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a b s t r a c t

Magnetic Particle Tracking (MPT) is a relatively new non-invasive measurement technique which is often
used to study dense granular flow. Its basic principle relies on tracking the movement of a single mag-
netic tracer by means of measuring the magnetic field strength at a suitable distance from the tracer.
By assumption of a magnetic dipole and the use of minimization techniques, both location and orienta-
tion of the tracer can be determined. MPT is therefore uniquely suited for the study of non-spherical par-
ticles. The performance of the localization is largely dependent on the signal-to-noise ratio and very often
relies on nonlinear optimization techniques, as the definition of the magnetic field generated by a dipole
is highly nonlinear and has five degrees of freedom. In this paper, we present a semi-algebraic solution by
decoupling the estimation of the position and orientation in separate algebraic solutions. The two esti-
mates are mutually dependent, necessitating an iterative approach between the two. The main benefits
of this new approach is in the speed and robustness of the algorithm, which are much higher than for the
classical constrained nonlinear optimization techniques.

� 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Granular flows are often encountered in the chemical and pro-
cessing technologies, such as in fluidization, grinding, compaction,
and handling in hoppers and chutes. This is not an exhaustive list,
but all of these applications share the trait that the mechanics of
the granular motion are a subject of great interest to both industry
and academia. However, due to their opaque nature, obtaining
information on the individual grains can be very difficult. In gen-
eral, the available experimental techniques for opaque, dense gran-
ular flows in 3D can be divided into tomographic techniques and
particle tracking techniques, each with their inherent up and
downsides (Chaouki et al., 1997). Available tomographic tech-
niques are X-ray tomography, Magnetic Resonance Imaging
(MRI), and Electrical Capacitance Tomography (ECT). For particle
tracking techniques, there are Positron Emission Particle Tracking
(PEPT) (Windows-Yule et al., 2020), Radioactive Particle Tracking
(RPT) (Rasouli et al., 2015), and Magnetic Particle Tracking (MPT)
(Buist et al., 2014).

MPT relies on the tracking of a single magnetic particle, often a
neodymium permanent magnet. MPT originates from use in the
medical field to study the motility tract (Richert et al., 2006).
Due to lower costs relative to other tracking systems, MPT has
gained more interest for the study of granular flows, in particular
for the study of fluidization (Mema et al., 2020; Buist et al.,
2014; Yang et al., 2017; Sette et al., 2015; Köhler et al., 2017;
Patterson et al., 2010) and rotating equipment such as rotating
drums, granulators, shear cells, and mills (Zhang et al., 2018;
Neuwirth et al., 2013; Wu et al., 2021; Tao et al., 2019; Böttcher
et al., 2021; Nijssen et al., 2022). The particles used in MPT are rel-
atively heavy, which means the applicability of the technique has
some limits related to the minimum size and density of the tracer.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ces.2022.118212&domain=pdf
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.ces.2022.118212
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MPT, however, comes with one additional benefit in that the mag-
netic field extending from the magnetic dipole is directional.
Therefore, it is possible to simultaneously track position as well
as orientation of the magnetic tracer (Buist et al., 2015). As such
it is very suited for studying granular flows that are subject to large
amounts of friction and rotation, as well as non-spherical particles
(Buist et al., 2017). The sensors that are used in tracking the tracer
can be divided in two types, being either Anisotropic Magneto
Resistive (AMR) (Richert et al., 2006) or Hall effect sensors
(Halow et al., 2012). Both types measure the magnetic field
strength in the direction of the sensor, therefore tri-axis sensors
are often used to determine the local magnetic field. A set of sen-
sors is then positioned around a region of interest such that multi-
ple indications of the magnetic field are obtained. The minimum
number of sensors used is equal to the number of degrees of free-
dom, being 3 for position and 2 for orientation, since the magnetic
dipole is symmetric along the line connecting the two poles.
Finally, if the magnetic moment of the magnet is unknown as well
this would require a sixth sensor.

