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ABSTRACT This study reviews the Artificial Intelligence and Machine Learning approaches developed
thus far for driver profile and driving pattern recognition, representing a set of macroscopic and microscopic
behaviors respectively, to enhance the understanding of human factors in road safety, and therefore reduce
the number of crashes. It provides a definition of the two scientific fields in terms of safety, and identifies
the most efficient approaches used regarding methodology, data collection and driving metrics. Results
show that K-means and Neural Networks are the most commonly used methodologies for driver profile
identification, and Dynamic Time Warping for driving pattern detection. Most studies discovered driver
profiles related to aggressiveness, considering mainly speed and acceleration as driving metrics. Based
on the gaps and challenges identified, this paper provides a new framework for combining microscopic
and macroscopic driving behavior analysis, instead of examining them separately as is the state-of-the-
art. Such combined results can potentially improve the development of traffic risk models, which could
be exploited in applications that monitor drivers in real-time and provide feedback. These models will
represent human behavior more accurately, which can eventually lead to the recognition of “optimal”
human driving patterns that Automated Vehicles (AV) could ‘mimic’ to become safer.

INDEX TERMS Driver profiles, driving behavior, driving patterns, artificial intelligence, machine learning,
naturalistic driving data.

I. INTRODUCTION

ACCORDING to WHO, road traffic injuries cause the
premature death of over 80,000 people every year and

therefore constitute a major public health problem in the
WHO European Region [1]. Approximately 2.7 million peo-
ple are seriously injured each year in road crashes. These
cause a substantial economic loss to society: up to 3% of
the gross domestic product of any given country. The main
cause of road crashes is persistently attributed to human
factors, with a percentage of 65%–95% [2]. It is there-
fore crucial to deeply understand those factors in order
to suggest new effective approaches to shape safe driving
behaviors.

The review of this article was arranged by Associate Editor
Chongfeng Wei.

Driver behavior analytics contribute to this direction
through the monitoring of driver behavior in real time and
fine resolution. They have important applications in several
business fields including insurance, autonomous vehicles and
road network management. In the current era of naturalis-
tic driving, Big Data availability and advances in modelling
techniques, there are considerable opportunities for statis-
tical, econometric, Machine Learning (ML) and Artificial
Intelligence (AI) applications as a basis for driving behav-
ior analysis [3], [4]. Considerable opportunities are also
present in terms of the usage of new data [5] such as driver
physiological indicators, variables of driving time and condi-
tions, congestion, road surface and environment conditions,
detailed weather and spatial information [6].

The recognition of existing driver profiles and driving
patterns could be an approach that takes into account all
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those factors and contributes to the understanding of driving
behavior for the improvement of road safety. Driver profiles
and driving patterns are obviously related to the way the
driver interacts with the environment. However, it is not
always possible or available to collect related data through
experiments.
A driver profile is defined as a group of drivers hav-

ing similar driving behaviors and characteristics, whereas
driving pattern is a specific driving behavior that is repet-
itively occurring by one or more drivers. Since these
are two different fields that reflect a macroscopic and
a microscopic behavior respectively, they require different
approaches in terms of methodology, data collection and
usage and therefore, they need to be studied separately.
Previous literature [7], [8] showed the feasibility of

addressing the problems of driver profile and driving pat-
terns identification based on driving metrics collected from
inertial sensors (speed, acceleration, braking, steering etc.)
across time and space [5], [6], [9], [10]. It is indicated
though in recent research [9] that the temporal evolution
of driving behavior can be rapid. Therefore, in order to cap-
ture these shifts and understand their safety implications,
drivers should be continuously monitored at high-resolution
and their behavior should be often re-evaluated.
One example of a relatively new concept that captures the

temporal evolution of driving behavior and is incorporated
in driving behavior analysis studies is the driving “pulse”,
which is defined as the time period that a vehicle is in
motion, bounded by two adjacent stops. Some studies have
found that this is a much more promising microscopic level
of analysis [11], [12] that seems to yield significant results
in driving pattern recognition. However, the characteristics,
insights and added value of different methods and analysis
scales for driver profile and driving pattern recognition have
not been systematically explored.
This study will review the different methodological

approaches that exist for driver profile and driving pat-
tern recognition for traffic safety analysis purposes. It will
also propose a new framework integrating both scales of
analysis, exploiting methodological attributes from the two
fields, and gaining potential for deeper understanding of driv-
ing behavior. Studies on driver profile and driving pattern
recognition will be reviewed separately in terms of defini-
tions, methodologies and data used. The primary focus is
to reveal the best practices, identify future directions for
driver profile and driving pattern identification for safety
assessment, and determine what each field could potentially
“learn” from the other and how both fields can be optimally
integrated.
It is clarified that this research focuses only on studies

related to driver profiles and driving patterns and not gener-
ally on the broader concept of individual driving behavior.
For more details on studies related to personalized driving
behavior analysis, e.g., using reinforcement learning, read-
ers could refer to [13], [14], [15]. Some of these studies
have developed more advanced simulation and co-simulation

platforms to analyze personalized behavior and support
personalized driving research.
Moreover, it focuses on safety-related studies, and

excludes studies on the relationship between driving pat-
terns and, e.g., efficiency, sustainability. Although these are
important aspects of driver profiles and driving patterns
detection [16], [17], [18], [19], they will not be examined
herein.
The rest of the paper is structured as follows: Section II

describes the methodological approach followed for this lit-
erature review; Section III presents the results of the review;
the synthesis of the results is performed in Section IV; the
conclusions drawn from this analysis and the new framework
proposed are revealed in Section V. This research is based
on the Rhapsody H2020 research project [20].

II. METHOD
A. RESEARCH QUESTIONS
The research question addressed in this research are:
RQ1) What are the existing methodologies for the iden-

tification of driver profiles in terms of safety?
RQ2) What are the existing methodologies for driving

pattern recognition in terms of safety and what is their focus?
RQ3) What are the Artificial Intelligence (AI) techniques

applied in these field?
RQ4) Which are the data sources and driving metrics used

in the analyses?
RQ5) What are the main issues and challenges research

has encountered, which are the gaps?
RQ6) What are the future opportunities and synergies

arising in these two fields?

B. KEYWORDS AND SOURCE SELECTION
The search terms used were “driver profile” and “driving
pattern”. The keyword “driving style” was also tested, and
it was observed that this term is usually mentioned in studies
focusing on driver recognition and not to the identification of
repetitive driving patterns, which is the focus of this research.
The keyword “driving behavior” returned an excessively high
number of studies on all human factors related to driv-
ing. A combination of the words “safe” AND (“driver” OR
“driving” OR “profile” OR “pattern”) was finally selected.
The online databases from which scientific literature was

selected included the Scopus, Science Direct, Google scholar
and IEEE Xplore search engines.

C. SEARCH STRATEGY AND STUDY SELECTION
CRITERIA
The key papers presented in this systematic literature review
(SLR) are selected based on some defined search criteria
and filters applied in sequence. These criteria included the
paper language, which should be English, the relevance of the
keywords to the research topic of this review, the publication
date range considered for the reviewed articles and access
to full papers.
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FIGURE 1. Paper search strategy and exclusion steps.

