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of the Hamiltonians in the proof of the comparison principle. 
Our abstract results apply to a large class of examples only 
partially covered by the existing theory, including gradient 
flows on Hilbert spaces and the Wasserstein space equipped 
with a displacement convex energy functional E satisfying Mc-
Cann’s condition.
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1. Introduction

The study of Hamilton–Jacobi (HJ) and related equations on infinite dimensional 
spaces is a flourishing research field. Such equations arise naturally in a great number 
of situations, including but certainly not limited to mean–field (or McKean–Vlasov) 
control problems, mean–field games and large deviation theory. This article is concerned 
with a specific class of infinite dimensional Hamilton–Jacobi equations having a common 
geometric structure that is typically encountered in the study of abstract versions of the 
so called Schrödinger problem (see [46,32,31,38,42] for some motivating examples) and 
in connection with large deviations theory [29]. At the formal level, given a metric space 
(E, d) where the metric d is generated by a Riemannian metric 〈·, ·〉, the equation writes 
as

f − λHf = h, Hf := −〈grad f, grad E〉 + 1
2 ‖grad f‖2 (1.1)

where grad is the gradient associated with 〈·, ·〉. A fundamental example where equa-
tion (1.1) arises naturally in applications is that of the Wasserstein space (E, d) =
(P2(Rd), W2(·, ·)) equipped with an energy functional E satisfying McCann’s condition. 
In this case, the underlying formal Riemannian metric is the so called Otto metric [44]. 
Equation (1.1) is expected to characterize the value function of the control problem
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sup

⎧⎨
⎩

+∞∫
0

e−λ−1t[λ−1h(ρu(t)) − 1
2 ‖u(t)‖2 ]dt : ρ̇u = − grad E(ρu) + u, ρu(0) = ρ0

⎫⎬
⎭ ,

(1.2)
which can be interpreted as the problem of steering the gradient flow

ρ̇ = − grad E(ρ)

in such a way that an optimal balance is struck between the cost of controlling, modeled 
through the term −1

2 ‖u(t)‖2, and the reward obtained, modeled by the term λ−1h(ρu(t)). 
The above control problem can be written in the equivalent form

sup

⎧⎨
⎩

+∞∫
0

λ−1e−λ−1t

⎡
⎣h(ρu(t)) −

t∫
0

1
2 ‖u(s)‖2 ds

⎤
⎦dt

∣∣∣∣∣∣
ρ̇u = − grad E(ρu) + u, ρu(0) = ρ0

}
,

that gains a natural interpretation in relation to the corresponding semigroup. In this 
manuscript we prove a comparison principle for viscosity solutions of (1.1) that holds 
under mild assumptions, the most relevant one being the existence of a gradient flow 
for the energy functional E in Evolutional Variational Inequality (EVI) formulation, see 
(EVIκ) below. Since in most examples of interest one cannot make sense of grad E and the 
Riemannian metric cannot be rigorously constructed, following [47,48,21,27,28,1,36,30]
we argue, using (EVIκ), that the Hamilton-Jacobi equation (1.1) can be replaced by two 
equations in terms of two operators H† and H‡ that serve as upper and lower bounds 
for the formal Hamiltonian in (1.1). We then state a comparison principle in terms of 
the upper and lower bounds H† and H‡ (see Definition 2.11). Following [47,48,21,27]
the test functions in the domains of H† and H‡, contain, next to the squared metric, 
the non-regular Tataru distance. This distance is not easy to handle when proving the 
existence of viscosity solutions, nevertheless the comparison principle we state is already 
of large interest. A refinement of the comparison principle presented here, that will be 
helpful for the existence of solutions, and the existence of solution itself will be published 
in subsequent articles. We also present some meaningful examples of applications of our 
main result in particular to controlled gradient flows in the Wasserstein space. Further 
applications to controlled gradient flows in Riemannian manifolds and Hilbert spaces are 
also discussed.

Hamilton–Jacobi equations in infinite dimensional spaces The theory of viscosity so-
lutions for Hamilton–Jacobi equations on infinite dimensional spaces was initiated by 
Crandall and Lions in a series of papers [16–21] in the setting of Hilbert spaces or Banach 
spaces possessing the Radon-Nikodym property. Recent applications in large deviations 
[29], functional inequalities [39], statistical mechanics [5,6], and McKean-Vlasov control 
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[13] have motivated the development of a theory of viscosity solutions for Hamilton–
Jacobi equations on metric spaces that are not necessarily Hilbert, and in particular 
over the space of probability measures endowed with a transport–like distance. A first 
approach to Hamilton–Jacobi equations on the space of probability measures exploits 
the possibility of lifting the space of probability distributions to the space of square in-
tegrable random variables in order to take advantage of the Hilbertian structure of the 
latter: we refer to [4,45,8,22] for some results recently obtained following this method. 
A second approach is more intrinsic and consists of working directly at the level of the 
space of probability measures and developing all the relevant notions therein. One can 
perform this using either the linear derivative, as shown in [9] in the context of McKean-
Vlasov control for jump processes, or relying on the notion of subdifferential provided 
by optimal transport [3]. The connections between the intrinsic approach and the ex-
trinsic notion of derivative obtained through the above mentioned lifting procedure have 
been clarified in [37]. In this manuscript, we follow the intrinsic approach and in par-
ticular we build on the achievements of the research program carried out by Feng and 
his coauthors [29,28,30], who developed a technique to deal with equations whose geo-
metric structure is the same as (1.1) in terms of upper and lower bounds. We combine 
this intrinsic approach with the use of the Tataru distance function, as a penalization 
function in Ekeland’s variational principle. Such idea has been introduced in [47,48] and 
then further refined in [21,27]. To the best of our knowledge, in this work we provide 
the first systematic implementation of Tataru’s method in metric spaces that are not 
Hilbert: as a result, we can remove compactness assumptions on the sublevel sets of the 
energy E and for metric balls. While postponing to the next paragraph a more accurate 
comparison of our results with the above mentioned works, we stress that several other 
important contributions [1,35–37,50] adopt the intrinsic approach to show well–posedness 
of Hamilton–Jacobi equations on metric spaces. In all these works it is assumed that the 
variations of the Hamiltonian w.r.t. the measure argument can be locally controlled by 
the metric d. Since we require very little from the energy functional E beyond the exis-
tence of an EVI gradient flow, this assumption is systematically violated in most of the 
instances of (1.1) that we consider. This happens already in the basic example when E
is the relative entropy and (E, d) is the Wasserstein space. It is worth mentioning that 
operating the formal change of variable f̃ = f − E and setting λ = 1 allows to rewrite 
formally (1.1) in the form

f(π) − 1
2 ‖grad f(π)‖2 + F(π) = 0, (1.3)

F(π) = 1
2 ‖grad E(π)‖2 +E(π) −h(π). This equation has been often studied in the litera-

ture on infinite dimensional Hamilton–Jacobi equations. However, our main geometrical 
assumption, that is formally equivalent to the semiconvexity of E , does not give the 
control on the growth of 1

2 ‖grad E(π)‖2 needed to successfully apply the techniques 
developed in the above mentioned references [1,35–37,50].
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Master equation and mean field games The recent years have witnessed fundamental 
advances on the understanding of the master equation arising in the theory of Mean Field 
Games, see [11] and the recent works [50,34,33,12] for a sample of the recent progresses. 
Such equation aims at characterizing the limiting behavior of Nash equilibria in the 
many players regime and it has been noticed [7] that the master equation shares some 
properties with infinite dimensional Hamilton–Jacobi equations, and in particular with 
those characterizing the value function of McKean–Vlasov control problems. However, 
these two equations remain conceptually different as explained in [14]. For example, 
despite some analogies between the “monotonicity” assumption that is typically imposed 
on the coefficients of the master equation and the geodesic convexity of the energy 
functional E that underlies all our computations, these two geometrical assumptions are 
not directly related and enter the coefficients of the respective equations in a different 
way. In the recent article [34], the authors get past the classical monotonicity assumption 
and indeed obtain well posedness for the master equation by means of displacement 
convexity. Still, the equation considered there and (1.1) have a different nature.

Contribution of this work Our methods are largely inspired by ideas and techniques 
put forward in [47,48,21,29,28,27,25,41,30], where comparison principles for (1.1) have 
been proven in different contexts. Apart from [25,41], in which exploiting a Riemannian 
viewpoint they prove comparison principles in finite dimensional setting, we summarize 
here the contributions of the other papers in treating infinite–dimensional versions of 
(1.1).

• The works [47,48,21,27] deal with quadratic Hamiltonians on Hilbert spaces where 
the drift is not given by a gradient flow, but rather by a maximally dissipative 
operator C. (The subgradient of a proper lower semi-continuous convex functional 
is maximally dissipative, connecting the two equations.) We formally have

Hf(π) := 〈grad f(π), Cπ〉 + 1
2 ‖grad f(π)‖2 (1.4)

Due to the non-compactness of the space, optimizers in the proof of the comparison 
principle are produced using Ekeland’s variational principle. As the drift term arises 
from a (non-continuous) operator, the standard Hilbertian norm is not suitable to 
be used as a penalization function in Ekelands principle. Thus, a new metric-like 
object is introduced that is constructed from the norm in combination with the flow 
generated by C. A second innovation in this collection of papers concerns how to 
deal with C in giving rigorous understanding to the Hamiltonian in (1.4). Working 
for test functions of the type f(π) = a

2 ‖π − μ‖2, the drift term equals

〈π − μ,Cπ〉 (1.5)
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which is ill-defined if π is not in the domain of C. However, using the dissipativity 
of C, this term can be upper bounded by

〈π − μ,Cμ〉 (1.6)

which is well defined as long as μ ∈ D(C). This leads to a candidate upper bound for 
H, as long as one restricts to test-functions of metric type with μ ∈ D(C). A similar 
procedure can be carried out to obtain a lower bound. Working with test functions 
with restrictions on μ makes it necessary to replace the standard duplication of 
variables by a quadruplication, where the two new variables take their values in 
D(C). The inclusion in D(C) for these two new variables is enforced by the addition 
of two new penalization terms. This procedure is to some extent analogous to the 
procedure that, in finite dimensional cases, forces the variables to take their values 
in a compact set.

• Building upon the works above, [28] introduces a more intrinsic point of view replac-
ing C by the gradient of some energy functional E . In [28] this is carried out for an 
energy functional E with compact sub-levelsets on a metric space. The inclusion in 
the domain of the gradient of E is now achieved by penalization with E , whereas in 
the papers above, considered in the context that C = − grad E , the penalization can 
be interpreted as the square root of a Fisher information. This geometric interpreta-
tion effectively leads to much cleaner estimates. A second notable difference to the 
papers above is that the quadruplication is replaced by a duplication of variables. 
This comes at the cost of working with less-regular test functions in the domain of 
the Hamiltonians. To obtain existence of solutions, one typically starts out with more 
regular test-functions. It was shown in e.g. the three examples of Section 13 of [29]
that for well-posedness one can connect the regular and non-regular Hamiltonians 
by performing an inf- and sup-convolutions on sub- and supersolutions respectively. 
This is reminiscent of the techniques used in the proof of the comparison principle 
for second order equations on finite dimensional spaces, see e.g. [15], and implies that 
the full procedure to obtain the comparison principle can be seen as one that involves 
a quadruplication just like in the papers mentioned above. In the example of Section 
13.3 of [29], studying the controlled heat flow in the Wasserstein space, it is observed 
that the upper and lower bound that in (1.5) and (1.6) were given by the use of the 
dissipativity of the operator are now replaced by the use of an inequality that we 
recognize in our more general context as the evolutional variational inequality.

• In [30], the authors study the controlled Carleman equation. In this context the 
Hamiltonian is associated to the gradient flow of the entropy on the space of proba-
bility measures considered as a subset of an inverse Sobolev space. In this paper, a 
combination of the ideas above has been put to work, the procedure that involves a 
quadruplication, as above, in the sense of a standard duplication in combination with 
sup- and inf-convolutions, uses compactness of the sublevelsets of the energy. Also 
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in this work, an inequality is used that we recognize as the evolutional variational 
inequality with contractivity constant κ = 0.

In view of the above works, we combine their strengths and assemble the key idea’s in a 
single unifying framework:

• We work with a geodesic metric space, where E and d do not necessarily have compact 
sublevel sets. In fact, we will allow E that are unbounded from below.

• We replace the variational inequalities used in the papers above by the systematic 
use of the evolutional variational inequality (EVIκ). This inequality is the general-
ization of the one used in [30] and in a Hilbertian context implies the dissipativity 
of the operator C. Interpreting the variational inequalities used in the literature in 
the context of EVI, they correspond to the evolutional variational inequality with 
contractivity constant κ = 0. We will allow for negative κ also.

• We generalize the Tataru distance from Hilbert to general metric spaces and modify 
the distance to allow its application to gradient flows satisfying EVI with a negative 
contractivity constant κ.

• Instead of establishing the comparison principle via the duplication of variables com-
bined with sup- and inf-convolutions, we perform the quadruplication of variables in 
a single go and introduce an argument generalizing the classical Lemma 3.1 of [15].

To summarize: the key innovation in our proof strategy is the systematic use of the 
properties of EVI gradient flows, in particular of their regularizing properties that in-
clude energy dissipation and distance contraction estimates. Indeed, gradient flows play 
a crucial role in: a) Defining suitable upper and lower bounds for the formal Hamilto-
nian that depend on E and d only; b) the construction of the Tataru distance and c)
developing all the necessary estimates for the proof of the main result, in particular to 
bound the difference of the Hamiltonians in the proof of the comparison principle (see 
e.g. Lemma 3.3 and Lemma 3.4). Apart from our key assumptions on the properties 
of the geodesic metric space E and the existence of a gradient flow satisfying the evo-
lution variational inequality, which can be considered to be standard in the literature, 
we assume in Assumption 2.9 that the directional derivative of the energy functional 
along ‘regularized geodesics’ can be controlled by the local slope of the energy. Thanks 
to the rather soft assumptions needed for our main results to apply, we are able to cover 
natural situations that, to the best of our knowledge and understanding, fall out of the 
range of existing techniques. Leaving all precise statements to section 5 below, we would 
like to mention that one novelty is that we can treat the case of the Wasserstein space 
equipped with a Rény entropy as energy functional: in this setting the underlying gra-
dient flow is the porous medium equation [44]. Even if we restrict to the more classical 
setting where the energy functional is the sum of the Boltzmann entropy, a potential 
energy and an interaction energy, existing results (see e.g. [29,28]) require the confining 
potential to grow superquadratically at infinity in order to be applied, and several fur-
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ther restrictions are imposed on the interaction potential. Here, we allow for much more 
flexibility on both potentials. It is also plausible that the class of distances introduced in 
[26] leads to Hamilton-Jacobi equations whose uniqueness can be established by means 
of Theorem 2.14 though we leave it to future work to validate this conjecture, as well as 
to enlarge the range of applications of the comparison principle proven in this paper.

