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Driver’s response to a pedestrian crossing requires braking, whereby both excess and inad-
equate braking is directly associated with crash risk. The highly anticipated connected
environment aims to increase drivers’ situational awareness by providing advanced infor-
mation and assisting them during critical driving tasks such as braking. Focussing on this
crucial behaviour and combined with the promise of a connected environment, the objec-
tive of this study is to examine the braking behaviour of drivers in response to a pedestrian
at a zebra crossing in a connected environment. Seventy-eight participants from diverse
backgrounds performed this driving task in the CARRS-Q Advanced Driving Simulator in
two randomised driving scenarios: a baseline scenario (without driving aids) and a con-
nected environment (with driving aids) scenario. A Weibull accelerated failure time dura-
tion modelling approach is adopted to model the braking behaviour of drivers. In
particular, this duration model is specified to capture the panel nature of the data and
unobserved heterogeneity through correlated grouped random parameters with
heterogeneity-in-the-means in the Bayesian framework. Results indicate that, for most dri-
vers in the connected environment, it takes longer to reduce their speed with less speed
variation and a larger safety margin. In addition, a decision tree analysis for the braking
time suggests that for older drivers, when the distance to the zebra crossing is larger in
the connected environment than that in the baseline scenario, braking time is likely to
increase. The model also reveals that the braking time of female drivers is longer in the
connected environment compared to that of male drivers. Overall, the connected environ-
ment is associated with increased braking time by providing advanced information, giving
drivers additional time to smoothly reduce their speed in response to a pedestrian at a
zebra crossing, and ultimately making the vehicle–pedestrian interaction safer.

� 2022 Elsevier Ltd. All rights reserved.
t.nl (A.P.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.amar.2022.100221&domain=pdf
https://doi.org/10.1016/j.amar.2022.100221
mailto:y2.ali@qut.edu.au
mailto:m1.haque@qut.edu.au
mailto:zuduo.zheng@uq.edu.au
mailto:a.p.afghari-1@tudelft.nl
https://doi.org/10.1016/j.amar.2022.100221
http://www.sciencedirect.com/science/journal/22136657
http://www.elsevier.com/locate/amar


Y. Ali, Md. Mazharul Haque, Z. Zheng et al. Analytic Methods in Accident Research 35 (2022) 100221
1. Introduction

With the technological advancements in communication and sensing technologies, connected and automated vehicles are
soon to become a reality, as their deployment appears to be just on the horizon. Thus, unsurprisingly, recent research related
to these vehicles has received significant attention from researchers. In particular, the information provided by a connected
environment using vehicle-to-vehicle communication and vehicle-to-infrastructure communication has shown promise in
solving various transport issues, such as improving safety, suppressing congestion, and minimising environmental impact.
This study contributes to understanding the safety of a novel connected environment.

A connected environment is expected to provide event-based and advanced driving aids for assisting drivers in various
driving tasks. Surrounding traffic information in a connected environment can help in car-following (Sharma et al., 2020)
and lane-changing (Ali et al., 2020a) manoeuvres. Similarly, advanced information through a connected environment is
expected to improve situational awareness among drivers and generate stimulus well before an event occurs, which can
enhance safety. For instance, Ali et al. (2021b) reported that drivers in a connected environment make safer decisions at
the onset of yellow light by deciding to stop before the stop line. Research on the effects of a connected environment on
safety has been the focus of a large body of literature in recent years (see more details in the next section). Succinctly, much
of the literature has focussed on connected environment’s impact using numerical simulations, which lack the human factor
that is considered critical in the safety evaluation of a connected environment (Sharma et al., 2017). Also, these simulation-
based studies showed aggregated or macroscopic benefits of a connected environment, whereas studies demonstrating how
an individual driver is affected by a connected environment are missing, which is critical for the success of this novel envi-
ronment. As such, this study aims to investigate the effects of a connected environment on driving behaviour at a micro-
scopic (or an individual driver) level using actual trajectory data, which contain human factor information.

Driving behaviour on urban streets differs significantly from that on motorways because of complex traffic interactions in
an urban road traffic environment. This study focusses on microscopic driving behaviour on urban streets. While encounter-
ing traffic events on urban streets, two important aspects of driving behaviour are reaction (or response) time and braking
behaviour. The former aspect has received significant attention in traffic safety literature. For instance, the effects of distrac-
tion (specifically caused by mobile phones) are frequently measured using reaction time (Hancock et al., 2003, Törnros and
Bolling, 2006, Caird et al., 2008, Just et al., 2008, Ishigami and Klein, 2009, Haque and Washington, 2014). Similarly, the per-
formance of different designs of intersections with dynamic use of exit lanes for the left turn has been evaluated using reac-
tion time (Zhao et al., 2015). It has also been used to evaluate the effects of auditory alerts from in-vehicle information
systems (Wiese and Lee, 2004) as well as in a connected environment (Sharma et al., 2019, Ali et al., 2020b). Comparatively,
less attention has been paid to braking behaviour despite its importance in characterising driving behaviour. In general,
braking behaviour is considered crucial because of its direct relationship with crash risk, as improper and abrupt braking
is often associated with an increased likelihood of engaging in rear-end collisions. Thus, this study analyses braking beha-
viour in a connected environment.

More specifically, a detailed synthesis of the relevant literature (see Section 2) revealed a number of noteworthy obser-
vations along this research direction. First, although analysing braking behaviour has remained the objective of some studies
(e.g., analysing the effects of distraction and warning signs), it has been rarely studied in the context of stopping in response
to a routine traffic event, e.g., pedestrians at a zebra crossing in a connected environment. Second, for the impact of a con-
nected environment, in general, and in-vehicle information, in particular, disagreements on braking behaviour have been
noted in the literature (see the next section for more details). Third, our understanding remains elusive on whether drivers
brake homogeneously in a connected environment when they interact with a pedestrian at a zebra crossing. For instance, the
advanced information provided by a connected environment could trigger an early response, leading to smooth braking
behaviour. In contrast, drivers may use this information to apply brake late and abruptly. An in-depth understanding of brak-
ing behaviour is not only critical for minimising rear-end collisions but also for maximising the impact of a connected envi-
ronment for improving driving behaviour on urban streets. Finally, an important research question is how braking behaviour
in a connected environment varies across driver demographics. Answers to this research question may trigger the need to
tailor a connected environment design for different driver groups.

By focussing on these research gaps, the objective of this study is to examine the braking behaviour of drivers in a con-
nected environment. The braking behaviour is studied and modelled when drivers receive advanced information about a
pedestrian at a zebra crossing. A Bayesian random parameters duration modelling approach is applied to model the braking
behaviour in a connected environment.

