∈ {4, 8, 12, 16}
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the closed-form trading strategy is used. For the trading strategy based on the numeri-
cal approximation the probability of such an event is less than 30% when 𝛾 < 12.

Next, we investigate the computational time of both the numerical and analytical 
solutions in Fig. 13. The analytical solution shows a clear advantage over the numerical 
one even in the case of small time horizons. The logarithmic computational time of the 
analytical solution always stays negative, which indicates that the computational cost is 
still low for time horizon T = 60 . This is not the case for the numerical strategy where 
the logarithmic computational time is always positive. Moreover, it is greater than one 
and reaches four in the case of T = 60 . This justifies that the numerical method is prob-
ably not the best choice for increasing time horizon. Using more summands of the Tay-
lor series expansion in the case of the numerical solution would increase the accuracy, 
however, the computational time will increase considerably as well.

At last, we compare the proposed analytical solution obtained for the power utility 
function with the one of Bodnar et al. (2015b) which was derived under the exponential 
utility expressed as

Although the comparison is not completely fair because both utility functions repre-
sent different risk behaviour of the investors, the solutions seem to be quite similar. 
So, a question arises which of the two multi-period optimal portfolio strategies can 
generate a higher amount of the final wealth. This question is answered in Fig. 14. 
To keep the comparison fair we distinguish between low- and high-risk situations. 
The low-risk scenario will correspond to � = 9 and � = 2 for the power and expo-
nential utilities, respectively. Similarly, the high-risk one will arise for � = 4 and 

U(WT ) = −e−𝛼WT with 𝛼 > 0.
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 T. Bodnar et al.

1 3

    4  Page 20 of 27

� = 0.8 . In both cases, we consider the investment horizon of T = 52 and T = 104 . 
We observe a striking property of the analytic solution derived under the power util-
ity function. Namely, it can generate considerably higher wealth levels in compari-
son to the solution derived under the exponential utility (stochastic dominance of 
the first order). The only case, where the situation is a bit unclear is the low-risk 
situation with T = 52 . However, one can still observe the stochastic dominance of 
the second order for the power utility solution in this case (the difference in the areas 
between the curves). To conclude, one can notice a clear dominance of the power 
utility over the exponential one in terms of final wealth when the time horizon is 
large enough.

5  Summary

In this paper, we present the solution to the multi-period portfolio selection prob-
lem for the investor who makes the investment decision based on maximizing the 
expected power utility. Using the Bellman back-propagation method, the closed-
form expression of the dynamic optimal portfolio weights is derived under the 
assumption that the vector of asset returns follows a vector-autoregressive process of 
order one with Gaussian errors. In the derivation of the theoretical results the rela-
tionship between the portfolio log returns and the simple asset returns is employed 
which is widely used in finance and is known to provide a very good approxima-
tion in practice (cf., Tsay (2005, p.5)). The solution of the multi-period optimization 
problem is deduced for the investor whose relative risk aversion � is assumed to 
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be larger than 1 which corresponds to the recent survey study documented that the 
median relative risk aversion of investor is 7 (see, e.g., Pennacchi (2008)). Moreo-
ver, � ∈ (0, 1) indicates an extremely risky behaviour of an investor that is a rare 
case in practice.

The obtained theoretical findings are implemented in the empirical study, where 
the performance of the derived closed-form solution is compared to the numerical 
approximation suggested in Brandt et al. (2005). The results of the simulation study 
show that the new closed-form solution of the dynamic portfolio choice problem 
under the power utility considerably outperforms the numerical approach by provid-
ing significantly larger values of the final wealth and utility. This observation holds 
uniformly for all the considered values of the relative risk aversion coefficient and 
the investment horizons. Moreover, it is shown that the application of the derived 
closed-form solution leads to larger both the final wealth and its utility. In particu-
lar, when the investment horizon is set to be equal to 12 or 16 weeks, then with 
a probability of about 80% the closed-form strategy leads to the value of the util-
ity which is larger than −0.1 . In contrast, if the numerical approximation is used, 
then the probability of receiving the utility larger than −0.1 is close to zero. To this 
end, we note that the performance of the numerical approximation can be improved 
when more than four summands are used in the Taylor series expansion of the value 
function. However, this will increase the computational time considerably, which is 
always dominated by the analytic solution. At last, one can observe that the pro-
posed strategy dominates the solution given by the exponential utility for increasing 
time horizon.

The analytical results derived in the paper do not include the transaction costs 
which appear when the holding portfolio is rebalanced. The inclusion of the trans-
action costs in the derivation is a very challenging task, which is left for future 
research.

Appendix

In this section the proof of Theorem 1 is given.

Proof of Theorem 1 The Bellman equation is solved by deriving the expressions of 
the value functions starting at time T − 1 , which is expressed as

Since rT − r
f

T
�|Ft−1 ∼ N(�T − r

f

T
�,�T ) , the conditional expectation is equal to the 

value of the moment-generating function defined for the multivariate normal distri-
bution at (1 − �)�T−1 . Thus, for 𝛾 > 1 we get
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which is maximized at

As a result, the value function at time T − 1 is given by

where cT = exp((1 − �)r
f

T
).

The application of (16) leads to the value function at time T − 2 expressed as
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Finally, the application of Theorem 3.2a.1 in Mathai and Provost (1992) leads to

which is maximized when

Substituting aT−1 and solving with respect to �T−2 gives us the optimal weights for 
the value function at time T − 2 expressed as

Moreover,
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with

Using that the conditional expectation in (19) is given by (see, Mathai and Provost 
1992, Theorem 3.2a.1)

the maximum in (19) is attained at

Finally, the value function at time T − 3 is equal to
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with

Since the value function at time T − 3 has the same structure as the value function at 
time T − 2 , the rest of the steps in the Bellman backward recursions are performed 
in the same way leading to the expressions of the optimal weights presented in the 
statement of the theorem.   ◻
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