Organization The article has the following structure: in Section 2 we state our hypoth-
esis and then proceed to the presentation of our main results. In section 3 we prove 
Theorem 2.14, that is the comparison principle for the upper and lower bounds H† and 
H‡. Section 5 is devoted to examples of applications, whereas Section 4 reports on the 
fundamental properties of EVI gradient flows and the Tataru distance. Appendix A con-
tains some background material on Ekeland’s principle and Hamilton Jacobi equations.

Frequently used notation

• BR(ρ) the ball of radius R centered at ρ;
• N̄ = N ∪ {+∞};
• USC(E), LSC(E): space of upper semi-continuous and lower semi-continuous func-

tions over E;
• C(E) continuous and bounded functions over E;

2. The comparison principle

Our aim is to establish a comparison principle for viscosity solutions of equations of 
the form

f(π) − λHf(π) = h(π), π ∈ E (2.1)

where (E, d) is a complete metric space, λ > 0 is a constant, h a real function on E and 
the action of the formal Hamiltonian H is given by

Hf(π) = −〈gradπ f(π), gradπ E(π)〉 + 1
2 ‖gradπ f(π)‖2

, (2.2)

where E : E → (−∞, +∞] is some energy functional and gradients are taken w.r.t. a 
formal Riemannian structure on E. Various issues arise with the definition of H due to 
the presence of gradπ. Indeed a precise notion of gradient for E is difficult or impossible 
to give. For example, when (E, d) is the Wasserstein space (P2(Rd), W2(·, ·)), in typical 
situations of interest, E is worth +∞ on a dense set and nowhere differentiable, even 
though the subdifferential is well defined and non empty on a subset of the domain of 
E . The lack of differentiability of entropic functionals is a well known issue in the theory 
of gradient flows and has led to the development of notions of gradient flows that do 
not appeal to gradπE directly: we refer to [3] for a comprehensive overview. In a certain 
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sense, we adopt a similar strategy: instead of working with H directly, we construct 
suitable upper and lower bounds H† and H‡, that depend on E rather than its gradient 
and that are tight enough for the comparison principle to hold. To construct the upper 
and lower bounds we partially rely on ideas put forward in [28,30] and draw inspiration 
from the EVI formulation of gradient flows which allows to put the considerations made 
therein on some important examples into a considerably more general framework. For 
example, an important with these work is that here we do not assume that the level sets 
of E are compact. Let us now proceed to introduce the most important concepts needed 
to properly define H† and H‡.

2.1. EVI-gradient flows and statement of the main hypotheses

We work on a complete metric space (E, d) on which an extended functional E : E →
(−∞, +∞] is defined. In the sequel, we shall refer to E as to the energy, or entropy 
depending on the context. The next definition is that of local slope given in the first 
chapter of [3].

Definition 2.1. Let φ : E → (−∞, +∞] be an extended functional with proper effective 
domain, i.e. D(φ) := {π ∈ E : φ(π) < +∞} 	= ∅. Then the local slope of φ at ρ ∈ D(φ)
is defined as

|∂φ|(ρ) :=
{

lim supπ→ρ
(φ(ρ)−φ(π))+

d(ρ,π) , if φ(ρ) < +∞.
+∞, otherwise.

Next, we define geodesic spaces.

Definition 2.2. (E, d) is a geodesic space, if for any ρ, π ∈ E there exists a curve 
(ζρ→π(t))t∈[0,1] such that ζρ→π(0) = ρ, ζρ→π(1) = π and for all s, t ∈ [0, 1]

d(ζρ→π(s), ζρ→π(t)) = |t− s|d(ρ, π). (2.3)

Such a curve will be called geodesic.

Assumption 2.3 (Metric and energy). We make the following assumptions of the complete 
metric space (E, d) and the energy functional E .

(a) (E, d) is a geodesic space.
(b) We assume that the energy functional E : E → (−∞,+∞] is an extended functional 

such that:
• It has a proper effective domain, i.e. D(E) := {π ∈ E : E(π) < +∞} 	= ∅.
• It is lower semi-continuous.
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Our second main assumption is the existence of an EVI gradient flow of E . The EVI 
(Evolutional Variational Inequality) formulation is the strongest formulation of gradient 
flows in metric spaces, we refer to the monograph [3] and the more recent article [43] for 
an extensive study of this notion.

Definition 2.4. Given κ ∈ R, we define solution of the EVIk inequality a continuous curve 
γ : [0, +∞) → E such that γ((0,+∞)) ⊆ D(E) and

1
2

d+

dt
(
d2(γ(t), ρ)

)
≤ E(ρ) − E(γ(t)) − κ

2 d
2(γ(t), ρ), ∀ρ ∈ D(E), t ∈ [0,+∞). (EVIκ)

Here d+

dt denotes the upper right time derivative. An EVIk gradient flow of E defined in 
D ⊂ D(E) is a family of continuous maps S(t) : D → D, t ≥ 0 such that for every π ∈ D:

• The semigroup property holds

S[π](0) = π, S[π](t + s) = S[S[π](t)](s) ∀t, s ≥ 0. (2.4)

• The curve (S[π](t))t≥0 is a solution to (EVIκ).

We shall refer to (S[π](t))t≥0 as the gradient flow of E started at π. To lighten the 
notation, from now on, we will denote with (π(t))t≥0 the gradient flow (S[π](t))t≥0.

Assumption 2.5. [Gradient flow and EVI] We assume the existence of an (EVIκ) gradient 
flow of E defined on D = E.

Remark 2.6. Note that the above assumption implies that D(E) = E.

(EVIκ) is known to have several important consequences (see [43]), including unique-
ness of the gradient flow. Some of these facts, gathered at Lemma 4.1, play a crucial role 
in the proofs of our main results.

Remark 2.7. Note that the Hamiltonian is formally equivalent to

Hf(π) = d+

dt (f(π(t))) |t=0 + 1
2 |∂f |

2(π), (2.5)

for f : E → (−∞, +∞) and π ∈ E. This representation is an important guideline for the 
construction of the lower and upper bounds.

For later use, we define the information functional as the squared slope of the energy.
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Definition 2.8. We define the information functional I : E → [0, +∞] as

I(π) :=
{

|∂E|2(π) π ∈ D(E)
+∞ otherwise

.

The information functional is closely related to the gradient flow via the energy iden-
tity

E(π(t)) − E(π(0)) = −
t∫

0

I(π(s))ds,

see Lemma 4.1 for a rigorous version of the above relation. Our final condition is of non-
standard nature. We assume that any geodesic can be approximated as well as needed 
with a smoother curve, typically but not necessarily another geodesic, along which the 
variations of E can be controlled with the slope. This last requirement is coherent with 
the interpretation of the metric slope as the norm of the gradient of E . Note that, in most 
examples of interest, (2.7) below fails to be true if we replace ζρ→π

θ (t) with an arbitrary 
geodesic and that in the infinite dimensional context this assumption is considerably 
weaker than the existence of directional derivatives of E along arbitrary geodesics.

Assumption 2.9. For any ρ, π ∈ E satisfying I(ρ) + E(π) < +∞, there exist a geodesic 
ζρ→π such that, for any θ > 0, there exists τ > 0 and a curve, not necessarily a geodesic, 
(ζρ→π

θ (t))t∈[0,τ ], satisfying

lim sup
t↓0

d(ζρ→π
θ (t), ζρ→π(t))

t
≤ θ, (2.6)

and

lim inf
t↓0

E(ζρ→π
θ (t)) − E(ρ)

t
≤ |∂E|(ρ)(d(ρ, π) + θ). (2.7)

Note that (2.6) implies that ζρ→π
θ (0) = ρ.

We refer to (2.6) as to the angle condition. (2.7) can be interpreted as controllability 
of directional derivatives of regularized geodesics by the local slope.

2.2. A first attempt at defining upper and lower bounds

In light of the previous discussion, we can start developing a correct formulation of 
the Hamilton-Jacobi equation. In classical proofs of the comparison principle for first 
order Hamilton–Jacobi equations one needs to apply the Hamiltonian to distance–like 
test functions. In the following lines, ignoring all the technical issues, we shall derive a 
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formal upper bound for π �→ Hd2(·, ρ)(π) arguing on the basis of (EVIκ) and on the 
following (formal) property of the distance

∀π, ρ ∈ E

∣∣∣∣∂
(

1
2d

2(·, ρ)
)∣∣∣∣

2

(π) = d2(π, ρ), (2.8)

where 
∣∣∂ ( 12d2(·, ρ)

)∣∣ (π) is the slope of the function 1
2d

2(·, ρ) evaluated at π. Note that 
the above equation holds in the case of a smooth Riemaniann manifold. Let us now 
consider a test function f† : E → R that is given in terms of the squared distance as 
f†(π) = 1

2ad
2(π, ρ) for some ρ ∈ E and a > 0. Applying formally the representation of 

H from (2.5) and using the property (2.8) (as if π ∈ D(E)), we obtain that

Hf†(π) = 1
2a

d+

dt
(
d2(π(t), ρ)

) ∣∣∣
t=0

+ 1
2a

2d2(π, ρ).

Then, applying (formally) Assumption 2.5 and being a > 0, we get

Hf†(π) ≤ a [E(ρ) − E(π)] − a
κ

2 d
2(π, ρ) + 1

2a
2d2(π, ρ).

Let us note that this upper bound is proper as soon as E(ρ) < +∞, so that the right 
hand side is well defined, even though it may take the value −∞. Therefore, we are led 
to a candidate definition for a first upper bound Hcan,†: its domain is

D(Hcan,†) :=
{
f† : E → R, f†(π) = 1

2ad
2(π, ρ)

∣∣∣∣∀ a > 0,∀ ρ ∈ E : E(ρ) < ∞
}

and for f†(π) = 1
2ad

2(π, ρ) we define our candidate Hamiltonian via

Hcan,†f
†(π) := a [E(ρ) − E(π)] − a

κ

2d
2(π, ρ) + 1

2a
2d2(π, ρ).

Similarly, we get a formal lower bound for a test function f‡ : E → R defined as 
f‡(μ) = −1

2ad
2(γ, μ), γ ∈ D(E). Let

D(Hcan,‡) :=
{
f‡ : E → R, f‡(μ) = −1

2ad
2(γ, μ)

∣∣∣∣ a > 0, γ ∈ E : E(γ) < ∞
}

be the corresponding domain then for f‡(μ) = −1
2ad

2(γ, μ) we set

Hcan,‡f
‡(μ) = a [E(μ) − E(γ)] + a

κ

2 d
2(γ, μ) + 1

2a
2d2(γ, μ).

Thus, instead of establishing the comparison principle for equation (2.1), we aim to show 
it for the upper and lower bound we found for our Hamiltonian, i.e. we would like to 
show that for every subsolution u (in a sense to be precised) of
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f − λHcan,†f = h

and every supersolution v (in a sense to be precised) of

f − λHcan,‡f = h

we have u ≤ v. Thanks to the formal inequalities this result would give a formal com-
parison principle for equation (1.1). The standard procedure to prove the comparison 
principle consists in using a doubling variables method. However, when doing this with 
our candidate Hamiltonian, we run into the known issue that optimal values are not 
attained, essentially because we are working in a infinite dimensional space. This issue 
is usually solved via Ekeland’s variational principle (a version of which, the one used 
in this article, is Lemma A.1, in the appendix). Nevertheless, for our setting, in which 
the Hamiltonian contains an unbounded term, this is not enough. Indeed, once Ekeland 
variational principle gives us the unique optimizer, the standard procedure consists in 
finding good estimates for the difference of the Hamiltonians. Following [21,47,48,27], we 
need to apply the Ekeland variational principle with the Tataru distance as a penaliza-
tion function which, in contrast with the usual distance d is Lipschitz along the gradient 
flow and allows for an efficient comparison of the difference between of the Hamiltonians. 
Let us now proceed to construct a version of the Tataru distance that is adapted to our 
scope.

2.3. The Tataru distance

The Tataru distance function, introduced in [47], is given in terms of the gradient flow 
generated by the energy functional E considered therein.

dT (π, ρ) = inf
t≥0

{t + d(π, ρ(t))} , ∀π, ρ ∈ E,

where ρ(·) is the gradient flow of E started at ρ. Note that dT is not a metric due to 
a lack of symmetry. The two key properties of the above Tataru distance are that dT
is Lipschitz with respect to the metric d and that it behaves well with respect to the 
corresponding gradient flow

dT (π(r), ρ) − dT (π, ρ)
r

≤ 1, ∀π, ρ ∈ E,

for all r ∈ R \ {0}. These properties are both based on the fact that the gradient flow 
considered there was contracting with respect to the metric. In our setting, we consider 
(EVIκ) gradient flows and we allow negative values κ, i.e. a negatively curved space, and 
in this case the gradient flow is not anymore contracting. Thus, we have to work with 
an adjusted Tataru distance that takes care of all possible values of κ.



14 G. Conforti et al. / Journal of Functional Analysis 284 (2023) 109853
Definition 2.10. We define the Tataru distance dT : E × E → [0, +∞) with respect to 
the metric d and energy E as

dT (π, ρ) = inf
t≥0

{
t + eκ̂td(π, ρ(t))

}
, ∀π, ρ ∈ E,

where κ̂ = (0 ∧ κ) ≤ 0.

The precise statements and proofs of the main properties of Tataru distance are 
postponed to Section 4.2.

