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SUMMARY

Tidal inlet systems, which consist of back–barrier basins connected to the open sea by
one or multiple inlets, are found at many places along sandy coasts. They are valuable
for ecology (breeding and feeding areas), economy (gas–mining and sand–mining) and
recreation, and are important for coastal safety. But they are also sensitive to external
forcings like prevailing currents, tides, winds, sea level rise and human interferences.
Therefore, it is important to investigate the morphodynamic behaviour of these tidal in-
let systems, especially the formation of the channels and shoals. In this thesis, idealized
models will be developed to study so–called double–inlet systems, which are tidal basins
with two inlets connecting to the open sea.

To assess the morphodynamic behaviour of double–inlet systems, a one–dimensional
idealized model is developed. In this model, the water motion is governed by cross–
sectionally averaged shallow water equations, forced by tides prescribed at the seaward
boundaries. Sediment transport is governed by a width–averaged and depth–integrated
advection diffusion equation, with sink and source terms. The bed evolution is described
by the cross–sectionally averaged equation for the concentration of mass in a sediment
layer. A system is said to be in morphodynamic equilibrium if the bed does not evolve
on a long (morphodynamic) timescale anymore.

The model is first analysed without the presence of externally prescribed overtides,
so the water motion is only forced by the M2 tidal constituents. To systematically analyse
the sensitivity of the resulting morphodynamic equilibria to the characteristics of the M2

forcing, a continuation approach is employed to obtain these equilibria in the parameter
space spanned by the relative phase and amplitude of the M2 tidal constituent. In this
parameter space, it was found that there are regions where no morphodynamic equi-
librium, one equilibrium or multiple equilibria can exist. When there is no morphody-
namic equilibrium, the double–inlet system is reduced to two single–inlet systems. For
a certain parameter setting, four morphodynamic equilibria are found. The water depth
of these four equilibria are further analysed, as well as the sediment transport contribu-
tions.

The influence of the depth variations, the presence of externally generated overtides
and width variations of this model are then further analysed for the stable morphody-
namic equilibria. The model finally allows a qualitative comparison with observations
in the Marsdiep–Vlie inlet system at the Dutch Wadden Sea. Using characteristic values
of this system, one stable equilibria is obtained, suggesting that this double–inlet system
can be stable on the long morphodynamic timescales.

Next, the morphodynamic model is extended to include dynamics in the lateral di-
rection. The model consists of depth–averaged shallow water equations neglecting the
effects of earth rotation, a depth–integrated concentration equation and a tidally–ave-
raged bottom evolution equation. Since the equations are still averaged over depth, a
2DH model is obtained. With this idealized model the initial formation of channel–shoal

xi



xii SUMMARY

patterns in a double–inlet system with a rectangular geometry was systematically inves-
tigated. Utilizing infinitesimally small perturbations with a lateral structure, the initial
formation of channels and shoals can be expected if the laterally uniform morphody-
namic equilibria are linearly unstable with respect to these perturbations.

When the water motion is only forced by an M2 tidal constituent, restricting only at-
tention to that part of the parameter space spanned by the relative phase and amplitudes
of M2 tidal forcing where laterally uniform morphodynamic equilibria exist, it is found
that these equilibria can be either stable against two–dimensional perturbations, or lin-
early unstable. When linearly unstable, the instabilities can be either due to diffusive
mechanisms, or due to advective mechanisms.

When the morphodynamic equilibria become unstable due to diffusive processes,
the classical diffusive mechanism has a destabilizing effect, while the topographically
induced diffusive mechanism has a stabilizing effect. The associated eigenvalues are all
real, implying an exponential growth/decay in time. When the advective mechanism
results in linear instabilities, the eigenvalues are complex, implying that bedforms do
not only grow/decay in time, but also migrate.

When external overtides and a residual discharge are included, the laterally uniform
morphodynamic equilibria can be unstable due to the convergences and divergences of
both (interally and externally) advective and diffusive transport.

Finally, we study channels and shoals in double–inlet systems, using a scaled depth–
averaged model. This model consists of scaled shallow water motion equations, a scaled
depth–integrated concentration equation and a scaled bottom evolution equation. By
focusing on a short rectangular tidal basin, laterally uniform morphodynamic equilib-
ria can be found. These equilibria are either linearly stable or linearly unstable due to
diffusive processes.

When varying one or more parameters, such as the friction parameter and the width
of the system, bifurcations can be found where the stabilities of morphodynamic equi-
libria change. Using associated eigenfunctions as a load vector, arclength method allows
to switch branches. At different branches, morphodynamic equilibria are characterized
by lateral variations with different mode numbers. When default parameters are used,
the resulting bifurcation diagrams reveal that multiple morphodynamic equilibria exist.



SAMENVATTING

Barrièrekusten en de bijbehorende zeegat systemen komen op veel plaatsen langs zan-
dige kusten voor. Ze bestaan uit getijdebekkens die met de open zee verbonden zijn
door één of meerdere zeegaten. Deze kustgebieden zijn erg waardevol voor de ecologie
(broed- en voedselgebieden), economie (gaswinning en zandwinning) en recreatie en
zijn belangrijk voor de kustveiligheid. Deze systemen en hun stabilitiet zijn erg gevoelig
voor (veranderingen in) externe krachten zoals stromingen, getijden, winden, zeespie-
gelstijging en menselijk ingrijpen. Daarom is het belangrijk om het morfodynamisch
gedrag van deze zeegat systemen te onderzoeken, met name de vorming van de geul
en plaatsystemen. In dit proefschrift zullen geïdealiseerde modellen worden ontwikkeld
voor het bestuderen van zogenaamde dubbele zeegat systemen, waarbij de getijdebek-
kens met twee zeegaten zijn verbonden met de open zee.

Om beter inzicht te krijgen in het morfodynamisch gedrag van dubbel zeegat syste-
men, is eerst een één–dimensionaal geïdealiseerd model ontwikkeld. In dit model wordt
de waterbeweging bepaald door doorsnee gemiddelde vergelijkingen voor ondiep wa-
ter, geforceerd door getijden voorgeschreven aan de zeewaartse randen. Sedimenttrans-
port wordt beschreven door een breedte-gemiddelde en diepte-geïntegreerde advectie-
diffusievergelijking, die bron- en puttermen voor sediment bevat. De bodem evolutie
wordt beschreven door de doorsnee gemiddelde vergelijking voor behoud van massa in
de bodem. Een systeem is in morfodynamisch evenwicht als de bodem niet meer veran-
derd op de lange (morfodynamische) tijdschaal.

Het model wordt eerst geanalyseerd als de waterbeweging alleen geforceerd wordt
door het M2 getij. De morfodynamische evenwichten worden verkregen door gebruik te
maken van een continueringsmethode in de parameterruimte die wordt opgespannen
door de relatieve fase en amplitude van de voorgeschreven M2 forcering. Uit deze ana-
lyse volgt dat er in deze parameterruimte gebieden zijn waar geen morphodynamisch
evenwicht is, gebieden waar één zo’n evenwicht bestaat en gebieden waar meervou-
dige evenwichten bestaan. Als er geen morfodynamisch evenwicht bestaat, reduceert
het dubbele zeegat systeem tot een systeem dat bestaat uit twee enkele zeegat syste-
men. Voor bepaalde parameterinstellingen worden vier verschillende morfodynamische
evenwichten gevonden. De bodems van deze vier evenwichten en het bijbehorden sedi-
ment transport worden verder geanalyseerd.

De invloed van de voorgeschreven dieptes aan de zeewaartse randen, de aanwezig-
heid van extern voorgeschreven hogere getijcomponenten en geometrische breedtevari-
aties wordt vervolgens verder geanalyseerd door specifiek naar stabiele morphodynami-
sche evenwichten te kijken. De modelresultaten worden tenslotte kwalitatief vergeleken
met waarnemingen van het Marsdiep–Vlie zeegat systeem (Nederlandse Waddenzee).
Gebruikmakend van waarden representatief voor dit systeem wordt één stabiel morfo-
dynamisch evenwicht gevonden. Dit suggereert dat dit dubbele zeegat systeem stabiel
kan zijn op de lange morfodynamische tijdschaal.
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xiv SAMENVATTING

Vervolgens wordt het morfodynamische model uitgebreid door laterale dynamica
toe te voegen. Dit betekent dat nu de diepte-gemiddelde ondiepwatervergelijkingen
worden opgelost om de waterbeweging te verkrijgen. Hierbij worden effecten van aard-
rotatie verwaarloosd. De andere vergelijkingen zijn een diepte-geïntegreerde concen-
tratievergelijking voor het modelleren van de concentratie van het zwevend sediment
en een getij-gemiddelde bodem-evolutie vergelijking voor het berekenen van bodem-
veranderingen. Met dit geïdealiseerde model wordt de initiële vorming van geulen en
platen in een dubbel zeegat systeem in een rechthoekige geometrie systematisch on-
derzocht door het temporele gedrag van oneindig kleine verstoringen met een laterale
structuur te bestuderen: als de amplituden van (sommigen van de) kleine verstoringen
gaan groeien in de tijd, ofwel als de onderliggende lateraal uniforme bodem lineair in-
stabiel is ten opzichte van deze verstoringen, zien we de eerste vorming van geulen en
platen. We beperken ons bij deze analyse tot dat deel van de parameter ruimte opge-
spannen door de relatieve fase en amplitude van het M2 getij waar morfodynamische
evenwichten bestaan die niet variëeren in de laterale richting.

Wanneer de waterbeweging alleen wordt geforceerd door een M2 getij kunnen de
lateraal uniforme morfodynamische evenwichten lineair stabiel of instabiel zijn. Wan-
neer de evenwichten lineair instabiel zijn, kunnen deze instabiliteiten het gevolg zijn
van diffusieve of advectieve mechanismen. Wanneer de morfodynamische evenwichten
instabiel worden ten gevolge van diffusieve processen, dan blijkt dat het klassieke diffu-
siemechanisme destabiliserend werkt, terwijl het topografisch geïnduceerd diffusieme-
chanisme een stabiliserend effect heeft. De bijbehorende eigenwaarden zijn allemaal
reëel, wat een exponentiële groei/demping in de tijd impliceert. Wanneer advectieve
processen resulteren in lineaire instabiliteiten zijn de eigenwaarden complex, wat impli-
ceert dat de bodemvormen niet alleen groeien of dempen in de tijd, maar ook migreren.
Ook wanneer hogere getijcomponenten of een netto watertransport wordt voorgeschre-
ven, wordt de lateraal uniforme morfodynamische evenwichtsbodem lineair instabiel
ten gevolge van de convergenties en divergenties van zowel (intern als extern) advectief
en diffusief transport.

