

Delft University of Technology

Learning from flowsheets
A generative transformer model for autocompletion of flowsheets
Vogel, Gabriel; Schulze Balhorn, Lukas; Schweidtmann, Artur M.

DOI
10.1016/j.compchemeng.2023.108162
Publication date
2023
Document Version
Final published version
Published in
Computers and Chemical Engineering

Citation (APA)
Vogel, G., Schulze Balhorn, L., & Schweidtmann, A. M. (2023). Learning from flowsheets: A generative
transformer model for autocompletion of flowsheets. Computers and Chemical Engineering, 171, Article
108162. https://doi.org/10.1016/j.compchemeng.2023.108162

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.compchemeng.2023.108162
https://doi.org/10.1016/j.compchemeng.2023.108162

Computers and Chemical Engineering 171 (2023) 108162

A
0

Contents lists available at ScienceDirect

Computers and Chemical Engineering

journal homepage: www.elsevier.com/locate/cace

Learning from flowsheets: A generative transformer model for
autocompletion of flowsheets
Gabriel Vogel, Lukas Schulze Balhorn, Artur M. Schweidtmann ∗

Delft University of Technology, Department of Chemical Engineering, Process Intelligence Research Group, Van der Maasweg 9, Delft, 2629 HZ, Netherlands

A R T I C L E I N F O

Keywords:
Flowsheet synthesis
Flowsheet completion
SFILES 2.0
Natural language processing
Generative transformer model

A B S T R A C T

We propose a novel method enabling autocompletion of chemical flowsheets. This idea is inspired by the
autocompletion of text. We represent flowsheets as strings using the text-based SFILES 2.0 notation and learn
the grammatical structure of the SFILES 2.0 language and common patterns in flowsheets using a transformer-
based language model. We pre-train our model on synthetically generated flowsheet topologies to learn the
flowsheet language grammar. Then, we fine-tune our model in a transfer learning step on real flowsheet
topologies. Finally, we use the trained model for causal language modeling to autocomplete flowsheets.
Eventually, the proposed method can provide chemical engineers with recommendations during interactive
flowsheet synthesis. The results demonstrate a high potential of this approach for future AI-assisted process
synthesis but also reveal the limitations at the present state and the next steps that need to be taken to deploy
this technique in realistic flowsheet synthesis scenarios.
1. Introduction

One important step in early process synthesis is the design of the
flowsheet topology consisting of the selection and arrangement of unit
operations and their connections. In an iterative procedure, engineers
mostly perform this step manually based on experience, common de-
sign heuristics, and optimization-based methods (Chen and Grossmann,
2017; Biegler et al., 1997).

Recent years have revealed a very high potential for artificial in-
telligence (AI) in various disciplines of natural science and engineering
(e.g., Jumper et al., 2021; Silver et al., 2016; Secinaro et al., 2021). Ad-
vances in natural language processing (NLP), a sub-field of AI, support
several applications in daily life, such as intelligent text completion in
search engines or email programs. Recently, NLP methods have also
been successfully applied to other domains. Github copilot uses text
generation models to autocomplete computer code supporting software
developers (Chen et al., 2021). Another example are NLP applications
in the molecular world using the text-based Simplified Molecule Input-
Line Entry-System (SMILES) (Weininger et al., 1989) notation which is
a common representation format for molecules and chemical reactions.
Recurrent neural networks (RNNs) trained on SMILES strings have
been used as generative models in de novo drug design (Segler et al.,
2017). Recently, transformer-based language models (Vaswani et al.,
2017) have been applied to several tasks, such as the prediction of
molecular properties (Chithrananda et al., 2020), chemical reaction

∗ Corresponding author.
E-mail address: a.schweidtmann@tudelft.nl (A.M. Schweidtmann).

prediction with the Molecular Transformer (Schwaller et al., 2019), and
the prediction of retrosynthetic pathways (Schwaller et al., 2020).

To this date, there have been only few previous works that use
AI for process synthesis (Schweidtmann et al., 2021; Lee et al., 2018;
Venkatasubramanian, 2018). Notably, there have been many previous
works on surrogate modeling and (superstructure) optimization (Henao
and Maravelias, 2011; Kim and Boukouvala, 2020; Schweidtmann and
Mitsos, 2019; Huster et al., 2020) while only a few works actually
create process topologies. Recently, there have been advances toward
using Reinforcement Learning (RL) approaches for process synthe-
sis (Khan and Lapkin, 2020; Göttl et al., 2021b,a; Midgley, 2020;
Stops et al., 2022). RL does not utilize data from existing flowsheets
but strives to train an agent to learn the task of process synthesis.
Contrary, the variety and large amount of historical chemical processes
and their corresponding flowsheets pose many opportunities for data-
driven models in the field of process synthesis (Zhang et al., 2018;
Zheng et al., 2022). However, unleashing the potential of data-driven
AI in the chemical engineering domain also comes with several diffi-
culties (Schweidtmann et al., 2021; Weber et al., 2021), such as the
design of meaningful information representations allowing advanced AI
methods to understand complex data. In parallel to the developments
of our proposed work, Oeing et al. (2022) very recently published a
data-driven approach for AI-assisted development of piping and in-
strumentation diagrams (P&IDs). The authors collected 35 P&IDs in
vailable online 2 February 2023
098-1354/© 2023 The Authors. Published by Elsevier Ltd. This is an open access ar

https://doi.org/10.1016/j.compchemeng.2023.108162
Received 1 August 2022; Received in revised form 27 January 2023; Accepted 29 J
ticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

anuary 2023

https://www.elsevier.com/locate/cace
http://www.elsevier.com/locate/cace
mailto:a.schweidtmann@tudelft.nl
https://doi.org/10.1016/j.compchemeng.2023.108162
https://doi.org/10.1016/j.compchemeng.2023.108162
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compchemeng.2023.108162&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Computers and Chemical Engineering 171 (2023) 108162G. Vogel et al.
DEXPI format and converted them to graphs. Then, they generated
a training data set of linear sequences of six sequential unit opera-
tions by sampling random walks from the graphs. Oeing et al. (2022)
trained an RNN on the sequential data to predict subsequent equip-
ment. Furthermore, they used the graph data set to train a graph neural
network (GNN) to perform consistency checks during the drawing of
P&IDs, by comparing newly drawn equipment with patterns in the data
set.

We propose a novel methodology enabling autocompletion of chem-
ical process flowsheets by learning the structure and patterns from
a dataset of process flow diagrams (PFDs) using a transformer-based
NLP model. The underlying idea of our approach is to apply causal
language modeling to autocomplete flowsheets comparable to sentence
completion or, in general, text generation of human language. We
mine and digitize PFDs from literature and also generate an addi-
tional synthetic PFD dataset. In order to train and deploy the trans-
former model on complex flowsheet topologies, we represent PFDs
using our recent extension of the text-based Simplified Flowsheet Input-
Line Entry-System (SFILES) 2.0 (d’Anterroches, 2006; Vogel et al.,
2022b). Eventually, the proposed flowsheet-completion approach aims
to provide engineers with recommendations for the flowsheet structure
during AI-assisted iterative process synthesis. In comparison to the
work by Oeing et al. (2022), we train a transformer model that learns
from whole flowsheets rather than training an RNN on linear sequences.
In particular, the SFILES 2.0 format allows us to represent and learn
from complex flowsheet topologies including recycles and branchings
(e.g., in distillation columns) while the previous work is limited to
linear sequences. In addition, our model has a maximum input length of
512 unit operations per flowsheet compared to 6 units in the previous
work. Likewise, our approach also autocompletes complete flowsheets
(incl. complex recycles and branching) compared to the prediction of
the next unit operation. Finally, we train our model on a comprehensive
dataset of over 8000 PFDs compared to 35 P&IDs.

The remainder of this paper is structured as follows: In Section 2,
we briefly explain the transformer architecture and the used flowsheet
representations. Section 3 explains all components of the flowsheet
completion model, called Generative Flowsheet Transformer. After-
ward, the used data for pre-training and fine-tuning of the model as
well as the training procedure and results are described in Sections 4
and 5. In Section 6, we demonstrate the autocompletion technique
using illustrative examples. In Section 6.3 we also point out the current
limitations of the proposed model regarding applicability in a context
of realistic design problems and discuss the next essential steps that
need to be taken to develop a more intelligent model.

2. Background

This section briefly explains the concepts of the original transformer
model architecture (Vaswani et al., 2017) and further the typical mod-
ified model architecture for text generation applications. Afterward, it
recaps the used flowsheet representations, namely flowsheet graphs and
the SFILES 2.0 notation. The latter is used to represent the flowsheet
data in a text-based manner and to use NLP models on the flowsheet
data.

