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A B S T R A C T   

Natural gas compartment accommodated in utility tunnels is beneficial in meeting the pressing demand of energy 
supply and sustainable urban environment. However, the leaking gas characterized by flammable and explosive 
can pose a huge threat to the safe operation of the utility tunnel. When an unexpected gas leakage accident 
happens in the actual situation, the prior information associated with the leakage source is commonly unclear or 
unknown. Therefore, the absence of an available tool for reasonable leakage and dispersion prediction in the 
above scenario precludes the timely and appropriate emergency response treatment. In this study, a three- 
dimensional source term estimation (3D-STE) model with the combination of the computational fluid dy-
namics (CFD) and ensemble Kalman filter (EnKF) algorithm is proposed to achieve spatiotemporal gas concen-
tration prediction and gas emission source estimation. In the proposed approach, the observation data can be 
incorporated into the gas dispersion simulations continuously, thus the simulation results can be revised by the 
observation data and the source term estimation of gas leakage can be achieved by employing the EnKF algo-
rithm. A twin experiment is employed to validate the effectiveness and practicability of the proposed model. The 
results show that the proposed model can revise the prior errors in the gas leakage rate significantly and obtain 
an accurate prediction of gas concentration distribution as well as gas leakage rate. A feasible framework is also 
proposed serving as a good paradigm for the 3D-STE model application. This study helps for consequence 
assessment and emergency response of gas leakage accidents in utility tunnels.   

1. Introduction 

With the worldwide trend of rapid urbanization, there are increased 
demands for sustainable cities development (Broere, 2016; Marzouk & 
Othman, 2020). The construction of utility tunnels leads to an upsurge of 
interest because it shows a great advantage in the clean energy supply 
and urban planning (Wang, Tan, Xie & Ma, 2018; Yang, Peng, Xu & 
Zheng, 2019; Yin, Liu, Chen, Wang & AI-Hussein, 2020). However, 
many types of municipal pipelines (e.g., gas pipelines, sewage pipelines, 
heating pipelines, and water supply pipelines) are housed in utility 
tunnels, which causes a spatial concentration of multiple hazards (Bai, 
Zhou & Wu, 2020). As one of the most threatening hazards in utility 
tunnels, natural gas pipelines have attracted a most widespread concern 
because the leakage of gas may cause fire, explosion, and other 
cascading accidents. Meanwhile, the leakage of natural gas is also an 
environmental concern since methane is an extremely 

environment-harmful greenhouse gas that can speed up global warming 
(Cai, Wu, Yuan, Liu & Kong, 2021). Therefore, gas leakage in utility 
tunnels can cause unexpected and severe consequences in the context of 
casualties, economic losses, and environmental problems, which should 
be given sufficient attention from the perspective of consequence 
assessment and emergency response. 

Natural gas pipeline leakage in utility tunnel scenarios was mainly 
investigated by previous studies through CFD simulations as well as 
some reduced-scale experiments (Wang, Tan, Zhang, Zhang & Yu, 
2020). first employed a two-dimensional numerical model to investigate 
the effect of leakage size, pipeline pressure, and mechanical ventilation 
on gas dispersion in utility tunnels. However, the complex environment 
in utility tunnels caused by mechanical ventilation and the obstruction 
from facilities brings huge difficulties to gas dispersion simulation. Such 
tricky situations may not be well resolved by a simplified 
two-dimensional model (Li, Liu, Wang, Zheng & Deng, 2019; Lu, Huang, 
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Fu, Zhang, Wu & Lyu, 2018). Therefore, the three-dimensional numer-
ical model for simulating the gas leakage accidents in utility tunnel 
scenarios has attracted more and more attention in recent years (Li, Liu, 
Wang, Zheng & Deng, 2019; Lu, Huang, Fu, Zhang, Wu & Lyu, 2018; 
Tan, Liu & Wang, 2017; Zhang & Lan, 2020; Bu, Liu, Wang, Xu, Chen & 
Hao, 2021; Zhou, Li, Cai, Yang, Peng & Chen 2021). Tan, Liu & Wang 
(2017) compared dispersion characteristics of two kinds of gravity gases 
considering whether there is an available ventilation mode. The results 
indicated that ventilation can disrupt the concentration stratification 
and reduce gas accumulation. Liu, Wang, Guo, Zhang & He (2019) 
employed the realizable k-epsilon model to study the gas diffusion 
taking into account ambient temperature and humidity. It revealed that 
the kinetic energy of methane molecular motion was proportional to 
temperature, which subsequently caused a larger diffusion coefficient 
and more rapid spread of natural gas. Zhang & Lan (2020) investigated 
the effect of ventilation velocities and sizes on the gas dispersion be-
haviors in the utility tunnels. Meanwhile, the optimal ventilation con-
figurations were proposed from the aspect of economy, efficiency, and 
safety. Zhou, Li, Cai, Yang, Peng & Chen (2021) and Zhou, Li, Cai, Jiang, 
Zhuang & Li, (2022) built a utility tunnel mockup and the accuracy of 
the random opening air supply model and standard k-epsilon turbulence 
model was confirmed through numerical and experimental comparison. 
Moreover, gas monitoring sensor networks are optimized through the 
CFD-adjoint-based method. Bu, Liu, Wang, Xu, Chen & Hao (2021) 
conducted a multi-factor analysis to study the gas dispersion charac-
teristics in utility tunnels. The methane invasion distance (MID) equa-
tion was also concluded, which helps to provide a reference for the 
installation of gas alarm devices. Except for investigating the gas 
dispersion process influenced by multiple factors, Lu, Huang, Fu, Zhang, 
Wu & Lyu (2018) presented a numerical analysis with an emphasis on 
rush repairs, such as optimizing the configurations of block valves and 
ventilation fans. As shown in the above studies, the CFD simulations 
have great advantages in evaluating the consequence of specific gas 
leakage scenarios without initial parameters uncertainty. However, 
there are still varying degrees of errors in the prediction of gas leakage 
and dispersion by using CFD techniques when an unexpected leakage 
accident occurs in the actual situation. These errors primarily stem from 
the lack of source term information and wind field perturbation induced 
by mechanical ventilation and complex facility layouts. Such an 
ill-posed problem can deviate the simulation results from actual situa-
tions significantly, which prohibits real-time consequence assessment 
and reasonable emergency response treatment. 

