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A B S T R A C T

Flow simulations on porous media, reconstructed from Micro-Computerised Tomography (μCT) scans, is
becoming a common tool to compute the permeability of rocks. Still, some conditions need to be met to obtain
accurate results. Only if the sample size is equal or larger than the Representative Elementary Volume will the
computed effective permeability be representative of the rock at a continuum scale. Moreover, the numerical
discretisation of the digital rock needs to be fine enough to reach numerical convergence. In the particular
case of using Finite Elements (FE) and cartesian meshes, studies have shown that the meshes should be at least
two times finer than the original image resolution in order to reach the simulation’s mesh convergence. These
two conditions and the increased resolution of μCT-scans to observe finer details of the microstructure, can
lead to extremely computationally expensive numerical simulations. In order to reduce this cost, we couple a
FE numerical model for Stokes flow in porous media with an unfitted boundary method for cartesian meshes,
which allows to improve results precision for coarse meshes. Indeed, this method enables to obtain a definition
of the pore–grain interface as precise as for a conformal mesh, without a computationally expensive and
complex mesh generation for μCT-scans of rocks. From the benchmark of three different rock samples, we
observe a clear improvement of the mesh convergence for the permeability value using the unfitted boundary
method on cartesian meshes. An accurate permeability value is obtained for a mesh coarser than the initial
image resolution. The method is then applied to a large sample of a high-resolution μCT-scan to showcase its
advantage.
1. Introduction

Micro-Computerised Tomography (μCT) was first developed to ob-
serve the microstructure of dense materials in a non-destructive way
for applications such as medicine and material sciences (Tuan and
Hutmacher, 2005; Salvo et al., 2003). It was later applied to rock
materials and has shown to be a very valuable tool for rocks charac-
terisation (Mees et al., 2003; Cnudde and Boone, 2013). In particular,
this technique is at the core of digital rock physics (Andrä et al.,
2013; Arns et al., 2005). In this discipline, properties are measured
and computed on μCT scans of rocks such as: porosity (Arns et al.,
2005; Blunt et al., 2013); mechanical properties (Arns et al., 2002);
chemical properties (Godel, 2013); hydraulic properties (Arns et al.,
2005; Blunt et al., 2013). We will focus on the latter in this contribution
and compute the permeability based on flow simulations on μCT scans
images.

The concept of permeability was first introduced by Darcy (1856) as
a quantification of the hydraulic conductivity of soils. This parameter
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plays a critical role in Darcy’s law that is also used in rock mechanics
to describe fluid flow at the reservoir scale. Permeability is therefore
a key parameter to quantify for energy resources engineering (Bjor-
lykke, 2010). For this type of application, the property was previously
measured using wireline-log analysis, well testing and core flooding ex-
periments on samples collected from drilled wells (Ahmed et al., 1991).
However, Darcy’s law was proven to be a homogenisation of the Stokes
formulation (Whitaker, 1986) for a Representative Element Volume
(REV) of rock. The REV of any property is defined as the minimum
sample size above which the value of the property assessed has con-
verged to a steady-value. The investigation of the effect of the sample
size on the results of simulations for Stokes flow simulations in μCT
scans has been carried out for many different rock types (Mostaghimi
et al., 2012). The REV of permeability for a rock is usually achieved
at the scale of mm3 (Guibert et al., 2015; Mostaghimi et al., 2012), at
which μCT scanning operates, except for the well-known exception of
vailable online 20 May 2022
098-3004/© 2022 Published by Elsevier Ltd.
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carbonate rocks (Mostaghimi et al., 2012; Liu et al., 2014). It becomes
therefore interesting to compute the permeability directly on μCT scans
of the core sample, for its quality of non-destructive method and added
advantages of being able to obtain the full tensor of permeability and
multiphase flow properties (Blunt et al., 2013; Dvorkin et al., 2008).
Moreover, it enables the computation of hydraulic properties on core
materials unsuitable to laboratory testing (Arns et al., 2004).

To compute the permeability on CT scan images, several approaches
have been used to simulate the fluid flow including finite differ-
ence (Mostaghimi et al., 2012; Manwart et al., 2002) and finite element-
based methods (Borujeni et al., 2013; Narváez et al., 2013), vortex
and cell centred finite volume method (FVM) (Guibert et al., 2015;
Petrasch et al., 2008) and lattice Boltzmann method (LBM) (Manwart
et al., 2002; Narváez et al., 2013). The FVM and LBM are the most
common approaches for this application (Song et al., 2019). Still,
recent developments on the finite element method allow to obtain
permeabilities in a good agreement with LBM and FVM (Yang et al.,
2019). Moreover, FEM has the advantage to natively allow for a simple
coupling with other physical processes like mechanical deformation
of the solid matrix. Such deformation can have a major effect on
permeability evolution (Ghabezloo et al., 2009). In this context, Ar-
bitrary Lagrangian–Eulerian approaches in finite elements are more
commonly used (Lesueur et al., 2017; Bertrand et al., 2017; Donea
et al., 1982). Keeping in mind further development of this work towards
this direction, we are using the Finite Element method in this paper.