The contribution of this study is threefold. First, as one of the first studies that is focussed on the braking behaviour in a
connected environment, this study presents a Bayesian random parameters duration modelling approach that provides an
in-depth understanding of drivers braking behaviour in a routine driving task, i.e., interacting with a pedestrian at a zebra
crossing. The findings of this study can help in identifying a group of risky drivers and suggesting suitable countermeasures
for them. Second, by leveraging the capabilities of advanced econometric modelling, unobserved heterogeneity in braking
behaviour is captured. Third, a decision tree algorithm is employed to further trace the source of underlying heterogeneity,
revealing more insights about the differential braking behaviour in a connected environment corresponding to different dri-
ver demographics and driving behaviour.
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The rest of the paper is organised as follows. Section 3 explains the design of the experimental setup, including an inter-
action with a pedestrian, design of driving aids, and data pre-processing. Section 4 describes the Bayesian random param-
eters duration model development process. While Section 5 presents results including a descriptive analysis of braking
profiles, Bayesian random parameters model, and decision tree analysis, Section 6 discusses these results with respect to dri-
ver demographics. Finally, Section 7 summarises the main findings and outlines some future research directions.
2. Literature review

This section is divided into two parts, whereby the first part describes studies related to a connected environment and the
second part deals with a review of braking behaviour studies.
2.1. Connected environment’s impact on safety

Using a numerical simulation framework, Olia et al. (2016) reported that relative to a traditional environment, a con-
nected environment enhances safety and traffic flow efficiency with reduced gas emissions at a network level. Similarly,
Lee and Park (2012) found that basic safety messages obtained from the safety pilot model deployment project showed
improved driving behaviour and enhanced intersection safety. Similar conclusions have been reported by several other stud-
ies (e.g., Park et al. (2011), McGurrin et al. (2012), Zeng et al. (2012), Rahman and Abdel-Aty (2018)). For instance, a study on
connected vehicle platooning reported that a connected vehicular environment increases safety measured in terms of safety
surrogates (Rahman and Abdel-Aty, 2018). In another study on a connected environment where drivers received assistance
for merging, it was found that drivers safely merged to a freeway when they were assisted (Ahmed et al., 2017). Similar find-
ings were also reported by Hayat et al. (2014).

Using the data from the Connected Vehicle Safety Pilot Model Deployment Program of the University of Michigan,
Ghanipoor Machiani et al. (2017) developed a logistic model, which can be used to activate smart curve speed warnings
in a connected environment. The same dataset has been used in another study that evaluated a real-time collision warning
system based on time-to-collision and reported safety benefits of a connected environment (Zhang et al., 2017). In another
study, data from the in-depth crash investigations by the Centre for Automotive Safety Research in South Australia were
used, and crashes were reported to reduce significantly in a connected environment (Doecke et al., 2015).

The aforementioned studies were conducted either using numerical simulation or field testbed. Although studies on
numerical simulations confirmed the positive effects of a connected environment on safety at a macro level (or network
level), these findings are preliminary and lack an important component, i.e., human factor, which is considered crucial for
analysing safety at a microscopic level (Sharma et al., 2017). This issue is somewhat addressed in studies that use real
testbed data. However, none of these studies focusses on examining and understanding driving behaviour in a connected
environment at a microscopic (or an individual driver) level using actual trajectory data in an urban environment. This
research gap motivates the present study.
2.2. A review of braking behaviour studies

Braking behaviour is often characterised by brake response time and the amount of braking, which has been studied for
different driving tasks and conditions such as approaching a signalised intersection (Zöller et al., 2019, Ali et al., 2021b), dis-
tracted drivers approaching a pedestrian crossing (Haque and Washington, 2015), examining the effects of alcohol content
on driving behaviour (Yadav and Velaga, 2019), automated emergency braking (Suzuki et al., 2019), and brake assistance for
intelligent vehicles (McCall and Trivedi, 2007). Some studies used braking behaviour as an indicator of increased crash risk in
distracted driving (e.g., Consiglio et al. (2003), Al-Darrab et al. (2009), Hancock et al. (2003), Harbluk et al. (2007)). Similarly,
braking behaviour is also measured to analyse the effects of warnings provided by advanced driving assistance systems.
Lerner et al. (2011), for example, observed a faster brake reaction when drivers received both audio and visual warnings
compared to driving without warnings. Contrasting findings were reported by Bella and Silvestri (2017) as their study
observed smooth braking when drivers received directional auditory and visual warnings. Similar findings have been
reported in another study (Wan et al., 2016), where drivers were found to perform gradual braking when they received
advance information of a traffic event. Complementing these studies, a recent study (Ali et al., 2020a) on a connected envi-
ronment found that drivers have lower deceleration rates during mandatory lane-changing manoeuvres compared to discre-
tionary lane-changing manoeuvres. In another study, a smooth braking behaviour is observed in a connected environment
when drivers faced a failed lane-changing attempts on motorways (Ali et al., 2021a).

To summarise, braking behaviour has been studied in several other contexts, e.g., driver distraction, failed lane-changing
attempts, etc. However, our understanding remains elusive on how driver braking behaviour will be changed when interact-
ing with a pedestrian in a connected environment. Further, although a recent study has analysed braking behaviour in a con-
nected environment (Ali et al., 2021a), their study focussed on failed lane-changing attempts on motorways, which is
different from vehicle-pedestrian interactions in an urban driving condition. As such, our study aims to fill this research gap.
3
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3. Design of experiment and data collection

A driving simulator experiment was designed to collect high-quality vehicle trajectory data and examine driving beha-
viour. To this end, an advanced driving simulator at the Centre for Accident Research and Road Safety-Queensland
(CARRS-Q) of the Queensland University of Technology was utilised, and the data were collected in a controlled driving envi-
ronment. Participants drove the simulator in two randomised driving scenarios: baseline driving (without advance informa-
tion; the same as a traditional driving environment) and connected environment (with advanced information about a
pedestrian walking from a sidewalk to a zebra crossing). This study considers the baseline driving as the ‘default’ driving sce-
nario with which the driving performance with advanced information is compared. Note that the experiment design is a
within-subject experiment.
3.1. Specifications of the CARRS-Q advanced driving simulator

The CARRS-Q Advanced Driving Simulator (Fig. 1(a)) consisted of a fully working Holden Commodore car, which is fitted
with three large size projectors providing a 180� field of view. In addition, the rear and wing mirrors of the simulator car
were replaced by liquid crystal display (LCD) screens that provide a high-quality photorealistic view of surrounding traffic.
The simulator car is rested on a flexible rotating base, providing six-degrees-of-freedom, and mimicking real driving features
such as acceleration, deceleration, braking cornering, and road surface friction. The simulator was also capable of producing
simulated engine noises, road interaction noises, and sounds of other traffic interactions. The simulator used SCANeRTM stu-
dio software that connected eight computers for controlling the dynamics of the simulator car, simulated environment, and
recorded basic driving parameters (speeds, accelerations, positions, etc.) at a frequency of 20 Hz.
3.2. Participants

Recognising the importance of randomly sampled participants, we advertised our experiment at various local public
places and social media platforms, ensuring the diversity and representativeness of the general public. As a result, this study
recruited 78 participants and their descriptive statistics are presented in Table 1. The mean age of the participants was
30.8 years (standard deviation [SD] 11.70 years), with approximately two-thirds of them being male. The mean ages for male
and female participants were respectively 34.1 (SD 12.6) years and 24.9 (SD 6.7) years. The mean driving experience of the
participants was 12.2 (SD 11.5) years, with more than two-thirds of them possessing an open driving licence (non-
restricted). Note that in Queensland, Australia, newly licenced drivers receive a provisional licence for a period of 3 years
before they obtain an open licence. Majority of the participants (61.6%) possessed a university degree, while 23.1% passed
Grade 12. 24.4% and 23.1% of the participants reported that they usually drive between 5001–10,000 km and 15,001–
20,000 km in a typical year, respectively. Eight (out 78) participants reported their involvement in a crash in the last year.
About 42% of the participants responded that they have prior information or heard about connected vehicles. As a token of
appreciation for volunteering in the experiment, each participant received AU$ 75 after completing the experiment. Note
that the entire experiment design consists of several driving tasks, including car-following, lane-changing, interacting with
traffic signals, and interacting with a pedestrian walking on a zebra crossing. A detailed discussion on these driving tasks is
beyond the scope of this study and can be found in the full experiment design paper (Ali et al., 2020c).
3.3. Design of the vehicle–pedestrian interaction

