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Adaptive Prescribed Performance Asymptotic Tracking for High-Order
Odd-Rational-Power Nonlinear Systems

Maolong Lv , Bart De Schutter , Fellow, IEEE, Jinde Cao , Fellow, IEEE,
and Simone Baldi , Senior Member, IEEE

Abstract—Practical tracking results have been reported in the
literature for high-order odd-rational-power nonlinear dynamics (a
chain of integrators whose power is the ratio of odd integers).
Asymptotic tracking remains an open problem for such dynamics.
This note gives a positive answer to this problem in the frame-
work of prescribed performance control, without approximation
structures (neural networks, fuzzy logic, etc.) being involved in the
control design. The unknown system uncertainties are first trans-
formed to unknown but bounded terms using barrier Lyapunov
functions, and then these terms are compensated by appropriate
adaptation laws. A method is also proposed to extract the control
terms in a linear-like fashion during the control design, which over-
comes the difficulty that virtual or actual control signals appear in
a nonaffine manner. A practical poppet valve system is used to
validate the effectiveness of the theoretical findings.

Index Terms—Asymptotic tracking, high-order odd-rational-
power nonlinear systems, prescribed performance.

I. INTRODUCTION

Over the last decade, high-order nonlinear dynamics have been
attracting great attention. The reason is twofold: first, high-order nonlin-
ear dynamics generalize strict-feedback and pure-feedback dynamics
by including more general integrators (with odd integer powers [1]–[3]
or ratios of odd integer powers [4]–[11]) in the dynamics; second,
high-order nonlinear dynamics appear in some practical systems such as
in dynamical boiler-turbine units [12], in classes of hydraulic dynamics
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[13], or in classes of under-actuated, weakly coupled mechanical sys-
tems [1]–[2]. It is well-documented in the literature that high-order non-
linear systems are intrinsically more challenging than strict-feedback
and pure-feedback systems, as feedback linearization and backstepping
methods fail to work [1]–[2]. A parametric nonlinear adaptive control
methodology called adding-one-power-integrator technique, originally
proposed in [2], has been successfully applied in stabilizing high-order
nonlinear systems [3]–[11]. In the following, let us distinguish and refer
to such high-order nonlinear dynamics as high-order odd-integer-power
and high-order odd-rational-power nonlinear systems (with high-order
odd-integer power being a special case of high-order odd-rational-
power).

For high-order odd-rational-power nonlinear systems, both stabiliza-
tion to zero [5]–[12] and output tracking [3]–[4] have been studied.
It is worth remarking that, while stabilization (regulation to zero)
can be obtained at the price of imposing growth conditions on the
system nonlinearities [5]–[12], no asymptotic tracking results have
been reported for these dynamics. All reported results achieve prac-
tical tracking in a residual set, either by imposing the aforementioned
growth conditions [3]–[4] (see also recent works considering rational or
irrationals powers [14]–[15]), or by removing growth conditions via the
use of universal approximators (e.g., neural networks) [16]. Therefore,
two open problems appear for high-order odd-rational-power nonlinear
systems: asymptotic tracking is the first one, and avoiding the use of
universal approximators is the second one.

The main contribution of this article is to give positive answers to
these problems. To this purpose, the unknown system uncertainties
are first transformed to some unknown but bounded terms via barrier
Lyapunov functions and then these terms are compensated by designing
appropriate adaptation laws. To overcome the difficulty that virtual
and actual control signals of odd-rational-power dynamics appear in a
nonaffine manner and cannot be designed directly, the proposed design
is achieved in combination with a newly proposed lemma that allows
to deal with the control terms in a “linear-like” fashion. Because the
proposed solution is given in the prescribed performance control (PPC)
framework, as a further evidence of effectiveness, we show that the
proposed result is in line with the-state-of-the-art on PPC, since it can
also handle the recently studied problem of input quantization [17].

This article is organized as follows: the problem formulation and
some useful lemmas are given in Section II. Sections III and IV
present the proposed prescribed performance quantized control scheme
and asymptotic tracking analysis, respectively. Simulation results are
provided in Sections V and VI draws the conclusions.

Notations: Notations adopted in this note are: R≥0 denotes the set
of nonnegative real numbers, Ri represents the Euclidean space with
dimension i, andRodd � { p

q

∣∣p and q are positive odd integers}. The

symbol “ �′′ means “equal by definition”. Similarly to [10], we
define the notation �σ�τ � |σ|τ sign(σ),∀σ ∈ R. For compactness and
whenever unambiguous, some variable dependencies might be dropped,
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e.g. ε, μi, and ϑi can be used to denote ε(x1, x2), ϑi(x1, x2), and
μi(x1, x2), respectively.