Permeability computations from low-resolution CT-scans do not
provide accurate values of permeability as sub-resolution porosity is
not captured by the imaging method, but is of primary importance for
the flow inside the pores (Soulaine et al., 2016). Fortunately, resolution
of CT scans have been constantly improving since the technology was
developed, obtaining now images above 10002 pixels and with a reso-
lution below a few micrometres (Sarker and Siddiqui, 2009; Soulaine
et al., 2016; Wang and Fleischmann, 2018). Higher resolutions for the
CT scans are particularly important for porous rocks in order to obtain
a better characterisation of the pore–grain interface like the detailing of
grains’ shape, which influences significantly the value of permeability
obtained (Beard and Weyl, 1973; Cox and Budhu, 2008; Torskaya et al.,
2013). Note that image processing and segmentation methods also al-
low to improve on the quality of the microstructure recovered (Iassonov
et al., 2009; Wang et al., 2019a). In this contribution, we focus on
the CT scan images after such processing of the gryscale data, thus
we consider that the images present a mathematically well-defined
pore–grain interface. Specifically, we operate in this contribution on
CT scans that have gone through a global thresholding segmentation
as it remains the most common approach to process the greyscale
data. For this method, a global grey threshold value is defined to
separate the solid from the pores based on the analysis of the images
histograms. This simple way of determining the pore–grain interface
is not the most accurate and other methods have been developed to
better constrain the position of the interface like locally adaptative
thresholding (Burghardt et al., 2007) level set methods (Yan et al.,
2008) or marching cubes algorithm (Lorensen and Cline, 1987) and the
unfitted boundary method described here for the permeability compu-
tation could be also applied directly to segmented images obtained from
any of those methods.

The higher resolution of CT scans images comes with the constraint
of a higher computational effort to run the flow simulation. Indeed,
numerical accuracy is obtained when the result of the FE simulation
converges towards a single value with decreasing size of the mesh
elements, called mesh convergence. For permeability, the mesh con-
vergence for non-conformal meshes is only obtained with a mesh finer
than the image resolution, which leads to simulations with a very
large number of elements in the case of high-resolutions CT scans. For
example, the study of Guibert et al. (2015) showed that a cartesian
mesh size of even twice the resolution of the original image could
2

not be enough to reach mesh convergence for permeability. In the
case of carbonate rocks, it becomes then extremely difficult to get
good accuracy on the value of permeability as the REV size can be
very large. In some instances the size needed for the computation is
above the capability of the simulator (Guibert et al., 2015) and final
permeability value is only computed at the limit of resources. The
issue with computational cost in Digital Rock Physics has been reported
many times in the literature (Soulaine et al., 2016; Guibert et al., 2015;
Torskaya et al., 2013; Wang et al., 2019b; Shah et al., 2016).

While many solutions are developed with the objective to increase
the number of elements in a simulation at a lower computational
cost (Wang et al., 2019b), we opt for a different approach which aims
at reducing the number of elements needed to reach mesh convergence.
Such numerical coarsening procedure has already been shown to pre-
serve pore-space properties (Shah et al., 2016). Still, the magnitude of
the approximation on permeability due to a too low resolution image
can be non-negligible (Guibert et al., 2015; Zakirov and Galeev, 2019;
Borujeni et al., 2013). To this end, we are looking for a better approxi-
mation of the pore–grain interface for a mesh coarser than the CT scan
image resolution. Here we apply an unfitted Finite Element Method
(FEM) approach for this numerical coarsening scheme in which the
geometry of the domain is embedded in a background mesh. Different
methods can be considered for this aim, typically classified in two main
groups: immersed boundary methods or embedded boundary methods.
The former basically consists on solving the problem in the active and
inactive parts of the domain, enforcing the boundary condition via a
forcing function (see Mittal and Iaccarino, 2005). In the later approach,
the equations are solved only on the active part of the domain and the
boundary conditions are enforced by either modifying the weak form
of the problem or manipulating the mesh close to the boundary (see
e.g. Burman et al., 2015; Rangarajan and Lew, 2014). In this work we
propose an embedded boundary method for cartesian meshes in which
the nodes of the background mesh at the interface between active and
inactive elements are displaced in such a way that they fit the embed-
ded geometry obtained from CT scans with a finer resolution than the
mesh considered, see Section 2.1. Note that one of the main differences
with respect to the universal meshes approach presented in Rangarajan
and Lew (2014) is precisely the use of cartesian grids. By using the
latter, we can take advantage of octree-based adaptive mesh refinement
strategies (see e.g. Lesueur et al., 2017). Other advantages of this choice
are, for instance, the ability to use spectral approximations or highly
efficient data-structures.