Ten slotte bestuderen we de eindige amplitude oplossingen in morfodynamisch even-
wicht van geul-plaat patronen in dubbele zeegat systemen. De vergelijkingen bestaan
weer uit de diepte-gemiddelde ondiep-water vergelijking, de concentratie vergelijking
en de bodem evolutie vergelijking. We focussen op korte rechthoekig dubbel zeegat sy-
stem, waarbij het lateraal uniforme morfodynamisch evenwicht lineair instabiel wordt
door diffusieve mechanismen,

Door één of meerdere parameters (zoals de bodemwrijvings parameter of de breedte)
langzaam te varieren, kunnen we de evenwichten volgen met behulp van een continue-
ringsmethode. Met deze methode kunnen we bifurcaties detecteren waarbij het aantal
morfodynamische equilibria kan veranderen: dit betekent dat er verschillende takken
van oplossingen kunnen bestaan, waarop de morfodynamische evenwichten worden
gekarakteriseerd door hun lineaire stabiliteit en de patronen door de bijbehorende la-
terale mode getallen.



1
INTRODUCTION

In this thesis, the morphodynamic behaviour of double–inlet systems is investigated by de-
veloping and solving a depth–averaged morphodynamic model and analysing the model
results. As a first step, the existence of morphodynamic equilibria and their sensitivity
to parameter variations is studied. The multiplicity and bifurcation structure of these
double–inlet systems are analysed by focussing on tidal forcing variations. Whenever pos-
sible, the model results are compared to field observations. The second main objective is to
determine the key mechanisms that generate the observed channel–shoal patterns in these
inlet systems. To understand the initial formation of such channels and shoals, a linear
stability with respect to two–dimensional perturbations of laterally uniform morphody-
namic equilibria in a rectangular basin is analysed.

In the first section of this chapter, the characteristic features of tidal inlet systems connected
to an open sea by one or multiple inlets are presented. In section 1.2 a closer look is taken
into the Marsdiep–Vlie inlet system (Dutch part of the Wadden Sea), which is a typical
example of a double–inlet system. In section 1.3, different types of morphodynamic models
are discussed. Results of previous studies are highlighted in Section 1.4, while the research
questions are formulated in Section 1.5. In Section 1.6 the methodology is presented, and
the following chapters are outlined in the last section.

1
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2 1. INTRODUCTION

1.1. TIDAL INLET SYSTEMS

Tidal inlet systems, defined as semi–enclosed basins with one or more tidal inlets con-
necting back–barrier basins to the open sea, are found along many sandy coasts around
the world and account for some 12 percent of the world’s coastline (Glaeser [2]). Exam-
ples are the Venice Lagoon in Italy (Seminara et al. [3], Amos et al. [4]), the Wadden Sea in
North–Western Europe (Oost and De Boer [5], Oost et al. [6], Roos et al. [7]), the Georgia
Bight barrier system in the United States (Hayes [8]) and the Jiaozhou Bay in China (Gao
et al. [9], Yang et al. [10]).

An idealized tidal inlet system, connected to the open sea by a single inlet, is shown
in Fig. 1.1. It consists of three morphodynamically active elements—the tidal inlet con-
necting the back–barrier basin to the open sea, the ebb tidal delta on the seaward side of
the tidal inlet and the back–barrier basin at the landward side (de Swart and Zimmerman
[1]).

Figure 1.1: A sketch of an idealized tidal basin by de Swart and Zimmerman [1]. It shows an idealized basin
consisting of a back–barrier basin separated by barrier islands from the open sea and by tidal watersheds from
other basins, a tidal inlet connecting the tidal basin to the open sea, an ebb tidal delta on the seaward side of
the tidal inlet. In the tidal basin, a flood tidal delta is usually found, and in the intertidal zone of the tidal basin
tidal flats and salt marshes may be found.
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Ebb tidal deltas are shallow sandy features at the seaward side of tidal inlets, which
are formed by the interaction between the ebb tidal currents and the incoming waves
(Hayes [11], Lenstra et al. [12]). The evolution of many ebb tidal deltas is cyclic, demon-
strating a rotation of channels and formation of sandy shoals that migrate and attach to
the downdrift coastal area (Sha [13], FitzGerald [14], FitzGerald et al. [15], Ridderinkhof
et al. [16]). Ebb tidal deltas often serve as a sediment reservoir for the back–barrier
basin at the landward side of tidal inlets. Apart from that, they also act as a filter for
offshore incident wave energy: waves propagate and dissipate their energy by means of
shear stresses related to bottom friction and wave breaking on ebb tidal deltas, which
thus protects the coasts and back–barrier basins (FitzGerald [17], WestHuysen [18], Elias
and Hansen [19]). Wave energy dissipation strongly depends on the relative wave height
(wave height divided by water depth) and waves can refract over the shoals. It is therefore
expected that the changes of channels and shoals influence the wave energy patterns not
only on ebb tidal deltas but also in tidal inlets. Furthermore, waves can drive flows and
are able to entrain bottom materials as suspended sediment which can be transported
by currents. Therefore, waves are an important element for the sediment transport near
tidal inlets (Ridderinkhof et al. [16], Nahon et al. [20]).

The tidal inlets are the major channels transporting large amounts of water and sed-
iment from the open sea to the tidal basin and back. Their hydrodynamics and mor-
phodynamics are dominated by tides and modified by the incoming waves. Many tidal
inlets are considered to be shielded from waves, for the major dissipation of wave energy
usually occurs at the seaward sides of the inlet, especially at the ebb tidal deltas (Hayes
[21]).

The back–barrier basin is, apart from the inlets connecting it to the open sea, ei-
ther completely encircled by land or by land and tidal watersheds. Tidal watersheds are
locations where the exchange of water and/or sediment between various subbasins is
minimal. If there is no or little transport at the watersheds, the basins on either side
of the watersheds can be studied separately. If there is a strong water and/or sediment
exchange between adjacent basins (Duran-Matute et al. [22], Sassi et al. [23]), the inter-
actions between these basins have to be taken into account, i.e., the basins on either side
of the tidal watersheds have to be regarded as integral parts of one system.

Similar to the water motion in tidal inlets, the hydrodynamics of back–barrier basins
is usually dominated by tides. In case of microtidal conditions flood deltas are observed
in the basins (Hayes [21]), while for mesotidal conditions with fractal characteristic chan-
nel networks are found, in which the depth generally decreases from the sea towards the
land (Oost and De Boer [5], Hayes [21]). In the case of macrotidal conditions, which
are mainly found in estuaries (Dalrymple and Rhodes [24]), the water motion is charac-
terised by high current speeds and migrating large scale bedforms are often observed. In
the intertidal zone of the back–barrier basin tidal flats and salt marshes can be found.

Tidal inlet systems are important in many respects. These inlet systems are very sig-
nificant for the ecology, for they provide a habitat for many aquatic and terrestrial species
and other ecosystem services, resulting in a high biodiversity. They are also important
for the local economy because activities such as gas-mining, sand-mining and recreation
are common in these regions. Furthermore, tidal inlet systems play a very significant role
in coastal safety, since they strongly influence the sediment budget of the coast which
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could strengthen or undermine nearby beaches and barrier island shorelines (Glaeser
[2], Mulhern et al. [25]).

Field measurements and observations indicate that these tidal inlet systems are high-
ly sensitive to changes in external forcings. The changes in tidal forcings, sea level,
extreme weather conditions, and human interferences like land reclamation and inlet
deepening can affect the morphology of a tidal inlet system in a significant way (McBride
et al. [26], Van der Spek [27]).

Motivated by their ecological and economical importance and their sensitivity to ex-
ternal forcing conditions, a proper understanding and management of these tidal inlet
systems is needed. In this thesis, morphodynamic models will be developed and anal-
ysed. These models are important tools for investigating the impacts of anthropogenic
interventions on the morphodynamic evolution, as well as the natural development in
these tidal basins. Among tidal inlet systems, the so–called double–inlet systems, which
consist of a back–barrier basin with two tidal inlets connected to the open sea, are the
simplest multiple–inlet systems and are the focus of this thesis. A typical example of a
double–inlet system is the Marsdiep–Vlie system, which will be briefly discussed in the
next section.

1.2. MARSDIEP–VLIE INLET SYSTEM
The Wadden Sea, which stretches along the Dutch, German and Danish coast in the
North–West of Europe, covers an area of approximately 8000 km2. It consists of a series

Figure 1.2: The western part of the Dutch Wadden Sea (a figure adopted from Buijsman and Ridderinkhof
[28]). The Marsdiep and Vlie basins are shaded with light–grey and darker–grey, respectively. The town Den
Helder is indicated by DH, while the Lake IJssel sluices at Den Oever and Kornwerderzand by DO and KWZ.
The back–barrier islands of Vlieland, Terschelling, and Ameland are indicated by VL, TS, and AL, respectively.
The connections between the Marsdiep and Vlie tidal basins are marked by the grey dotted lines.
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of tidal back–barrier basins, separated from the North Sea by a series of barrier islands,
and connected to the North Sea by many tidal inlets (Oost et al. [6]). Since the Wadden
Sea is one of the major intertidal areas on earth and has a unique biodiversity, it is listed
as a World Heritage site by UNESCO in 2009 (the Danish part was added in 2014).

The Marsdiep–Vlie inlet system, consisting of the Marsdiep basin and the Vlie basin,
is a double inlet system in the Wadden Sea. The Marsdiep basin (see Fig. 1.2), located in
the most western part of the Wadden Sea, has a length of approximately 50 km and an
area of around 680 km2 (Buijsman and Ridderinkhof [28, 29, 30]). The Marsdiep basin
borders to the northeast on the Vlie basin, and to the northwest on the Eijerlandse Gat
basin. To the north the Marsdiep inlet is bounded by the island of Texel, to the south the
sea dike of the mainland town of Den Helder. To the west seaward of the Marsdiep inlet,
an ebb–tidal delta is observed, consisting of the subtidal sand shoal Noorderhaaks that
shields the Marsdiep inlet from waves coming from the (north)west. The main chan-
nel of the Marsdiep inlet bifurcates in two channels, the northern channel called Tex-
elstroom and the southern channel the Malzwin. The seafloor of the Marsdiep basin
consists of medium to fine sized sands and features large bedforms with wavelengths of
100–200 m and heights of several meters.

The currents in the Marsdiep inlet are primarily governed by the semi–diurnal tides.
These tides co–oscillate with the tides in the adjacent North Sea, and enter the Marsdiep
channel from the south near Den Helder, propagating northward towards Texel and east-
ward into the inlet. The mean tidal range at the mouth near Den Helder is 1.4 m, while
that at the head near Harlingen is over 2 m because of tidal amplification.