II. PRELIMINARIES

Let us consider the following uncertain odd-rational-power nonlinear
system with input quantization:⎧⎪⎪⎨⎪⎪⎩

ẋi = φi(x̄i, t) + ψi(x̄i, t)x
pi
qi
i+1, i = 1, . . . , n− 1

ẋn = φn(x̄n, t) + ψn(x̄n, t) (Q(u))
pn
qn

y = x1

(1)

where y ∈ R is the system output; u ∈ R and Q(u) ∈ R are the
control input (to be designed) and the quantized control input, re-
spectively; x̄i = [x1, . . . , xi]

T ∈ Ri is an intermediate state, with
the full state being x̄n. We assume that pi

qi
∈ Rodd, i = 1, . . . , n,

are known odd-rational-powers. The system nonlinearities φi(·, ·) :
Ri ×R≥0 → R are locally Lipschitz in x̄i. The control-gain functions
ψi(·, ·) : Ri ×R≥0 → R are locally Lipschitz in x̄i and are either
strictly positive or strictly negative, and their signs are assumed to
be known. Without loss of generality, in the following, we assume
sign(ψi) = 1, i = 1, . . . , n. In line with [18]–[20], we assume that
there exist continuous and nonnegative functions φ̄i(·) : Ri → R≥0,
i = 1, . . . , n, such that |φ(x̄i, t)| ≤ φ̄i(x̄i), ∀ (x̄i, t) ∈ Ri ×R≥0.

Q(u) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

νk+ , if

⎧⎨⎩
νk
+

1+�+
< u < νk+, u̇ < 0, or,

νk+ < u <
νk
+

1−�+ , u̇ > 0,

νk+ (1 + �+) , if

⎧⎨⎩ νk+ < u ≤ νk
+

1−�+ , u̇ < 0, or,
νk
+

1−�+ < u ≤ (1+�+)νk+
1−�+ , u̇ > 0,

0, if

⎧⎪⎨⎪⎩
0 ≤ u <

ν+
min

1+νk
+

, u̇ > 0, or,

ν+
min

1+�+
≤ u ≤ ν+min, u̇ > 0,

and

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

νk−, if

⎧⎨⎩ νk− ≤ u <
νk−

1+�− , u̇ > 0, or,
νk−

1−�− ≤ u < νk−, u̇ < 0,

νk− (1 + �−) , if

⎧⎨⎩
νk−

1−�− ≤ u < νk−, u̇ > 0, or,
(1+�−)νk−

1−�− ≤ u <
νk−

1−�− , u̇ < 0,

0, if

⎧⎨⎩
ν−
min

1+�− < u ≤ 0, or,

ν−min ≤ u ≤ ν−
min

1+�− , u̇ < 0,

Q (u (t−)) , u̇ = 0

(2)

Assumption 1 (see[19]): The desired trajectory yr(·) is known and
bounded, and ẏr(·) is bounded but its bound is not necessarily known.

Remark 1: Assumption 1 implies that only the desired trajectory
(none of its derivatives) can be used for control design.

Remark 2: System (1) generalizes the classes of systems considered
in literature for PPC: more specifically, (1) reduces to the strict-feedback
classes of [17]–[20] when ri = 1, i = 1, . . . , n, while it reduces to the
high-order integer-power classes of [1]–[3] when qi = 1 and pi 
= 1,
i = 1, . . . , n.

Let us consider the asymmetric hysteresis quantizer (2) originally
proposed in [21] (see Remark 3 for details of this choice). As typical
in literature (cf. [22]), we denote such quantizer simply as Q(u), even
though the quantizer formally depends on both u and its derivative.
In (2), νk+ = �

1−k
+ ν+min and νk− = �

1−k
− ν−min, k = 1, 2, . . ., with �+ =

1−�+
1+�+

and �− = 1−�−
1+�− ; Q(u(t−)) is the latest status prior to Q(u(t)),

and ν+min and ν−min denote the size of the dead-zone for Q(u). The
constants �+, �− ∈ (0, 1) determine the quantization density, i.e., the
larger �+ and �−, the coarser the quantizer.

Remark 3: The interest in considering an asymmetric hysteresis
quantizer is that it generalizes the uniform quantizer [21], logarith-
mic quantizer [21], and symmetric hysteresis quantizer [22], while
its hysteresis property is of paramount importance in guaranteeing
the absence of chattering and Zeno behavior. These issues have been
thoroughly discussed in [17, Remark 8 and Lemma A.1] and are not
further discussed here due to space limitations.

In line with [21], let us decompose (2) as

Q(u) = ς(u)u+ d(u) (3)

where ς(u) = Q(u)
u

and d(u) = 0 when Q(u) 
= 0, and ς(u) = 1 and
d(u) = −u when Q(u) = 0.

Before presenting the proposed prescribed performance quantized
control, the following lemmas are useful to derive the main results.

Lemma 1 (see[21]): The control coefficient ς(u) and input quanti-
zation error d(u) in (3) are such that

ς
min

≤ ς(u) ≤ ς̄max, and |d(u)| ≤ d̄ (4)

where ς
min

= 1−max{�+, �−}, ς̄max = 1 +max{�+, �−} and d̄ =
max{ν+min, |ν−min|}.