2.4. The comparison principle for a proper upper and lower bound

Now that we have defined the Tataru distance we are ready to introduce the upper 
and lower bounds for H for which we will actually establish the comparison principle. 
As we did before, we provide a heuristic argument to justify their definition. To do so, 
we begin by fixing a test function of the form

f†(π) = 1
2ad

2(π, ρ) + bdT (π, μ) + c (2.9)

for a, b > 0, c ∈ R, and ρ, μ ∈ E. As before, due to the presence of the term 12ad
2(π, ρ), we 

will need to require that E(ρ) < ∞ in order to obtain a proper bound for the Hamiltonian. 
In order to bound the action of H on f†, we can rely again on the representation (2.5)
and invoke the Lipschitzianity of dT along the gradient flow (Lemma 4.3) that gives

∣∣∣d+

dt (dT (π(t), μ))
∣∣
t=0

∣∣∣ ≤ 1.

Similarly, as the Tataru distance is Lipschitz with respect to d, then any gradient of dT
can be upper bounded by 1. Using these two properties and applying formally (EVIκ)
and (2.8) as we did before to define Hcan,†, we obtain that if f† is as in (2.9):

Hf†(π) =1
2a

d+

dt
(
d2(π(t), ρ)

) ∣∣
t=0 + b

d
dt (dT (π(t), μ))

∣∣
t=0

+ 1
2

∣∣∣∣∂
(

1
2ad

2(·, ρ) + bdT (·, μ)
)∣∣∣∣

2

(π)

≤a [E(ρ) − E(π)] − a
κ

2 d
2(π, ρ) + b

+ 1
2a

2
∣∣∣∣∂
(

1
2d

2(·, ρ)
)∣∣∣∣

2

(π) + 1
22ab

∣∣∣∣∂
(

1
2d

2(·, ρ)
)∣∣∣∣ (π) |∂dT (·, μ)| (π)

+ 1
2b

2 |∂dT (·, μ)|2 (π)

≤a [E(ρ) − E(π)] − a
κ
d2(π, ρ) + b
2
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+ 1
2a

2d2(π, ρ) + abd(π, ρ) |∂dT (·, μ)| (π) + 1
2b

2 |∂dT (·, μ)|2 (π)

≤a [E(ρ) − E(π)] − a
κ

2d
2(π, ρ) + b + 1

2a
2d2(π, ρ) + abd(π, ρ) + 1

2b
2.

We can adapt this argument to test functions of the form

f‡(μ) := −1
2ad

2(γ, μ) − bdT (μ, π) + c, a, b > 0, c ∈ R,

by treating the term 1
2
∣∣∂ (−a

2d
2(·, γ) − bdT (·, π)

)∣∣2 (μ) in a slightly different way, 
namely2

1
2

∣∣∣∂ (−a

2d
2(·, γ) − bdT (·, π)

)∣∣∣2 (μ)

≥ 1
2

(
a
∣∣∂(12d2(·, γ)

)∣∣− b|∂dT (·, π)|
)2

(μ)

= a2

2 d2(μ, γ) − abd(μ, γ)|∂dT (·, π)|(μ) + b2

2 |∂dT (·, π)|2(μ)

≥ a2

2 d2(μ, γ) − abd(μ, γ)|∂dT (·, π)|(μ)

≥ a2

2 d2(μ, γ) − abd(μ, γ)

We are thus led to consider the following definition, in which we prefer to underline the 
fact that the Hamiltonians are operators.

Definition 2.11.

1. For each a > 0, b > 0, c ∈ R, and μ, ρ ∈ E : E(ρ) < ∞ let f† = f†
a,b,c,μ,ρ ∈ C(E) and 

g† = g†a,b,c,μ,ρ ∈ USC(E) be given for any π ∈ E by

f†(π) := 1
2ad

2(π, ρ) + bdT (π, μ) + c

g†(π) := a [E(ρ) − E(π)] − a
κ

2d
2(π, ρ) + b + 1

2a
2d2(π, ρ) + abd(π, ρ) + 1

2b
2.

Then the operator H† ⊆ C(E) × USC(E) is defined by

H† :=
{(

f†
a,b,c,μ,ρ, g

†
a,b,c,μ,ρ

) ∣∣∣ a, b > 0, c ∈ R, μ, ρ ∈ E : E(ρ) < ∞
}
.

2 In this computation we use the formal bound |∂(f + g)| ≥ ||∂f | − |∂g||. The local slope does not satisfy 
this property. In order to justify heuristically the upcoming calculations, it is convenient to think of it as a 
proxy for the norm of the gradient of f + g.
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2. For each a > 0, b > 0, c ∈ R, and π, γ ∈ E : E(γ) < ∞ let f‡ = f‡
a,b,c,π,γ ∈ C(E) and 

g‡ = g‡a,b,c,π,γ ∈ LSC(E) be given for any μ ∈ E by

f‡(μ) := −1
2ad

2(γ, μ) − bdT (μ, π) + c

g‡(μ) := a [E(μ) − E(γ)] + a
κ

2d
2(γ, μ) − b + 1

2a
2d2(γ, μ) − abd(γ, μ) − 1

2b
2.

Then the operator H‡ ⊆ C(E) × LSC(E) is defined by

H‡ :=
{(

f‡
a,b,c,π,γ , g

‡
a,b,c,π,γ

) ∣∣∣ a, b > 0, c ∈ R, π, γ ∈ E : E(γ) < ∞
}
.

Remark 2.12. Note that the term −1
2b

2, in the definition of g‡, is introduced in order to 
have more flexibility for an existence proof.

We are now ready to provide the notion of solution we are going to work with, which we 
state for general Hamiltonians A† ⊆ LSC(E) ×USC(E) and A‡ ⊆ USC(E) ×LSC(E).

Definition 2.13. Fix λ > 0 and h†, h‡ ∈ Cb(E). Consider the equations

f − λA†f = h†, (2.10)

f − λA‡f = h‡. (2.11)

We say that u is a (viscosity) subsolution of equation (2.10) if u is bounded, upper 
semi-continuous and if for all (f, g) ∈ A† there exists a sequence (πn)n∈N ∈ E such that

lim
n↑∞

u(πn) − f(πn) = sup
π

u(π) − f(π), (2.12)

lim sup
n↑∞

u(πn) − λg(πn) − h†(πn) ≤ 0. (2.13)

We say that v is a (viscosity) supersolution of equation (2.11) if v is bounded, lower 
semi-continuous and if for all (f, g) ∈ A‡ there exists a sequence (πn)n∈N ∈ E such that

lim
n↑∞

v(πn) − f(πn) = inf
π

v(π) − f(π),

lim inf
n↑∞

v(πn) − λg(πn) − h‡(πn) ≥ 0.

If h† = h‡, we say that u is a (viscosity) solution of equations (2.10) and (2.11) if it is 
both a subsolution of (2.10) and a supersolution of (2.11). We say that (2.10) and (2.11)
satisfy the comparison principle if for every subsolution u to (2.10) and supersolution v
to (2.11), we have supE u − v ≤ supE h† − h‡.
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In classical works on viscosity solutions, instead of working with the statement “there 
exists a sequence such that...”, one has “for all optimizers one has...”. However, when 
constructing our test functions in the comparison principle proof, we will work with the 
Ekeland variational principle, see Lemma A.1. This principle will give us an optimizer 
that is also unique. We will show in Lemma A.4 that, for our specific test functions, we 
can work directly with the unique optimizer instead of passing through an optimizing 
sequence as if we were using the stronger definition. On the other hand, Definition 2.13
is easier to handle while showing existence of solutions. We are ready to state the main 
result of this article.

Theorem 2.14. [The comparison Principle.] Let Assumptions 2.3, 2.5 and 2.9 be satisfied. 
Let λ > 0 and h†, h‡ : E → R be bounded and uniformly continuous. Let u : E → R be a 
viscosity subsolution to f − λH†f = h† and let v : E → R be a viscosity supersolution to 
f − λH‡f = h‡. Then we have

sup
π∈E

u(π) − v(π) ≤ sup
π∈E

h†(π) − h‡(π).

Remark 2.15. Note that we formally have

Hf ≤ H†f and H‡f ≤ Hf.

Thanks to these inequalities the above result will give a formal comparison principle for 
equation (2.1).

Remark 2.16. The assumption that h†, h‡ are uniformly continuous can be weakened to 
uniform continuity on sets of the type

Kρ
c,d := {π ∈ E | d(π, ρ) ≤ c, E(ρ) ≤ d} .

3. Proof of Theorem 2.14

The proof of Theorem 2.14 contains two main parts. The first part consists in showing 
that, in order to establish the comparison principle, we can reduce to the usual estimation 
on the difference of H† and H‡. The estimation of this difference, however, is non-trivial 
in the present context and we postpone to section 3.2 the proof of some of the key 
estimates needed there.

Remark 3.1. In Step 1 of the proof below, we first make use of the fact that E can be 
bounded from below by a non-negative constant times −d2. In this way, the standard 
quadruplication of variables, which goes with a penalization needed as we work with 
non-equal variables, is indeed a penalization. If E is itself already bounded from below 
by 0, we can simplify significantly the proof by choosing c1 = 0.
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Proof. Let u be a subsolution of equation (2.10) and v a supersolution of equation (2.11), 
we have to prove that

sup
π∈E

u(π) − v(π)

can be controlled by

sup
π∈E

h†(π) − h‡(π).

To proceed, as in the classical proof of the comparison theorem, one usually performs the 
doubling variables method, that can be done in our case using the distance function and 
the energy functional as penalization functions. However, the use of the energy functional 
and the fact that E(π) could be worth +∞ oblige us to introduce two additional variables, 
i.e. we quadruplicate the number of variables. This procedure is actually reminiscent of 
the sup-convolution procedure.

Step 1: Quadruplication of variables and Ekeland’s principle.
We fix ν0 ∈ E such that E(ν0) < ∞, we need E(ν0) < ∞ and c1, c2 ∈ R as in Lemma 4.1
item (a), i.e. such that

inf
π∈E

E(π) + c1
2 d2(π, ν0) + c2 = 0,

and we define

Ē(π) := E(π) + c1
2 d2(π, ν0) + c2.

We fix α > 0 and εα small enough (this value has to be fixed according to the condition 
(3.15), i.e. Ξα(xα,0) + εα < α−1, where xα,0 = (πα,0, ρα,0, μα,0, γα,0) will be chosen later 
on and Ξα is defined as below). We introduce for x = (π, ρ, μ, γ) ∈ E4

Φα(x) := u(π)
1 − εα

− v(μ)
1 + εα

Ψα(x) := d2(π, ρ)
2(1 − εα) + d2(ρ, γ)

2 + d2(γ, μ)
2(1 + εα)

Ψα,0(x) := 1
2(1 − εα)d

2(π, μ)

Ξα(x) := εα
1 − εα

Ē(ρ) + εα
1 + εα

Ē(γ)

Next, we define

Gα(x) := Φα(x) − αΨα(x) − Ξα(x), Mα := sup
x∈E4

Gα(x) (3.2a)

Gα,0(x) := Φα(x) − αΨα,0(x), Mα,0 := sup Gα,0(x)

x∈E4
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and

B(x, x̃) := 1
1 − εα

dT (π, π̃) + 1
1 + εα

dT (μ, μ̃) + dT (ρ, ρ̃) + dT (γ, γ̃).

We gather the important results of this step in the following proposition, whose proof is 
postponed to section 3.1.

Proposition 3.2. For each α > 0 we can find xα = (πα, ρα, μα, γα) ∈ E4 such that

(a)

sup
π∈E

u(π) − v(π) ≤ Φα(xα) + O(α−1/2), (3.3)

(b) ρα, γα ∈ D(E) and xα is the unique point in E4 such that

sup
x∈E4

Gα(x) − 1
2α

−2 ≤ Gα(xα) = sup
x∈E4

Gα(x) − α−1Bα, (3.4)

where

Bα(x) := B(x, xα). (3.5)

(c) If (xn)n∈N ∈ E4 is such that

lim
n→∞

Gα(xn) − α−1Bα(xn) = Gα(xα),

then limn→∞ xn = xα.
(d) We have

lim inf
α→∞

αΨα(xα) + Ξα(xα) + εαd
2(ρα, ν0) + εαd

2(γα, ν0) = 0.

Step 2: Use of sub(super)solution properties. In the rest of the proof we consider a 
diverging sequence (αn)n∈N along which

lim
n→∞

αnΨαn
(xαn

) + Ξαn
(xαn

) + εαn
d2(ραn

, ν0) + εαn
d2(γαn

, ν0) = 0.

Consider as test functions f†, f‡ : E → (−∞, +∞) given by

f†(·) : = −(1 − εαn
)Gαn

(·, μαn
, ραn

, γαn
) + u(·) + (1 − εαn

)α−1
n Bαn

(·, μαn
, ραn

, γαn
),

(3.6)

f‡(·) : = (1 + εαn
)Gαn

(παn
, ·, ραn

, γαn
) + v(·) − (1 + εαn

)α−1
n Bαn

(παn
, ·, ραn

, γαn
).
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Note that f†, f‡ are valid test functions. Indeed, from (3.2a), (3.5) we have

f†(π) = αn

2 d2(π, ραn
) + α−1

n dT (π, παn
) + const.,

f‡(μ) = −αn

2 d2(μ, γαn
) − αn

−1dT (μ, μαn
) + const.,

and we know that ραn
, γαn

∈ D(E) by Proposition 3.2-(b). From the very definition of 
f†, we obtain

u(π) − f†(π) = (1 − εαn
)[Gαn

− αn
−1Bαn

](π, μαn
, ραn

, γαn
), (3.7)

and παn
is the unique maximizer of u(π) − f†(π) because of (3.4). Analogously, we find

v(μ) − f‡(μ) = −(1 + εαn
)[Gαn

− αn
−1Bαn

](παn
, μ, ραn

, γαn
),

and μαn
is the unique minimizer of v(μ) − f‡(μ). Being u a subsolution, there exists a 

sequence (πm)m∈N ∈ E satisfying (2.12) and (2.13), for (f†, g†) ∈ H†, where g† is given 
by Definition 2.11 (with a = αn, b = αn

−1). In the next lines, we deduce from these 
properties that

u(παn
) ≤ λg†(παn

) + h†(παn
). (3.8)

We begin by observing that

lim
m→+∞

(1 − εαn
)[Gαn

− αn
−1Bαn

](πm, μαn
, ραn

, γαn
) (3.7)= lim

m→∞

(
u− f†) (πm)

(2.12)= sup
π∈E

(
u− f†) (π)

(3.7)+(3.4)= (1 − εαn
)Gαn

(xαn
)

= (u− f†)(παn
).