The selection steps are illustrated in Fig. 1. Initially, the
combined keyword search lead to the identification of a total
number of 7,662 studies.
Regarding the date range, the key relevant studies pub-

lished within the past two decades were only taken into
consideration – since, one of the pioneer studies that fol-
lowed the “driving pulse” approach for the identification of
driving patterns was [11], which was published in 2002.
This review ended in late June 2022 and included research
published before June 2022. The date criterion filtered out
approximately 6,259 papers. A number of approximately 291
duplicate records were found and removed reaching thus the
number of 1,112 studies.
At this point, it was noticed that there is ambiguity in

the way the terms ‘driver profiles” and “driving patterns”
are used in literature. For instance, in some studies driver
profiling is defined as the driving behavior observed in each
recorded time step [10] whereas in others, driver profile is
a group of drivers that have common behavioral charac-
teristics [7]. ’‘Driving style” is used for driver recognition
and classification purposes rather than for driving pattern
recognition [21]. Other studies refer to “personalized driving
behavior”, but mostly focus on the identification of driver-
specific patterns for the purpose of providing personalized
feedback and/or adjustment of ADAS functionalities [22]. It
is therefore highlighted that in this study:

• Driver profile is defined as a group of drivers having
similar driving behavior and characteristics.

• A driving pattern can be defined as a driving behav-
ior characteristic, such as a driving manoeuver like a harsh
braking event, that is occurring repetitively either by the
same driver or by different drivers in a population. Hence,
in our study driving pattern is a more microscopic aspect
than personalized driving behavior.
More specifically, driver profile detection investigates

the existence of i) groups of people that behave simi-
larly while driving, ii) common macroscopic characteristics
among drivers, iii) methodologies to identify the “strongest”
behavioral characteristics that separate these drivers into dif-
ferent groups. Driving pattern recognition investigates the
existence of i) repetitive patterns in the data, ii) anoma-
lous patterns in the data, iii) patterns that are uniquely

representative of the data, iv) methodologies to separate the
data naturally into different regimes.
All the above were taken into consideration as criteria

to filter out those studies that were not relevant to the
primary focus of this research. This filtering was applied
to the remaining 1,112 articles based on their title and/or
abstract and determined whether an article was relevant to
the research questions of this review. This narrowed down
the pool of studies to 204. Subsequently, the exact filtering
procedure was followed based on the full paper, which leads
to the final number of 20 papers for driver profile identi-
fication and 26 papers for driving pattern recognition for
which, the data collection and analysis methodologies will
be reviewed.

III. RESULTS
This section presents the main features of the selected studies
on driver profile and driving pattern recognition, in terms
of the methodological approaches, the most preferred data
sources and driving metrics used in the analyses. The ML and
AI techniques applied so far in these fields and their main
findings are presented in Table 1 and Table 4 and will also
be discussed below. The data collection methodologies and
driving metrics used for each driver profiling study can be
found in Table 2 and Table 3 respectively, whereas Table 5
and Table 6 illustrate the data collection methodologies and
driving metrics used in driving pattern recognition studies.

A. DRIVER PROFILE IDENTIFICATION STUDIES
Reference [7] proposed a methodological framework for
the evaluation of driving safety efficiency based on Data
Envelopment Analysis (DEA). This ML approach was tested
on a sample of 56 drivers and resulted in the identification
of three groups of drivers namely the non-efficient, weakly
efficient and most efficient drivers. Results indicated that
inefficient drivers present considerable differences in driving
characteristics compared to the groups of weakly efficient
and most efficient drivers with the difference of the two latter
being less significant. It was found that the number of harsh
braking events is an attribute is considered more significant
for the characterization of a driver as aggressive or not. The
percentage of speeding and the mobile phone usage were also
identified as key factors for the estimation of the safety effi-
ciency index of a driver. The temporal evolution of driving
safety efficiency was studied separately in urban and rural
road types by [9] with the aim to acquire insights useful for
both driving behavior profiling. Driving safety efficiency was
estimated for 200 drivers in consecutive rolling windows.
Time-series characteristics were analyzed and several met-
rics were estimated and included in the profiling of drivers
namely, the average driving safety efficiency, the volatility
in driver’s behavior and efficiency, and the stationarity and
trend of the time-series. The k-means ML algorithm was
employed to perform the clustering analysis and the optimal
number of clusters was chosen using the elbow method. This
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TABLE 1. Driver profile identification studies – AI and ML methodologies.

study concluded to three main driving groups, namely mod-
erate drivers, unstable drivers and cautious drivers, which
present considerable differences in terms of driving char-
acteristics and performance especially between the cautious
drivers and the rest. Both [9] and [7] used a similar data
collection framework based on Smartphone sensors to col-
lect naturalistic driving data. The driving metrics used in
the analysis to measure safety efficiency were the distance
travelled, the acceleration and braking per second as well as
the harsh acceleration and braking events that occurred, the
percentage driving over the speed limits and the percentage

of mobile phone usage during each trip. Those metrics were
captured using smartphone sensors that were recording at
1Hz frequency.
A methodology to classify driving behavior as normal

or aggressive on a route level was developed by [23].
To this end, authors considered a hybrid AI classification
methodological framework and employed both Recurrent
Neural Networks (RNN)-guided time-series encoding and
rule-guided event detection. It was shown that despite the
fact that both long-short-term memory (LSTMs) and Gated
recurrent units (GRUs) achieved a similar accuracy in the
driving behavior classification task, GRUs were more effi-
cient at the training stage. Their conclusions regarding driver
profiling were that although all drivers drive ‘normally’ at the
time-slice level, the time-slices characterized as ‘aggressive’
appear more frequently when aggressive drivers are driv-
ing. Data used for the analyses were derived from the UAH
(University of Alcala) naturalistic driving dataset, which is
a public collection of data captured by DriveSafe, which is
a driving monitoring smartphone application recording driv-
ing behavior of various testers in different environments [24].
The data sample included 6 drivers and used recordings of
500 minutes in total. Aiming to characterize acceleration,
braking and turning as medium, high, low using thresholds,
the authors used the acceleration metric in their analysis.
With the goal to identify unsafe driving behaviors and pro-

vide relevant trip characterizations, a two level k-means ML
clustering was applied by [10] using smartphone data. The
aggressive driving characteristics within trips were identi-
fied by the first level clustering, whereas the second level of
clustering for the same trips detected the additional unsafe
behavior while driving, which is the inappropriate speed-
ing and distraction. Overall, the authors concluded that
there is no stable driving profile but instead, there are 6
driving states, namely safe behavior, aggressive behavior,
risky behavior, distracted behavior, aggressive/risky behav-
ior and aggressive/distracted behavior, among which drivers
transition. More specifically, it was revealed that every driver
shows risky behavior but with a different frequency. The
database exploited included data from 129 unique drivers
that drove a total of 10,212 trips within 10 months. The driv-
ing metrics used in their analysis were the number of harsh
acceleration events occurred per km, the number of harsh
braking events occurred per km, the acceleration smoothness
indicator, the standard deviation of acceleration, the percent-
age of mobile usage and the percentage of speeding and the
frequency of data collection was 1Hz.
Based on tens of thousands of driver logs from smartphone