The Vlie basin (see Fig. 1.2) is the third (from the west) sub–basin in the Dutch Wad-
den Sea, having an area of around 660 km2 (van Prooijen and Wang [31]). The Vlie basin
borders the Marsdiep basin to the south, and the Eijerlandse Gat basin to the south-
west. To the north, the back–barrier basin is bounded by the islands of Vlieland and
Terschelling, to the east the watershed with the Amelander basin is found and to the
southeast the mainland of Frisia. The inlet channel bifurcates in the east channel West-
meep and the southern channel Vliestroom.

When studying the behaviour of the Wadden Sea, the Marsdiep basin together with
the Vlie basin is considered as a double–inlet system. This is because the Marsdiep basin
is strongly connected to the Vlie basin through the Texelstroom channel in the Mars-
diep basin and Vliestroom channel in the Vlie basin (Buijsman and Ridderinkhof [30]).
Indeed, Duran-Matute et al. [22], Sassi et al. [23] clearly showed that there are strong
exchanges of water and sediment between these two basins.

1.3. MORPHODYNAMIC MODELS–GENERAL OVERVIEW
Morphodynamics, as defined by Wright and Thom [32], is the complex mutual adjust-
ments of topography and fluid dynamics, including sediment transport. In other words,
it is the dynamic behaviour of alluvial boundaries caused by waves, currents and sedi-
ment transport (de Vriend [33]). This interaction occurs at very different length and time
scales, which can be used to classify these processes. Here, the classification proposed
by de Vriend [33] is presented:

• Micro–scale (process–scale) phenomena concern mainly the constituent processes
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(waves, currents and sediment transport), whose length and time scales are essen-
tially smaller than the length and time scales associated with the "primary" mor-
phological behaviour. Examples of micro–scale phenomena are the water motion
in channels and on shoals, the turbidity dynamics, and the sediment diffusion and
advection.

• Meso–scale (dynamic scale) phenomena describe the "primary" morphodynamic
behaviour caused by the interaction of the above mentioned processes and the
sea bed. The scales involved are of the order of magnitude of processes inherent
to this interaction. Examples are bed forms and bed patterns which are relevant
to currents and navigation, shoaling and migration of natural channels which are
important for coastal defence, and the response of these patterns to human inter-
ferences which is important to manage and protect the system as a whole.

• Macro–scale (trend–scale) phenomena are related to trends at scales much larger
than the meso–scale phenomena described above. These slow trends can be caused
by secular effects in the behaviour inherent to the system, or by gradual changes
in the extrinsic forcing or the system parameters. Examples are the evolution of
channel–shoal patterns in basins and outer deltas, and the evolution of the in-
tertidal zone. These phenomena are in general important for the ecosystem and
coastal defence.

The above phenomena are generally coupled in a complex nonlinear way. One has
to decide which processes and forcing conditions are essential to consider for the phe-
nomenon under study, and which processes need to be included in a parameterized way.
Examples of such parameterization are sediment erosion and transport formulas.

1.3.1. CLASSIFICATION OF MORPHODYNAMIC MODELS
Due to the great variety and complexity of the morphodynamic interactions, even when
only considering tidal basins and processes observed in them, as well as the different
fields of interest that can be addressed, many different approaches have been used to
study morphodynamics of tidal inlets. These approaches are generally classified into
five different ones, proposed by de Vriend [34], de Vriend and Ribberink [35]:

• Data-based models only utilize observed data to describe and predict the behav-
iour of barrier coasts. Examples are geostatistical models and models based on
empirical orthogonal function analysis (Fairley et al. [36], Alvarez and Pan [37]),
which typically apply to macro–scale phenomena. These models are able to make
predictions without analyzing the complex morphodynamic behaviour of the sys-
tem, and are especially effective in simple cases for which it is easy to predict
whether the relevant processes remain unaltered. These models are impotent to
determine which mechanisms play a key role and what are the key parameters,
and whether these mechanisms and parameters will be altered if the forcing con-
ditions change.

• Empirical relationships and empirical models use measured data to establish re-
lationships between different variables. An example is the relation between the
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cross–sectional area of an inlet and the tidal prism proposed by O’Brien [38] (see
de Vriend [34] for other examples). They can be used to validate process-based
and idealized models (see below), because the empirical knowledge is based on
large data sets observed in many inlets around the world.

• Semi-empirical long-term models describe the dynamic interactions between ma-
cro–scale phenomena by using basic physical principles and empirical relation-
ships to represent the effects of smaller scale processes. They are able to describe
the evolution of a tidal inlet to its equilibrium state, but do not give any small–scale
information.

• Process-based models are mathematical (numerical) models based on first phys-
ical principles. They are used to get detailed insight into the physical processes
and are typically based on complex state-of-the-art model formulations. These
models are able to simulate the morphodynamic evolution, such as the develop-
ment of channels and shoals. They are often too complex to determine the essen-
tial mechanisms controlling the phenomena under consideration. Because these
models are very cpu intensive, they usually are not employed for extensive sensi-
tivity analyses.

• Idealized models (formally integrated long-term models) are mathematical mod-
els aimed at retaining only those processes that are relevant for the phenomena
under investigation. They are derived from process-based models by formal in-
tegration over space and time, with possible empirical or parametric closure re-
lations. Since this approach aims at strongly reducing cpu time (compared to
process-based models), it enables us to gain insight into the processes which are
essential for the observed phenomena, and allows for extensive sensitivity studies.

1.3.2. PROCESS-BASED MORPHODYNAMIC MODELS
The latter two types of models are based on physical laws, and typically consist of three
basic modules. The first module concerns the water motion, which is usually governed
by the shallow water equations, resulting in the sea surface elevation and water velocities
for a given bathymetry. The second module, using the information of the first module,
calculates the sediment transport, which generally includes both suspended load and
bed load transport. The third module uses sediment transport to calculate a new bed
profile from the mass balance of the sediment layer. The new bed profile is then used
to recalculate the water motion, thus completing one step of the morphodynamic loop
(see Fig.1.3, left panel). Alternatively, if one focuses on morphodynamic equilibria (see
Fig.1.3, right panel), the three modules are not solved sequentially, but an asymptotic
solution, consisting of velocities, a concentration and a bed profile, is directly looked
for (see Dijkstra et al. [39]). The most simple asymptotic solution is a morphodynamic
steady state, for which the sediment transport has no spatial convergence or divergence.
In what follows, the three modules will be discussed in detail.

• The hydrodynamic module describes the water motion driven by various physi-
cal processes, possibly including wind, waves, tides, density differences and rota-
tional (Coriolis) accelerations. In this thesis, the hydrodynamics will be described
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by the depth–averaged shallow water equations (Csanady [40]), also called the
Saint–Venant equations (Vreugdenhil [41]). Indeed, the tidal basins under con-
sideration are assumed to be shallow, such that the vertical scale of the fluid flow
is much smaller than typical horizontal scales (Nihoul and Ronday [42]). More-
over, the width scale is assumed to be much smaller than the Rossby deformation
radius. Hence, the Coriolis effects are not important and are neglected.

• The sediment module describes the transport of sediment particles from one place
to another. This transport only happens if the bed shear stress acting on the parti-
cles exceeds a certain threshold value. Since the shear stress is related to the flow
velocity just above the bed, the flow velocity must exceed a critical (friction) ve-
locity before the particles begin to move. This critical value is determined by the
gravitational force exerted on these sediment particles. The lift and drag force cre-
ated by the water flow need to overcome this gravitational force and the associated
friction force in the contact points with the neighbouring particles.

Sediment transport is usually decomposed into bed load transport and suspended
load transport (Dyer [43], Dyer and Soulsby [44], Fredsøe and Deigaard [45], van
Rijn [46], Soulsby [47]). Bed load transport describes the sediment particles trans-
ported by rolling, gliding and jumping within a thin layer close to the bed. The
suspended load transport describes the sediment particles suspended into and
transported in the water column; hence these sediment particles are not in con-
tact with the bed when they are transported. For bed load transport, the local fric-
tion velocity is larger than the critical friction velocity, but smaller than the settling
velocity, i.e., the velocity of a sediment particle sinking to the bottom in stagnant
water. For suspended load transport the local flow velocity exceeds both the criti-
cal friction velocity and the settling velocity. The sum of bed load and suspended
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Figure 1.3: Typical schematisation of morphodynamic models. Left scheme shows how the three modules
are used in the time integration method: the water motion is calculated depending on bottom topography
which changes only on a longer time scale (morphodynamic time scale); the sediment transport is calculated
using the water motion; the bed evolution is calculated by implementing the sediment transport into the Exner
sediment balance equation. Finally, the new bed topography is feeded back to the water motion module. When
morphodynamic equilibria are sought for directly, the three modules are regarded as mutually influencing each
other, as shown in the right scheme.
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load transport is called the total load transport.

Various physical mechanisms control the tidally averaged (i.e., averaged over a
tidal period) sediment transport. One important mechanism in tidal basins is tidal
asymmetry, which leads to a non–zero tidally averaged transport of sediment if
one or more higher harmonics of the basic frequency are prescribed as an external
forcing or are generated by nonlinear hydrodynamics. Pingree and Griffiths [48]
showed that the net bed load transport induced by tidal asymmetry is in the direc-
tion of the peak current. Furthermore, depth–dependent bottom friction has been
found to favour flood–dominant transport, whereas hypsometric effects caused by
tidal flats favour ebb–dominant transport (Friedrichs and Aubrey [49], Dronkers
[50]). Another mechanism is related to spatial settling lag effects, i.e., due to the
time needed for sediment particles suspended in the water to settle at slack wa-
ter. Postma [51] and van Straaten and Kuenen [52] showed that this effect results
in net sediment transport in the direction of decreasing tidal current and/or de-
creasing water depth. Dronkers [53] and Groen [54] showed that tidal asymmetry
together with the effects of local inertia results in a net sediment transport that is
controlled by the difference in time from maximum ebb (flood) to maximum flood
(ebb), referred to as the temporal settling lag effect. Diffusive processes can also
result in tidally averaged transport, driven by spatial variations in tidally averaged
suspended sediment concentration. These variations can be, amongst others, the
result of variations in flow velocities, sediment availability and bed topography.

• The bed evolution module describes the bottom changes over time due to erosion
and deposition of sediment, which is described by the mass balance equation in
the sediment layer. If one is interested in bottom changes at long time scales, tidal
averaging is an effective approach (Sanders and Verhulst [55], Krol [56], Schutte-
laars and de Swart [57]).