Lemma 2 (see[10]): Suppose p
q
∈ Rodd, then for any x1 ∈ R and

x2 ∈ R, it holds that∣∣∣x p
q

1 − x
p
q

2

∣∣∣ ≤ 21−
1
q

∣∣∣�x1�p − �x2�p
∣∣∣ 1q . (5)

Lemma 3 (see[23]–[27]): The following inequality holds for any
η > 0 and for any � ∈ R:

0 ≤ |�| − �
2√

�2 + η2
< η. (6)

Lemma 4 (see[1]): For any x1, x2 ∈ R, any positive integers b1, b2
and any real-valued function δ(·, ·) with ε(x1, x2) > 0, it holds that

|x1|b1 |x2|b2 ≤ b1ε|x1|b1+b2
b1 + b2

+
b2ε

− b1
b2 |x2|b1+b2
b1 + b2

. (7)

Lemma 5: For any x1, x2 ∈ R and positive odd integers p and q,
there exist real-valued functions μ(·, ·) and ϑ(·, ·), such that

(x1 + x2)
p
q = (ϑ(x1, x2)x

p
1 + μ(x1, x2)x

p
2)

1
q (8)

where ϑ(x1, x2) ⊆ [1− ε̄,max{1 + ε̄, 2p−1}] with ε̄ =
∑p−1
k=1

k
p
ε

p
k

a constant that can be made to take value in (0,1) by se-
lecting some appropriately small positive constant ε, and where
μ(x1, x2) satisfies |μ(x1, x2)| ≤ ῡ with ῡ = max{1 + ω, 2p−1} and

ω =
∑p−1
k=1

p−k
p

(
p
k
)ε

−p
p−k positive constants that are independent of x1

and x2.
Proof: See appendix. �

III. ADAPTIVE PPC DESIGN

Let us begin the control design by defining the state errors [17]

e1(t) = x1(t)− yr(t) (9)

ei(t) = xi(t)− αi−1(t), i = 2, . . . , n (10)

whereαi−1 denotes a virtual control law whose design will be explained
later. Define the normalized error variables

ζi(t) =
ei(t)

κi(t)
(11)

where κi(t) = (κi,0 − κi,∞)exp(−ιit) + κi,∞, i = 1, . . . , n, is the
so-called prescribed performance function [28], where κi,0 > 0,
κi,∞ > 0, and ιi > 0 are design constants, and |ei(0)| < κi,0.

The goal is to design a control u for (1) such that the system output y
asymptotically tracks the reference signal yr , while having ei satisfying
the prescribed performance. Since existing literature [21] and [23] has
shown that asymptotic tracking can be realized for some classes of

Authorized licensed use limited to: TU Delft Library. Downloaded on February 21,2023 at 14:37:06 UTC from IEEE Xplore.  Restrictions apply. 
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dynamics in the presence of input quantization, we set an asymptotic
tracking goal for dynamics (1) in this article.

Hereafter is the proposed design for the virtual control laws and for
the actual control law. The motivation behind this design is explained
via the stability analysis in Section IV. Specifically, we devise the virtual
and actual control laws as follows:

αi = −ϑ̄− 1
pi

i

(
ki�i +

ci�iΞ̂i√
�2
i + σ2(t)

) qi
pi

, i = 1, . . . , n− 1

(12)

� α�i (ζi, Ξ̂i, t) (13)

u = −ς̄−1
maxϑ̄

− 1
pn

n

(
kn�n +

cn�nΞ̂n√
�2
n + σ2(t)

) qn
pn

(14)

� α�n(ζn, Ξ̂n, t) (15)

where �i =
ζi+ζ

3
i

(1−ζ2
i
)3

, ϑ̄i = max{1 + ε̄i, 2
pi−1} with ε̄i being an ar-

bitrary constant in (0,1), ki > 0, and ci > 0 are design constants. The
terms Ξ̂i in (12) and (14) are updated by the adaptation laws

˙̂
Ξi =

γi�
2
i√

�2
i + σ2(t)

� βn+i(ζi, t) ≥ 0, i = 1, . . . , n. (16)

with initial conditions Ξ̂0
i = Ξ̂i(0) ≥ 0, where γi > 0 is a design con-

stant, and σ(·) is a positive integrable function satisfying
∫ t
0
σ(τ)dτ ≤

σ̄ <∞ and |σ̇(t)| ≤ σ∗ for ∀t ≥ 0 with constants σ̄ > 0 and σ∗ > 0.
Remark 4: Common forms adopted in the literature for the positive

integrable function σ(·) include � exp(−λt) as in [23]–[26], and
1

�+t2ιt
as in [20] and [27], with design constants � > 0, λ > 0, and

ι > 0. The numerical simulations in these works typically select small
values for λ and ι, yielding a slow decay rate ofσ(·). This helps avoiding
numerical integration problems that might arise when σ(·) becomes
smaller and smaller.

IV. ASYMPTOTIC TRACKING ANALYSIS

The following theorem summarizes the main results of this article.
Theorem 1: Let Assumption 1 hold. Consider the closed-loop odd-

rational-power nonlinear system (1) with hysteresis quantizer (2), con-
trol laws (12)–(15), and adaptation law (16). Then, it holds that
1) the state errors ei(t), i = 1, . . . , n, are such that |ei(t)| < κi(t)

for all t ≥ 0;
2) the output tracking error e1(t) = y(t)− yr(t) satisfies e1(t) → 0

as t→ +∞;
3) all closed-loop signals remain bounded.