The Brisbane Central Business District area and its surrounding environment were created in the simulated environment
for the driving simulator experiment of ths study. A high degree of accuracy in replicating the real environment was ensured
by generating a high-quality photorealistic environment as well as keeping traffic signs and road markings complying with
Australian road design standards. Note that the posted speed limit was 40 km/h. The vehicle–pedestrian interaction was
judiciously placed on two straight stretches along a city route (see Fig. 1(b) for more illustration). Prior to approaching a
pedestrian crossing, drivers drove in the city to familiarise themselves with the driving environment. While approaching
a zebra crossing, a driver was required to brake and completely stop their vehicle to yield to the pedestrian. In the experi-
ment, a driver interacted with two zebra crossings in each drive, whereby the pedestrian crossed in one of the randomly
selected zebra crossings.

The vehicle–pedestrian interaction was designed in such a way that the pedestrian started to walk from the sidewalk to
the zebra crossing when the time taken by the subject vehicle to reach the zebra crossing was less than 6 s (see Fig. 1(c)). This
time was calculated based on the speed of the subject driver, implying that the pedestrian would start to walk when the
subject vehicle is about 70 m away from the zebra crossing. Drivers, therefore, had sufficient distance available to completely
stop their vehicle on the road with the speed limit of 40 km/h that would require a braking distance of only 9 m. Although
this time could be varied, e.g., 10 s as used by Haque andWashington (2015), we used a fixed time period to avoid confound-
ing factors, as otherwise, it would be difficult to understand whether the difference in braking behaviour is caused by dif-
ferent time periods or due to a connected environment. Further, the simulated environment and interaction remained the
4



Fig. 1. Experiment design: (a) Advanced Driving Simulator; (b) Schematic of Brisbane Central Business District; (c) Designed vehicle–pedestrian
interaction; (d) Design of advance information driving aid.
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Table 1
Characteristics of the participants recruited for the driving simulator experiment.

Driver characteristics Mean SD Count Percentage

Driver’s age (years) 30.8 11.7 — —
Young drivers 22.11 2.44 38 48.72
Middle-aged drivers 35.34 3.36 32 41.03
Older drivers 58 4.08 8 10.26

Gender
Male — — 50 64.1
Female — — 28 35.9

Education
Primary — — 2 2.5
Junior (Grade 10) — — 1 1.3
Senior (Grade 12) — — 18 23.1
TAFE or Apprenticeship — — 9 11.5
University — — 48 61.6

Licence type
Open — — 62 79.5
Provisional — — 16 20.5

Years of driving 12.2 11.5 — —

Kilometers driven in a typical year
0–5000 km — — 10 12.8
5001–10,000 km — — 19 24.4
10,000–15,000 km — — 15 19.2
15,001–20,000 km — — 18 23.1
20,001–25,000 km — — 6 7.7
> 25,000 km — — 10 12.8

Crash involvement in last one year
Involved — — 8 10.3
Not involved — — 70 89.7

Frequency of driving per week
Less than 2 times — — 5 6.4
2–4 times — — 28 35.9
5–6 times — — 16 20.5
7–8 times — — 7 9.0
More than 8 times — — 22 28.2

Prior information about Connected Vehicles
Yes — — 33 42.3
No — — 45 57.7
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same for both the baseline and connected environment driving scenarios with one exception, i.e., the provision of advanced
pedestrian information in the connected environment.
3.4. Design of the connected environment

Mimicking the vehicle-to-infrastructure communications between roadside units and vehicles, advance information was
provided to the participants in the connected environment driving scenario. We conducted a thorough search with a special
focus on how major car manufacturers design their in-vehicle information systems. Driving aids in the simulator were pro-
vided in two forms: visually (a text message) and auditory (a beep sound). The text message, along with a beep sound, was
displayed at the bottom centre of the windscreen resembling the heads-up display fitted in some recent car models. Fig. 1(d)
displays a typical example of advance information showing the message ‘‘Watch for pedestrians” when the subject driver was
6 s away from the zebra crossing. This threshold was selected in accordance with the Austroads guidelines (AUSTROADS,
1993), suggesting that a driver requires 4 s to safely stop before a zebra crossing while travelling at 40 km/h. Allowing an
additional time of 2 s for reading and interpreting the message, advance information was disseminated when a driver
was 6 s away from the zebra crossing. Note that this information was presented in advance before the pedestrian started
to walk towards the zebra crossing.

As part of the participant testing protocol, each participant was briefed about the general objective of the experiment to
avoid bias in their driving behaviour. The driving route, driving tasks, and driving aids were explained in detail when they
arrived at the CARRS-Q facility. Once they were confident about all the details, they were taken to the simulator room.

Prior to the actual experimental drives, each participant performed a practice drive to get familiar with the simulator car,
driving environment, designed interactions, and driving aids. Participants were asked if they felt confident to proceed to the
actual experimental drive, and only after their positive response, the actual experiment was started.
6



Fig. 2. A typical example of (a) original and (b) segmented speed profiles: Point A indicates when the pedestrian started walking; Point B shows the
complete stop of a driver.
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3.5. Data collection

The braking profile of each driver in response to the pedestrian at the zebra crossing was extracted from the driving sim-
ulator. The braking profile was captured between the periods when the pedestrian started to move from the sidewalk to the
zebra crossing, and the subject driver responded by decelerating and reaching their minimum speed. Graphically, the brak-
ing profile is the segment between Point A and Point B (see Fig. 2(a)). The Bottom-Up algorithm was adopted (Keogh and
Pazzani, 1998) to determine when a driver responded after detecting the pedestrian movement (Fig. 2(b)). Once the driver
responded (Point A in Fig. 2(a)), the minimum point on their braking profile was traced (Point B in Fig. 2(a)), and the time
taken to reach the minimum speed was taken as braking time (see tiq in Fig. 2(a)).

Table 2 presents the descriptive statistics of variables extracted from the driving simulator experiment. An advanced
econometric model corresponding to the survival time of speed changes was developed as a function of driving scenarios
(i.e., baseline and connected environment), vehicle dynamics, and driver demographics. Note that Table 2 only contains sta-
tistically significant variables found in the parsimonious model, whereas several other demographic variables were tested in
the model, such as driving experience, education level, licence type, crash involvement etc. Models with these variables nei-
ther yielded better statistical fit nor statistically significant, possibly caused by small sample size that can be addressed by
collecting data from a larger number of participants. Further, vehicle dynamics consisted of variables for initial speed, accel-
Table 2
Summary statistics of explanatory variables included in the duration model.