Source term estimation (STE) methods are developed to identify the 
unknown source information based on limited and noisy observation 
data, which has great potential in leakage source estimation and error 
suppression. As the two most attractive and dominant approaches of STE 
methods (Wu, Liu, Yuan, Cai & Hu, 2020; Xue, Kikumoto, Li & Ooka, 
2018), many optimization-based and probabilistic-based methods have 
been used to accomplish the inverse problem of gas dispersion, such as 
the ensemble Kalman filter method (Wang, Zhao, Lei & Wang, 2019; 
Wu, Cai, Yuan, Zhang & Reniers, 2021; Zhang & Huang, 2017; Zhang, 
Su, Chen, Raskob, Yuan & Huang, 2015b; Zhang, Li, Su & Yuan, 2015a) 
and Bayesian inference method (Wang, Huang, Huang & Ristic, 2017; 
Xue, Kikumoto, Li & Ooka, 2018; Xue, Li & Zhang, 2017). Moreover, 
data-driven methods were also adopted to achieve source term estima-
tion with the rapid development of machine learning and deep learning 
(Kim, Park, Kim & Shin, 2019; Ma & Zhang, 2016; Ma, Gao, Zhang & 
Zhao, 2021). However, the current associated with source term esti-
mation are mainly restricted to atmospheric environment scenarios. 
Utility tunnels characterized by confined and ventilated space poses 
great difficulties for source term estimation and accurate gas dispersion 
prediction, which needs to be further investigated. Yuan, Wu, Zhang & 
Liu (2019) and Wu, Liu, Yuan, Cai & Hu (2020) have proposed an 
EnKF-based model and Bayesian inference-based model, respectively for 
predicting the gas dispersion process and reconstructing the leakage 
source in utility tunnels. However, the gas transport process is 

determined on the basis of the one-dimensional advection-diffusion 
equation, which has significant difficulties in handling the 
three-dimensional facilities layout, turbulent diffusion, and 
gravity-driven multicomponent transportation. Therefore, the further 
endeavor could be the development of the high confidence 
three-dimensional gas dispersion model and combining it with the 
source term estimation method. This can help to reproduce a more 
realistic gas dispersion scenario as well as the estimation of the leakage 
source. Moreover, dynamic ventilation conditions adopted in the oper-
ation of utility tunnels in real leakage situations have not been fully 
considered. This may lead to some inaccuracy in the prediction of gas 
leakage and dispersion process, which represents a practical issue that 
needs to be addressed. 

In this study, a three-dimensional source term estimation model is 
proposed to improve the prediction accuracy of gas leakage and 
dispersion in utility tunnels. Firstly, the three-dimensional CFD-based 
gas dispersion model is developed based on the OpenFOAM platform 
and validated by experimental data. Then, the 3D-STE model can be 
built by combining the gas dispersion model and the EnKF algorithm. 
Furthermore, a twin experiment is employed to validate the proposed 
model considering the dynamic ventilation condition of utility tunnels. 
The effectiveness of the proposed model is evaluated qualitatively and 
quantitatively in the twin experiment in terms of gas concentration 
distribution and source term (leakage velocity) estimation. This study 
can provide effective technical support for safety control and emergency 
response of gas leakage accidents in utility tunnels. 

2. Methodology 

The proposed 3D-STE model consists of the CFD-based gas dispersion 
model and the EnKF algorithm. In this section, the basic equations 
related to the gas dispersion model and the EnKF algorithm are intro-
duced, respectively. Furthermore, the specific procedure for conducting 
the proposed model is elaborated. 

2.1. Governing equation of CFD model 

In this study, a three-dimensional compressible CFD solver based on 
the OpenFOAM platform is developed for the simulation of gas leakage 
and dispersion in the utility tunnel (Mack & Spruijt, 2013; Fiates, Santos, 
Neto, Francesconi, Simoes & Vianna 2016; Wu, Cai, Yuan, Zhang & 
Reniers 2021). The OpenFOAM platform allows the integration of the 
EnKF algorithm and the gas dispersion simulation expediently due to its 
high extensibility. The governing equations adopted from OpenFOAM 
are presented as follows: 

(i) Continuity equation 

∂ρ
∂t

+∇⋅(ρu) = 0 (1) 

(ii) Momentum equation 

∂(ρu)
∂t

+∇⋅(ρuu) = −
∂p
∂x

+∇⋅(μ∇u) + Fx (2)  

