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Zacharie De Grève a, François Vallée a 

a Power Systems and Markets Research Group, University of Mons, Belgium 
b Faculty of Technology, Policy and Management, Delft University of Technology, the Netherlands 
c Energy Systems Integration and Modeling Group, University of Leuven, Belgium 
d EnergyVille, Belgium   

H I G H L I G H T S  

• This paper aims to enhance the modeling of cross-border energy exchanges in adequacy study. 
• Novel supervised learning-based models in single- and two-step set-ups are proposed. 
• Accuracy, scalability, and computational complexity of adequacy study are improved. 
• It can have high implication for policy makers and be of a great interest of academics.  

A R T I C L E  I N F O   
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A B S T R A C T   

To represent the cross-border exchange capacities defined by the flow-based approach in the European resource 
adequacy assessments, transmission system operators currently employ a data-driven methodology that consists 
of sequential clustering and correlation steps. This methodology entails assumptions and simplifications within 
both clustering and correlation analyses that may lead to an erroneous representation of import–export capacities 
in the subsequent adequacy assessments. While the first stage of this methodology can be improved by leveraging 
a clustering technique tailored to adequacy assessments, the correlation step presents a poor performance in 
terms of accuracy and scalability. To address the latter challenges, this paper proposes a supervised learning- 
based model that can enhance the mapping between several relevant explanatory variables and the pre- 
clustered flow-based domains, leading to a more accurate representation of the flow-based domains in ade-
quacy assessments. Furthermore, the current paper leverages supervised learning to develop a single-step 
approach that directly maps the selected explanatory variables to the flow-based domains using the K-Nearest 
Neighbors algorithm, eliminating the clustering step. This circumvents inaccuracies introduced by the significant 
intra-cluster discrepancies due to numerous shapes and forms of the flow-based domains and enables an 
enhanced modeling of the flow-based domains in adequacy assessments. In an extensive case study, we 
demonstrate that the proposed single-step model can significantly improve the accuracy of adequacy assess-
ments, compared to the best-in-class result obtained by the two-step set-up. Moreover, the proposed single-step 
model involves no hyper-parameters, eliminates the computational complexity of the two-step set-up, and effi-
ciently upscales to integrate the new zones joining to the flow-based market coupling.   

1. Introduction 

A resource adequacy study assesses the ability of an electric power 
system to meet the load demand over the future horizon under various 

working conditions. Such an assessment can be carried out in a deter-
ministic or probabilistic manner. While the former category considers 
the peak load demand and available generation to evaluate the capacity 
(or deficit) margin, the latter generally takes advantage of Monte Carlo 
simulations that permit to capture the uncertain nature of load and 
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generation. Sequential and non-sequential Monte Carlo methods for 
adequacy assessments have been studied in [1–3,36]. 

In an interconnected electric power network, the cross-border ex-
change capacities constitute important inputs of any adequacy study 
[4]. Within the context of probabilistic adequacy assessment, Monte 
Carlo simulations aim at reflecting day-to-day operation of the studied 
power system. The cross-border capacities, therefore, can be incorpo-
rated into adequacy assessment by adopting the capacity calculation 
method employed in the operation stage of the power system. The Flow- 
Based (FB) approach is the target capacity calculation model to incor-
porate the interconnection exchanges into the Europe’s internal elec-
tricity system [5]. The Flow-Based Market Coupling (FBMC) was 
initially implemented in 2015 in 4 Central Western Europe (CWE) zones. 
It will be extended to 13 countries (CORE region) in 2022. A FB domain 
considers the available capacity on the selected critical grid elements in 
a zonal fashion. It constitutes a polytope whose vertices define the 
possible zonal exchanges. 

Reference [6] discusses how a FB domain is constructed considering 
the network model, input data, and parameter settings. The impacts of 
the internal (discretionary) parameters of the FB model on the FBMC 
outcomes are investigated in [7–10], which demonstrate how an optimal 
setting of such parameters can maximize the performance of the FBMC. 
In addition, a new method is proposed in [11] that aims to enhance the 

overall efficiency of the FBMC and its eventual remedial actions. 
Although the literature relating to the FBMC has been growing in recent 
years, the research on the modeling of FB domains in an adequacy 
assessment context is scarce. 

Nevertheless, following the implementation of the FBMC in the CWE 
region, the European regulations mandate that the national or European 
resource adequacy assessment shall take into account the FB approach, 
where applicable [12]. To integrate the cross-border exchange capac-
ities defined by the FB domains into the probabilistic adequacy assess-
ments, the main challenge consists in finding the FB domain that 
correctly represents the potentially binding grid constraints for the 
system conditions at hand. Indeed, the hourly FB domains depend on the 
network operating points as well as the internal (discretionary) pa-
rameters of the FB model (e.g., generation shift keys for nodal to zonal 
conversion [7], the minimum threshold for selection of the critical 
network elements [8], and the minimum branch capacities reserved for 
the power exchanges [9–10]). A direct model-based calculation of 
hourly FB domains first necessitates adopting assumptions on the 
abovementioned parameters that are partly known to a Transmission 
System Operator (TSO) as the FB calculation entails a sequential process 
that relies on the exchange of data among the involved TSOs. Further-
more, conducting such a calculation process for each Monte Carlo 
sample noticeably increases the computational complexity of the 

Nomenclature 

Acronyms: 
CWE Central Western Europe 
ENS Energy Not Served 
FB Flow-Based 
FBMC Flow-Based Market Coupling 
GO Goal-Oriented 
PTDF Power Transfer Distribution Factor 
RAM Remaining Available Margin 
TENS Total Energy Not Served 
TSO Transmission System Operator 
KNN K-Nearest Neighbors 
RF Random Forest 
SB Shape-Based 
SVM Support Vector Machine 
LOLP Loss of Load Probability 
PP Percentage Point 
MC Monte Carlo 

Indices and sets: 
p ∈ P Index and set for the time steps of the training phase 
q ∈ Q Index and set for the time steps of the test phase 
t ∈ T Index and set for the time steps of the whole database 
z ∈ Z Index and set for the K observations nearest to the test 

observation xq 

a ∈ A Index and set for the vertices of the flow-based domain A 
b ∈ B Index and set for the vertices of the flow-based domain B 
i Index representing a zone in the interconnected CWE 

electricity system 

Parameters: 
N Number of zones in the interconnected CWE electricity 

system (= 5) 
LDi Aggregated load demand in zone i 
NPi Net position of zone i 
Gmax

i Maximum available generation in zone i 
PTDF Power transfer distribution factor matrix 
NP Vector of zonal net positions 

RAM Vector of remaining (free) available margin (capacity) on 
the selected grid elements 

ΔLOLP LOLP error between the true adequacy outcomes and the 
results of the studied test case 

ΔTENS TENS error between the true adequacy outcomes and the 
results of the studied test case 

LOLPTC
i LOLP index in zone i in the test case 

LOLPRef
i LOLP index in zone i in the reference case 

TENSTC
i TENS in zone i in the test case 

TENSRef
i TENS in zone i in the reference case 

x Explanatory variables i.e., inputs of the supervised 
learning task 

y True output of the supervised learning task 
ŷ Predicted output of the supervised learning task 
fθ Function representing the mapping between input and 

output spaces 
L Loss function of the classification problem 
I(yz = j) Indicator variable that equals 1 if observation z belongs to 

class j, and 0 if yz ∕= j 
PR(•) Conditional probability 
k Number of folds within the k-fold method (= 5) 
K Number of neighbors considered in the KNN algorithm 
KC Number of classes in the classification task 
C Hyper-parameter defining the total cost of relaxing the 

hyperplane constraint in the SVM method 
lp Total number of the training observations 
n Number of clusters 
dSB Distance (dissimilarity) between two flow-based domains 

using the shape-based measure 

Variables: 
ENSi Energy not served in zone i 
Gi Aggregated generation in zone i 
θ Supervised learning variables to be optimized 
β0,β1,βD,∊1,∊lp SVM variables to be optimized 
M Width of the margin in the SVM method  
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probabilistic adequacy study as it requires integrating the FB calculation 
process into the adequacy evaluation context. 

