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Abstract. Mice and rats can rapidly move their whiskers when explor-
ing the environment. Accurate description of these movements is impor-
tant for behavioral studies in neuroscience. Whisker tracking is, however,
a notoriously difficult task due to the fast movements and frequent cross-
ings and juxtapositionings among whiskers. We have recently developed
WhiskEras, a computer-vision-based algorithm for whisker tracking in
untrimmed, head-restrained mice. Although WhiskEras excels in track-
ing the movements of individual unmarked whiskers over time based
on high-speed videos, the initial version of WhiskEras still had two
issues preventing its widespread use: it involved tuning a great num-
ber of parameters manually to adjust for different experimental setups,
and it was slow, processing less than 1 frame per second. To overcome
these problems, we present here WhiskEras 2.0, in which the unwieldy
stages of the initial algorithm were improved. The enhanced algorithm
is more robust, not requiring intense parameter tuning. Furthermore, it
was accelerated by first porting the code from MATLAB to C++ and
then using advanced parallelization techniques with CUDA and OpenMP
to achieve a speedup of at least 75x when processing a challenging
whisker video. The improved WhiskEras 2.0 is made publicly available
and is ready for processing high-speed videos, thus propelling behavioral
research in neuroscience, in particular on sensorimotor integration.

Keywords: Whisker tracking · Algorithmic improvement ·
Acceleration

1 Introduction

Whiskers, or vibrissae, are tactile hairs found in most mammals [3]. Some
rodents, like mice and rats, engage in active touch behavior during which they
make fast rhythmic movements with their facial whiskers [10]. The facial whiskers
are arranged in a conserved geometric pattern in the skin, which is reflected in

c© Springer Nature Switzerland AG 2022
A. Orailoglu et al. (Eds.): SAMOS 2021, LNCS 13227, pp. 210–225, 2022.
https://doi.org/10.1007/978-3-031-04580-6_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-04580-6_14&domain=pdf
http://orcid.org/0000-0002-1450-4475
http://orcid.org/0000-0001-7050-2194
http://orcid.org/0000-0001-9497-0566
http://orcid.org/0000-0001-7670-8572
http://orcid.org/0000-0002-0935-9322
https://doi.org/10.1007/978-3-031-04580-6_14


WhiskEras 2.0: Fast and Accurate Whisker Tracking in Rodents 211

the organization of the primary somatosensory cortex [23]. The behavioral rele-
vance of whisker use and the well-defined anatomy of whisker representation in
the brain have made them particularly interesting for neuroscience.

Whisker movements are typically recorded using high-speed cameras with
up to 1,000 frames per second, required to faithfully capture whisker movements
during whisking, back-and-forth movements with frequencies of up to >25 Hz at
speeds up to ∼1000 deg./s [5,21]. Whisker movements can be described by the
angle of the whisker root relative to the snout. Keeping track of the angle of each
whisker over time, however, is challenging. Most current whisker trackers make
compromises to provide accurate tracking, like clipping of most of the whiskers
(e.g., see [7]), or attaching markers to individual whiskers [13].

Recently developed, WhiskEras [2] is a promising framework for collecting
accurate tracking data from untrimmed head-restrained mice, without the need
for attaching markers to the whiskers. It was built to increase the performance
of the BIOTACT Whisker-Tracking Tool (BWTT) [18]. In particular, BWTT
can only detect whiskers frame by frame, but does not track them through time.
For this reason, WhiskEras introduced a tracking module. WhiskEras, however,
involves tuning a great number of parameters, owing to the various algorithmic
steps it involves. It is expected that, in order to maximize the quality of results,
many of these parameters need to be re-tuned for different videos, which is
cumbersome and tough to automate. Furthermore, it is slow, processing less
than 1 frame per second, which makes it ill-suited for long videos.

This work focuses on studying WhiskEras, identifying and extending its
potential and accelerating it. For a complete, detailed description of this work,
refer to [1]. The contributions of this paper are summarized as follows:

• Deliver WhiskEras 2.0, an improved version of the original framework which
is more robust and easier to tune.

