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A B S T R A C T

Autonomous docking and undocking control is an important part of intelligent ship motion control. In
this study, the adaptive-mutation beetle swarm prediction (AMBS-P) algorithm is used to propose a control
approach for autonomous docking and undocking. Firstly, this paper introduces the principle of the AMBS-
P algorithm, then the convergence is proved. Secondly, the ‘‘Tito-Neri’’ model ship is introduced as a case
study, and the thrust allocation process is described. Finally, the effect of docking and undocking is verified
in multiple scenarios starting from different angles. In the verification, first of all, when designing the
docking and undocking controllers, the correctness of the algorithm and the practicality of the control are
verified by whether there is ship drag or not. Secondly, by analyzing the parameters of the algorithm, the
optimal parameters of it are determined and verified in the real environment. Thirdly, compared with typical
proportion–integral–derivative (PID) algorithm and nonlinear model predictive control (NMPC) algorithm, the
AMBS-P algorithm has better results for autonomous docking and undocking control, no matter in long-distance
or short-distance. The research shows that the AMBS-P algorithm has a fast response and good effect for the
ship autonomous docking and undocking, and does not rely too much on the system model.
1. Introduction

For a long time, large ships usually rely on tugboats or crew for
docking, so the self-docking of ships is one of the research hot-spots
of its motion control. Whether for tugboats or autonomous docking re-
search, the commonly used algorithms are neural network (NN) (Shuai
et al., 2019), proportion–integral–derivative (PID) (Bui et al., 2009),
Fuzzy logic control (Liao et al., 2019), or the combination and improve-
ment of these algorithms. Among them, PID is the most commonly used
control algorithm, which is often combined with the NN algorithm for
ship autonomous docking (Fang et al., 2010; Ahmed, 2012). Besides,
it can resist the interference of high wind and waves. This good
effect has been verified in the subsequent research from simulation
to experiment (Ahmed and Hasegawa, 2015, 2013). The Fuzzy logic
control algorithm can realize the adaptive control of the imprecise
mathematical model, but it has a strong subjectivity. Therefore, in
the detailed judgment stage, it needs to be combined learning strate-
gies to make up for the shortcomings. NN theory can imitate the
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behavior of the human brain activity through training in the stage
of the ship docking. So it is considered as one of the most effective
theories to study autonomous docking (Namkyun, 2007; Tran and
Im, 2012). However, there are too many iterations in the training
process. NN algorithm is one of the metaheuristic optimization algo-
rithms. Metaheuristic optimization algorithms include the following
categories (Hashim et al., 2019): (1) nature-inspired algorithms (NIAs),
including swarm-intelligence-based algorithms (SIs) and bio-inspired
algorithms (BIAs); (2) natural science-based algorithms (NSAs); (3)
natural phenomena-based algorithms (NPAs).

The nature-inspired algorithm taking this as an example has the
following application research in the field of ship control. First of
all, it often combines the nature-inspired algorithm with the basic
algorithm, such as the combination of a NN algorithm and a PID
controller. In addition, the combination of nature-inspired algorithms
and a basic algorithm is also used to optimize the parameters of the
ship controller. For example, Ant Colony Optimization (Tomera, 2014),
vailable online 30 March 2022
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Fig. 1. Ship and coordinate systems.
Genetic Algorithm (Liu et al., 2017; Larrazabal and Peñas, 2016) and
Bacterial Foraging Algorithm (Dong et al., 2019) are applied to modify
the PID controller parameters to adapt to the different states of the ship.
In addition to controller parameter modification for basic algorithm
design, Fruit Fly Optimization Algorithm (Wang and Jian, 2012) and
Particle Swarm Optimization (PSO) algorithm (Tomera, 2015; Shin
et al., 2017) are applied to identification of ship maneuverability
response model. Bacterial Foraging Algorithm and PSO can be com-
bined to optimize ship collision avoidance path (Liu et al., 2016).
Artificial Fish Swarm Algorithm (Li and Ma, 2016; Chen et al., 2018)
is used to optimize the collision avoidance algorithm. However, some
nature-inspired algorithms, such as Gray Wolf Optimizer, Krill Herd,
Spider Monkey Optimization, Whale Optimization Algorithm, Ant Lion
Optimization Algorithm, Lion Optimization Algorithm, have not been
applied to the ship field.

To sum up, the nature-inspired algorithm with its advantages of
intelligence provides new ideas and methods for solving various com-
plex problems. It has also been successfully applied in the field of the
ship. Based on this, this study considers whether the nature-inspired
algorithm can be directly applied to the docking and undocking control
of the ship. Among them, Beetle Antennae Search (BAS) is a relatively
nature-inspired algorithm in 2017 (Jiang and Li, 2017). Now it is
gradually applied in the field of ship control for its simple principle and
fast optimization velocity outstanding features, such as PID controller
parameters optimization (Wang et al., 2019). In this study, based on the
BAS algorithm, the PSO swarm idea and mutation factor are introduced.
Combined with the idea of a predictive control algorithm, the AMBS-P
algorithm is designed to study the autonomous docking and undocking
of ships.

The main contributions of this paper are as follows:

• A controller based on the AMBS-P algorithm is designed and its
convergence is proved.

• Firstly, a motion controller without ship drag is designed to verify
the correctness of the algorithm. Then, a controller with ship
drag is designed to obtain the control effect in line with the real
situation.

• The influence of the prediction idea in the auxiliary nature-
inspired algorithm to realize the ship control is analyzed.

• The AMBS-P algorithm is suitable for ship autonomous docking
and undocking control with a wide application prospect for other
aspects of intelligent ships.

This paper is organized as follows: Section 2 describes the AMBS-P
control algorithm. Section 3 introduces the ship model. Section 4 de-
signs the ship docking and undocking motion controllers. In Section 5,
the effect of controllers is verified and the result is analyzed. Section 6
summarizes the results and prospects the future research.
2

2. An overview of AMBS-P algorithm and its convergence proof

2.1. An overview of AMBS-P algorithm

BAS algorithm is a nature-inspired algorithm and developed based
on the beetle foraging principle. This paper extends it from single
to swarm to improve search efficiency. Besides, a mutation factor is
introduced to reduce the probability of getting local optimum. Based on
these, this algorithm is named AMBS-P algorithm. The specific design
process of the algorithm is as follows.

Suppose there are 𝑛 beetles 𝐵 = (𝐵1, 𝐵2,… , 𝐵𝑛) in 𝑁 dimensional
space. The position of the 𝑖th beetle is described as 𝐵𝑖 = (𝑏𝑖1, 𝑏𝑖2,… , 𝑏𝑖𝑁 )
and the velocity is expressed as 𝑉𝑖 = (𝑣𝑖1, 𝑣𝑖2,… , 𝑣𝑖𝑁 ). The individual
and global extreme points of beetles are respectively assumed as: 𝑃𝑏𝑖 =
(𝑃𝑏𝑖1, 𝑃 𝑏𝑖2,… , 𝑃 𝑏𝑖𝑁 ) and 𝐺𝑏𝑖 = (𝐺𝑏𝑖1, 𝐺𝑏𝑖2,… , 𝐺𝑏𝑖𝑁 ).

So the velocity 𝑉𝑖 and original position 𝐵𝑖 of the beetle are as
Eqs. (1a) and (1b).

𝑉 𝑘
𝑖 = 𝜔𝑘 ⋅ 𝑉 𝑘−1

𝑖 + 𝑐1 ⋅ 𝑟1 ⋅ 𝑃𝑏𝑘−1𝑖 − 𝐵𝑖𝑘−1 + 𝑐2 ⋅ 𝑟2 ⋅ (𝐺𝑏𝑘−1𝑖 − 𝐵𝑖𝑘−1),

(1a)

𝐵𝑘𝑖 = 𝐵𝑘−1𝑖 + 𝑉 𝑘
𝑖 , (1b)

Among them, 𝑘 is the current number of iterations. The ‘‘Linearly
Decreasing Weight (LDW)’’ is used to set 𝜔, which makes adaptive
adjustment according to the number of iterations, that is,

𝜔𝑘 = 𝜔𝑚𝑖𝑛 + (𝜔𝑚𝑎𝑥 − 𝜔𝑚𝑖𝑛) ⋅ (𝐾 − 𝑘)∕𝐾, (2)

where, 𝜔𝑚𝑎𝑥 and 𝜔𝑚𝑖𝑛 are the maximum and minimum weight coeffi-
cients, 𝐾 represents the maximum number of iterations.