At this point, we can use item (c) of Proposition 3.2 which gives that limm→+∞ πm =
παn

. Now Lemma A.4, says that since there exists παn
∈ E such that limm→+∞ πm = παn

and

u(παn
) − f†(παn

) = sup
π

u(π) − f†(π).

Then we have

u(παn
) − λg†(παn

) − h†(παn
) ≤ 0.

Therefore we finally establish (3.8). Arguing similarly, we obtain that

v(μαn
) ≥ λg‡(μαn

) + h‡(μαn
),
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for (f‡, g‡) ∈ H‡, where g‡ is given by Definition 2.11 (with a = αn, b = αn
−1). Plugging 

(3.8) and this last bound into (3.3) and using the fact that our choice (3.14) of εαn

implies εαn
≤ α−1

n , we arrive at

sup
π∈E

u(π) − v(π) ≤h†(παn
)

1 − εαn

− h‡(μαn
)

1 + εαn

+ λ
( 1

1 − εαn

g†(παn
) − 1

1 + εαn

g‡(μαn
)
)

+ O(αn
−1/2).

(3.9)

Step 3 : Upper bound on the difference of the Hamiltonians. Applying the definition 
of g† and g‡ and with the help of Proposition 3.2 (d) we can split the difference of the 
Hamiltoniains into two terms and a vanishing term, namely

g†(παn
)

1 − εαn

− g‡(μαn
)

1 + εαn

≤

αn

[ 1
1 − εαn

(
E(ραn

) − E(παn
) + κ

2d
2(παn

, ραn
)
)

− 1
1 + εαn

(
E(μαn

) − E(γαn
) − κ

2 d
2(παn

, ραn
)
)]

+ αn
2

2(1 − εαn
)d

2(παn
, ραn

) − αn
2

2(1 + εαn
)d

2(μαn
, γαn

)

+ o(1)

(3.10)

We gather here the important estimates used in this step and that will be contained in 
Lemma 3.3 and Lemma 3.4, whose proof is postponed to section 3.2.

Let (αn)n∈N be the sequence given by Proposition 3.2-(d), then we have

αn

[ 1
1 − εαn

(
E(ραn

) − E(παn
) + κ

2 d
2(παn

, ραn
)
)

− 1
1 + εαn

(
E(μαn

) − E(γαn
) − κ

2d
2(παn

, ραn
)
)]

≤ − εαn

(1 − εαn
)I(ραn

) − εαn

(1 + εαn
)I(γαn

) + o(1),

(3.11)

and

α2
n

2(1 − εαn
)d

2(παn
, ραn

) − α2
n

2(1 + εαn
)d

2(μαn
, γαn

)

≤ εαn

(1 − εαn
)I(ραn

) + εαn

(1 + εαn
)I(γαn

) + o(1). (3.12)

If we now apply (3.11) to bound the first term and (3.12) to bound the second term, we 
obtain that
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g†(παn
)

1 − εαn

− g‡(μαn
)

1 + εαn

≤ o(1).

Step 4 : Conclusion. Let ω† be a modulus of continuity for h†. Combining the conclusion 
of Step 3 with (3.9) we obtain that for all n ∈ N

sup
π∈E

u(π) − v(π) ≤ ω†(d(παn
, μαn

)) + h†(μαn
)

1 − εαn

− h‡(μαn
)

1 + εαn

+ o(1)

≤ sup
π∈E

h†(π) − h‡(π) + ω†(d(παn
, μαn

)) + o(1)

where to establish the last inequality we used the boundedness of h†, h‡ and (3.14). 
The desired conclusion follows by taking limits on both sides in the above display and 
invoking one last time Proposition 3.2(d) Note that item (d) of Proposition 3.2 also 
implies Remark 2.16. �
3.1. Proof of Proposition 3.2

Proof. • Step 1: quadruplication of variables We first pick (πα,0, μα,0) ∈ E2 such that

sup
π∈E

u(π) − v(π) ≤ u(πα,0) − v(μα,0) −
α

2 d
2(πα,0, μα,0) + α−1. (3.13)

Next, we choose (ρα,0, γα,0) ∈ E2 such that

E(ρα,0) + E(γα,0) < +∞, d(πα,0, ρα,0) + d(γα,0, μα,0) < α−1, (3.14)

and εα ∈ (0, 1/3) such that

Ξα(xα,0) + εα < α−1, (3.15)

where xα,0 = (πα,0, ρα,0, μα,0, γα,0).
• Step 2: algebraic bounds on the difference of solutions In this step we show that

sup
π∈E

u(π) − v(π) ≤ Mα,0 + O(α−1) ≤ Mα + O(α−1/2). (3.16)

We do so by first showing that

sup
π∈E

u(π) − v(π) ≤ sup
x∈E4

Φα(x) − αΨα,0(x) + O(α−1)

≤ Φα(xα,0) − αΨα,0(xα,0) + O(α−1)
(3.17)

and eventually establishing that

αΨα,0(xα,0) ≥ αΨα(xα,0) + O(α−1/2). (3.18)



G. Conforti et al. / Journal of Functional Analysis 284 (2023) 109853 23
Once these two bounds have been proven, the desired conclusion (3.16) follows at 
once using (3.15). Let us now proceed to the proof of (3.17). From the boundedness 
of u, v and using the bounds

∣∣∣ 1
1 − εα

− 1
∣∣∣+ ∣∣∣ 1

1 + εα
− 1
∣∣∣ = O(εα) = O(α−1) (3.19)

we get

sup
π∈E

u(π) − v(π) ≤ Φα(xα,0) −
α

2 d
2(πα,0, μα,0) + O(α−1) (3.20)

From the choice of (πα,0, μα,0) (see (3.13)) we deduce that

α

2 d
2(πα,0, μα,0) ≤ sup

π
|u|(π) + sup

π
|v|(π) + sup

π
|u− v|(π) + α−1 = O(1) (3.21)

But then, using this last bound and (3.19) in (3.20) we obtain

sup
π∈E

u(π) − v(π) ≤ Φα(xα,0) − αΨα,0(xα,0) + O(α−1),

which proves the first inequality of (3.17). To prove the second one, i.e.

sup
x∈E4

Φα(x) − αΨα,0(x) + O(α−1) ≤ Φα(xα,0) − αΨα,0(xα,0) + O(α−1),

we proceed as before using the boundedness of u, v, (3.19) and (3.21), to show that

sup
x∈E4

Φα(x) − αΨα,0(x) + O(α−1) ≤ sup
π,μ∈E

u(π) − v(μ) − α

2 d
2(π, μ) + O(α−1).

By the choice of (πα,0, μα,0) (see (3.13)) we obtain

sup
x∈E4

Φα(x) − αΨα,0(x) + O(α−1) ≤ u(πα,0) − v(μα,0) −
α

2 d
2(πα,0, μα,0) + O(α−1),

and, through analogous computations, the second inequality of (3.17). In order to 
prove (3.18) we begin observing that the triangular inequality give

d(πα,0, μα,0) ≥ d(ρα,0, γα,0) − d(πα,0, ρα,0) − d(γα,0, μα,0). (3.22)

There are two possible cases:
– d(ρα,0, γα,0) < d(πα,0, ρα,0) + d(γα,0, μα,0). In this case, we immediately obtain 

from our choice of ρα,0 and γα,0 that d(ρα,0, γα,0) = O(α−1) from which we deduce 
that

d2(πα,0, μα,0) = d2(πα,0, ρα,0) + d2(ρα,0, γα,0) + d2(γα,0, μα,0) + O(α−2).
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– d(ρα,0, γα,0) ≥ d(πα,0, ρα,0) + d(γα,0, μα,0). In this case taking squares in (3.22)
and using (3.14) we get

d2(πα,0, μα,0) =d2(πα,0, ρα,0) + d2(ρα,0, γα,0) + d2(γα,0, μα,0)

+ d(ρα,0, γα,0)O(α−1) + O(α−2).

An application of the triangular inequality (3.22) in combination with (3.14) and 
(3.21) gives that d(ρα,0, γα,0) = O(α−1/2). Plugging this into the above display 
yields

d2(πα,0, μα,0) = d2(πα,0, ρα,0) + d2(ρα,0, γα,0) + d2(γα,0, μα,0) +O(α−3/2). (3.23)

Therefore in both cases we have that (3.23) holds. Multiplying this relation on both 
sides by α

2(1−εα) and using the basic inequality α
2(1−εα) ≤ α

2 ≤ α
2(1+εα) establishes 

(3.18).
• Step 3: Ekeland’s principle and proof of item (a),(b) and (c) The verification that 

Gα and B satisfy the hypothesis of Ekeland’s Lemma (Lemma A.1) is done sepa-
rately in Lemma A.3 in the Appendix. Next, we pick x̂ = (π̂, μ̂, ρ̂, ̂γ) ∈ E2 × D(E)2

such that

sup
x∈E4

Gα(x) − 1
2α

−2 ≤ Gα(x̂). (3.24)

If we now apply Lemma A.1 setting δ = α−1 we immediately obtain the equality 
statement in (3.4) thanks to item (2)-A.1. I.e., for each α > 0 we can find a unique 
xα = (πα, ρα, μα, γα) ∈ E2 × D(E2) that attains the maximum in supE4 Gα(·) −
α−1Bα(·). Moreover, using item (1)-A.1 in combination with (3.24) we prove the 
inequality statement in (3.4). This concludes the proof of item (b). At this point, 
item (a) is a direct consequence of equations (3.4), that we have just proven, (3.16), 
and the fact that Ξα, Ψα non-negative functions. Item (c) also follows from item 
(c)-A.1.

• Step 4: Proof of item (d). We have from item (b)

Mα − 1
2α

−2 ≤ Gα(xα)
Ξα≥0
≤ [Φα − αΨα](xα). (3.25)

Next, we observe that our choice of εα and the boundedness of u, v imply

Φα(xα) = Φα/6(xα) + O(α−1).

Moreover, using the version of Jensen’s inequality (A.3), proven separately in 
Lemma A.5, with the choices ε = εα, ε′ = εα/6 we obtain

Ψα(xα) ≥ 1Ψα ,0(xα).
3 6
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But then, the right hand side in (3.25) is bounded above by

Mα − 1
2α

−2 ≤ [Φα/6 −
α

6 Ψα/6,0](xα) − α

2 Ψα(xα) + O(α−1)

≤ Mα/6,0 −
α

2 Ψα(xα) + O(α−1)

(3.16)
≤ Mα/6 −

α

2 Ψα(xα) + O(α−1/2).

We have thus obtained

Mα − α−2 ≤ Mα/6 −
α

2 Ψα(xα) + O(α−1/2).

Taking lim sup on both sides we get

lim sup
α→∞

Mα ≤ lim sup
α→∞

Mα/6 −
α

2 Ψα(xα) ≤ lim sup
α→∞

Mα/6 −
1
2 lim inf

α→∞
αΨα(xα),

whence the existence of a sequence (αn)n∈N such that

lim
n→+∞

αn = +∞, lim
n→+∞

αnΨαn
(xαn

) = 0. (3.26)

To conclude the proof, we observe that thanks to item (b) we have

Gα(xα) ≥ Gα(xα,0) −
1
2α

−2,

whence, with the help of (3.15)

Ξα(xα) ≤ [Φα − αΨα](xα) − [Φα − αΨα](xα,0) + O(α1/2).

Using (3.18) on αΨα(xα,0) and Lemma A.5 to obtain −αΨα(xα) ≤ −αΨα,0(xα) +
5αΨα(xα), we obtain

Ξα(xα) ≤ Gα,0(xα) + 5αΨα(xα) − Gα,0(xα,0) + O(α−1/2).

Since Gα,0(xα) ≤ Mα,0 and Gα,0(xα,0) = Mα,0 + O(α−1) by (3.17), we find

Ξα(xα) ≤ 5αΨα(xα) + O(α−1/2).

As a consequence of (3.26), if we choose the same sequence (αn)n∈N giving (3.26)
we have

lim Ξαn
(xαn

) = 0. (3.27)

n→+∞
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Finally, observing that by construction

Ē(π) := E(π) + c1
2 d2(π, ν0) + c2,

for all π ∈ E and some c1 > 0, c2 ∈ R this implies by Lemma 4.1 (a) that

Ē(π) ≥ c̃1d
2(π, ν0) + c̃2

for all π ∈ E and some c̃1 > 0, ̃c2 ∈ R, we deduce from (3.27) that

lim
n→+∞

εαn
d2(ραn

, ν0) + εαn
d2(γαn

, ν0) = 0. �
3.2. Key estimates

We now prove the two main estimates we used in the proof of the comparison principle. 
In the next lemma, we find an upper bound for the first term on the right-hand side in 
(3.10) relying essentially on (EVIκ). It is precisely here where the use of d instead of dT
in Ekeland’s lemma results in weaker estimates that do not allow to conclude the proof 
of the comparison principle. In Lemma 3.4, we find an upper bound for the second term 
on the right-hand side in (3.10), relying on the curves introduced in Assumption 2.9. 
The proofs of these lemmas are partially inspired by Lemma 2.5 and 2.6 of [30]. In 
both statements, we use the information functional I = |∂E|2 which was introduced in 
Definition 2.8.

Lemma 3.3 (Estimate on drift from EVI and gradient flow). For fixed α > 0 let xα =
(πα, μα, ρα, γα) and ν0 be as in the proof of Theorem 2.14. Then, we have that E(πα) +
E(μα) < +∞ and the following estimates hold

α [E(ρα) − E(πα)] + ακ

2 d2(ρα, πα)

≤ (1 − εα)α [E(γα) − E(ρα)] − (1 − εα)ακ

2 d
2(ρα, γα) − εαI(ρα) + (1 − εα)α−1

+εαc1[E(ν0) − E(ρα)] − εαc1
κ

2 d
2(ρα, ν0);

(3.28)

α [E(μα) − E(γα)] − ακ

2 d2(γα, μα)

≥ (1 + εα)α [E(γα) − E(ρα)] + (1 + εα)ακ

2 d
2(ρα, γα) + εαI(γα) − (1 + εα)α−1

+εαc1[E(γα) − E(ν0)] + εαc1
κ

2 d
2(γα, ν0).