Variable Description of variables Count Percentage Mean (SD)

Driving scenario
Baseline Driving without driving aids (reference) 78 100 —
Connected environment Driving with driving aids (dummy) 78 100 —

Vehicle dynamics
Initial speed Instantaneous speed of the subject vehicle before the driver starts

braking in response to a pedestrian crossing (m/s)
— — 9.68 (1.92)

Distance to the zebra crossing Distance to the zebra crossing when the driver started to brake (m) — — 58.87 (14.88)
Acceleration noise The standard deviation of acceleration/deceleration of a driver prior to

the braking event (m/s2)
— — 2.11 (0.55)

Maximum deceleration Maximum deceleration over the range of the initial speed to the
minimum speed (m/s2)

— — 0.12 (0.56)

Demographic variables
Age groups
Young Participant is 18–26 years old (dummy) 38 48.72 —
Middle-aged Participant is 27–50 years old (reference) 32 41.03 —
Older Participant is 51+ years old (dummy) 8 10.26 —

Gender
Male Participant is male (reference) 50 64.10 —
Female Participant is female (dummy) 28 35.90 —

7
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eration noise, maximum deceleration, and distance to the zebra crossing. Both initial speed and distance to the zebra cross-
ing were measured at the instant just before a driver started braking in response to the pedestrian (i.e., Point A in Fig. 2(a)).
The maximum deceleration was measured as the highest deceleration over the braking profile. Acceleration noise is mea-
sured as the standard deviation of acceleration/deceleration prior to the braking event. Note that 78 participants faced
the vehicle–pedestrian interaction and stopped at the zebra crossing in two repeated drives, forming a panel dataset of
156 observations.

Descriptive analyses were conducted to compare the braking profiles between the two drives (i.e., baseline and connected
environment) using repeated measures t-tests.

4. Modelling technique

A random parameters duration model was applied to model the braking behaviour of drivers in a connected environment.
Succinctly, the braking time (or survival time of speed changes) was modelled using a hazard-based duration modelling
approach. The random parameters specification took into account the unobserved heterogeneity associated with the braking
behaviour in a connected environment. The developed model was estimated in the Bayesian framework. A detailed descrip-
tion of the model is presented in ensuing subsections.

4.1. Model structure

A hazard-based duration modelling approach is a probabilistic approach that has been frequently used in various trans-
port applications, especially when analysing time-related phenomena. More specifically, this approach is suitable for study-
ing the time-varying probabilities of an event or the duration of an event (Washington et al., 2020). Some applications of
duration modelling in transportation are studying travel distance and times in urban environments (Anastasopoulos
et al., 2012a, Anastasopoulos et al., 2012b), understanding household evacuation timing behaviour (Hasan et al., 2013), ana-
lysing pavement overlay and replacement performance (Anastasopoulos and Mannering, 2015), understanding travellers’
habits of using new energy type mode for their transport (Anastasopoulos et al., 2017), identifying elderly travel time dis-
parities (Jordan et al., 2019), modelling lane-changing execution behaviour in a connected environment (Ali et al., 2021c),
and identifying environmental factors affecting accident occurrences during snow events (Pang et al., 2022). Similarly, this
study applies a hazard-based modelling approach to model braking time or the survival time of speed changes, which is con-
sidered as the duration variable-the time taken by a driver to reduce their initial speed to the minimum speed. The paramet-
ric duration models, i.e., accelerated failure time, allow covariates to accelerate directly in a baseline survival function where
all covariates are zero (Washington et al., 2020). In doing so, an acceleration factor is obtained that can capture the direct
effects of exposure on survival time. This attribute also leads to a simpler and intuitive interpretation of modelling results
since the estimated parameters quantify the effect of a covariate on the mean survival time (Haque and Washington, 2015).
These characteristics, combined with the appropriateness of duration modelling for braking time data, motivated us to adopt
a hazard-based duration modelling approach in this study.

Mathematically, the accelerated failure time model is an intrinsically linear form of the survival time, T, expressed as a
function of covariates in a linear regression setting as.
lnðtiqÞ ¼ b0
ixiq þ c0zi þ reiq; ð1Þ
where tiq is the survival time of speed changes for each driver i 2 f1; . . . ;78g and driving scenario q 2 f1;2g (baseline and
connected environment), b indicates a (column) vector of unknown (and to be estimated) driver-specific parameters, xiq

denotes a (column) vector of driving scenario-specific explanatory variables defined in Table 2, zi represents column vectors
of corresponding driver-specific values of the sociodemographic variables, and c is a column vector of coefficients for the
sociodemographic variables to describe unobserved heterogeneity across drivers. eiq denotes random error term that is
assumed to be independently and identically normally distributed with mean zero and standard deviation r: Further, follow-
ing Washington et al. (2020), the survival function for accelerated failure time model can be written as.
Sðtjxiq; ziÞ ¼ S0 teb
0
ixiqþc0zi

� �
; ð2Þ
which leads to the conditional hazard function as
hðtjxiq; ziÞ ¼ h0 teb
0
ixiqþc0zi

� �
eb

0
ixiqþc0zi

� �
; ð3Þ
where, S0 and h0 are baseline survival and hazard functions, respectively. Eqs. (2) and (3) suggest that there exists a direct
relationship between the effects of covariates and the survival time of speed changes, implying that these effects may
increase or decrease the braking time.

A precursor of parametric duration modelling is to specify the distribution of the duration variable. A wide range of dis-
tributions is used in the literature for estimating survival function, including Weibull, lognormal, exponential, gamma, log-
logistic and Gompertz distribution. This study, however, used Weibull distribution, primarily because of two reasons. First, it
is flexible that allows modelling of duration data with monotone hazard rates that increase or decrease exponentially with
8
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time or remain constant over time. Second, statistically, Weibull distribution was found to better fit the braking time data
compared to other distributions, as indicated by an Anderson Darling test (test statistics = 0.47; p-value = 0.25). Thus, this
study applied Weibull distribution to model the survival time of speed changes (from the initial speed to the minimum),
and its hazard function can be written as.
hðtÞ ¼ ðkPÞ ðktÞP�1
; ð4Þ
and the survival function of the Weibull duration model is shown as.
SðtÞ ¼ exp ð�ktPÞ; ð5Þ

where, k and P are respectively the location and scale parameters.
Recent literature reported that different drivers might perceive and react differently to driving aids provided by a con-

nected environment (Sharma et al., 2020, Ali et al., 2020b), which leads to preference heterogeneity and differential effects
of the same driving aids. For instance, when drivers are provided with the information of available gaps in the adjacent lane,
they tend to select different gap sizes in a connected environment during mandatory and discretionary lane-changing
manoeuvres (Ali et al., 2018, Ali et al., 2020d). Similarly, when the same advanced information related to traffic light change
was presented to drivers, it was found that some drivers stopped before the stop line while the others ran through the yellow
light (Ali et al., 2021b). As such, driving behaviour in a connected environment is likely to be heterogeneous, which is mostly
unobserved. To account for such unobserved heterogeneity, a random parameters modelling approach is adopted in this
study, which allows the estimated parameters to vary across individual drivers. More specifically, by using random param-
eters in hazard-based duration modelling, we consider bi to be driver-specific random parameters for the operational vari-
ables defined as.
bi ¼ lþWzi þXu; ð6Þ

where u is a column vector of independent standard normally distributed random variables, and bi is assumed to follow a
multivariate normal distribution with mean lþWzi and covariance matrix XX0; where X is a lower triangular Cholesky
matrix containing information about (co)variances and accounting for possible correlations in the coefficients (Fountas
et al., 2018, Greene, 2012). Assuming that r denotes the non-zero elements in the Cholesky matrix, our study aims to esti-
mate coefficients in r; in vectors l; c; and in matrix W (describing unobserved heterogeneity across drivers with respect to
the sensitivity towards traffic operational scenarios). Further, this study used an unrestrictive form of the Cholesky matrix
that allows capturing correlation between two or more random parameters as well as accounting for the panel nature of data
or group effect (see Fountas et al. (2018), Yu et al. (2015) and Eker et al. (2019)) for more details).