Proof: (Time dependence will be kept only for the functions κi and
yr , and will be otherwise omitted whenever unambiguous). It follows
from (9) to (11) that the states x1, . . . , xn can be rewritten as

x1 = ζ1κ1(t) + yr(t) � χ1(ζ1, t) (17)

xi = ζiκi(t) + αi−1 � χi(ζi−1, ζi, t), i = 2, . . . , n. (18)

Differentiating the normalized errors ζi in (11) with respect to time
and using (12)–(16) and the dynamics in (1) gives

ζ̇1 =
1

κ1(t)

[
φ1 (χ1, t) + ψ1(χ1, t)χ

p1
q1
2 − ẏr(t)− κ̇1(t)ζ1

]
� β1

(
ζ1, ζ2, Ξ̂1, t

)
(19)

ζ̇i =
1

κi(t)

[
φi (χ̄i, t) + ψi(χ̄i, t)χ

pi
qi
i+1 −

∂α�i−1

∂t
− ∂α�i−1

∂ζi−1

βi−1

−∂α
�
i−1

∂Ξ̂i

˙̂
Ξi − κ̇i(t)ζi

]
� βi

(
ζ1, . . . , ζi+1, Ξ̂1, . . . , Ξ̂i, t

)
, i = 2, . . . , n− 1 (20)

ζ̇n =
1

κn(t)

[
φn (χ̄n, t) + ψn(χ̄n, t) (Q(u))

pn
qn − ∂α�n−1

∂t

−∂α
�
n−1

∂ζn−1

βn−1 − ∂α�n−1

∂Ξ̂n

˙̂
Ξn − κ̇n(t)ζn

]
� βn

(
ζ1, . . . , ζn, Ξ̂1, . . . , Ξ̂n, t

)
(21)

where χ̄i � [χ1, . . . , χi]
T , i = 1, . . . , n. For compactness, let us de-

fine ξ = [ζ1, . . . , ζn, Ξ̂1, . . . , Ξ̂n]
T and let us rewrite (16) and (19)–

(21) in the form of

ξ̇ = β (ξ, t) =
[
β1

(
ζ̄2, Ξ̂1, t

)
, . . . , βi

(
ζ̄i, . . . ,

¯̂
Ξi

)
, . . .

βn

(
ζ̄n, . . . ,

¯̂
Ξn

)
, βn+1 (ζ1, t) , . . . , β2n (ζn, t)

]T
(22)

where ζ̄i = [ζ1, . . . , ζi]
T , ¯̂

Ξi = [Ξ̂1, . . . , Ξ̂i]
T , i = 2, . . . , n. De-

fine the open set Θξ = Θξ,1 × · · · ×Θξ,i × · · · ×Θξ,n ×Rn×1 with
Θξ,i = (−1, 1), i = 1, . . . , n. It is straightforward to verify thatξ(0) =
[ζ1(0), . . . , ζn(0), Ξ̂

0
1, . . . , Ξ̂

0
n]
T ⊆ Θξ due to |ei(0)| < κi,0. Note

that β(·, ·) : Θξ ×R+ → R2n×1 is piecewise continuous in t and
locally Lipschitz in Θξ; φi and ψi are piecewise continuous in t and
locally Lipschitz in x̄i; yr(·) and κi(·) are bounded and differentiable.
Then, it follows from [29, Th. 54] that there exists a unique maximal
solution ξ(·) of (22) on the time interval [0, τmax), where τmax < +∞
is chosen such that ξ(t) ∈ Θξ for all t ∈ [0, τmax). In what follows, we
first suppose τmax < +∞, and eventually we prove by a contradiction
that τmax must be extended to +∞.

Let us consider the barrier Lyapunov function candidates

Li = ζ2i

2 (1− ζ2i )
2 +

1

2γi
ci�iΞ̃

2
i , i = 1, . . . , n (23)

which are positive definite and continuously differentiable over Θξ,
where Ξ̃i = Ξi − Ξ̂i, �i > 0,Ξi are unknown constants whose specific
expressions are given after (30), and Ξ̂i is the estimate of Ξi. Consider
the following induction steps on the time interval [0, τmax).

Step 0: Note from (17) that α0 � yr(t), α̇0, and x1 are bounded on
[0, τmax) as a result of ζ1, κ1(t), yr(t), and ẏr(t) being bounded on
[0, τmax).

Step i : (i ∈ {1, . . . , n− 1}): Consider that at step i− 1, we have
shown x1(·), . . . , xi−1, αi−1, and α̇i−1(·) to be bounded on [0, τmax).
From (18), we further have that xi(·) is bounded on [0, τmax). Then, it
follows from (1), (10), (18), and (20) that the time derivative of Li is

L̇i = �i

κi(t)

[
φi(x̄i, t) + ψi(x̄i, t) (ei+1 + αi)

pi
qi − κ̇i(t)ζi

−α̇i−1]− 1

γi
ci�iΞ̃i

˙̂
Ξi, t ∈ [0, τmax) (24)

Applying Lemma 5 to x
pi
qi
i+1 gives

x
pi
qi
i+1 =

[
ϑi(ei+1, αi)α

pi
i + μi(ei+1, αi)e

pi
i+1

] 1
qi (25)

whereϑi(·, ·) andμi(·, ·) are some real-valued functions satisfying 1−
ε̄i ≤ ϑi(·, ·) ≤ max{1 + ε̄i, 2

pi−1} with ε̄i being an arbitrary constant
taking value in (0,1), and |μi(·, ·)| ≤ ῡi, with ῡi > 0 being a constant
which is independent of ei+1 and αi.