∂(ρv)
∂t

+∇⋅(ρvu) = −
∂p
∂y

+∇⋅(μ∇v) + Fy (3)  

∂(ρw)
∂t

+∇⋅(ρwu) = −
∂p
∂z

+∇⋅(μ∇w) + Fz (4) 

(iii) Energy equation 

∂(ρi)
∂t

+ ∇⋅(ρiu) = − p∇⋅u + ∇⋅(k∇T) + ϕ + Sh (5) 

(iv) Multi-component transport equation 

∂
∂t
(ρCi) + ∇⋅(ρCiu) = ∇⋅(D∇Ci) + Si (6) 

J. Cai et al.                                                                                                                                                                                                                                       
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(v) Gas state equation 

pV = nZRT (7)  

Where ρ is the mixed gas density, u is the gas velocity vector. p is the 
pressure, μ is the viscosity, Fx, Fy and Fz are the momentum source term 
in three directions. i and T are internal thermal energy and temperature, 
respectively. k is the thermal conductivity coefficient, Sh is the internal 
heat source, and Φ is the dissipation function. Ci represents the gas 
volume fraction of every species, D is diffusion capacity coefficient and 
Si is mass source term. V, n, Z, R are gas volume, amount of substance, 
compressibility, and the gas constant, respectively. 

As a robust two-equation eddy-viscosity turbulence model, the shear 
stress transport (SST) turbulence model was employed to simulate the 
turbulent flow (Sklavounos & Rigas, 2004). And the corresponding 
equations are listed: 

∂(ρk)
∂t

+∇⋅(ρku) = ∇⋅((μ+ σkμt)∇k) + P − ρβ∗ωk (8)  

∂(ρω)
∂t

+∇(ρωu) = ∇⋅((μ+ωμt)∇ω) +
γ
νt

P − ρβω2

+2(1 − F1)
ρω2

ω ∇k∇ω
(9)  

Where k and ω represent turbulence kinetic energy and turbulence 
dissipation rate. P is the production rate of turbulence, μt is turbulence 
viscosity. The SST turbulence model combines the k-epsilon and k- 
omega model through a blending factor F1. The k-omega model is uti-
lized in the region close to the boundary layer and switches to the k- 
epsilon model in the vicinity of the free shear flow. The detailed 
description and specific values of model parameters are summarized in 
Menter’s study (Menter, Kuntz & Langtry, 2003). 

2.2. Ensemble Kalman filter algorithm 

Due to the implicit assumption of linear Gaussian state-space, the 
Ensemble Kalman filter algorithm has a great advantage in avoiding the 
degeneracy problem of reweighting-based data assimilation algorithms 
(Katzfuss, Stroud & Wikle, 2016). It promotes the wide application of 
the EnKF algorithm in various scenarios because of its remarkable 
robustness, such as river pollution scenarios (Wang, Zhao, Lei & Wang, 
2019; Zhang & Huang, 2017), nuclear disasters scenarios (Zhang, Li, Su 
& Yuan, 2015a, Zhang, Su, Chen, Raskob, Yuan & Huang, 2015b), in-
door pollution scenario (Lin & Wang, 2013; Sharma, Vaidya & Gana-
pathysubramanian, 2019), chemical plant scenario (Wu, Cai, Yuan, 
Zhang & Reniers, 2021), and confined space scenarios (Ji, Tong, Wang, 
Lin, Zhang & Gao, 2018; Wu, Yuan, Zhang & Zhang, 2018; Yuan, Wu, 
Zhang & Liu, 2019). 

In this section, the basic equations of the EnKF algorithm are pre-
sented as follows: 

(i) Forcast step: 

Xf
t = M

(
Xf

t− 1
)
, Xf

t ∈ Rn∗N (10) 

(ii) Analysis step: 

Xa
t = Xf

t− 1 + K
(
Y∗

t − H ∗Xf
t

)
(11) 

Where Eqs. (10) and (11) represent the main procedure of the EnKF 
algorithm, Xf

t is the state matrix at time t, it usually has n rows and N 
columns, n and N represent the parameters of interest and ensemble 
sizes, respectively, Xa

t is analytical value revised by observation data. 
The M stands for the nonlinear dynamic model propagating state matrix 
over time, and H is a nonlinear observation operator transforming the 
state matrix to the corresponding observation sites. K represents the 
Kalman gain. 

The forecast error covariance matrix can be calculated by Eq. (12). 

P =
1

N − 1
(
Xf

t − Xf
t
)(

Xf
t − Xf

t
)T

(12)  

Where P is the forecast error covariance matrix, Xf
t can be obtained by 

multiplying an average factor 1N with N rows and N columns and every 
factor in 1N is 1/N. 

The Kalman gain K serves as a weighted factor between the gas 
dispersion CFD model prediction and observation data. It can be ob-
tained by Eq. (13). 

K = PHT ( HPHT + Re
)− 1 (13)  

Where Re is the observation error covariance matrix and can be calcu-
lated as follows: 

Eobs = (ε1, ε2, ε3, ε4…εk) (14)  

Re = Eobs ∗
(
Eobs)T (15)  

Where Eobs is the observation error vector and ε represents the pertur-
bation added to observation data. 