1.4. MORPHODYNAMIC MODELS: SELECTED APPROACH
In this thesis, idealized models will be developed to study the morphodynamics of double–
inlet systems. This type of models is chosen because they allow for a quick assessment of
morphodynamic equilibria and their sensitivity to parameters (see for instance Schutte-
laars [58], Ter Brake [59], van Leeuwen and de Swart [60]). Insight in the existence and
multiplicity of possible morphodynamic equilibria of these systems is important as these
attractors are the states towards which the systems tend to evolve.

The majority of studies with idealized models focuses on single inlet systems rather
than double inlet systems. In this thesis, I will extend the techniques and insights gained
from single inlet systems to double inlet system. Hence, in this section, previous studies
of idealized and, for completeness, process–based models are briefly discussed for single
inlet systems (Sect. 1.4.1), followed by a discussion of existing studies of double inlet
systems (Sect. 1.4.2).

1.4.1. SINGLE–INLET SYSTEMS
In this subsection, previous studies of cross–sectionally averaged models are first pre-
sented, followed by results concerning the initial formation of channels and shoals in
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depth–averaged models. Finally, studies on the development of finite amplitude channel–
shoal systems are discussed.

CROSS–SECTIONALLY AVERAGED MODELS

In order to determine the fundamental mechanisms resulting in the morphological evo-
lutions of tidal inlets, Schuttelaars and de Swart [57] developed an analytical cross–sect-
ionally averaged (i.e., one–dimensional) morphodynamic model for a tidal embayment
connected by a single inlet to the open sea. In this model, the geometry of the tidal em-
bayment consists of a semi-enclosed rectangular planform, with a width much smaller
than the length of the basin and the Rossby deformation radius. The water motion is
governed by a simplified version of the cross–sectionally averaged shallow water equa-
tions, forced by sea surface elevations at the seaward boundary. Sediment, assumed to
be fine sand with a uniform grain size, is transported as suspended load by advective and
diffusive processes. The bottom evolution equation is derived from the mass balance in
the sediment layer. It was found that for all parameter settings, there is only one mor-
phodynamic equilibrium, which is in qualitive agreement with observed bottom profiles
in the short embayments of the Dutch Wadden sea (de Swart and Blaas [61]). Moreover,
these bed profiles were shown to be stable against one–dimensional perturbations.

De Jong and Heemink [62] and De Jong [63] developed a similar model for short
basins with either a rectangular planform or a converging geometry, and extended their
model to long basins. In this model, the water motion was forced by externally pre-
scribed M2 and M4 tidal constituents, while the M4 tidal constituent generated inter-
nally by the nonlinear terms was neglected. They found that the inlet length and ge-
ometry can strongly influence the morphodynamic equilibrium, which is also sensitive
to boundary conditions and friction. Moreover, they found a significant difference be-
tween the models for short, medium and long embayments: results obtained for short
basins could not be extrapolated to long basins, while the medium–sized basins could
shorten themselves to a short basin, depending on the parameter settings. Motivated by
these results, Schuttelaars and de Swart [64] extended the model to simulate the mor-
phodynamic evolution of a tidal basin of arbitrary length. The equilibria found were in
qualitive agreement with field observations. Futhermore, when the external M4 con-
stituent of the tidal forcing prescribed at the seaward entrance was important enough,
the model allowed for multiple morphodynamic equilibria.

Lanzoni and Seminara [65] also focused on the width–averaged morphodynamic
evolution, using a different approach from Schuttelaars and de Swart [57], allowing for a
quadratic bottom stress and basin hypsometry. Their model predictions compared well
with the observed bed levels in various channels in the Venice Lagoon.

The model of Schuttelaars and de Swart [57] was extended by van Leeuwen et al. [66]
by making the sediment deposition formula dependent on the local water depth. For a
short basin, they found that by adding this depth-dependency the equilibrium bed pro-
file becomes convex. In van Leeuwen [67], width variations of the tidal basin were also
taken into account. They found that a converging width has little impact on the resulting
morphodynamic equilibria when the convergence is not too strong. When a rectangular
basin with tidal flats is considered, the bed profile becomes slightly concave. The in-
fluence of geometry on the morphodynamic equilibria was later extended by Meerman
et al. [68].
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Hibma et al. [69, 70] extensively compared the results obtained with numerical pro-
cess–based models with those found using idealized models. The comparison of both
types of models is not straightforward, due to the differences in model assumptions
and formulations. Hibma et al. [70] adapted a complex process–based model, Delft3D,
and compared the numerical results with those obtained from cross–sectionally aver-
aged models. They found that qualitive differences between the model approaches were
mainly due to a different boundary condition at the entrance of the estuary. The sea bed
was allowed to vary at the entrance in the process–based model while it was fixed in the
idealized model.

In idealized models, the diffusive sediment transport induced by topographic varia-
tions (topographically induced sediment transport) was usually assumed to be balanced
by transport due to wind effects (Schuttelaars and de Swart [57], van Leeuwen et al. [66]).
In order to study this transport, Ter Brake and Schuttelaars [71] extended the model de-
veloped by Schuttelaars and de Swart [57]. They found that topographically induced
sediment transport leads to a concavity of the equilibrium bed profile which depends
on the sediment properties and the length of the embayment.

THE INITIAL FORMATION OF CHANNEL–SHOAL PATTERNS

Bed forms with scales ranging from meters to kilometers are usually observed in tidal
basins. The initial formation and development of such bed forms has been reproduced
in the laboratory by Tambroni et al. [72], Leuven and Kleinhans [73] and has been simu-
lated with complex process–based models (see for example Van der Wegen and Roelvink
[74]).

To study the initial formation of sandbars using an idealized model approach, Semi-
nara and Tubino [75] developed a local three–dimensional model for a narrow and fric-
tionally dominated tidal channel. In their model, sediment was transported as sus-
pended load and only advective processes were taken into account. They showed the
initial formation of tidal sand bars. Schramkowski et al. [76] also investigated these local
bed forms with a depth–averaged model, qualitively reproducing the results found by
Seminara and Tubino [75]. Garotta et al. [77] also found the same sand bars by depth–
averaged approaches, but in their model, a more advanced forcing was included. The
bars found in their model show a net migration in the direction of the peak current.
Hepkema [78] extended the model of Schramkowski et al. [76], and found that when hor-
izontal turbulent exchange processes (parameterized by horizontal eddy viscosities and
diffusivities) are included the spatial and temporal scales of tidal bar patterns were in
good agreement with observed ones, with the tidal bar wavelength dependent on chan-
nel width.

Hibma et al. [79] also compared the initial formation of channels and shoals com-
puted through a complex process–based model and an idealized model of a schematised
estuary. The initial formation of these bed profiles were obtained by short–term simu-
lations with the process–based model Delft3D and compared well to the results of the
linear stability analysis of Schramkowski et al. [76].

Schuttelaars and de Swart [80] studied the initial growth of large–scale bed forms us-
ing linear stability theory in an idealized model. They considered a short semi–enclosed
rectangular basin and included in the model only diffusive processes. The water motion
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was forced by an M2 tide at the seaward side and a simplified bottom friction formulation
was used. They found that the one–dimensional constantly sloping bed profile charac-
terising the morphodynamic equilibrium obtained in their earlier cross-sectionally av-
eraged model (Schuttelaars and de Swart [57]), became unstable and two–dimensional
perturbations began to grow when the bottom friction exceeded a critical value. In par-
ticular, the most preferred perturbation had an along–channel spatial scale of the order
of the basin length, thus leading to global scale bottom patterns.

To bridge the gap between the global bed forms found in Schuttelaars and de Swart
[80] and the local bed forms found in Seminara and Tubino [75], van Leeuwen and de Swart
[81] included advective transport into the model of Schuttelaars and de Swart [80]. They
varied the relative strength of diffusive and advective processes and found both small–
and large–scale bed forms. When the advective transport dominated, the local bedforms
that started to grow resemble those found in local models. When diffusive transport was
dominant or of the same order as advective transport, the bottom patterns resembled
those found in Schuttelaars and de Swart [80]. Using a complex processed–based model,
Van der Wegen and Roelvink [74] pointed out that the local patterns initially start to grow
at the landward side, and after some time develop into global patterns. Similar observa-
tions were made by Ter Brake [59], Ter Brake and Schuttelaars [82].

THE DEVELOPMENT OF CHANNEL AND SHOAL SYSTEMS

The development of channel–shoal bed forms was first simulated using 2DH process–
based models. One of the first examples is reported in Wang et al. [83, 84] who simu-
lated the long term evolution of the Frisian Inlet system and the effects of the closure
of the Lauwers Sea on this evolution. They reproduced the overall morphological pat-
terns in areas sheltered from waves. Their results also show the observed import of large
amounts of sediment into the embayment. Other examples are the simulation of the
Arcachon inlet in France (Cayocca [85]) and Morecambe Bay in England (Mason and
Garg [86]). Marciano et al. [87] later used a highly schematised tidal environment and
recovered the fractal like channel and shoal patterns as observed in many tidal inlets.
Van der Wegen and Roelvink [74] used a similar model to analyse both the initial and
long–term morphodynamic evolution of short and long basins. They found that small
patterns initially start to grow at the landward end, slowly move to the seaward direc-
tion and become larger and deeper towards the seaward side. Boelens et al. [88] use an
idealized model to investigate the morphodynamic equilibria, and found that the equi-
librium bathymetry consists of a central ridge flanked by two channels when the width
of the planform geometry increases towards the landward side.

D’Alpaos et al. [89] developed a depth–averaged process–based model to simulate
the interaction between vegetation and morphodynamics in tidal embayments. The
channel networks they found show features similar to those observed by D’Alpaos et al.
[90] in the Venice Lagoon.

Schuttelaars [91] first extended the linear stability analysis to a non-linear one in ide-
alized models. Later, using a bifurcation approach, it was found that morphodynamic
equilibria composed by channel and shoal patterns can exist if the bottom friction is
above a critical value (Dijkstra et al. [39], Ter Brake [59]). However, the results for realistic
value of the bed friction were difficult to obtain. Ter Brake [59] studied a similar idealized
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model and found periodic behaviour of channel and shoal patterns. She suggested that
this phenomenon was caused by a phase shift between the concentration of sediment in
the water column and bedforms.

1.4.2. DOUBLE–INLET SYSTEMS

Using a semi–empirical model (Sect. 1.4.1), Van de Kreeke [92, 93, 94] studied the stabil-
ity of an inlet system with multiple inlets connecting the back–barrier basin to the open
sea. To this end, he extended the single–inlet stability analysis of Escoffier [95]. The
bathymetry in the back–barrier basin was fixed, while the inlets were morphodynami-
cally active. The hydrodynamics for each inlet was treated linearly, and the water level
in the back–barrier basin was approximated as spatially uniform (pumping mode). For
double–inlet systems, he concluded that only one inlet will remain open. Even though
he did not study a tidal basin system connected to the open sea by more than two inlets
in detail, he stated that a stable equilibrium is highly unlikely to exist with more than one
inlet open.