The developed model can be estimated using simulated maximum likelihood estimation. Alternatively, the same model
can also be estimated in the Bayesian framework, which is frequently used for hierarchical models. Note that the model
developed in this study could also be viewed as a hierarchical model where the mean of the random parameters (at level
1) is modelled as a function of covariates. Bayesian estimation offers a significant advantage over the maximum likelihood
estimation in that complicated hierarchical likelihood functions (such as the one in this study) and posteriors can be consid-
ered in model estimation (Oviedo-Trespalacios et al., 2020).

4.2. Model inference

In Bayesian models, inferences are made on model parameters based on their posterior distributions built from the mod-
el’s likelihood and prior distributions assigned to all estimable parameters. In other words, the posterior distributions of
model parameters depend on the prior probabilities assigned to parameters. As prior information of model parameters
was unavailable, we used uninformative priors, assuming that parameters follow a normal distribution with mean b̂i and
large variance, i.e.,Nðb̂i;10

6Þ. Note that b̂i is the mean of parameters estimated for a model, where we also accounted for
the panel nature of the data (i.e., each participant drives both in the baseline and connected environment scenarios). Instead
of using zero mean, we opted b̂i to accelerate the model convergence for the parameters.

In this study, the inference of posterior distributions is obtained using Markov Chain Monte Carlo simulation and Gibbs
sampling (Spiegelhalter et al., 2002).

4.3. Model selection

The Deviance Information Criterion (DIC) is adopted in this study, which is frequently used in the Bayesian framework.
The basic notion of DIC is to select the simplest model that can explain as much of the variation in the data as possible
(Spiegelhalter et al., 2002). Mathematically, it can be obtained as.
DIC ¼ D
�
þpD ð7Þ
9
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where D
�
and pD respectively denote the posterior mean deviation measuring the model fit and the effective number of model

parameters reflecting the complexity of a given model. Similar to other statistical fit measures, a lower DIC value indicates a
better model and vice versa.

To develop further insights into the effects of the explanatory variables on the survival time of speed changes, the expo-
nent of each coefficient (1 � expðbÞ) was computed (Haque and Washington, 2015, Washington et al., 2020), indicating a
percent change in survival time corresponding to a unit increase in the continuous variable or a change from zero to one
for categorical variables. Further, the statistical significance of model parameters is assessed using the Bayesian credible
intervals.
5. Results

5.1. Descriptive analysis of braking profile

Several driving indicators during the braking episode were measured for comparing the braking performance of drivers
between the connected environment and the baseline scenario, and results are summarised in Table 3.

Acceleration noise-an indicator of reckless driving-was found to be statistically significant between the baseline and con-
nected environment driving scenarios. Notably, drivers’ acceleration noise was reduced by about 0.5 m/s2 in the connected
environment, reflecting their safer braking behaviour in the connected environment. Similarly, it was found that drivers in
the connected environment reacted early to the pedestrian walking from the sidewalk to the zebra crossing, which could be
attributed to the provision of advanced information. Finally, the difference in the initial speed (or approaching speed) was
found to be statistically significant between the baseline and connected environment driving scenarios. A paired t-test indi-
cated that initial speed was about 0.941 m/s lower when drivers were assisted with driving aids while approaching the zebra
crossing. It can be inferred that a lower initial speed in the connected environment could have triggered an early response
from drivers.

Braking time or the time taken by drivers to reduce their initial speed to the minimum was also found to be statistically
significant. A paired t-test showed that drivers took about 0.4 s longer in the connected environment to reach their minimum
speeds. By taking a long time in the connected environment, drivers appeared to smoothly reduce their speeds, which is also
evident from speed variations reported in Fig. 3. Differences in the speed variations were also found to be statistically sig-
Table 3
Summary of descriptive analysis for the braking profile.

Indicator Baseline (SD) Connected environment
(SD)

Significance by paired t-tests Remark

Acceleration noise (m/s2) 2.351 (0.526) 1.863 (0.483) t-stat = 6.031; p-value < 0.001 Significant
Initial (or approaching) speed (m/s) 10.158 (1.886) 9.217 (1.858) t-stat = 3.141; p-value = 0.002 Significant
Time to reduce the initial speed to the minimum (s) 1.585 (0.603) 1.992 (0.485) t-stat = �4.646; p-value < 0.001 Significant

SD: standard deviation.

Fig. 3. Speed variations during the braking episode (sorted in ascending order).
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Table 4
Estimation results of the Bayesian random parameters duration model.

Variable Parameter estimate s. d. MC error exp(b) Bayesian credible intervals

2.50% Median 97.5%

Non-random parameters
Constant �1.109 0.754 0.025 — — — —
Initial speed 0.263 0.093 0.003 1.3 0.089 0.268 0.467
Acceleration noise �0.385 0.245 0.007 0.68 �0.863 �0.381 �0.003
Maximum deceleration �0.302 0.205 0.004 0.739 �0.703 �0.298 �0.005
Young drivers �0.382 0.21 0.002 0.683 �0.794 �0.379 �0.003
Older drivers 0.487 0.293 0.004 1.627 0.086 0.492 1.066

Random parameters
Connected environment (mean) 0.428 0.156 0.005 1.534 0.139 0.436 0.732
Distance to the zebra crossing (mean) 0.049 0.013 0.0004 1.051 0.024 0.049 0.075

Diagonal values in Cholesky matrix
Connected environment (CE) 0.285 0.223 0.004 — — — —
Distance to the zebra crossing (DZC) 0.056 0.094 0.003 — — — —

Below diagonal values in Cholesky matrix
Distance to the zebra crossing: connected env. 0.021 0.003 0.0009 — — — —

Heterogeneity in the mean of connected environment
Female 0.743 0.038 0.0007 — — — —

D
�
= 201.32; pD= 39.589; DIC = 240.91; Scale = 4.416 (p-value <0.001); No. of observations = 156; No. of groups = 78; Group size = 2

s. d.: standard deviation; MC: Monte Carlo.
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nificant (p-value <0.001), with speed variations being approximately 50% higher in the baseline scenario compared to the
connected environment, suggesting that driving aids help drivers to maintain a smooth speed profile.

5.2. Bayesian random parameters duration model for braking

The Bayesian random parameters duration model estimates for the survival time of speed changes are presented in
Table 4. Note that this model was estimated in WinBUGS software. Two separate Markov chains were used for each param-
eter with different initial values, and the the Markov chain Monte Carlo (MCMC) was performed for 110,000 iterations. The
first 10,000 iterations were discarded as burn-in samples. The model converged after 70,000 iterations, which was meticu-
lously examined by (i) calculating the Gelman-Rubin statistics of two chains and (ii) visually inspecting the trace plots of
parameters chains (Spiegelhalter et al., 2002), which confirmed the model convergence. Further, the simulation was contin-
ued for additional 30,000 iterations to obtain the posterior distributions of each parameter.