Analysis of the data obtained from the set of sensors relies on
minimization of the error of an estimate of the magnetic field rel-
ative to the measured field, assuming a likely position and orienta-
tion. Because this is a highly nonlinear problem, accuracy and
speed of the optimization technique are a consideration to be
made. But more importantly, because these techniques often rely
on gradient descent methods, both local minima and solutions out-
side the physical domain are common problems. In a previous
effort, constrained optimization techniques have been used to
restrict the solution and force the solution to a physically feasible
solution. Wu et al. (2021) have developed a semi-analytical solu-
tion to the problem and employed a deep neural network to filter
the oversampled data set to achieve the best possible solution.

In this paper we present a new analysis technique that we term,
in line with Wu et al. (2021): semi-algebraic. It relies on the fact
that the magnetic field can be split into two parts, one relating to
the distance between the sensor and the particle, and a second part
relating to the orientation of the particle. The distance-related part
can be treated as a multilateration problem, similar to the prob-
lems encountered in Global Positioning Systems (GPS). An alge-
braic solution is available for determination of the tracer position
from a set of tracer-sensor distances, which will be discussed in
the following section. The part associated with the orientation of
the tracer is a linear problem as well. Both parts, however, rely
on a reasonable estimate of the other, which means that an itera-
tive procedure is needed to drive the solution to optimization.
The final algorithm does incur a penalty in terms of accuracy, but
is very stable and much faster than the nonlinear optimization
techniques. Because of its inherent stability and speed, it can be
used as an online monitoring tool during experimentation and as
initialization for the more accurate nonlinear problem statement.

2. Method

Magnetic Particle Tracking relies on the reconstruction of the
magnetic field stemming from a magnetic dipole. The magnetic
field at any position is a function of the distance to and orientation
of the dipole, and is given by the following equation:

~Hð~ep;~rpsÞ ¼ lm

4p
� ~ep
j~rpsj3

þ 3ð~ep �~rpsÞ~rps
j~rpsj5

 !
ð1Þ
2.1. Classic optimization

Traditionally, the solution to the problem of the magnetic field
strength measured at each sensor is solved using nonlinear opti-
2

mization solvers. The use of a nonlinear solver is needed because
solving for position and orientation is a nonlinear problem and it
cannot be easily linearized.

In a first strategy, the Levenberg–Marquardt (LM) algorithm
was used, which is an unconstrained technique for nonlinear prob-
lems. LM is also known as a dampened least-square method, iter-
ating between the Gauss–Newton method and the method of
gradient descent. The downside is that LM finds a local minimum
and will have small gradients in the limit of small signals and high
signal-to-noise ratios. This often leads to either a sub-optimal solu-
tion (local minimum) or large overshoots with solutions outside of
the region of interest.

Therefore, in earlier work, constrained optimization techniques
were used, such as Sequential Quadratic Programming (SQP). This
allows for constraining of both the solution of the position within
the predetermined domain, as well as the magnitude of the normal
of the particle orientation to 1. For example, in case of a cylindrical
domain:ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
p

< R
h1 6 z 6 h2

ð2Þ

j~epj ¼ 1 ð3Þ
The second important component to the solution strategy is the
choice of the objective function to be minimized by the optimiza-
tion solvers. The first option is a relatively simple sum-of-squares
error of the sensor signal:

Q ¼
XN
i¼1

Si � St;i
� �2 ð4Þ

in which, St ¼ Hð~ep;~rpsÞ � ~es. This quality function Q can be further
refined by accounting for stray magnetic fields through addition
of a gradiometer Sh i, and weighting with the standard deviation
of the signal in the sensor rSi for improved noise resilience.

Q ¼
XN
i¼1

Si � Sh ið Þ � St;i � Sth i� �� �2
r2

Si

ð5Þ

A second, more stable option for the quality function is the use of a
probability function. This is a method that optimizes the probability
of finding a particular value of the sensor St given the actual value S
and its standard deviation rS.

P ¼ 1
N

XN
i¼1

erf
Si � St;i
rSi

� �
ð6Þ

The added benefit of the probability function is that it is bound
between 0 and 1, whereas the quality function is only positive
finite. Secondly, due to the fact that it minimizes the probability
function it is less susceptible to multiple local minima in the
domain (Buist et al., 2015). For the purpose of this paper we will
use this final form of the quality function, Eq. 6.