However, long–term observations suggest that double– and multiple–inlet systems
exist, in contradition with theoretical results. This motivated Van de Kreeke et al. [96] to
extend the physics of his previous model by allowing for spatial variations of free surface
elevation in the back–barrier basin. This resulted in stable multiple inlet systems, a find-
ing confirmed by Brouwer et al. [97], de Swart and Volp [98] for double inlet systems and
Roos et al. [7], Reef et al. [99] for multiple–inlet systems.

Meerman [100] developed an idealized model (Sect. 1.4.1) that extended the mod-
els of Schuttelaars and de Swart [57], Ter Brake and Schuttelaars [71] to double–inlet
systems. She focused on the cross-sectionally averaged morphodynamic equilibria and
found that multiple morphodynamic equilibria exist for certain parameter settings.

Dastgheib et al. [101] used a high–complexity process–based model (Sect. 1.4.1) to
simulate the long term sediment transport and bottom evolution for a double–inlet sys-
tem, resulting in the development of channel–shoal systems in the back–barrier basin.
After simulating 2000 years, the system was assumed to be close to a morphodynamic
equilibrium with both inlets still open.

1.5. RESEARCH QUESTIONS
Comparing the studies available in literature addressing single–inlet systems with those
concerning double–inlet systems, it is found that no idealized two–dimensional model
exists that:

• is morphodynamically active in both the back–barrier basins and the inlets;

• allows for a quick assessment of morphodynamic equilibria and their sensitivity
to parameters;

• allows for a detailed process analysis.

Therefore, in this thesis I will develop an idealized model of double–inlet systems to an-
swer the following research questions:
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• Q1: How do variations in tidal forcings influence the morphodynamic equilibria in
double–inlet systems? Specifically, how do these variations influence the existence
and uniqueness of morphodynamic equilibria?

• Q2: How does the planform geometry of double–inlet systems influence the pos-
sible morphodynamic equilibria and how do these equilibria compare with obser-
vations in the Marsdiep–Vlie inlet system?

• Q3: What are the key mechanisms leading to the initiation and formation of chan-
nels and shoals in double–inlet systems?

• Q4: How does the number and stability of two–dimensional morphodynamic equi-
libria depend on friction and basin width?

1.6. METHODOLOGY
To answer the above research questions, an idealized model for double–inlet system is
developed, extending the work of Schuttelaars and de Swart [64] and Meerman et al.
[102]. The water motion is modeled by using the depth–averaged shallow water equa-
tions. Sediment is assumed to be mainly transported as suspended load, while the bed
evolution is governed by the continuity equation for the sediment layer. The system of
equations is made dimensionless using scaling analysis, leading to the identification of
two time scales: the tidal time scale and the morphodynamic time scale. The scaled
system is solved using a perturbation approach.

1.7. OUTLINE
In Chap. 2, the numerical methodology is presented and morphodynamic equilibria
are obtained. Moreover, research questions Q1 and Q2 are addressed. In Chap. 3 the
linear stability of morphodynamic equilibria is analysed using two–dimensional pertur-
bations, answering research question Q3. In Chap. 4 the two–dimensional morphody-
namic equilibria are studied and the research question Q4 is addressed. Finally, conclu-
sions are provided in chapter 5.
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2
MORPHODYNAMIC EQUILIBRIA IN

DOUBLE INLET SYSTEMS: THEIR

EXISTENCE AND STABILITY

The existence of morphodynamic equilibria in double–inlet systems is investigated using a
cross–sectionally averaged morphodynamic model. The number of possible equilibria and
their stability is found to strongly depend on the considered forcing conditions and geom-
etry. This is illustrated by first studying a rectangular double–inlet system forced only by
an M2 tidal constituent. Depending on the M2 amplitude and phase at both entrances, no
equilibrium, one equilibrium or multiple morphodynamic equilibria may exist. In case
no equilibrium is found, the minimum water depth becomes zero somewhere in the tidal
basin, reducing the double–inlet system to two single–inlet systems. In the other cases, the
location of the minimum water depth and the direction of the tidally–averaged sediment
transport, as well as their actual values, depend strongly on characteristics of the M2 forc-
ing.

A parameter sensitivity is also observed when including the residual and M4 forcing con-
tributions to the water motion, and when allowing for width variations. This suggests
that, when considering a specific system, the number and stability of morphodynamic
equilibria, as well as the characteristics of these equilibria, can only be assessed by inves-
tigating in detail the specific system. As an example, the Marsdiep–Vlie inlet system in the
Dutch Wadden Sea is considered. It is found that, by using parameter values and a geom-
etry characteristic for this system, the water motion and bathymetry at morphodynamic
equilibrium are qualitatively reproduced. Also the direction and order of magnitude of the
tidally–averaged suspended sediment transport compare well with those obtained from a
high–complexity numerical model.

This chapter is published as: X. Deng, C. Meerman, T. Boelens, T. De Mulder, P. Salles, and H. M. Schuttelaars.
(2021) Morphodynamic equilibria in double inlet systems: their existence and stability. Journal of Geophysical
Research, 126(12),e2021JF006266.
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2. MORPHODYNAMIC EQUILIBRIA IN DOUBLE INLET SYSTEMS: THEIR EXISTENCE AND

STABILITY

PLAIN LANGUAGE SUMMARY

An idealized model is developed to systematically investigate the cross–sectionally av-
eraged morphodynamic equilibria in double-inlet systems with varying width. A bathy-
metric profile in equilibrium with the water motion and sediment transport is obtained if
there is no accumulation of tidally averaged sediment transport. Considering a constant–
width system, the number of morphodynamic equilibria strongly depends on the tidal
forcings. For an M2 tidal forcing only, it is found that no equilibrium, one equilibrium
or more than one morphodynamic equilibria can exist. The location and the depth
of the watershed, and the total sediment transport are used to characterize the mor-
phodynamic equilibria. Typically, the watershed tends to get closer to the inlet with a
larger tidal amplitude, and the total transport is directed from the inlet with the largest
tidal amplitude to the one with the smallest tidal amplitude. Taking parameter values
representative of the Marsdiep–Vlie system, one stable morphodynamic equilibrium is
found. Inclusion of the large–scale width variations observed in the Marsdiep–Vlie sys-
tem is essential to obtain an equilibrium profile that qualitatively reproduces the ob-
served width–averaged bathymetry, water motion and tidally–averaged sediment trans-
port.

2.1. INTRODUCTION

A large part of the world’s coastline can be characterized as barrier coasts (Mulhern et al.
[1]), consisting of barrier islands, back–barrier basins and tidal inlets connecting the
back–barrier basins to the open sea (de Swart and Zimmerman [2]), with shape and size
varying significantly from location to location (Glaeser [3], Stutz and Pilkey [4]). Bar-
rier coasts are highly dynamic, in part due to the complex nonlinear interactions among
water motion, sediment transport and morphological evolution, as well as to their sen-
sitivity to changes in external conditions caused, for example, by increased storm fre-
quency and intensity, sea level rise and human interference (McBride et al. [5], Van der
Spek [6]). Barrier coasts are very important from an ecological and economical point of
view. Their ecological value lies in their function as breeding and feeding grounds for
aquatic and terrestrial species, their biodiversity and other ecosystem services they pro-
vide. Economical activities such as gas–mining, dredging and recreation are common in
these regions. Furthermore, they are of importance for coastal safety (Glaeser [3]).

An example of a barrier coast, where the back–barrier basin is connected to the open
sea by multiple inlets, is the Wadden Sea along the Dutch, German and Danish coast (Oost
et al. [7]). In Fig.2.1 a part of the Dutch Wadden Sea is shown as an example of such a sys-
tem. Even though it is often assumed that the various inlets drain different sub-basins,
separated from each other by a tidal watershed, recent studies have revealed a strong
exchange of water (Duran-Matute et al. [8]) and sediment (Sassi et al. [9]) between adja-
cent sub-basins. Similar interactions are also found in the Ria Formosa in south Portu-
gal (Salles et al. [10], Pacheco et al. [11]) and Venice Lagoon (Seminara et al. [12], Tam-
broni and Seminara [13]). This strongly suggests that to understand, model and predict
the morphodynamic evolution of these systems, the interactions between sub–systems
have to be taken into account, i.e., these systems should be considered as multiple inlet
systems. This is also necessary for long–term analysis, as observations show that these
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Figure 2.1: Satellite image showing the bathymetry of the part of the Dutch Wadden Sea that contains the
Marsdiep, Eijerlandse Gat and Vlie inlet systems. (Copyright © USGS/ESA).

multiple inlet systems have been present for centuries.

To study the long–term morphodynamic stability of multiple inlet systems, Van de
Kreeke [14, 15, 16] extended the single–inlet stability concept of Escoffier [17] to multiple
inlets. In his approach only the inlets are assumed to be morphodynamically active, i.e.,
the bathymetry in the back–barrier basin is fixed. Furthermore, the water level in the
back–barrier basin is approximated as spatially uniform (pumping mode). He showed
for double–inlet systems, and speculated for multiple inlet systems, that ultimately only
one inlet would remain open. Because this conclusion contradicted long–term obser-
vations, Van de Kreeke et al. [18] extended the physics of their previous models by al-
lowing for spatial variations in the free surface elevation in the back–barrier basin. This
resulted in stable double–inlet systems, a finding confirmed by the studies of Brouwer
et al. [19], de Swart and Volp [20] for double–inlet systems and Roos et al. [21], Reef et al.
[22] for multiple inlet systems.

One of the great advantages of these semi–empirical models is their computational
efficiency, allowing for extensive sensitivity analysis of parameters such as tidal range,
phase difference of the tidal forcing at the inlets and basin geometry, factors that strongly
influence the morphodynamic stability of the inlet systems. However, these models do
not allow the morphodynamic evolution of the back–barrier basin, even though field
observations and model studies show that these regions are morphodynamically active.
For example, Dastgheib et al. [23] used a high–complexity numerical model to simu-
late the long–term sediment transport and bottom evolution of a double–inlet system,
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resulting in the development of channel–shoal systems in the back–barrier basin. After
simulating 2000 years, the system was assumed to be close to a morphodynamic equilib-
rium with both inlets still open. A detailed analysis of the physical mechanisms resulting
in the observed morphodynamic equilibrium is however challenging when using high–
complexity numerical models. It is thus difficult to gain insight into the sensitivity of the
morphodynamic equilibria to variations in parameters and geometric characteristics.