In this study, the state matrix consists of N ensembles, and every 
vector contains gas concentrations and leakage velocity: 

X = (x1, x2, x3…xN) ∈ Rn∗N (16)  

xN = (c1, c2, c3…cm , u1…ul, )
T
∈ Rn=i+l (17)  

Where x is the state vector, c is the leaked gas concentration. and u 
means the leakage velocity at the leakage hole. Moreover, m represents 
the total grid number including concentration data, l is the number of 
data assimilation steps. u1 represent the initial-guess leakage velocity, 
which should be prescribed by users. Then, a new leakage velocity will 
be updated and added in the state vector x once a data assimilation step 
is completed. 

ub
l =

∑N

i=1
ua

l− 1(i)

/

N (18)  

uf
l (i) = ub

l + δ ub
l (i) (19)  

Where ua
l− 1(i) is the revised leakage velocity of the latest time step at 

corresponding ensemble i, the ensemble average leakage velocity ub
l is 

used to generate the new leakage velocity ensemble for the next time 
step by adding noise δ ub

l (i), which can be calculated by Eq. (20). 

δ ub
l (i) = αua

l− 1(i) +
̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − α2

√
rl− 1(i)σ (20)  

Where α represents the influence of the latest leakage velocity on the 
determination of the leakage velocity at the next time steps and is set as 
0.99 in this study. rl− 1(i) is a random number following Gaussian dis-
tribution N ∼ (0,1). And σ is the standard deviation of the latest leakage 
velocity ensemble ua

l− 1. 

2.3. Three-dimensional STE model 

With the combination of the CFD-based gas dispersion model and 
EnKF algorithm, the three-dimension STE model can be developed. The 
EnKF algorithm allows integrating the observation data into the three- 
dimensional gas dispersion model and helps to suppress errors result-
ing from the numerical simulation and the observation sensors/sites. It 
helps to improve the prediction accuracy of the spatial-temporal dis-
tribution of leaked gas and further achieves a reasonable leakage source 
estimation in utility tunnels. The complex scenarios in utility tunnels are 
characterized by the confined underground space equipped with various 
facilities and forced ventilation. Such complex scenarios bring huge 
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difficulties to the inversion models. The inverse problems in utility 
tunnels have not been resolved well by previous studies in the aspect of 
both source term estimation and three-dimensional gas concentration 
prediction. The specific implementation of the three-dimensional STE 
model is presented in Fig. 1. 

Generally, the leakage source term is unknown when an unexpected 
leakage accident happened in real situations. The leakage source dis-
tribution with inevitable prior errors should be initialed by users in the 
CFD model to conduct gas leakage and dispersion simulations. The prior 
leakage source term and corresponding gas concentration distribution 
results will be revised by the EnKF algorithm whenever the observation 
data is available. Finally, the revised leakage source and gas concen-
tration distribution are utilized to reconstruct the revised state matrix 
for the next iteration. As the data assimilation process goes on, the 
revised predictions of gas concentration distribution and gas leakage 
source term can be obtained. 

3. Model validations 

3.1. Validation of gas dispersion model 

Generally, the unsatisfactory performance of the gas dispersion 
model will greatly weaken the accuracy of the estimation method (Ma & 
Zhang, 2016; Ma, Gao, Zhang & Zhao, 2021). In order to illustrate the 
gas dispersion model can capture the detailed flow field when an acci-
dental leakage occurs. It is common practice that the experimental data 
are used to be compared with the prediction results of the gas dispersion 
model. Most existing experiments, also numerical model validation, 
associated with gas leakage in the utility tunnel use alternative gases 
such as CO2 and neon due to the potential fire/explosion risk by using 
methane (Bu, Liu, Wang, Xu, Chen & Hao, 2021; Zhou, Li, Cai, Yang, 
Peng & Chen, 2021; Wang, Tan, Zhang, Zhang & Yu, 2020). Considering 
both the feasibility for model validation and the availability of the 
experiment data, the experimental data obtained from (Fang, Lin, 
Huang and Zheng, 2006) are employed to validate the feasibility and 
accuracy of the gas dispersion model. 

3.1.1. Numerical configurations 
In Fang’s study, a reduced-scale utility tunnel system was designed to 

investigate the gas dispersion process in the confined space, and the 
quantitative comparison by using numerical simulation was also 
involved. The investigated utility tunnel has a dimension of 10 m × 0.15 
m × 0.15 m, which is displayed in Fig. 2. A rectangular window with a 
dimension of 0.01 m × 0.01 m was set as the gas vent. Carbon dioxide 
was utilized as an alternative gas to methane considering safety re-
quirements. The CO2 gas was released from a circular hole with a 
diameter of 0.02 m. Meanwhile, a total of 49 gas sensors were employed 
to detect the CO2 concentration along the centerline of the utility tunnel 
mode. The distance between two gas sensors is set as 0.2 m. The specific 
parameters related to this experiment are listed in Table 1. 

As shown in Fig. 2, the computational domain of the utility tunnel 
model is discretized by using a hexahedral cell scheme (Duan, Liu, Xu, 
Huang, Shen & Lin, 2015). To avoid the sharp aspect ratio of cells, the 
computational domain is divided into two sub-parts for hexahedral 
discretization. Such operation will cause a misaligned mesh interface 
but can be handled by the arbitrary mesh interface (AMI) technique 
(Carneiro, Moura, Rocha, Lima & Ismail, 2019). 