The antennae of beetle is considered as two optional directions. The
motion path can be further determined according to this. In this paper,
𝐵𝐿 and 𝐵𝑅 are defined as the coordinates of left and right antennae
respectively, shown in Eq. (3). Besides, 𝐷0 is initial antennae length.

𝐵𝑘𝐿𝑖 = 𝐵𝑘𝑖 +𝐷
𝑘
0 ⋅ �̃�

𝑘∕2

𝐵𝑘𝑅𝑖 = 𝐵𝑘𝑖 −𝐷
𝑘
0 ⋅ �̃�

𝑘∕2

}

. (3)

Antennae orientation can be described as 𝐷𝑖𝑟𝑘 = 𝑟𝑎𝑛𝑑(𝑁, 1), and define
�̃�𝑘 as:

�̃�𝑘 = 𝐷𝑖𝑟𝑘∕𝑛𝑜𝑟𝑚(𝐷𝑖𝑟𝑘), (4)

𝐵𝑖 represents the beetle centroid coordinates. The calculation for-
mula of 𝐵𝑖 is shown in Eq. (5), where 𝐿𝑠𝑡𝑒𝑝 is beetle step length. Then
the cost function value 𝐹 (𝐵𝑘𝑖 ) is calculated according to 𝐵𝑖.

𝐵𝑘𝑖 = 𝐵𝑘−1𝑖 − 𝐿𝑘𝑠𝑡𝑒𝑝 ⋅ �̃�
𝑘 ⋅ 𝑠𝑖𝑔𝑛(𝐹 (𝐵𝑘𝐿𝑖) − 𝐹 (𝐵

𝑘
𝑅𝑖)). (5)

The optimal cost function is calculated based on the 𝐵𝑘𝑖 in each
iteration cycle. Then the current 𝑃𝑏𝑘 and 𝐹 are compared and
𝑖 𝑏𝑒𝑠𝑡
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Fig. 2. ‘‘Tito-Neri’’ ship model. ((a) and (b) are cited from Ref. Bruggink et al. (2018)).
Fig. 3. Thruster structure of the ship.

Fig. 4. Analysis of docking modes and process.

updated according to Eq. (6).

𝐹 𝑘𝑏𝑒𝑠𝑡 = 𝐹 (𝐵𝑘𝑖 )

𝑃𝑏𝑘𝑖 = 𝐵𝑘𝑖

}

, 𝐹 (𝐵𝑘𝑖 ) < 𝐹𝑏𝑒𝑠𝑡. (6)

Update 𝐿𝑠𝑡𝑒𝑝 and 𝐷0. 𝐿𝑠𝑡𝑒𝑝 and 𝐷0 require to be updated in time,
and proportion control method is selected. The condition for 𝐿𝑠𝑡𝑒𝑝
attenuation is that the optimal fitness value does not decrease. Because
this means that the current 𝐿𝑠𝑡𝑒𝑝 and 𝐷0 can no longer obtain a better
position. They require to be updated until the set optimal cost function
value is met or the control is closed. On the contrary, only the 𝐵𝑘 needs
3

𝑖

to be updated. Update rules are shown in Eq. (7).

𝐿𝑘𝑠𝑡𝑒𝑝 = 𝑏𝑙1 ⋅ 𝐿
𝑘−1
𝑠𝑡𝑒𝑝

𝐷𝑘
0 = 𝐿𝑘−1𝑠𝑡𝑒𝑝∕𝑏𝑙2

}

, 𝐹 (𝐵𝑘𝑖 ) < 𝐹𝑏𝑒𝑠𝑡. (7)

The prediction idea is introduced, and the total cost function is set as
𝐹 .

𝑚𝑖𝑛𝐹 (𝑥|𝑗) =
𝑁𝑝
∑

𝑗=1
𝑞𝑗 ⋅ 𝐹

𝑗
𝑏𝑒𝑠𝑡, (8)

where, 𝑞 is the weight factor, 𝑁𝑝 is the number of prediction steps and
𝐹𝑏𝑒𝑠𝑡 is the single step cost function value.

With the progress of iteration, the concentration degree of beetles
increased, and the difference between them decreased gradually. In this
case, on the one hand, the algorithm may find the global optimal value,
on the other hand, it may fall into the local optimum. In this paper,
we first calculate the variance of the average cost function and the
spatial location aggregation degree of the beetle swarm, and then judge
whether the threshold selection needs adaptive mutation to increase
the diversity of beetle swarm, to further reduce the probability of the
algorithm falling into the local optimum.

At the 𝑘th, 𝐹 𝑘𝑖 = 𝐹 (𝐵𝑘𝑖 ) is the cost function, and 𝐹 𝑘𝑎𝑣𝑒 is the average
cost function. The fitness variance 𝛩𝑘 is used to reflect the aggregation
degree of beetle swarm, as shown in Eq. (9).

𝛩𝑘 =
𝑛
∑

𝑖=1

(

𝐹 𝑘𝑖 − 𝐹 𝑘𝑎𝑣𝑔
𝐹 𝑘

)2

, (9)

where, 𝐹 𝑘 = 𝑚𝑎𝑥{𝑚𝑎𝑥{|𝐹 𝑘𝑖 − 𝐹 𝑘𝑎𝑣𝑔|}, 1}, 𝑖 ∈ [1, 𝑛].
Set the 𝛷𝑘 to indicate the spatial location aggregation degree be-

tween beetle individuals, as described in Eq. (10). The smaller 𝛷𝑘 is, the
more concentrated the beetle is, the higher the probability of mutation
is.

𝛷𝑘 =
𝑚𝑎𝑥1≤𝑖≤𝑛

{

‖𝐵𝑘𝑖 − 𝑃𝑏
𝑘
𝑖 ‖
}

𝑚𝑎𝑥𝑘
{

𝑚𝑎𝑥1≤𝑖≤𝑛
{

‖𝐵𝑘𝑖 − 𝑃𝑏
𝑘
𝑖 ‖
}}

. (10)

Define mutation probability 𝑝𝑘𝑚 as Eq. (11). The algorithm may fall
into local convergence when 𝛩𝑘 is less than the set threshold and 𝛷𝑘

decreases, and Eq. (11) needs to be executed.

𝑝𝑘𝑚 =

{

𝑒−𝛷𝑘∕5, 𝛩𝑘 < 𝛩0

0, 𝛩𝑘 ≥ 𝛩0
. (11)

𝛩0 is a threshold set according to the actual research object. Finally,
further judgment is made according to this probability, and then the
individual extreme value of each beetle is adjusted, such as Eq. (12).
Among them, 𝑝𝑟𝑎𝑛𝑑 is a random number, and 𝜂 is a random vector
obeying the standard normal distribution.

𝑃𝑏𝑘+1𝑖 =

{

𝑃𝑏𝑘𝑖 ⋅ (1 + 0.5𝜂), 𝑝𝑘𝑟𝑎𝑛𝑑 < 𝑝
𝑘
𝑚

𝑘 𝑘 𝑘
. (12)
𝑃𝑏𝑖 , 𝑝𝑟𝑎𝑛𝑑 ≥ 𝑝𝑚
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Fig. 5. Schematic diagram of ship trajectory control.
Fig. 6. Schematic diagram of ship undocking control.
2.2. Convergence proof of AMBS-P algorithm

The convergence of this algorithm is the basis to achieve the purpose
of motion control. It means that the algorithm tends to a certain value
after the multi-step iteration. According to the calculation process of
the AMBS-P algorithm proposed in Section 2.1, the convergence of the
AMBS-P algorithm is proved as follows.

Definition 1. In the 𝑘th iteration of AMBS-P algorithm, the state
set of beetle swarm is 𝐵𝑘 = {𝐵𝑘1 , 𝐵

𝑘
2 ,… , 𝐵𝑘𝑛}. Among them, 𝐵𝑘𝑛 ∈ 𝑅,

0 < 𝑛 < +∞, 0 < 𝑘 < +∞, 𝐵 and 𝑅 represent beetle position and
real numbers space respectively, 𝑛 is the number of beetles. {𝐵𝑘, 𝑘 > 0}
constitutes a discrete stochastic process.