After a first section on the description of this new method, referred
as the displaced boundary method, it is benchmarked for μCT scans
of three types of rocks presenting different microstructure geometries.
We finally showcase the method’s performance for a high-resolution CT
scanned rock sample.

2. Displaced boundary method

2.1. Description and numerical implementation

The mesh of the digital rock is constructed using the approach intro-
duced by Lesueur et al. (2017). It relies on the image reader capability
of the finite element framework MOOSE (Permann et al., 2020) and
produces 3D cartesian meshes of the pore space of rock microstructures
reconstructed from a stack of segmented μCT scan images. Our focus
is to obtain accurate values of permeability by homogenisation at a
reduced computational cost by running simulations on a mesh coarser
than the image resolution. In this case, the pore–grain boundary has to
be grossly approximated in a given way. Specifically in this contribu-
tion, it is the pixel value of the element’s centroid that dictates whether
the element should be a pore or a grain. This meshing procedure
is showcased for the example of a quarter circle in Fig. 1a and the
resulting approximation of the boundary can be observed in Fig. 1b.

To use the displaced boundary method introduced here, we need
to mesh the digital rock at its full resolution and extract the pore–

grain boundary as a STL file. This file contains the geometry of the
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Fig. 1. Schematic of the meshing procedure of a quarter circle against a 3 × 3 grid using the displaced boundary method. The displaced mesh (d) results in a better approximation
of the real geometry than the undisplaced mesh (b). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
pore–grain interface as a surface in three dimensions that we are trying
to match with the lower resolution mesh. As a preprocessing step,
the distance between the precise interface given by the STL file and
the approximated one of the mesh is computed. For each node of the
meshed pore–grain boundary, we find the closest point on the STL and
return the distance between the two. The distance is displayed for the
example of a quarter circle in Fig. 1c. The nodes (and subsequently the
integration points) of the mesh are then displaced of the computed dis-
tance and the pore–grain interface now matches the geometry of image
at full resolution. The final result is a mesh with a lower resolution than
the image that still matches closely the pore–grain boundary, as can be
observed in the example of a quarter circle in Fig. 1d.

Note that this technique can be understood as a process to transform
the original background mesh to a conforming mesh. Certain mesh gen-
erators can obtain similar conforming meshes such as SnappyHexMesh
from OpenFOAM. However, our method is not constrained by the
complexity of generating a sophisticated physical mesh. Instead, it is
better described as an unfitted FEM approach in which the mesh is
fixed and an additional transformation map is applied to the Finite
Element reference map. Indeed, this map (𝜑𝐝) can be defined for each
background mesh node 𝑖, with original coordinates 𝐱𝑖, as

�̂�𝑖 = 𝜑𝐝(𝐱𝑖) =
{

𝐱𝑖 + 𝐝(𝐱𝑖) if 𝐱𝑖 ∈ 𝛤𝑀 ,
(1)
3

𝐱𝑖 otherwise.
Where 𝛤𝑀 is the interface of the background mesh and 𝐝(𝐱𝑖) ∶= 𝐱𝑆,𝑖−𝐱𝑖
the distance from a node 𝑖 on 𝛤𝑀 , with 𝐱𝑖 ∈ 𝛤𝑀 , to the closest point on
the pore–grain interface 𝛤𝑆 , 𝐱𝑆,𝑖 ∈ 𝛤𝑆 . The closest point on the pore–
grain interface is such that it minimises the Euclidean distance ‖𝐱𝑆−𝐱𝑖‖
for any point 𝐱𝑆 ∈ 𝛤𝑆 . In this contribution, the ‘‘displaced mesh’’ refers
to the equivalent mesh on which the FE simulations are computed. The
‘‘undisplaced’’ mesh corresponds then to the regular cartesian mesh.

The well-posedness of the method is guaranteed if the resulting map
leads to transformed elements with a positive Jacobian. In that case,
the method inherits all the convergence and stability properties of an
standard conformal Finite Element approach. However, this condition
is not satisfied in the general case. Nonetheless, in practice,the method
of selecting the elements domain (pore or grain) based on the element’s
centroid (see Fig. 1a) results in an approximated pore–grain interface
with a distance to the real interface of, at worst, one element’s size h.
Therefore, in practice, no negative Jacobians should be found, which
was observed in every simulation of this contribution. Further analysis
is required to prove theoretical well-posedness. Another drawback of
some unfitted FEM approaches is the so called small cut-cell problem,
which results in ill-conditioned matrices caused by the appearance of
active elements with a measure orders of magnitude smaller than the
measure of the neighbouring elements. In the approach presented in

this work this issue is avoided by only activating the elements whose
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centroid lies inside the domain. Therefore, assuming a sufficiently
smooth boundary, the measure of the displaced elements is of the same
order as the one of the elements from the original background mesh.