The following inequality results from applying Lemma 2 to (25):∣∣∣∣x pi
qi
i+1 − (ϑi(ei+1, αi)α

pi
i )

1
qi

∣∣∣∣ ≤ 2
1− 1

qi

∣∣∣μi(ei+1, αi)e
pi
i+1

∣∣∣ 1
qi
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≤ Ēi, t ∈ [0, τmax) (26)

where Ēi > 0 is an upper bound of Ei(ei+1, αi) � 2
1− 1

qi ·∣∣∣μi(ei+1, αi)e
pi
i+1

∣∣∣ 1
qi , which is bounded due to the boundedness of

μi(ei+1, αi), and ei+1(t) on [0, τmax). Hence, it follows that:

x
pi
qi
i+1 = (ϑi(ei+1, αi)α

pi
i )

1
qi + �iĒi, t ∈ [0, τmax) (27)

for some function �i ⊆ (−1, 1). Substituting the virtual control law
αi (12) and (27) into (24) yields

L̇i ≤ |Fi(t)| |�i| − kiHi(t)�
2
i −

ciψi(x̄i, t)�
2
i Ξ̂i

κi(t)
√
�2
i + σ2(t)

− 1

γi
ci�iΞ̃i

˙̂
Ξi, t ∈ [0, τmax) (28)

where |Fi(t)| � 1
κi(t)

[
∣∣φi(x̄i, t)∣∣+ ∣∣α̇i−1

∣∣+ ∣∣�iψi(x̄i, t)∣∣Ēi +∣∣κ̇i(t)ζi∣∣] and Hi(t) =
ψi(x̄i,t)
κi(t)

, i = 1, . . . , n− 1. Using the fact that
|ζi(t)| < 1 for all t ∈ [0, τmax), i = 1, . . . , n, and that yr(·), κi(·),
κ̇i(·), x1(·), . . . , xi(·), α̇i−1(·) are bounded on [0, τmax), we get from
the extreme value theorem that there exist unknown constants ψ̄i > 0,
ψ
i
> 0, F i > 0, F̄i > 0, Hi > 0, and H̄i > 0 such that

ψ
i
≤ |ψi(·, ·)| ≤ ψ̄i, F i ≤ Fi(·) ≤ F̄i, Hi ≤ Hi(·) ≤ H̄i (29)

on [0, τmax). Substituting (29) and adaptation law (16) into (28) gives

L̇i ≤ − kiHi�
2
i + F̄i |�i| − ciψi(x̄i, t)�

2
i Ξ̂i

κi(t)
√
�2
i + σ2(t)

+
ci�i�

2
i Ξ̂i√

�2
i + σ2(t)

− ci�i�
2
iΞi√

�2
i + σ2(t)

, t ∈ [0, τmax) (30)

Note from (16) that Ξ̂i(t) ≥ 0, ∀t ≥ 0. After defining �i =
ψ

i
κi,0

and

Ξi =
F̄i
ci�i

, and applying Lemma 3 to (30) results in

L̇i ≤ −kiHi�
2
i + F̄iσ(t), t ∈ [0, τmax). (31)

Integrating (31) over [0, t) leads to

Li(t) +
∫ t

0

kiHi�
2
i (s)ds ≤ Li(0) + F̄iσ̄ � δ̄i, t ∈ [0, τmax)

(32)
which, combined with (23), implies that

ζ2i

2 (1− ζ2i )
2 ≤ Li(t) ≤ δ̄i, and

ci�iΞ̃
2
i

2γi
≤ Li(t) ≤ δ̄i (33)

∀t ∈ [0, τmax). Solving (33) results in

|ζi| ≤ ζ̄i �

√
1−

√
8δ̄i + 1− 1

4δ̄i
< 1, t ∈ [0, τmax) (34)

∣∣Ξ̂i∣∣ ≤ Ξ̂∗
i � Ξi +

√
2γiδ̄i
ci�i

, t ∈ [0, τmax). (35)

Note that (34) implies the boundedness of �i, which together with
(35) ensures the boundedness of αi and xi+1 on [0, τmax) according
to (12) and (10), respectively. Then, it can be derived that the time
derivative of �i can be bounded by

|�̇i| ≤ 4ζ2i + 1

ki(t) [1− ζ2i ]
2

[
|φi(x̄i, t)|+ ψ̄iϑ

1
qi
i

∣∣∣α pi
qi
i

∣∣∣+ ψ̄i|�i|Ēi

+ |α̇i−1|+ |κ̇i(t)ζi|
]
, t ∈ [0, τmax). (36)

Invoking (12), (36), and the boundedness of �i, the time derivative
of virtual control law αi can be bounded by

|α̇i| ≤ qi
pi
ϑ

−1
pi
i

(
ki|�i|+ ciΞ̂i|�i|√

�2
i + σ2(t)

)ri [
ciΞ̂i|�̇i|

(�2
i + σ2)

1
2

+ki|�̇i|+ ciγi|�3
i |

�2
i + σ2

+
ciΞ̂i�

2
i |�̇i|

(�2
i + σ2)