Definition 2. Define the optimal solution as:

𝐵𝐸∗ = {𝐵∗
|∄𝐵𝑘 ≠ 𝐵∗, 𝐹 (𝐵𝑘) ≤ 𝐹 (𝐵∗), 𝑖 = 1, 2,… , 𝑛}, (13)
4

𝑖 𝑖
Minimum value of 𝐹 is 𝐹𝑏𝑒𝑠𝑡 = 𝐹 (𝐵∗). Let 𝑁(𝐵𝑘) = |𝐵𝑘 ∩ 𝐵𝐸∗
|,

which represents the number of optimal solutions contained in the
beetle swarm.

Definition 3. The convergence of AMBS-P algorithm to the optimal
value with probability 1 means that there is result for any initial state
𝐵0 according to Eq. (14).

lim
𝑘→+∞

𝑃 (𝑁(𝐵𝑘) > 0|𝐵(0) = 𝐵0) = 1. (14)

Definition 4. The predicted total fitness value is expressed as 𝐹 . This
is the 𝑗th prediction,

𝐹 (𝑗 ∶ 𝑗 +𝑁𝑝) = 𝐹𝑚𝑖𝑛, 𝑗 = 1, 2,… ,+∞, 𝐹𝑚𝑖𝑛 ∈ 𝑅, (15)

If the result is in accordance with this Eq. (15) it is said that every
prediction of 𝐹 converges to an unfixed minimum value 𝐹𝑚𝑖𝑛.
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Fig. 7. Horizontal docking (port docking) without ship drag. ((a): the trajectory of ship docking; (b): the comparison of ship calculated and target headings; (c) the change of ship
velocity; (d) the change of ship input force and moment; (e) the RPS of ship port thruster motor; (f) the RPS of ship starboard thruster motor; (g) the RPS of ship bow thruster
motor.)
Fig. 8. Horizontal docking (starboard docking) without ship drag. (The meanings of (a)–(g) are the same with Fig. 7).
Theorem 1. The optimization process of AMBS-P algorithm 𝐵𝑘, 𝑘 > 0 is a
finite homogeneous Markov chain.

Proof. At the beginning 𝑘 = 0, the state 𝐵(0) = {𝐵0
1 , 𝐵

0
2 ,… , 𝐵0

𝑛} is a
series of randomly generated values. In the following iteration, based
on the current 𝑘th beetle swarm state 𝐵𝑘 = {𝐵𝑘1 , 𝐵

𝑘
2 ,… , 𝐵𝑘𝑛}, it search

the solution space and update the beetle swarm according to the useful
information in the search process. Finally, we obtain that the next
(𝑘 + 1)𝑡ℎ beetle swarm state 𝐵𝑘+1. Substituting Eq. (3) into (5):

𝐵𝑘+1𝑖 = 𝐵𝑘𝑖 − 𝐿
𝑘
𝑠𝑡𝑒𝑝 ⋅ �̃�

𝑘 ⋅ 𝑠𝑖𝑔𝑛(𝐹 (𝐵𝑘𝑖 +𝐷0 ⋅ �̃�
𝑘∕2) − 𝐹 (𝐵𝑘𝑖 −𝐷0 ⋅ �̃�

𝑘∕2)),

(16)

It indicates that the probability 𝑃 (𝐵𝑘+1|𝐵𝑘) of the next state of the
beetle swarm just depends on the current state 𝐵𝑘 and is a constant
independent of time. The formula is:

𝑃 (𝐵𝑘+1 = 𝐵(𝑖)|𝐵𝑘 = 𝐵(𝑗)) = 𝜁, 𝜁 > 0, (17)
5

where, 𝐵(𝑖) and 𝐵(𝑗) are two arbitrary states. It can be seen that
{𝐵𝑘, 𝑘 > 0} is a homogeneous Markov chain. Because the size of the
beetle swarm is limited, if the search space is limited, then the beetle
swarm is limited, and the state space of Markov process composed of
such beetle group set is limited. Therefore, the search process {𝐵𝑘, 𝑘 >
0} constructed by the AMBS-P algorithm is a finite homogeneous
Markov chain.

Theorem 2. 𝐹𝑏𝑒𝑠𝑡(𝐵𝑖) is not increased in the AMBS-P algorithm.

Proof. It can be seen from the algorithm that at any 𝑘, If 𝐹 (𝐵𝑘𝑖 ) <
𝐹𝑏𝑒𝑠𝑡(𝐵𝑖), then 𝐹𝑏𝑒𝑠𝑡(𝐵𝑖) = 𝐹 (𝐵𝑘𝑖 ).

Theorem 3. For ∀𝑘 ≥ 0, there is:

𝑃 (𝑁(𝐵𝑘+1) < 𝜉|𝑁(𝐵𝑘) = 𝜉) = 0, 𝜉 ≥ 0, (18)
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Fig. 9. Vertical docking (bow docking) without ship drag. (The meanings of (a)–(g) are the same with Fig. 7).
Fig. 10. Vertical docking (stern docking) without ship drag. (The meanings of (a)–(g) are the same with Fig. 7).
Proof. Although it is known from Theorem 2 that the adaptive value
𝐹 of each iteration is constantly updating, as 𝐹 (𝐵𝑘𝑖 ) < 𝐹𝑏𝑒𝑠𝑡(𝐵𝑖), the
selection strategy of AMBS-P algorithm is to retain the better beetle
particles and fitness value of each iteration. Therefore, at any 𝑘, under
the condition that the number of optimal solutions in the beetle swarm
is 𝜉(𝜉 ≥ 0), the number of optimal solutions in the beetle swarm at 𝑘+1
cannot be less than 𝜉.

Theorem 4. The global optimal solution of AMBS-P algorithm can be find
at any time, that is,

𝑃 (𝑁(𝐵𝑘+1) > 0|𝑁(𝐵𝑘) = 0) > 0,∀𝑘 ≥ 0, (19)

Proof. It can be seen from the AMBS-P algorithm that the initial 𝐵(0)
is a series of randomly generated values, so the probability of 𝐵𝑘 being
any possible solution at any time is not 0, and the probability of appear-
ing the global optimal solution at the same time is not 0. Therefore,
under the condition of 𝑁(𝐵𝑘) = 0, the probability of 𝑁(𝐵𝑘+1) ≠ 0 is
greater than 0.
6

Theorem 5. AMBS-P algorithm converges to the optimal solution with
probability 1.

lim
𝑘→+∞

𝑃 (𝑁(𝐵𝑘) > 0) = 1, (20)

Proof. Set the probability that the number of optimal solutions is 𝜄 in
the beetle swarm at k time be 𝑃𝜄(𝑘) = 𝑃 (𝑁(𝐵𝑘) = 𝜄). From the Bayesian
conditional probability formula, it can obtain:

𝑃0(𝑘 + 1) = 𝑃 (𝑁(𝐵𝑘+1) = 0) = 𝑃 (𝑁(𝐵𝑘+1) = 0|𝑁(𝐵𝑘) = 0)

× 𝑃 (𝑁(𝐵𝑘) = 0)

+ 𝑃 (𝑁(𝐵𝑘+1) = 0|𝑁(𝐵𝑘) ≠ 0) × 𝑃 (𝑁(𝐵𝑘) ≠ 0),
(21)

According to Theorem 3, 𝑃 (𝑁(𝐵𝑘+1) = 0|𝑁(𝐵𝑘) ≠ 0) = 0, so,

𝑃0(𝑘 + 1) = 𝑃 (𝑁(𝐵𝑘+1) = 0|𝑁(𝐵𝑘) = 0) × 𝑃 (𝑁(𝐵𝑘) = 0)

= 𝑃 (𝑁(𝐵𝑘+1) = 0|𝑁(𝐵𝑘) = 0) × 𝑃0(𝑘), (22)