The relevance of the proposed approach lies in its efficiency and
simplicity of implementation. Comparable results can be obtained with
other embedded Finite Element techniques such as in Burman et al.
(2015), where a stabilisation term is added to avoid the small cut-cell
problem. The proposed approach avoids the use of this term and the
integration on cut cells, which simplifies the algorithmic simplicity and
reduces computational cost associated to the numerical integration.

It is important to highlight that the proposed method does not
depend on the way the geometry is characterised. That means that
it can be used for geometries defined by STL files generated from
CT scanned samples, but also for domains defined by continuous dis-
tance fields, e.g the level-set method, or domains defined using CAD
techniques. Furthermore, the proposed approach is suitable for non
water-tied geometries, i.e geometries defined by non-contiguous parts,
as long as a distance field can be provided at the pore–grain interface
nodes. In addition, we also note that the proposed approach can be
directly applied to adaptively refined or coarsened meshes, as long as
the underlying background cells close to the interface are composed by
regular squares or hexahedra.

Any computation during the simulation is done on the displaced
mesh. The FEM simulator used in this contribution is MOOSE, in which
we can do computations on the displaced mesh. The permeability
computation is done following the methodology presented in Lesueur
et al. (2017), summarised briefly below. Pressure driven stokes flow,
expressed in dimensionless form as:

− 1
𝑅𝑒

∇2𝑣∗
𝑓
+ ∇𝑝∗𝑓 = 0 (2)

− ∇ ⋅ 𝑣∗
𝑓

= 0 (3)

ith 𝑣𝑓 the fluid velocity, 𝑝𝑓 the fluid pressure and 𝑅𝑒 the Reynolds
umber. The system of equations is solved using a Pressure-Stabilised
etrov–Galerkin formulation (Hughes et al., 1986). This approach re-
ults in a stable weak form for equal order velocity–pressure pairs that
s given as: find (𝑣ℎ, 𝑝ℎ) ∈ ℎ ×ℎ such that

∫𝛺

[ 1
𝑅𝑒

∇𝑣ℎ∇𝑤ℎ − 𝑝ℎ(∇ ⋅𝑤ℎ) + 𝑞ℎ(∇ ⋅ 𝑣ℎ) + 𝜏∇𝑝ℎ ⋅ ∇𝑞ℎ
]

𝑑𝛺 = 0

∀(𝑤ℎ, 𝑞ℎ) ∈ ℎ ×ℎ, (4)

with 𝜏 = 𝑅𝑒ℎ2∕12 and ℎ the characteristic element size. The Finite
Element spaces, ℎ and ℎ, are defined as: ℎ = [ℎ]𝑑 and ℎ = ℎ,
with

ℎ =
{

𝑣ℎ ∈ 𝐻1(𝛺) ∶ 𝑣ℎ|𝐾 ∈ 𝑄𝑑
𝑟 (𝐾), 𝑣ℎ|𝐾∩𝛤 = 0, ∀𝐾 ∈ ℎ

}

.

Where 𝑄𝑑
𝑟 is the tensor product in 𝑑 dimensions of polynomials of

order 𝑟, and ℎ is the set of active regular quadrilateral or hexahedral
elements in the domain 𝛺. In this work we use linear polynomials,
i.e. 𝑟 = 1, resulting in an optimal convergence rate of second-order,
(ℎ2). This formulation has been widely used in the literature (Peterson
et al., 2018; Codina and Blasco, 2000; Tezduyar and Sathe, 2003)
and can be framed within the context of variational multiscale meth-
ods (Hughes et al., 1998; Codina et al., 2018; Colomés et al., 2015).
Note that the choice of formulation (4) is motivated by the ability to use
equal order interpolation elements for velocity and pressure, satisfying
the inf-sup condition. However, the method proposed in this work is
independent of the stabilisation approach and would directly apply
for non-stabilised formulations that use inf-sup stable velocity–pressure
pairs, e.g. the Taylor–Hood element. Taking advantage of the solvers of
PETSc included in MOOSE, the Schur method is used to precondition
the system following Elman et al. (2008). We follow a prescribed
solution from Balay et al. (2016) and use a Jacobi preconditioner
for the fluid pressure subsystem and the algebraic multigrid method
BoomerAMG (Henson and Yang, 2002) from HYPRE for the fluid ve-
locity subsystem. Note that the preconditioning of our system enables
4

to invert rigidity matrix even for elements for not well conditioned
elements like in Fig. 1. We would like to note that the proposed method
does not affect the algebraic structure of the original problem, allowing
the use of scalable solvers for the Stokes problem already available in
MOOSE (Peterson et al., 2018; Permann et al., 2020).