2.1. Original transformer architecture

For many years, the state-of-the-art in the field of NLP had been re-
current architectures using LSTMs (Hochreiter and Schmidhuber, 1997)
or GRUs (Cho et al., 2014). In the recent past, Vaswani et al. (2017)
published the novel transformer model architecture using self-attention
which is currently facing a hype in the AI community. It does not
use recurrence but processes the entire sequence at once and therefore
allows for significantly more parallelization in comparison to RNNs.
Furthermore, self-attention layers are faster than recurrent layers in
terms of computational complexity (Vaswani et al., 2017). The reduced
2

Fig. 1. Simplified illustration of transformer architecture derived from Vaswani et al.
(2017) consisting of encoder and decoder stack.

computational cost is one major reason for the growing popularity
not only in the field of NLP but also in the whole AI community.
Transformer models have demonstrated breakthrough performances in
a variety of applications (Vaswani et al., 2017; Schwaller et al., 2019;
Lakew et al., 2018) and have, in many cases, the potential to replace
RNNs and convolutional neural networks.

The original transformer architecture (Vaswani et al., 2017) is a
neural sequence translation model which is usually used to translate
an input sequence to an output sequence, e.g. a German to an English
sentence. It consists of an encoder stack and a decoder stack, as shown
in the simplified illustration in Fig. 1. The encoder converts a sequence
of words or characters (input tokens) into a numerical representation
that can be further processed in the model. It captures each token and
its meaning in the sequence. This numerical representation is then fed
to the decoder stack, which converts it back to a sequence of words or
characters (generated output tokens) in the target language. The gen-
eration of the translated sequence is a token by token generation. This
means, that the decoder repeatedly uses the encoder’s numerical output
and previously generated output tokens to compute the probabilities for
the next output token.

In the original architecture, the encoder stack and decoder stack
each comprise 𝑁 = 6 identical layers. Multiple layers are used to
enhance the model’s ability to capture the whole complexity of a
language. Each encoder layer contains two sub-layers with subsequent
layer normalization. Each decoder layer contains three sub-layers with
subsequent layer normalization. There are two general types of sub-
layers used. First, the attention sub-layers comprise mathematical op-
erations that help understand the language and the interdependence
of tokens in a language. Second, the position-wise feed-forward sub-
layers further process the attention output before feeding it to the next
encoder or decoder layer.

Since recurrent components are completely removed in the trans-
former architecture, before input and output embeddings are passed to
the encoder and decoder, respectively, positional encoding is applied
(see Fig. 1). Positional encoding ensures that the information of the
order of tokens in the sequence is taken into account. In the original
implementation (Vaswani et al., 2017), sine and cosine functions of
different frequencies depending on the token position are added to the
embeddings allowing the model to know each token position in the
sequence.

One important core component of the transformer architecture are
the attention sub-layers. The calculation of attention takes a query
vector q, key vector k, and value vector v for each input token and
compares all queries against all keys resulting in scores for query-
key compatibility. The compatibility scores are then used as weights
to calculate the attention output as a weighted sum of the values. In
practice, the attention is computed for all inputs of an input sequence

in parallel, putting together all query, key, and value vectors in the

Computers and Chemical Engineering 171 (2023) 108162G. Vogel et al.

A

t
r

a
a
t
m
i
t
c
C
t
t
t
s
r
r
T
v

2

e
r
e
a
t
M
m
t
i
f

p
2

2

w
S
t

g
n
e
c
c
h
s

s
(

(

f
a
p
r
a
b
t
b

Fig. 2. Simplified illustration of a decoder-only architecture for auto-regressive
text-generation.

query matrix 𝑄, key matrix 𝐾, and value matrix 𝑉 . This finally yields
a matrix as attention output. In the transformer (Vaswani et al., 2017),
the scaled dot-product attention is implemented, which is calculated
from the queries 𝑄, keys 𝐾, and values 𝑉 as

ttention(𝑄,𝐾, 𝑉) = sof tmax

(

𝑄𝐾𝑇
√

𝑑𝑘

)

𝑉 , (1)

where 𝑑𝑘 is the dimension of the key vectors. The transformer in spe-
cific uses multi-head attention, consisting of several scaled dot-product
attention layers in parallel. For the multi-head attention, the keys,
values, and queries are linearly projected into ℎ learned projections of
he dimension 𝑛𝑒𝑚𝑏𝑑∕ℎ, enabling multiple heads to learn from different
epresentation subspaces in parallel (Vaswani et al., 2017).

In the original architecture, multi-head attention is used as self-
ttention layers in the encoder, masked self-attention in the decoder,
nd encoder–decoder attention to combine the vector embedding of
he encoder with the previous decoder outputs. Hereby, self-attention
eans that query, key, and value matrices are calculated from the same

nput sequence. Therefore, the computed self-attention represents each
oken and its meaning in the sequence. Self-attention in the encoder
onsiders both the left and right context of each token (bidirectional).
ontrary, in the case of masked self-attention in the decoder, only
he left context is used, meaning that subsequent positions of each
oken are masked out (unidirectional). In practice, a mask is added
o the matrix multiplication product of 𝑄 and 𝐾 in Eq. (1), i.e., by
etting the softmax input of the respective positions to -∞ and thus the
espective outputs scores of the softmax to zero. This way the auto-
egressive property of the decoder is preserved (Vaswani et al., 2017).
he encoder–decoder attention uses the encoder’s output as keys and
alues and the decoder’s masked self-attention output as queries.

.2. Auto-regressive transformer for text generation

Besides the original architecture, depending on the application,
ncoder and decoder stacks can be modified or left out entirely. Auto-
egressive models for text generation, also called causal language mod-
ling, typically only use the decoder part of the original transformer,
s shown in Fig. 2. Auto-regressive means that previously generated
okens are added to the input sequence for the next token generation.
ore specifically, at each time step, the decoder-only transformer
odel outputs probabilities for different tokens suitable as the next

oken in the sequence. The selected token is then added to the previous
nput sequence (dashed line in Fig. 2) before the decoder computes the
ollowing outputs.

In recent years, many model architectures for text generation and
re-trained models were published, such as GPT-2 (Radford et al.,
3

018), Transformer-XL (Dai et al., 2019), and XLNet (Yang et al.).
.3. Graph- and text-based representation of flowsheets

This section briefly summarizes the flowsheet representations that
e used in the data processing steps. The data sets, described in
ection 4, are first created in graph format and later converted to the
ext-based SFILES 2.0 strings (d’Anterroches, 2006; Vogel et al., 2022b).

Flowsheets can be represented as directed heterogeneous
raphs (Vogel et al., 2022b; Zhang et al., 2018) with unit operations as
odes and stream connections between the unit operations as directed
dges. Fig. 3 shows an example flowsheet with a two-stream heat ex-
hanger, reactor, distillation system, and a recycle loop. This flowsheet
an be represented as the flowsheet graph shown in Fig. 4, whereby the
eat exchanger unit operation is divided into two nodes, one for each
tream compartment.

Using the SFILES 2.0 notation (Vogel et al., 2022b) and our open-
ource conversion implementation, provided in our GitHub repository
Vogel et al., 2022a) yields the corresponding SFILES 2.0 string

raw)(hex){1}(r)<&|(raw)(pp)&|(mix)<1(v)(dist)[{
tout}(prod)]{bout}(splt)1(prod)n|(raw)(hex)
{1}(prod)

or the flowsheet graph in Fig. 4. In an SFILES 2.0 string, unit operations
re represented in parentheses. Two consecutive unit operations in
arentheses imply a directed stream connection from the left to the
ight unit operation. In the case of branching in the process such as after
distillation column (dist) (one input and two output streams), the
ranches are noted in brackets. The brackets are omitted for the branch
hat is noted last in the SFILES 2.0 string (in the given example the
ranch continuing with (splt)). Recycles are noted using numbers #

to reference the recycle start node (here (splt)) and <# to reference
the recycle end node (here (mix)). Furthermore, tags in braces are
used to indicate whether the branch is a top or bottom product. In the
case of converging branches, the second branch is inserted in the string,
surrounded by <&| and &| (here <&|(raw)(pp)&|). Multi-stream
heat exchangers are separated in one node per stream compartment
and marked with a number in braces, capturing which streams are
heat-integrated.

3. Generative flowsheet transformer

This section first provides an overview of the general procedure
from an incomplete to a completed flowsheet in Section 3.1. Then, we
specify details of the single components of the Generative Flowsheet
Transformer, including the SFILES 2.0 tokenization (Section 3.2), the
decoder stack architecture (Section 3.3), and the decoding strategies
for flowsheet completion (Section 3.4).