(3.29)

Moreover, I(ρα) + I(γα) < ∞. As a corollary, if (αn)n∈N is the sequence given by 
Proposition 3.2-(d), then we have
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αn

[ 1
1 − εαn

(
E(ραn

) − E(παn
) + κ

2 d
2(παn

, ραn
)
)

− 1
1 + εαn

(
E(μαn

) − E(γαn
) − κ

2d
2(παn

, ραn
)
)]

≤ − εαn

(1 − εαn
)I(ραn

) − εαn

(1 + εαn
)I(γαn

) + o(1).

(3.30)

Proof. The fact that E(πα) < +∞ follows from the subsolution property (3.8) of u and 
the fact that u(πα), h†(πα), E(ρα) are all finite quantities. The proof that E(μα) < +∞
is analogous. Fix s > 0. From (EVIκ) and Ekeland’s principle (3.4) we obtain that the 
gradient flow started at ρα satisfies

α

s∫
0

E(ρα(r)) − E(πα) + κ

2d
2(ρα(r), πα) dr

≤ αd2(ρα, πα)
2 − αd2(ρα(s), πα)

2

= (1 − εα)
(αd2(ρα, πα)

2(1 − εα) + Gα(xα)
)
− (1 − εα)

(αd2(ρα(s), πα)
2(1 − εα) + Gα(xα)

)

≤ (1 − εα)
(αd2(ρα, πα)

2(1 − εα) + Gα(xα)
)

− (1 − εα)
(αd2(ρα(s), πα)

2(1 − εα) + Gα(πα, μα, ρα(s), γα) − α−1Bα(πα, μα, ρα(s), γα)
)
.

Recalling (3.2a), we can rewrite the last expression as

(1 − εα)α
[
d2(ρα(s), γα)

2 − d2(ρα, γα)
2

]
(3.31)

+ εα[E(ρα(s)) − E(ρα)]+εα
c1
2 [d2(ρα(s), ν0) − d2(ρα, ν0)] (3.32)

+ (1 − εα)α−1dT (ρα(s), ρα). (3.33)

Using (EVIκ) in (3.31), the energy identity (4.2), again (EVIκ) in (3.32) and Lemma 4.3
(b) in (3.33) we obtain the upper bound

s∫
0

α(1 − εα)[E(γα) − E(ρα(r)) − κ

2 d
2(ρα(r), γα)] − εαI(ρα(r))dr + (1 − εα)α−1s

+
s∫

0

εαc1[E(ν0) − E(ρα(r)) − κ

2 d
2(ρα(r), ν0)]dr.

Dividing by s and letting s → 0 we obtain (3.28), recalling that r �→ d2(ρα(r), γα), 
r �→ d2(ρα(r), ν0), r �→ E(ρα(r)) are continuous functions and that r �→ I(ρα(r)) is 
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right continuous by Lemma 4.1 (d). Arguing in the same way, we obtain (3.29). Finally, 
having proved (3.28), if we observe that all terms except I(ρα) are finite, we can deduce 
that I(ρα) < +∞. The proof that I(γα) < +∞ is completely analogous. At this point, 
inequality (3.30) follows due to Proposition 3.2-(d). �

In the following lemma we obtain an upper bound for the second term in (3.10). Here, 
it is the fact that (E, d) is a geodesic space together with the geometric conditions (2.6)
(2.7) that play a crucial role.

Lemma 3.4. For fixed α > 0, let xα = (πα, μα, ρα, γα) be as in the proof of Theorem 2.14. 
Then we have

α2

2 d2(ρα, πα) ≤ (1 − εα)1
2 [α−1 + αd(ρα, γα)]2 + εα

2 [
√

I(ρα) + c1d(ρα, ν0)]2 (3.34)

and

α2

2 d2(γα, μα) ≥ (1 + εα)α
2

2 d2(γα, ρα) − 1
2εα
(
c1d(γα, ν0) +

√
I(γα)

)2
+ o(1). (3.35)

As a corollary, if (αn)n∈N is the sequence given by Proposition 3.2-(d), then we have

α2
n

2(1 − εαn
)d

2(παn
, ραn

) − α2
n

2(1 + εαn
)d

2(μαn
, γαn

)

≤ εαn

(1 − εαn
)I(ραn

) + εαn

(1 + εαn
)I(γαn

) + o(1). (3.36)

Proof. We begin by proving (3.34). First note that if d(ρα, πα) = 0, there is nothing to 
prove. We thus only prove the first statement in the case that d(ρα, πα) > 0. To do so, 
we define the auxiliary function G̃α(·) by

G̃α(·) = −(1 − εα)Gα(πα, μα, ·, γα)

= α

2 d
2(·, πα) + (1 − εα)α2 d

2(·, γα) + εαĒ(·) + c,

where c is a constant. We obtain from (3.4), the definition of Bα (see (3.5)) and the 
Lipschitzianity of Tataru’s distance that

∀ρ ∈ E, G̃α(ρα) − G̃α(ρ) ≤ (1 − εα)α−1dT (ρ, ρα) ≤ (1 − εα)α−1d(ρ, ρα).

Let us now consider a geodesic ζρα→πα , fix θ > 0 small enough, and consider the curve 
ζρα→πα

θ given by Assumption 2.9. Choosing ρ = ζρα→πα

θ (s) in the above estimate and, 
dividing by s, and letting s ↓ 0 we obtain
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lim inf
s↓0

α

2s [d2(ρα, πα) − d2(ζρα→πα

θ (s), πα)] (3.37a)

≤ lim sup
s↓0

(1 − εα)
αs

d(ζρα→πα

θ (s), ρα) (3.37b)

+ lim sup
s↓0

(1 − εα)α
2s [d2(ζρα→πα

θ (s), γα) − d2(ρα, γα)] (3.37c)

+ lim inf
s↓0

εα
s

[Ē(ζρα→πα

θ (s)) − Ē(ρα)]. (3.37d)

We start with estimates for all the terms on the right-hand side of (3.37). To this aim, we 
observe that for any σ ∈ E we have, using the triangle inequality, the geodesic property 
and hypothesis (2.6)

d(ζρα→πα

θ (s), σ) ≤ d(ρα, σ) + d(ζρα→πα

θ (s), ρα)

≤ d(ρα, σ) + sd(ρα, πα) + d(ζρα→πα

θ (s), ζρα→πα(s))

≤ d(ρα, σ) + sd(ρα, πα) + sθ(1 + o(1)).

(3.38)

Choosing σ = ρα to bound (3.37b), σ = γα for (3.37c), and σ = ν0 to bound the distance 
term of (3.37d) together with

lim inf
s↓0

1
s
[E(ζρα→πα

θ (s)) − E(ρα)]
(2.7)
≤
√

I(ρα)(d(ρα, πα) + θ) (3.39)

for the energy term of (3.37d), we obtain that the right hand side in (3.37) is bounded 
above by

(d(πα, ρα) + θ)
(
(1 − εα)(α−1 + αd(ρα, γα)) + εα

(
c1d(ρα, ν0) +

√
I(ρα)

))
. (3.40)

Let us now turn the attention to (3.37a). Here, using that

d(πα, ζ
ρα→πα

θ (s)) ≤ (1 − s)d(ρα, πα) + d(ζρα→πα(s), ζρα→πα

θ (s))

≤ (1 − s)d(ρα, πα) + sθ(1 + o(1))

we find that (3.37a) is bounded below by

αd(ρα, πα)(d(ρα, πα) − θ). (3.41)

Assembling together (3.40) with (3.41), dividing by d(ρα, πα) and letting θ → 0 yields

αd(ρα, πα) ≤
(
(1 − εα)(α−1 + αd(ρα, γα)) + εα

(
c1d(ρα, ν0) +

√
I(ρα)

))
,

from which the bound (3.34) is obtained taking squares on both sides, using convexity 
of the square function on the right hand side and eventually dividing by two. Let us 
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now proceed to the proof of the second inequality. We do the proof in detail as, even 
though it uses some arguments similar to those used to obtain the first estimate, there 
are also some non trivial differences. We begin by noting that we can assume without 
loss of generality that d(ρα, γα) > 0. Next, define the auxiliary test function Ḡα(·) by

Ḡα(·) = −Gα(πα, μα, ρα, ·)

= α

2(1 + εα)d
2(·, μα) + α

2 d
2(ρα, ·) + εα

(1 + εα) Ē(·)+c.

We obtain from (3.4), the definition of Bα (see (3.5)) and the Lipschitzianity of Tataru’s 
distance that

∀γ ∈ E, Ḡα(γα) − Ḡα(γ) ≤ α−1dT (γ, γα) ≤ α−1d(γ, γα).

Let us now consider a geodesic from γα to ρα, ζγα→ρα , (Due to the fact that we don’t 
have linearity and all the properties of the flow given in Assumption 2.9 are given with 
lim sup, we have to go from γα to ρα while for the other inequality we had to go from ρα
to πα) fix a θ > 0 small enough, and consider the curve ζγα→ρα

θ given by Assumption 2.9. 
Using the previous estimate, we have, for all s small enough,

lim inf
s↓0

α

2s [d2(ρα, γα) − d2(ρα, ζγα→ρα

θ (s))] (3.42a)

≤ lim sup
s↓0

1
αs

d(ζγα→ρα

θ (s), γα) (3.42b)

+ lim sup
s↓0

α

2s(1 + εα)
(
d2(ζγα→ρα

θ (s), μα) − d2(γα, μα)
)

(3.42c)

+ lim inf
s↓0

εα
s(1 + εα) [Ē(ζγα→ρα

θ (s)) − Ē(γα)]. (3.42d)

In order to estimate all terms containing d on the right hand side, we use the analogous 
of (3.38), namely that for all σ ∈ E

d(ζγα→ρα

θ (s), σ) ≤ d(γα, σ) + d(ζγα→ρα

θ (s), γα)

≤ d(γα, σ) + sd(γα, ρα) + d(ζγα→ρα

θ (s), ζγα→ρα(s))

≤ d(γα, σ) + sd(γα, ρα) + sθ(1 + o(1)).

(3.43)

Indeed, choosing σ = γα to bound the right hand side of (3.42b), σ = μα to bound 
(3.42c), σ = ν0 to bound the distance term of (3.42d) and

lim inf
s↓0

1
s
[E(ζγα→ρα

θ (s)) − E(γα)]
(2.7)
≤
√
I(γα)(d(γα, ρα) + θ) (3.44)

for the energy term of (3.42d), we obtain that the right hand side in (3.42) is bounded 
above by
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(d(γα, ρα) + θ)
(
α−1 + α

(1 + εα)d(γα, μα) + εα
(1 + εα)

(
c1d(γα, ν0) +

√
I(γα)

))
(3.45)

Let us now turn the attention to (3.42a). Here, using that

d(ρα, ζγα→ρα

θ (s)) ≤ (1 − s)d(ρα, γα) + d(ζγα→ρα(s), ζγα→ρα

θ (s))

≤ (1 − s)d(ρα, γα) + sθ(1 + o(1))

we obtain that (3.42a) is bounded below by

αd(ρα, γα)(d(ρα, γα) − θ). (3.46)

Assembling together (3.45) with (3.46), dividing by d(ρα, γα) and letting θ → 0 yields

αd(ρα, γα) − α−1 ≤ α

(1 + εα)d(γα, μα) + εα
(1 + εα)

(
c1d(γα, ν0) +

√
I(γα)

)

If αd(ρα, γα) − α−1 ≥ 0 the bound (3.35) is obtained taking squares on both sides, 
using convexity of the square function on the right hand side and the fact that d(ρα, γα)
is o(1). If αd(ρα, γα) − α−1 < 0, it is easily seen that the right hand side of (3.35) is 
bounded above by a function that is o(1), from which the desired conclusion follows. 
Finally, the bound (3.36) is a consequence of (3.35), (3.34), Proposition 3.2-(d) and the 
basic inequality

1
2

(
c1d(·, ν0) +

√
I(·)
)2

≤ c21d
2(·, ν0) + I(·). �

4. Consequences of EVI and properties of the Tataru distances

4.1. Consequences of EVI

In this section we deduce from EVI various estimates on the behavior of d, E and 
I along the gradient flow. These estimates play a fundamental role in the proof of the 
comparison principle and are be obtained with little effort from those of [43].

Lemma 4.1. Let Assumption 2.3 and 2.5 hold (in particular EVI inequality (EVIκ)). For 
μ ∈ E, let (μ(t))t≥0 be the corresponding gradient flow starting at μ. Then the following 
holds:

(a) For each c1 > −κ and for each ν ∈ E there exist c2, ̃c2 ∈ R such that if we set

∀π ∈ E, Ē(π) := E(π) + c1
2 d2(π, ν) + c2,

then we have
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inf
π∈E

Ē(π) = 0 (4.1)

and

∀π ∈ E Ē(π) ≥ κ + c1
2 d2(π, ν) + c̃2.

(b) For any t > 0 we have

E(μ(t)) − E(μ) = −
t∫

0

I(μ(s))ds. (4.2)

(c) The domain D(I) is dense in D(E) and dense in E. In particular, the domain D(E)
of E is dense in E.

(d) For any t > 0, we have I(μ(t)) < ∞. The map t �→ I(μ(t)) is right-continuous at 
any t0 ≥ 0 such that I(μ(t0)) < ∞.

(e) Let ν ∈ E and let (ν(t))t≥0 be the corresponding gradient flow starting at ν. Then 
we have

d(μ(t), ν(t)) ≤ e−κtd(μ, ν) ∀t ∈ [0,+∞). (4.3)

In particular, for a given μ ∈ E, there is at most one solution of (EVIκ) such that 
μ(t) → μ as t → 0.

Proof. We begin by observing that under the current hypothesis the triplet (E, d, E) is 
a metric-functional system in the sense of [43, Eq 3.1]. This allows us to deduce most of 
the results we need to prove from Theorem 3.5 therein. Item (a) is proven at [43, Thm 
3.5], see Eq (3.15) and the discussion surrounding its proof. For the proof of (b), note 
that [43, Thm 3.5, Eq 3.11] and [10, Theorem 2.1.7] imply that t �→ E(μ(t)) is locally 
Lipschitz and, hence, absolutely continuous on (0, ∞). By [43, Thm 3.5, Eq 3.17] and the 
monotone convergence theorem, we obtain (4.2). Item (c) follows from [43, Thm 2.10]
and Assumption 2.3, item (d) follows from [43, Thm 3.5, Eq 3.11 and Eq 3.12] and item 
(e) from [43, Thm 3.5, Eq 3.10]. �
4.2. Properties of the Tataru distance

We develop here the key results that hold for our adjusted Tataru distance. First of 
all, note that the infimum in the definition is attained.