Given the difficulties in the direct computation of FB domains, 
several European TSOs employ a data-driven alternative to integrate the 
cross-border capacities into adequacy assessments [13–18]. This 
employed methodology consists of two main steps. First, the historical 
FB domains are clustered based on their overall geometrical shapes into 
a reduced number of groups. Then, the obtained FB domain clusters are 
correlated with two selected explanatory variables affecting the FB do-
mains. This two-step clustering-correlation methodology (described in 
Section 2.2) permits to define for each new Monte Carlo sample of the 
probabilistic adequacy study, its corresponding (FB domain) cluster 
representative. The above methodology, however, entails inefficiencies 
in both its clustering and correlation steps since a FB cluster prototype 
may poorly represent its intra-cluster FB domains, and the correlation 
study may fail to accurately define the relationship between the clus-
tered FB domains and the selected explanatory variables. Consequently, 
the two-step methodology employed by the TSOs would lead to ap-
proximations in subsequent adequacy assessments. 

Following the two-step framework developed by the TSOs to inte-
grate the FB domains into adequacy assessments, the authors of the 
current work proposed a Goal-Oriented (GO) distance measure in [19], 
which can offer a tailored dissimilarity calculation and clustering of the 
FB domains for the subsequent adequacy assessments. The GO distance 
measure focuses on the vertices of FB domain that are decisive in an 
adequacy assessment context rather than considering the overall shapes 
of FB domains (polytopes) that are complex and multi-dimensional 
consisting of several hundred vertices. The adequacy analyses con-
ducted in [19] demonstrate the improved accuracy, suitable scalability, 
and reduced time complexity of the GO clustering approach, compared 
to the clustering method employed by the TSOs that is based on the 
overall shapes of FB domains. Nevertheless, the second part of the 
methodology employed by the TSOs (i.e., the correlation study), not 
addressed in [19], still needs to be improved since it poorly performs in 
terms of accuracy and scalability (as discussed in Section 3). 

In the present paper, we firstly propose a novel supervised learning- 
based model to enhance the mapping between several relevant explan-
atory variables (i.e., aggregated load demand and generation in each 
CWE zone) and the pre-clustered FB domains within the two-step set-up, 
improving (replacing) the correlation step. This supervised learning task 
is formulated as a classification study that aims at defining the correct 
class (FB domain cluster) based on the received explanatory variables. 
The proposed classification-based model presents two main advantages 
over the classical correlation study used by the TSOs. First, it does not 
need any initial feature scaling or discretization of the selected explan-
atory (input) variables (that can be seen as hyper-parameters affecting 
the outcomes of the study). Second, it is highly scalable to the number of 
explanatory variables received as input, which is essential to fully 
explore the complex relations present between the input–output spaces. 
The performance of the proposed supervised learning-based framework 
is evaluated using three classification algorithms, namely Random 
Forest (RF), K-Nearest Neighbors (KNN), and Support Vector Machine 
(SVM), which have different working principles and generalization ca-
pabilities to reveal the potentials of the proposed model. 

Although the proposed supervised learning-based approach applied 
to the pre-clustered FB data can enhance the accuracy and scalability of 
the FB domain assignment task within the two-step framework, the 
intra-cluster discrepancies may remain significant that induce inevitable 
modeling inaccuracies in subsequent adequacy studies. To tackle this 
issue, in the current paper, we propose an alternative strategy that le-
verages supervised learning to develop a single-step model that directly 
maps the selected explanatory variables to FB domains, without doing a 
clustering analysis. This circumvents inaccuracies introduced by the 
significant intra-cluster discrepancies due to numerous shapes and forms 
of FB domains and leads to an enhanced modeling of FB domains in 
adequacy assessments. This single-step model takes advantage of the 

KNN algorithm and identifies the most similar FB domain (historically 
observed) to each new unseen sample of probabilistic adequacy assess-
ments. The extensive simulations and analyses conducted in this paper 
confirm the superior performance of the single-step model in terms of 
modeling accuracy and time complexity. 

In summary, the main contributions of the current paper are 
threefold: 

First, we propose a novel supervised learning-based model to 
improve the mapping between several selected explanatory variables (i. 
e., aggregated load demand and generation in each CWE country) and 
the FB domain clusters within the two-step frame. By covering the 
shortcomings of the correlation study (discussed in Section 3) employed 
by the TSOs, the proposed model can lead to more realistic and accurate 
adequacy outcomes while being scalable with respect to the ongoing 
geographical extension of the FBMC (i.e., joining new market zones) that 
requires integrating additional explanatory variables. 

Second, we suggest an innovative alternative approach, leveraging 
the supervised learning to integrate the FB domains into probabilistic 
adequacy assessments. The proposed single-step model directly maps 
the selected explanatory variables to the historical FB domains, without 
performing the clustering analysis. By capturing the temporal similar-
ities contained in the FB database, this direct approach can enhance the 
modeling of the interconnection capacities in adequacy assessments 
resulting in more accurate outcomes, while the removal of the clustering 
step permits to considerably reduce the computational complexity of the 
FB domain assignment task such that the latter can be performed in a 
nearly real-time fashion. 

Third, relying on the real FB database from [20], we assess the 
performance of the single-step model in comparison with eleven 
different set-ups of the two-step frame (based on the goal-oriented or 
shape-based clustering analysis combined with the correlation or clas-
sification study). This extensive case study and the detailed analysis 
(relying on the cross-validation technique) can thoroughly reveal the 
advantages and drawbacks of each studied model (summarized in 
Table 7) to eventually define the most efficient approach for the FB 
domains modeling. 

The current paper showcases how a tailored supervised learning 
model can enhance accuracy, scalability, and computational complexity 
of the European resource adequacy assessments. As such, it comple-
ments the recent research on machine learning facilitating secure and 
cost-efficient management of power systems as reviewed in [21] and 
studied on different use cases such as optimal power flow [22,23], unit 
commitment [24], voltage control [39] and forecast [25] as well as 
system stability [26] and reliability [27,28]. 

The remainder of this paper is structured as follows. Section 2 briefly 
introduces the cross-border capacity modeling via the FB approach and 
presents the classical methodology employed by the CWE TSOs to 
incorporate the FB domains into the adequacy assessments. The pro-
posed supervised learning-based model for enhancing the performance 
of the correlation analysis within the two-step frame is described in 
Section 3. The proposed single-step model that directly performs the FB 
domain assignment task is presented in Section 4. The validation 
framework to examine the performance of the studied methods is 
introduced in Section 5. The simulation results are given in Section 6, 
followed by the relevant discussions in Section 7 and conclusion in 
Section 8. 

2. Adequacy assessment incorporating the flow-based domains 

A FB domain represented by a system of linear constraints (intro-
duced below) is integrated into the adequacy assessment by adding its 
corresponding linear constraints to the optimization problem that is at 
the core of the adequacy study. The CWE TSOs generally employ the 
Antares simulator [29] to perform the probabilistic adequacy assess-
ments on the Monte Carlo scenarios defined by the latter tool. 

B. Bakhshideh Zad et al.                                                                                                                                                                                                                      
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2.1. Interconnection capacities modelled with the flow-based domains 

Within the FB approach, the feasible cross-zonal exchanges are 
calculated by linearly approximating the physical grid constraints. This 
approximation aims at reflecting the impact of zonal power changes on 
the flows on (selected) critical network elements. The above analysis is 
performed on the studied power network model considering the so- 
called base case that represents the best estimate (forecast) of the 
network operating conditions at the studied horizon. In the context of 
the day-ahead network scheduling, the base case corresponds to the 2 
days ahead forecasts of the studied electricity system. The physically 
allowed power flows for the cross-zonal exchanges are determined in the 
FB approach according to a set of linear constraints, presented below. 

PTDF × NP ≤ RAM (1)  

where the PTDF (Power Transfer Distribution Factor) matrix represents 
the power flow variations in the selected network elements because of 
zonal net position changes. The net position of each zone (=export −
import) is denoted by the NP vector. The RAM (Remaining Available 
Margin) vector gives the free (available) capacity on the (selected) grid 
elements for the cross-zonal exchanges. Equation (1) expresses that the 
zonal net position changes should not violate the available capacities on 
the selected grid elements (obtained in the base case analyses). 