3
2

+
ciΞ̂i�iσ|σ̇|
(�2

i + σ2)
3
2

]

for t ∈ [0, τmax) (37)

where ri =
qi−pi
pi

.
Step n: Similarly to Step i, we obtain the derivative of Ln as

L̇n =
�n

κn(t)

[
φn(x̄n, t) + ψn(x̄n, t)

(
ϑ

1
qn
n ς

pn
qn (u)u

pn
qn + �nĒn

)

−κ̇n(t)ζn − α̇n−1]− cn�nΞ̃n
˙̂
Ξn

γn
, t ∈ [0, τmax) (38)

where the function �n ⊆ (−1, 1), and Ēn = 21−
1
qn |μnd̄pn | 1

qn . Sub-
stituting actual control u as in (14) into (38) yields

L̇n ≤ |Fn(t)| |�n| − knHn(t)�
2
n − cnψn(x̄n, t)�

2
nΞ̂n

κn(t)
√
�2
n + σ2(t)

− 1

γn
cn�nΞ̃n

˙̂
Ξn, t ∈ [0, τmax) (39)

where |Fn(t)| � 1
κn(t)

[
∣∣φn(x̄n, t)∣∣+ ∣∣α̇n−1

∣∣+ ∣∣�nψn(x̄n, t)∣∣Ēn +∣∣κ̇n(t)ζn∣∣] andHn(t) =
ψn(x̄n,t)
κn(t)

. Similarly to the analysis after (28),

there exist unknown constants ψ̄n > 0, ψ
n
> 0, Fn > 0, F̄n > 0,

Hn > 0, and H̄n > 0 such that

ψ
n
≤ |ψn(·, ·)| ≤ ψ̄n, Fn ≤ Fn(·) ≤ F̄n, Hn ≤ Hn(·) ≤ H̄n

(40)

on [0, τmax). Substituting (40) and adaptation law (16) into
(39) and conducting the same steps as (31)–(35), it is possible
to obtain

|ζn| ≤ ζ̄n �

√
1−

√
8δ̄n + 1− 1

4δ̄n
< 1, t ∈ [0, τmax) (41)

∣∣Ξ̂n∣∣ ≤ Ξ̂∗
n � Ξn +

√
2γnδ̄n
cn�n

, t ∈ [0, τmax) (42)

where δ̄n = Ln(0) + F̄nσ̄ and Ξn = F̄n
cn�n

with �n =
ψ

n
κn,0

.

Consequently, one can obtain that ζn ∈ [−ζ̄n, ζ̄n] ⊆ (−1, 1). Fol-
lowing reasonings similar to (36)–(37), the boundedness of u, and u̇
can be achieved on the time interval [0, τmax). Therefore, all closed-
loop signals, including states xi in (18), i = 1, . . . , n, intermediate
control laws αi and their derivatives α̇i, i = 1, . . . , n− 1, and actual
control u are bounded for all t ∈ [0, τmax). Moreover, from the above
analysis, one can conclude that there exists a compact set Θ+

ξ =

[−ζ̄1, ζ̄1]× · · · × [−ζ̄n, ζ̄n]×Rn×1 ⊂ Θξ such that the maximal so-
lution of (22) satisfies ξ(t) ∈ Θ+

ζ for all t ∈ [0, τmax). This contradicts
the argument of [29, pp. 481 Proposition C. 3.6] (i.e., there exists
a time instant t� ∈ [0, τmax) such that ξ(t�) /∈ Θ+

ξ ), which implies
that τmax = +∞. Therefore, all closed-loop signals are bounded and
ξ(t) ∈ Θ+

ξ ∪Θξ for all t ≥ 0, and |ei(t)| < κi(t), i = 1, . . . , n, holds
for all t ≥ 0. In addition, it can be concluded from (32) and (37)
that

∫ t
0
k1H1�

2
1(s)ds ≤ δ̄1 holds and |�̇1| is bounded, respectively.

This implies that limt→+∞�1(t) = 0 according to Barbalat lemma
[24], which eventually implies limt→+∞e1(t) = 0. This completes the
proof. �
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Fig. 1. Numerical Example: (a) Evolution of y, yr , and e1; (b) Evolution of the actual control signal u and the quantized control signal Q(u);
(c) Evolution of ̂Ξ1 and ̂Ξ2.

Fig. 2. Practical Example: (a) Evolution of tracking error e1 under two schemes; (b) Evolution of the actual control signal u and the quantized
control signal Q(u); (c) Evolution of adaptation parameters ̂Ξ1, ̂Ξ2, and ̂Ξ3; (d) Evolution of tracking error e1 under four different sets of initial
conditions.

Remark 5: Barrier Lyapunov functions have been used in the litera-
ture [30]–[34] for constraints satisfaction, whereas the barrier Lyapunov
function (23) in our design serves to transform the unknown system
nonlinearities in (1) to some unknown but bounded terms [cf. (29)
and (40)]. Then, these terms are compensated by adaptation laws [cf.
(30)-(31)] without imposing growth conditions on system nonlinearities
(such as [4, Assumption 2], [5, Assumption 2], [6, Assumption 2], [7,
Assumption 2], [8, Assumption 1], [9, Assumption 1], [10, Assumption
1], [11, Assumption 1], [14, Assumption 3], and [15, Assumptions 1
and 3]) and without universal approximators.