Remark 4.2. Since the gradient flow (thanks to Assumption 2.5) and the distance d are 
continuous then the inf is attained. Indeed, for all μ, ν ∈ E, we have 0 ≤ dT (μ, ν) ≤
0 + d(μ, ν(0)) = d(μ, ν). Let (tn)n∈N ∈ [0, +∞) be a minimizing sequence, i.e.
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lim
n→+∞

tn + eκ̂tnd(μ, ν(tn)) = dT (μ, ν).

Then, for all n ∈ N we have

0 ≤ tn + eκ̂tnd(μ, ν(tn)) ≤ d(μ, ν),

hence 0 ≤ tn ≤ d(μ, ν) and (tn)n∈N is a bounded sequence. Passing to a subsequence, 
still called (tn)n∈N by an abuse of notation, we have limn→+∞ tn = t̄ for a t̄ ≥ 0. Being 
the gradient flow ν(·) and d continuous we also have

lim
n→+∞

eκ̂tnd(μ, ν(tn)) = eκ̂t̄d(μ, ν(t̄)).

Therefore we must have

dT (μ, ν) = t̄ + eκ̂t̄d(μ, ν(t̄)).

Secondly, we note that the EVI inequality (EVIκ) leads to the control on the growth 
of the distance along two solutions of the gradient flow.

Lemma 4.3. We have for all μ, μ̂, ν, ̂ν ∈ E and r > 0 that
(a)

dT (μ, ν) − dT (μ̂, ν̂) ≤ d(μ, μ̂) + d(ν, ν̂)

(b) dT (ν(r), ν̂) − dT (ν, ν̂)
r

≤ 1.

Proof. For (a) Let t ∈ [0, +∞) be optimal for dT (μ̂, ̂ν), i.e.

dT (μ̂, ν̂) = t + eκ̂td(μ̂, ν̂(t)).

Then, we have

dT (μ, ν) − dT (μ̂, ν̂) ≤ eκ̂td(μ, ν(t)) − eκ̂td(μ̂, ν̂(t))

≤ eκ̂t [d(μ, μ̂) + d(μ̂, ν(t)) − d(μ̂, ν̂(t))]

≤ eκ̂td(μ, μ̂) + eκ̂td(ν(t), ν̂(t))

≤ eκ̂td(μ, μ̂) + e(κ̂−κ)td(ν, ν̂)

≤ d(μ, μ̂) + d(ν, ν̂),

where in line 4 we use equation (4.3), in line 5 we use that κ̂ ≤ 0 and κ̂−κ ≤ 0. For (b), 
let t ∈ [0, +∞) be optimal for dT (ν, ̂ν). Then working with the sub-optimal t + r for the 
first term, we obtain
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dT (ν(r), ν̂) − dT (ν, ν̂)
r

≤ e(t+r)κ̂d(ν(r), ν̂(t + r)) + t + r − etκ̂d(ν, ν̂(t)) − t

r

≤ e(t+r)κ̂d(ν(r), ν̂(t + r)) − eκ̂td(ν, ν̂(t))
r

+ 1

≤ eκ̂t
d(ν, ν̂(t)) − d(ν, ν̂(t))

r
+ 1

≤ 1

by equation (4.3) and the fact that κ̂− κ ≤ 0, κ̂ ≤ 0. �
Lemma 4.4. For ρ, μ, ν ∈ E, we have

dT (ρ, ν) ≤ dT (ρ, μ) + dT (μ, ν).

Proof. We have

dT (ρ, ν) = inf
t≥0

{
t + eκ̂td(ρ, ν(t))

}
= inf

t,s≥0

{
t + s + eκ̂(t+s)d(ρ, ν(t + s))

}

≤ inf
t,s≥0

{
t + s + eκ̂(t+s)d(ρ, μ(t)) + eκ̂(t+s)d(μ(t), ν(t + s))

}
.

We now use that, as κ̂ ≤ 0 we have eκ̂(t+s)d(ρ, μ(t)) ≤ eκ̂td(ρ, μ(t)). For the term 
eκ̂(t+s)d(μ(t), ν(t + s)) we use equation (4.3) and the fact that κ̂− κ ≤ 0. This yields

dT (ρ, ν) ≤ inf
t,s≥0

{
t + s + eκ̂td(ρ, μ(t)) + eκ̂sd(μ, ν(s))

}
≤ dT (ρ, μ) + dT (μ, ν). �

5. Examples

In this section, we treat three key examples:

• Hilbert spaces, in particular in the context where E is derived from a Dirichlet energy. 
This includes e.g. the linearly controlled Allen-Cahn equation.

• Finite dimensional spaces that are essentially Riemannian manifolds.
• The Wasserstein space P2(Rd).

In all the examples, the first step is the verification that the metric space satisfies As-
sumption 2.3 and that there exists a gradient flow satisfying (EVIκ). We will argue this 
final point starting from κ-convexity of the functional E , see Definition 5.1 below. In 
concrete examples, this property is typically easier to verify, and is strongly related to 
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(EVIκ). Indeed, κ-convexity of E is implied by the existence of a gradient flow satisfy-
ing (EVIκ) by a result of [24]. The other implication is not established in general, but 
includes an extensive list of relevant examples, see the discussion in Section 3.4 of [43]. 
For our first two examples we will argue via this route, while for the final example, we 
will use the methods of [3] based on the κ-convexity of E along generalized geodesics.

Definition 5.1. Let κ ∈ R. We say that a lower semi-continuous functional E : E →
R ∪ {∞} is κ-convex on a curve γ : [0, 1] → D(E) if it satisfies for all t ∈ [0, 1] the 
inequality

E (γ(t)) ≤ (1 − t)E(γ(0))) + tE(γ(1))) − κ

2 t(1 − t)d2(γ(0), γ(1)).

If for any two points ρ, π ∈ D(E), there exists a constant speed geodesic ζρ→π such that 
E is κ-convex on ζρ→π, then we call E κ-convex. If E is κ-convex on all geodesics, then 
we call E strongly κ-convex.

Theorem 5.2 (Theorem 3.2 [24]). Consider a lower semi-continuous functional E : E →
R ∪{∞} on a geodesic space (E, d) such that there exist a gradient flow satisfying (EVIκ). 
Then E is strongly κ-convex.

Therefore, in all examples below, we can outright assume that we are working with 
a κ-convex functional. In this context, the following proposition simplifies establishing 
Assumption 2.9.

Proposition 5.3. Consider the context of Assumption 2.3. Consider ρ, π such that I(ρ) +
E(π) < ∞ and let ζρ→π be the constant speed geodesic between ρ and π. Suppose that for 
each θ > 0 there is a curve (ζρ→π

θ (t))t∈[0,1], ζρ→π
θ (0) = ρ, ζρ→π

θ (t) 	= ρ if t ∈ [0, 1] such 
that:

(a) E is κ-convex along ζρ→π
θ ,

(b) the angle condition (2.6) holds:

lim sup
t↓0

d(ζρ→π
θ (t), ζρ→π(t))

t
≤ θ,

(c) for all t we have ζρ→π
θ (t) ∈ D(|∂E|) and

lim
t↓0

|∂E|(ζρ→π
θ (t)) = |∂E|(ρ).

Then Assumption 2.9 holds.

Remark 5.4. Consider the context in which the approximating curves ζρ→π
θ are them-

selves geodesics. Then by Theorem 5.2 we obtain that E is κ-convex along geodesics 
implying (a).
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Remark 5.5. In a range of contexts, one finds that I = |∂E|2 is convex along geodesics 
inside D(|∂E|). As |∂E| is always lower semi-continuous, this implies (c).

Proof. By assumption (b), it suffices the establish (2.7) for the curves ζρ→π
θ . Due to the 

κ-convexity of E along ζρ→π
θ given in (a), we can apply Proposition 2.4.9 in [3] to obtain

d(ζρ→π
θ (t), ρ)|∂E(ζρ→π

θ (t))| ≥ E(ζρ→π
θ (t)) − E(ρ) + κ

2d
2(ζρ→π

θ (t), ρ).

Rewriting the inequality yields

E(ζρ→π
θ (t)) − E(ρ)

t
≤ d(ζρ→π

θ (t), ρ)
t

|∂E(ζρ→π
θ (t))| − κ

2td
2(ζρ→π

θ (t), ρ).

Using the triangle inequality, and the angle condition of (b), and that ζρ→π is a geodesic, 
we find

lim sup
t↓0

d(ζρ→π
θ (t), ρ)

t
≤ lim sup

t↓0

d(ζρ→π
θ (t), ζρ→π(t)) + d(ζρ→π(t), ρ)

t
≤ θ + d(ρ, π).

Combining the two above equations, we have

lim inf
t↓0

E(ζρ→π
θ (t)) − E(ρ)

t
≤ (θ + d(ρ, π)) lim inf

t↓0
|∂E(ζρ→π

θ (t))|

≤ (θ + d(ρ, π)) lim inf
t↓0

|∂E(ρ)|

establishing the claim. �
5.1. Hilbert spaces

In this subsection, we assume that (E, d) = (H, ‖·‖) is a Hilbert space. Below we 
will verify our Assumptions in two examples, one treats linearly controlled Ornstein-
Uhlenbeck type Hamiltonians on general Hilbert spaces, the other treats L2(Rd) with 
an energy that yields the solution to the Allen-Cahn equation as a gradient flow. For 
another example where our methods apply see [30]. We start out with a general existence 
result for (EVIκ).

Theorem 5.6 (Brezis-Pazy, Theorem 3.1 [2]). Let E be κ-convex and lower semi-
continuous. Then there is a unique solution to (EVIκ) for E.

5.1.1. The gradient flow constructed from a maximally dissipative operator
As the main example representing a large class of flows, we consider

ρ̇ = 1Δρ− κρ (5.1)
2
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on L2(Rd) which formally corresponds to the gradient flow of

E(ρ) = 1
2

∫
|∇ρ(x)|2 + κ|ρ(x)|2dx = −1

2 〈Δρ− κρ, ρ〉. (5.2)

We see that E decomposes as a Dirichlet energy which is lower semi-continuous and 
convex, combined with κ/2 times the norm-squared. This implies E is κ-convex and that 
the gradient flow satisfying (EVIκ) represented by (5.1) exists by Theorem 5.6. The use 
of the Laplacian or the specific form of the Hilbert space in this argument is not essential. 
The example thus generalizes immediately to the context where we consider a general 
Hilbert space H and replace Δ in (5.1) by a maximally dissipative linear self-adjoint 
operator C. We introduce some definitions to take care of general maximally dissipative 
operators and establish their connection 0-convex energy functionals.

Definition 5.7. We say that an operator C ⊆ E × E is dissipative, if for all 
(ρ1, ξ1), (ρ2, ξ2) ∈ C we have

〈ξ1 − ξ2, ρ1 − ρ2〉 ≤ 0.

If C is a single-valued operator, dissipativity is equivalent to

〈Cρ1 − Cρ2, ρ1 − ρ2〉 ≤ 0

for all ρ1, ρ2 ∈ D(C). We say that an operator C is maximally dissipative if any dissipa-
tive extension B of the operator C equals C.

In the context of a maximally dissipative linear and self-adjoint operator, which in-
clude all self-adjoint generators of linear strongly continuous semigroups, we thus identify 
the flow of this semigroup as the gradient flow for the Dirichlet energy constructed from 
C.

Proposition 5.8. Let (C, D(C)) be a at most single-valued linear self-adjoint and max-
imally dissipative operator on H and let κ ∈ R. Let E be the lower semi-continuous 
regularization of the functional

E0(ρ) :=
{
−1

2 〈Cρ, ρ〉 + κ
2 ‖ρ‖2 if ρ ∈ D(C),

∞ otherwise

Then the conclusion of Theorem 2.14 hold for the Hilbert space H and energy functional 
E.

For the proof, we turn to Theorem 2.14 and verify Assumptions 2.3, 2.5 and 2.9. As 
the first assumption is immediate in this Hilbertian context, we focus on the other two 



38 G. Conforti et al. / Journal of Functional Analysis 284 (2023) 109853
assumptions. To facilitate the verification, we first study the convexity properties and 
the Frechét subdifferential of E0 and E in the case that κ = 0.

Definition 5.9. Let φ : E → R ∪ {∞} be a functional. The Frechét subdifferential ∂φ(x)
at x ∈ E is given by

∂φ(ρ) :=
{
ξ ∈ E

∣∣∣∣ lim inf
π→ρ

φ(π) − φ(ρ) − 〈ξ, π − ρ〉
‖π − ρ‖ ≥ 0

}
. (5.3)

If φ is lower semi-continuous and convex then by Proposition 1.4.4 of [2] also

∂φ(ρ) = {ξ ∈ E | ∀π ∈ E : φ(π) − φ(ρ) − 〈ξ, π − ρ〉 ≥ 0} . (5.4)

Note that the notation |∂φ|(ρ) for the local slope of φ at ρ should not be interpreted as 
the ‘size’ of ∂φ(ρ), although the local slope is related to the size of the smallest element 
in ∂φ(ρ). See Proposition 1.4.4 of [2].

Lemma 5.10. Consider the setting of Proposition 5.8 with κ = 0. We then have that

(a) E0 ≥ 0 and for ρ, π ∈ D(C) and t ∈ [0, 1] we have

E0(π) − E0(ρ) − 〈−Cρ, π − ρ〉 = E0(π − ρ) ≥ 0, (5.5)

E0(ρ + t(π − ρ)) = (1 − t)E0(ρ) + tE0(π) − t(1 − t)E0(π − ρ). (5.6)

(b) D(C) ⊆ D(E), 0 ≤ E ≤ E0 and E = E0 on D(C) and E is 0-convex. If ρ is such that 
E(ρ) < ∞ then there are ρn ∈ D(C) such that

lim
n

E0(ρn) = lim
n

E(ρn) = E(ρ). (5.7)

(c) D(∂E) = D(C) and for all ρ ∈ D(C) we have ∂E(ρ) = {−Cρ} and |∂E|(ρ) = ‖Cρ‖.