The aim of the present study is therefore to develop a process–based model of a
double–inlet systems on mesotidal barrier coasts (Hayes [24]) in which both the tidal
inlets and back–barrier basin are morphodynamically active. The model will be used to
analyze the existence of morphodynamic equilibria, their stability, and sensitivity to pa-
rameters and geometry. It should allow for a systematic analysis of the physical mech-
anisms leading to these morphodynamic equilibria. Motivated by the insights gained
from equilibrium models for single–inlet systems (Schuttelaars and de Swart [25, 26],
Ter Brake and Schuttelaars [27], Meerman et al. [28]), this type of models will be ex-
tended to study the case of two tidal inlets connected to each other by a back–barrier
basin of arbitrary length and width. Default parameters used in the model are charac-
teristic of a double–inlet system in the Dutch Wadden Sea. The model results will be
compared with field observations and numerical model results from the Marsdiep–Vlie
system. The existence and sensitivity of morphodynamic equilibria to basin geometry
and forcing conditions at the seaward sides of the two inlets, consisting of M2 and M4

tidal constituents and a subtidal signal, will be investigated in detail.
In Sect. 2.2 the equations governing water motion, transport of sediment and bed

evolution are presented. The scaling of the system of equations and the solution method
are presented in Sect. 2.3. In Sect. 2.4, morphodynamic equilibria in double–inlet sys-
tems and their linear stability are studied. In Sect. 2.5, the results are discussed and in
Sect. 2.6 conclusions are presented.

2.2. MODEL DESCRIPTION
The geometry under consideration consists of a tidal inlet system connected to the open
sea by two inlets (for a top view see Fig.2.2b, obtained using the observed field geometry
of Fig.2.2a). The x axis in Fig. 2.2b represents the distance along the centerline indicated
in Fig. 2.2a, whereas the y axis represents the distances normal to the centerline. The
inlet system is aligned with the horizontal x axis, and has a prescribed length L. The
basin is connected to the open sea at x = 0 and x = L, respectively. The width is allowed
to vary with the longitudinal coordinate, and is denoted by B(x) = B2(x)−B1(x), with
B2 and B1 indicating the left and right coastal boundaries, looking from inlet I to inlet
II . These coastal boundaries are assumed to be non-erodible. The width of inlet I is
denoted by B I = B(0), and the width at inlet II by B II = B(L).

The undisturbed water depth at inlet I (x = 0) is denoted by H I , and by H II at x = L
(see Fig.2.2c for a side view). The free surface is represented by the equation z = ζ̂, with
the undisturbed free surface located at z = 0. The erodible bottom, that is assumed to
consist of sandy material with a single grain size, is described by the equation z = ĥ−H I ,
where H I is used as the reference depth and ĥ is the local bed elevation measured from
level identified by the reference depth. Hence, the instantaneous local water depth is
given by H I − ĥ + ζ̂.
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(a)

(b) (c)

Figure 2.2: Sketch of a tidal embayment connected to the open sea at both ends. (a) The bathymetry surveyed
in the Marsdiep–Vlie inlet system. The dark–grey solid lines indicate the coastal boundaries used in the model,
whereas the centerline is indicated by a black solid line. For a more elaborate discussion, see Sect. 2.5.2. (b)
A top view of the schematized double–inlet system with a varying width (dark–grey solid lines) and a uniform
width (dashed blue lines). The longitudinal and lateral velocities are denoted by û and v̂ . (c) A cross–sectional
view of the double–inlet system, with the depth at inlet I denoted by H I and the depth at inlet II denoted by
H II . The bed profile (red line) is denoted by ĥ(x, y, t ), and the free surface elevation (blue line) by ζ̂(x, y, t ).
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Since both the length and width of the inlet system are much larger than the refer-
ence water depth, and the width is much smaller than the basin length and the Rossby
deformation radius, the water motion can be described by the cross-sectionally averaged
equations for a homogeneous fluid (Csanady [29]):

Bζt + [B(H I −h +ζ)u]x = 0, (2.1a)

ut +uux + gζx + r∗u

H I −h +ζ = 0. (2.1b)

Here, ζ denotes the width–averaged sea surface elevation, defined as

ζ(x, t ) = 1

B2 −B1

∫ B2

B1

ζ̂(x, y, t )d y. (2.2)

Similarly, u(x, t ) denotes the width–averaged horizontal longitudinal velocity and h the
width–averaged bed level. Time is denoted by t , and g denotes the gravitational acceler-
ation. Subscripts denote a derivative with respect to that variable. Following Lorentz [30]
and Zimmerman [31], a linearized formulation of the friction is used with the bottom
friction coefficient defined as r∗ = 8Ucd /3π, with U a characteristic velocity scale and cd

a drag coefficient. The characteristic velocity U will be introduced in section 2.3.1.
The variables ζ and u can be decomposed in a residual and a time–varying contribu-

tion as ζ=<ζ>+ζ̄ and u =<u>+ū, where<·>denotes tidal averaging, and ·̄ the deviation
from the tidal average, such that <·̄>= 0. The time dependent sea surface elevations at
the two inlets are prescribed as

ζ̄= AI
M2

cos(σt −φI
M2

)+ AI
M4

cos(2σt −φI
M4

) at x = 0, (2.3a)

ζ̄= AII
M2

cos(σt −φII
M2

)+ AII
M4

cos(2σt −φII
M4

) at x = L. (2.3b)

It should be noted that, when considering the morphodynamic evolution of a tidal basin,
the effect of radiation damping on the tidal forcing at the seaward side can only be ne-
glected in the so–called deep sea limit (Roos and Schuttelaars [32]). However, if one is
only interested in morphodynamic equilibria, prescribing the tidal forcing is allowed.
One should interpret the morphodynamic equilibria as obtained for that prescribed tidal
forcing. For the tidally–averaged hydrodynamic components, we require

<ζ>= 0 at x = 0, (2.4a)

<B(H −h −ζ)u>=Q∗ at x = L. (2.4b)

The constants AI
M2

(AI
M4

) and AII
M2

(AII
M4

) denote the amplitude of the M2 (M4) tide at
the seaward sides of inlet I and II, respectively. Their corresponding phases are given
by φI

M2
(φI

M4
) and φII

M2
(φII

M4
). The angular frequency of the M2 tidal signal is given by

σ = 2π/T , with T the M2 tidal period. Condition (2.4a) implies that at the first inlet
the tidally–averaged water depth is given by H I , whereas the mean water depth at inlet
II may deviate with respect to the undisturbed water level due to a mean difference in
the mean sea surface elevation on the seaward side of the two inlets. The boundary
condition (2.4b) at inlet II assumes the depth–averaged residual water transport equals
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Q∗. When Q∗ is positive it represents a residual transport from inlet I to II, a negative
value implies a net transport from inlet II to inlet I.

The sediment of the tidal inlet system consists of noncohesive material with a uni-
form grain size of 2 ·10−4 m. The sediment is assumed to be mainly transported as sus-
pended load, and its dynamics is described by the width–averaged and depth–integrated
concentration equation (Ter Brake and Schuttelaars [27, 33]):

BCt + [BuC −kh∗B(Cx + ws

kv∗
βhxC )]x = B(αu2 − w2

s

kv∗
βC ), (2.5)

where C is the depth–integrated and width–averaged suspended sediment concentra-
tion, kh∗ is the horizontal diffusivity, kv∗ is the vertical diffusivity, ws is the settling ve-
locity, α is an erosion parameter (Dyer [34]) related to sediment properties, and β is a
deposition parameter, defined by (see Ter Brake and Schuttelaars [27] for details)

β= 1

1−exp(− ws
kv∗ (H I −h +ζ))

. (2.6)

The tidally–averaged erosion and deposition are assumed to balance each other at sea-
ward entrances, and it is assumed that no diffusive boundary layers develop at these
locations in the time–dependent parts of the sediment concentration (Schuttelaars and
de Swart [26]). The resulting boundary conditions read

<αu2 − w2
s

kv∗
βC>= 0 at x = 0 and L, (2.7a)

lim
kh∗→0

C̄ (x, t ,kh∗) = C̄ (x, t ,kh∗ = 0) at x = 0 and L. (2.7b)

The width–averaged bed evolution equation is derived from the mass balance in the
sediment layer and reads

Bρs (1−p)ht =−B(αu2 − w2
s

kv∗
βC ). (2.8)

Here, ρs is the density of the sediment and p denotes the bed porosity. The first and
second term on the right of Eq.(2.8) model the local erosion and deposition of sediment,
respectively.

Substituting Eq.(2.5) into Eq.(2.8) results in the following bed evolution equation:

B [ρs (1−p)ht +Ct ] =−Fx , (2.9)

with

F =−kh∗BCx︸ ︷︷ ︸
Fdiff

+−kh∗
ws

kv∗
BβhxC︸ ︷︷ ︸

Ftopo

+BuC︸ ︷︷ ︸
Fadv

, (2.10)

the total depth–integrated and width–averaged sediment transport. This transport con-
sists of three terms: a diffusive contribution related to the diffusion of depth–integrated
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concentration (Fdiff), a diffusive contribution related to topographical variations (Ftopo)
and an advective contribution (Fadv).

At both boundaries, we prescribe the undisturbed bed level as

h = 0 at x = 0, (2.11a)

h = H I −H II at x = L. (2.11b)

Since erosion and deposition are assumed to balance each other at both entrances (see
Eqs. 2.7), the undisturbed water depth at the entrances will not change during a morpho-
dynamic experiment. The focus of this paper is on morphodynamic equilibria and not
the evolution towards these equilibria. Hence these boundary conditions are appropri-
ate to obtain morphodynamic equilibria characterised by the specific depths prescribed
at the seaward sides of the inlet (see also Schuttelaars and de Swart [25, 26] for a discus-
sion of boundary conditions in a single inlet system). When considering the morphody-
namic evolution in time of tidal inlet systems, instead of focusing on morphodynamic
equilibria, these boundary conditions are too restrictive and more dynamic ones have to
be used (see for example Lanzoni and Seminara [35], Bolla Pittaluga et al. [36]).

2.3. SOLUTION METHOD

2.3.1. SCALING AND EXPANSION
To make the equations dimensionless, the physical variables are scaled as

x = Lx̌, t =σ−1 ť , u =U ǔ, (2.12a)

ζ= AI
M2
ζ̌, h = H I ȟ, C = αU 2kv∗

w2
s

Č , B = B I B̌ , (2.12b)

where the dimensionless variables are indicated by ·̌. For the horizontal coordinate x, the
length L of the double–inlet system is the appropriate scale as the focus is on basin scale
dynamics. The width is made dimensionless using the width at inlet I, B I . Time is made
dimensionless using the M2 angular frequencyσ, the surface elevation using the M2 am-
plitude at the seaward side of inlet I, denoted by AI

M2
, and the bed level is made dimen-

sionless using the depth H I at inlet I. The typical scale for the velocity is U = AI
M2
σL/H I .