data, [25] developed supervised and unsupervised models
based on ML and statistics to provide insights into different
driver behavior and groups of drivers. Data from a naturalis-
tic driving experiment recorded through smartphone sensors
were used to understand traffic speed across the city of
San Francisco and driving manoeuvers in different areas of
the city. The authors also established a driver norm for each
street and road segment, and abnormal driving behaviors
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were flagged. Driver groups identification was based on the
K-means clustering algorithm, which resulted to five clus-
ters. Among others, the driver groups identified were those
of the aggressive, conservative, conservative making aggres-
sive turns and low speed drivers. The dataset recorded trips
from 300 unique drivers who drove over 5000 rides. The
sensors used were the GPS and magnetometer that recorded
data at 1 Hz frequency, the accelerometer and gyroscope that
recorded at 10 Hz, and the smartphone’s camera.
In order to perform driving behavior analytics and identify

differences between driver groups or states, [26] exploited
smartphone data collected during a naturalistic driving exper-
iment from a sample of 20 older drivers who participated for
1 to 2 weeks. To this end, a Gaussian model was developed
based on the penalties obtained for the seven events (acceler-
ation, braking, steering, weaving, drifting, overspeeding and
car following) that were collected and taken into account.
This study revealed 3 different behaviors, i.e., calm, aggres-
sive and drowsy behaviors. Several driving metrics were
used, including distance, hour, duration, speed, acceleration,
braking, steering, weaving, drifting, overspeeding and car
following, seatbelt wearing, hands on the wheels, smoking,
objects manipulation and distractions. Inference of driver
behaviors, among the three different classes of calm, drowsy
and aggressive driving as well as the inference of a global
score for each trip was also used.
A new methodology for near-real-time analysis and driver

behavior ML-based classification was proposed by [27], who
aimed at driver profile identification based on a combination
of features and signals, including brake pedal pressure, gas
pedal position, revolutions per minute (RPM), speed, steering
wheel angle, steering wheel momentum, frontal acceleration
and lateral acceleration. Data were collected from an uncon-
trolled experiment with 54 people, from over 2000 trips that
took place within a 55 days duration. The research included
four different steps, feature extraction, feature normaliza-
tion, dimensionality reduction and an unsupervised learning
approach for clustering. Several statistical features were cre-
ated to support the analysis such as moving mean and median
and the standard deviation, and dimensionality reduction
was achieved using Principal Component Analysis (PCA).
Clustering was performed based on the K-means algorithm
and using seven different features from the metrics recorded
by the data collection system, with a distributional approach.
The results of this study indicated that an optimal number
of clusters can be identified for each different combination
of signal-feature, which ranges from two to six depending
on the combination. Nonetheless, in this study the driver
profiles were not interpreted and discussion focused on the
methodological contributions of this paper.
A novel approach to improve driving behavior classifica-

tion based on stacked LSTM Recurrent Neural Networks was
proposed by [28]. In this study, the driving behavior classifi-
cation problem was formulated as a time-series classification
task based on AI, by exploiting data from a naturalistic driv-
ing experiment. The time-series data used in the classification

TABLE 2. Data collection methodologies for driver profile identification.

training were coming from nine internal sensors and were
captured using a smartphone device. This research showed
that it is possible to accurately classify driving behavior into
three distinctive driving behavior classes, i.e., as normal,
aggressive or drowsy driving, based on a window sequence
of fused feature vectors of sensor data at any time step of
a driving trip. The approach proposed achieved significantly
improved results on the UAH DriveSet compared to previous
studies, which featured much higher true positive rate and
lower false positive rate. Data collection was based mainly
on the GPS sensor and included metrics such as timestamp
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TABLE 3. Driving metrics used for driver profile identification.

(precise date and time of each recording), speed, coordi-
nates, altitude, vertical accuracy, horizontal accuracy, course
and course variation. Data from other sensors were also used,
e.g., acceleration in X, Y and Z axis filtered by KF, roll,
pitch and yaw. The driving sessions recorder took place in
two road types, motorway and secondary road, by 6 different
drivers and vehicles.
Using a database recorder from a large German car

insurer with several hundred vehicles within a period of
12 months, [5] developed a stochastic driver profile identifi-
cation model that takes into account speed, acceleration and
deceleration. The modelling approach followed is based on
the random waypoint (RWP) principle which, according to
the authors, describes the movement behavior of a driver-
vehicle unit in a given system area. The total number of
driving styles that this study distinguished through the actual
simulation is six. Two of the driving style groups depend
on the speed process, which can be further distinguished to
those styles with lower and those with higher speed val-
ues. Reference [29] modelled personal driving styles based
on several driving parameters collected from various vehi-
cle drivers through real-time experiments with the purpose
of classifying drivers according to their risk-proneness. At
first, PCA is performed on those driving data and resulted to
5 levels of aggressiveness based on the first principal com-
ponent. Finally, hierarchical clustering was used and showed

that there exist six clusters of drivers of which, two are the
extreme clusters. Driving behavior metrics of 25 drivers were
collected from a Gipix, which is a real-time vehicle tracking
system that records information such as GPS coordinates,
time and speed values with a frequency of 1Hz. An aver-
age of 9 tracks were collected under similar conditions per
driver, over a period of 2-5 working days.
The effects of hands-free cell phone conversations on sim-

ulated driving was examined by [30]. Data from a driving
simulator experiment with 40 subjects (20 older and 20
younger adults) were used to construct driver distraction
profiles based on statistical analysis techniques. In order
to provide an overall measure of driver performance as
a function of experimental conditions, the authors used a
multivariate analysis of variance (MANOVA). A univariate
analyses was also performed on each of the dependent
measures using a two by two split-plot analysis of vari-
ance (ANOVA), taking into account the age (younger versus
older) and the task (single versus dual). Furthermore, driver
performance profiles in response to the braking pace car,
which was ahead of the participants, were examined to bet-
ter understand how driving performance changes with age
and cell phone use. Those profiles were created through
the extraction of epochs of 10 seconds duration that were
time locked to the onset of the brake lights of the pace
car. The driving measures that were collected with 30Hz
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frequency and stored for analysis were those of real-time
driving performance, including driving speed, distance from
other vehicles, and brake inputs.
One of the first studies that introduced the concept of

driver behavior profiles (DBPs) was [6], which developed
such an approach to enable driver behavior evaluation as a
function of casualty crash risk and presented the results of an
investigation into the factors associated with this risk. This
approach was based on the estimation of common risk scores,
which can potentially be used for driving performance com-
parison across time and space. This was done by applying
multilevel models and temporal and spatial identifiers (TSIs)
to control for the spatiotemporal environment. To this end,
data from global positioning system (GPS) devices were
recorded at a 1Hz rate from 106 drivers during a 10 week
pay-as-you-drive (PAYD) study and supplemented with spa-
tiotemporal information. The information collected included
speed, coordinates, time and date driving. The authors con-
cluded that DBPs can account for the complexity of the
driving task. The revealed driver profiles are not discussed
and the discussion focused mainly on the methodological
contributions of this study.
A methodology to estimate car driver profiles in non-