• Accelerate WhiskEras 2.0 by 74.96x by porting the code from MATLAB to
C++, exploiting parallel execution on the CPU and GPU and performing
several optimizations. The code is available online.1

• Pinpoint the limitations of computer-vision based approaches in whisker
tracking, steering future endeavors in the field.

This paper is organized as follows: In Sect. 2, related works on whisker track-
ing are presented. Section 3 outlines the algorithmic stages of WhiskEras. In
Sect. 4, the shortcomings of WhiskEras are pinpointed and its performance is
analyzed. Then, Sect. 5 contains the implementation details of this work. In
Sect. 6, WhiskEras 2.0 is compared to the original WhiskEras in terms of qual-
ity and performance, using two benchmark videos. Finally, conclusions of this
work and some recommendations for future work are given in Sect. 7.

2 Related Work

In theory, high-speed videography allows accurate and non-invasive detection of
whisker movements, but, for instance, crossings and juxtapositions complicate
1 https://gitlab.com/neurocomputing-lab/whisker/whiskeras-2.0.

https://gitlab.com/neurocomputing-lab/whisker/whiskeras-2.0
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tracking. There are two common solutions to this problem. One way is reducing
complexity by clipping all but one or a few whiskers, e.g. as is the case with
Janelia Whisk [7]. This algorithm uses complex image-processing, statistical and
machine-learning methods to follow whisker trajectories. However, it is not very
accurate when tracking many whiskers [2]. Also, studies using the DeepLabCut
framework, based on modern deep-learning methods, to track whiskers still used
whisker clipping [8]. The clipping of whiskers, however, affects animal behaviour
and neural processing [15], and should therefore ideally be avoided.

Alternatively, one can detect all whiskers, but without attempting to track
individual whiskers over time, as does BWTT [18]. The original version of BWTT
was slow, but was accelerated previously to achieve almost real-time processing
[17]. A post-processing script, also developed previously, was deployed to track
whiskers over time, but it does so with low accuracy [21].

WhiskEras is more promising in terms of tracking whisker movement of
unmarked and untrimmed mice [2]. It is an unsupervised algorithm, which uses
computer-vision algorithms to detect whiskers, and a machine-learning method
to track them. Hence, there is no need for collecting labelled data to feed to a
neural network for training, as necessary for (most) deep-learning techniques. In
this sense, WhiskEras can be more convenient as it is ready to use on various
experimental setups, particularly after the improvements described in this work.

3 WhiskEras Algorithm

WhiskEras comprises two main modules: Detection and Tracking, responsible
for detecting whiskers and fitting them into a compact representation of sev-
eral parameters, and for following these whiskers, frame-by-frame, respectively
(Fig. 1). The system can also be organized into three components:

1. Whisker-Point Detection involves preprocessing of each frame in order
to remove the background, silhouette and fur of the animal. Its result is an
image of bright whiskers on a dark background. Then, Centerline Extraction
is used to locate the whisker points on the centerline of each whisker, using
Steger’s Curvilinear Detector algorithm [22].

2. Whisker Forming takes as input the centerline positions of the whisker
points in the image and performs Local Clustering to form groups of points
which belong to the same whisker. This clustering, however, does not yet
result in complete grouping, so that Cluster Stitching is required to unify
clusters belonging to the same whisker. Afterwards, Parameter Fitting takes
place, where each whisker representation is encoded as a set of four parame-
ters.

3. Tracking over time matches whiskers found in the current frame with
whiskers found in previous frames. The Tracking - Learning - Detection (TLD)
technique [14] was adopted, to achieve consistency across a long sequence of
frames. Tracking whiskers, from frame n − 1 to n is performed using either
a Kalman filter or by fitting whisker points to previously detected whiskers.