It is obtained by assuming that the amplitude of the sea surface elevation at the first in-
let is nonzero, otherwise the amplitude at the seaward side of the second inlet should
be used (see details in Supplementary Information S1). The suspended sediment con-
centration is made dimensionless using αU 2kv∗/w2

s , which follows from assuming an
approximate balance between erosion and deposition. In Tab. 2.1, characteristic values
of the relevant parameters are given for the Marsdiep–Vlie system.

Substituting these dimensionless variables in the equations and suppressing the che-
cks ·̌, the system of dimensionless equations reads:

Bζt + [B(1−h +ϵζ)u]x = 0, (2.13a)

ut +ϵuux +λ−2
L ζx + r u

1−h +ϵζ = 0, (2.13b)

a[BCt + (BϵuC −khBCx −khλd BβhxC )x ] = B(u2 −βC ), (2.13c)

B(ht +aδsCt ) = δs B
[
akhCx +akhλdβhxC −aϵuC

]
x , (2.13d)
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Tidal System Sediment Bed
L = 59km kh∗ = 102 m2 s−1 ρs = 2650kgm−3

g = 9.81ms−2 α= 0.5 ·10−2 kgsm−4 p = 0.4
cd = 0.0025 ws = 0.015ms−1

σ= 1.4 ·10−4 s−1 kv∗ = 0.1m2 s−1

T = 44.9 ·103 s d50 = 2 ·10−4 m
Q∗ =−900m3s−1

Marsdiep Inlet Vlie Inlet
H I = 11.7m H II = 11.9m

AI
M2

= 0.62m AII
M2

= 0.77m
φI

M2
= 148◦ φII

M2
=−158◦

B I = 5954m B II = 5619m
AI

M4
= 0.11m AII

M4
= 0.06m

φI
M4

= 155◦ φII
M4

=−121◦

Table 2.1: Relevant variables adopted in the model. Characteristic values are those estimated for the Marsdiep-
Vlie inlet system by Duran-Matute et al. [8], Ridderinkhof [37].

with the dimensionless deposition parameter β given by

β= 1

1−exp(−λd (1−h +ϵζ))
. (2.14)

The parameter ϵ = AI
M2

/H I is the ratio of the M2 tidal amplitude to the water depth
at inlet I. In many tidal inlet systems ϵ∼ 0.1, indicating that ϵ is a small parameter. Here-
after, it is assumed that ϵζ is always much smaller than the local undisturbed water depth
1−h, thus neglecting the effects of drying and flooding. Note that ϵ is also equal to the
ratio of the tidal excursion length and the length of the tidal inlet system U /(σL). The

parameter λL = kg L is the product of the frictionless tidal wavenumber kg = σ/
√

H I g
and the length of the inlet system. The dimensionless friction parameter is denoted by r
and is defined as r = r∗/H Iσ. The ratio of the deposition timescale to the tidal period is
denoted by a = kv∗σ/w2

s , and the sediment Péclet number λd = H I ws /kv∗ is the ratio of
the typical time it takes for a particle to be mixed through the water column to the typ-
ical time it takes to settle in the water column. The dimensionless diffusion parameter
is denoted by kh = kh∗/L2σ. The parameter δs = αU 2/(ρ(1− p)H Iσ) denotes the ratio
of tidal period T to the time scale related to suspended load and is typically small. All
dimensionless parameters and the assigned values are summarized in Tab.2.2.

The bed evolution equation (2.13d) shows that at the tidal timescale the bed changes
are very small, namely of O(δs ). This implies that the bed changes significantly at a much
larger time scale, the so–called morphodynamic time scale, defined as τ= δs t . To distin-
guish between these time scales, a multiple timescale method is used, with t the short
tidal time variable and τ the long morphodynamic time variable. Using this multiple
timescale approximation, it can be demonstrated that at the leading order of approx-
imation the bed changes are due to tidally–averaged convergences and divergences of
sediment (see Sanders and Verhulst [38], Krol [39]). The resulting tidally–averaged bed
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Parameter Definition Value Parameter Definition Value

ϵ
AI

M2
H I = U

σL 5.30 ·10−2 λL
σLp
H I g

0.77

r r∗
H Iσ

5.67 ·10−1 a kv∗σ
w2

s
6.22 ·10−2

kh
kh∗
L2σ

2.05 ·10−4 δs
αU 2

ρs (1−p)H Iσ
3.68 ·10−4

Q Q∗
B I H I U

−2.95 ·10−2 λd
H I ws

kv∗ 1.75

γ
AI

M4

AI
M2

1.83 ·10−1 AII
r 2

AII
M2

AI
M2

1.25

AII
r 4

AII
M4

AI
M4

0.535 φII
r 2 φII

M2
−φI

M2
54o

φI
r 4 φI

M4
−2φI

M2
−141◦ φII

r 4 φII
M4

−2φI
M2

−57◦

Table 2.2: The definition of dimensionless parameters and their values for the Marsdiep-Vlie system.

evolution equation reads

Bhτ =<−F>x , (2.15)

with F =−akhBCx︸ ︷︷ ︸
Fdiff

+−akhλd BβhxC︸ ︷︷ ︸
Ftopo

+aϵBuC︸ ︷︷ ︸
Fadv

.

The dimensionless boundary conditions associated to Eqns.(2.13) and (2.15) read

ζ= cos t +γcos(2t −φI
r 4) at x = 0, (2.16a)

ζ= AII
r 2 cos(t −φII

r 2)+γAII
r 4 cos(2t −φII

r 4) at x = 1, (2.16b)

<ζ>= 0 at x = 0, (2.16c)

<B(1−h +ϵζ)u>=Q at x = 1, (2.16d)

<u2 −βC>= 0 at x = 0,1, (2.16e)

lim
kh→0

C̄ (x, t ,kh) = C̄ (x, t ,kh = 0) at x = 0,1. (2.16f)

The parameter γ is the ratio of the amplitude of the M4 tide and M2 tide at inlet I, and
AII

r 2 = AII
M2

/AI
M2

(AII
r 4 = AII

M4
/AI

M4
) is the ratio of the amplitude of the M2 (M4) tide at inlet

II and at inlet I. Parameter φII
r 2 =φII

M2−φI
M2 (φI

r 4 =φI
M4−2φI

M2, φII
r 4 =φII

M4−2φI
M2) is the

phase difference between the M2 tide at inlet II (the M4 tide at inlet I, the M4 tide at inlet
II ) and M2 tide at inlet I. Q =Q∗/(B I H IU ) is the dimensionless residual water transport.

In most tidal inlet systems, the parameters ϵ and γ are much smaller than 1 (see
Tab.2.2), allowing for the introduction of an asymptotic expansion in ϵ and γ of the phys-
ical variablesΦ ∈ {ζ,u,C },

Φ=Φ00 +ϵΦ10 +γΦ01 +h.o.t., (2.17)

where the first superscript denotes the order in ϵwhile the second denotes the order in γ.
Because the water motion is forced with a time–periodical signal, each physical variable
can be decomposed as a (infinite) sum of tidal constituents and a residual component,

Φ=Φres(x)+
∞∑

k=1
[Φck (x)coskt +Φsk (x)sinkt ] , (2.18)
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where the subscript ’res’ denotes the tidally–averaged contribution to the variable Φ,
and the contributions of tidal constituents that temporally vary as cosines (sines) with
frequency k are denoted with the subscript ck (sk).

The system of equations (2.13a), (2.13b), (2.13c), (2.15) and the boundary conditions
(2.16) can first be ordered in terms of ϵ and γ, and then in terms of the tidal constituents.

To obtain the tidally–averaged contributions that include both the dominant ad-
vective and diffusive transport mechanisms, the system of equations (2.13a), (2.13b),
(2.13c) and (2.15) has to be solved up to the orders O (ϵ) and O (γ). Both the water mo-
tion and the suspended sediment concentration consist of an M2 and a M4 tidal con-
stituent, and a residual component. This results in tidally–averaged sediment transport
contributions due to diffusive and advective processes. The diffusive transport consists
of the two contributions F 00

diff and F 00
topo. The advective transport can be decomposed

in two contributions, denoted as F 20
adv and F 11

adv of order O (ϵ2) and O (ϵγ), respectively.
The internally–generated advective transport F 20

adv is due to the temporal correlation of
internally–generated overtides and residual velocities at O (ϵ) with the leading order con-
centration fields, and the correlation of the leading order velocities with the O (ϵ) con-
centration. The externally–generated advective transport F 11

adv results from the temporal
correlation of externally–generated overtides with the leading order concentration fields,
and the correlation of the leading order velocities with the O (γ) concentration. The re-
sulting tidally–averaged sediment transport contributions are then given by

<F 00
diff>=−akhBC 00

res,x , (2.19)

<F 00
topo>=−akhβλd BhxC 00

res, (2.20)

<F 20
adv>=

1

2
aϵ2B(u00

c1C 10
c1 +u00

s1C 10
s1 +2u10

resC 00
res +u10

c2C 00
c2 +u10

s2C 00
s2 ), (2.21)

<F 11
adv>=

1

2
aϵγB(u00

c1C 01
c1 +u00

s1C 01
s1 +u01

c2C 00
c2 +u01

s2C 00
s2 ). (2.22)

2.3.2. MORPHODYNAMIC EQUILIBRIA AND LINEAR STABILITY
The resulting system of morphodynamic equations, ordered in terms of the small pa-
rameters and expanded in tidal constituents, can be written as

KΨτ =G(Ψ,p), (2.23)

where Ψ is a vector of amplitudes of all physical variables and p the vector of model
parameters. Namely, Ψ = (ζ00

c1,ζ00
s1 ,ζ10

r es ,ζ10
c2,ζ10

s2 ,ζ01
c2,ζ01

s2 , ...,h) The matrix K is a diagonal
matrix, with a non–zero element only in the row associated with the bed evolution equa-
tion. The nonlinear operator G depends on the parameters p and works on the physical
variablesΨ.

To obtain solutions of this system of equations, Eq. (2.23) is discretized using a fi-
nite element method with continuous Lagrange elements (Alnæs et al. [40], see also Ap-
pendix A.2.1). Adopting a weak formulation and using a Galerkin method (Brenner and
Scott [41]), the discretized system of equations reads

K Ψ̃τ =G (Ψ̃,p), (2.24)
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in which Ψ̃ is the discretisation ofΨ, K is the discretized matrix corresponding to K and
G is the discretized nonlinear operator working on Ψ̃ and the parameters p.