2.2. Semi-algebraic

Eq. 1 can be further simplified by factoring out the distance

from the position of the tracer towards the sensor (j~rpsj3):
~Hð~ep;~rpsÞ ¼ lm

4pj~rpsj3
�~ep þ 3ð~ep �~epsÞ~eps
� � ð7Þ

The resulting equation is dependent on the tracer-sensor distance
cubed and a projection of the orientation of the tracer onto the
directional vector of the tracer position to the sensor position
(~eps), somewhat similar to as encountered in the work of Norrdine
et al. (2016).
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Note how the magnitude of �~ep þ 3ð~ep �~epsÞ~eps
� �

is bound
between a value of 1 and 2. This means that with any estimate
of the orientation of the tracer, the relative distance from the tracer
to any sensor can be estimated within a factor

ð1=2Þ � ð21=3 � 1Þ � 13%.
This only holds in the ideal situation of no noise in the mea-

sured signal.
Looking at Eq. 7, we can now decompose the equation into a

part only dependent on distances between the sensors and the tra-
cer, and a part that is dependent on the orientation of the tracer
and the positional direction vector (~eps) of the tracer to each sensor.
The first part of the problem is a multilateration problem, very sim-
ilar to GPS localization, and the second part is a linear function in
the orientation of the tracer. Both parts have algebraic solutions,
which we will discuss in the next two sections. The problems
are, however, mutually dependent and thus iteration between
the two algebraic sub-solutions is necessary.

2.2.1. Position
The determination of the position of the tracer follows the

assumption that the relative distance between the tracer and each
sensor is known. Of course, upon the first evaluation we must
employ a rough estimate of the distance, but with iteration
between this solution and the solution for orientation, increasingly
accurate estimates are obtained. In this work we will make use of
the approach as explained in Norrdine et al. (1315). Here we pro-
vide a brief explanation.

Given the positions of all sensors as ~ps;i and the estimate of the
distance ĵrps;ij between the sensor position and tracer position
(x; y; z), the solution of the following problem must be found:

ðx� psx ;iÞ2 þ ðy� psy ;iÞ2 þ ðz� psz ;iÞ2 ¼ jrps;ij2 ð8Þ
This can be rearranged to give:

x2 þ y2 þ z2 � 2x � psx ;i � 2y � psy ;i � 2z � psz ;i

¼ jrps;ij2 � p2
sx ;i � p2

sy ;i � p2
sz ;i ð9Þ

Or in a matrix representation:

1 �2psx ;i �2psy ;i �2psz ;i
� � x2 þ y2 þ z2

x

y

z

2
6664

3
7775 ¼ j~rps;ij2 � j~ps;ij2

h i

ð10Þ
Which is the known general representation:

A �~p ¼ b ð11Þ
Where A is solely dependent on the information contained in the
location of the sensors and b is the set of tracer-sensor distances
minus the distances of the sensors to the origin. The solution of
the position ~p for on the arbitrary number of sensors (N P 3) is a
well known solution strategy following the Moore–Penrose inverse
of A, providing a least squared solution to ~p:

p̂ ¼ Aþb ð12Þ

with Aþ ¼ ðATAÞ�1
AT . Additionally, one could use a weighted least-

squares method where Aþ ¼ ðATV�1AÞ�1
ATV�1 with V the covariance

matrix of random errors. In this paper the use of weighing is not fur-
ther explored, with one exception. Since the accuracy of the esti-
mate of the distance to the sensor scales with r�3 and the
solution p̂ should be a least-squares fit with the measurement of
the magnetic field strength, the solution must be weighted with

V�1 ¼ j~rps;ij6.

3

2.2.2. Orientation
From the estimate of position using the above multilateration

problem, the positional unit vector of the tracer towards each sen-
sor i is defined:

~eps;i ¼
~ps;i � ~pp

j~rps;ij ð13Þ

We define the scaled magnetic field at the sensor position as:

~e0hð~ep; ~epsÞ ¼ �~ep þ 3ð~ep �~epsÞ~eps ð14Þ
which is calculated from the sensor values as:

~e0h;i ¼ ~Hi
4pj~rps;ij3

l
ð15Þ

Note that~e0h is not a unit vector, but does contain only orientational
information and has a magnitude bound between 1 and 2. Eq. 14
can be written in matrix form as:

�1þ 3e2ps;x 3eps;y � eps;x 3eps;z � eps;x
3eps;x � eps;y �1þ 3e2ps;y 3eps;z � eps;y
3eps;x � eps;z 3eps;y � eps;z �1þ 3e2ps;z

2
664

3
775

ep;x
ep;y
ep;z

2
64

3
75 ¼

e0h;x
e0h;y
e0h;z

2
64

3
75 ð16Þ

Or in the known form as Eq. 11 above, where A can be defined as:

A ¼ 3~eps �~eps � I3 ð17Þ
Eq. 16 can be defined at all sensors and will provide a single esti-
mate for the orientation vector ~ep. Due to the nature of the least-
squares method, this estimate is not strictly a unit vector and nor-
malization is needed.

Finally, it must be noted that Eq. 14 also contains some informa-
tion on the position, through the directional unit vector~eps follow-
ing Eq. 13. After a first estimate of both position and orientation,
this information needs to be taken into account when estimating
a new position. This can be achieved in different manners with
the following options:

êps �~eps ¼ 1
êp �~eps ¼ â

�êp þ 3ðêp �~epsÞêps ¼ ê0h
�êp þ 3ðêp � êpsÞ~eps ¼ ê0h

ð18Þ

Here, the hat notation denotes an estimate of that parameter. The
vector ~eps is defined by Eq. 13, such that the position of the tracer
is the free parameter. All above solutions provide an improvement
of the estimate of the position, but the most simple one provides
the best solution: êps �~eps ¼ 1.

2.2.3. Iteration
Now that both sub-problems have been defined and each has a

separate algebraic solution, the solution to the overall problem can
be discussed. The solution to the problem of position, which relies
on multilateration, is dependent on an estimate of j~e0h;ij, which is
dependent on the estimate of the orientation of the tracer. The dis-
tance of each sensor i to the tracer is then defined as:

j~rps;ij ¼ j~Hij 4p
lj~e0h;ij

 !1
3

ð19Þ

in which j~e0h;ij is defined by Eq. 15.
The solution of the orientation depends on the positional unit

vector ~eps;ias defined by Eq. 13, which depends on an estimate of
the position. The mean value of h1;2i ¼ 1:5 can be used as a first
estimate of j~e0h;ij, which is within 13 % accuracy. For consecutive
iterations, a previous estimate of the orientation can be used. Sub-
sequent iterations between position and orientation will lead to
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the best estimate of the two. We have found that in most cases 2 to
3 iterations suffice. For simplicity we have chosen to only set a
fixed number of iterations to 10, to ensure an optimal solution is
found. As for many optimization algorithms, it is entirely possible
to implement stopping criteria based on the quality of the solution,
even further increasing the numerical efficiency.
3. Numerical Setup

To test the new semi-algebraic method, a relatively simple
numerical setup is used. 24 tri-axis sensors are paired in groups
of 4 rings, with inner diameter of 0.32 m and distance of 0.12 m
between each ring, each ring containing 6 sensors. The vertical
component of the tri-axis sensor is always pointing down. The sec-
Table 1
Parameter and settings describing the numerical setup.

Number of sensor rings 4
Number of tri-axis sensors per ring 6

Ring diameter 0.32 m
Distance between rings 0.12 m
Magnetic moment tracer 0.014 A�m2

Amplitude Fermat spiral 0.02 m
Period Fermat spiral 5 p

Period x; y component orientation 32 p
Period z component orientation 64 p

Signal-to-noise ratio (SNR) 2–20
Moving average filter size 10

Step size for analysis 10

Fig. 1. Setup of the sensor array in black arrows and true position and orien

4

ond axis points either way or towards the origin, the third axis is
orthogonal to the other two.

A predefined motion is imposed to a fictitious tracer particle
and the true magnetic field at each sensor location is calculated.
The predefined motion follows from a Fermat spiral using both
branches with a linear change along the vertical axis. The orienta-
tion of the tracer follows from imposing a sinusoidal pattern to the
respective components, sine for x, cosine for y and z (with different
frequencies), and then normalizing the vector to unity magnitude.
A total of Nt ¼ 10;000 time steps are generated. Analysis is per-
formed at every tenth step. All settings for the setup can be found
in Table 1.