According to Theorem 4, 𝑃 (𝑁(𝐵𝑘+1) > 0|𝑁(𝐵𝑘) = 0) > 0. Let
𝑘+1 𝑘 (23)
𝐶 = 𝑚𝑖𝑛(𝑃 (𝑁(𝐵 ) > 0|𝑁(𝐵 ) = 0), 𝑘 = 0, 1,… ,+∞),
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Fig. 11. Horizontal docking (port docking) with ship drag. (The meanings of (a)–(g) are the same with Fig. 7).
Fig. 12. Horizontal docking (starboard docking) with ship drag. (The meanings of (a)–(g) are the same with Fig. 7).
that is

𝑃 (𝑁(𝐵𝑘+1) > 0|𝑁(𝐵𝑘) = 0) ≥ 𝐶 > 0, (24)

then
𝑃 (𝑁(𝐵𝑘+1) = 0|𝑁(𝐵𝑘) = 0) = 1 − 𝑃 (𝑁(𝐵𝑘+1) ≠ 0|𝑁(𝐵𝑘) = 0)

= 1 − 𝑃 (𝑁(𝐵𝑘+1) > 0|𝑁(𝐵𝑘) = 0) ≤ 1 − 𝐶 < 1, (𝑘 = 0, 1,… ,+∞),
(25)

So,

𝑃0(𝑘 + 1) ≤ (1 − 𝐶)𝑃0(𝑘) ≤ ⋯ ≤ (1 − 𝐶)𝑘+1𝑃0(0), (26)

Because lim𝑘→+∞(1 − 𝐶)𝑘+1 = 0 and 0 ≤ 𝑃0(0) ≤ 1 (for any
probability), when 𝑘 → +∞,

0 ≤ 𝑃0(𝑘 + 1) ≤ (1 − 𝐶)𝑘+1 × 𝑃0(0) = 0, (27)

so, lim𝑘→+∞ 𝑃0(𝑘 + 1) = 0.
To sum up,

lim
𝑘→+∞

𝑃 (𝑁(𝐵𝑘+1) > 0) = 1 − lim
𝑘→+∞

𝑃 (𝑁(𝐵𝑘+1) = 0)

= 1 − lim 𝑃 (𝑘 + 1) = 1,
(28)
7

𝑘→+∞ 0
that is, lim𝑘→+∞ 𝑃 (𝑁(𝐵𝑘) > 0) = 1.

Theorem 6. If lim𝑘→+∞ 𝑃 (𝑁(𝐵𝑘) > 0) = 1, the 𝐹 of the prediction 𝑁𝑝
step converges to the unfixed minimum value 𝐹𝑚𝑖𝑛 of the 𝑗th prediction.

If lim𝑘→+∞ 𝑃 (𝑁(𝐵𝑘) > 0) = 1, then the global optimal solution is 𝐵∗,
the optimal adaptive value is 𝐹𝑏𝑒𝑠𝑡(𝐵∗), any particle except the optimal
solution is set as 𝐵, and the corresponding adaptive value is 𝐹 (𝐵).
According to Theorem 2 and Eq. (8), 𝐹𝑏𝑒𝑠𝑡(𝐵∗) < 𝐹 (𝐵), so,

𝐹 (𝑗 ∶ 𝑗 +𝑁𝑝) =
𝑁𝑝
∑

𝑗=1
𝑞𝑗 ⋅ 𝐹

𝑗
𝑏𝑒𝑠𝑡 = 𝑞𝑗 × (𝐹 𝑗𝑏𝑒𝑠𝑡(𝐵

∗) + 𝐹 𝑗+1𝑏𝑒𝑠𝑡 (𝐵
∗),… , 𝐹

𝑗+𝑁𝑝
𝑏𝑒𝑠𝑡 (𝐵∗))

< 𝑞𝑗 × (𝐹 𝑗 (𝐵) + 𝐹 𝑗+1(𝐵),… , 𝐹 𝑗+𝑁𝑝(𝐵)),

(29)

That is to say, the 𝐹 always converges to the minimum value 𝐹𝑚𝑖𝑛 of
the 𝑗th prediction. Because of the change of practical application, 𝐹𝑚𝑖𝑛
is not a fixed value, but 𝐹𝑚𝑖𝑛 ∈ 𝑅.
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Fig. 13. Vertical docking (bow docking) with ship drag. (The meanings of (a)–(g) are the same with Fig. 7).
Fig. 14. Vertical docking (stern docking) with ship drag. (The meanings of (a)–(g) are the same with Fig. 7).
To sum up, AMBS-P algorithm has convergence, which indicates
that a definite result can be obtained after calculation, so this algorithm
can be used for the design and application of motion controllers.

3. Mathematical model of the ship

The foundation of ship motion control is to build a better ma-
neuverability model. This paper chooses the ship space ‘‘Tito-Neri’’ as
the research object. The coordinate system and degrees of freedom
used in this study are shown in Fig. 1. Among them, 𝑂𝑏 − 𝑥𝑏𝑦𝑏𝑧𝑏 is
the body-fixed coordinate system, and 𝑂 − 𝑥𝑦𝑧 can be approximately
regarded as the inertial coordinate system of ships sailing only in a local
areas. Fig. 1 shows that the three degrees of freedom (3-DOF) model is
adopted (swing, surge, and yaw direction).

‘‘Tito-Neri’’ ship is a scaled model ship developed by Delft Univer-
sity of Technology, with a length of 0.97 m and a width of 0.3 m. The
structure (Bruggink et al., 2018) and ship model are shown in Fig. 2.
There are two stern thrusters and one bow thruster. This structure
makes the model ship very flexible. The ship motion maneuvering
8

model is selected in the form Eq. (30) (Fossen, 2002). The meanings
of ship symbols are shown in Table 10.

�̇� = 𝑅(𝜂)𝑣𝑎
(𝑀𝑅𝐵 +𝑀𝐴)𝑣𝑎 + 𝐶𝑅𝐵(𝑣𝑎)𝑣𝑎 + 𝐶𝐴(𝑣𝑎)𝑣𝑎 = 𝜏 + 𝜏𝑑𝑖𝑠𝑡𝑟𝑢𝑏

(30)

The input of the model is the force and moment produced by
thrusters, and the output is the distance (in meters) in X and Y direc-
tions and the heading angle (in radians) of the ship.

According to the Eq. (30), the position and heading are 𝜂 =

[𝑥, 𝑦, 𝜓]T, 𝑅 =
⎡

⎢

⎢

⎣

𝑐𝑜𝑠(𝜓) −𝑠𝑖𝑛(𝜓) 0
𝑠𝑖𝑛(𝜓) 𝑐𝑜𝑠(𝜓) 0

0 0 1

⎤

⎥

⎥

⎦

, the velocity is 𝑣𝑎 = [𝑣𝑥, 𝑣𝑦, 𝑣𝑟]T,

𝜏 = 𝜏𝑡ℎ𝑟𝑢𝑠𝑡 + 𝜏𝑑𝑟𝑎𝑔 , 𝐶𝐴 is omitted in this article, 𝐶𝑅𝐵 =
⎡

⎢

⎢

⎣

0 0 −𝑚𝑏𝑣𝑦
0 0 𝑚𝑏𝑣𝑥

𝑚𝑏𝑣𝑦 −𝑚𝑏𝑣𝑥 0

⎤

⎥

⎥

⎦

. The meaning of ship basic variables is shown

in Appendix A.
Because the ship is small, the resistance caused by the water has

effect on the ship motion. The ship drag needs to be calculated in
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Fig. 15. Multi directional horizontal and vertical docking simulation.
Fig. 16. Horizontal undocking (port undocking) simulation. ((a): the trajectory of ship undocking; (b): the comparison of ship calculated and target headings; (c) the change of
ship velocity; (d) the change of ship input force and moment; (e) the RPS of ship port thruster motor; (f) the RPS of ship starboard thruster motor; (g) the RPS of ship bow
thruster motor.)
the actual motion control. Setting 𝜏𝑑𝑟𝑎𝑔 = [𝜏𝑑𝑟𝑎𝑔𝑥; 𝜏𝑑𝑟𝑎𝑔𝑦; 𝜏𝑑𝑟𝑎𝑔𝑟]. The
estimates results are shown in Appendix B. Besides, 𝜏𝑑𝑟𝑎𝑔𝑟 is shown in
Eq. (31):

𝜏𝑑𝑟𝑎𝑔𝑟 =
1
3
𝜏𝑑𝑟𝑎𝑔𝑟(

𝑝𝑖
2
,
2𝑣𝑟
3

). (31)

For more information about the ‘‘Tito-Neri’’ model, see Damen
Shipyards (2018) and Bruggink et al. (2018). In the following part of
algorithm verification, this study will take two cases: with adding ship
drag and without drag.