WhiskEras 2.0: Fast and Accurate Whisker Tracking in Rodents 213

Preprocessing Centerline
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Fig. 1. WhiskEras pipeline overview: algorithmic steps are illustrated between the
processing states of a whisker video frame, in the Detection module. The Tracking
module makes use of the results from the current and previous frames, as well as an
SVM Classifier to track whiskers over time.
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(a) Curve on the right is
interrupted and noisy

(b) The curve segment
on the junction seems to
belong to both whiskers.

(c) Whisker is
interrupted near

intersection.

Fig. 2. Centerline extraction issues

Also, a Support Vector Machine (SVM) Classifier is deployed to learn the
characteristics (features) of each whisker (Learning) and recognize them in
new frames (Detection). Tracking is necessary to collect a minimum num-
ber of data to train the SVM on. Then, the SVM is relied upon to identify
whiskers in a consistent way, while tracking is used to potentially fit whiskers
that were not recognized by the SVM.

4 Application Analysis

4.1 Quality Limitations

WhiskEras involves many tunable parameters, whose optimal values may differ
between recording settings and/or experimental setups. Examples of parame-
ters are the weight attributed to the whisker-point’s orientation relative to the
distance between neighbours during Local Clustering, or the allowed maximum
distance between two clusters for Cluster Stitching. The effect of these param-
eters on the results was explored and a bounded discrete space was defined
for each [1]. It appeared that parameters related to the Cluster-Stitching step
were the most relevant, but some of these are incapable of handling a variety of
situations, even within a single video.

Also Steger’s Curvilinear Detector algorithm, used for Centerline Extrac-
tion and Local Clustering, had limitations (Fig. 2). Possibly due to experimental
noise, whisker centerlines are not always extracted accurately, in particular when
whiskers intersect with each other. Furthermore, whiskers that appear to be fad-
ing into the background are not fully recovered. Hence, we made changes to
the Cluster-Stitching step and replaced the hard-to-tune parameters with other,
more robust ones, and improved the currently employed Unbiased Curvilinear
Detector [22] for Centerline Extraction. To overcome the second obstacle, an
adaptation of Improved Curve Tracing [20], an expansion on the Curvilinear
Detector algorithm, was materialized.

4.2 Performance Profiling

WhiskEras is coded in MATLAB, a high-level programming language, which is
generally inefficient for applications that demand large processing power. The
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Fig. 3. Cluster stitching: maximum angle condition and distance between clusters

implementation of WhiskEras was done nearly optimally, taking advantage of
any inherent parallelization present in its algorithmic stages. Centerline Extrac-
tion is performed on the GPU, exploiting the massive data-level parallelism
(DLP), while some costly steps during Cluster Stitching and Learning are also
parallelized, using multiple threads on the CPU. Despite these optimizations,
the application takes about 1.3 s to process a single frame. For context, a 50-
second-long high-speed video (1,000 fps) would require ∼18 h of processing on a
powerful machine.

For acceleration, the code was ported to C++, a high-level language incor-
porating also low-level features in C, such as efficient memory management,
optimized compiler support, and the availability of many fast libraries. Fur-
thermore, the parallelizable portions had to retain multithreading, following the
MATLAB implementation. To this end, the OpenMP API and CUDA API were
used, respectively for CPUs and GPUs. After this initial acceleration, an iterative
process was performed where the code’s most expensive portions were pinpointed
through profiling, and optimizations were carried out accordingly.

5 Implementation

5.1 Quality Improvements

Pairs of clusters belonging to the same whisker are stitched together based on
the distance between the edges of these clusters, and their orientation proximity.
Originally, the maximal distance between clusters to allow stitching was a fixed
value, as specified a priori by the user, limiting the flexibility to stitch more
distant clusters, e.g. of disappearing and re-emerging whiskers (Fig. 2c). Instead,
to guard against invalid stitchings, Radon Transform, a technique usually used
in tomographic reconstruction in medical imaging [19], was deployed. We imple-
mented first-order, Localized Radon Transform to detect lines between the edges
of two clusters. If a line in between them is not found in the unprocessed frame
of whiskers, then stitching of this pair is aborted.