As mentioned in Section 3.1, this model captures correlations between random parameters and accounts for the panel
nature of data. Two variants of the Bayesian random parameters duration model were compared, namely a correlated ran-
dom parameters model and an uncorrelated random parameters model. The comparative analysis results suggested that the
correlated random parameters model outperformed its counterpart, with a smaller Deviance Information Criterion (DIC)
value. The selected model had a scale parameter of 4.416, which is significantly greater than 1 (p-value <0.001), implying
a positive duration dependence and that an event follows a monotone hazard function. In other words, the survival time
of speed changes decreased with an increase in time. For instance, the speed survival probability after 4 s was, on average,

about 12 times (i.e., 4=2ð Þ4:416�1) lower than that of 2 s. This decreasing survival probability trend reflected the scenario of
drivers’ stopping when approaching the zebra crossing, thereby ensuring the appropriateness of the duration modelling
approach.

The estimated model identified two random parameters, namely a dummy variable for the connected environment and
distance to the zebra crossing. Several distributions such as normal, log-normal, uniform, and triangular distributions were
tested for specifying the distribution of these parameters, and the normal distribution was found to outperform others in
terms of goodness-of-fit. The connected environment variable included gender as the heterogeneity in the mean of the ran-
dom parameter. Fixed parameters in the model were initial speed, acceleration noise, maximum deceleration, and driver age.
The braking time function (Equation (1)) can be rewritten as.
mean ðtiqÞ ¼ expð�1:109
þbCE � CE þ bDZC � DZC

þ0:428� initial speed� 0:385� acc: noise � 0:302�max : acc:
�0:382� YoungDriver þ 0:487� OlderDriverÞ;

ð8Þ
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where the first line contains the constant, the second line indicates random parameters (CE: connected environment, DZC:
distance to the zebra crossing), and the third and fourth lines represent non-random parameters, including vehicle dynamics
and driver demographics, respectively, where.
bCE

bDZC

� �
¼ 0:428

0:049

� �
þ 0:743

0

� �
� FemaleDriverþ 0:258 0

0:018 0:056

� �
S1
S2

� �
ð9Þ
is the specified correlation structure between random parameters with S1 and S2 be the independent standard normally dis-
tributed random variables.

Table 4 also presents the diagonal and below diagonal elements of the Cholesky matrix for each random parameter. Using
these elements, the standard deviation of each random parameter can be calculated as the square root of the variance (i.e.,
elements of the variance–covariance matrix, which can be computed as XX0). For example, the standard deviations for the
connected environment and distance to the zebra crossing parameters are computed as

ffiffiffiffiffiffiffiffiffiffiffiffiffi
0:066

p
¼ 0:258 and

ffiffiffiffiffiffiffiffiffiffiffiffiffi
0:003

p
¼ 0:059,

respectively. Note that several other random parameters were also tested in the Bayesian model, but they did not improve
the model fit, and hence left out of the parsimonious model.

A driver’s initial speed at the approach to the zebra crossing was significant and positively associated with braking time.
The model suggests that a 1 m/s increase in the initial speed was associated with a 30% increase in the time required to reach
the minimum speed (Table 4). With a higher speed, drivers will require more time to stop before the zebra crossing safely.

Unlike initial speed, acceleration noise had a significant and negative effect on the time to reach the minimum speed. More
specifically, with a 1 m/s2 increase in acceleration noise, the time required to reach the minimum speed decreased by 32%
(Table 4). This finding suggests that drivers with higher acceleration noise are likely to reach their minimum speed earlier,
perhaps because of hard braking. Similarly, the maximum deceleration parameter was found to be significant and negatively
associated with braking time (Table 3).

Dummy variables for young and older drivers were negatively and positively associated with speed survival time, respec-
tively. Compared to the middle-aged drivers, young (older) drivers took about 31% (63%) shorter (longer) in reducing their
speeds to the minimum speed or zero (Table 4).

Table 4 also illustrates that the mean and standard deviation of the connected environment dummy variable were signif-
icant. The presence of randomness in the variable connected environment indicates significant heterogeneity in braking time
for this parameter, as shown in Table 5. The braking time was found to increase for the majority of drivers (90%) in the con-
nected environment compared to the baseline scenario, but there was a group of drivers who took shorter time in the con-
nected environment to reduce their speeds. This finding underscored the existence of preference heterogeneity in the
connected environment, reflecting that not every driver perceived the advanced information in the same way. Some drivers
used this information to brake slowly, exhibiting their safer behaviour, while other drivers used it in a counterproductive
manner by delaying their response and then perhaps brake faster to compensate for the increased crash risk.

From Table 4, it can be observed that the heterogeneity in the connected environment is a function of driver gender.
Specifically, we use a simulation approach to calculate the braking times for both male and female drivers. Results from sim-
ulations indicate that the braking time of female drivers in the connected environment was twice more than that of male
drivers. We further elaborate on this finding in the next section.

The mean and standard deviation of the second random parameter, i.e., distance to the zebra crossing when a driver
started to brake, was found to be significant and positively associated with braking time, revealing a significant heterogene-
ity in braking time corresponding to the distance to the zebra crossing. As the heterogeneity is confirmed in Table 5, more
than three-quarters of drivers took longer to stop in the connected environment, whereas the remaining drivers were found
to brake faster. The mean of this parameter was positive, implying that when this distance was large, drivers were more
likely to take longer time to stop, which is intuitive because there was no urgency to stop, and they could slowly reduce their
speed. On the other hand, braking time was found to decrease with an increase in the distance for some drivers, reflecting the
cautious behaviour of drivers who were hesitant to delay their response and then compensate by hard braking.

The unrestricted form of the Cholesky matrix allowed the estimation of correlation between random parameters, which
offers more insights into the braking behaviour of drivers in response to the pedestrian at the zebra crossing. Results indi-
cated that the random parameters for connected environment and distance to the zebra crossing were statistically correlated
at a 95% confidence level (t-stats = 4.07; p-value <0.001), with a covariance of 0.01 and a correlation coefficient of 0.31. Of
note, t-stats and correlation coefficients were calculated following the post estimation technique presented in Fountas et al.
(2018), and interested readers are referred to this study for mathematical formulations. Correlation between random param-
eters indicates the presence of interactions of unobserved heterogeneity associated with random parameters. A positive cor-
relation between the random parameters (i.e., distance to the zebra crossing and the connected environment) implies that an
Table 5
Distributional effects of the random parameters.

Random parameter Above zero Below zero

Connected environment 90% 10%
Distance to the zebra crossing 79% 21%

12



Y. Ali, Md. Mazharul Haque, Z. Zheng et al. Analytic Methods in Accident Research 35 (2022) 100221
increase in the effect of the distance to the zebra crossing (indicated by bDZC) in the connected environment was likely to
increase braking time because of unobserved heterogeneity associated with these random parameters. This finding under-
scores the notion that when drivers are informed about pedestrian movements on the zebra crossing in the connected envi-
ronment, they make early decisions and smoothly reduce their speed by taking more time.