stationary contexts was developed by [31]. The model was
based on an adaptive resource allocation neural fuzzy system
and showed how the dynamic part of a driver’s profile
can be modelled as a multivariate time series prediction
problem. Information regarding the driving behavioral vari-
ables such as the deviation of the car trajectory from the
middle of the road, steering wheel angle, thrust and braking
acceleration, speed, were collected from a driving simula-
tor experiment that was conducted with 16 subjects under
a variety of driving situations. The above variables were
sampled with a sampling frequency of 10Hz, creating thus
five time-series with samples kept every 10ms. This was
achieved by developing AI techniques for emotion-related
states induction, which affects performance on several tasks,
including boredom and drowsiness, excitement, frustration
and irritation, calm versus pressurized states, and those states
that are affected by mental loads. It was shown that driv-
ing behavior varies significantly among drivers and that it
is possible to identify these variations. Therefore, there are
common driving characteristics among drivers and those can
be represented by selecting the most representative profile
from a pool of typical profiles. Revealed profiles were not
discussed and the discussion of the paper focused on the
methodological contributions.
Simulator data were used by [32] to look into driving

style, mood states, and personality traits combined. 28 par-
ticipants between 20-40 years old drove one urban and one
highway scenario and went through a mood check using a
questionnaire. PCA was applied for feature selection of the
mood data and Hierarchical Clustering was used to cluster
drivers with similar personalities. The analysis was based
on vehicle coordinates, yaw, pitch, roll, speed, throttle and
brake position, steering angle, distance from lane center and

the distance from surrounding vehicles. Three personality
types were discovered of which, type 1 personalities had
the most average personality traits and mood states, and
demonstrated more sedate driving. The second personality
type had the most positive mood state whereas type 3 had
the lowest positive mood states and drove more aggressively.
A prediction model was trained based on random forest and
validated, showing that (1) driving style can be predicted
using mood states and personality traits and (2) personality
types can be predicted using driving style and mood states.
Naturalistic driving data were also used by [33], [34],

[35], [36] with almost all of them using speed as a driving
metric to be analyze. Acceleration was also used by some
of these studies. Physiological indicator data such as heart
rate and eye movement were also collected by [34] and [35].
Studies [37] and [38] was differentiated by collecting data
from an autonomous simulator experiment and an adminis-
tered questionnaire, respectively. The number of participants
ranges from less than 10 to 1,500 depending on the size
of the experiment. Most studies discovered 2 to 6 profiles
depending on the type of profiles created such as in terms
of risk, speed, mood or aggressiveness.

B. DRIVING PATTERN RECOGNITION METHODOLOGIES
A methodological approach for the classification of driv-
ing behavior using Convolutional Neural Networks (CNNs)
was presented by [39] and [21]. This AI-based approach
was based on driving data obtained from an internal CAN-
bus system from four different classes of driving types,
i.e., a private car, a waste collection vehicle, a truck and
a sweeper vehicle. Data for 27 different attributes were col-
lected through on-board diagnostics (OBD) experiments and
included information such as coordinates, speed, acceleration
and its derivatives. The sample used comprised of more than
10.000 measurement vectors. They trained GRU, LSTM,
1D CNN and a 2D CNN models for driving class iden-
tification in order to classify the different vehicle types. The
results of [39] revealed that the 2D CNN model outperformed
the rest in terms of prediction accuracy, whereas in [21]
the GRU model obtained the highest overall classification
accuracy. The need to build a unique driver behavior finger-
print among different types of driving style was proposed
as future research through the combination of driving style
information in different situations and driving phases. Using
a variation of the datasets used in the two previous stud-
ies, [40] attempted also to classify vehicle type among
different driving types. The authors followed three popular
classification approaches, i.e., k-nearest neighbors (k-NN),
Support Vector Machines (SVM) and decision trees to train
their models and test the results using the OBD experiment
data. They concluded that based on the proposed features,
the decision tree approach achieved the highest classification
accuracy and it outperformed RNN-based approaches.
With the goal to measure the similarities among individual

driving patterns, [41] proposed a classification model based
on a combination of ML and AI techniques to recognize the
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TABLE 4. Driving pattern recognition studies – AI and ML methodologies.

individuals’ stable driving patterns. In order to confirm that
drivers have their own driving pattern, the authors applied
a hierarchical clustering analysis that was performed using
two approaches. The first one used the Dynamic time warp-
ing (DTW) method to measure the similarity between two
original time series data, whereas the second one used the
measure of the Euclidean distance based on a bag-of-pattern
(BOP) representation. Consequently, a bi-directional LSTM
layer was used and six driver classes were specified. In this
research, the time-series data was expressed symbolically
using a method called Symbolic Aggregate approximation
(SAX), which is used for mapping a symbol or an alphabet
to equal-sized segments of time-series data. It was shown
that stable driving patterns vary with drivers and driving
events, meaning that, e.g., driver A’s driving pattern may be
similar to that of driver B in a sudden-stop event but simi-
lar to driver C in the curve section. This methodology was
applied on data collected from a driving simulator experi-
ment with 6 participants who drove a test road of 6.7 km

that can be divided into five sections according to the events.
Driving metrics were collected with a frequency of 20 Hz
and included speed, acceleration, the depth of brake and
acceleration pedal, the angle of the steering wheel and the
distance from the road lane and the lead vehicle.
In order to detect important and potentially dangerous

deviations from the norm in real-time, [42] trained ML
models on the basis of driving simulator data that were
able to understand normal driving behavior. The assumption
that some “normal” driving behavior traces could poten-
tially serve as a baseline to compare it with the actual
observed behavior, enabled the definition of a distance mea-
sure between distracted and normal driving. The authors
initially applied time series analysis techniques to assess the
impact of cognitive distraction on drivers. Then, they defined
a coarse- and a fine-grained distance measure between the
time-series segments within a driving session, which are
based on a combination of DTW and Euclidean distance
between time-series. The driving metrics were collected
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from an experiment with 16 participants and included speed,
brake, accelerator, gear change, clutch, steering, lateral and
longitudinal acceleration, and RPM. The simulator also cap-
tured other data such as the road and lane position as well as
the path along the route. Finally, the authors also used basic
physiology data by fitting drivers with a commercial bio-
harness with heart rate monitoring capability, that is usually
used in fitness applications.
A combination of a supervised learning model and a

semi-supervised transfer learning model based on Artificial
Intelligence was introduced by [43] for the classification
of driving manoeuvers into aggressive acceleration, aggres-
sive brake, aggressive right lane change, aggressive left lane
change, aggressive left turn, aggressive right turn, and non-
aggressive maneuver. This methodology was validated using
smartphone’s accelerometer and gyroscope data from a natu-
ralistic driving experiment with 4 trips from 2 drivers, using
domain specific knowledge data of the driving environment,
such as data changing rules of various driving manoeuvers
and temporal features. The front view of the subject vehi-
cle was also recorded by a camera during the event. Class
functions were used for the seven driving manoeuver types
considered, which were converted into binary feature vec-
tors. The models used were based on a supervised LSTM
model and a combination of an unsupervised LSTM autoen-
coder and a supervised LSTM classifier. Results indicated
that the supervised model performed better than the semi-
supervised model. Nonetheless, it would be more beneficial
to use a semi-supervised model in applications where the
process of capturing labelled driving manoeuvers data is
hard or insufficient.
With the aim to discover repetitive patterns related to the

steering angle and speed during similar traffic situations, [44]
used various machine leaning techniques to analyze driving
data coming from a naturalistic driving experiment. The driv-
ing manoeuvers data were obtained from a data collection
system in the car, which recorded speed, the accelerator and
brake pedal position, steering angle in rad, driver power
demand in kW as well as environmental factors such as
speed limit and GPS data, as a set of time series with a
collection frequency of 100 Hz. More specifically, an unsu-
pervised learning and data mining techniques were first used
to discover driving patterns and develop a labelling scheme.
The discovery of driving patterns took place using Piecewise
Aggregate Approximation, the SAX method and a classifier
trained to recognize the current driving situation using the
discovered patterns and labels from the previous steps. As for
the data analysis techniques used, DTW is used to compare
the similarity between time series and after computing the
distance matrix, hierarchical clustering using Ward’s mini-
mum variance method and Gaussian mixture model clustering
is implemented to achieve the grouping of the time-series.
Finally, in order to achieve classification of time-series, four
different AI network architectures, namely t-leNet, residual
neural network (ResNet), LSTM and stacked LSTMs, and
their performances on the specific problem are compared.