3.1. Overview

The proposed flowsheet completion methodology is illustrated in
Fig. 5(a) and described in the following. In step 1, the incomplete
flowsheet graph is converted to the corresponding SFILES 2.0 string,
as described in Section 2.3. Afterward, in step 2, the string is tokenized
using the SFILES 2.0 tokenizer (Section 3.2). The resulting input em-
bedding is passed to the decoder stack (Section 3.3), which computes
the output probabilities for the next token prediction. Step 4 comprises
the selection of the next token from the decoder output, which is
determined by the decoding strategy, as described in Section 3.4. After
the SFILES 2.0 string completion is finished by reaching a defined end
token or by controlling the number of tokens to be generated (step 5),
the string is converted back to the autocompleted flowsheet graph (step
6). This procedure could be embedded in process simulation software
for the interactive autocompletion of flowsheets.

https://github.com/process-intelligence-research/SFILES2
https://github.com/process-intelligence-research/SFILES2
https://github.com/process-intelligence-research/SFILES2
https://github.com/process-intelligence-research/SFILES2
https://github.com/process-intelligence-research/SFILES2
https://github.com/process-intelligence-research/SFILES2
https://github.com/process-intelligence-research/SFILES2
https://github.com/process-intelligence-research/SFILES2
https://github.com/process-intelligence-research/SFILES2
https://github.com/process-intelligence-research/SFILES2
https://github.com/process-intelligence-research/SFILES2
https://github.com/process-intelligence-research/SFILES2
https://github.com/process-intelligence-research/SFILES2
https://github.com/process-intelligence-research/SFILES2
https://github.com/process-intelligence-research/SFILES2
https://github.com/process-intelligence-research/SFILES2

Computers and Chemical Engineering 171 (2023) 108162G. Vogel et al.
Fig. 3. Simple chemical process flowsheet with branchings, recycle stream, and different mass trains.
Fig. 4. Graph representation of flowsheet in Fig. 3.
i
p
c
o
w
i
o
s
v
a
m
o

3

a
i
I
s
s
g

3.2. Tokenizer

Tokenization is the first text processing step in NLP. Therein, text in-
put is usually processed as a sequence of tokens, whereby the tokens are
either words or other chunks of the input sequence. Common strategies
to identify tokens in natural language are word-level, WordPiece (Wu
et al., 2016), and most recently, Byte Pair Encoding (BPE) tokeniza-
tion (Sennrich et al., 2015). After tokenizing the input sequence, each
token is converted to a vector of size 𝑛𝑒𝑚𝑏𝑑 , called numerical em-
bedding. This vector is calculated by multiplying a one-hot-encoded
vector of the token with a weight matrix, learned by the language
model during the training procedure. Combining the input vectors of a
sequence of tokens yields a matrix that is called the input embedding.

We trained our language model on the SFILES 2.0 language, which
significantly differs from human language. Therefore, common tok-
enization strategies such as word-level, WordPiece, and Byte-pair en-
coding are not suitable for our task. Thus, we developed a tailored
tokenizer for SFILES 2.0 which identifies, for instance, a unit opera-
tion (e.g. (hex)), a branching, stream tags (e.g. {tout}), a recycle
connection number, etc., using a regular expression. This approach
is inspired by the tokenizer for the molecular representation using
SMILES (Schwaller et al., 2018). Our proposed regular expression is

r"(\(.*?\)|\{.*?\}|\%\([0-9]{3}\)
|\%[0-9]{2}|\]|\[|\<.?[0-9]|\<\&\||(?<!\<)
\&\||n\||(?<!\&)(?<!n)\||\&(?!\|)
|\/[0-9]|[0-9])".

The following example shows an SFILES 2.0 string before and after the
tokenization.

Before: (raw)(hex)(r)(mix)<1(v)(dist)[{tout}(
prod)]{bout}(splt)1(prod)

After: (raw) (hex) (r) (mix) <1 (v) (dist) [{tout
} (prod)] {bout} (splt) 1 (prod)
4

3.3. Decoder-only architecture for causal language modeling

Since we aim to complete SFILES 2.0 strings using causal language
modeling, our proposed architecture is based on an auto-regressive
decoder-only transformer model as described in Section 2.2.
The SFILES 2.0 language with a small vocabulary size of less than 100
is rather simple compared to human language with a vocabulary size
of approximately 500k words in Finnish or approximately 90k words
in English (Birch et al., 2008). Thus, we use the architecture of the
small version of the GPT-2 transformer model (Radford et al., 2018),
which contains a decoder stack consisting of 𝑁 = 12 decoder layers.
Each decoder layer comprises a masked multi-head self-attention sub-
layer with ℎ = 12 attention heads and a feed-forward sub-layer. With
an embedding dimension of 𝑛𝑒𝑚𝑏𝑑 = 768 the number of parameters
n this architecture adds up to 85.9 million. The high number of
arameters increases the capacity of the model to capture the entire
omplexity of a language. On the other hand, this also increases the risk
f overfitting the model on our training data. The GPT-2 configuration
e used, by default implements dropout during the training procedure

n the embedding, attention, and fully-connected layers to counteract
verfitting. Furthermore, we make use of a technique called early-
topping during the training procedure, which monitors the error on a
alidation set and stops the training once this error does not decrease
nymore. In future works, a more rigorous investigation of the optimal
odel size and hyperparameters could be performed using Bayesian

ptimization or information criteria.

.4. Decoding strategies

When completing a flowsheet, as shown in Fig. 5, the input is either
n empty flowsheet represented as an empty input sequence or an
ncomplete flowsheet represented as an incomplete SFILES 2.0 string.
n this work, we use open-ended text generation to complete SFILES 2.0
trings. Starting from an input sequence of 𝑚 tokens 𝑡1,… , 𝑡𝑚, con-
idered the context for the language generation, the trained model
enerates 𝑛 tokens in an auto-regressive manner until the sequence

Computers and Chemical Engineering 171 (2023) 108162G. Vogel et al.

a
t
o

i
𝑃
a
t

Fig. 5. Overview of flowsheet completion with the Generative Flowsheet Transformer (a) Incomplete flowsheet graph is converted to incomplete SFILES 2.0 string (1). Auto-regressive
transformer model completes string (2,3,4,5). autocompleted SFILES 2.0 string is converted to completed flowsheet graph (6). (b) Example autocompletion of a flowsheet.
f
t
s
d
s

is completed (Holtzman et al., 2020) (see Section 3.3). With the as-
sumption that the probability distribution is composed of the product
of conditional next token distributions (Holtzman et al., 2020), the final
probability of the sequence is given as

𝑃 (𝑡1∶𝑚+𝑛) =
𝑚+𝑛
∏

𝑖=1
𝑃 (𝑡𝑖|𝑡1,… , 𝑡𝑖−1). (2)

Different decoding (or text generation) strategies define the selection
of the next token at each step. Common strategies are greedy search,
beam search, top-𝑘 sampling, and top-𝑝 sampling.

Greedy search simply selects the token with the highest probability
t each time step. This increases the chance of missing high-probability
okens hidden after low-probability tokens. Therefore, greedy search
ften does not lead to sequences with a maximized final probability.

Beam search aims to overcome the weakness of greedy search,
.e. by finding the optimal sequence by maximizing the final probability
(𝑡1∶𝑚+𝑛) according to Eq. (2). Constructing a tree of the possible tokens
t each time step, the beam search is similar to a breadth-first search
hrough the tree to find the path (sequence) with the highest likelihood.
5

t

The only difference is that beam search takes a parameter, beam-width
𝑤𝑏𝑒𝑎𝑚, which determines the number of considered tokens at each step.
However, several studies found that beam search often yields repetitive
text (Shao et al., 2017; Vijayakumar et al., 2016) and lower-quality text
compared to other decoding strategies that include sampling (Fan et al.,
2018; Holtzman et al., 2020).

Top-𝑘 and top-𝑝 sampling increase the chance of also selecting
lower-probability tokens which often yields more diversity of the gen-
erated sequences. The parameters 𝑘 and 𝑝 truncate the distribution of
token probabilities and prevent the model from randomly sampling
from the whole probability distribution but rather from a limited
selection of more-likely tokens.

The top-𝑝 sampling decoding strategy addresses the problem of
ixed 𝑘 values in top-𝑘 sampling. Its key idea is to use the shape of
he probability distribution to define a confidence region at each time
tep (Holtzman et al., 2020). The number of candidates in this confi-
ence region dynamically changes and thus eliminates the problem of
electing a fixed number 𝑘 of candidates, as in top-𝑘 sampling. With
he definition of a threshold 𝑝, the smallest set of top-𝑝 candidates

Computers and Chemical Engineering 171 (2023) 108162G. Vogel et al.
𝐶 (𝑝) is selected, such that the cumulative probability mass exceeds the
threshold. Eq. (3) shows this relation.
∑

𝑡∈𝐶(𝑝)

𝑃 (𝑡|𝑡1∶𝑖−1) ≥ 𝑝 (3)

Depending on the shape of the probability distribution, the number of
candidates within that set changes. Usually, high values of 𝑝 (between
0.9 and 1) are selected such that the set 𝐶 (𝑝) will take up most of the
probability mass representing the nucleus (Holtzman et al., 2020). The
probability distribution is then re-scaled only using the set 𝐶 (𝑝) and
the next token is sampled from the new distribution (Holtzman et al.,
2020).