5.3. Decision tree analysis

As reported in the previous section, the Bayesian random parameters duration model identifies two classes of braking
time in a connected environment: drivers with increased braking times and drivers with decreased braking times. To further
develop insights into what causes this differential behaviour in a connected environment given that the same information is
presented to all the drivers, we adopted a decision tree analysis because such information cannot be obtained from the Baye-
sian random parameters model. Several classification algorithms are available in the literature, namely neural networks,
support vector machine, decision tree, and ensemble algorithms. However, the decision tree algorithm selection was gov-
erned by a combination of better accuracy and interpretability, which corroborates with a previous study (Sharma et al.,
2020).

To employ a decision tree algorithm, the same variables as reported in Table 1 were used. However, vehicle dynamics
variables were used to calculate their respective ratio. For instance, the initial speed ratio was defined as the initial speed
in the connected environment divided by the initial speed in the baseline environment. Similarly, all other ratios were cal-
culated. Note that the outcome variable for the decision tree was a binary variable capturing an increase or decrease in brak-
ing time in the connected environment.

Fig. 4 presents the decision tree for classifying the braking time, which is estimated using Python CHAID library. Consid-
ering the right branch of the tree, it can be observed that for older drivers, when the distance to the zebra crossing was larger
in the connected environment than that in the baseline scenario, braking time was likely to increase (i.e., outcome A in
Fig. 4). Older drivers being aware of the zebra crossing in the connected environment took more time to gradually reduce
their speed without any safety concerns. Similarly, the left branch of the tree suggests that when the initial speed of young
and middle-aged drivers in the connected environment was higher than that in the baseline scenario and distance to the
zebra crossing in the connected environment was smaller compared to the baseline scenario, drivers took less time to reduce
their speed (outcome B in Fig. 4). Young drivers in the connected environment with higher speed and short distance from the
stop line were found to brake hard. The rest of the decision tree can be interpreted in a similar manner.

Two noteworthy conclusions from the decision tree analysis can be made. First, while there is significant heterogeneity in
braking time when drivers receive advance information from the connected environment, braking time increases for most
drivers. This finding is consistent with our model estimation results in the previous section. Secondly, a necessary scenario
Fig. 4. The estimated decision tree for classifying differential braking time.
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for an increase in braking time was the early response of drivers (measured as the large distance to the zebra crossing) in the
connected environment than that of the baseline scenario. This finding is intuitive and has been explained previously.
6. Discussion

6.1. Braking behaviour in the connected environment

The Bayesian random parameters duration model (Table 3) facilitated examining the impact of the connected environ-
ment on various combinations of explanatory variables after controlling for vehicle dynamics and other exogenous factors.
The developed model allows us to plot survival curves that assist in examining braking behaviours in response to a pedes-
trian at the zebra crossing. More specifically, speed survival probabilities were calculated using Equation (10) and the param-
eter estimates in Table 3. For instance, the survival probability at time t under average driving scenarios in the connected
environment (see Table 1 for the average values of continuous variables and reference category for categorical variables)
can be calculated according to Eq. (10). Baseline survival probabilities can be computed in a similar way. The corresponding
survival curves are plotted in Fig. 5.
SðtÞCE ¼ exp � exp �4:416ð�1:109þ 0:263� 9:68� 0:382� 2:11� 0:302� 0:12þ ð0:428� 1þ 0:743� 0ÞÞð Þt4:416� �
:

ð10Þ

Fig. 5 shows that the speed survival probabilities decreased with elapsed time. Drivers in the baseline scenario (without

any driving aids) appeared to reduce their initial speed earlier compared to the connected environment scenario. The speed
survival probability, for instance, at 2 s in the baseline scenario was 21%, whereas the corresponding probability in the con-
nected environment scenario was 79%, suggesting a 58% difference in the latter driving scenario. Using the survival curves,
we found that drivers in the connected environment scenario took about 4.3 s to reduce their initial speed to the minimum,
while speed in the baseline scenario, on average, survived 1.4 s less, reflecting more aggressive braking to reduce the speed in
the baseline scenario. This finding implies that when drivers are not assisted with driving aids, they tend to decelerate more
sharply in response to a pedestrian at the zebra crossing.

A connected environment increases situational awareness, thereby providing the benefit of additional time to react dur-
ing different driving tasks (Sharma et al., 2019). For instance, when drivers received advanced information about hard brak-
ing events during car-following, they were found to take more time to respond to the event reflecting their proactive driving
behaviour (Sharma et al., 2020). Similarly, Ali et al. (2020a) reported that hard braking events in the connected environment
were reduced by more than 50% during lane-changing manoeuvres, which can be attributed to an early response when
advance information of traffic events was provided. These studies suggest a direct relation of a driver’s early response to
a situation with the awareness of the surrounding traffic environment created by a connected environment, thereby increas-
ing safety margin. On the other hand, a delayed response is often associated with increased crash risk unless drivers perform
Fig. 5. Speed survival graphs for different driving scenarios.
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a hard (or rapid) deceleration to avoid engaging in safety–critical events (Harbluk et al., 2007). A study reported that drivers,
who were slow in responding to traffic light changes, brake harder as compensation for slow response (Hancock et al., 2003).
In summary, shorter braking time in the baseline scenario can be associated with hard braking, which is directly linked to a
delay in responding, perhaps because of an inaccurate perception of the presence of the pedestrian (Haque and Washington,
2015). However, such risk is minimised in the connected environment when drivers receive advanced information about the
presence of a pedestrian at the zebra crossing, and thereby drivers are prepared to brake early and smoothly.

Although most drivers took a longer time to brake, the model also suggested that some drivers took a shorter time to
brake. Drivers with shorter braking time may have used advanced information of the connected environment to respond ear-
lier to minimise risk, reflecting their cautious, proactive, and safer braking behaviour. Ali et al. (2020b) found that drivers in
the connected environment took shorter time to respond to a lane-changing request and reduced their speed gradually, as
illustrated by smaller jerks and speed variations.

To summarise, drivers were found to drive safely when the connected environment provided advanced information as
they avoid hard braking, which may lead to engaging in safety–critical events during their interaction with the pedestrian.
Fig. 6. Effects of the connected environment on braking behaviour of different age groups.
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6.2. Effects of drivers’ characteristics on braking behaviour

6.2.1. Driver age
Fig. 6 displays the braking behaviour of young, middle-aged, and older drivers in the baseline and connected environment

driving scenarios. The speed survival probabilities in the connected environment for young, middle-aged, and older drivers at
2 s were 28%, 78%, 97%, respectively, while the corresponding probabilities in the baseline scenarios were respectively <1%,
21%, and 83%.