2.2. Permeability computation

From the computed flow, the average velocity in the selected direc-
tion is post processed on the displaced mesh. The permeability is finally
calculated using the formula:

𝑘 = 𝜇𝑓 𝐿𝑟𝑒𝑓

𝜙 𝑣∗𝑓
𝛥𝑝∗𝑓

(5)

with 𝜇𝑓 the fluid viscosity, 𝜙 the porosity and 𝐿𝑟𝑒𝑓 the reference
ength. The influence of the method on the value of permeability is
howcased conceptually in Fig. 2. A perfect semi sphere is meshed at
lower resolution in Fig. 2a, with 10 elements for the diameter. We

se the displaced method to retrieve the smooth geometry of semi-
phere in Fig. 2b. The difference of geometry between the two meshes
s reflected in the computed permeability through the porosity first,
sed in Eq. (5). In addition, this geometrical difference affects in turn
he fluid flow. Instead of the fluid flowing through the virtual corners
reated by the boundary approximations in Fig. 2a, we observe the
xpected smooth flow around the displaced mesh of the sphere in
ig. 2b. This is the second influence on the permeability, specifically
n the average velocity computed, which is used in the permeability
ormula, Eq. (5).

.3. Sphere packing benchmark

We demonstrate the advantage of the method on a benchmark of
he semi-analytical solution for the permeability 𝑘 of a Simple Cubic
acking of spheres of diameter 𝑑𝑠𝑝. Sphere packings represent the ideal
enchmark for the computation of permeability on CT scans. Whilst
emaining simple enough for semi-analytical solutions to exist (Zick and
omsy, 1982; Sangani and Acrivos, 1982; Larson and Higdon, 1989),

hey are representative enough of granular media and reproduce the
hallenges of computing flow through granular media. Additionally
hey represent a simple example of the geometrical challenge tackled
n this study which is the presence of curved interfaces discretised with
cartesian mesh.

We follow the setup of Zick and Homsy (1982) and select a concen-
ration of spheres of 0.45 (corresponding to 𝑑𝑠𝑝 = 0.95076) assembled
s a non-overlapping Simple Cubic Packing. The modelling of the
acking’s behaviour is reduced to the study of one unit cell by using
eriodic boundary conditions. Furthermore, based on the symmetry of
he problem, only a quarter of sphere is meshed (oriented in the flow
irection) and slip boundary conditions are imposed on the sides for
he solution to be representative of the full unit cell. The set-up of
he benchmark is schematised in Fig. 3b. A mesh convergence of the
ermeability is computed on both the regular hexagonal mesh and the
isplaced mesh and we plot in Fig. 3 the error with regards to the semi-
nalytical solution of Zick and Homsy (1982) for both methods. Note
hat the drag force 𝐹𝑑 , reported in Zick and Homsy (1982) is converted
o a permeability value using the formula of Gerke et al. (2018),

𝑑 =
𝑑2𝑠𝑝

18(1 − 𝜙)𝑘
. (6)

We can see that the displaced method, in red, is already below 1%
of error with only 40 elements for the unit cell length, whereas the
regular hexagonal mesh leads to an error of still a few percent of
error even at 150 elements. We can also observe in Fig. 3 the different
orders of convergence (the slope of curves) between the undisplaced
and displaced methods, linear and quadratic respectively. Note that in
the undisplaced case, since we do not capture properly the boundary,
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Fig. 2. Oriented fluid flow vectors coloured with relative magnitude around a demi sphere, traditionally meshed (a) and displaced (b). The sphere is meshed with 10 elements in
diameter for both figures. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 3. Permeability error compared to the semi-analytical value of Zick and Homsy (1982) for a Simple Cubic Packing of spheres of concentration 0.45 (𝑑𝑠𝑝 = 0.95076 of the unit
cell), using both the undisplaced and displaced boundary method (left). The set-up of the simulation is displayed on the right. The unit cell is taken as the pore space located
in between the spheres, highlighted in transparent grey. Thanks to the symmetry of the system, the simulation can be made on only a quarter of the unit cell, shown with the
wireframe box. Quadratic convergence of the error can be appreciated with the displaced boundary method (fitted with 11𝑥−2 in black) while the undisplaced method has only a
linear convergence (fitted with 6𝑥−1 in grey).
the solution will be subject to an error at least of the order of the
element size. Therefore, since we use stabilised linear Finite Elements
with optimal quadratic convergence rate, see for instance Burman and
Fernández (2011), the convergence rate of the solution will be at most
linear. On the contrary, the proposed displaced approach results in a
conformal discretisation of the boundary, leading to the expected op-
timal convergence rate (quadratic). Such a smooth convergence allows
to be more predictive on the extrapolation of the converged value.