By referring to the experimental configuration in Fang’s study, the 
specific boundary conditions applied in this study are summarized as 
follows:  

(i) Inlet: flowRateInletVelocity condition is employed to provide a 
stable volumetric flow rate, which is set as 4 L/min.  

(ii) Outlet: pressureInletOutletVelocity condition is used to serve as a 
pressure outlet, and the pressure value is prescribed as 101,325 
Pa.  

(iii) Mesh interface: cyclicAMI condition is introduced to handle the 
data exchange by interpolation calculation.  

(iv) Walls: All the walls are defined as the no-slip condition. 

3.1.2. Results analysis 
Firstly, mesh independence analysis was conducted to ensure the 

mesh-independent results. The CO2 concentration along the sampling 
centerline (mentioned in Table 1) at 120 s was utilized to evaluate the 

Fig. 1. Specific implementation of three-dimensional STE model.  
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differences between four mesh schemes. The comparison of the simu-
lation results obtained by using four different mesh schemes with grid 
numbers of 100 thousand, 200 thousand, 300 thousand, and 400 thou-
sand is presented in Fig. 3. As shown in Fig. 3, although the simulation 
results of four mesh schemes have a similar tendency, Mesh_1 and 
Mesh_2 schemes have a relatively large deviation in both CO2 concen-
tration and dispersion distance compared to the Mesh_3 scheme. As the 
stepwise refinement of grids, there is a reasonable difference between 

Mesh_3 and Mesh_4 schemes (the max relative error and average relative 
error are 8.79% and 1.55%, respectively). Therefore, Mesh_3 is consid-
ered suitable for the following simulations and analysis with both 
acceptable accuracy and low computational load. 

In order to validate the gas dispersion model quantitatively, CO2 
monitoring data obtained from (Fang, Lin, Huang & Zheng, 2006) were 
adopted for further comparison Fig. 4. presents the CO2 concentration 
comparison between simulation results and experimental data at the 
location of the No.16 gas sensor (mentioned in Table 1). As shown in 
Fig. 4, There is one relatively large deviation between simulation results 
and experimental data at 60 s with a 34% relative error, which can be 
seen in Fang’study similarly. The reason for this may be the uncon-
trollable error induced by measurement equipment and the ambient 
environment. Overall, the simulation results of the gas dispersion model 
achieved a reasonable agreement with the experimental data. Most of 
the relative errors between the simulation results and experimental data 
are less than 10.00%. And the average relative error between simula-
tions and experimental data is 9.73%. It indicates that the gas dispersion 
model can well capture the dispersion behaviors of gravity-driven gas 
flow in the confined space scenario (Wang, Tan, Zhang, Zhang & Yu, 
2020; Zhang & Lan, 2020). Therefore, it can be used for the prediction of 

Fig. 2. Geometric and mesh schematic of the utility tunnel system.  

Table 1 
Specific configurations of the gas release experiment.  

Parameter Value 

Length of the utility tunnel system (m) 10 
Width of the utility tunnel system (m) 0.15 
Height of the utility tunnel system (m) 0.15 
Location of leakage hole (m) (0.28, 0, 0) 
Location of the sampling centerline (m) (0, 0.075, 0.075) to (10, 0.075, 0.075) 
Location of NO.16 gas sensor (m) (3.1, 0.075, 0.075) 
Release flow rate (L/min) 4 
Environmental temperature (K) 293 
Total experiment time (s) 300  

Fig. 3. Mesh independence analysis.  Fig. 4. CO2 concentration comparison at the No.16 gas sensor.  
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gas leakage and dispersion in utility tunnel scenarios with good 
accuracy. 

3.2. 3D-STE model validation 

After the validation of the gas dispersion model, it can be integrated 
with the EnKF algorithm to achieve the gas dispersion prediction and 
leakage source estimation in the utility tunnel. A twin experiment, 
which was already been applied for evaluating the data assimilation 
models (Yuan, Wu, Zhang & Liu, 2019; Zhang, Su, Yuan, Chen and 
Huang, 2014), was employed to validate the effectiveness and practi-
cability of the proposed 3D-STE model. 

3.2.1. Configurations 
In this section, the computational domain is built and discretized by 

using the blockMesh and snappyHexMesh tools, which are involved in 
the OpenFOAM platform for the hexahedral mesh generation. The 
configuration of the computational domain was determined by referring 
to the underground utility tunnel of Changbin Road in Haikou City. The 
geometric layout and boundary conditions of the computational domain 
are shown in Fig. 5. Moreover, Table 2 summarizes the configuration 
parameters related to the calculations. 

The determination of the adopted boundary conditions and the 
corresponding parameter values is presented as follows:  

(1) Inlet: The user-defined codedFixedValue condition is used to 
provide a time-dependent ventilation condition considering the 
dynamic transformation of air exchange frequency when an un-
expected leakage accident occurs in the utility tunnel. By refer-
ring to Eq. (21) (Ministry of Housing and Urban-Rural 
Development of the People’s Republic of China, 2015), the 
ventilation velocities of the Inlet are set as 1.6 m/s and 3.2 m/s 
for normal ventilation and accidental ventilation scenarios, 
respectively. 

vInlet =
n × V

3600 × F
(21)   

Where n is the air exchange frequency, F is the area of the ventilation 
vent, and V represents the volume of the utility tunnel.  