It is necessary to convert the force and moment into the RPS
(Rounds Per Second) of the motor driving thrusters for the actual nav-
igation. First of all, the problem of the ship’s thrust allocation requires
to be solved. 𝜏𝑡ℎ𝑟𝑢𝑠𝑡𝑒𝑟 is defined as 𝜏𝑡ℎ𝑟𝑢𝑠𝑡𝑒𝑟 = [𝜏𝑡ℎ𝑟𝑢𝑠𝑡𝑒𝑟𝑥; 𝜏𝑡ℎ𝑟𝑢𝑠𝑡𝑒𝑟𝑦; 𝜏𝑡ℎ𝑟𝑢𝑠𝑡𝑒𝑟𝑟],
where 𝜏𝑡ℎ𝑟𝑢𝑠𝑡𝑒𝑟𝑥 and 𝜏𝑡ℎ𝑟𝑢𝑠𝑡𝑒𝑟𝑦 are represent surge and sway forces respec-
tively, 𝜏 represents yaw moment. The thruster structure of the
9

𝑡ℎ𝑟𝑢𝑠𝑡𝑒𝑟𝑟
ship is shown in Fig. 3. According to the (Haseltalab and Negenborn,
2019):

𝜏𝑡ℎ𝑟𝑢𝑠𝑡𝑒𝑟 = �̃�3×𝑚[𝑔1(𝑛1); ...; 𝑔𝑚(𝑛𝑚)]T. (32)

Among them, thrust configuration matrix �̃� = [𝛽1,… , 𝛽𝑚], where 𝛽 is
the actuator vector column. 𝑚 is the number of actuators, 𝑔1,… , 𝑔𝑚 are
actuator dynamics, 𝑛1,… , 𝑛𝑚 are the actuator shaft velocity. Assuming
this study controls the RPS of the motor, then for the stern thruster:

𝛽𝑖 = [1; 0; −𝑙𝑦]T. (33)

For bow thruster:

T (34)
𝛽𝑗 = [0; 1; 𝑙𝑥] ,
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Fig. 17. Horizontal undocking (starboard undocking) simulation. (The meanings of (a)–(g) are the same with Fig. 16).
Fig. 18. Vertical undocking (bow undocking) simulation. (The meanings of (a)–(g) are the same with Fig. 16).
where 𝑙𝑦 and 𝑙𝑥 represent actuator position coordinates. Therefore, the
RPS calculation formula of a single thruster is:

⎡

⎢

⎢

⎣

𝑔1(𝑛1)
...

𝑔𝑚(𝑛𝑚)

⎤

⎥

⎥

⎦

= (�̃�3×𝑚)−1 ⋅ 𝜏𝑡ℎ𝑟𝑢𝑠𝑡𝑒𝑟. (35)

There are three thrusters in this study. �̃� is a square matrix, and its
inverse matrix can be calculated directly. Otherwise, it is necessary to
find its pseudo inverse matrix for ships with the number of thrusters
not equal to three:

�̃� = �̃� T(�̃� �̃� T)†. (36)

4. Design of autonomous docking and undocking controller

4.1. Docking analysis

On account of the actual demand for cargo handling, there are
three basic modes of docking: (1) horizontal docking (port docking
and starboard docking); (2) vertical docking (bow docking and stern
10
docking); (3) docking between horizontal and vertical directions. Since
the (1) and (2) are limit positions, the first two modes can be analyzed
to include all other orientations in this study. No matter which way of
docking is adopted, this study divides the design of ship docking process
into two parts: the first step is that the ship directly moves from the
current position to the docking area, and the second step is that the
ship gradually stops at the docking area by adjusting its attitude at a
low velocity, as shown in Fig. 4.

Taking the case shown in Fig. 4 as an example, in zone 1, the ship
follows the path and sails to zone 2 in a straight line. The starting point
of zone 2 is set at 𝜆 times the length of the ship directly above the final
docking position. After arriving at zone 2, the attitude of the ship is
adjusted until the velocity is reduced to zero, and the whole docking
process is completed as expected.

In the first stage of docking, the control goal is to synchronously
correct the ship’s heading and trajectory by calculating the motor
RPS for every step, so as to gradually track it to the planned target
path. The principle of ship path following is shown in Fig. 5. In
this paper, each path 𝑃𝑝(𝑥𝑝, 𝑦𝑝), 𝑝 = 1, 2,… , 𝑚 is divided into sev-
eral path points 𝑃 (𝑥 , 𝑦 ), 𝑖 = 1, 2,… , 𝑛, and each path has a
𝑝+𝑖 𝑝+𝑖 𝑝+𝑖
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Fig. 19. Vertical undocking (stern undocking) simulation. (The meanings of (a)–(g) are the same with Fig. 16).
Fig. 20. Multi directional horizontal and vertical undocking simulation.
fixed direction 𝜓𝑝, and the corresponding reference velocity and rate
are [𝑢𝑝, 𝑣𝑝, 𝑟𝑝]T = 𝑅−1(𝜂𝑝)�̇�𝑝, 𝜂𝑝 = [𝑥𝑝, 𝑦𝑝, 𝜓𝑝]T. The ship position is
𝑆𝑖(𝑥𝑠+𝑖, 𝑦𝑠+𝑖), 𝑖 = 1, 2,… , 𝑛 + 𝑚. The control input of path following are
motor RPS and output is ship state. The reference target is 𝑅𝑟𝑒𝑓 (𝑖) =
[𝑥𝑝+𝑖, 𝑦𝑝+𝑖, 𝜓𝑝, 𝑢𝑝, 𝑣𝑝, 𝑟𝑝]T, 𝑝 = 1, 2,… , 𝑚; 𝑖 = 1, 2,… , 𝑛.

In the second stage of docking, the ship heading range is
[−180◦, 180◦], and the state of the ship is 𝑆𝑠𝑡𝑎𝑡𝑒 = [𝜂, 𝑣𝑎]
= [𝑥, 𝑦, 𝜓, 𝑣𝑥, 𝑣𝑦, 𝑣𝑟]T. The condition is that the position and heading
reach the expected object when docking, that is, the position is [0, 0],
the heading is −90◦, 90◦, 0◦ or 180◦, and the velocity is reduced to zero.
That is, 𝑣 = 0; 𝑣 = 0; 𝑣 = 0.
11

𝑥 𝑦 𝑟
The advantage of this design is that the docking path can be set
and executed adaptively according to this rule. It avoids the problem
of path setting and selection caused by the uncertainty of ship heading
when the docking command is executed.

4.2. Undocking analysis

Ship undocking is to control the ship from docking to the starting
state. Due to the different target headings of the ship, it is required
that the ship can quickly switch from any docking mode to the target
attitude, as shown in Fig. 6.
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Fig. 21. Horizontal docking (port docking) analysis under different 𝑁𝑝.

Fig. 22. Horizontal docking (starboard docking) analysis under different 𝑁𝑝.

Fig. 23. Vertical docking (bow docking) analysis under different 𝑁𝑝.
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Fig. 24. Vertical docking (stern docking) analysis under different 𝑁𝑝.

Fig. 25. Horizontal undocking (port undocking) analysis under different 𝑁𝑝.