In addition, a maximum-angle condition was utilized (Fig. 3a). Clusters that
are not rooted within the angle margin, derived from cluster 1’s orientation,
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cannot be stitched to cluster 1. In addition, the distance between two clusters
can be analyzed parallel and perpendicular to the orientation axis of one cluster.
These components are dx1 and dy1, respectively, if cluster 1 is the reference
(Fig. 3b). In WhiskEras, only one cluster was used as reference to compute these
distances and invalidate inappropriate stitchings according to a threshold, but
now we compute the distances with reference to both clusters. Then, the smallest
ones are used to determine if a stitching is valid. This proved to be favorable, as
the edge of one of the two clusters belonging to the same whisker is often noisy,
not pointing towards the other edge.

In WhiskEras, the stitching score was given by

score =
√

dx2 + dy2 + c · β

where β is the angle difference of the edges of the two clusters and c is its weight.
However, dy and β should be weighted more heavily than dx, especially as dx
grows larger, but dy and β should be allowed to be a bit larger when two clusters
are really close to each other, since they are disconnected in the first place due
to noise. Taking all these into consideration, the new score is

score =
{

dx + dy + β, if d ≤ d0
dx + c

dx · dy + c · β, if d > d0

Notice that dy and β are weighted as much as dx for small distances, up to d0
(e.g. d0 = 5 px). When the distance indicates that the clusters are not proximal
whisker segments, dy and β should be the prime factors. This necessitates the
use of a large value for c (e.g., c = 200).

In contrast to the original version of WhiskEras, we consistently opt for
Steger’s Curvilinear Detector for Centerline Extraction and Local Clustering.
Steger’s algorithm works as follows: it uses a characteristic 1D line profile to
model curves in 2D images by computing the Hessian Matrix of the image and
then the first- and second-order derivatives of the image in the direction per-
pendicular to the curves. A pixel point potentially contains a curve point if the
first directional derivative vanishes in its vicinity. The lower the second direc-
tional derivative value, the more likely it is that a pixel indeed contains a curve
point. This concludes the curve-point detection part of the algorithm. This step
is completely retained in Improved Curve Tracing.

The rest of the algorithm finalizes the curve points, while forming clusters,
which constitute curves, at the same time. For this purpose, a threshold tr2
is used. Pixels with second directional derivative less than −tr2, whose first
directional derivative vanishes, are marked as curve points. The rest of the curve
points are found by extending the curves, starting from these points. A curve
is extended neighbour-by-neighbour as long as there is a valid curve point near
the last curve point detected, in the curvilinear direction. This part is referred
to as Steger Clustering in [2].

Improved Curve Tracing enhances Steger Clustering by expanding on how a
new neighbour can be discovered by considering the following problematic cases:
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multiple and possibly intersecting curves, disappearance and re-emergence of a
curve, and tracing curves that fade out. Even though the intuition should be
similar in improving the Curvilinear Detector algorithm in whisker tracking,
WhiskEras already partially deals with some of these issues by using Cluster
Stitching. Improved Curve Tracing was not found to work well with Cluster
Stitching. On the other hand, using Improved Curve Tracing and completely
eliminating the Cluster Stitching step was also disadvantageous. Thus, an alter-
native implementation was adopted, that is largely inspired by the Improved
Curve Tracing method. In this work, we call it Improved Whisker Tracing.

During Steger Clustering, a neighbour curve point is located by searching in
the orientation of the current curve point, which is computed by the Curvilinear
Detector algorithm, in a 1-pixel radius (Steger linking). In Improved Whisker
Tracing, this radius can be >1, as sometimes there is an apparent gap between
neighbour whisker points. This is now named pixel peeking. Additionally, beam
scanning, a new neighbour-detecting step was added. If no neighbour is found
during pixel peeking, beam scanning is used to search for a neighbour some pixels
further, in the orientation of the last whisker point found. A K = 15 distance -in
pixels- is used but this can also be configured. The addition of these two steps is
not trivial, as there is some back-and-forth of extending each whisker cluster from
both sides and using pixel peeking and beam scanning interchangeably. Although
noisy videos pose challenges to the algorithm, the new methods generally result in
larger and fewer initial clusters than using Steger Clustering. This significantly
reduces the workload of Cluster Stitching, improving the quality of the final
results.