TABLE 5. Data collection methodologies for driving pattern recognition.

Reference [45] developed a three-step ML-based method-
ological framework that was applied on time-series data
produced through autonomous driving numerical simula-
tions. Those steps included the automatic segmentation of
each time-series, the construction of the regime dictionary
and the clustering of the produced categorical sequences.
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TABLE 6. Driving metrics used for driving pattern detection.

Several methods were used including a polynomial regres-
sion mixture, clustering using Levenshtein distance in cat-
egorical sequence space as well as a combination of DTW
with the Dynamic Barycenter Averaging (DBA) method, the
K - Shape method and the SAX method. The hierarchical
clustering procedure with Ward’s criterion produces the final
clusters based on this representation and associated distance.
Five data categories were produced namely, environmental
parameters including road characteristics, weather conditions
and driver behavior, car physics such as weight distribution,
engine capacities, sensor data, control law that triggers react-
ing to specific conditions such as when in close distance to
nearby vehicles.
Reference [46] dealt with the interesting topic of driv-

ing danger level recognition using data collected from a
driving simulator. They attempted to tackle this problem
by developing a danger-level estimation model based on
a semi-supervised ML method, which mined the safe and
dangerous driving patterns considering time-series data with
limited information on labelling, such as dangerous (time
zones with incidents) and safe zones. Results were compared
with other classification-based approaches including the hid-
den Markov model (HMM) and the conditional random field

(CRF) algorithms that were trained for the same purpose of
danger-level estimations. The driving metrics used in the
analysis were dynamic parameters recorded from the vehi-
cle including speed, acceleration, braking, steering, lateral
lane position, throttle and braking pedal position as well
as the minimum range between the driver and all vehicles
in the driver’s direction. A total of 14 participants partici-
pated in the experiment and each of them performed two to
three sessions (40 conducted overall), which were 20 minutes
long.
The purpose of [47] was to combine SAX and matrix pro-

file methods to identify geo-spatial driving patterns, in terms
of driver foot pedal behavior, focusing on those that typically
involve accelerations such as turning, slowing, accelerating
and parking. Data were collected from a 4-weeks naturalis-
tic driving experiment with 34 drivers using OBD and GPS
devices, which captured vehicle signals related to position,
speed and acceleration, with a 10 Hz frequency as well as
video recordings of the drivers’ face, feet and front view.
According to the authors, the matrix profile method runs as
fast as, or faster than SAX in finding motifs, without sac-
rificing data resolution. Other advantages of matrix profile
method compared to SAX and random projections is that it
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is significantly shorter and simpler, and enables comparison
between different datasets.
An imitative learning approach to intellectual cognition

based on HMM and Monte-Carlo methods was proposed
by [48] for driving manoeuver identification namely straight
drive, left turn, and right turn. Using driving time-series data
from an actual vehicle, and driver and environmental state
from a driving simulator, they segmented the time-series into
driving patterns that are assigned a proto-symbol. These data
were classified into HMMs, the parameters of which were
optimized using the classified driving patterns. The authors
concluded that by adopting this approach, vehicles can grow
their intelligence while observing expert’s driving by storing
driving patterns as symbols. Data collected from the actual
vehicle were recorded from 4 participants with a sampling
rate of 10Hz and included driving data of 9 kinds of metrics,
roll, pitch, and yaw rates, vehicle accelerations in all 3 axis,
vehicle speed, driver’s accelerator stroke and steering angle.
This framework using data from the driving simulator, which
contained 4 kinds of time series measurements, i.e., speed,
yaw rate, driver’s accelerator stroke and the steering angle.
Reference [49] attempted to identify the differences

between the variations of driving pattern and developed an
objective driver classification using support vector cluster-
ing (SVC) and PCA. It was also confirmed by the results
that a positive relationship exists between driving aggressive-
ness and fuel consumption and that driving style variations
can be caused by weather condition, time of the day and
driver’s eagerness. The ML methodology was developed
and validated using naturalistic driving data from 3 drivers
that overall travelled 12 separate trips and a distance of
1106km. Information regarding the vehicle state was col-
lected including speed, engine speed, pedal position and fuel
consumption.
Reference [50] collected driving data from a naturalistic

driving experiment using CAN Bus system to develop an AI-
based classifier that identifies differences among aggressive,
mild and gentle driving. This research employed LSTM and
1D CNN for this classification task with the aim to estimate
the behavioral profile of the driver using 12 different driving
parameters. It was found that despite the fact that both the
LSTM and CNN based models performed with moderate
success rates, the 1D CNN model performed more success-
fully. Driving metrics recorded and used were initial and final
speed, engine speed, turn speed and wheel base in rad but
CAN Bus messages also included wheel based vehicle and
engine speed, brake and accelerator pedal position, actual
retarder and engine percent torque, lateral and longitudinal
acceleration, percent load at current speed, steering wheel
angle, inlet air mass flow rate and fuel rate.
The power of Dynamic Bayesian Networks (DBN) was

exploited by [12] to develop a driver behavior profiling
model that recognizes acceleration, braking and cornering
patterns, taking into account naturalistic driving data from
GPS sensors such as timestamp, speed, altitude, direction
and GPS signal strength data. This model had a probabilistic

nature that was able to provide the probability of a behavior
to be classified as normal or harsh event in terms of acceler-
ation, braking and cornering. To achieve this, each trip was
broken down into 230 time slices based on which the model
was trained. It was shown that the nature of the driver’s
operational environment is determined by the model, which
focuses on the road terrain. The suitability of the probabilis-
tic methodologies to determine driving styles and operational
environments for vehicle driver profiling was proved using
the 2-Time-slice Bayesian Network (2TBN). No particular
driving patterns were identified, but only the characteristics
that influence the probability of an event to be harsh or
normal.
A methodological framework, based on Neural Networks