Fig. 26. Horizontal undocking (starboard undocking) analysis under different 𝑁𝑝.
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Fig. 27. Vertical undocking (bow undocking) analysis under different 𝑁𝑝.
Fig. 28. Vertical undocking (stern undocking) analysis under different 𝑁𝑝.
Fig. 29. Schematic diagram of path location.
14
Whether docking or undocking, combined with Section 2, the
Eq. (8) is detailed:

𝑚𝑖𝑛𝐹 (𝐵|𝑗) =
𝑁𝑝
∑

𝑗=1
𝑞𝑗 ⋅ 𝐹

𝑗
𝑏𝑒𝑠𝑡 =

𝑁𝑝
∑

𝑗=1
𝑞𝑗 ⋅ (𝑅

𝑗
𝑟𝑒𝑓 − 𝑆𝑗𝑠𝑡𝑎𝑡𝑒)

= 𝑄 ⋅ (𝑅𝑅𝐸𝐹 − 𝑆𝑆𝑇𝐴𝑇𝐸 ),

(37)

where 𝑄 is the total weight factor, 𝑄 = 𝑑𝑖𝑎𝑔[𝑞1, 𝑞2,… , 𝑞𝑁𝑝 ]. 𝑅𝑅𝐸𝐹 is
target path, 𝑅𝑅𝐸𝐹 = [𝑅𝑟𝑒𝑓 (𝑗), 𝑅𝑟𝑒𝑓 (𝑗 + 1),… , 𝑅𝑟𝑒𝑓 (𝑗 +𝑁𝑝)]T. 𝑆𝑆𝑇𝐴𝑇𝐸 is
ship path, 𝑆𝑆𝑇𝐴𝑇𝐸 = [𝑆𝑠𝑡𝑎𝑡𝑒(𝑗), 𝑆𝑠𝑡𝑎𝑡𝑒(𝑗 + 1),… , 𝑆𝑠𝑡𝑎𝑡𝑒(𝑗 +𝑁𝑝)]T.

4.3. The pseudo-code of AMBS-P algorithm

According to Sections 2 and 4.2, the pseudo-code of whole algo-
rithm is given in Algorithm 1. In this paper, the docking and un-
docking control of ships will be realized according to this algorithm
pseudo-code.
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Fig. 30. Docking analysis under different 𝑣𝑎0 (𝑣𝑥(0)).
Algorithm 1: AMBS-P algorithm
1 Initialize:𝐵(0), 𝑉 (0), 𝐷0

0 , 𝐿
0
𝑠𝑡𝑒𝑝, 𝑏𝑙1, 𝑏𝑙2, 𝑃 𝑏

0 = 𝐺𝑏0 = 𝐵(0), 𝐹𝑏𝑒𝑠𝑡 =
𝐹 (𝐵(0)) ;

2 while 𝑘 < 𝐾 do
3 for 𝑖 = 1 → 𝑛 do
4 Calculate 𝜔𝑘 according to Eq. (2);
5 Calculate the 𝑉 𝑘

𝑖 and 𝐵𝑘𝑖 of bettle according to Eqs. (1a)
and (1b);

6 Generate �̃�𝑘 according to Eq. (4);
7 Calculate 𝐵𝐿𝑖𝑘 and 𝐵𝑅𝑖𝑘 according to Eq. (3);
8 Calculate 𝐹 (𝐵𝐿𝑖𝑘) and 𝐹 (𝐵𝑅𝑖𝑘) according to Eq. (37);
9 Update the 𝐵𝑘𝑖 according to Eq. (5);
10 Calculate the 𝐹 (𝐵𝑘𝑖 ) according to Eq. (3);
11 if 𝐹 (𝐵𝑘𝑖 ) < 𝐹𝑏𝑒𝑠𝑡(𝐵

∗
𝑖 ) then

12 𝑃𝑏𝑘𝑖 = 𝐵𝑘𝑖 ;
13 𝐹𝑏𝑒𝑠𝑡(𝐵∗

𝑖 ) = 𝐹 (𝐵𝑘𝑖 );

14 Update the 𝐷𝑘
0 and 𝐿𝑘𝑠𝑡𝑒𝑝 of bettle according to Eq. (7);

15 𝐺𝑏𝑘 = 𝑚𝑖𝑛(𝑃𝑏𝑘);
16 𝐹𝑏𝑒𝑠𝑡 = 𝑚𝑖𝑛(𝐹𝑏𝑒𝑠𝑡(𝐵𝑘));
17 Calculate 𝛩𝑘 and 𝛷𝑘 separately according to Eqs. (9) and

(10);
18 Calculate 𝑝𝑘𝑚 according to Eq. (11);
19 Calculate the 𝑃𝑏𝑘+1according to Eq. (12);
15
Table 1
Ship motion control parameter values.

‘‘Tito Neri’’ ship parameter values AMBS-P algorithm parameter values

Symbols Value Unit Symbols Value Unit

𝐵𝑡 [0.345,0] [m,m] 𝑏𝑙1 0.95 –
𝐶𝑂𝐺 [0,0] [m,m] 𝑏𝑙2 0.99 –
𝐿 0.97 m 𝐷0 0.99 –

𝑀𝐴

⎡

⎢

⎢

⎣

1.2 0 0
0 15 0
0 0 1.8

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

kg
kg

kg m2

⎤

⎥

⎥

⎦

𝐸𝑦 [7,7,7,1,1,1] –

𝑚𝑏 16.9 kg 𝐾 40 –

𝑀𝑅𝐵

⎡

⎢

⎢

⎣

16.9 0 0
0 16.9 0
0 0 0.51

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

kg
kg

kg m2

⎤

⎥

⎥

⎦

𝐿𝑠𝑡𝑒𝑝 1 –

𝑃 𝑡 [−0.42,−0.08] [m,m] 𝑛 5 –
𝑆𝑡 [−0.42,0.08] m 𝑁 3 –
𝑣𝑎(0) [0.1;0;0] m/s 𝑁𝑝 4 –
𝑤𝑏𝑜𝑎𝑡 0.3 m 𝜆 2 –

𝛩 1 –

5. Simulation of autonomous docking and undocking control of
ships

The basic parameters of the ship and the AMBS-P algorithm are
shown in Table 1. According to the basic parameters and different
initial conditions, the feasibility and effect of the application of the
AMBS-P algorithm in ship docking and undocking are verified and
analyzed.
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Fig. 31. Docking analysis under different 𝜏𝑑𝑖𝑠𝑡𝑟𝑢𝑏.
5.1. Autonomous docking verification

5.1.1. Docking control in ideal situation
Horizontal docking and vertical docking means the final heading

are 𝜓 = −90◦, 𝜓 = 90◦, 𝜓 = 0◦ or 𝜓 = 180◦ respectively. First of all,
ideally, it is assumed that the influence of water resistance on the ship is
ignored, that is 𝜏𝑑𝑟𝑎𝑔 = [0; 0; 0]. The position and heading are optional,
such as [𝑥, 𝑦, 𝜓] = [6, 5, 0]. The simulation effect is shown in Figs. 7, 8,
9 and 10. In this paper, the Mean Absolute Deviation (MAD) is selected
as the standard to evaluate the algorithm.

MAD can avoid the offset of positive and negative errors so that
its value can better reflect the simulation effect. Figs. 7(a), 8(a), 9(a)
and 10(a) respectively show the trajectory of horizontal docking and
vertical docking. Figs. 7(b)–(g), 8(b)–(g), 9(b)–(g) and 10(b)–(g) re-
spectively show the change of ship heading, the ship velocity, the ship
input force and moment, and the RPS of the stern and bow motors. It
can be seen from Figs. 7, 8, 9 and 10 that due to the ignorance of the
ship drag, the velocity can be better maintained at zero at the end of
docking. Following the velocity, the thrust and moment generated by
the propeller can gradually tend to zero.

5.1.2. Docking control in actual situation
The hull in this paper is small, in the actual process, a small velocity

can also cause the drag. Because the ship needs to stop at a fixed
position and the ship itself has inertia, at the end of docking, the
actual ship velocity will gradually tend to zero and fluctuates around
it. Therefore, the force and moment produced by thrusters are close to
but not kept at zero at the end of docking to resist the ship drag. The
simulation results are shown in Figs. 11(d), 12(d), 13(d) and 14(d).
16
By analogy, set six positions and twelve different initial headings
within [−180◦, 180◦], as shown in Table 2. At each position, twelve
different initial headings are tested. Taking the case of ship drag as an
example, autonomous docking is realized for multiple directions and
positions to verify the generality of the algorithm. It can be seen from
Fig. 15 that the AMBS-P algorithm has a good application effect for
docking in any direction.

5.2. Autonomous undocking verification

Following the docking control, the current docked ship is located at
a position vertical or horizontal to the shore. The ship will move from
the initial docking position to any desired course and position when the
undocking control is carried out. The simulation results are shown in
Figs. 16, 17, 18 and 19. The multi-directional tests are shown in Fig. 20.
Fig. 20 shows no matter what direction the ship destination is, it can
follow the target trajectory quickly. The above simulation shows that
the AMBS-P algorithm can achieve autonomous undocking better.