A FB domain at a given hour corresponds to the intersection of all 
half-spaces created by the system of linear constraints (1), which con-
structs a N-dimensional polytope (N denoting the number of zones 
involved in the FBMC). Reference [6] details how the components and 
parameters of the FB model are determined and discusses their eventual 
impacts on the FBMC outcome. 

A FB domain is computed with respect to a set of given input pa-
rameters including the network working conditions (load demands and 
available generations) as well as the discretionary parameters of the FB 
approach (introduced in Section 1). Depending on the above parame-
ters, the hourly FB domains take various shapes, forms, and sizes, such 
that the differences between feasible hourly zonal exchanges within a 
typical day can reach several gigawatts (GW) as demonstrated in Fig. 1. 
Such a wide range of variations in the cross-border exchange capacities 
can highly affect the adequacy assessment outcomes. Therefore, a 
realistic and accurate adequacy evaluation requires defining the FB 
domain (PTDF and RAM parameters) that correctly aligns with each 
generated Monte Carlo scenario of the probabilistic adequacy study. 

2.2. Classical methodology employed by the TSOs (shape-based 
clustering-correlation) 

A direct model-based calculation of FB domain for each scenario of 
the Monte Carlo analysis is not conceivable, as explained in Section 1. To 
integrate the FB domains into European resource adequacy assessments, 

several European TSOs employ a two-step data-driven approach that 
consists of clustering and correlation analyses on the historical FB do-
mains [13–18]. Fig. 2 demonstrates an overview of this two-step 
methodology employed by the TSOs. As it can be seen, the correlation 
model is trained with the historical data to identify the relation between 
the selected explanatory variables and the clustered FB domains. Within 
the adequacy evaluation context, the trained correlation model can 
determine the FB cluster representative that can better match with each 
Monte Carlo sample based on the received unseen explanatory variables. 
The two-step clustering-correlation methodology is summarized as 
follows. 

1) Shape-Based (SB) clustering: The objective of the first step of the 
methodology is to group the historical FB domains into a limited number 
of clusters. A partitional clustering algorithm is employed to that end, in 
combination with a dissimilarity (or distance) measure, which compares 
the geometrical shapes of the FB domains. The distance (dissimilarity) 
between two FB domains is computed considering the coordinates of 
their polytope vertices. Let A and B be two sets, with A = {a1, a2,⋯, an}

and B = {b1, b2,⋯, bm}, which present the N-dimensional vertices of the 
two selected FB domain polytopes. The dissimilarity between the FB 
domain A and FB domain B is calculated as follows using the Shape- 
Based (SB) measure. 

dSB(FBA,FBB) =
∑

a∈A
min
b∈B

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(a − b)2
√

(2) 

Equation (2) indicates that the Euclidean distance between each 
vertex of A and its corresponding closest vertex from B is added to 
constitute the final distance between the FB domain A and the FB 
domain B. Equation (2) is employed to calculate the distance between 
each pair of FB domains that eventually constructs a square matrix 
giving all dissimilarities of the FB domains in the studied dataset. The k- 
medoids clustering algorithm is then applied to this calculated distance 
matrix. It is a partitional clustering algorithm, which structures the input 
space by assigning each object to the cluster with the closest medoid. 

2) Correlation: The second stage of this two-step methodology is the 
correlation study (i.e., the focus of the first contribution of this paper, 
discussed in Section 3). The correlation analysis aims to find a mapping 
between the partitioned FB domains and the explanatory variables 
affecting the FB domains. A typical FB domain is a function of several 
factors of different importance. The objective is to carry out the corre-
lation study with the most important factors. The FB domain clusters are 
correlated with the load demand in France and wind power production 
in Germany since they are found to be the two most relevant factors 
[13,14,18], as follows. 

Firstly, the data relating to the electricity demand in France and wind 
power production in Germany over the period that corresponds to the 
studied FB domains are collected. Then, high, medium, and low 
thresholds are defined for the collected data corresponding to the 
respective 33rd, 66th, and 99th percentiles of the load demand data in 
France and wind power production data in Germany. Afterwards, the 
probability of occurrence of each FB cluster for each combination of 
high, medium, and low thresholds of the two selected explanatory var-
iables is calculated. Finally, in the adequacy study, depending on the 
magnitude of these selected explanatory variables in each generated 
Monte Carlo sample, the medoid of the cluster with the highest proba-
bility is employed, and the linear constraints (shown e.g., in (1)) enco-
ded by that medoid are incorporated into the optimization problem of 
the adequacy assessment. 

Table 1 presents an example of the correlation study results per-
formed on the hourly FB domains by the Belgian TSO (Elia) over a period 
of one year while having 3 clusters [18]. The results given in Table 1 
imply e.g., 58% of the objects (FB domains) placed in the cluster 1 are 
linked to the conditions where the load demand in France is high and the 
wind power production in Germany is low. Therefore, the FB domain 
that is the representative of the cluster number 1 (i.e., its respective 

Fig. 1. Illustration of 96 hourly FB domains corresponding to 4 randomly 
selected days in January 2020, projected onto the France-Germany plane (data 
Source: [20]). 
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medoid) is employed for adequacy assessments of all Monte Carlo 
samples within the combination of high French load and low German 
wind as the cluster number 1 presents the highest correlation (proba-
bility) with the latter conditions (combination). 

3. Proposed supervised learning-based model relying on the pre- 
clustered FB domains (two-step methodology) 

The correlation study developed by the TSOs characterizes the FB 
clusters with two selected variables (i.e., load demand in France and 
wind power generation in Germany) having high, medium, and low 
thresholds. Such an analysis entails two main shortcomings. First, due to 
the wide ranges of these three initially selected thresholds, the FB do-
mains with various characteristics may be linked to each combination of 
those selected variables, which would lead to a poor representation of 
cross-border exchange capacities in the subsequent adequacy study. 
Second, the correlation study considering two explanatory variables 
disregards important information, dependencies, and trends contained 
in other relevant variables. Consequently, the correlation study would 
induce modeling inaccuracies in subsequent adequacy assessments. As 
shown in Table 1, none of the three obtained clusters are strongly 
correlated with any specific combination of the selected explanatory 
variables. For instance, when the French load is low and German wind is 
high (or medium), the maximum probability that a cluster correlates 
with the latter combination does not exceed 43%. 

The introduced shortcomings of the correlation study can be 
particularly exacerbated when new zones join the FBMC as it requires 
incorporating several additional input variables. Indeed, increasing the 
(number of) explanatory variables of the correlation study leads to 
numerous possible combinations that render the correlation analysis 
more complex and hardly interpretable. To make it more vivid, two 
considered explanatory variables having three predefined thresholds 
lead to 9 possible combinations in the correlation study (as it can be seen 
in Table 1) while adding a single (new) explanatory variable will triple 
the number of possible combinations. 

A novel supervised learning-based model is proposed in this section 
that aims at addressing the accuracy and scalability issues of the cor-
relation study utilized by the TSOs. The proposed model does not rely on 
any initial feature scaling or division of the selected explanatory 

variables (that can be seen as hyper-parameters affecting the outcomes 
of the study). Furthermore, it is highly scalable to the number of 
explanatory variables received as input (dimensionality of the input 
space) that is essential to fully explore the complex relations present 
between the input–output spaces. 

The proposed supervised learning-based model is applied to the 
output of the clustering analysis that gives a label to each FB domain in 
the dataset. The supervised learning task is formulated as a classification 
problem that aims to define the right FB domain label (class) based on 
the available explanatory variables. The relationship between the 
explanatory variables and the FB labels is learned on the historical 
dataset during the training phase of the supervised learning task. 