(NN), e.g., the radial basis function, for quantitative evalua-
tion of driving styles was proposed by [51]. This approach
established individual driver models and its results were val-
idated using data from a naturalistic driving experiment with
18 participants. Driving metrics used included throttle posi-
tion, brake pressure, vehicle speed, gear, engine speed, taking
into account the various combinations of driving styles, road
situations, and vehicle types. All participants were originally
classified by technicians as highly, moderately or mildly
aggressive. An aggressiveness index, which was based on
energy spectral density analysis and the normalized driv-
ing behavior found in the previous step, was developed to
achieve the goals set by this study. According to the authors,
this index is very useful in applications where driving style
may play an important role such as vehicle calibrations and
intelligent transportation.
Reference [52] suggested that rule-based scenario detec-

tion of driving patterns should be complemented with a
data-driven approach. To this end, they used rule-based
detections as labels to train Fully Convolutional Networks
(FCN) in a weakly supervised setup. The NN used were
trained to detect the patterns of lane changes and cut-ins
using 105 hours of naturalistic driving data in the form of
bus loggings from 9 cars of 3 different models. The problem
was formulated as a time series segmentation problem and
the disagreement between the rule based method and the
learned detection method was analyzed to find wrong or
missing detections. The discussion of this study focused on
its methodological contributions rather than on the revealed
driving patterns. The conclusion was that the FCNs employed
provided did not necessarily need large amounts of ground
truth information to assess the quality of this rule based
scenario detection, which showed their scalability. Driving
metrics used were retrieved from the inertial measurement
unit and included the ego velocity and yaw rate and data
from a front camera to capture lane markings and other
traffic participants.
A time series clustering approach was followed by [53]

who exploited naturalistic driving data from enhanced CAN
bus with a 50Hz collection frequency, for RPM driving pat-
tern detection. The sensors used included the camera, radar
and gyroscope. More than 33 variables were selected for the
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analysis such as speed in x and y axis, rotational accelera-
tions and real-time RPM. They used and compared several
different algorithmic combinations based on ML, such as
Discrete Wavelet Transform (DWT) with SVM, DTW with
k-NN, the so-called KDK model, and LSTM. DTW was used
to compare time series with multiple dimensions, i.e., mul-
tivariate time series. The DBA method was then exploited
to find the representative average driving behavior and to
estimate the similarities between driving behaviors. Finally,
K-means was used to cluster these time-series into groups
of similar behaviors. The results of this study indicated
that the combination of DWT and SVM provided fast and
precise results, while DTW with k-NN gave comprehended
results and comparison of different driving behaviors as
well as shorter calculation time but lower precision. The
performance of the LSTM model was found to be between
DWT and SVM and KDK. In this paper, the revealed driving
patterns were not discussed.
Reference [54] aimed to provide an objective assessment

of Advanced Driver Assistance Systems (ADAS) based on
Multivariate DTW (MDTW), k-nearest neighbor classifier
and the kernel density estimation. It provided a comparison
between the subjective perception of different ADAS calibra-
tions and the objectively measurable variables using datasets
of comfort rates for different frequency and amplitude of an
oscillation, comfort assessment during lane changing and
comfort perception of three ACC scenarios. Again, the dis-
cussion highlighted the methodological contributions of this
paper and did not focus on the revealed driving patterns. This
study exploited the datasets of the Lane Keeping Assistant,
Lane Change Assistant and the Adaptive Cruise Control,
which include data with comfort rates for different frequency
and amplitude of an oscillation, comfort assessment during
lane changing as well as comfort perception of three ACC
scenarios.
Reference [55] attempted to tackle the problem of real

time identification of driving patterns, and more specifi-
cally of speeding and illegal overtaking patterns, using DTW.
These two dangerous driving patterns were monitored and
detected using vehicle motion data from gyroscope and GPS
sensor, during a naturalistic driving experiment. DTW was
applied on a moving window and its ability to match time-
series sequences that are misaligned and stretched in the time
domain [56] was exploited, which is very advantageous in this
context of overtaking detection. The system developed was
able to measure the similarity of the time-series coming from
the live sensor data stream and a pre-recorded data sequence
of an overtaking. DTW was proved to detect overtaking pat-
terns regardless of how fast or slow vehicles were moving.
Although this study contributed to the better understanding
of the factors that influence the detection of this specific
pattern, information such as the frequency of occurrence of
this driving pattern was not revealed or discussed.
A methodological approach based on time-series segmen-

tation and clustering was proposed by [57] to deal with
the driving manoeuver classification problem. In order to

segment the multivariate time-series, they used Singular
Value Decomposition of the segment matrices as a cost
function in order to detect changes in the correlation struc-
ture among several variables. After segmenting time-series,
the recognized segments and used the Q-measure to assess
their homogeneity. Finally, recurring patterns of segment
sequences are retrieved, capturing thus the evolution of
multiple parameters over a time period. This study’s method-
ology was validated using sensor data from a real-life
experiment. The characteristics of each driving pattern dis-
covered are not discussed in detail. The driving metrics of
speed and accelerator angle were collected during a natu-
ralistic driving experiment and data collection took place
using a real-life sensor recording information from different
vehicles during car drives.
Algorithms based on a fuzzy-logic-based technique as well

as on driving cycles classification was developed by [11]
for trip data recognition. Compositional summaries of vehi-
cle usage were successfully generated and due to this, a
systematic detailed analysis on vehicle performance was
possible. The authors concluded that the time or distance
normalization of driving pattern recognition profiles offers
side-by-side comparison among trips, including the compar-
ison between non-standard, randomly-generated-in-the-field
driving cycles and standard ones. This could applied in this
case study where previously analyzed results from standard
driving cycles could be compared with field data for vali-
dation purposes. The characteristics of the revealed driving
cycle patterns were not explicitly discussed. Speed and dis-
tance metrics used in this study were collected from electric
vehicles under real-world driving conditions, in the form of
time-series data per trip. Those data were recorded from
more than 6,000 trips within a 7-months period.
Data from naturalistic driving experiments are also used

from [58], [59], [60], [61], [62] to discover the existing
driving patterns. The number of participants ranges from 16
to 89 in these studies and the mostly used driving metrics
were speed, acceleration and braking, as in the rest of the
studies, followed by RPM and yaw/pitch/roll. A differentia-
tion is observed in [62] that uses facial landmark sequences
for drowsy pattern detection. All these 5 studies made use
of Neural network approaches, except [59] that used a clus-
tering approach. Patterns discovered were related to driver’s
actions, aggressiveness, gear prediction and drowsiness.

IV. DISCUSSION
A. MAIN FINDINGS
Among the Artificial Intelligence methodologies that are
used for driver profile identification, it seems that K-means
is most commonly used, followed by NN-based models. The
extended use of NN approaches also appears in recent stud-
ies [63]. Statistical and optimization methodologies are also
utilized, whereas PCA is used in several studies to reduce
dimensionality of the datasets used.
On the other hand, since driving pattern recognition

involves mainly analyses of time-series data, the majority
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of the studies reviewed herein make use of NN-based mod-
els. Several different NN approaches are used, mainly from
the family of RNN, such as LSTM, GRU, standard RNN,
CNN and fuzzy NN. Those are employed both for supervised
(classification) and unsupervised tasks (clustering) depending
on the type of the dataset. Moreover, DTW is a methodol-
ogy that is very much preferred for pattern detection that
usually complements other clustering methodologies such
as Hierarchical and K-Medoid clustering. It was found that
classification methodologies such as SVM, k-NN, and deci-
sion trees are exploited as a standalone approach for pattern
identification more frequently than clustering methodolo-
gies, e.g., support vector clustering. Recent studies also
confirm the efficiency of the combination of clustering
and classification approaches [43]. Semi-supervised learn-
ing methodologies are also adopted by two studies. Other
methodologies that were found useful for pattern detection
were the HMM, DBN and the SAX method, which performs
time-series segmentation by creating symbolic time-series.
The common data analytics methodologies that was utilized
across studies of both fields studied were the NN-based
approaches. The main common characteristic of these stud-
ies is that they worked with time-series data, where the
performance of RNN is proved to be significantly high.
Regarding the actual driver profiles discovered, it appears