Proof. For the proof of (a), note that due to dissipativity E0 ≥ 0. Next, consider x, y ∈
D(C), then using the linearity of C we obtain

E0(π) − E0(ρ) − 〈−Cρ, π − ρ〉 = E0(π − ρ) + 1
2 (〈Cρ, π〉 − 〈Cπ, ρ〉) .

As C is self-adjoint, we have

E0(π) − E0(ρ) − 〈−Cπ, π − ρ〉 = E0(π − ρ) ≥ 0

establishing (5.5). The parallelogram rule in (5.6) follows by a direct computation. We 
proceed to the second item. As E is the lower semi continuous regularization of E0 ≥ 0, 
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we find 0 ≤ E ≤ E0. Thus, let ρ ∈ D(C) and consider ρn ∈ D(C) such that ρn → ρ. Then 
by (a), we have

lim inf
n→∞

E0(ρn) ≥ lim inf
n→∞

E0(ρ) + 〈−Cρ, ρn − ρ〉 = E0(ρ)

establishing that E(ρ) = E0(ρ). As a consequence, the 0-convexity of E follows from (5.6). 
(5.7) follows by construction. To establish (c), first consider ρ ∈ D(C). We verify that 
−Cρ ∈ ∂E(ρ) by using (5.4), in other words, we establish

E(π) − E(π) − 〈−Cρ, π − ρ〉 ≥ 0

for any π. First note that if E(π) = ∞ there is nothing to prove. So consider π such that 
E(π) < ∞. By (5.7) there are πn ∈ D(C) converging to π satisfying limn E(πn) = E(π). 
Then by (5.5) we have

E(π) − E(ρ) − 〈Cρ, π − ρ〉
≥ lim

n
E(πn) − E(ρ) − 〈−Cρ, πn − ρ〉 ≥ lim

n
E(πn − ρ) ≥ 0

so that ρ ∈ D(∂E) and −Cρ ∈ ∂E(ρ). It follows that the graph of C is contained in the 
dissipative operator −∂E and as C is maximally dissipative C = −∂E . We thus find that 
∂E(ρ) = {−Cρ} which implies by Proposition 1.4.4 of [3] that |∂E|(ρ) = ‖Cρ‖. �
Proof of Proposition 5.8. It suffices to verify Assumptions 2.3, 2.5 and 2.9. First note 
that Assumption 2.3 is immediate. We next turn to Assumption 2.5 and establish the 
existence of the gradient flow satisfying (EVIκ). As the map ρ �→ κ

2 ‖ρ‖2 is κ-convex, it 
follows by Lemma 5.10 that E is κ-convex. Thus, Theorem 5.6 implies the existence of a 
solution to (EVIκ) establishing Assumption 2.5. We will verify Assumption 2.9 by means 
of Proposition 5.3. Consider ρ, π such that I(ρ) +E(π) < ∞. We approximate the geodesic 
ζρ→π(t) = (1 − t)ρ + tπ between ρ and π by the geodesic ζρ→π

θ (t) := (1 − t)ρ + tS(θ)π
between ρ and S(θ̂)π, where t �→ S(t)π is used to denote the gradient flow started from 

π and where θ̂ is chosen such that 
∥∥∥S(θ̂)π − π

∥∥∥ ≤ θ. To verify the angle condition (b) of 
Proposition 5.3, note that

‖ζρ→π
θ (t) − ζρ→π(t)‖

t
=

∥∥∥(1 − t)ρ + tS(θ̂)π − ((1 − t)ρ + tπ)
∥∥∥

t

=
∥∥∥S(θ̂)π − π

∥∥∥
which by choice of θ̂ is smaller than θ. For the second property, note that by Lemma 5.10
we have

lim |∂E|(ζρ→π
θ (t)) = lim

∥∥∥(1 − t)Cρ + tCS(θ̂)π
∥∥∥ = ‖Cρ‖ = |∂E|(ρ)
t↓0 t↓0
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so that (2.7) follows by Proposition 5.3. �
5.1.2. The Allen-Cahn equation

In the context of more concrete Hilbert spaces, we can introduce more general energy 
functionals. We will not aim for an exhaustive list, but rather consider a single example 
of interest: the energy functional associated to the Allen-Cahn equation on H = L2(Rd):

ρ̇ = 1
2Δρ− F ′(ρ) − κρ. (5.8)

Here κ ∈ R and F : Rd → [0, ∞) is a non-negative convex C1 function such that 
F (0) = 0. By Remark 2.3.9 and Corollary 1.4.5 in [3], we can represent this equation as 
the gradient flow of the energy

E(ρ) = 1
2

∫
|∇ρ(x)|2 + κ|ρ(x)|2dx +

∫
F (ρ(x))dx. (5.9)

Proposition 5.11. Consider the Hilbert space H = L2(Rd) and energy functional E of 
(5.9), where κ ∈ R and where F : Rd → [0, ∞) is a non-negative convex C1 function 
such that F (0) = 0. Then the conclusion of Theorem 2.14 hold.

Proof. It suffices to verify Assumptions 2.3, 2.5 and 2.9. By construction, E is κ-convex. 
By Theorem 5.6 the gradient flow for E exists and satisfies (EVIκ). As in the proof of 
Proposition 5.8, it thus suffices to establish Assumption 2.9. We do so as above. First 
note that by (3.4.14) of Remark 2.3.9 and Corollary 1.4.5 in [3] we have

∂E(ρ) =
{
{Δρ− F ′(ρ) − κρ} if Δρ, F ′(ρ) ∈ L2(Rd),
∅ otherwise.

We thus obtain that

|∂E|(ρ) = ‖Δρ− F ′(ρ) − κρ‖ .

We next establish the conditions for Proposition 5.3, and we do so on the basis of the 
same curves ζρ→π

θ (t) = (1 − t)ρ + tS(θ̂)π as in the proof of Proposition 5.8. ζρ→π
θ is 

therefore the linear interpolation between two elements in D(|∂E)|. As F ′ is increasing 
and Δ is linear, it follows that ζρ→π

θ (t) ∈ D(|∂E|) for all t ∈ [0, 1]. We next establish 
that

lim
t↓0

|∂E|2(ζρ→π
θ (t)) = |∂E|2(ρ). (5.10)

We will establish this result by the use of the dominated convergence theorem. First of 
all
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|∂E|2(ζρ→π
θ (t)) =

∫
|Δζρ→π

θ (t)(x) − F ′(ζρ→π
θ (t)(x)) − κζρ→π

θ (t)(x)|2dx

and as ζρ→π
θ (t) → ρ point-wise as t ↓ 0, it suffices to find a integrable dominating 

function. Elementary point-wise estimates yield

|Δζρ→π
θ (t)(x) − F ′(ζρ→π

θ (t)(x)) − κζρ→π
θ (t)(x)|2

≤ 3|Δζρ→π
θ (t)|2 + 3|F ′(ζρ→π

θ (t)(x)|2 + 3κ2|ζρ→π
θ (t)(x)|2

≤ 3|Δρ(x)|2 + 3|ΔS(θ̂)π(x)|2 + 3|F ′(ρ(x))|2

+ 3|F ′(S(θ̂)π(x))| + 3κ2|ρ(x)|2 + 3κ2|S(θ̂)π(x)|2

as F ′ is increasing, and all six terms are integrable by assumption. Thus (5.10) follows 
by dominated convergence. Thus Assumption 2.9 follows by an application of Proposi-
tion 5.3. �
5.2. Almost Riemannian manifolds

In our second set of examples, we consider spaces that are essentially Riemannian 
manifolds. To illustrate what we are aiming for, consider the Hamiltonian

Hf(x) = (μ− x)f ′(x) + 1
2x(f ′(x))2, x ≥ 0 (5.11)

for some constant μ > 0. This Hamiltonian arises in the study of Freidlin-Wentzell type 
large deviation analysis of the Cox-Ingersoll-Ross model in finance [23,25]. Following [25], 
we study the Hamilton–Jacobi equation using a Riemannian point of view, where the 
Riemannian metric is generated by the quadratic part of the Hamiltonian. Arguing that 
the Hamiltonian is a map on the co-tangent bundle, we obtain a metric on the tangent 
bundle that satisfies 〈v, w〉g(x) = x−1vw with the metric g(x) = x−1 being singular in 0. 
We will show, however, that by interpreting the drift in (5.11) as the gradient flow of a 
functional E that satisfies E(0) = ∞, we can work around the singularity of the metric 
at the boundary. The framework that we will be working in is the following.

Assumption 5.12. Let (E, d, E) be a triple of a complete space (E, d) together with an 
energy E : E → (−∞, ∞]. Assume that the following are satisfied.

(a) E0 := D(E) is dense in E and the restriction of d to E0 is such that (E0, d) is a 
smooth Riemannian manifold.

(b) E is continuously differentiable on E0.
(c) E is κ-convex along geodesics in E0.

Proposition 5.13. Suppose that Assumption 5.12 is satisfied, then the conclusion of The-
orem 2.14 hold.
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Before giving the proof, we start with an auxiliary result that relates the slope to 
directional derivatives.

Definition 5.14. Let φ be a lower semi-continuous functional. Suppose x ∈ D(φ). For a 
geodesic ζx→y denote the directional derivative of φ along the geodesic ζx→y by

φ′(x, ζx→y) := lim inf
t↓0

φ(ζx→y(t)) − φ(x)
t

.

Lemma 5.15. If φ is κ-convex on geodesics, then

|∂φ|(x) = ‖gradφ(x)‖TxE0
,

and Assumption 2.9 is satisfied for φ.

Proof. For any two points x, y ∈ D(E) we will derive (2.6) and (2.7) with θ = 0 for a 
geodesic ζx→y. Using the κ-convexity of φ on geodesics, we derive as in [43, Section 2.3]
that

|∂φ|(x) := sup
y∈D(φ), geodesics ζx→y

φ′(x, ζx→y)
d(x, y) .

As E is continuously differentiable on the domain of E , we can obtain an upper bound 
on the directional derivative by using the Cauchy-Schwarz inequality

φ′(x, ζx→y) = lim
t↓0

φ(ζx→y(t)) − φ(x)
t

= 〈gradφ(x), ζ̇x→y(0)〉

≤ ‖gradφ(x)‖TxE0

∥∥∥ζ̇x→y(0)
∥∥∥
TxE0

.

As ζx→y is a length-minimizing geodesic, we have 
∥∥∥ζ̇x→y(0)

∥∥∥
TxE0

= d(x, y), so that

|∂φ|(x) ≤ ‖gradφ(x)‖TxE0
.

To establish the converse inequality, recall that on a Riemannian manifold geodesics 
are locally length minimizing. Thus there is some δ > 0 such that the geodesic (in the 
Riemannian sense of the word) γ : [0, 1] → E0 started at x in the direction gradφ(x) of 
length δ satisfies d(γ(0), γ(1)) = δ, and is thus a geodesic in our sense of the word. A 
direct computation yields that

γ̇(0) = δ

‖gradφ(x)‖TxE0

gradφ(x)

which implies
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φ′(x, ζx→y) = lim
t↓0

φ(γ(t)) − φ(x)
t

= 〈gradφ(x), γ̇(0)〉 = δ ‖grad E(x)‖TxE0
.

We can conclude that |∂φ|(x) ≤ ‖gradφ(x)‖TxE0
. For the proof of Assumption 2.9, we 

can take for all x, y and θ the geodesic ζx→y so that (2.6) is satisfied. Note that (2.7)
can be verified using Cauchy-Schwarz as in the first part of this proof. �
Proof of Proposition 5.13. It suffices to verify Assumptions 2.3, 2.5 and 2.9. Assump-
tion 2.3 is immediate. The gradient flow for E can be constructed by local arguments 
and by construction it remains in D(E). Assumption 2.5, or in other words, that the gra-
dient flow satisfies (EVIκ), follows by Proposition 23.1 in [49]. Assumption 2.9 follows 
from Lemma 5.15. �

For completeness, we verify the assumptions corresponding to the Hamiltonian of 
(5.11).

Lemma 5.16. Assumption 5.12 is satisfied for E = R+, E(x) = −μ log(x) +x −(μ −μ logμ)
and d(x, y) = 2|√x−√

y|.

Note that the Hamiltonian of (5.11) is indeed represented by this choice of objects. 
In particular, note that grad E(x) = g−1(x)E ′(x) = x(−μ/x + 1) = x − μ.

Proof. The functional E is smooth and finite on E0 := (0, ∞). Working in the natural 
global chart, we can define a Riemannian metric using g(x) = x−1, or equivalently 
〈v, w〉g(x) := x−1vw on the tangentbundle at x. This local metric indeed gives the global 
metric d of the lemma on (0, ∞), which can then be extended by continuity to the 
boundary 0. We next verify the convexity of E . As E(0) = ∞, it suffices to consider 
geodesics that remain in (0, ∞). Working infinitesimally and considering the geodesic 
from x to y, see Proposition 16.2 of [49], we verify

〈− grad E(x), gradx

1
2d

2(x, y)〉g(x) − 〈− grad E(y),− grady

1
2d

2(x, y)〉g(y)

= 2 (μ− x)
(

1 −
√
y√
x

)
− 2
(
− (μ− y)

(
1 −

√
y√
x

))

= −2
(

μ
√
xy

+ 1
)(√

x−√
y
)2

≤ −2
(√

x−√
y
)2 = −1

2d
2(x, y),

implying that E is 1-convex. �
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5.3. The Wasserstein space

We consider E = P2(Rd), which we equip with the Kantorovich-Wasserstein distance 
W2(·, ·) of order two, defined by

W 2
2 (μ, ν) = inf

π∈Π(μ,ν)

∫
|x− y|2π(dxdy).

Following [3] we consider an energy functional E which is the sum of an internal energy, 
a potential energy and an interaction energy term. More precisely, we consider functions 
F : R+ → R, V : Rd → R, W : Rd → R such that

Assumption 5.17 (McCann’s condition).

(a) F : [0, +∞) → R is convex, differentiable with superlinear growth. It satisfies the 
doubling condition

∃C > 0 : F (z + w) ≤ C(1 + F (z) + F (w)), ∀z, w ≥ 0.