5.2 Acceleration

Accelerating WhiskEras 2.0 was no trivial task due to complex algorithmic stages
which required careful implementation to eliminate redundant operations and
reduce computational cost. First, the code was ported from MATLAB to C++.
This required analyzing many high-level MATLAB functions and writing them in
C++, top-down, using imperative statements in an efficient way. Then, the par-
allelizeable sections were located. Both Preprocessing and Centerline Extraction
are performed on an NVidia GPU, using CUDA, exploiting pixel-level paral-
lelism. Furthermore, Parameter Fitting is done using multiple threads on the
CPU, one for each whisker to be fitted. The same was done for each pair of
whisker classes during the SVM Classifier’s one-vs-one training. Finally, prop-
erties of the clusters, such as rotation data, necessary in Cluster Stitching, are
also computed in parallel using CPU multithreading. After this initial phase of
acceleration, several optimizations per algorithmic stage were pursued:

1) Separable convolution: Centerline Extraction was a particularly expen-
sive step. Specifically, during this step, five convolutions between the image
and Guassian derivative kernels are performed. Initially, this step was the
bottleneck, yielding a computational complexity of O(n·m2), where n are the
image dimensions and m is the kernel’s width (m = 20). It was found that
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the kernels used to convolve the image were separable: instead of carrying
out normal convolutions, we can perform spatially separable convolutions
and obtain the exact same results. The total complexity is now reduced to
O(n · 2m). This implementation is extremely efficient, making use of the
GPU’s shared memory to minimize memory access latency between consec-
utive accesses to the same image pixels.

2) GPU-based sorting: In the Local-Clustering step, the whisker points with
the second directional derivatives are accessed from the lowest to the highest
values. Initially, before extending every new curve, an unvisited whisker
point with the minimum value of this array was located. This proved to
be slow. Thus, this array was sorted before entering the loop, instead. This
optimization was even taken one step further by performing the sorting on
the GPU, using the highly optimized CUB library.

3) CPU-GPU-transfer reduction: Costly data transfers between the host
(CPU) and the device (GPU) were minimized in two ways:
• Constant-sized structures that accommodated variable data per frame

are allocated once at the start of processing in the host’s pinned memory.
This alleviates the need to first transfer the data from the host’s page-
able memory to pinned memory and then to the GPU, thus maximizing
transfer bandwidth [12].

• The whisker points’ orientations and second directional derivative values
were originally transferred to the host in arrays with as many entries
as image pixels, to be used in the Local Clustering step. This was a
naive approach. Instead, another image-sized array was allocated on the
device to indicate the presence of whisker points. Then, the CUB library’s
DeviceSelect class was used to discard non-whisker points from the arrays
of interest and keep whisker points only. Consequently, the size of these
arrays, which are transferred from the GPU to the CPU, decreased dra-
matically.

4) Optimal SVM-library selection: Different libraries were tested on their
performance in the demanding SVM training, which can occur e.g. every
five frames (user-selectable): a commonly-used SVM library in libSVM [6],
a GPU SVM library in gpuSVM [16], a library using Stochastic Gradient
Descent for SVM training in sgdSVM [4], with the best choice being an
SVM library specialized in linear kernels in libLinear [9].