5.3. Results analysis and comparison

5.3.1. Results analysis
According to the principle of the AMBS-P algorithm, the main

control variables that affect the results of docking and undocking are:
𝑁𝑝, 𝜆, 𝑣𝑎(0), 𝜏𝑑𝑖𝑠𝑡𝑟𝑢𝑏 and calculation efficiency. In addition, 𝑏𝑙1, 𝑏𝑙2 and
𝐷0 are less sensitive to the algorithm, please refer to the paper (Wang
et al., 2019) for details, so the analysis will not be repeated here. For
each variable value to be analyzed, it will be repeated 100 times to
calculate the average MAD and trajectory. Then, one by one analysis.
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Fig. 32. Comparison of short-distance docking effect between PID, NMPC and AMBS-P algorithm.
Table 2
Set different position and heading for docking.

Initial position ([x (m), y (m)]) Initial heading (degree)

[6, 5], [−6, 5], [2, 7], [−2, 7], [10, 3], [−10, 3] 0◦ , 30◦ , 60◦ , 90◦ , 120◦ , 150◦ ,−30◦ ,−60◦ ,−90◦ ,−120◦ ,−150◦ ,−180◦
(1) Analysis of 𝑁𝑝 on the results.
According to the principle of ship motion control, the 𝑁𝑝 is an
important factor on the effect of ship docking and undocking.
The simulation under different 𝑁𝑝 are shown in Figs. 21, 22, 23
and 24.
Every step of optimization needs to ensure efficient operation,
so the optimal value within a certain error range is needed.
This cause the results of the algorithm are slightly different. The
trajectories shown in Figs. 21, 22, 23 and 24 are the average
trajectories of 100 times of simulation to reflect its regularity.
It can be seen from Figs. 21(a), 22(a), 23(a), and 24(a), for
example, from [6, 5] to [0, 0], when 𝑁𝑝 = 3, the tracking effect
is the best, and the MAD value of the tracking is the smallest,
which is 0.0383 m, 0.0508 m, 0.0946 m and 0.0508 m, as shown in
Figs. 21(b), 22(b), 23(b), and 24(b). Conversely, the path control
error is too large or calculated path deviates from the normal
track when 𝑁𝑝 = 1 or greater than 13. 𝑁𝐴𝑁 is used to indicate
failure.
For undocking, take one of the paths as an example, such as from
[0, 0] to [8, 4]. The test results are as shown in Figs. 25, 26, 27
and 28. It can also be concluded that when 𝑁𝑝 = 3, the MAD is
the smallest, that is 0.0341 m, 0.0295 m, 0.0394 m and 0.0092 m.
17
Similarly, path control is unsuccessful when 𝑁𝑝 = 1 or greater
than 14.
It can be seen from the above situation that the introduction of
the prediction idea has a great effect on the ship docking and
undocking control. It is not that the larger the prediction steps,
the more effective. When the algorithm has no prediction or
low degree of prediction, the system cannot control the future
situation. Therefore, in this case, it is impossible to predict the
control value in advance, and large error or deviation will occur.
If the prediction degree is too high, it will have a great impact on
the current control of the ship, which will also lead to inaccurate
judgment. Through the simulation test, it is concluded that when
the number of prediction steps is around three steps, the effect
of prediction and control is balanced, and the error is minimal.

(2) Analysis of 𝜆 on the results.
The design of this study is divided into two stages for docking
control. In the first stage, The starting point of the ship is the
current position point, and the target point of the first stage
is 𝜆 ⋅ 𝐿 above the endpoint. This path is the closest distance
compared with other paths.
In the second stage, the position of 𝜆 ⋅ 𝐿 is selected to adjust
the attitude. The main purpose is to ensure the ship has enough
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Fig. 33. Comparison of long-distance docking effect between PID, NMPC and AMBS-P algorithm with long-distance.
Table 3
Set different path for docking.
𝐷𝑝𝑎𝑡ℎ Port docking

MAD (m)
Starboard docking
MAD (m)

Bow docking
MAD (m)

Stern docking
MAD (m)

2𝐿 0.0383 0.0508 0.0946 0.0508
1.5𝐿 0.0242 0.0466 0.0430 0.0344
𝐿 0.0350 0.0523 0.0512 0.0429

space for attitude change. During docking, there are many divi-
sions of ship zone 2, as shown in Fig. 29. Suppose the length
of path 2⃝ in Fig. 29 is the 2𝐿. When 𝜆 > 2, such as the
path 1⃝, is not the shortest path, so it is not considered from
the perspective of efficiency. The distance of path 3⃝ is shorter
than that of path 2⃝, which is more efficient in principle, but
there may be insufficient space to adjust the ship attitude to the
predetermined position.
On the basis of setting 𝑁𝑝 = 3, the error of different paths is
calculated, and the trajectory MAD is shown in Table 3. Table 3
shows that when the path setting is 1.5𝐿, the ship attitude
adjustment effect is better. Therefore, it is a safe value for the
ship to adopt 𝜆 = 1.5.

(3) Analysis of 𝑣𝑎(0) on the results
The 𝑣𝑎(0) represents the velocity when the ship executes the
docking order, which is not zero in general. Take setting 𝑣𝑥
direction with value as an example, besides 𝑁𝑝 = 3, 𝐷𝑝𝑎𝑡ℎ = 1.5𝐿,
the simulation are shown in Fig. 30 and Table 4. According to
the test results, with the increase of the initial ship velocity,
18
Table 4
Set different 𝑣𝑎(0) (𝑣𝑥(0)) for docking.
𝑣𝑥(0)
(m/s)

Port docking
MAD (m)

Starboard docking
MAD (m)

Bow docking
MAD (m)

Stern docking
MAD (m)

0.1 0.0300 0.0512 0.0591 0.0345
0.5 0.0479 0.0612 0.0717 0.057
1 0.1095 0.1447 0.1429 0.1140
1.5 0.2531 0.2508 0.2739 0.2929

the autonomous docking effect is still good. This shows that the
algorithm has certain robustness to the change of velocity.

(4) Analysis of 𝜏𝑑𝑖𝑠𝑡𝑟𝑢𝑏 on the result
In this paper, white noise is used to simulate environmental
disturbances, that is 𝜏𝑑𝑖𝑠𝑡𝑟𝑢𝑏 = 𝐶𝑜𝑒 ⋅ 𝑟𝑎𝑛𝑑𝑛(3, 1). Among it, 𝐶𝑜𝑒
is disturbances coefficient, 𝑟𝑎𝑛𝑑𝑛(⋅) is the pseudo-random white
noise of standard normal distribution. According to the above
analysis, the simulation is under the condition of 𝑁𝑝 = 3, 𝐷𝑝𝑎𝑡ℎ =
1.5𝐿, 𝑣𝑎(0) = [0.2; 0; 0]. It can be seen from Fig. 31 and Table 5
that with the increase of disturbance, the calculation effect of
the algorithm is good. It shows that the algorithm has certain
robustness against the change of environment.

(5) Analysis of calculation efficiency on the results
In practical application, under the premise of pursuing cal-
culation efficiency, a certain degree of accuracy needs to be
guaranteed. The control variable method is used to test the
efficiency and error of the algorithm, as shown in Table 6. From
the comprehensive comparison of the Table 6 and actual experi-
ence, it can be seen that the average calculation velocity within
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Fig. 34. Docking in the real environment. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Table 5
Set different 𝜏𝑑𝑖𝑠𝑡𝑟𝑢𝑏 for docking.
𝐶𝑜𝑒 Port docking

MAD (m)
Starboard docking
MAD (m)

Bow docking
MAD (m)

Stern docking
MAD (m)

1 0.0510 0.0749 0.0840 0.0641
2 0.0668 0.0821 0.1003 0.0676
3 0.0866 0.0967 0.1016 0.0724
4 0.0920 0.0990 0.1083 0.0761
5 0.0962 0.1153 0.1122 0.0948

0.1𝑠 − 0.2𝑠 is appropriate. At this time, the search parameter is
that the 𝑛 = 5 and 𝐾 = 40.