We use beam search with a fixed beam-width of 𝑤𝑏𝑒𝑎𝑚 = 5. The
selection of 𝑤𝑏𝑒𝑎𝑚 is a compromise of getting better results for long
generated sequences while keeping the computational cost low. To
introduce more diversity in the generated sequences, we choose top-𝑝
sampling as our second decoding strategy with a cumulative probability
threshold of 𝑝 = 0.9.

4. Data

This section explains the data sets that we use for the training
of the Generative Flowsheet Transformer. The pre-training data set
comprises synthetically generated flowsheets, while the fine-tuning
data set consists of real flowsheets extracted from chemical process
simulation files.

4.1. Generated data for pre-training

Language models are complex architectures with a high number of
trainable weights. When dealing with human language, training these
weights usually requires several Gigabytes to Terrabytes of text (Rad-
ford et al., 2018; Brown et al., 2020). The SFILES 2.0 language is
less complex than human language, consisting of a small vocabulary.
Still, for the model to learn the SFILES 2.0 grammar of flowsheet
topologies, we need a reasonable amount of data. There is currently
no (public) database or data set of flowsheets (Schweidtmann, 2022).
Hence, we construct a synthetic data set of realistic flowsheet graphs
for pre-training of our model.

The synthetic flowsheet generation builds up flowsheet graphs by
a drawing random samples from a Markov chain-like process based on
known flowsheet design heuristics. We subdivide flowsheets into the
following sub-process categories: Initialization with feed(s), reaction,
thermal separation (distillation, rectification), countercurrent separa-
tion (absorption, extraction), filtration (gas, liquid), centrifugation,
and purification as the last subprocess. As illustrated in Fig. 6, after
initializing the flowsheet graph with raw materials, including feed
pre-processing, the selection of the first sub-process, excluding purifi-
cation, is a Markov transition with fixed probabilities where transition
probabilities do not depend on previous unit operations. Within each
sub-process, we further sample from a set of patterns specifying how the
inlet and outlet streams are processed, e.g., with additional temperature
or pressure change unit operations. Also, we include design heuristics
such as adding recycles, performing heat integration in the reaction
sub-process, or adding reactants (Zhang et al., 2018). In general, the
sub-processes lead to several outlet streams, in the following referred
to as branches. For each branch, we transition to the ‘‘Next sub-process’’
state, followed by a Markov transition to the next sub-process. This
selection differs from the first sub-process selection by the additional
purification sub-process. Note that once a branch reaches the purifica-
tion step, it is determined to end as a product. After each branch ended
in the purification step, the flowsheet graph generation is complete.
Table 1 summarizes the properties of the generated data set after
removing duplicates and flowsheet graphs with more than 50 nodes.
The SFILES 2.0-based data set for pre-training is obtained by automatic
conversion of the generated graphs to SFILES 2.0 strings (Vogel et al.,
2022b).
6

Table 1
Properties of the used data sets and the number of samples in
training (tr), validation (val), and test (te) data set.

Generated data set Real data set

samples𝑡𝑟 6362 178
samples𝑣𝑎𝑙 796 23
samples𝑡𝑒 795 22
𝑛𝑟𝑛𝑜𝑑𝑒𝑠 19 25
𝜎(𝑛𝑟𝑛𝑜𝑑𝑒𝑠) 10 41
Vocabulary size 53 89

4.2. Real flowsheet data for fine-tuning

We collected 223 Aspen and DWSIM chemical process simulation
files from the public domain. We automatically extract information
from the simulation files and convert them to flowsheet graphs us-
ing our in-house software. Then, the process graphs are converted to
SFILES 2.0 strings using our open-source code (Vogel et al., 2022b).
Finally, we use the extracted flowsheet data for fine-tuning the pre-
trained model.

Table 1 summarizes some key statistics of the synthetic and real
flowsheet data set. The real data set shows a higher average node
number, standard deviation, and vocabulary size compared to the
generated data.

5. Training results and discussion

The following section first describes and discusses the results of
the transformer model training, including pre-training and fine-tuning.
Furthermore, the model is evaluated based on perplexity, a metric
commonly used in NLP.

5.1. Model training

For pre-training and fine-tuning, we divide the dataset into a train-
ing (80%), validation (10%), and test set (10%). Table 1 shows the
training, validation, and test set sizes. During pre-training, we used a
batch size of 8, while during fine-tuning on the small data set, we used
a batch size of 2 to update weights more frequently. The validation set
was evaluated every 200 steps during pre-training and every 20 steps
during fine-tuning. In both training procedures, we use early stopping
with to prevent overfitting of the model to the training set, with the
early stopping patience set to 3 during pre-training and to 20 during
fine-tuning.

Fig. 7(a) shows the loss curves of the pre-training. The pre-training
results show only small fluctuations in the loss curves and the gap
between train and validation loss is small. This demonstrates a small
generalization error on the synthetic dataset. This is likely due to the
limited variability in the pre-training data, which is generated synthet-
ically. Essentially, the data sets are drawn from the same probability
distribution. Thus, the learned flowsheet patterns from the training set
are representative for those in the synthetic validation and test set.

Fig. 7(b) shows the loss curves of the fine-tuning. In contrast to
the pre-training, the fine-tuning shows considerable fluctuations of the
loss curves and a larger gap between train and validation loss. The
reason for this learning behavior is likely caused by the real flowsheet
data. The real data consist of fewer flowsheets with higher variations
in the number of nodes per flowsheet and an extended vocabulary size,
i.e., more unit operation categories, as shown in Table 1. This leads to
heavier fluctuations and a larger generalization error. In the future, we
envision to create a public knowledge graph for flowsheets that will

mitigate this issue (Schweidtmann, 2022).

Computers and Chemical Engineering 171 (2023) 108162G. Vogel et al.

s

5

𝑃
a
a
n
t
t
p

𝑃

I
f

Fig. 6. Random flowsheet graph generation scheme.
Fig. 7. Training and validation cross-entropy loss over number of training epochs. The asterisk marks the lowest validation loss during training which is used in the early stopping
trategy to load the model parameters.
.2. Perplexities

In the following, we evaluate the model results using the perplexity
𝑃 , which is the most common metric for the evaluation of text gener-
tion models. It measures the ability of a probability model to predict
sequence of unseen test data and is defined as the exponential of the
egative average log-likelihood of a sequence, which is equivalent to
he exponential of the cross-entropy loss obtained during the model
raining. For the sequence 𝑇 = (𝑡1,… , 𝑡𝑛) of 𝑛 tokens, we calculate the
erplexity as

𝑃 (𝑇) = exp

(

−1
𝑛

𝑛
∑

𝑖
log𝑃 (𝑡𝑖|𝑡1∶𝑖−1)

)

.

n this equation, 𝑃 (𝑡𝑖|𝑡1∶𝑖−1) is the predicted conditional probability
or token 𝑡 given the tokens 𝑡 ,… , 𝑡 . Low perplexities indicate that
7

𝑖 1 𝑖−1
Table 2
Perplexities of pre-trained and fine-tuned model for all used data sets.

Model Data set 𝑃𝑃𝑡𝑟 𝑃𝑃𝑣𝑎𝑙 𝑃𝑃𝑡𝑒

Pre-trained Generated data 2.28 2.48 2.47
Real data 41.61 64.16 25.91

Fine-tuned Generated data 5.04 5.27 5.33
Real data 2.17 3.98 4.75

the model does well in predicting the next tokens in the test data,
while high perplexities imply that the learned probability distribution
is different from the probability distribution of the test data.

Table 2 shows the perplexities of the pre-trained and fine-tuned
models using both data sets. The pre-trained model shows similar

perplexities on the generated train-, validation-, and test-set, because

Computers and Chemical Engineering 171 (2023) 108162G. Vogel et al.
the data is all drawn from the same probability distributions of unit
operations and patterns. This is consistent with the small generalization
error, observed in Section 5.1.

Pre-training with synthetic data is necessary but not sufficient for
predicting real flowsheet data. Table 2 shows that the pre-trained
model performs poorly on the data set of real flowsheets. Thus, we
conclude that the generated data does not represent real flowsheet
topologies sufficiently and fine-tuning on real data is necessary. Note
that we also attempted to train a model from scratch only using the
real data. Nevertheless, it resulted in worse training, validation, and
test loss than our proposed approach. This is expected as transformer
models are known to be very data hungry. We conclude that the pre-
training on a larger corpus of SFILES 2.0 enables the model to learn
the basic grammatical structure of the SFILES 2.0 notation. The learned
knowledge enhances the model’s performance when fine-tuning it on
the real data.