6 Evaluation

The quality and performance of WhiskEras 2.0 is demonstrated in this section by
utilizing only two videos (Fig. 4), due to paper space restrictions. However, the
videos are markedly different, originating from different experimental setups,
thus showcasing the robustness of the WhiskEras 2.0 approach. Video A is
focused on one side of the animal’s snout, while the whole snout is visible in
Video B. The whole Video A (34,133 frames) and a segment from Video B
(frames 5,000–30,000) were evaluated qualitatively. The processing power was
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Fig. 4. Representative frames from videos used for evaluation

Table 1. Metrics to compare the quality of WhiskEras vs WhiskEras 2.0

Evaluation metric Description

Detected whiskers per frame Number of whiskers detected per frame

Detection ratio Fraction of the video in which whiskers were

detected

Tracking quality Trajectory of whiskers’ angles in time

Signal-to-noise ratio Ratio of smoothened whisker angle trajectory to

(subtracted) noisy whisker angle trajectory (in

dB)

measured by taking the average execution time per frame, over 1,000 frames.
The hardware used to assess performance included an AMD EPYC 7551 32-
Core Processor @ 2.0 GHz with 64 threads and an NVidia Tesla V100-PCIE
GPU. The C++ 17 standard was used, compiled with g++ 4.8.5 using the -O3
flag to perform aggressive optimizations such as loop unrolling and vectorized
operations. OpenMP 3.1 and CUDA 11.1 were used for multithreading on the
CPU and the GPU, respectively. The OpenCV 4.2 library was used to read video
frames and perform out-of-the-box, image-processing functions, while Eigen 3.3
[11] was used to perform fast linear algebra operations.

6.1 Quality Improvements

To evaluate the effect of the improvements, WhiskEras and WhiskEras 2.0 were
run on the same video segments, after manually tuning parameters for both
versions. In addition, both were configured to follow the same whisker tracks,
i.e., have the same starting point to measure how well they can follow their tra-
jectories. Video A contains numerous whiskers, which also intersect and often
hide behind each other. On the other hand, we only track the whiskers on the
right side of the snout in Video B. Thus, Video A poses more challenges which
WhiskEras 2.0 is expected to deal with more consistently than WhiskEras. Eval-
uating quality is no trivial task, since there is no ground truth. Consequently,
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the metrics used to compare the quality of results attempt to quantify tracking
quality in an automated way and are the same used in [2], presented in Table 1.
The results for each criterion are given below.

Fig. 5. Histogram of detected whiskers per frame

Fig. 6. Detection ratios

1. Detected whiskers per frame: This metric should be fairly stable, mean-
ing a constant number of whiskers is detected throughout a video. Although,
whiskers are often hidden, the variance of this metric should be kept to a
minimum, indicating algorithmic robustness to whisker movement. A sec-
ond point of interest is the average number of whiskers detected per frame,
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Fig. 7. Angle tracking

reflecting false positives as well as false negatives. For Video A, Fig. 5a shows
a 19% decrease in standard deviation over the number of detected whiskers
per frame, which is positive. Yet, the average number of whiskers detected
per frame is marginally smaller. The results were quite different for Video
B: a higher average and an almost identical standard deviation (Fig. 5b).

2. Detection ratio: The detection ratio of each whisker indicates the percent-
age of the frames wherein a whisker was successfully tracked. Some whiskers
have different detection ratios in the two WhiskEras versions, in both videos.
It should be mentioned that whisker indexing refers to the starting point
of each whisker (first frame), which is identical for both versions. The same
whisker indices do not necessarily represent the same whiskers, as these
starting points may have evolved to a different trajectory. Overall, however,
the average detection ratios are similar in Video A, while Video B shows a
5% increase for WhiskEras 2.0, compared to WhiskEras (Fig. 6). This also
aligns with the increased number of detected whiskers, which translates to
more successfully tracked whiskers.
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Fig. 8. SNR of trajectories of whiskers’ angles through time

3. Tracking quality: The whisker angle, relative to the snout, is the most
important movement parameter, thus its trajectory was used to evaluate
the tracking quality. When a whisker’s angle transitions smoothly in time,
the whisker is considered to be well-tracked. Two small segments were cho-
sen from each video and only a few of the whiskers’ angle-trajectories are
presented here, for clarity. For Video A, Fig. 7b (WhiskEras 2.0) illustrates
better tracking of most of the whiskers, compared to Fig. 7a (WhiskEras).
This is most evident for whiskers 5 and 6. On the other hand, Video B shows
much lower quality of tracking for both versions and the results are mixed.
For example, whiskers 6 and 7 favour WhiskEras 2.0, while whiskers 2 and
4 show better quality in WhiskEras. Importantly, some of these whiskers do
not have a one-to-one correspondence between the two versions, as already
stated, thus it is hard to draw any conclusions about which version has the
edge in Video B from this metric.