that the most commonly identified driver profile is that of
aggressive drivers. This is reasonable since most studies are
based on speed and acceleration driving metrics. One study
is focusing solely on the identification of five different lev-
els of aggressiveness. Several studies have also identified
the group of “normal” drivers. Other researchers also dis-
covered groups of drowsy drivers as well as calm, cautious
and conservative drivers. Finally, there are also other charac-
terizations of driver groups in literature, for instance in terms
of their efficiency, or the consistency and stability of their
temporal behavioral characteristics. There were also several
studies that did not discuss the driver profiles discovered and
focused mainly on the methodology used.
Regarding the results of the driving pattern recognition

studies, again a common driving pattern discovered is the
aggressive driving. This is usually discretized among other
driving patterns such as normal, non-aggressive, defensive,
stable, mild and gentle driving, or other manoeuvers such
as normal acceleration and braking (events), turning, lane
changing and parking. Other studies identify different pat-
terns among several vehicle types [21], [39], [40]. Many of
studies focused on the methodological contributions of their
work and did not discuss the specific patterns discovered.
As aforementioned, speed and positive acceleration are

the two driving metrics that were mostly collected and
used for driver profiling, followed by negative acceleration
(braking), timestamp, driver distraction that is usually mea-
sured through mobile phone usage or eye-tracking, and GPS
coordinates. In driving pattern studies, pedal position and
pressure is a metric that is strongly preferred followed by

braking, RPM, angular velocities and steering. The common
use of speed and acceleration metric demonstrates the high
importance that these two metrics play in the safety assess-
ment of individual driving risk. On the other hand, there
are important metrics such as videos, hands-on-wheel and
distance from surrounding vehicles that are less frequently
used until now mainly due to the fact that their recording
requires technological advancements that have emerged just
recently. They were found to play an important role in sev-
eral studies and therefore, they are expected to become a
strong preference in future research.
The vast majority of driver profiling studies exploited

data from naturalistic driving experiments that were collected
either from mobile phone sensors or from instrumented vehi-
cles. The number of participants ranges from 6 to 300,
whereas the duration ranges from a few minutes to 1
year. The data collection frequency is not provided in all
papers but most papers used a 1Hz collection frequency.
This reveals that 1Hz is an acceptable frequency that bal-
ances between the collection of noisy data and insufficient
information and therefore, it provides an adequate amount of
information for macroscopic analysis. Only two studies used
data from driving simulator experiments and data were col-
lected with higher frequencies (10Hz and 30Hz) compared
to the naturalistic driving experiments.
Likewise, the majority of driving pattern recognition

research exploited data from naturalistic driving experiments
collected from OBD devices or smartphone sensors, whereas
only 4 of them used data from driving simulators. This
indicates that driving simulators are appropriate for person-
alized driving behavior analysis, but not so much for driver
profiling and driving pattern recognition, which requires a
very large data sample of drivers and trips. On the other
hand, personalized driving behavior analysis typically exam-
ines fewer drivers for short time periods. The number of
participants ranged from 4 to 34 and the data collection
frequency from 10Hz to 100Hz. The collection frequency
appears to be higher in driving pattern recognition study
revealing thus that a higher granularity of information is
required so that microscopic behavior can be captured and
analyzed. A significantly lower frequency level is proba-
bly considered inadequate and may lead to the acquisition
of insufficient information for microscopic analysis. One of
the studies reviewed, analyzed data derived from numerical
simulations conducted. Finally, it is highlighted that apart
from driver profiling and driving pattern recognition studies,
there are studies that make use of co-simulation platforms
to support personalized driving research [15].
Regarding the data analysis and management approach, a

conclusion drawn based on this review is that driver pro-
filing studies should include the steps of data management,
dimension reduction, feature importance and selection, pro-
file clustering and assessment of results [34]. This suggestion
can serve as a basis for future studies to build data strategies
and methodologies on it.
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B. MAIN CHALLENGES
The main research challenges identified during the con-
duction of this review are outlined below and discussed
afterwards:

• The terms “driver profile” and “driving pattern” are
used in an ambiguous way

• Absence of a robust methodology for the identification
of driver profiles and the recognition of driving patterns

• Absence of a methodological approach combining both
driver profiles and driving patterns

• The quality of the data collected through the naturalistic
experiments

It was noticed in this review that the terms driver profile
and especially driving pattern are used in an ambiguous way
in the literature (see Section II-C), for different scopes and
analysis purposes.
Another important research gap discovered is that there is

no robust methodology to identify macroscopic driver safety
profiles and microscopic driving safety patterns and under-
stand their relationship with road risk. The methodologies
developed so far have focused on grouping behaviors with-
out identifying clear connections with safety. This would
be extremely important as it would enable the provision of
feedback to decrease driving risk even in real-time. It would
also assist in predicting the future states of driving behavior
that is entering into a new driver profile, having acquired
knowledge on how the behavior of other drivers of the same
profile was evolved in the past.
It was also highlighted that there is no study thus far

that combines the two scientific objectives of driver profiles
and driving patterns recognition. It is very important for
an integrated methodology to be developed since in reality,
microscopic and macroscopic aspects of driving behav-
ior significantly influence each other. In other words, the
identification of a driver profile should consider how the
microscopic driving characteristics are evolving during each
trip, and vice-versa, driving pattern recognition should con-
sider the group of drivers that is investigated. For instance,
a repetitive driving pattern such as an increased number of
harsh acceleration events occurring only in specific parts of
a trip or parts of a day (e.g., morning driving to work) could
be a common characteristic among a group of drivers, form-
ing thus a specific driver profile. On the other hand, when
observing a specific driver profile, e.g., frequently distracted
drivers, it is important to understand the microscopic charac-
teristics of distraction, such as its duration, as well as whether
other driving characteristics that increase risk co-exist such
as over-speeding.
Another important challenge that should be faced is the

quality of the data collected through the naturalistic exper-
iments [64], [65]. This is because compared to a driving
simulator, there are much more uncontrolled factors in nat-
uralistic driving data such as the quality of the sensors
recording behavior, the strength of the signal, the engagement
in visually distracting secondary tasks and road traffic.

Finally, we highlighted that the identification of the more
acceptable and safe behaviors is a major concern that is
yet to be addressed in literature. The definition of optimal
driving behavior, that could provide answers to this, is a
methodological challenge by itself, which will be pursued
in our further research. Initial insights on how it can be
defined can be found in [66]. As also stated in [67], [68], it is
important to keep improving the safety aspects of intelligent
transportation systems as we move forward into the next
generation of intelligent vehicles.