In a general form, a classification problem can be mathematically 
expressed as finding the optimal setting of the classifier parameters θ so 
that the loss function L can be minimized over the training set (p ∈ P): 

min
θ

∑

p∈P
L

⎛

⎜
⎝fθ

(
xp, p

)

⏟̅̅̅̅ ⏞⏞̅̅̅̅ ⏟

ŷp

, yp

⎞

⎟
⎠ (3)  

where yp and ŷp are respectively the correct and predicted classes over 
the training step while P includes the time steps of the training phase. 
The function fθ performs the mapping between input xp and output ŷp, 
and L is the loss function, which quantifies the classification accuracy. 
Once the training phase is completed and the optimal setting of classifier 
parameters (θ) is obtained, the trained classifier fθ can be employed to 
predict the class (label) ŷq that corresponds to each new unseen sample 
of input xq (where q represents an index of the test set Q). 

In this paper, we consider the aggregated hourly load and generation 
data in each zone of the CWE electricity system as the explanatory 
variables of the supervised learning process. This choice is adopted 
given (i) the aggregated zonal load and generation data are relevant to 
the overall status of each CWE zone being importer or exporter, (ii) these 
selected variables are (one of) the main inputs of the FB domain calcu-
lation process, and (iii) they are the most detailed data publicly available 
from the FBMC in CWE electricity system. Therefore, our proposed su-
pervised learner model receives during the training phase as the input 
(xp), the hourly zonal load and generation data (= 10 inputs for 5 CWE 
zones) while having the true label yp (i.e., the cluster representative 
number) associated with each hourly data from the clustering analysis. 

The proposed supervised learning-based framework (within the two- 
step set-up) is tested employing three classification algorithms, namely 
Random Forest (RF), K-Nearest Neighbors (KNN), and Support Vector 
Machine (SVM), presented below. Although other typical classification 
methods found in the literature could be readily integrated into the 
proposed framework, these three selected classifiers having different 
working principles and generalization capabilities will provide a thor-
ough performance evaluation of the proposed framework in comparison 
with the classical correlation study utilized by the TSOs. It is worth 
noting that the latter study aims to demonstrate the performance of the 
proposed supervised learning-based model (for the two-step set-up) in 
comparison with the classical correlation-based method utilized by the 
TSOs and not to define the best classification algorithm to be integrated 

Fig. 2. Illustration of the two-step clustering-correlation methodology employed by the TSOs.  

Table 1 
Example of the correlation study results with three clusters [18].   

German Wind 

High Medium Low 

French 
Load 

High (0.12, 0.69, 
0.19) 

(0.45, 0.27, 
0.27) 

(0.58, 0.18, 
0.24) 

Medium (0.24, 0.53, 
0.24) 

(0.48, 0.24, 
0.27) 

(0.67, 0.08, 
0.24) 

Low (0.32, 0.25, 
0.43) 

(0.43, 0.15, 
0.43) 

(0.47, 0.11, 
0.42) 

(x, y, z) gives the probability that cluster no. (1, 2, 3) correlates with a specific 
combination of the two selected explanatory variables (French load and German 
wind). 
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into the proposed model. 
Fig. 3 demonstrates how the proposed supervised learning-based 

model performs the FB domain assignment task (relying on the clus-
tering analysis results) for the subsequent adequacy assessments. 

3.1. Random Forest (RF) 

Random forest is an ensemble method that consists of several (i.e., a 
forest of) decision trees. A decision tree creates a tree-like graph via a set 
of if-then logical conditions to extract the hidden relationships between 
input and output spaces of the dataset at hand. Building a decision tree is 
a recursive process going from the properties of the input spaces to the 
decision about the associated classes. Starting from a root node that 
represents a variable (feature) of the input space, it splits into sub-nodes 
according to a defined rule (e.g., based on the Gini index [28]). The 
newly generated nodes can represent other features of the input space. 
They also split into new nodes based on a relevant if-then logical con-
dition. This division procedure purifies the relations between input and 
output spaces. A decision tree is constructed when all the generated 
nodes are leaf nodes, where an input feature is explicitly linked to a class 
of the output space (no more if-then conditions). 

RF trains several decision trees in parallel on different subsets of the 
training dataset considering various subsets of available features 
(known as bootstrapping task) [30]. The latter ensures that each indi-
vidual decision tree in the RF model is unique, which can reduce the 
overall variance of the RF classifier. The final decision of the RF classifier 
is made by aggregating the decisions of individual trees that helps it to 
exhibit a good generalization capability. Within its training phase, the 
RF algorithm aims at defining the right features in each tree to grow and 
the optimal split of the selected features so that the loss function L can be 
minimized according to (3). The parameters that need to be selected to 
optimize the performance of the RF classifier are the number of trees to 
grow and number of input features (variables) considered in each split. 

3.2. K-Nearest Neighbors (KNN) 

The traditional supervised learning techniques, such as tree-based 
methods map a fixed-dimensional input to a fixed-dimensional output. 
In contrast, the KNN algorithm only focuses on similarities within the 
input space. In order to determine the class (output) to be assigned to 
each new observation (input), the KNN finds the K most similar obser-
vations from the training set to that new observation according to a 
selected distance measure. The dominant class associating with the K 
(nearest) identified observations defines the class of the new 
observation. 

Let assume a dataset where X is a matrix of input features from an 
observation and Y is a class label. To define the class to be assigned to a 
given test observation xq, the KNN firstly determines the K (positive 
integer) observations closest to xq, represented by Z. It then estimates 
the conditional probability for class j as the fraction of points in Z whose 
response values equal j, as follows [31]: 

PR
(
Y = j|X = xq

)
=

1
K
∑

z∈Z
I
(
yz = j

)
(4)  

where I(yz = j) is an indicator variable that equals 1 if the observation z 
belongs to the class j, and 0 if the class of observation z 

(
yz
)

is not 
identical to the class j. Finally, the class with the highest probability 
(calculated by (4)) is attributed to the test observation xq. The KNN is a 
straightforward method to implement. It requires selecting the number 
of the considered nearest neighbors (K) and a distance measure to 
evaluate the dissimilarity between the observations. The choice of these 
settings can affect the performance of the KNN algorithm. 

3.3. Support Vector Machine (SVM) 

Support vector machine aims to determine a hyperplane that can 
separate the data points at hand for a classification task. In a D-dimen-
sional space, a hyperplane is a flat affine subspace of dimension D − 1. 
Let assume a set of lp (=|P|) training observations x1, x2,⋯, xlp associ-
ating with labels y1, y2,⋯, ylp ∈ {− 1, 1}. The support vector machine 
aims at finding the hyperplane β0 +β1X1 +β2X2 +⋯+βDXD that maxi-
mizes the margin M via the following optimization problem [31]: 

max
β0 ,β1 ,⋯,βD ,∊1 ,⋯,∊lp ,M

M (5)  

yp
(
β0 + β1xp1 + β2xp2 + ⋯ + βpDxpD

)
≥ M

(
1 − ∊p

)
∀ p = 1, 2,⋯, lp (6)  

∑lp

p=1
∊p ≤ C (7)  

where M refers to the width of the margin separating the training ob-
servations. Within the above optimization problem, constraint (6) im-
poses the data point xp to be on the correct side of the hyperplane. Given 
that the training observations are generally not fully separable, the (non- 
negative) slack variable ∊p is introduced to allow an individual obser-
vation to be on the wrong side of the hyperplane. Precisely, when ∊p =

0, the observation xp lies on the correct side of the hyperplane, ∊p > 0 
indicates that xp is on the margin M while ∊p > 1 implies that the 
observation is placed on the wrong side of the hyperplane. The param-
eter C is introduced in (7) to limit the total amount of relaxation of 
constraint (6). In practice, C is treated as a tuning parameter that can 
control the bias-variance trade-off of the SVM [31]. Although the above 
principle is stated for a classification problem with two classes ∈ {− 1, 
1}, it can also be extended for the number of classes greater than two 
(KC > 2). One possible way to do so is the one-versus-all approach 
wherein we train KC SVM, each time comparing one class against other 
KC − 1 classes [31]. 

The SVM is usually combined with a kernel function that maps the 
input features into a higher dimensional space, which allows to effi-
ciently handle complex classification problems. The most commonly 
used kernels are the linear, radial, polynomial, and sigmoidal functions, 
as described in [32]. The choice of an appropriate kernel function and 

Fig. 3. Illustration of the proposed supervised learning-based model relying on the pre-clustered FB domains within the two-step set-up. P and Q denote sets of time 
steps of the training and test phases, respectively. Dash (or solid) arrows demonstrate the data flow associated with the training (or test) phase. 
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proper tuning of its parameters as well as an optimal adjustment of 
parameter C is essential for an acceptable performance of the SVM 
classifier. 