(1) Outlet: The pressureInletOutletVelocity condition is employed to 
define a pressure outlet, and the pressure value is set as 101,325 
Pa.  

(2) Leak: The fixedValue condition is selected to define a stable 
leakage velocity and the leakage velocity of the leakage hole is set 
as 15 m/s.  

(3) Walls: All the walls are defined as the noSlip condition. 

Moreover, in order to model a more real leakage scenario, the steady 
flow field without leakage is computed firstly to initialize the internal 
flow fields for the leakage scenario. 

The above-mentioned configuration parameters were utilized in the 
control group of the twin experiment for representing an assumed real 
situation (using initial parameters without uncertainty). In the data 
assimilation (DA) group of the twin experiment, the initial-guess pa-
rameters are employed. Thus the effectiveness of the 3D-STE model can 
be validated by comparing the difference between the control group and 
the DA group. In this study, the initial-guess leakage velocity ensemble is 
assumed to follow a uniform distribution, which can be observed in 
Fig. 6. Meanwhile, a normal distribution noise of N ∼ (0, 0.1) is added 
to the airflow ensemble considering the uncertainty resulting from 
ventilation perturbation in the confined space Fig. 7. presents 84 
observation sites in the control group. The corresponding collected 
observation data will be utilized to revise the concentration distribution 
and reconstruct the gas leakage rate of the DA group. And ensemble 
Inflation is used to modify the prior ensemble estimates of the state 
matrix to reduce filter error and avoid filter divergence (Anderson, 
2007). Finally, the detailed configuration parameters used in the 
three-dimensional STE model are listed in Table 3. 

Fig. 5. Geometric and boundary conditions of the utility tunnel.  

Table 2 
Configuration parameters of the utility tunnel.  

Parameter Value 

Length of the utility tunnel (m) 200 
Width of the utility tunnel (m) 2 
Height of the utility tunnel (m) 2.4 
Location of leakage hole (m) (45, 0.9, 0.6) 
Diameter of leakage hole (mm) 100 
Diameter of the gas pipeline (mm) 500 
Normal air exchange frequency (h − 1) 6 
Accidental air exchange frequency (h − 1) 12 
Environmental temperature (K) 293  
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3.2.2. Prediction of gas spatiotemporal distribution 
According to the regulation of GB50838-2015 Technical Specification 

for Urban utility Tunnel Engineering, the air exchange frequency will shift 
from 3 to 6 when the gas alarm threshold (1% VOL) is reached. This 
dynamic transformation of ventilation conditions can bring perturbation 

to the flow field, especially for the confined space with facilities. In this 
section, such dynamic and complex scenarios will be used to test the 
effectiveness of the proposed model with both qualitative and quanti-
tative comparisons. 

Figs. 8 and 9 present the horizontal (X = 40 m cross-section) and 
vertical (Y = 1 m cross-section) comparisons of gas concentration dis-
tributions obtained from the control group, DA group, and reference 
group. The reference group was present here for demonstrating pre-
diction results without the DA revision (i.e., activating the gas dispersion 
model only by initial-guess leakage velocity and no observation data is 
integrated). The leakage velocity of the reference group is set as the 
mean of the initial-guess ensemble (5.09 m/s). Thus, the effectiveness of 
the proposed model can be observed directly by comparing the differ-
ence between the control group, DA group, and reference group. As can 
be seen from Fig. 8, the gas concentration distribution between the DA 
group and the reference group has no apparent difference at the initial 

Fig. 6. Prior leakage velocity ensemble obtained by initial guess.  

Fig. 7. Specific layout of the observation sites.  

Table 3 
Configuration parameters of the 3D-STE model.  

Parameter Value 

Ensemble size 120 
Ensemble inflation 1.0 
Observation site number 84 
Data assimilation frequency (s − 1) 0.5 
Total simulation time (s) 30 
Total data assimilation steps 60  
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stage (T = 5 s). There are two major reasons for this: (i) Although the 
prediction of the DA group is calculated by the mean of ensembles, there 
is a great similarity existing between the prior ensemble mean of the DA 
group and the leakage velocity of the reference group; (ii) At the initial 
stage of natural gas leakage, the DA algorithm can achieve negligible 
revision due to the limited observation data available. As time goes on, a 

phenomenon can be observed that the released gas was diluted rapidly 
in the reference group, which indicates a large deviation compared to 
the control group. This is because the reference group cannot be revised 
by the DA algorithm and the relatively low leakage velocity persist. 
Therefore, the gas concentration distribution shows a large difference 
between the reference group and the control group under the effect of 

Fig. 8. Comparison between the control group, the DA group, and the reference group at Y = 1 m cross-section.  

Fig. 9. Comparison between the control group, the DA group, and the reference group at X = 40 m cross-section.  
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dynamic ventilation. However, the gas concentration distribution of the 
DA group shows a comparable prediction compared to the control 
group. This is because the available observation data increased gradu-
ally, which were used to correct prior errors in the DA group and finally 
achieved a more accurate prediction of the gas concentration distribu-
tion. Similarly, the vertical concentration distribution of the DA group 
becomes more comparable to the real concentration distribution in the 
control group, which can be observed in Fig. 9. However, a difference 
still exists between the control group and the reference group because 
the prior errors in the leakage source term cannot be revised by data 
assimilation. Meanwhile, it can be seen that the data assimilation pro-
cess in the horizontal and vertical sections is quite different in terms of 
time series. The reason for this may be that the vertical section is rela-
tively small and narrow, in which the relatively steady condition can be 
achieved in a short time under the effect of dynamic ventilation. Overall, 
the 3D-STE model can realize the reasonable correction of the three- 
dimensional gas concentration distribution by assimilating observation 
data into the gas dispersion model. 