This choice of imposed motion is made to allow the tracer to
traverse the entire region of interest. In principle, any other motion
could be imposed, as long as it is relatively smooth. Because the
nonlinear optimization technique is dependent on an initial guess
of the position and orientation, large gradients and sudden changes
in direction can be problematic, as will be shown later. Some tech-
niques instead use Kalman filters to account for the heading of the
tracer, which serves to stabilize the initialization problem. An over-
view of the position and orientation of both the sensors and ficti-
tious tracer is provided in Fig. 1.

Noise is added to the generated magnetic field such that the
signal-to-noise ratio (SNR) ranges from 2 to 20 with increments
of 2. A simple moving average filter of size 10 is used to allow
for some smoothing of the data, similar to filtering performed in
a real MPT system. Subsequently, sampling is performed every
20 time steps.

The initialization of the nonlinear optimization is performed by
providing the exact solution of the first time step. Note that in any
tation of the fictitious tracer in red arrows (only Np=300 points shown).



Fig. 2. Setup of the sensor array in black arrows, true position and orientation in red arrows, reconstructed position and orientation using semi algebraic solution at SNR = 20
in green arrows.
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real experiment this estimate is unknown and often multiple
guesses are tried to converge to a global minimum for the initial-
ization. However, in this work the focus will be on the run time
of the algorithm rather than the initialization, which is time con-
suming, but depending on the duration of an actual experiment,
often not limiting. The semi-algebraic method is initialized by
assuming a set of distances following Eq. 19 by assuming the
scaled magnetic field j~e0h;ij to be of size 1.5.
4. Results

The purpose of the optimization techniques is to find the most
probable position and orientation of the tracer and as such provide
a reconstruction of the trajectory of the tracer. In Fig. 2 a recon-
struction of the tracer position and orientation is provided for
the case with SNR = 20 and the semi-algebraic solution. The
semi-algebraic solution is clearly capable of providing a close
resemblance to the trajectory at large signal to noise ratios.

To quantify the accuracy of the semi-algebraic solution and
compare it to the nonlinear optimization technique using the prob-
ability function, the averaged error in position; the distance to the
real position, and averaged error in orientation is determined for
the entire set at each SNR.

Fig. 3a displays the error in position for the two techniques,
which ranges from 1 cm to 1 mm for SNR = 2 to SNR = 20, respec-
tively. Generally, the nonlinear optimization outperforms the
semi-algebraic solution by 30 to 50 %, performing relatively better
at lower signal-to-noise ratios. The dependence of the averaged
5

position error on the amount of noise is, however, nonlinear. The
scaling of both the techniques is quite similar.

Fig. 3b displays the error in orientation for the two techniques,
which ranges from 0.06 rad to 0.01 rad for SNR = 2 to SNR = 20. Also
for the orientation the nonlinear optimization outperforms the
semi-algebraic solution by 3 to 20%, performing relatively better
at lower signal-to-noise ratios. Also here the dependency of the
average angular error on the signal to noise ratio is nonlinear.
The scaling of the noise for the semi-algebraic technique seems
to be larger than the nonlinear optimization.

The main benefit, however, of the semi-algebraic technique is
the average speedup, which averaged over all SNRs is a factor
31.7 � 3.4. Secondly, because of the robust nature of the semi-
algebraic technique, it does not have a tendency to show results
outside or on the boundary of the physical domain. This significant
speedup of the analysis allows for a quick, robust, and relatively
accurate online measurement of position and orientation.

To further showcase the robustness of the semi-algebraic tech-
nique we have chosen to skip data points by increasing the step
size of the analysis. The step size is changed from 10 to 200 time
steps at a constant signal-to-noise ratio of 6. Figs. 4a and 4b show
the averaged error in the position and orientation, respectively, as
a function of the chosen step size. From these figures it can be seen
that the error exhibited by the semi-algabraic algorithm remains
mostly constant with increasing step size. The nonlinear optimiza-
tion, however, shows a sudden increase in error around a step size
of 100, after which the error becomes in the order of the maximum
error. Since the nonlinear optimization method depends heavily on
an estimate of the position and orientation obtained from the pre-
vious time step, it is very susceptible to large changes over time.