C. SUGGESTED FUTURE DIRECTIONS
The future directions suggested to tackle the challenges dis-
cussed earlier are outlined below and discussed afterwards:

• Standardization of the terminology for driver profiles
and driving patterns

• Examination of the concept of “driving pulse”
• Application of a combined macroscopic and
microscopic approach for driver profiling and
pattern detection

• Focus on the collection of best-quality data that repre-
sent the efficient metrics identified by this review

The target of this review was not to analyze individu-
alized driving behavior but rather to focus on micro and
macroscopic methods and characteristics that could be used
to identify common behaviors among drivers. It is therefore
very important to explain the terminology and make clear
what is the research objective in this case. From a road safety
perspective, this is a research gap that was answered in this
study and is summarized in the following paragraph.
Based on our research, driver profile can be defined as

a group of drivers having similar driving behaviors and
characteristics (e.g., aggressive/ non-aggressive, cautious/
distracted/ normal). A driving pattern on the other hand
is a specific driving behavior that is repetitively occurring
by one or different drivers, and this should be identi-
fied at a more disaggregate level, i.e., over very short
time frames (within seconds) of driving. On a separate
note, the term “personalized driving behavior” refers to the
investigation and analysis of the behavior of an individual
driver, e.g., for driver detection or for providing personalized
feedback [22].
A significant contribution towards this direction is the

concept of the driving pulse that was relatively recently intro-
duced [11]. This is based on the concept that each trip should
be segmented into shorter time-series in order to investigate
the relationships among these segments and how they evolve
over time either during the same trip or among trips of the
same driver.
Fig. 2 illustrates the connection and interaction between

the concepts of driver profiling and driving pattern recogni-
tion in a conceptual graph. This may serve as a methodologi-
cal framework for future research, combining and integrating
the macroscopic and microscopic approaches. A detailed
description of this framework is provided below.
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FIGURE 2. Conceptual graph illustrating the interaction between driver profiling and
driving pattern recognition.

The first part of the methodological framework proposed
includes the detection of the driver profiles through the anal-
ysis of the macroscopic driving behavior. This analysis will
lead to groups of drivers with similar safety behavior and
common driving characteristics. The macroscopic character-
istics to be considered in this analysis should be those that
are most commonly used for the evaluation of the safety
performance that are found to affect crash risk such as
speed limit violation, smartphone usage and harsh event
performance. The outputs of this analysis will be driver
profiles such as cautious or distracted drivers, and their
connection to crash risk.
The second part of the methodological framework

proposed includes the analysis of the microscopic charac-
teristics of each driver profile identified. Those should be
further investigated through a microscopic analysis of the
driving pulses in each trip. This will lead to a further break-
down of the main profiles discovered using the macroscopic
approach or to the recognition of sub-groups or sub-profiles
that have very specific microscopic patterns in each driver
profile. Example of patterns that may be detected in this anal-
ysis may be the investigation of the speed patterns before
harsh maneuvers such as harsh braking, acceleration and
cornering.
These are important aspects, since they will allow a deeper

understanding of the driving characteristics of each group of
drivers that influence risk and therefore safety. In this respect,
the connections among several driving behavior safety indi-
cators as well as their connection with driving risk should
be further investigated. Driving risk here can be defined
as the probability of causing a collision due to a high-
risk driving action. The connection between driving behavior
indicators and driving risk can be recognized through sev-
eral means such as the accident history of the drivers or
some indirect metrics that express risk of collision or very
aggressive behavior. To summarize, it is recommended for
future research to use the proposed integrated methodolog-
ical framework, that combines the macroscopic and the
microscopic driving behavior approach that should constantly
be updated [34]. This interaction between the two scientific
objectives of driver profiles and driving patterns will provide
a more complete understanding of driving behavior.

The potential applications of the framework described
above will enable a more detailed driver profiling that con-
siders the complete picture of a driver’s behavior on a micro
and macro level as well as its evolution in time. This will
help to avoid either looking at the “big picture” of macro-
scopic behavior and missing important information hidden
in the microscopic driving features, or focusing only on the
microscopic features without being able to draw conclusions
on the overall driving safety performance of a driver.
Based on this, the driving risk identification and prediction

will be certainly improved, as it will be possible to develop
individualized driving risk models with higher accuracy.
These models will allow the interpretation of driving safety
behavior into probability of collision by focusing on the
individual behavioral characteristics of each driver on a
micro and macro level [69], [70]. These individualized driv-
ing risk models will be a more accurate representation
of human behavior, which can be exploited in order to
form an “optimal” driving model, by obtaining the safest
driving characteristics under different driving and environ-
mental conditions. The latter may potentially be used for the
improvement of autonomous vehicles’ (AVs) safety by mim-
icking human behavior to handle cases under which humans
behave in an optimal way. Moreover, it could be used in the
development of improved applications that monitor driving
in real-time and provide personalized feedback to drivers to
become less risky.
Finally, regarding the quality, efficiency and frequency of

data metrics collected, it is suggested to focus on the indi-
cators of speed, acceleration, distraction and pedal pressure
are the most important driving metrics, which should be col-
lected from naturalistic driving experiments with a frequency
of at least 1Hz.

V. CONCLUSION
This research thoroughly reviewed the AI and ML
approaches used thus far in driver profile and driving pattern
recognition studies for traffic safety analysis purposes. The
objective was to identify the best approaches in terms of
methodology and data collection, and propose future direc-
tions to enhance the understanding of the macroscopic and
microscopic aspects of driving behavior and therefore, road
safety.
One of the main findings of this study, was the ambi-

guity in the definition of the two scientific fields. It also
discovered the most efficient driving metrics that should be
used in similar research and that data collection frequency
should depend on the level of analysis. Moreover, it indi-
cated that the levels of analysis that is used to identify groups
of common behaviors, could be categorized as macroscopic,
mesoscopic (e.g., [7], [9]) and microscopic depending on
the level of information they use. The absence of a clear
methodological framework for the identification of macro-
scopic driver profiles and microscopic driving patterns is
suggested to be tackled through a methodology that com-
bines macroscopic and microscopic driving metrics in order

VOLUME 4, 2023 97



TSELENTIS AND PAPADIMITRIOU: DRIVER PROFILE AND DRIVING PATTERN RECOGNITION

to capture how these two aspects interact with each other as
well as using the different approach of the “driving pulse”
for microscopic research.
Regarding the contributions and innovations of this study,

it provided the definition of these two scientific fields in
terms of safety and assisted in the understanding of the
most efficient methodologies, metrics and data collection
methodologies used in these two fields. Finally, it provided
suggestions and ideas on how microscopic driving patterns
should be investigated and provided a methodological frame-
work that combines both the macroscopic and microscopic
driver behavior analysis.
The most important limitation of this review is that sev-

eral studies are found that deal with the driver profiling and
driving pattern recognition problem only from a methodolog-
ical perspective without describing and discussing in details
the findings of their studies. Another limitation is that this
review did not explicitly look at the interaction between the
driver with the environment and that only a small number of
studies were found to use related data such as the distance
from the surrounding vehicles.
Regarding future research, since microscopic and macro-

scopic aspects of driving behavior are interconnected, future
research should focus on the analysis of the two scien-
tific fields of driver profiles and driving patterns combined
to obtain more promising results. To this end, interesting
emerging concepts, such as the concept of the driving pulse
that was recently introduced, should also be widely adopted
in microscopic analysis of driving pattern identification.
Additionally, there were papers that focused on driver pro-
filing from a different perspective other than safety, such as
eco-driving. It might be useful though to study the method-
ological approaches of those studies in the future to test how
these could be applied in the safety analysis of driver pro-
file and driving pattern recognition. Finally, it is suggested
to also include other good predictors of a crash injury sever-
ity outcome such as weather status, road surface conditions,
on-site damage type, lighting conditions, young age, week-
day, off-peak, and vehicle type are also good predictors of
a crash injury severity outcome [71], [72].
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