According to the specific layout of observation sites in Fig. 7, the 
above-mentioned horizontal and vertical sections (Y = 1 m and X = 40 
m) are distributed with 28 and 12 observation sensors, respectively. To 
evaluate the accuracy of the proposed model in handling the gas con-
centration correction where there is no observation sites distribution, 
the horizontal (Y = 0.75 m) and vertical sections (X = 52.5 m) are 
extracted for further comparison, which is shown in Figs. 10 and 11. It 
suggests that the gas concentration distribution of the DA group can 
obtain a good revision with the progress of data assimilation. Therefore, 
the proposed model can be helpful to realize the reasonable prediction of 
the gas concentration distribution in the whole computational domain 
even in the section without available observation data. 

Furthermore, in order to evaluate the prediction accuracy of the 
proposed model quantitatively, four statistical performance measures 
(SPMs), i.e., the fractional bias (FB), the normalized mean square error 
(NMSE), the correlation coefficient (R), and the fraction of predictions 
within a factor of two of observations (FAC2) (Chang & Hanna, 2004), 
are employed for the quantitative comparison of specific gas concen-
tration values at the observation sites. And the calculation of statistical 
performance measures, corresponding acceptable intervals, and ideal 
values are detailed in Table 4 (He, Liu, Li, Ma, Zhou & Zhou, 2021; 
Zhang, Su, Yuan, Chen & Huang, 2014). Where Cp and Co are gas con-
centration values obtained from the model prediction and observation 

data, overbar (C) represents the average over the dataset, σ is the 
standard deviation. 

Fig. 12 presents the scatter plots of gas concentration extracted from 
the control group and DA group at observation sites, in which all 84 data 
points used for data assimilation are taken into account. There is a quite 
difference between observation data and the model prediction at 5 s, 
Almost all statistical performance measures show an unacceptable de-
viation compared with the corresponding ideal values except for a 
relatively reasonable value of FAC2. However, such a reasonable value is 
attributed to the poor performance of the FAC2 because little concen-
tration information can be captured by observation sensors at the initial 
leakage stage, i.e., there are too many zero values in both observation 
data and model prediction. Therefore, the average value (0.8558) of the 
FAC2 cannot essentially reveal the model performance at T = 5 s. With 
the processing of data assimilation, the model predictions are well 
consistent with the observation data, in which all four statistical per-
formance measures gradually approach the ideal values. In this study, a 
reasonable prediction can be achieved at T = 20 s and very optimistic 
results at T = 30 s, which means the errors resulting from initial-guess 
leakage velocity, dynamic ventilation, and complex facilities, can be 
successfully suppressed by the proposed model. Therefore, the proposed 
model has a significant effect on the improvement of gas leakage and 
dispersion prediction. 

3.2.3. Estimation of gas leakage rate 
Fig. 13 presents the revision process of the gas leakage rate by using 

the proposed model and the quantitative comparison between the real 
leakage rate and model prediction. It can be seen that there is an 
apparent underestimation existing in the leakage rate with 42.67% 
relative errors at the initial stage of the accidental leakage. That is 
because the initial-guess leakage velocity can only obtain limited revi-
sion due to the lack of observation data. As a growing amount of 
observation data are integrated into the gas dispersion CFD model, the 
reconstructed leakage velocity shows a gradual trend of approaching the 
real value. Finally, the estimation of leakage velocity became stable at 
around 17 m/s after 25 s, in which the convergence results of the 3D-STE 
model prediction have been achieved. The max relative error between 
the model prediction and the true value was 42.39% at the initial stage, 
and the relative error of the model prediction approach around 13.33% 
from 25 s to the end due to the estimation of leakage velocity became 
stable gradually. Therefore, it can be concluded that the proposed 3D- 

Fig. 10. Comparison between the control group, the DA group, and the reference group at Y = 0.75 m cross-section.  
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STE model is an effective tool to provide a reasonable estimation of gas 
leakage velocity with high similarity to the actual leakage velocity 
despite huge errors existing in the initial-guess leakage velocity. 

4. Application discussion 

In this section, we present an exploratory discussion with an 
emphasis on the practical application of the proposed model in actual 
utility tunnels. A feasible framework is proposed to guide the application 
of this model for predicting gas leakage and dispersion and supporting 
emergency response treatment. Meanwhile, recommendations for future 
works are elaborated for improving the proposed model and facilitating 
the application of the proposed model. 

4.1. A framework for 3D-STE model application 

Compared to the previous studies on the source term estimation of 

gas leakage accidents in confined space scenarios, the proposed 3D-STE 
model integrated advantages of the three-dimensional CFD-based model 
and gas sensor networks while the EnKF algorithm helps to bridge the 
gap between simulation results and measurement data. Moreover, the 
dynamic ventilation pattern of utility tunnels is also involved. In sum-
mary, it obtains a good improvement in the following aspects:  

(i) Except for reconstructing the leakage source, the three- 
dimensional spatiotemporal gas concentration distribution can 
be obtained by the proposed model because the CFD-based gas 
dispersion model is integrated accounting for three-dimensional 
facilities layout, turbulent diffusion, and gravity-driven multi-
component transportation. Such a precise gas concentration dis-
tribution can provide more risk-related information for decision- 
makers such as dispersion distance and explosive area of leaking 
gas. 