4. Signal-to-noise ratio (SNR) represents the quantitative evaluation of
the angular change. As in [2], this signal was computed by smoothing the
calculated angle of each whisker over time using a Savitzky-Golay filter,
which is appropriate for quick variations. A window size of 9 was chosen
and the data was fit quadratically. The noise was extracted by subtracting
the smoothed data from the actual data. Then, the SNR of each whisker was
computed as the ratio of the squared magnitudes of the signal over the noise,
in dB. For Video A, WhiskEras 2.0 exhibits a larger SNR for most of the
whiskers (Fig. 8a), which was less consistent in Video B (Fig. 8b). Overall,
the algorithmic improvements benefited good-quality videos (Video A) more
than poor-quality ones (Video B), but even for the latter, gains could be
made.
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Fig. 9. Speedup and execution-time profiling when processing Video A

6.2 Acceleration

The performance of WhiskEras 2.0 was tested in both videos, but here we present
the analysis of Video A (see Table 2), due to page limitations. Note that Other
refers to overhead in between algorithmic steps and OpenCV reading video
frames. The speedups obtained are illustrated in Fig. 9a. Simply porting the code
to C++ did not provide a massive speedup, due to the lack of execution paral-
lelism in this purely sequential implementation. MATLAB, on the other hand,
already made use of CPU and GPU multithreading. The Preprocessing and
Centerline Extraction steps, in particular, are much slower in pure C++ than in
MATLAB because of the lack of GPU execution, but the C++/CUDA version
surpasses both. The optimization involving separable convolution reduced the
Centerline Extraction’s execution time even more, by a factor of 10x. Further-
more, using OpenMP to take advantage of multiple CPU threads contributed
to the final speedup of 74.96x. The execution time per algorithmic step is fairly
balanced (Fig. 9b). Further acceleration is not achievable without major invest-
ments. The processing power of the final version of WhiskEras 2.0 for Video

Table 2. Execution time (in milliseconds) per frame for various development stages of
WhiskEras 2.0, as measured when processing Video A

Pre-

process

Centerline

extraction

Local

cluster

Cluster

stitch

Param.

fitting

Track Learn Trans-

fers

Other Total

MATLAB 12.3 23.0 39.7 520.2 421.3 123.0 140.6 – 4.6 1284.7

C++ 23.4 232.1 3.9 4.0 12.1 2.9 9.1 0 20.6 308.1

C++/CUDA 0.9 1.5 3.2 3.9 12.0 1.9 9.9 2.1 1.2 36.6

C++/CUDA/OMP 0.9 1.5 2.5 2.7 3.3 1.9 2.0 1.2 1.1 17.1
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B was measured to be 82 frames/second, faster than the 58 frames/second for
Video A. This difference is mainly attributed to the number of whiskers being
detected and tracked (14 in B vs. 18 in A).

7 Conclusions

WhiskEras 2.0 was developed and accelerated to process around 50–120 frames
per second, depending on their characteristics, with enhanced quality. Specif-
ically, the whisker-tracking system became more robust in addressing differ-
ent whisker-video settings and easier to tune. The speedup achieved can be
attributed to porting the code to C++, exploiting parallel execution on the CPU
and the GPU through multithreading, and a series of optimizations. Future steps
include further algorithmic improvements to the Centerline-Extraction step now
that the Unbiased Curvilinear Detector’s [22] inherent limitations are exposed.
Finally, in order to make WhiskEras 2.0 capable of performing online tracking
– a desired feature which enables neuroscientists to process whisker videos as
they are recorded – more acceleration routes should be explored, such as differ-
ent/more hardware accelerators.
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