The fine-tuning significantly improves the model performance on
real data. After fine-tuning, the model performance on unseen data
increases from 25.91 to 4.75. This is remarkable as the final perfor-
mance on the real flowsheet data is in the same order of magnitude
as the pre-trained model on the generated dataset (2.47). The results
show that the model has the potential to learn flowsheet patterns from
real flowsheets. Notably, the fine-tuned model performs slightly worse
on the generated data (5.33) than the pre-trained model (2.47), which
is expected as the model replaced some of the learned patterns of the
generated data set with the patterns contained in real flowsheets.

6. Illustrative examples and discussion

In this section, we illustrate and compare the proposed autocomple-
tion techniques on a few examples. We further discuss the applicability
of the results and point out the limitations that our model faces at the
present state.

6.1. Example 1

In the first, rather simple example, we start with one raw material
and a heat exchanger as the input sequence. The start sequence rep-
resented as an SFILES 2.0 string is (raw)(hex). First, we proceed
with beam search as the decoding strategy to complete the SFILES 2.0
string (blue is the generated text). We take the three sequences with
the highest sequence probabilities according to Eq. (2). Second, we
generate three examples, using top-𝑝 sampling to complete the same
input sequence.

Start: (raw)(hex)
Beam search (descending sequence probability):
1. (raw)(hex)(r)[(prod)](hex)(flash)[{tout}(prod)

]{bout}(prod)
2. (raw)(hex)(r)(hex)(dist)[{tout}(hex)(prod)]{

bout}(hex)(prod)
3. (raw)(hex)(r)(hex)(flash)[{tout}(hex)(prod)]{

bout}(hex)(prod)
Top-p-sampling:
1. (raw)(hex)(mix)<1<&|(raw)&|(dist)[{tout}(prod)

]{bout}(dist){bout}1{tout}(prod)
2. (raw)(hex)(r)(hex)(dist)[{bout}(hex)(prod)]{

tout}(hex)(prod)
3. (raw)(hex)(dist)[{tout}(prod)]{bout}(hex)(prod)

The sequences generated with beam search are grammatically correct
SFILES 2.0 strings that can be converted to the flowsheet graphs shown
in Figs. 8(a), 8(b), and 8(c). The three generated sequences with top-
𝑝 sampling are also grammatically correct and can be converted to
8

flowsheet graphs, shown in Figs. 9(a), 9(b), and 9(c). The order of
Fig. 8. Example 1: Completed flowsheets using beam search.

the generated sequences with top-𝑝 sampling is random and does not
indicate an order of the sequence probabilities.

The example aims to show that the Generative Flowsheet Trans-
former is able to build a realistic flowsheet starting from an almost
empty flowsheet graph. Beam search maximizes the final probability
of the sequence, so in this case the generated flowsheets in Fig. 8
result in very short flowsheets with unit operation sequences (reactor,
heat exchanger and flash/distillation system) commonly found in many
chemical processes. Using top-𝑝 sampling can lead to a lower final
probability of the generated sequences, thus, less common topologies
such as in Fig. 9(a). Nevertheless, both selected decoding strategies
lead to correct but relatively simple final flowsheets, engineers can
quickly design in practice. A more realistic scenario would be the
autocompletion of more complex flowsheets (e.g. in Section 6.1) or
an interactive approach between the Generative Flowsheet Transformer
and a flowsheet designer.

6.2. Example 2

In the second example, we consider a more complex input sequence
that contains a mixer and reactor, with the outlet of the reactor being
the bottom inlet of an absorption column. The goal of this example is to
study if the autocompletion model can reference a recycle to the mixer
in the generated tokens and, second, complete the three other streams
associated with an absorption column, in specific, a top inlet, bottom
outlet, and top outlet.

Start: (raw)(mix)<1(r){bin}(abs)
Beam search (descending sequence probability):
1. (raw)(mix)<1(r){bin}(abs)<&|(raw){tin}&|[{tout}

(prod)]{bout}(dist)[{tout}(prod)]{bout}(dist)
{tout}1{bout}(prod)

Computers and Chemical Engineering 171 (2023) 108162G. Vogel et al.
Fig. 9. Example 1: Completed flowsheets using top-𝑝 sampling.

2. (raw)(mix)<1(r){bin}(abs)<&|(raw){tin}&|[{bout}
(prod)]{tout}(dist)[{bout}(prod)]{tout}(hex)1

3. (raw)(mix)<1(r){bin}(abs)<&|(raw){tin}&|[{tout}
(prod)]{bout}(dist)[{tout}(prod)]{bout}(dist)
[{tout}(prod)]{bout}(dist){tout}1{bout}(prod)

Top-p:
1. (raw)(mix)<1(r){bin}(abs)<&|(raw){tin}&|[{bout}

(prod)]{tout}(dist)[{tout}(prod)]{bout}(pp)(
hex)1

2. (raw)(mix)<1(r){bin}(abs)[{bout}(prod)]{tout}(
dist)[{bout}(prod)]{tout}(mix)<&|(raw)&|(pp){
tin}1

3. (raw)(mix)<1(r){bin}(abs)<&|(raw){tin}&|[{bout}
(prod)]{tout}(pp)(hex){1}(dist)[{tout}(hex)
{1}(prod)]{bout}(hex)(comp)1

Again in this example the beam search outputs lead to grammat-
ically correct SFILES 2.0 strings. The result demonstrates the model’s
ability beyond predicting the next unit operation in a flowsheet. It
is able to close the recycle stream by inserting a 1 and generate all
streams associated with an absorption column including a new raw ma-
terial stream, as shown in Figs. 10(a) to 10(c). Similar to the previous
example, beam search maximizes the final sequence probability which
leads to adding only few common unit operations (only distillation
columns and one heat exchanger) while completing the recycle and
absorption column streams.

Flowsheet completion with top-𝑝 sampling as decoding strategy only
leads to two out of three grammatically correct SFILES 2.0 strings,
9

i.e., examples 1 and 3, shown in Figs. 11(a) and 11(b). As expected,
the generated sequences comprise unit operations that occur less often
in the training data, such as pumps or compressors. Moreover, the
flowsheet in Fig. 11(b) shows some logical errors. For example, a pump
is applied to the outlet of the absorber and a compressor is applied to
the bottom outlet of the distillation column.

6.3. Current limitations and future directions

The training results in Section 5 and the autocompletion examples in
Sections 6.1 and 6.2 demonstrate for the first time, that a NLP model
can learn to autocomplete chemical process topologies. In particular,
the model is capable of learning typical topological patterns from the
flowsheet data. However, the examples also demonstrate a number of
current limitations that require future research. In example 1, a number
of flowsheets are predicted based on a short given sequence of a raw
material stream and a heat exchanger. While the predicted flowsheets
use common patterns of unit operations, they are not yet meaningful for
practical applications. Currently, the NLP model takes only topologies
of flowsheets as inputs and has no information about the context
(e.g., concentrations, materials, operating points). However, this infor-
mation is essential to fully describe a process. Moreover, the model is
not able to modify the input sequence. This flexibility is important, for
instance, to perform heat integration of already used heat-exchangers
or insert unit operations (e.g. mixer) at the beginning of the process.
In example 2, the algorithm also suggests some sequences of unit
operations that are physically wrong. For instance, a compressor is
added to the bottom outlet of a distillation column.

We identify three promising directions for future research that have
the potential to overcome the current limitations of our proposed
approach:

1. Encode additional information about the process, such as chem-
ical compounds, reactions, stream compositions, stream condi-
tions (temperatures and pressures), and operating points of unit
operations. This could be achieved in two ways:

• Extension of SFILES 2.0 language to encode additional
information,

• Modification of the model architecture to include addi-
tional process information as numerical input features,
e.g., in the head of the language model. Also our previous
work shows that graph-based machine learning models
can process additional flowsheet information (Stops et al.,
2022).

2. Increase the quantity and quality of training data. This can be
achieved in multiple ways, e.g.:

• Collect more flowsheet data including the necessary addi-
tional process information from literature and
patents (Schweidtmann, 2022; Theisen et al., 2022),

• Collect and extract process information from simulation
files,

• Collect data directly in a simulation software.

3. Integrate physical knowledge and rules into the machine learn-
ing approach (Venkatasubramanian, 2018; Schweidtmann et al.,
2021). This could reduce the data demand and enhance predic-
tion quality.

Finally, we suggest two explorative directions for future research.
First, we suggest to extend the model architecture such that the in-
put sequence can be adapted. This would allow to account for heat
integration with previous process units. Second, we suggest to operate
on a phenomena level instead of a unit operation level (Lutze et al.,
2013). This could potentially facilitate learning. Also, it would allow
to account for intensified unit operations. Overall, our results demon-

strate that the proposed transformer model can successfully learn from

Computers and Chemical Engineering 171 (2023) 108162G. Vogel et al.
Fig. 10. Example 2: Completed flowsheets using beam search.
flowsheet topologies. Future research in the aforementioned areas has
the potential to further increase the Technology Readiness Level (TRL)
and pave the way for industrial applications.