4. Proposed direct supervised learning-based model (single-step 
approach) 

The classical two-step methodology employed by the TSOs (pre-
sented in Section 2.2) induces inaccuracies in adequacy assessments, 
which are originated from both clustering and correlation analyses. 
Although the performance of such a two-step approach can be enhanced 
by leveraging a clustering technique tailored to adequacy assessments 
(as studied in [19]) and through an improved mapping between 
explanatory variables and clustered FB data (as targeted in Section 3 of 
the current paper), the intra-cluster discrepancies may remain signifi-
cant owing to various shapes and forms of FB domains, which would 
lead to inevitable modeling inaccuracies in adequacy studies. As a result, 
the application of FB cluster representatives in adequacy assessments 
may lead to erroneous outcomes. In order to tackle the latter issue, in 
this section, we leverage the supervised learning to develop an inno-
vative single-step model that directly maps the selected explanatory 
variables to the FB domains, without relying on the clustering analysis. 

Along the direct mapping process, the initial shapes of FB domains 
must be preserved as they reflect the grid-feasible exchanges of the 
considered zones. The proposed single-step model is formulated as a 
classification problem in which each FB domain in the historical dataset 
constitutes a unique class. In other words, since within the direct map-
ping process, the intermediate step (the clustering analysis) is elimi-
nated, the number of available classes equals the number of FB domains 
in the dataset, which renders the classification task substantially more 
complex. Consequently, the traditional classification techniques (e.g., 
tree-based algorithms) that aim to define a link between input and 
output spaces cannot be employed in the single-step model as it involves 
numerous classes (i.e., one class per each FB domain in dataset). To 
address the latter challenge, in this section, we adopt the KNN algorithm 
(described in Section 3.2), which only focuses on the similarities within 
the input space that includes noticeably fewer dimensions. To ensure 
that the proposed single-step KNN-based model does not modify the 
original shapes of FB domains, we opt here for the (first) nearest 
neighbor to each observation (K = 1). 

Overall, our proposed direct classification model is based on the KNN 
algorithm that identifies the most similar FB domain historically 
observed to each new (unseen) sample of probabilistic adequacy as-
sessments. The selected explanatory variables (inputs) of the single-step 
model are the aggregated zonal load and generation in each zone of the 
CWE, as explained in Section 3. Fig. 4 demonstrates an overview of the 
working procedure as well as the required inputs of the proposed single- 
step model for integrating the FB domains into adequacy assessments. 

The salient features of the direct supervised learning-based model 
are threefold. First, thanks to the removal of the clustering phase, the 
accuracy of subsequent adequacy assessments can be noticeably 
enhanced (further investigated in Section 4 and demonstrated in 

Tables 4-6). Second, from the perspective of eliminating the clustering 
step, the proposed single-step model can considerably lower the 
computational complexity of the two-step methodology since it does not 
require performing the time-consuming calculation of distances be-
tween FB domains (further discussed in Section 7). Third, the proposed 
single-step model using the KNN classifier entails no hyper-parameters. 
Consequently, the performance of the proposed direct model does not 
depend on any parameter setting, unlike the classical two-step meth-
odology wherein the hyper-parameters such as the selected number of 
clusters or the defined thresholds for correlation study can significantly 
affect the final adequacy outcomes (as shown in Tables 5 and 6). 

5. Validation in the context of adequacy assessments 

In this paper, the cross-validation technique (introduced in Section 
5.1) is employed to extend the test phase of the studied methods (pre-
sented in Section 5.2 and Table 2) to the whole available database. We 
assess the performance of each studied method in the context of the 

Fig. 4. Illustration of the proposed single-step supervised learning-based model. P and Q denote sets of time steps of the training and test phases, respectively. Dash 
(or solid) arrows demonstrate the data flow associated with the training (or test) phase. 

Table 2 
Presentation of the studied test cases.  

Case 
no. 

Studied test 
case 

Modeling details Impact on 
adequacy 
assessment via  
(13) 

Clustering 
technique 

Mapping 
between 
input–output 
spaces 

1 Direct KNN 
classification 
(single-step 
method) 

NA KNN 
classification 

Predicted FB 
domain 

2 SB clustering- 
correlation 

SB Correlation Predicted cluster 
representative 

3 SB clustering- 
classification 
with RF 

SB RF classification Predicted cluster 
representative 

4 SB clustering- 
classification 
with KNN 

SB KNN 
classification 

Predicted cluster 
representative 

5 SB clustering- 
classification 
with SVM 

SB SVM 
classification 

Predicted cluster 
representative 

6 SB clustering, no 
mapping 

SB NA True cluster 
representative 

7 GO clustering- 
correlation 

GO Correlation Predicted cluster 
representative 

8 GO clustering- 
classification 
with RF 

GO RF classification Predicted cluster 
representative 

9 GO clustering- 
classification 
with KNN 

GO KNN 
classification 

Predicted cluster 
representative 

10 GO clustering- 
classification 
with SVM 

GO SVM 
classification 

Predicted cluster 
representative 

11 GO clustering, 
no mapping 

GO NA True cluster 
representative  
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adequacy study (formulated in Section 5.3) and evaluate the accuracy of 
obtained results with respect to the considered reference case (ground 
truth) described in Section 5.4. 

5.1. Cross-validation 

Traditional practice in the machine learning field consists in training 
a model with a (bigger) portion of the dataset at hand while utilizing the 
remaining unseen part of the dataset to test the performance of the 
trained model, as implemented e.g., in [28,33]. In this paper, we employ 
the k-fold cross-validation technique and embed it in the context of an 
adequacy study in order to extend the test phase (validation) of the 
developed models to the whole available database. The cross-validation 
based on the k-fold technique splits the dataset to k subgroups. The 
developed model is trained on k − 1 groups while it is tested on the 
remaining subgroup. This procedure is repeated k times while the sub-
sets selected for training and test are consecutively changed [31]. In this 
work, we consider 5 folds (k = 5) in the cross-validation procedure. It 
implies that within each iteration of the cross-validation, 80% of the 
dataset is reserved for the training while the remaining 20% is employed 
for the test. 

5.2. Test case 

The performance of the proposed single-step model presented in 
Section 4 (i.e., case 1 in Table 2) is benchmarked against various com-
binations of two-step set-up relying on the goal-oriented (presented in 
[19]) or shape-based clustering analysis combined with the correlation 
or classification (proposed in Section 3) study. The studied test cases are 
presented in Table 2 (where NA indicates a specific analysis is not 
applied). 

These considered test cases permit us (i) to compare and evaluate the 
performance of each individual model within the two-step methodology, 
and (ii) to identify the best approach for modeling of the FB domains in 
adequacy assessments. Particularly, the comparison between cases 2 to 
5, which all rely on the same clustering approach (i.e., shape-based), but 
using different mapping models based on the correlation study (case 2) 
or the proposed supervised learning-based framework employing RF, 
KNN and SVM classifiers (cases 3 to 5) demonstrates the performance of 
the different studied classification methods compared to that of the 
classical correlation approach used by the TSOs. The latter findings can 
be also derived from the comparison of cases 7 to 10 since these test 
cases employ the goal-oriented clustering approach but with different 
mapping models. Furthermore, by comparing cases 2 and 7 (or cases 3 
and 8, or cases 4 and 9, or cases 5 and 10), one can find the impact of 
clustering the FB domains using the shape-based and goal-oriented 
distance measures as those mentioned test cases rely on an identical 
mapping model applied to different clustering approaches. The latter 
outcome can be fully confirmed by comparing cases 6 and 11 where the 
shape-based and goal-oriented clustering approaches are solely 
employed (without mapping). Finally, an overall comparison among the 
11 studied test cases can reveal the most accurate FB domain modeling 
approach for the adequacy assessments. 