The difference between the areas under the curve for the speed survival probabilities of the baseline and connected envi-
ronment scenarios was calculated for comparing braking behaviours of different age groups, whereby a large difference in
the area reflects a higher safety margin in the connected environment. The difference in the areas under the curve for young
and middle-aged drivers was 0.60 (Fig. 6(a)) and 0.88 (Fig. 6(b)), respectively, indicating that compared to young drivers,
middle-aged drivers in the connected environment took more time, indicating more gradual and safe braking behaviour.
Complementing this finding, the model further showed that relative to the baseline scenario, middle-aged drivers took about
0.94 s longer in the connected environment to reduce their initial speeds to their minimum speed compared to young dri-
vers. The decision tree analysis also confirmed that young drivers took longer to reduce their initial speeds in the connected
environment. Young drivers, who are often reported to be risky, aggressive, and tend to brake harder, took a shorter time to
come to a complete stop in response to a pedestrian at the zebra crossing. Simons-Morton et al. (2009) reported that young
drivers exhibited more hard braking events, which could be attributed to their risk-taking behaviour. However, such beha-
viour was significantly reduced in the connected environment when young drivers were assisted with driving aids. On the
other hand, Simons-Morton et al. (2013) found that middle-aged drivers braked slowly when they received feedback from a
safety monitoring system, complementing the behaviour of middle-aged drivers observed in our study. Overall, the con-
nected environment appeared to provide safety benefits to both age groups, with higher benefits for middle-aged drivers.

Compared to the baseline driving scenario, it was found that older drivers in the connected environment took about 2.12 s
more to brake in response to the zebra crossing (Fig. 6(c)) compared to young drivers. From the decision tree analysis, it was
observed that older drivers with a large distance to the zebra crossing took longer to reduce their initial speeds. Past studies
have reported slower sensory motors and processing power of older drivers, which is often reported as one of the causes for
increased crash risk of older drivers (Karthaus and Falkenstein, 2016, Salvia et al., 2016, Strayer and Drew, 2004). However,
the connected environment had been shown to reduce such crash risk as older drivers were found to utilise this information
by taking more time to gradually brake in response to the zebra crossing.

A similar comparison of middle-aged and older drivers revealed that older drivers took about 1.20 s more time than
middle-aged drivers, suggesting that older drivers benefitted more from the advanced information, as they slowly reduced
their speed by taking longer time. Salvia et al. (2016) reported shorter braking time of middle-aged drivers compared to older
drivers while approaching a traffic light, suggesting the cautious behaviour of older drivers. Nevertheless, the connected
environment was found to assist in reducing speed for both driver groups when interacting with the zebra crossing. Aligned
with this finding, Wan et al. (2016) found that the braking times of middle-aged and older drivers decreased in a connected
environment when they received warning messages in a driving task.
Fig. 7. Gender difference in braking behaviour in the connected environment (CE); Base: baseline.
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6.2.2. Driver gender
Fig. 7 shows the braking behaviour of male and female drivers in the baseline and connected environment driving sce-

narios when they approached the zebra crossing. The speed survival probability for female drivers in the connected environ-
ment at time 2 s was 99%, while the corresponding probability for male drivers in the same driving scenario was 79%,
suggesting a 20% increase in braking time for female drivers. The decision tree analysis also indicated that female drivers
took longer to reduce their initial speed when initial speed and maximum deceleration ratio were lower in the connected
environment. This finding underscores that female drivers reduced their speeds more slowly, thereby exhibiting safe braking
behaviour. A recent study reported smoother braking response of female drivers in a connected environment, reflecting their
safer driving behaviour during a car-following task (Chang et al., 2019).

As male drivers are frequently reported to be risky and more likely to be engaged in safety–critical events (Montgomery
et al., 2014, Iversen and Rundmo, 2004), their braking times appeared to increase in the connected environment by 1.58 s
than that in the baseline scenario. This suggests that male drivers also benefitted from the connected environment and
exhibited safer behaviour. The corresponding increase in the braking time of female drivers in the connected environment
was 3.06 s, suggesting that females took more benefits from the connected environment compared to male drivers. Ali et al.
(2020a) also reported a similar finding that female drivers exhibited 10% lower hard-braking events than male drivers during
lane-changing manoeuvres in a connected environment. Similar safety benefits for female drivers in other contexts, such as
the effects of fog and warning systems, have also been reported (e.g., Li et al. (2016) and Li et al. (2015)).

7. Conclusions

The objective of this study was to examine the braking behaviour of drivers when they interacted with a pedestrian walk-
ing from a sidewalk to a zebra crossing. A diverse group of drivers aged between 18 years and 65 years was recruited for a
driving simulator experiment with two randomised driving scenarios (i.e., baseline and connected environment). A Bayesian
random parameters duration modelling approach was applied for investigating the braking behaviour in the connected envi-
ronment. In particular, the time taken by a driver to reduce their speed to the minimumwas modelled in the Bayesian frame-
work using a correlated grouped random parameters accelerated failure timeWeibull durationmodel with heterogeneity-in-
the-means. The developedmodel contained random (a dummy variable for the connected environment with heterogeneity in
the mean explained by gender and distance to the zebra crossing) and non-random parameters (initial speed, acceleration
noise, maximum deceleration rate, and dummy variables for driver demographics).

Overall, the model suggests that drivers in the connected environment were more likely to take a longer time to reduce
their initial speeds in response to the zebra crossing. The improved situational awareness by the advanced information of the
connected environment might have helped drivers to swiftly reduce their speed without aggressive braking. The random
parameter of the connected environment revealed that most drivers in the connected environment had longer braking times
when they interacted with the pedestrian, which implies that most drivers decelerated more gradually and smoothly in
response to the pedestrian crossing. Moreover, to understand the factors linked to such differential braking behaviour, a
decision tree analysis was performed that revealed that a driver’s braking time generally increased in the connected envi-
ronment but may also decrease if the distance to the zebra crossing was smaller in the connected environment compared
to the baseline scenario. Age-related differential braking behaviours were also observed in the connected environment,
whereby older drivers benefitted the most from the connected environment and took the longest time to reduce their
speeds, while young drivers were found to quickly reduce their speeds. Similarly, the braking time of female drivers was
longer in the connected environment compared to male drivers, suggesting that female drivers better utilise the advanced
information for their safer braking behaviour.

As it has been repeatedly mentioned in the literature that both excess and inadequate braking is associated with rear-end
collisions, the findings of this study provide an in-depth understanding of how such risks can be minimised, if not completely
eliminated, in a connected environment where drivers are assisted with advanced information. By understanding the differ-
ential braking behaviour, the design of the connected environment could be further improved and tailored to the needs of a
specific age/gender group. For instance, findings of this study reveal that young and men drivers tend to improve their brak-
ing behaviour in the connected environment, but this improvement is not as much as other groups of drivers. Considering
that both young and male drivers are generally risky groups of drivers, a more appealing interface of a connected environ-
ment should be designed that can fascinate young and men drivers who are mostly tech-savvy and can be lured by an attrac-
tive driving environment.

Recognising the difficulty in controlling for multiple exogenous factors (e.g., driver heterogeneity, different forms of infor-
mation display, and messages), this study only analysed one type of information display in the connected environment.
However, to fully understand the effects of a connected environment and proper deployment of this environment, it is
imperative to evaluate various modes of design so that car manufacturers can consider an optimal design.

This study analysed braking behaviour in a fully functioning connected environment, whereas recent studies have shown
that impairment in a connected environment could deteriorate driving behaviour, thus merits a separate investigation. Fur-
ther, in this study, the time when the pedestrian started to walk was kept constant to avoid any confounding factors. Future
studies can vary this time and analyse the effectiveness of a connected environment. Finally, since there was no traffic in the
direction of the travel, we could not analyse the effects of a driver position in the traffic stream and link it to braking beha-
viour in a connected environment.
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