7. Conclusions

We propose a novel method to learn from chemical process flow-
sheets and provide flowsheet structure recommendations for engineers
performing process synthesis. We created two data sets, the first one
consisting of synthetically generated and the second one consisting of
real flowsheets in graph format. Using the conversion algorithm for
the automated conversion between flowsheet graphs and SFILES 2.0
strings (Vogel et al., 2022b), we automatically generated the corre-
sponding text-based SFILES 2.0 data sets. We trained a generative
10
transformer language model on over 8000 flowsheet topologies. The
trained generative transformer model shows the ability to learn the
grammatical structure of the SFILES 2.0 language and the patterns
contained in the flowsheet topologies. Consequently, the results demon-
strate that using the trained model for causal language modeling is a
promising strategy to autocomplete flowsheet topologies. However, we
also identified current limitations regarding applicability of the model
in realistic process design scenarios.

We identify three main directions for future research: First, fu-
ture work should focus on creating a larger data set of real flow-
sheets. To achieve this, we investigate the mining of flowsheets from
literature (Schweidtmann, 2022) and the digitization of PFDs and
P&IDs (Theisen et al., 2022). Also, we strive for cooperation with
industrial partners to work on industrial flowsheets. Second, including

Computers and Chemical Engineering 171 (2023) 108162G. Vogel et al.

y
t
y

Fig. 11. Example 2: Completed flowsheets using top-𝑝 sampling.

the context of the chemical processes is indispensable for improv-
ing the significance and applicability of the model’s predictions. This
includes, for instance, chemical property data, the reaction and con-
version of substances, stream compositions, and operating conditions.
Third, building hybrid models by combining our data-driven approach
with process design knowledge might contribute to more intelligent
systems (Schweidtmann et al., 2021). Addressing these open research
challenges will pave the way for the application of the proposed
autocompletion method in industry. Ultimately, we envision that au-
tocompletion of flowsheets and operating point recommendation will
become a standard tool in future process simulation software.

CRediT authorship contribution statement

Gabriel Vogel: Methodology, Software, Validation, Formal anal-
sis, Investigation, Data curation, Writing – original draft, Visualiza-
ion. Lukas Schulze Balhorn: Methodology, Validation, Formal anal-
sis, Data curation, Writing – review & editing, Supervision. Artur
M. Schweidtmann: Conceptualization, Methodology, Validation, Re-
sources, Writing – review & editing, Supervision, Project administra-
tion, Funding acquisition.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

The authors are unable or have chosen not to specify which data
has been used.
11
Acknowledgments

This publication is part of the project ‘‘ChemEng KG – The Chemical
Engineering Knowledge Graph’’ with project number 203.001.107 of
the research programme ‘‘Open Science (OS) Fund 2020/2021’’ which
is (partly) financed by the Dutch Research Council (NWO). GV ac-
knowledges the ERASMUS Plus scholarship for his research stay at
the Process Intelligence Research group. The authors acknowledge the
fruitful discussions with Prof. R. Gani and Prof. J. Grievink on the
combination of data-driven and mechanistic models.

References

Biegler, L.T., Grossmann, I.E., Westerberg, A.W., 1997. Systematic Methods of Chemical
Process Design, Physical and Chemical Engineering Sciences. Prentice Hall PTR.

Birch, A., Osborne, M., Koehn, P., 2008. Predicting success in machine translation. In:
Proceedings of the 2008 Conference on Empirical Methods in Natural Language
Processing. pp. 745–754, URL https://aclanthology.org/D08-1078.

Brown, T.B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakan-
tan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G.,
Henighan, T., Child, R., Ramesh, A., Ziegler, D.M., Wu, J., Winter, C., Hesse, C.,
Chen, M., Sigler, E., Litwin, M., Gray, S., Chess, B., Clark, J., Berner, C.,
McCandlish, S., Radford, A., Sutskever, I., Amodei, D., 2020. Language models
are few-shot learners. http://dx.doi.org/10.48550/arxiv.2005.14165, URL https:
//arxiv.org/abs/2005.14165.

Chen, Q., Grossmann, I.E., 2017. Recent developments and challenges in optimization-
based process synthesis. Annu. Rev. Chem. Biomol. Eng. 8 (1), 249–283. http:
//dx.doi.org/10.1146/annurev-chembioeng-080615-033546.

Chen, M., Tworek, J., Jun, H., Yuan, Q., d. O. Pinto, H.P., Kaplan, J., Edwards, H.,
Burda, Y., Joseph, N., Brockman, G., Ray, A., Puri, R., Krueger, G., Petrov, M.,
Khlaaf, H., Sastry, G., Mishkin, P., Chan, B., Gray, S., Ryder, N., Pavlov, M.,
Power, A., Kaiser, L., Bavarian, M., Winter, C., Tillet, P., Such, F.P., Cummings, D.,
Plappert, M., Chantzis, F., Barnes, E., Herbert-Voss, A., Guss, W.H., Nichol, A.,
Paino, A., Tezak, N., Tang, J., Babuschkin, I., Balaji, S., Jain, S., Saunders, W.,
Hesse, C., Carr, A.N., Leike, J., Achiam, J., Misra, V., Morikawa, E., Radford, A.,
Knight, M., Brundage, M., Murati, M., Mayer, K., Welinder, P., McGrew, B.,
Amodei, D., McCandlish, S., Sutskever, I., Zaremba, W., 2021. Evaluating large
language models trained on code. http://dx.doi.org/10.48550/arxiv.2107.03374.

Chithrananda, S., Grand, G., Ramsundar, B., 2020. Chemberta: Large-scale self-
supervised pretraining for molecular property prediction. http://dx.doi.org/10.
48550/arxiv.2010.09885, URL https://arxiv.org/abs/2010.09885.

Cho, K., van Merrienboer, B., Bahdanau, D., Bengio, Y., 2014. On the properties
of neural machine translation: Encoder–decoder approaches. http://dx.doi.org/10.
48550/arxiv.1409.1259, URL https://arxiv.org/abs/1409.1259.

Dai, Z., Yang, Z., Yang, Y., Carbonell, J., Le, Q.V., Salakhutdinov, R., 2019. Transformer-
xl: Attentive language models beyond a fixed-length context. http://dx.doi.org/10.
48550/arxiv.1901.02860, URL https://arxiv.org/abs/1901.02860.

d’Anterroches, L., 2006. (Ph.D. thesis). Technical University of Denmark.
Fan, A., Lewis, M., Dauphin, Y., 2018. Hierarchical neural story generation. In:

Proceedings of the 56th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers). Association for Computational Linguistics,
http://dx.doi.org/10.18653/v1/p18-1082.

Göttl, Q., Grimm, D.G., Burger, J., 2021a. Automated synthesis of steady-state continu-
ous processes using reinforcement learning. Front. Chem. Sci. Eng 16 (2), 288–302.
http://dx.doi.org/10.1007/s11705-021-2055-9.

Göttl, Q., Tönges, Y., Grimm, D.G., Burger, J., 2021b. Automated flowsheet synthesis
using hierarchical reinforcement learning: Proof of concept. Chem. Ing. Tech. 93
(12), 2010–2018. http://dx.doi.org/10.1002/cite.202100086.

Henao, C.A., Maravelias, C.T., 2011. Surrogate-based superstructure optimization
framework. AIChE J. 57 (5), 1216–1232. http://dx.doi.org/10.1002/aic.12341.

Hochreiter, S., Schmidhuber, J., 1997. Long short-term memory. Neural Comput. 9 (8),
1735–1780. http://dx.doi.org/10.1162/neco.1997.9.8.1735.

Holtzman, A., Buys, J., Du, L., Forbes, M., Choi, Y., 2020. The curious case of neural
text degeneration. In: International Conference on Learning Representations.

Huster, W.R., Schweidtmann, A.M., Lüthje, J.T., Mitsos, A., 2020. Deterministic global
superstructure-based optimization of an organic rankine cycle. Comput. Chem. Eng.
141, 106996. http://dx.doi.org/10.1016/j.compchemeng.2020.106996.

Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tun-
yasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., Bridgland, A., Meyer, C.,
Kohl, S.A.A., Ballard, A.J., Cowie, A., Romera-Paredes, B., Nikolov, S., Jain, R.,
Adler, J., Back, T., Petersen, S., Reiman, D., Clancy, E., Zielinski, M., Steinegger, M.,
Pacholska, M., Berghammer, T., Bodenstein, S., Silver, D., Vinyals, O., Senior, A.W.,
Kavukcuoglu, K., Kohli, P., Hassabis, D., 2021. Highly accurate protein structure
prediction with AlphaFold. Nature 596 (7873), 583–589. http://dx.doi.org/10.
1038/s41586-021-03819-2.