It should be noted that the test cases 6 and 11 represent a theoretical 
benchmark, as such a model with only clustering study cannot be uti-
lized in the context of probabilistic adequacy assessments since it does 
not incorporate any mapping of explanatory variables to FB cluster 
representatives (through correlation or classification study). Cases 6 and 
11 are considered here as they demonstrate the error that directly 
originates from the clustering part when the mapping error (from the 
correlation or classification model) is disregarded. 

5.3. Economic dispatch calculation for the adequacy assessments 

The economic dispatch formulation developed in [19] is used to 
perform the adequacy assessments on the studied cases given in Table 2. 

Relying on a linear optimization formulation, the economic dispatch 
tool aims at minimizing the Energy Not Served (ENS) in the CWE electric 
system subject to the zonal match of load-generation as well as the 
available cross-zonal exchange capacities defined by the FB domain, as 
follows. 

Min
Gi ,ENSi

∑N

i=1
ENSi (8)  

Gi − LDi − NPi + ENSi = 0 ∀i ∈ N (9)  

∑N

i=1
NPi = 0 (10)  

0 ≤ Gi ≤ Gmax
i (11)  

0 ≤ ENSi (12)  

PTDF × NP ≤ RAM (13)  

where N is the number of zones (countries) participating in the FBMC (N 
= 5),Gi denotes the aggregated generation of zone i, LDi gives the load 
demand in zone i, and NPi stands for the net position of zone i (=export 
− import). The decision variables of the optimization problem (8)-(13) 
are the zonal ENS (ENSi) as well as the generation in each zone (Gi). The 
objective of minimizing the total ENS is given in (8). Equation (9) im-
plies that the generation in each zone must equal the sum of load de-
mand and net power exchanges of that zone. To guarantee the feasibility 
of the problem at each studied time step, a slack variable i.e.,ENSi is 
added to (9) to cover the possible generation shortage of each zone. It is 
employed only when intra-zonal generation combined with the power 
exchanges via interconnections cannot cover the zonal load demands. 
Equation (10) expresses that the sum of zonal net positions must be 
equal to zero. It implies that the energy exchanges outside the CWE 
region are not considered here since these exchanges are not defined by 
the FB domains. Constraint (11) considers the upper and lower bounds 
on the zonal generations, while constraint (12) defines that the ENS is 
limited to non-negative values. Lastly, the system of linear constraints 
(13) incorporates the FB domain identified according to each of the 11 
studied cases. Table 2 (last column) represents how the FB domain is 
identified in each studied test case to be integrated into adequacy as-
sessments via (13). 

The presented optimization problem is solved for each time step 
(hour) of the studied horizon (introduced in Section 6) considering its 
associated hourly available zonal generations and load demands as well 
as the FB domain identified (for each hour) according to the studied test 
case. Given that the focus of this paper is on the modeling of the cross- 
border exchange capacities via FB domains, the employed adequacy 
formulation and its inputs are identical in all studied test cases as well as 
in the reference case (introduced in Section 5.4). The only difference is 
that the FB domains are integrated via different approaches in the sys-
tem of linear constraint (13). Once the adequacy assessment is per-
formed over the studied time horizon, the following selected adequacy 
metrics are calculated, namely the Loss of Load Probability (LOLP) in % 
and the Total Energy Not Served (TENS) in GWh. The LOLPi gives the 
number of non-zero instances of the slack variable in zone i (ENSi) 
divided by the total time steps of the studied horizon. The TENSi equals 
the sum of ENSi over the studied horizon. 

5.4. Reference adequacy results 

Relying on real FBMC data enables us to establish our reference case 
where the exact hourly FB domain available in the historical database is 
employed in the hourly adequacy assessment (8)-(13), as depicted in 
Fig. 5. The exact hourly FB domain is computed for each time step, based 
on the grid topology and data, considering the network state (load 
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demands and generation profiles). Therefore, in the reference case, there 
is no prediction of FB domain via the single-step or two-step set-up as the 
exact hourly FB domain calculated beforehand is considered in the 
hourly adequacy assessments. The adequacy metrics calculated over the 
studied horizon in this reference case constitute our “true” adequacy 
outcomes. 

The accuracy of adequacy outcomes (metrics) obtained in each 
considered test case (introduced in Table 2) is evaluated with respect to 
the true adequacy metrics calculated in the reference case. To do so, the 
absolute error (difference) between zonal adequacy indicators obtained 
by each studied test case and the reference case is added up and calcu-
lated as follows. 

ΔLOLP =
∑N

i=1

⃒
⃒(LOLPTC

i − LOLPRef
i )

⃒
⃒ (14)  

ΔTENS =
∑N

i=1

⃒
⃒(TENSTC

i − TENSRef
i )

⃒
⃒ (15)  

where LOLPTC
i gives the LOLP indicator in zone i obtained by each of the 

11 studied test cases, and LOLPRef
i presents the LOLP in zone i in the 

reference case. TENSTC
i and TENSRef

i denote the TENS index in zone i in 
the test case (i.e., one of the cases 1 to 11) and the reference case, 
respectively. 

6. Simulation results 

The simulations and analyses of this section are carried out on real FB 
data consisting of hourly FB domains as well as their corresponding 
hourly aggregated load and generation in each CWE zone. The consid-
ered dataset covers the period from January to November 2020 [20]. 
The data processing as well as the clustering, correlation, and classifi-
cation analyses are conducted in the R environment while the adequacy 
assessments are performed in Matlab. The clustering step is carried out 
using the fast k-medoids algorithm introduced in [37] that has shown a 
superior performance compared to the classical k-medoids method in 
[38]. 

The adequacy evaluation is conducted on the test cases presented in 
Table 2. Since the performance in cases 2 to 11 depends on the selected 
number of clusters (n), we perform the adequacy assessments on the 
latter cases for different numbers of clusters ranging from 2 to 10. When 
the KNN-based classification within the two-step set-up is employed (in 
case 4 and case 9), the five nearest neighbors to each observation are 
considered (K = 5) for the classification study. This setting can enhance 
the overall performance of the KNN classification according to our 
conducted exploration and experiment. The Euclidean distance is 
adopted as the employed dissimilarity measure to find the K nearest 
objects in the KNN algorithm (within both single- and two-step set-ups). 
Regarding the hyper-parameters of the RF algorithm, the standard pa-
rameters introduced in [34] are adopted (the total number of trees to 
grow equals 500, the number of variables considered at each split is 
equal to the square root of the number of selected explanatory variables, 
etc.). For the SVM, the radial kernel function with C = 100 is used as it 
could improve the overall performance of the latter algorithm, based on 

our conducted experiment. Other selected hyper-parameters of the SVM 
are identical to the initial settings defined in the employed library [35]. 

Table 3 gives the true adequacy indices obtained in the reference 
case for five CWE zones, namely Belgium (BE), Germany (DE), France 
(FR), Austria (AU), and the Netherlands (NL). Table 4 presents the errors 
in adequacy indices (calculated by (14) and (15)) when the proposed 
direct supervised learning-based model (case 1) performs the FB domain 
assignment task. Tables 5 and 6 demonstrate the errors in LOLP and 
TENS obtained in cases 2 to 11 while changing the number of clusters 
from 2 to 10. For a better distinction, the best result (smallest error) 
obtained in each test case in Tables 5 and 6 is shown in bold. 

The main observations in Tables 3-6 are fourfold: 
Observation 1: The proposed single-step supervised learning-based 

approach (case 1) outperforms all other studied test cases. The single- 
step KNN-based model decreases the errors in LOLP and TENS to 0.73 
Percentage Point (PP) and 50.7 GWh, respectively, as can be seen in 
Table 4. Considering the smallest adequacy errors obtained by the two- 
step SB clustering-correlation approach (case 2, i.e., the methodology 
employed by the TSOs) given in Tables 5 and 6 (ΔLOLP = 3.26 PP 
andΔTENS = 586 GWh), the proposed direct classification model (case 1) 
reduces these errors by factors equal to 4.5 (=3.26/0.73) for LOLP, and 
11.5 (=586/50.7) for TENS indices. These improvement factors are 
equal to 1.7 (=1.25/0.73) for LOLP and 6.8 (=345/50.7) for TENS with 
respect to the best result obtained by the enhanced two-step method-
ology based on the goal-oriented clustering combined with the proposed 
supervised learning model employing the SVM classifier (case 10). 
Furthermore, taking into account the reference adequacy results given 
in Table 3 having overall (sum of all zones) LOLP and TENS equal to 
29.27% and 2867 GWh, the proposed single-step model leads to the 
normalized errors equal to 2.5% (=0.73/29.27) for LOLP and 1.77% 
(=50.7/2867) for TENS, which clearly demonstrate the promising per-
formance of the single-step model. 