Fig. 4a shows the added percentage of computation time needed
when using the displaced boundary method, for this numerical study.
Compared to the standard approach, the additional operations in the
proposed method is the computation of distances to the interface and
the initialisation of the displaced mesh. For the set-up of Fig. 4, the
interface of the STL file has a resolution 23 times higher than the largest
simulation, consistent with the range of relative resolutions studied
in this contribution. We can observe that for small simulations, the
displaced boundary method adds a consequent amount of computation
time, explained by the fact that the distance is computed for an image
that has a relatively much higher resolution that the mesh. When
considering however a higher mesh resolution, the limiting process
becomes the initialisation of the displaced mesh that converges towards
adding ≈15% computation time. For this range of application, the
distance computation operation adds a relatively negligible amount of
time thanks to the efficiency of the close point projection methods (we
rely on the libigl library (Jacobson et al., 2018) in this contribution).
Despite the added time of the displaced boundary method, it is still
profitable to use it as we see in Fig. 4b that the error, even scaled
with computation time, remains lower than the one obtained with the
regular cartesian mesh.
5

3. Method performance

In order to showcase the method’s performance on rock permeabil-
ity computation, we compare the mesh convergence with and without
the displaced boundary method for three completely different rock
samples. We select the LV60 A sandpack (Imperial College Consortium
On Pore-Scale Modelling, 2014a), the S1 sandstone (Imperial College
Consortium On Pore-Scale Modelling, 2014b) and finally, the Ketton
limestone. Note that the samples are not necessarily REV since the focus
of this study is only to assess the permeability computation accuracy
of our method for a given image. As observed in Fig. 5, the nature
of the rock studied changes its microstructure. In addition, the CT
scanning process influences the digitisation of said microstructure. The
differences that can be observed between the samples given the CT
scanning resolution are listed below:

• Granularity The sandpack and the limestone are granular. It
is harder to distinguish the grains in the sandstone as they are
heavily cemented to each other. The rock matrix forms instead
an interconnected skeleton.

• Roundness The sandpack and sandstone have grains that can be
of various shapes, elongated or compact. The limestone instead
have very round grains.

• Grain size The sandpack is known for having a very homoge-
neous grain size distribution. It differs from the limestone where
a big contrast of size exists between some grains.

• Spatial resolution The limestone has been CT scanned at a much
higher resolution with regards to its grain size than the other
two rocks which results in a well-defined pore–grain interface.
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Fig. 4. Evolution with mesh size of the computation time taken by the displaced boundary method in the numerical study presented in Section 2.3 relatively to the total computation
time of the regular simulations (left). Scaling of the permeability error with total computation time for both methods (right). The simulations were run in serial with the solver
presented in Section 2.1.
Fig. 5. Visualisation of grains (white) and pore space (black) on a segmented slice of the samples studied. (a) The LV60 A sandpack (Imperial College Consortium On Pore-Scale
Modelling, 2014a) with a spatial resolution of 10.002 μm (sample size of (1.2 mm)2). (b) The S1 sandstone (Imperial College Consortium On Pore-Scale Modelling, 2014b) with
a spatial resolution of 8.683 μm (sample size of (1.3 mm)2). (c) The Ketton limestone with a spatial resolution of 3.00006 μm (sample size of (1.5 mm)2).
On the other hand, we can almost visualise the pixels in Fig. 5a,
which results in a staircase type pore–grain interface. The exact
resolutions are listed in the caption of Fig. 5.

By selecting such a diverse array of samples, we aim at emphasising on
the generic nature of the method, that can be applied to any rock’s CT
scan.

The permeability is computed on 3D subsets of the samples of
Fig. 5 using the flow simulator and permeability postprocessing of
Section 2.1. For each sample, the mesh convergence of permeability
is established with and without the displaced boundary method and
the results are plotted in Figs. 6, 7, 8. We note that our method has no
impact at the CT scan original resolution (denoted by a green vertical
line) because the distance computed would then be zero. However, a
difference in resolution of one element is sufficient to fall back on the
mesh convergence curve of the displaced method, which we applied for
the curves of this contribution. The phenomenon is also present at half
of the resolution of the CT scan but is less impactful.