Khan, A., Lapkin, A., 2020. Searching for optimal process routes: A reinforcement
learning approach. Comput. Chem. Eng. 141, 107027. http://dx.doi.org/10.1016/
j.compchemeng.2020.107027.

http://refhub.elsevier.com/S0098-1354(23)00031-5/sb1
http://refhub.elsevier.com/S0098-1354(23)00031-5/sb1
http://refhub.elsevier.com/S0098-1354(23)00031-5/sb1
https://aclanthology.org/D08-1078
http://dx.doi.org/10.48550/arxiv.2005.14165
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
http://dx.doi.org/10.1146/annurev-chembioeng-080615-033546
http://dx.doi.org/10.1146/annurev-chembioeng-080615-033546
http://dx.doi.org/10.1146/annurev-chembioeng-080615-033546
http://dx.doi.org/10.48550/arxiv.2107.03374
http://dx.doi.org/10.48550/arxiv.2010.09885
http://dx.doi.org/10.48550/arxiv.2010.09885
http://dx.doi.org/10.48550/arxiv.2010.09885
https://arxiv.org/abs/2010.09885
http://dx.doi.org/10.48550/arxiv.1409.1259
http://dx.doi.org/10.48550/arxiv.1409.1259
http://dx.doi.org/10.48550/arxiv.1409.1259
https://arxiv.org/abs/1409.1259
http://dx.doi.org/10.48550/arxiv.1901.02860
http://dx.doi.org/10.48550/arxiv.1901.02860
http://dx.doi.org/10.48550/arxiv.1901.02860
https://arxiv.org/abs/1901.02860
http://refhub.elsevier.com/S0098-1354(23)00031-5/sb9
http://dx.doi.org/10.18653/v1/p18-1082
http://dx.doi.org/10.1007/s11705-021-2055-9
http://dx.doi.org/10.1002/cite.202100086
http://dx.doi.org/10.1002/aic.12341
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://refhub.elsevier.com/S0098-1354(23)00031-5/sb15
http://refhub.elsevier.com/S0098-1354(23)00031-5/sb15
http://refhub.elsevier.com/S0098-1354(23)00031-5/sb15
http://dx.doi.org/10.1016/j.compchemeng.2020.106996
http://dx.doi.org/10.1038/s41586-021-03819-2
http://dx.doi.org/10.1038/s41586-021-03819-2
http://dx.doi.org/10.1038/s41586-021-03819-2
http://dx.doi.org/10.1016/j.compchemeng.2020.107027
http://dx.doi.org/10.1016/j.compchemeng.2020.107027
http://dx.doi.org/10.1016/j.compchemeng.2020.107027

Computers and Chemical Engineering 171 (2023) 108162G. Vogel et al.
Kim, S.H., Boukouvala, F., 2020. Surrogate-based optimization for mixed-integer
nonlinear problems. Comput. Chem. Eng. 140, 106847. http://dx.doi.org/10.1016/
j.compchemeng.2020.106847.

Lakew, S.M., Cettolo, M., Federico, M., 2018. A comparison of transformer and
recurrent neural networks on multilingual neural machine translation. CoRR arXiv:
1806.06957. URL http://arxiv.org/abs/1806.06957.

Lee, J.H., Shin, J., Realff, M.J., 2018. Machine learning: Overview of the recent
progresses and implications for the process systems engineering field. Com-
put. Chem. Eng. 114, 111–121. http://dx.doi.org/10.1016/j.compchemeng.2017.
10.008, FOCAPO/CPC 2017, URL https://www.sciencedirect.com/science/article/
pii/S0098135417303538.

Lutze, P., Babi, D.K., Woodley, J.M., Gani, R., 2013. Phenomena based methodology
for process synthesis incorporating process intensification. Ind. Eng. Chem. Res. 52
(22), 7127–7144.

Midgley, L.I., 2020. Deep reinforcement learning for process synthesis. http://dx.doi.
org/10.48550/arxiv.2009.13265, URL https://arxiv.org/abs/2009.13265.

Oeing, J., Welscher, W., Krink, N., Jansen, L., Henke, F., Kockmann, N., 2022.
Using artificial intelligence to support the drawing of piping and instrumentation
diagrams using dexpi standard. Digital Chem. Eng 4, 100038, URL https://www.
sciencedirect.com/science/article/pii/S2772508122000291.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I., 2018. Language
models are unsupervised multitask learners. URL https://d4mucfpksywv.cloudfront.
net/better-language-models/language-models.pdf.

Schwaller, P., Gaudin, T., Lányi, D., Bekas, C., Laino, T., 2018. ‘‘Found in translation":
predicting outcomes of complex organic chemistry reactions using neural sequence-
to-sequence models. Chem. Sci. 9 (28), 6091–6098. http://dx.doi.org/10.1039/
c8sc02339e.

Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A., 2019.
Molecular transformer: A model for uncertainty-calibrated chemical reaction pre-
diction. ACS Central Sci 5 (9), 1572–1583. http://dx.doi.org/10.1021/acscentsci.
9b00576.

Schwaller, P., Petraglia, R., Zullo, V., Nair, V.H., Haeuselmann, R.A., Pisoni, R.,
Bekas, C., Iuliano, A., Laino, T., 2020. Predicting retrosynthetic pathways using
transformer-based models and a hyper-graph exploration strategy. Chem. Sci. 11
(12), 3316–3325. http://dx.doi.org/10.1039/c9sc05704h.

Schweidtmann, A.M., 2022. Flowsheet mining. (In preparation).
Schweidtmann, A.M., Esche, E., Fischer, A., Kloft, M., Repke, J.-U., Sager, S., Mitsos, A.,

2021. Machine learning in chemical engineering: A perspective. Chem. Ing. Tech.
93 (12), 2029–2039. http://dx.doi.org/10.1002/cite.202100083.

Schweidtmann, A.M., Mitsos, A., 2019. Deterministic global optimization with artificial
neural networks embedded. J. Optim. Theory Appl. 180 (3), 925–948. http://dx.
doi.org/10.1007/s10957-018-1396-0.

Secinaro, S., Calandra, D., Secinaro, A., Muthurangu, V., Biancone, P., 2021. The role
of artificial intelligence in healthcare: a structured literature review. BMC Med.
Inform. Decis. Making 21 (1), http://dx.doi.org/10.1186/s12911-021-01488-9.

Segler, M.H.S., Kogej, T., Tyrchan, C., Waller, M.P., 2017. Generating focused molecule
libraries for drug discovery with recurrent neural networks. ACS Central Sci 4 (1),
120–131. http://dx.doi.org/10.1021/acscentsci.7b00512.

Sennrich, R., Haddow, B., Birch, A., 2015. Neural machine translation of rare words
with subword units. http://dx.doi.org/10.48550/arxiv.1508.07909, URL https://
arxiv.org/abs/1508.07909.
12
Shao, L., Gouws, S., Britz, D., Goldie, A., Strope, B., Kurzweil, R., 2017. Generating
high-quality and informative conversation responses with sequence-to-sequence
models. http://dx.doi.org/10.48550/arxiv.1701.03185, URL https://arxiv.org/abs/
1701.03185.

Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., van den Driessche, G.,
Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., Dieleman, S.,
Grewe, D., Nham, J., Kalchbrenner, N., Sutskever, I., Lillicrap, T., Leach, M.,
Kavukcuoglu, K., Graepel, T., Hassabis, D., 2016. Mastering the game of go
with deep neural networks and tree search. Nature 529 (7587), 484–489. http:
//dx.doi.org/10.1038/nature16961.

Stops, L., Leenhouts, R., Gao, Q., Schweidtmann, A.M., 2022. Flowsheet synthesis
through hierarchical reinforcement learning and graph neural networks. http://
dx.doi.org/10.48550/arxiv.2207.12051, URL https://arxiv.org/abs/2207.12051.

Theisen, M., Nishizaki Flores, K., Schulze Balhorn, L., Schweidtmann, A.M., 2022.
Digitization of chemical process flow diagrams using deep convolutional neural
networks. Digital Chem. Eng.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L.,
Polosukhin, I., 2017. Attention is all you need. URL https://arxiv.org/pdf/1706.
03762.pdf.

Venkatasubramanian, V., 2018. The promise of artificial intelligence in chemical
engineering: Is it here finally? AIChE J. 65 (2), 466–478. http://dx.doi.org/10.
1002/aic.16489.

Vijayakumar, A.K., Cogswell, M., Selvaraju, R.R., Sun, Q., Lee, S., Crandall, D., Batra, D.,
2016. Diverse beam search: Decoding diverse solutions from neural sequence
models. http://dx.doi.org/10.48550/arxiv.1610.02424, URL https://arxiv.org/abs/
1610.02424.