5.3.2. Results comparison
This algorithm is different from the NN algorithm in training, so it is

not compared with it. PID is the simplest and most common algorithm
in practice. The nonlinear model predictive control (NMPC) is similar to
this control algorithm. In this study, the three algorithms are compared
and analyzed. The simulation is carried out under the same initial state
and constraints. For PID control, several groups of PID are tried, and the
parameters of better PID effect is [𝐾𝑃 , 𝐾𝑖, 𝐾𝐷] = [0.61, 0, 0.3]. For NMPC
control, we adopt the ‘‘active set’’ method. The force constraint range
of each thruster is obtained through maneuverability experiments, that
is, [𝑓𝑝; 𝑓𝑠; 𝑓𝑏] = [−2.8940, 3.2373; −2.7959, 2.7959; −1.1772, 1.2753].

The comparison results of short-distance docking are shown in
Fig. 32. In Fig. 32, the initial trajectory is [6, 5] and the heading
angle are [0◦, 60◦, 120◦,−60◦,−120◦,−180◦]. If the initial trajectory is
long-distance docking, such as [16, 15], the comparison is shown in
Fig. 33.
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All kinds of situations of short-distance and long-distance docking
are summarized. The average values are used and the comparison is
shown in Table 7. In short-distance docking case, AMBS-P has better
response velocity and smaller error than PID, but PID calculation rate
is faster. For long-distance docking, although the stability of PID is
improved and the error is reduced, the AMBS-P algorithm is still
better than the PID and NMPC algorithm. NMPC algorithm has a small
deviation for the initial position change of the ship, but the MAD is not
as small as AMBS-P, and the calculation rate is slower than AMBS-P. In
conclusion, the AMBS-P algorithm is very good for both short-distance
and long-distance docking, and calculation rate is appropriate. It has
the advantages of quick response and prediction for short-distance
docking and large turning.

5.3.3. Application effect of simulation in the real environment
The lake of the Delft University of Technology (TUDelft) is selected

as the test environment, and the optimal control parameter 𝑁𝑝 = 3, 𝜆 =
1.5, 𝑛 = 5, 𝐾 = 40. The docking and undocking simulation effects under
different conditions are shown in Figs. 34 and 35. Among them, the
latitude and longitude coordinates of docking and undocking are shown
in Table 8. Fig. 34 shows the situation of autonomous docking of the
ship, in which the green line represents the ship trajectory, and white
lines represent the execution of docking instructions at each path point.
Besides, Fig. 35 shows the situation of autonomous undocking of the
ship. The tracking error is shown in Table 9. The average error of
docking is within 0.035 m and the average error of undocking is within
0.065 m. As can be seen from Figs. 34, 35 and Table 9, the tracking
effect is well.
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Fig. 35. Undocking in the real environment. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Table 6
Different calculation efficiency for docking.

n K Port docking Starboard docking n K Bow docking Stern docking

Times (s) MAD (m) Times (s) MAD (m) Times (s) MAD (m) Times (s) MAD (m)

1 40 0.0394 0.1003 0.0395 0.0955 1 40 0.0343 0.1165 0.0397 0.0854
5 40 0.1298 0.0341 0.1340 0.0400 5 40 0.1145 0.0571 0.1281 0.0490
10 40 0.2400 0.0322 0.2559 0.0375 10 40 0.2521 0.0544 0.2626 0.0360
15 40 0.3566 0.0300 0.339 0.0362 15 40 0.4095 0.0534 0.3610 0.0349
20 40 0.4553 0.0304 0.4268 0.0272 20 40 0.5431 0.0497 0.4586 0.0276

5 10 0.0049 0.0955 0.0435 0.1517 5 10 0.0415 0.1123 0.0687 0.0979
5 20 0.0654 0.0898 0.0746 0.0887 5 20 0.0711 0.0777 0.0755 0.0683
5 30 0.0941 0.0446 0.0960 0.0583 5 30 0.0946 0.0599 0.1015 0.0562
5 40 0.1346 0.0370 0.1219 0.0541 5 40 0.1299 0.0586 0.1232 0.0411
5 50 0.1455 0.0377 0.1875 0.0378 5 50 0.1711 0.0569 0.1762 0.0343
5 60 0.1676 0.0284 0.1962 0.0278 5 60 0.2143 0.0552 0.1946 0.0301
Table 7
Comparison docking results based on PID, NMPC and AMBS-P algorithm.

Comparison metrics Short-distance docking Long-distance docking

PID NMPC AMBS-P PID NMPC AMBS-P

MAD (m) 0.5029 0.1440 0.0333 0.4440 0.1824 0.0382
Maximum overshoot (m) 1.0602 0.3176 0.2312 1.0116 0.3353 0.3216
Per-step calculation time (s) 0.0188 1.0723 0.1179 0.0014 1.9452 0.1108
6. Conclusions and future research

This study focuses on the application of a nature-inspired algorithm
(AMBS-P) in the autonomous docking and undocking of ships. Firstly,
the AMBS-P algorithm is proposed, and then the control effect of this
20
algorithm on ship docking and undocking is verified. Based on the
above analysis, the following points can be summarized:

(1) The simulation without ship drag shows that the AMBS-P algo-
rithm can meet the requirements of autonomous docking under
ideal conditions, which proves the correctness of the algorithm.
The test with ship drag shows that the AMBS-P algorithm applies
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Fig. 36. Tito-Neri drag force.
Fig. 37. Characteristic curve of the motor.
Table 8
Latitude and longitude coordinates of docking and undocking.

Docking Coordinates Undocking Coordinates

Starting 1⃝ 52.002115, 4.371308 Starting point 52.00216, 4.371196
Starting 2⃝ 52.00213, 4.371473 Terminal 1⃝ 52.002128, 4.371268
Starting 3⃝ 52.002218, 4.371534 Terminal 2⃝ 52.002147, 4.371328
Starting 4⃝ 52.00232, 4.371437 Terminal 3⃝ 52.002175, 4.371347
Starting 5⃝ 52.002308, 4.371283 Terminal 4⃝ 52.002216, 4.371315
Starting 6⃝ 52.00225, 4.37120 Terminal 5⃝ 52.002233, 4.371237
Terminal point 52.00216, 4.371196 Terminal 6⃝ 52.002219, 4.371199

Table 9
The docking and undocking errors in the real environment.

Motion type The docking and undocking RMSE with different starting
(ending) poses

Port Starboard Bow Stern

Docking (m) 0.0245 0.0221 0.0674 0.0254
Undocking (m) 0.0869 0.0258 0.1036 0.0418

to the autonomous docking of ships in practice, which shows the
applicability of the algorithm.

(2) The analysis of the AMBS-P algorithm shows that the algorithm
has convergence.

(3) The introduction of prediction theory is of great significance
to ship docking control, which can make up for the lack of
prediction in the algorithm.
21
(4) The advantage of the AMBS-P algorithm is that it can be well
realized no matter how far or near it is, especially in the large
turning.

(5) The application of AMBS-P algorithm is not limited to the object
model, and the control rate does not depend on the constraints
set by the controlled object model, so it has certain universality.
It can not only be used in the independent docking and undock-
ing of ships but also can be used in other control aspects such as
ship track tracking, course control, and other fields.

In the future, the AMBS-P algorithm itself could be further im-
proved. Other algorithms may be combined with AMBS-P algorithm
to obtain more rapid and accurate results, which can be used in ship
motion control research or other fields.
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Appendix A. Ship symbols

See Table 10.

Appendix B. Tito-Neri drag force and thruster of motors related to
RPS

See Figs. 36 and 37
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Table 10
Ship symbols.

Symbol Meaning Symbol Meaning

𝐵𝑡 Bow thruster coordinates 𝑚𝑏 Mass of the ship
𝐶𝑅𝐵 Coreolis centripedal matrix 𝜏𝑡ℎ𝑟𝑢𝑠𝑡 Force vector of the thrusters
𝐶𝐴 Added coreolis centripedal matrix 𝜏𝑑𝑟𝑎𝑔 Drag vector of ship
𝐶𝑜𝐺 Center of gravity �̇�𝑎 Acceleration vector
𝐿 Length of ship 𝑃 𝑡 Port thruster coordinates
𝑀𝑅𝐵 Mass matrix 𝑆𝑡 Starboard thruster coordinates
𝑀𝐴 Added mass matrix 𝑤 Width of ship
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