In order to better observe the mesh convergence, the numerical
error on permeability is plotted in addition to the absolute value of
permeability. Since the reference value is not known for the samples
considered, unlike Fig. 3, the error is computed with regards to the final
value obtained for each method. The two methods are not evaluated
against the same final value because our method converges to a differ-
ent value than the undisplaced mesh, by a few %. This small difference
can be explained by the fact that the displaced mesh is always smooth,
i.e. not pixelated, unlike the undisplaced mesh. This can be observed
for example in Fig. 2. As shown in Fig. 3, this smoothness influences
the results of permeability. The difference reduces, as expected, with
increasing resolution of the CT scan.
6

For all rock samples, we can observe that the mesh convergence is
not reached at the image resolution with the undisplaced method, as
confirmed by Guibert et al. (2015). We only manage to fall under 2%
of error at twice the initial image resolution, which is therefore selected
as our reference for mesh convergence in this contribution (as denoted
by the horizontal red line in the following figures). Note that Guibert
et al. (2015) showed that even more accuracy can be achieved at four
times the resolution of the initial image.

Using the displaced boundary method, we reach the mesh con-
vergence for each sample, always earlier than with the undisplaced
method. Interestingly though, the convergence is not reached for the
same relative resolution. For the sandpack and the sandstone that
have a similarly low spatial resolution, respectively 10.002 μm and
8.683 μm, the convergence is achieved around the initial image resolu-
tion. However, it is for the limestone which has a high spatial resolution
of 3.00006 μm that our method performs the best. Mesh convergence
is achieved at half of the image resolution. With regards to the other
differences that we pointed out between the samples images, it seems
that the resolution has the most influence on the performance of the
displaced boundary method.

By comparing the displaced boundary method with the undisplaced
method, we expose that there exists actually two different convergences
when running a mesh convergence of permeability.

The displaced boundary method exposes two different influences on
the mesh convergence of permeability for regular meshing. The first
one is the convergence of the geometry of the pore–grain boundary.
Indeed with a regular cartesian mesh, a matching geometry of the
interface is only achieved at image resolution or one of its multiples.
This could explain why Guibert et al. (2015) could not obtain a mesh
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Fig. 6. Mesh convergence of the permeability of a sample of the LV60 A sandpack of size (1.2 mm)3, with and without the displaced boundary method. The resolution of the
original scan is 1203 voxels. (a) shows absolute permeability computation and (b) the evolution of the permeability error compared to the final value.
Fig. 7. Mesh convergence of the permeability of a sample of the S1 sandstone of size (1.3 mm)3, with and without the displaced boundary method. The size of the original scan
is 1503 voxels. (a) shows absolute permeability computation and (b) the evolution of the permeability error compared to the final value.
m
a
s

convergence below the image resolution, because the geometry would
always be approximated under this resolution. The advantage of using
our method is to be able to have a good approximation of the interface
very early. The second is the numerical mesh convergence itself. This
one is achieved independently of the image resolution at a specific
absolute value of mesh size h. High-resolution images seems to be
he most interesting application of our method because, in that case,
he numerical mesh convergence is reached much earlier than the
onvergence of the geometry. Since our method is not affected by
he convergence of the geometry, we therefore obtain a global mesh
onvergence much earlier than with the undisplaced method, as shown
or the limestone sample in Fig. 8.

To emphasise this last point, we run a mesh convergence of the same
imestone sample but where the resolution was artificially lowered
hree times. The mesh convergence is plotted in Fig. 9. We note that the
ermeability with both methods converges approximately towards 5.5
arcy, which differs from the value obtained with the high resolution
Tscan in Fig. 8, around 7 Darcy. This can be explained by the bad
pproximation of the structure when using the low-resolution image.
he permeability now converges only at image resolution with the
isplaced method, instead of earlier on the high resolution CTscan,
hich proves the better efficiency of the method for images that have
high resolution compared to the grain size.

. Application to high-resolution CT scan

After demonstrating the efficiency of the displaced boundary
ethod for permeability computation on rocks’ μCT scan in the previ-
7

us section, we apply it in the case where it is the most advantageous,
for a high-resolution CT scan. We select again the Ketton carbonate on
which our method has shown an impactful improvement on the cost of
permeability computation (Fig. 8). However in this section, we select
a larger sample, of 5003 voxels in size, visualised in Fig. 10a. Since

esh convergence with the undisplaced method can only be reached
t around two times the resolution of the original image, permeability
hould be computed on a sample of at least 10003 voxels. Since

our system solves for the pressure and the velocity variables in each
direction, this corresponds to solving for 4 × 109 Degrees Of Freedom
(DOF). Running a flow simulation for such size requires obviously to
be run on a supercomputer on which enormous memory allocation is
needed. Yet we show in this section that the permeability of such a large
sample can be retrieved easily with the displaced boundary method. In
comparison, we also show how much error the undisplaced method still
has at this point.