Observation 2: The proposed supervised learning-based model en-
hances the mapping between the selected explanatory variables and the 
FB domain cluster representatives (within the two-step set-up). In Ta-
bles 5 and 6, one can notice that for each given number of clusters, the 
results of case 3 (SB clustering-classification with RF), case 4 (SB 
clustering-classification with KNN), and case 5 (SB clustering- 
classification with SVM) are close to the outcomes of case 6 (SB clus-
tering with no mapping). Precisely, the gaps between the results of SB 
clustering with no mapping (case 6) and SB clustering-classification with 
KNN, RF and SVM (cases 3 to 5) do not exceed 0.26 (=5.16–4.9) PP for 
LOLP (found with n = 7) and 24 (=833–809) GWh for TENS (found with 
n = 7). This implies that minor errors are originated in adequacy out-
comes from the proposed supervised learning-based approach (within 
the two-step set-up) employing RF, KNN, and SVM classification algo-
rithms. The latter finding can also be derived from the comparison of 
cases 8 to 10 (where the proposed supervised learning-based model 

Fig. 5. Illustration of the procedure to determine the true adequacy metrics in the reference case. T denotes the set of all time steps in the database.  

Table 3 
Adequacy indices in the reference case.   

BE DE FR AU NL 

LOLP [%] 5.1 12.25 4.33 2.34 5.25 
TENS [GWh] 245  1732.8  484.1  125.4  280.2  
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using the KNN, RF and SVM algorithms is tested on the pre-clustered FB 
domains based on the goal-oriented technique) with case 11 (where the 
goal-oriented clustering is tested with no mapping part). While the 
overall performance of the three studied classification algorithms re-
mains similar for various numbers of clusters, one can notice that the 
SVM classifier employed in cases 5 and 10 leads to the smallest errors in 
Tables 5 and 6 (compare the bold values). 

Observation 3: The correlation study employed by the TSOs poorly 
maps the selected explanatory variables to the clustered FB domain 
representatives. In Tables 5 and 6, it is seen that the correlation model 
used in case 2 (or case 7) deviates the results obtained by the stand-alone 
clustering analysis with no mapping step in case 6 (or case 11). For 
instance, comparison of results of cases 7 and 11 in Table 5 demonstrates 
that the correlation model applied to the goal-oriented clustering (i.e., 
case 7) increases the initial errors of the goal-oriented clustering with no 
mapping part (given in case 11) from 1.5 to 4.57 PP for n = 8, from 2.82 
to 4.69 PP for n = 9, and from 2 to 3.61 PP for n = 10. Similarly, in case 2 
(shape-based clustering-correlation), the correlation model affects the 
results of case 6 (i.e., shape-based clustering with no mapping), for 
n > 3, as the number of clusters increases. As it can be seen in Tables 5 
and 6, these variations (representing the errors linked to the correlation 
study) are in both positive and negative directions. 

Observation 4: The performance of the two-step set-ups depends on 
the selected number of clusters (n). Particularly, in Tables 5 and 6, one 
can observe that the stand-alone goal-oriented clustering method in case 
11 starts with high errors (ΔLOLP = 7.87 PP andΔTENS = 1183 GWh) for n 

= 2. These errors are then reduced by increasing the number of clusters 
(to n > 3), where with n = 8, ΔLOLP and ΔTENS reach 1.5 PP and 388 
GWh, respectively. The stand-alone shape-based clustering approach 
without mapping part (case 6) is less sensitive to the choice of n since by 
changing the number of clusters, ΔLOLP remains between 4.9 and 5.2 PP 
and ΔTENS varies between 801 and 819 GWh, which are bigger than the 
best results obtained by case 11 (stand-alone goal-oriented clustering). 
The improved accuracy of the goal-oriented clustering method 
compared to the shape-based clustering technique has been discussed in 
[19]. 

7. Discussion 

Observation 1 states that the single-step model results in the smallest 
errors in adequacy studies. The superior performance of the proposed 
direct model is achieved thanks to eliminating the clustering step and 
capturing the temporal similarities present in FB data. Indeed, it exists 
an inherent temporal similarity among the hourly FB domains as a 
similar load demands and generation profiles in a given network to-
pology would lead to FB domains with similar characteristics. The 
proposed single-step method based on the KNN algorithm captures this 
temporal similarity by defining the nearest neighbor (K = 1) to each 
working state in the adequacy study and assigns its FB domain, known 
from the historical database to the working state at hand. The two-step 
set-up however tries to find the cluster representative that better 
matches with each working state in the adequacy study. Given that the 
hourly FB domains take numerous shapes and forms, a cluster repre-
sentative cannot truly capture the physical properties contained in all FB 
domains within the cluster. Consequently, the application of cluster 
representative in adequacy assessment leads to erroneous outcomes. The 
latter issue can be partly addressed by changing the number of clusters 
and using the goal-oriented distance measure (as shown in test case 11). 
Nevertheless, some considerable errors originating from the clustering 

Table 4 
ΔLOLP and ΔTENS Obtained using the single-step model (case 1).  

Case 
no. 

Considered model ΔLOLP[Percentage 
Point] 

ΔTENS[GWh] 

1 Direct KNN 
classification  

0.73  50.7  

Table 5 
ΔLOLP [percentage point] obtained using cases 2 to 11 for various numbers of clusters.  

Case no. Considered model Number of clusters (n) 

2 3 4 5 6 7 8 9 10 

2 SB clustering-correlation  4.8 4.84 3.66  3.26  3.58  3.65 3.7  6.35 5.75 
3 SB clustering- classification with RF  5.15 5.03 4.95  5.01  5.13  5.12 4.88  4.77 4.9 
4 SB clustering- classification with KNN  4.96 5.12 4.91  4.95  4.92  4.9 5.09  5.03 4.83 
5 SB clustering- classification with SVM  5.24 5.09 5.07  5.09  5.18  5.18 5.04  4.77 4.95 
6 SB clustering, no mapping  5.2 5.04 5.03  5.03  5.16  5.16 5.06  4.9 4.95 
7 GO clustering- correlation  6.71 4.04 4.49  3.48  3.34  3.86 4.57  4.69 3.61 
8 GO clustering-classification with RF  7.86 7.88 7.7  2.15  2.36  1.8 2  2.4 1.68 
9 GO clustering-classification with KNN  8.03 8 8  2.42  2.31  1.93 1.35  2.22 1.73 
10 GO clustering-classification with SVM  8.05 8.15 9  2.34  2.07  1.67 1.25  2.4 1.91 
11 GO clustering, no mapping  7.87 7.94 8.06  2.48  2.39  1.87 1.5  2.82 2  

Table 6 
ΔTENS[GWh] obtained using cases 2 to 11 for various numbers of clusters.  

Case no. Considered model Number of clusters (n) 

2 3 4 5 6 7 8 9 10 

2 SB clustering-correlation 859 810 710 670 601 586 609 893 680 
3 SB clustering- classification 

with RF 
830 831 824 817 831 833 824 819 826 

4 SB clustering- classification 
with KNN 

830 809 816 818 825 829 827 824 823 

5 SB clustering- classification 
with SVM 

805 798 803 804 805 805 811 806 802 

6 SB clustering, no mapping 819 813 808 807 809 809 807 801 803 
7 GO clustering- correlation 1105 638 729 566 576 589 589 739 637 
8 GO clustering-classification with RF 1166 1192 1172 415 394 385 425 525 448 
9 GO clustering-classification with KNN 1122 1272 1211 419 401 396 393 474 475 
10 GO clustering-classification with SVM 1186 1349 1325 430 350 345 390 474 476 
11 GO clustering, no mapping 1183 1302 1264 456 433 422 388 523 496  
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analysis remain inevitable. The proposed single-step model directly 
defines the most similar FB domain historically observed to each new 
sample of adequacy assessment (without doing a clustering step). As a 
result, its identified FB domain can closely align with the considered 
conditions in adequacy assessment, which is not the case when the FB 
cluster representative (medoid) according to the two-step methodology 
is integrated into adequacy assessment. 