Remark 6: The main innovation of Lemma 5 is to allow han-
dling the control terms in a linear-like manner [cf. (27) and (38)].
With this tool, Theorem 1 shows that prescribed performance
asymptotic tracking can be achieved for the challenging class of
dynamics (1).

V. SIMULATIONS

A. Numerical Example

To illustrate the validity of the proposed control method, consider
the following dynamics:⎧⎪⎨⎪⎩

ẋ1 = 2.5x21 cos(x1) + (1.5 + sin(x1))x
5
3
2

ẋ2 = 1.25 sin(x1x2) + (2.5− cos(x1x2))Q(u)
y = x1

(43)

with desired trajectory yr(t) = sin(t) + sin(0.5t) and initial condi-
tions [x1(0), x2(0)]

T = [1.25, 0.25]T . We select the prescribed per-
formance functions κi(t) = (4− 0.35) exp(−t) + 0.35, i = 1, 2, the
quantizer parameters v+min = 0.025, v−min = −0.035, �+ = 0.2 and
�− = 0.25, and the design parameters k1 = 1.5, k2 = 2.5, c1 = 3,
c2 = 3.5, γ1 = 1.75, γ2 = 1.5, ε̄1 = 0.275, and ε̄2 = 0.75. The initial
conditions of adaptive parameters are set as Ξ̂1(0) = Ξ̂2(0) = 0. The

TABLE I
MACA FOR THREE DIFFERENT SETS OF INITIAL CONDITIONS

positive function σ(·) is chosen as σ(t) = 1
0.15+2t4

. The simulation
results are shown in Fig. 1. Fig. 1(a) reveals that the system output
y tracks the desired trajectory yr asymptotically, while ensuring that
output tracking error e1 evolves within the prescribed performance
interval (−κ1(t), κ1(t)) all the time. Fig. 1(b) depicts the evolution of
the actual control signal u and of the quantized controlQ(u). Notably,
asymptotic tracking is achieved in spite of quantized information. Com-
pared with bounded tracking for similar dynamics, e.g., [35], the output
of the quantizer of Fig. 1(b) seems to require higher bandwidth. This
is expected since asymptotic tracking results for other input-quantized
dynamics, e.g., strict-feedback dynamics [21] and [23] have shown
that asymptotic tracking may require faster inputs. Fig. 1(c) shows the
evolution of adaptation parameters Ξ̂1 and Ξ̂2. To further investigate
the effect of the quantizer, the mean absolute control actions (MACA)
1
T

∫ T
0

|u| and 1
T

∫ T
0

|Q(u)| for three different sets of initial conditions
are given in Table I, where uM and Q(u)M, respectively, represent the
MACA of u and Q(u) (the latter resulting slightly smaller than the
former).

B. Practical Example

A poppet valve is one of the most common components in hydraulic
systems [13]. It is typically used to control the timing and quantity of
gas or vapor flow into an engine, and its behavior can be modeled by the
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TABLE II
MACA FOR FOUR DIFFERENT SETS OF INITIAL CONDITIONS

annular leakage equation. According to [13, pp. 54], the input force F
drives the poppet to move for regulating the volumetric flow rateQvol =
λc3 of oil from the high-pressure to the low-pressure chamber, where
λ = πr

6μL
ΔP is a lumped coefficient, c = αy is the effective clearance

of the annular passage with α a constant and y the displacement of
poppet, and where r, μ, and L are constants independent of the axial
motion of poppet, and ΔP is the pressure drop between two chambers.
The dynamics of oil volume V in upper chamber is given by

V̇ (t) = Qvol −R(t) (44)

where R is the lumped reduction rate of oil attributed to consumption
and other leakages. The equation of motion of the poppet is

mÿ(t) = −kẏ(t) + T (t) + F (t) (45)

wherem is the mass of the poppet, k is the viscous friction coefficient,
T is the lumped elastic force, and F is the input force. At this point, let
us introduce the following notation substitutions:

x1 = V, x2 = y, x3 = ẏ, u = F. (46)

Then, the dynamics of systems (46) becomes

ẋ1 = φ1 + ψ1x
3
2, ẋ2 = x3, ẋ3 = φ3 + ψ3Q(u) (47)

where ψ1 = λα3, φ1 = −R, ψ3 = 1
m

, and φ3 = 1
m
(T − kx3). We

take the desired trajectory yr(t) = sin(t) + sin(0.5t) and initial con-
ditions [x1(0), x2(0), x3(0)]

T = [2.5, 1.5,−0.75]T . We take m =
7.5kg, k = 2.5N/m, R = 5L/min, ΔP = 10N/m2, T = 5N, μ =
2.5, L = 5, r = 1.25, α = 4.5, and the prescribed performance func-
tion defined by κi(t) = (6− 0.25) exp(−t) + 0.25, i = 1, 2, 3, the
quantizer parameters v+min = 0.25, v−min = −0.05,�+ = 0.2 and�− =
0.25, and the design parameters k1 = 5, k2 = 3.5, k3 = 15, c1 = 2.5,
c2 = 5, c3 = 10, γ1 = 1.25, γ2 = 0.75, γ3 = 1.5, ε̄1 = 0.5, ε̄2 =
0.25, and ε̄3 = 0.75. The initial conditions of adaptive parameters are
set as Ξ̂1(0) = Ξ̂2(0) = Ξ̂3(0) = 0. The integral function σ(·) is cho-
sen asσ(t) = 1