Fig. 4. (a) Averaged position error in meters as a function of the step size for the nonlinear solver and the semi-algebraic solver. (b) Averaged angular error in radians as a
function of the step size for the nonlinear solver and the semi-algebraic solver.

Fig. 3. (a) Averaged positional error in m as a function of the signal-to-noise ratio for the nonlinear solver and the semi-algebraic solver. (b) Averaged positional error in m as
a function of the signal-to-noise ratio for the nonlinear solver and the semi-algebraic solver.
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Thus, when the current position and orientation changes too much
with respect to the previous time step, the nonlinear optimization
method is unable to find the global minimum and is therefore
forced towards the boundaries/constraints of the problem. Typi-
cally it cannot recover from such a situation and in practice this
forces the optimization method to perform a global search again,
which is not done for this analysis. Performing one or multiple glo-
bal optimizations is very time consuming. The semi-algebraic
method can be completely independent from an estimate of a pre-
vious step and shows a near constant solution to the problem
statement. It can therefore be used as an initial guess to the nonlin-
ear optimization method, rather than finding a global solution. The
main benefit is that no global searches, which are time consuming,
are necessary even for the non-linear solver and that a reasonable
estimate for the non-linear solver can always be provided. The con-
sequence of having a reasonable and independent estimate for the
non-linear solver is that the non-linear solver can be readily paral-
lelized across multiple CPUs, which will allow speedup for the non-
linear solver as well. Secondly, because there is no need for
sequentially solving the problem a vectorized approach of the
semi-algebraic method could be possible.
5. Conclusions

In this paper, a new analysis technique for determination of the
tracer position and orientation in a Magnetic Particle Tracking sys-
tem is presented. This technique relies on the decomposition of the
magnetic field in distance-dependent and an orientation-
dependent parts. This decomposition allows for linearization of
the two parts of the problem, enabling an algebraic least-squares
solution of the two sub-problems. The distance-dependent part
relates to multilateration, whereas the orientation-dependent part
6

is unique to the Magnetic Particle Tracking technique. The division
of the problem into two algebraic solutions, however, requires an
iterative approach between the two solutions.

This new semi-algebraic solution is evaluated over a wide range
of signal-to-noise ratios and compared to the classical constrained
nonlinear optimization technique. Results show that the semi-
algebraic technique is significantly faster than the nonlinear opti-
mization technique, but at the cost of loss of some accuracy. The
new semi algebraic solution however does allow for fast and rea-
sonably accurate real-time determination of the position and ori-
entation of the tracer in MPT. The semi algebraic technique is
also very robust, which can otherwise only partly be achieved by
constraining the nonlinear optimization. Because of the speed of
the semi algebraic solution, this technique is an ideal candidate
for real-timemonitoring and can serve as a first guess for nonlinear
optimization. Furthermore, because the solution of the semi-
algebraic method performs similarly to the non-linear method in
terms of error propagation, the semi algebraic technique could be
used as a fast optimization technique for the design of sensor
arrays.

Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

References

Böttcher, A.C., Schilde, C., Kwade, A., 2021. Experimental assessment of grinding
bead velocity distributions and stressing conditions in stirred media mills. Adv.
Powder Technol. 32 (2), 413–423.

http://refhub.elsevier.com/S0009-2509(22)00796-5/h0005
http://refhub.elsevier.com/S0009-2509(22)00796-5/h0005
http://refhub.elsevier.com/S0009-2509(22)00796-5/h0005


K.A. Buist and T.M.J. Nijssen Chemical Engineering Science 265 (2023) 118212
Buist, K.A., van der Gaag, A.C., Deen, N.G., Kuipers, J.A., 2014. Improved magnetic
particle tracking technique in dense gas fluidized beds. AIChE J. 60 (9), 3133–
3142.

Buist, K., Van Erdewijk, T., Deen, N., Kuipers, J., 2015. Determination and comparison
of rotational velocity in a pseudo 2-d fluidized bed using magnetic particle
tracking and discrete particle modeling. AIChE J. 61 (10), 3198–3207.

Buist, K.A., Jayaprakash, P., Kuipers, J., Deen, N.G., Padding, J.T., 2017. Magnetic
particle tracking for nonspherical particles in a cylindrical fluidized bed. AIChE J.
63 (12), 5335–5342.