Besides its enhanced modeling accuracy, the proposed single-step 
model eliminates the computational complexity of the two-step set-up 
(relating to the pre-processing step of the subsequent adequacy assess-
ments) since it does not require calculating the distance between each 
pair of FB domains in the historical dataset, which is overly time- 
consuming when using the shape-based distance measure employed by 
the TSOs. Such a shape-based distance calculation for 100 5-dimensional 
FB domains would take around 240 s [19], which implies if we extend 
the dataset to 8760 hourly FB domains of a typical year, the time needed 
for the construction of the matrix of distances (8760 × 8760) would be 
around 511 h (assuming a linear upscaling). The latter operation would 
take around 4.2 h using the goal-oriented distance measure developed in 
[19]. The proposed single-step model can accomplish the FB domain 
assignment task within the adequacy evaluation in almost real time. 
Although the proposed single-step model demonstrates a superior per-
formance in terms of modeling accuracy and computational time 
compared to all studied two-step set-ups, it imposes that the hourly 
adequacy assessment is performed on a different FB domain for each 
Monte Carlo scenario. As a result, the commercial software that is used 
by the TSOs to perform the probabilistic adequacy assessments should 
be equipped with this possibility to be able to update the FB domain for 
each Monte Carlo sample. The latter functionality should be embedded, 
for instance, in the Antares simulator being used by the CWE TSOs 
[14,29]. 

Observations 2 and 3 express that within the two-step methodology, 
the proposed supervised learning-based model outperforms the corre-
lation analysis for mapping the explanatory variables to correct FB 
clusters. The improved performance of the proposed classification 
model is rooted in two main reasons. First, the classification study re-
ceives more input features, i.e., 10 variables representing the aggregated 
load and generation in 5 CWE zones, compared to the correlation study 
that works on the basis of 2 input variables, i.e., load demand in France 
and power generation in Germany. Having access to these comple-
mentary input features would reveal new (multi-variate) dependencies 
contained in the studied dataset that can provide a better generalization 
capability to the classification study. Second, the classification analysis 
does not require any initial feature scaling or discretization of the 
selected explanatory (input) variables that can lead to high bias errors 
by linking various FB domains with different characteristics to the same 
combination of the predefined levels in input variables, which is at the 
core of the correlation study. 

Table 7 presents an overall performance comparison among (i) the 

classical shape-based clustering-correlation methodology employed by 
the TSOs, (ii) the proposed supervised learning-based model relying on 
the clustered FB data (for the two-step approach), and (iii) the proposed 
single-step model. 

8. Conclusion 

In this paper, novel data-driven models are proposed to enhance the 
modeling of FB domains in the European resource adequacy assess-
ments. Following the two-step clustering-correlation methodology 
employed by the TSOs, we firstly propose a supervised learning-based 
model to improve the mapping between several relevant explanatory 
variables and the clustered FB domains. By covering the shortcomings of 
the correlation study employed by the TSOs, the proposed supervised 
learning framework can improve the modeling accuracy and scalability 
of the classical two-step methodology. Additionally, we leverage the 
supervised learning to develop a single-step model that directly maps 
the selected explanatory variables to the FB domains, without relying on 
the clustering analysis. This proposed single-step model defines for each 
scenario of the probabilistic adequacy assessments, the most similar FB 
domain historically observed, based on the received explanatory vari-
ables using the KNN algorithm. 

The simulations conducted in this paper confirm the superior accu-
racy of the proposed single-step model, which lowers the errors in the 
LOLP metric by factors equal to 4.5 and 1.7, compared to the best out-
comes obtained by the classical clustering-correlation methodology 
employed by the TSOs and the enhanced two-step approach using the 
proposed supervised learning model, respectively. Furthermore, by 
directly mapping the explanatory variables to FB domains, the proposed 
single-step model eliminates the computationally heavy operation 
required for the clustering analysis (to calculate the distance between 
each pair of FB domains in dataset). Consequently, the proposed single- 
step model can execute the FB domain assignment task in a nearly real- 
time fashion. Moreover, the proposed single-step model does not require 
tuning any hyper-parameters while the performance of the two-step 
methodology heavily depends on the factors such as the selected num-
ber of clusters and the predefined thresholds for the correlation analysis. 

The current research showcases how a tailored supervised learning 
model can enhance the accuracy, scalability, and computational 
complexity of the European resource adequacy assessments. Hence, it 
contributes to building confidence of the power system operators and 
power system community in the potential of machine learning to 
enhance the classical model-based analyses by capturing the complex 
trends and dynamics contained in emerging datasets of modern power 
systems, in a data-driven fashion. 

CRediT authorship contribution statement 

Bashir Bakhshideh Zad: Conceptualization, Methodology, 

Table 7 
Performance comparison between two-step and single-step set-ups.   

Modeling accuracy Calculation burden Hyper-parameter 
dependency 

Scalability Adaptability with 
existing commercial 
software 

Classical methodology based 
on SB clustering-correlation 
employed by the TSOs (two- 
step) 

Least accurate Overly heavy using SB 
clustering 

High, i.e., to the selected 
number of clusters and 
thresholds for correlation 
study 

Not scalable leading to 
numerous combinations in 
correlation study 

Adaptable e.g., with 
Antares simulator 

Proposed model using 
supervised learning relying 
on clustered FB domains 
(two-step) 

More accurate than 
classical model using 
correlation study 

Overly heavy using SB, 
complexity enhanced by 
GO 

High, i.e., to the selected 
number of clusters and the 
classifier parameters 

Scalable with extension of 
FB region 

Adaptable e.g., with 
Antares simulator 

Proposed single-step model 
based on supervised learning 

Most accurate Does not exist, the FB 
assignment task is 
performed in almost real 
time 

Does not exist, independent 
of parameter settings 

Scalable with extension of 
FB region 

Needs further 
developments of 
Antares simulator  

B. Bakhshideh Zad et al.                                                                                                                                                                                                                      



Applied Energy 325 (2022) 119875

12

Investigation, Software, Validation, Formal analysis, Data curation, 
Writing – original draft, Writing – review & editing. Jean-François 
Toubeau: Conceptualization, Methodology, Writing – review & editing, 
Validation. Kenneth Bruninx: Conceptualization, Methodology, 
Writing – review & editing, Validation. Behzad Vatandoust: Concep-
tualization, Methodology, Writing – review & editing, Validation. 
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Machine learning-assisted outage planning for maintenance activities in power 
systems with renewables. Energy 2022;238:121993. 

[29] Doquet M, Fourment C, Roudergues J. Generation & transmission adequacy of 
large interconnected power systems: a contribution to the renewal of Monte-Carlo 
approaches, in Proc. 2011 IEEE Madrid PowerTech. 

[30] Misra S, Li H. Machine learning for subsurface characterization. Elsevier; 2020. 
p. 243–87. 

[31] James G, Witten D, Hastie T, Tibshirani R. An introduction to statistical learning: 
with applications in R. Springer; 2013. 

[32] Hearst MA, Dumais ST, Osuna E, Platt J, Scholkopf B. Support vector machines. 
IEEE Intell Syst 1998;13(4):18–28. 

[33] Codjo EL, Bakhshideh Zad B, Toubeau JF, François B, Vallée F. Machine learning- 
based classification of electrical low voltage cable degradation. Energies 2021;14: 
2852. 

[34] Breiman L, Cutler A, Liaw A, Wiener M. Breiman and Cutler’s Random Forests for 
classification and regression. RDocumentation 2022. 

[35] Chih-Chung C, Chih-Jen L. LIBSVM: a library for support vector machines. 
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