Vogel, G., Balhorn, L.S., Hirtreiter, E., Schweidtmann, A.M., 2022a. Process-intelligence-
research/sfiles2: v1.0.0. http://dx.doi.org/10.5281/zenodo.6901932, URL http://
dx.doi.org/10.5281/zenodo.6901932.

Vogel, G., Balhorn, L.S., Hirtreiter, E., Schweidtmann, A.M., 2022b. [SFILES 2.0]:
An extended text-based flowsheet representation. http://dx.doi.org/10.48550/arxiv.
2208.00778, URL https://arxiv.org/abs/2208.00778.

Weber, J.M., Guo, Z., Zhang, C., Schweidtmann, A.M., Lapkin, A.A., 2021. Chemical
data intelligence for sustainable chemistry. Chem. Soc. Rev. 50 (21), 12013–12036.
http://dx.doi.org/10.1039/d1cs00477h.

Weininger, D., Weininger, A., Weininger, J.L., 1989. SMILES. 2. algorithm for gen-
eration of unique SMILES notation. J. Chem. Inf. Comput. Sci. 29 (2), 97–101.
http://dx.doi.org/10.1021/ci00062a008.

Wu, Y., Schuster, M., Chen, Z., Le, Q.V., Norouzi, M., Macherey, W., Krikun, M., Cao, Y.,
Gao, Q., Macherey, K., Klingner, J., Shah, A., Johnson, M., Liu, X., u. Kaiser, L.,
Gouws, S., Kato, Y., Kudo, T., Kazawa, H., Stevens, K., Kurian, G., Patil, N.,
Wang, W., Young, C., Smith, J., Riesa, J., Rudnick, A., Vinyals, O., Corrado, G.,
Hughes, M., Dean, J., 2016. Google’s neural machine translation system: Bridging
the gap between human and machine translation. http://dx.doi.org/10.48550/
arxiv.1609.08144.

Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R., Le, Q.V., Xlnet: Generalized
autoregressive pretraining for language understanding. http://dx.doi.org/10.48550/
arxiv.1906.08237, URL https://arxiv.org/abs/1906.08237.

Zhang, T., Sahinidis, N.V., Siirola, J.J., 2018. Pattern recognition in chemical process
flowsheets. AIChE J 65 (2), 592–603. http://dx.doi.org/10.1002/aic.16443.

Zheng, C., Chen, X., Zhang, T., Sahinidis, N.V., Siirola, J.J., 2022. Learning process
patterns via multiple sequence alignment. Comput. Chem. Eng. 107676. http:
//dx.doi.org/10.1016/j.compchemeng.2022.107676.

http://dx.doi.org/10.1016/j.compchemeng.2020.106847
http://dx.doi.org/10.1016/j.compchemeng.2020.106847
http://dx.doi.org/10.1016/j.compchemeng.2020.106847
http://arxiv.org/abs/1806.06957
http://arxiv.org/abs/1806.06957
http://arxiv.org/abs/1806.06957
http://arxiv.org/abs/1806.06957
http://dx.doi.org/10.1016/j.compchemeng.2017.10.008
http://dx.doi.org/10.1016/j.compchemeng.2017.10.008
http://dx.doi.org/10.1016/j.compchemeng.2017.10.008
https://www.sciencedirect.com/science/article/pii/S0098135417303538
https://www.sciencedirect.com/science/article/pii/S0098135417303538
https://www.sciencedirect.com/science/article/pii/S0098135417303538
http://refhub.elsevier.com/S0098-1354(23)00031-5/sb22
http://refhub.elsevier.com/S0098-1354(23)00031-5/sb22
http://refhub.elsevier.com/S0098-1354(23)00031-5/sb22
http://refhub.elsevier.com/S0098-1354(23)00031-5/sb22
http://refhub.elsevier.com/S0098-1354(23)00031-5/sb22
http://dx.doi.org/10.48550/arxiv.2009.13265
http://dx.doi.org/10.48550/arxiv.2009.13265
http://dx.doi.org/10.48550/arxiv.2009.13265
https://arxiv.org/abs/2009.13265
https://www.sciencedirect.com/science/article/pii/S2772508122000291
https://www.sciencedirect.com/science/article/pii/S2772508122000291
https://www.sciencedirect.com/science/article/pii/S2772508122000291
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
http://dx.doi.org/10.1039/c8sc02339e
http://dx.doi.org/10.1039/c8sc02339e
http://dx.doi.org/10.1039/c8sc02339e
http://dx.doi.org/10.1021/acscentsci.9b00576
http://dx.doi.org/10.1021/acscentsci.9b00576
http://dx.doi.org/10.1021/acscentsci.9b00576
http://dx.doi.org/10.1039/c9sc05704h
http://refhub.elsevier.com/S0098-1354(23)00031-5/sb29
http://dx.doi.org/10.1002/cite.202100083
http://dx.doi.org/10.1007/s10957-018-1396-0
http://dx.doi.org/10.1007/s10957-018-1396-0
http://dx.doi.org/10.1007/s10957-018-1396-0
http://dx.doi.org/10.1186/s12911-021-01488-9
http://dx.doi.org/10.1021/acscentsci.7b00512
http://dx.doi.org/10.48550/arxiv.1508.07909
https://arxiv.org/abs/1508.07909
https://arxiv.org/abs/1508.07909
https://arxiv.org/abs/1508.07909
http://dx.doi.org/10.48550/arxiv.1701.03185
https://arxiv.org/abs/1701.03185
https://arxiv.org/abs/1701.03185
https://arxiv.org/abs/1701.03185
http://dx.doi.org/10.1038/nature16961
http://dx.doi.org/10.1038/nature16961
http://dx.doi.org/10.1038/nature16961
http://dx.doi.org/10.48550/arxiv.2207.12051
http://dx.doi.org/10.48550/arxiv.2207.12051
http://dx.doi.org/10.48550/arxiv.2207.12051
https://arxiv.org/abs/2207.12051
http://refhub.elsevier.com/S0098-1354(23)00031-5/sb38
http://refhub.elsevier.com/S0098-1354(23)00031-5/sb38
http://refhub.elsevier.com/S0098-1354(23)00031-5/sb38
http://refhub.elsevier.com/S0098-1354(23)00031-5/sb38
http://refhub.elsevier.com/S0098-1354(23)00031-5/sb38
https://arxiv.org/pdf/1706.03762.pdf
https://arxiv.org/pdf/1706.03762.pdf
https://arxiv.org/pdf/1706.03762.pdf
http://dx.doi.org/10.1002/aic.16489
http://dx.doi.org/10.1002/aic.16489
http://dx.doi.org/10.1002/aic.16489
http://dx.doi.org/10.48550/arxiv.1610.02424
https://arxiv.org/abs/1610.02424
https://arxiv.org/abs/1610.02424
https://arxiv.org/abs/1610.02424
http://dx.doi.org/10.5281/zenodo.6901932
http://dx.doi.org/10.5281/zenodo.6901932
http://dx.doi.org/10.5281/zenodo.6901932
http://dx.doi.org/10.5281/zenodo.6901932
http://dx.doi.org/10.48550/arxiv.2208.00778
http://dx.doi.org/10.48550/arxiv.2208.00778
http://dx.doi.org/10.48550/arxiv.2208.00778
https://arxiv.org/abs/2208.00778
http://dx.doi.org/10.1039/d1cs00477h
http://dx.doi.org/10.1021/ci00062a008
http://dx.doi.org/10.48550/arxiv.1609.08144
http://dx.doi.org/10.48550/arxiv.1609.08144
http://dx.doi.org/10.48550/arxiv.1609.08144
http://dx.doi.org/10.48550/arxiv.1906.08237
http://dx.doi.org/10.48550/arxiv.1906.08237
http://dx.doi.org/10.48550/arxiv.1906.08237
https://arxiv.org/abs/1906.08237
http://dx.doi.org/10.1002/aic.16443
http://dx.doi.org/10.1016/j.compchemeng.2022.107676
http://dx.doi.org/10.1016/j.compchemeng.2022.107676
http://dx.doi.org/10.1016/j.compchemeng.2022.107676

	Learning from flowsheets: A generative transformer model for autocompletion of flowsheets
	Introduction
	Background
	Original transformer architecture
	Auto-regressive transformer for text generation
	Graph- and text-based representation of flowsheets

	Generative Flowsheet Transformer
	Overview
	Tokenizer
	Decoder-only architecture for causal language modeling
	Decoding strategies

	Data
	Generated data for pre-training
	Real flowsheet data for fine-tuning

	Training results and discussion
	Model training
	Perplexities

	Illustrative examples and discussion
	Example 1
	Example 2
	Current limitations and future directions

	Conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	References