Chaouki, J., Larachi, F., Dudukovic, M., 1997. Non-invasive monitoring of multiphase
flows. Elsevier.

Halow, J., Holsopple, K., Crawshaw, B., Daw, S., Finney, C., 2012. Observed mixing
behavior of single particles in a bubbling fluidized bed of higher-density
particles. Industr. Eng. Chem. Res. 51 (44), 14566–14576.

Köhler, A., Pallarès, D., Johnsson, F., 2017. Magnetic tracking of a fuel particle in a
fluid-dynamically down-scaled fluidised bed. Fuel Process. Technol. 162, 147–
156.

Mema, I., Buist, K.A., Kuipers, J., Padding, J.T., 2020. Fluidization of spherical versus
elongated particles: Experimental investigation using magnetic particle
tracking. AIChE J. 66 (4), e16895.

Neuwirth, J., Antonyuk, S., Heinrich, S., Jacob, M., 2013. Cfd–dem study and direct
measurement of the granular flow in a rotor granulator. Chem. Eng. Sci. 86,
151–163.

Nijssen, T.M.J., Dijk, M.A.H., Kuipers, J.A.M., van der Stel, J., Adema, A.T., Buist, K.A.,
2022. Experiments on floating bed rotating drums using magnetic particle
tracking. AIChE J. 68 (5), 1–11. https://doi.org/10.1002/aic.17627.

Norrdine, A.: An algebraic solution to the multilateration problem. In: Proceedings
of the 15th international conference on indoor positioning and indoor
navigation, Sydney, Australia, vol. 1315 (2012).
7

Norrdine, A., Kasmi, Z., Blankenbach, J., 2016. A novel method for overcoming the
impact of spatially varying ambient magnetic fields on a dc magnetic field-
based tracking system. J. Locat. Based Serv. 10 (1), 3–15.

Patterson, E.E., Halow, J., Daw, S., 2010. Innovative method using magnetic particle
tracking to measure solids circulation in a spouted fluidized bed. Industr. Eng.
Chem. Res. 49 (11), 5037–5043.

Rasouli, M., Bertrand, F., Chaouki, J., 2015. A multiple radioactive particle tracking
technique to investigate particulate flows. AIChE J. 61 (2), 384–394.

Richert, H., Kosch, O., Görnert, P., 2006. Magnetic Monitoring as a Diagnostic
Method for Investigating Motility in the Human Digestive System. John Wiley &
Sons, Ltd, pp. 481–498. chap. 4.2.

Sette, E., Pallarès, D., Johnsson, F., Ahrentorp, F., Ericsson, A., Johansson, C., 2015.
Magnetic tracer-particle tracking in a fluid dynamically down-scaled bubbling
fluidized bed. Fuel Process. Technol. 138, 368–377.

Tao, X., Tu, X., Wu, H., 2019. A new development in magnetic particle tracking
technology and its application in a sheared dense granular flow. Rev. Sci.
Instrum. 90 (6), 065116.

Windows-Yule, C., Seville, J., Ingram, A., Parker, D., 2020. Positron emission particle
tracking of granular flows. Annu. Rev. Chem. Biomol. Eng. 11, 367–396.

Wu, H., Du, P., Kokate, R., Wang, J.X., 2021. A semi-analytical solution and ai-based
reconstruction algorithms for magnetic particle tracking. Plos one 16 (7),
e0254051.

Yang, L., Padding, J., Buist, K., Kuipers, J., 2017. Three-dimensional fluidized beds
with rough spheres: Validation of a two fluid model by magnetic particle
tracking and discrete particle simulations. Chem. Eng. Sci. 174, 238–258.