0.25+t4
. The simulation results are shown in Fig. 2, where

the standard PPC approach as in [36] is taken as a means of comparison.
Fig. 2(a) shows that the proposed approach exhibits asymptotic tracking
differently from the standard PPC approach. Fig. 2(b) and (c) shows the
profiles of the control signal u and the quantized control signal Q(u),
and adaptation parameters Ξ̂1, Ξ̂2, and Ξ̂3, respectively. Fig. 2(d) shows
that the proposed method achieves asymptotic tracking for different
initial conditions, despite quantized information and even with reduced
control effort in terms of MACA (cf. Table II).

VI. CONCLUSION

This article has addressed asymptotic tracking for uncertain high-
order odd-rational-power nonlinear systems without imposing growth
restrictions on the nonlinearities. The proposed result extends the class
of dynamics for which asymptotic tracking is possible with minimum
knowledge of the system dynamics. In line with [37], an interesting
open problem deserving future investigation is to further reduce the
knowledge of the system dynamics by considering completely unknown
control directions.

APPENDIX

Proof of Lemma 5: The aim is to first find an upper and lower bound
in the form(

ϑ(x1, x2)x
p
1 + μ(x1, x2)x

p
2

) 1
q

≤ (x1 + x2)
p
q ≤ (

ϑ̄(x1, x2)x
p
1 + μ̄(x1, x2)x

p
2

) 1
q (48)

for some appropriately bounded functions μ(·, ·), ϑ(·, ·), μ̄(·, ·), and
ϑ̄(·, ·). Using the binomial theorem [38, Sec. 3.1, page 10], the following
inequalities can be derived for ∀x1, x2 ∈ R:

(x1 + x2)
p
q ≤

(
xp1 + xp2 +

p−1∑
k=1

(
p
k

)
|x1|k|xp−k2 |

) 1
q

≤
(
xp1 + xp2 +

p−1∑
k=1

(
k

p
ε

p
k |x1|p + p− k

p

(
p
k

)
ε

−p
p−k |x2|p

)) 1
q

≤
(
xp1 + xp2 +

p−1∑
k=1

εk|x1|p +
p−1∑
k=1

ωk|x2|p
) 1

q

≤ ([1 + ε̄ · sign(x1)]xp1 + [1 + ω · sign(x2)]xp2)
1
q (49)

where the second inequality relies on Lemma 4, and where εk = k
p
ε

p
k ,

ωk = p−k
p

(
p
k
)ε

−p
p−k , ω =

∑p−1
k=1 ωk, and ε̄ =

∑p−1
k=1 εk can be made

to satisfy 0 < ε̄ < 1 by appropriately selecting the small positive
constant ε.

A lower bound will be sought along the following three situations.
Situation 1: When x1 < 0 and x1 + x2 ≥ 0, we immediately have

(x1 + x2)
p
q ≥ 0 ≥ x

p
q

1 as p is a positive odd integer.
Situation 2: When x1 < 0 and x1 + x2 < 0, it follows that:

(xp1 + xp2)
1
q =

2
1
q

⎡⎢⎣
p−1
2∑

m=1

(
p

2m− 1

) <0︷ ︸︸ ︷(
x1 + x2

2

)2m−1

>0︷ ︸︸ ︷(
x1 − x2

2

)p−2m+1

︸ ︷︷ ︸
<0

+

(
x1 + x2

2

)p ⎤⎥⎦
1
q

≤ 2
1−p
q (x1 + x2)

p
q (50)

which indicates that (x1 + x2)
p
q ≥ (2p−1xp1 + 2p−1xp2)

1
q .

Situation 3: When x1 ≥ 0 and x2 ∈ R, then following
similar derivations to (48), it holds that (x1 − x2)

p
q =

[x1 + (−x2)]
p
q ≤ ([1 + ε̄ · sign(x1)]xp1 − [1− ω · sign(x2)]xp2])

1
q .

Besides, note that (x1 + x2)
p + (x1 − x2)

p = 2[xp1 +∑ p−1
2

k=1(
p

2k − 1
)

≥0︷ ︸︸ ︷
x2k−1
1

≥0︷ ︸︸ ︷
xp−2k+1
2 ] ≥ 2x21. Thus, we have (x1 + x2)

p
q ≥

([1− ε̄ · sign(x1)]xp1 + [1 + ω · sign(x2)]xp2)
1
q .

Having derived all the upper and lower bounds in the form of (48),
we conclude that the equality [xp1ϑ(x1, x2) + xp2μ(x1, x2)]

1
q = (x1 +

x2)
p
q holds for anyx1,x2, for some functionϑ(·, ·) ⊆ [1− ε̄,max{1 +

ε̄, 2p−1}] with ε̄ being a constant that can be made to take value in (0,1)
by selecting an appropriately small constant ε, and |μ(·, ·)| ≤ ῡ with
ῡ = max{1 + ω, 2p−1} a positive constant that is independent of x1
and x2. This completes the proof. �
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