Moreover we assume that

s �→ sdF (s−d) is convex and increasing on (0,+∞)

and

F (0) = 0, lim
s→0

F (s)/s−α > −∞, for some α >
d

d + 2 .

(b) V : Rd → (−∞, +∞] is lower semi-continuous, κV -convex for some κV ∈ R, with 
proper domain that has nonempty interior.

(c) W : Rd → [0, ∞) is an even continuously differentiable κW -convex function for some 
κW ≥ 03 and satisfies the doubling condition

∃C > 0 : W (x + y) ≤ C(1 + W (x) + W (y)), ∀x, y ∈ Rd.

We define our energy functional E by

E(ρ) :=
∫

F
( dρ

dL d
(x)
)
dx +

∫
V (x)ρ(dx) + 1

2

∫
W (x− y)ρ(dx) ⊗ ρ(dy), (5.12)

setting E(ρ) = +∞ as soon as ρ is not absolutely continuous w.r.t the Lebesgue measure 
L d. The gradient flow of functionals satisfying McCann’s condition has attracted lots 

3 We impose κW ≥ 0 as this condition allows us to directly apply the results of [3]. However, it is very 
likely that this assumption is not necessary and that κW ∈ R is enough for Theorem 5.18 to hold.
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of interest over the past two decades, because of their connection with PDEs. Indeed, 
the gradient flow of Boltzmann’s entropy F (s) = s log s provides with a variational 
interpretation of the heat equation [40], whereas the gradient flow of Rény’s entropy 
(F (s) = 1

α−1s
α) relates to the porous medium equation in the same way [44].

Theorem 5.18. Let (E, d) = (P2(Rd), W2(·, ·)) and E be defined by (5.12) with F, V, W
satisfying Assumption 5.17. Then the conclusion of Theorem 2.14 hold with κ = κV +κW .

The fact that the hypothesis of Theorem 2.14 are verified under Assumption 5.17 is a 
consequence of well-known results, that we essentially take from [3]. For the identification 
that κ = κV + κW , see Proposition 3.33 in [2].

Proof. We verify the hypothesis of Theorem 2.14 one by one.

• Verification of 2.3 The completeness of (P2(Rd), W2(·, ·)) is proven at [3, Prop. 7.1.5]. 
The fact that it is a geodesic space is proven at [2, Thm 2.10].

• Verification of Assumption 2.5 The existence of an (EVIκ) gradient flow on P2(Rd)
is granted by [3, Theorems 11.2.1 and 11.2.8].

• Verification of Assumption 2.9 Let us proceed to verify condition (2.6). Given ρ s.t. 
I(ρ) < +∞ we know that against the Lebesgue measure ρ is regular in the sense of 
[3, Def. 6.2.2]. Thus, we can apply [3, Thm 6.2.4] to obtain the existence of a map r
such that the (unique) geodesic ζρ→π takes the form

ζρ→π(t) = (i + t(r − i))#ρ ∀t ∈ [0, 1],

where i denotes the identity map. Moreover, thanks to [2, Thm 6.1 ii)] for any θ > 0
we can find ϕθ ∈ C∞

c (Rd) such that

|∇ϕθ − (r − i)|L2
ρ
≤ θ. (5.13)

Using either a direct calculation or the isometry property of [2, Thm 6.1] we also 
find that if we define ζρ→π

θ (u) = (i + u∇ϕθ)#ρ for u small enough, then

lim
u↓0

W2(ζρ→π
θ (u), ζρ→π(u))

u
≤ |∇ϕθ − (r − i)|L2

ρ
≤ θ,

which is (2.6). We now proceed to verify (2.7). By [3, Thm 10.4.13] we know that if 
I(ρ) < +∞, then setting

LF (z) = zF ′(z) − F (z)
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we have that LF

( dρ
dL d

)
belongs to W 1,1

loc . Combining [3, Lemma 10.4.4 and Eqs 
(10.4.58), (10.4.59)]4

lim
u↓0

E(ζρ→π
θ (u)) − E(ρ)

u
=
∫

−LF

( dρ
dL d

)
ΔϕθdL d

+
∫

〈∇V,∇ϕθ〉dρ +
∫

〈∇W ∗ ρ,∇ϕθ〉dρ

=
∫ 〈 1

dρ
dL d

∇LF

( dρ
dL d

)
+ ∇V + ∇W ∗ ρ,∇ϕθ

〉
dρ.

Applying again [3, Thm 10.4.13] we have that there exist w ∈ L2
ρ such that

∫
|w|2dρ = I(ρ),

w = 1
dρ

dL d

∇LF

( dρ
dL d

)
+ ∇V + ∇W ∗ ρ ρ-a.e.

But then by Cauchy Schwartz we find

lim
u↓0

E(ζρ→π
θ (u)) − E(ρ)

u
≤
√

I(ρ)|∇ϕθ|L2
ρ
≤

√
I(ρ)(W2(ρ, π) + θ),

where to obtain the last inequality we used (5.13), the triangular inequality and the 
fact that W2(ρ, π) =

∫
|r − i|2dρ. The proof of (2.7) is now complete. �
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Appendix A

A.1. Ekeland’s principle

Lemma A.1 (Ekeland’s principle). Let K be an abstract set and B : K ×K → [0, +∞) a 
function with the following properties:

(i) B(x, x) = 0 for all x ∈ K

(ii) B(x, z) ≤ B(x, y) + B(y, z) for all x, y, z ∈ K.

4 In particular, one can check that the hypothesis of Lemma 10.4.4 are verified with rt = (1 − t)i+ t∇ϕθ

using, among other things, the fact that for t small enough rt is invertible, smooth, strongly convex and 
(rt)#ρ 
 L d.
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(iii) For any sequence (xn)n∈N ∈ K satisfying 
∑

n∈N B(xn+1, xn) < +∞, there exists 
x ∈ K such that limn→∞ B(x, xn) = 0.

Let G : K → [−∞, +∞) be a bounded from above function, i.e. supx∈K G(x) < +∞, such 
that:

• if (xn)n∈N , x ∈ K, 
∑

n∈N B(xn+1, xn) < +∞ and limn→+∞ B(x, xn) = 0 then

G(x) ≥ lim sup
n

G(xn).

Then for each δ > 0 and any x̂ ∈ K such that G(x̂) 	= −∞ there exists xδ ∈ K such 
that

(1) G(x̂) + 1
2δB(xδ, x̂) ≤ G(xδ),

(2) supx

{
G(x) − 1

2δB(x, xδ)
}
≤ G(xδ).

Let us note as a corollary that the above statements have the following consequences

(a) Suppose that G(x̂) ≥ supx∈K G(x) − 1
2δ

2, then B(xδ, ̂x) ≤ δ.
(b) For all x 	= xδ we have G(x) − δB(x, xδ) < G(xδ).
(c) Suppose that (xn)n∈N ∈ K is such that limn→∞ G(xn) − δB(xn, xδ) = G(xδ), then

lim
n→∞

B(xn, xδ) = 0 and lim
n→∞

G(xn) = G(xδ).

Remark A.2. In particular, from (1) we deduce G(xδ) > −∞ and from (b) we deduce 
that xδ is the unique optimizer of G(x) − δB(x, xδ).

Proof. The statements (1) and (2) follow as in [47], using as B(x, y) := B(y, x), 
u(x) := −G(x), multiplying all terms by −1 and replacing δ by 1

2δ. From (1) and (2), 
the consequences (a) and (b) follow immediately. We are left to prove (c).

Let (xn)n∈N ∈ K be as in (c). Then by statement (2), we have

0 ≤ G(xδ) − G(xn) + 1
2δB(xn, xδ).

Thus,

0 ≤ 1
2δB(xn, xδ)

≤ G(xδ) − G(xn) + δB(xn, xδ).

By assumption, the right hand side converges to 0. Therefore, we also have
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lim
n→∞

B(xn, xδ) = 0.

Using again (2),

G(xδ) ≥ G(xn) − 1
2δB(xn, xδ) ≥ lim sup

n→∞
G(xn) − 1

2δB(xn, xδ) = lim sup
n→∞

G(xn).

Moreover, by the assumption on the sequence (xn)n∈N , we also have

lim inf
n→∞

G(xn) ≥ lim inf
n→∞

G(xn) − δB(xn, xδ) = G(xδ).

We then conclude that limn→∞ G(xn) = G(xδ). �
Let us show in the following lemma that Ekeland’s principle can be applied to the 

Tataru distance.

Lemma A.3. The Tataru distance satisfies the assumptions of Lemma A.1.

Proof. (i) is trivial and (ii) has been verified in Lemma 4.4. Let us show (iii).
Let (μn)n∈N ∈ E be such that 

∑
n dT (μn+1, μn) < ∞.

Recall we have seen that

dT (μ, ν) = min
t≥0

{
t + eκ̂td(μ, ν(t))

}

Thus, there exists a sequence (tn)n∈N ∈ [0, +∞) such that

∑
n

tn + eκ̂tnd(μn+1, μn(tn)) < ∞. (A.1)

For all n ∈ N, set sn :=
∑∞

k=n tk. Note that (A.1) implies that

sn ≤ s0 =
∑
n

tn =: T < ∞,

∑
n

d(μn+1, μn(tn)) =
∑
n

e−κ̂tneκ̂tnd(μn+1, μn(tn))

≤ e−κ̂T
∑
n

eκ̂tnd(μn+1, μn(tn)) < ∞. (A.2)

(Remember that κ̂ ≤ 0.)
Let us consider the sequence (νn)n∈N ∈ [0, +∞) ∈ E given by νn := μn(sn) for all 

n ∈ N. It follows by equation (4.3) that
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∑
n

d(νn, νn+1) =
∑
n

d(μn(sn), μn+1(sn+1))

≤
∑
n

e−κsn+1d(μn(tn), μn+1)

≤
∑
n

e−κ̂sn+1d(μn(tn), μn+1)

≤ e−κ̂T
∑
n

d(μn(tn), μn+1)

< ∞.

Therefore (νn)n∈N is a Cauchy sequence and converges to a ν ∈ E, i.e.

lim
n→∞

d(ν, μn(sn)) = 0.

Moreover

0 ≤ lim
n→∞

dT (ν, μn) = lim
n→∞

inf
t≥0

{
t + eκ̂td(ν, μn(t))

}
≤ lim

n→∞
sn + eκ̂snd(ν, μn(sn)) = 0. �

A.2. From optimizing sequences to optimizing points

The following Lemma relates Definition 2.13 to the classical definition stated in terms 
of optimizing points. We use the lemma in combination with Ekeland’s principle in the 
proof of the comparison principle.

Lemma A.4. Consider a viscosity subsolution u of equation (2.10). Let (f, g) ∈ A† and 
(πn)n∈N ∈ E, be the sequence given by the definition of viscosity subsolution. Suppose 
that:

• There exists π0 ∈ E such that limn πn = π0 and

u(π0) − f(π0) = sup
π

u(π) − f(π).

Then we have

u(π0) − λg(π0) − h†(π0) ≤ 0.

Consider a viscosity supersolution v of equation (2.11). Let (f, g) ∈ A‡ and (πn)n∈N ∈
E, be the sequence given by the definition of viscosity supersolution. Suppose that:
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• There exists π0 ∈ E such that limn πn = π0 and

v(π0) − f(π0) = inf
π

v(π) − f(π).

Then we have

v(π0) − λg(π0) − h‡(π0) ≥ 0.

Proof. We prove the statement for the subsolution case, the supersolution case works 
analogously.

Let u be a subsolution to f − λA†f = h†, (f, g) ∈ A† and (πn)n∈N ∈ E be as in the 
assumption of this lemma. Then in particular we have

lim sup
n

u(πn) − f(πn) = sup
π

u(π) − f(π),

lim sup
n

u(πn) − λg(πn) − h†(πn) ≤ 0.

By assumption, there exists π0 ∈ E such that u(π0) − f(π0) = supπ u(π) − f(π) and 
πn → π0.

Being u upper semi-continuous, we have lim supn u(πn) ≤ u(π0). On the other hand, 
being limn u(πn) − f(πn) = u(π0) − f(π0), we have

lim inf
n

u(πn) = lim inf
n

(u(πn) − f(πn) + f(πn))

≥ u(π0) − f(π0) + lim inf
n

f(πn)

≥ u(π0) − f(π0) + f(π0) = u(π0)

due to the fact that f is continuous. We can then conclude that limn u(πn) = u(π0). On 
the other hand, being h† continuous and g is upper semi-continuous, we find

0 ≥ lim sup
n

(u(πn) − λg(πn) − h†(πn))

= u(π0) − h†(π0) + lim sup
n

−λg(πn)

≥ u(π0) − h†(π0) + lim inf
n

−λg(πn)

= u(π0) − h†(π0) − λ lim sup
n

g(πn)

≥ u(π0) − h†(π0) − λg(π0). �
A.3. A variant of the triangle inequality for the quadratic distance

For the proof of Proposition 3.2, we need the following combination of the triangle 
and Jensen inequality.
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Lemma A.5. Let ν1, ν2, ν3, ν4 ∈ E and ε, ε′ ∈ (0, 1/3), then

1
6

1
1 − ε′

1
2d

2(ν1, ν4) ≤
1

1 − ε

1
2d

2(ν1, ν2) + 1
2d

2(ν2, ν3) + 1
1 + ε

1
2d

2(ν3, ν4) (A.3)

Proof. By the triangle inequality, we have

d(ν1, ν4) ≤ d(ν1, ν2) + d(ν2, ν3) + d(ν3, ν4)

so that by Jensens inequality, we have

1
6d

2(ν1, ν4) ≤
1
3

1
2 (d(ν1, ν2) + d(ν2, ν3) + d(ν3, ν4))2

= 31
2

(
1
3d(ν1, ν2) + 1

3d(ν2, ν3) + 1
3d(ν3, ν4)

)2

≤ 3
2

(
1
3d

2(ν1, ν2) + 1
3d

2(ν2, ν3) + 1
3d

2(ν3, ν4)
)
.

The second claim follows from this inequality, using that for ε, ε′ ∈ (0, 1/3)

1 − ε

1 − ε′
≤ 2, 1

2(1 − ε′) ≤ 1, 1 ≤ 1
1 − ε

,
1 + ε

1 − ε′
≤ 2. �
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