Zhang, L., Weigler, F., Idakiev, V., Jiang, Z., Mörl, L., Mellmann, J., Tsotsas, E., 2018.
Experimental study of the particle motion in flighted rotating drums by means
of magnetic particle tracking. Powder Technol. 339, 817–826.

http://refhub.elsevier.com/S0009-2509(22)00796-5/h0010
http://refhub.elsevier.com/S0009-2509(22)00796-5/h0010
http://refhub.elsevier.com/S0009-2509(22)00796-5/h0010
http://refhub.elsevier.com/S0009-2509(22)00796-5/h0015
http://refhub.elsevier.com/S0009-2509(22)00796-5/h0015
http://refhub.elsevier.com/S0009-2509(22)00796-5/h0015
http://refhub.elsevier.com/S0009-2509(22)00796-5/h0020
http://refhub.elsevier.com/S0009-2509(22)00796-5/h0020
http://refhub.elsevier.com/S0009-2509(22)00796-5/h0020
http://refhub.elsevier.com/S0009-2509(22)00796-5/h0025
http://refhub.elsevier.com/S0009-2509(22)00796-5/h0025
http://refhub.elsevier.com/S0009-2509(22)00796-5/h0030
http://refhub.elsevier.com/S0009-2509(22)00796-5/h0030
http://refhub.elsevier.com/S0009-2509(22)00796-5/h0030
http://refhub.elsevier.com/S0009-2509(22)00796-5/h0035
http://refhub.elsevier.com/S0009-2509(22)00796-5/h0035
http://refhub.elsevier.com/S0009-2509(22)00796-5/h0035
http://refhub.elsevier.com/S0009-2509(22)00796-5/h0040
http://refhub.elsevier.com/S0009-2509(22)00796-5/h0040
http://refhub.elsevier.com/S0009-2509(22)00796-5/h0040
http://refhub.elsevier.com/S0009-2509(22)00796-5/h0045
http://refhub.elsevier.com/S0009-2509(22)00796-5/h0045
http://refhub.elsevier.com/S0009-2509(22)00796-5/h0045
https://doi.org/10.1002/aic.17627
http://refhub.elsevier.com/S0009-2509(22)00796-5/h0060
http://refhub.elsevier.com/S0009-2509(22)00796-5/h0060
http://refhub.elsevier.com/S0009-2509(22)00796-5/h0060
http://refhub.elsevier.com/S0009-2509(22)00796-5/h0065
http://refhub.elsevier.com/S0009-2509(22)00796-5/h0065
http://refhub.elsevier.com/S0009-2509(22)00796-5/h0065
http://refhub.elsevier.com/S0009-2509(22)00796-5/h0070
http://refhub.elsevier.com/S0009-2509(22)00796-5/h0070
http://refhub.elsevier.com/S0009-2509(22)00796-5/h0075
http://refhub.elsevier.com/S0009-2509(22)00796-5/h0075
http://refhub.elsevier.com/S0009-2509(22)00796-5/h0075
http://refhub.elsevier.com/S0009-2509(22)00796-5/h0080
http://refhub.elsevier.com/S0009-2509(22)00796-5/h0080
http://refhub.elsevier.com/S0009-2509(22)00796-5/h0080
http://refhub.elsevier.com/S0009-2509(22)00796-5/h0085
http://refhub.elsevier.com/S0009-2509(22)00796-5/h0085
http://refhub.elsevier.com/S0009-2509(22)00796-5/h0085
http://refhub.elsevier.com/S0009-2509(22)00796-5/h0090
http://refhub.elsevier.com/S0009-2509(22)00796-5/h0090
http://refhub.elsevier.com/S0009-2509(22)00796-5/h0095
http://refhub.elsevier.com/S0009-2509(22)00796-5/h0095
http://refhub.elsevier.com/S0009-2509(22)00796-5/h0095
http://refhub.elsevier.com/S0009-2509(22)00796-5/h0100
http://refhub.elsevier.com/S0009-2509(22)00796-5/h0100
http://refhub.elsevier.com/S0009-2509(22)00796-5/h0100
http://refhub.elsevier.com/S0009-2509(22)00796-5/h0105
http://refhub.elsevier.com/S0009-2509(22)00796-5/h0105
http://refhub.elsevier.com/S0009-2509(22)00796-5/h0105

	Magnetic particle tracking: A semi-algebraic solution
	1 Introduction
	2 Method
	2.1 Classic optimization
	2.2 Semi-algebraic
	2.2.1 Position
	2.2.2 Orientation
	2.2.3 Iteration


	3 Numerical Setup
	4 Results
	5 Conclusions
	Declaration of Competing Interest
	References