(ii) The dynamic ventilation pattern based on real-time alarm con-
centration allows a more realistic reproduction of the “two-stage” 
gas dispersion process dominated by normal and accidental 
ventilation conditions, respectively. It can help to reduce the 
difference between simulation results and actual situations, 
which benefits a more accurate consequence assessment. 

Fig. 14 provides a feasible framework for the application of the 3D- 
STE model in actual utility tunnel scenarios. Firstly, the numerical 
model should be built according to the geometric characteristics of 
specific utility tunnels. In normal scenarios, i.e., no leakage occurrence, 
the available data collected by various sensors can be used to initialize 
the numerical model for simulating a steady flow field in advance. When 
an unexpected leakage accident happened, some theoretical and 
empirical methods can be employed to calculate the prior source term as 

Fig. 11. Comparison between the control group, the DA group, and the reference group at X = 52.5 m cross-section.  

Table 4 
Calculation of statistical performance measures and corresponding acceptable 
intervals.  

Name Formula Acceptable intervals Ideal value 

FB (Co − Cp)

0.5(Co + Cp)

− 0.3≤FB≤0.3 0 

NMSE ((Co − Cp)
2
)

Co Cp 

NMSE≤4 0 

R ((Co − Co)(Cp − Cp))

σCp σCo 

/ 1 

FAC2 Cp

Co 

0.5≤FAC2≤2 1  
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possible as close to the real source term. Then the 3D-STE model can 
predict the three-dimensional gas concentration distribution and 
reconstruct the source term by integrating the measurement data into 
numerical simulations. The real-time display of the prediction results 
can be obtained as well as some risk-related information such as source 
term, dispersion distance, and explosive area can be collected to support 
decision-making. Finally, the proposed 3D-STE model can be integrated 
into the digital system of utility tunnels. A smart platform and a data 
warehouse can be developed for the whole process management and 
data exploits of the digital system. Hence, it helps to assist safety oper-
ations of utility tunnels by furnishing control recommendations to 
decision-makers in accidental situations, such as manual shutdown, rush 
repair, and dynamic ventilation strategy. 

4.2. Recommendation for future works  

(1) Timely emergency response and risk treatment are urgent needs 
for accidental scenarios. Graphics Processor Units (GPUs) 
emerged as a major paradigm for resolving complicated compu-
tational tasks, making them more appealing for the solution of 
massive systems. Because both the algebraic matrix solving of the 
CFD model and the multi-ensemble structure of the EnKF model 

show good parallelism, the proposed 3D-STE model would ach-
ieve faster source term estimation and gas concentration distri-
bution prediction by combining GPU speed-up techniques.  

(2) The emerging data-driven techniques have great potential to be 
served as the surrogate model for either the CFD-based gas 
dispersion prediction model or the source term estimation model. 
Given the high data volume requirements of data-driven tech-
niques, the developed gas dispersion model can be used to expand 
the data volume and help develop a more efficient gas dispersion 
prediction model. As more and more high-confidence data (e.g., 
experimental data and field test data) are available, the accurate 
source term estimation model is possible to be developed by using 
data-driven techniques.  

(3) Moreover, the combination of the risk-based model can benefit 
the decision-making more comprehensively. With the combina-
tion of quantitative gas concentration distribution provided by 
the proposed model, the risk-based model can consider more risk- 
related factors such as ignition probability and safety barriers, 
which provide more comprehensive recommendations to the 
emergency response and risk treatment. 

Fig. 12. Scatter plots of observation data and model prediction.  
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5. Conclusion 

This study proposed a three-dimensional source term estimation (3D- 
STE) model with the integration of the CFD-based gas dispersion model 
and ensemble Kalman filter (EnKF) algorithm. It could be helpful to 
achieve improved three-dimensional gas concentration spatiotemporal 
distribution prediction and leakage source estimation based on available 
observation data. 

The CFD-based gas dispersion model was developed based on the 
rhoReactingBuoyantFoam embedded in the OpenFOAM platform. And it 
was validated by experimental data obtained from a gas release scenario 
of the confined utility tunnel system. The results demonstrated that the 
simulation results calculated by the gas dispersion model are in good 
agreement with the experimental data. Therefore, this model can be 
utilized as an effective tool to simulate the natural gas leakage and 
dispersion characteristics in tunnel-related scenarios. The 3D-STE model 

Fig. 13. Revision process of the leakage rate by the 3D-STE model.  

Fig. 14. Framework of the digital utility tunnel.  
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is built based on the validated gas dispersion model and EnKF algorithm. 
And the twin experiment was designed to validate the effectiveness of 
the proposed model qualitatively and quantitatively. The results showed 
that this proposed model is capable of addressing the practical leakage 
accidents of the utility tunnel in the presence of dynamic ventilation 
conditions. The revised gas concentration spatiotemporal distribution 
and reasonable leakage source information can be obtained after a 
period of data assimilation, which aids in timely emergency response in 
the event of an unexpected leakage accident. Finally, a practical 
framework is elaborated and thus can provide guidance for the appli-
cation of the 3D-STE model. 
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