The mesh convergence of the two methods is plotted in Fig. 11, in
absolute values and with the relative error. Contrary to the previous
benchmarking section, we simulate a real application of the method.
Therefore the convergence is assessed at each increment of size by
evaluating the relative error compared to the previous size selected,
unlike the previous section where the absolute numerical error is com-
puted. Convergence is deemed reached under 2% error, as previously
mentioned. It is achieved with the displaced boundary method at less
than half the image resolution, similarly to Fig. 8. The improvement can
be seen two ways. At the converged size of 2003 voxels, it corresponds
to a gain of 5% accuracy compared to the undisplaced method. On
the other hand, if we expect the mesh convergence of this sample
would normally be reached at 10003 voxels with the undisplaced
method, using the displaced boundary method corresponds to reduces
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Fig. 8. Mesh convergence of the permeability of a sample of the Ketton carbonate of size (0.45 mm)3, with and without the displaced boundary method. The size of the original
scan is 1503 voxels. (a) shows absolute permeability computation and (b) the evolution of the permeability error compared to the final value.
Fig. 9. Mesh convergence of the permeability of a sample of the Ketton carbonate of size (0.45 mm)3, with and without the displaced boundary method. The size of the original
scan is 503 voxels, three times coarsened from Fig. 5c. (a) shows absolute permeability computation and (b) the evolution of the permeability error compared to the final value.
Fig. 10. Visualisation of meshed pore space of the Ketton sample of size (1.5 mm)3. (a) is the original scan composed of 5003 voxels ; (b) is meshed with 753 elements with the
boundary displaced to fit (a) ; (c) is meshed undisplaced with 753 elements.
the computational size by 10003∕2003 = 125, which is a consequent
factor.

5. Conclusions

In this contribution tackling the common problem of computational
cost of Digital Rock Physics, we have presented a method to improve
the mesh convergence of permeability computations on μCT scan. We
8

have managed to do so by approximating the pore–grain geometry of
the digital microstructure more accurately than regular cartesian mesh-
ing techniques. The unfitted boundary method used is implemented in
the MOOSE simulation platform. The simulations are performed for an
equivalent mesh, in which the nodes of the cartesian mesh close to
the boundary are displaced to the closest point on the exact interface.
The method has been benchmarked on the semi-analytical solution
of a regular sphere packing (Section 2.3), shown to improve mesh
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Fig. 11. Mesh convergence of the permeability of a sample of the Ketton carbonate of size (1.5 mm)3, with and without the displaced boundary method. The size of the original
scan is 5003 voxels. (a) shows absolute permeability computation and (b) the evolution of the permeability error compared to the consecutive value.
convergence of permeability on three different digital rock samples of
a sandpack, a sandstone and a limestone (Section 3) and finally applied
to a high-resolution CT scan of a limestone (Section 4).

This numerical coarsening method allows to reach accurate values
for the permeability for coarse meshes by obtaining a geometrically
accurate pore–grain interface position and hence can save significantly
the computation time required for flow simulation performed on digital
rock microstructures. In order to obtain global mesh convergence of
the permeability, we only need to satisfy the absolute numerical mesh
convergence. For this reason, our method is expected to perform better
for CT scans that have a high resolution compared to the rock’s grain
size, where the numerical mesh convergence is reached even for meshes
coarser than the image resolution. Still, the displaced boundary method
has been applied in this contribution to μCT images of digital rocks
obtained after relatively coarse voxelised segmentation obtained by a
global thresholding method and achieved mesh convergence always
earlier than the undisplaced method. However, the rapid development
conventional X ray and synchrotron based CT scans (Tengattini et al.,
2021) and image enhancement methods (Sheppard et al., 2004) enable
to produce high quality, high-resolution images that are optimised
for further segmentation and grey scale analysis of large samples.
On top of these developments, more elaborate segmentation methods
like level set methods (Caselles et al., 1997) or a watershed finding
combined with a fast marching algorithm (Sheppard et al., 2004) allow
to preserve smaller details of the microstructure after segmentation and
leads therefore to a more resolved pore–grain interface. This unfitted
boundary method would prove particularly useful by taking profit
of the very high-resolution pore–grain boundary resulting from more
complex segmentation processes.

Finally, this method has only been applied here in the case of
a static interface. However, multi-physical processes like mechanical
deformations of the solid matrix (Lesueur et al., 2017) or dissolution–
precipitation mechanisms (Lesueur et al., 2020; Rattez et al., 2021;
Guével et al., 2020) induce a displacement of the interface, which can-
not remain static during a simulation. The unfitted boundary method
applied to flow coupled to these processes would allow to track accu-
rately and in a continuous way the interface without at the same time
requiring a very fine mesh.

Computer code availability

All results presented in this study were obtained with the open-
source REDBACK simulator (Poulet et al., 2017) (http://github.com/
pou036/redback), a MOOSE module (Permann et al., 2020) under GNU
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