This discretized system of equations can be analyzed using two different approaches,
the initial value and the bifurcation approach. The latter approach aims at the direct
identification of morphodynamic equilibria, whereas with the former approach an ini-
tially prescribed bathymetry is integrated in time.

In this paper, the focus is on the bifurcation approach with which we directly solve
for equilibrium states Ψ̃e that satisfy

G (Ψ̃e,p0) = 0, (2.25)

in which p0 is a vector of prescribed parameter values. To obtain the equilibrium solu-
tions Ψ̃e, a Newton–Raphson iterative method is used. An initial guess Ψ̃i of a morpho-
dynamic equilibrium is updated iteratively until the corrections are small enough (in this
study the iteration is stopped when the maximum correction is smaller than 10−8).

For this iterative procedure to converge, the initial guess Ψ̃i has to be close enough
to the morphodynamic equilibrium associated with the parameter vector p0. If no in-
formation about an approximate morphodynamic equilibrium is available, a good ini-
tial guess can be obtained by integrating the discretized system (2.24) starting from an
arbitrary initial bed profile in time (in this study a backward Euler method is used as
time–integration method, see Appendix A.2.3 for details), until an approximate equilib-
rium is reached. This approximate equilibrium can then be used as the initial guess Ψ̃i

in the Newton–Raphson iterative procedure. If for a given parameter vector p0 a mor-
phodynamic equilibrium is found, a so–called continuation method (Seydel [42]) can be
employed to find equilibria for different parameter values p1 by slowly changing the pa-
rameters from p0 to p1. During this continuation process, the previously obtained equi-
librium is used as a first guess in the iteration process, resulting in the morphodynamic
equilibrium for the new parameter vector p1. The continuation method employed in this
paper is the arclength method (see Dijkstra et al. [43], Crisfield [44] and the discussion in
Appendix A.2.2).

The linear stability of the morphodynamic equilibria Ψ̃e (corresponding to parame-
ter pe ) can be investigated by substituting Ψ̃ = Ψ̃e +∆Ψ̃exp(ωτ) into Eq.(2.24) and lin-
earizing the resulting equation. The resulting eigenvalue problem reads

ωK ∆Ψ̃=JG (Ψ̃e ,pe )∆Ψ̃, (2.26)

in which JG (Ψ̃e ,pe ) is the Jacobian, ω the eigenvalue and ∆Ψ̃ the associated eigenvec-
tor. An equilibrium is called linearly stable if all its eigenvalues have a negative real part,
and unstable if at least one eigenvalue has a positive real part.

2.4. RESULTS
In the numerical experiments presented in this section, the influence of the forcing con-
ditions and geometry on morphodynamic equilibria is presented. Assuming a constant
width, i.e., a system with a rectangular planform, the morphodynamic equilibria are first
obtained for a water motion forced by an M2 tidal constituent using the continuation
approach. (A first initial guess is obtained for a limited number of parameter values
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through time integration after which the equilibria for other parameter values are ob-
tained by continuation) The results are presented in Sect. 2.4.1. Next (Sect. 2.4.2) all
hydrodynamic forcing contributions are included. Finally (Sect. 2.4.3) the influence of
width variations is investigated. All results are obtained using parameter values that are
representative of the Marsdiep–Vlie inlet system (see Tab.2.1), unless mentioned other-
wise.

2.4.1. CONSTANT–WIDTH SYSTEM SUBJECTED TO AN M2 TIDAL FORCING
The influence of variations in the prescribed M2 tidal constituent on the resulting mor-
phodynamic equilibria has been studied by setting the amplitude and phase of the M2

tide at inlet I equal to 0.62 m and 0◦ and varying the M2 amplitude and phase at inlet II.
To focus only on the influence of the M2 forcing, the amplitudes of the externally pre-
scribed overtides (AI

M4 and AII
M4

) are assumed to be zero. Furthermore, the undisturbed
water depths at both inlets are taken to be 11.7 m and the tidally–averaged water trans-
port Q at the second inlet is set to zero. Sensitivity to inlet depth and tidally–averaged
water transport at inlet II, assuming no M4 tidal forcing, is discussed in Appendix A.3. All
other parameter values are taken from Tab. 2.1.

The resulting morphodynamic equilibrium condition reads (see Eq. (2.15))

d

d x

(
<F 00

diff>+<F 00
topo>+<F 20

adv>
)
= 0, (2.27)

where for the numerical experiment under consideration, the width within the inlet sys-
tem is constant, i.e. B(x) = B I .

To obtain these morphodynamic equilibria, an initial value approach is employed
by studying the evolution of a spatially uniform bed (i.e. the system of equations (2.24)
is integrated in time using a Backward-Euler method). If the divergence of the tidally–
averaged sediment transport vanishes, an equilibrium is reached. Two numerical ex-
periments have been carried out with different M2 tidal forcings applied at the second
inlet.

In the first numerical experiment, we take AII
M2

= 0.77m, φII
M2

= 54◦ (default value).
The resulting bed evolution is shown in Fig. 2.3a. After approximately 2500 years, the bed
profile reaches its equilibrium with a maximum water depth (WDmax ) of 17.8m, located
at approximately 20 km from inlet I.

In the second numerical experiment, we take AII
M2

= 0.77m and φII
M2

= 0◦. The devel-
opment of the bed profile for the first 23200 years is shown in Fig. 2.3b. This figure clearly
shows that the water depth decreases over time, and after approximately 23300 years, it
vanishes near km 32. The two inlets are not connected anymore, and a system formed
by two single inlets is eventually obtained.

From the previous two numerical experiments, it is evident that a morphodynamic
equilibrium in which both inlets are connected does not necessarily exist for all com-
binations of AII

M2
and φII

M2
. The minimum water depth, denoted by WDmin , can vanish

at some location, disconnecting the two inlets. To assess the existence of morphody-
namic equilibria with both inlets connected for a wider range of forcing conditions, we
take AII

M2
= 0.77m, and vary φII

M2
from −180◦ to 180◦. Here the continuation approach

is employed, thus the equilibria are obtained directly without resorting to time integra-
tion. Fig. 2.3c shows the equilibrium water depth as a function of position along the
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(a) (b)

(c) (d)

Figure 2.3: Bed evolution computed for a constant–width double–inlet system forced with an M2 tide. In panel
(a) the bed profile starts to evolve from an initial flat bottom. The temporal evolution is computed using the
Backward–Euler time–integration method with AII

M2
= 0.77m and φII

M2
= 54◦, the unit of τ is year. Panel (b)

shows the results of the numerical experiment as in panel (a) but with AII
M2

= 0.77m and φII
M2

= 0◦. Panel

(c) shows equilibrium water depth for AII
M2

= 0.77m and φII
M2

varying from −180◦ to 180◦, with colder colors

denoting larger water depths and warmer colors smaller water depths. If no equilibrium is found, a white color
code is used. The location of WDmin is indicated by gray contours and the location of the WDmax is indicated
by black contours. Panel (d) shows WDmin of equilibrium bed profiles with AII

M2
= 0.77m and φII

M2
varying

from −60◦ to 60◦. The color indicates the distance of the WDmin from inlet I, with warmer colors closer to (one
of) the entrance(s), and colder colors more towards the middle of the inlet system. Morphodynamic equilibria
that are linearly stable are indicated by a solid line, while those indicated by a dashed line are linearly unstable.
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Figure 2.4: Number of morphodynamic equilibria as a function of amplitude (horizontal axis) and phase (ver-
tical axis) of the forcing tidal constituent. Regions with no morphodynamic equilibria are shown in black,
regions with one equilibrium in gray, and regions with two or more morphodynamic equilibria in white. The
red and (dark) green lines correspond to the amplitudes and phases used in Figs. 2.3d, 2.5b and 2.5c

embayment (horizontal axis) and the M2 phase at inlet II (vertical axis). The equilibrium
water depth is found to strongly depend on the tidal phase at inlet II. By increasing φII

M2

from −180◦ to −2◦, WDmin decreases from 11.7m to 2.5m, and by decreasing φII
M2

from
180◦ to 13◦, WDmin varies from 11.7m to 6.0m. For a phase between −2◦ and 13◦, no
double–inlet morphodynamic equilibrium exists.

To quickly characterize these morphodynamic equilibria, the quantities WDmin and
its location are used. As an example, using a constant amplitude AII

M2
= 0.77m, WDmin is

shown as a function of φII
M2

in Fig. 2.3d. Two distinct branches of morphodynamic equi-
librium solutions are found, each consisting of a stable (solid) and unstable (dashed)
part. The stable and unstable solutions on each branch are connected by a so–called
limit point, denoted by L1 and L2. For phases with values between the two limit points,
no equilibria were found with both inlets connected. Note that the stable solutions cor-
respond to the equilibria shown in Fig. 2.3c.

To be more precise, Fig. 2.3d indicates that the number of morphodynamic equilibria
and their stability strongly depends on the value of the phase at inlet II. For −1.9◦ ≤
φII

M2
≤ 12.8◦ no morphodynamic equilibrium exists, for −53◦ ≤ φII

M2
≤−1.9◦ and 12.8◦ ≤

φII
M2

≤ 47◦ two morphodynamic equilibria (one stable and one unstable) exist, whereas
for all other phase values one stable equilibrium exists. Furthermore, the number of
morphodynamic equilibria and their stability not only depends on the phase of the M2

tide at inlet II, but also on its amplitude. Fig.2.4 shows the number of morphodynamic
equilibria as a function of the amplitude AII

M2
and the phase φII

M2
.

To further study these equilibria, the dependency of WDmin on the amplitude and
phase at inlet II is investigated (Fig. 2.5). For 0.31m ≤ AII

M2
≤ 1.24m and phases |φII

M2
| ≥

60◦ it is found that WDmin for stable equilibria occur at the entrances reaching the min-
imum water depth of 11.7m. Therefore, in the following we focus on |φII

M2
| < 60◦, while

AII
M2

is varied between 0.31m and 1.24m. In Fig. 2.5a, the depth of the watersheds is
shown as a function of the amplitude and phase of the M2 tide at inlet II. From this fig-
ure it follows that by increasing AII

M2
from 0.31m to 1.24m and/or φII

M2
from −60◦ to 60◦



2

38
2. MORPHODYNAMIC EQUILIBRIA IN DOUBLE INLET SYSTEMS: THEIR EXISTENCE AND

STABILITY

(a)

(b) (c)

Figure 2.5: Morphodynamic equilibria for a constant–width inlet system forced with an M2 tide. Panel (a)
shows WDmin for the equilibrium configurations computed withφII

M2
in the range (−60◦, 60◦) and AII

M2
varying

from 0.31m to 1.24m. The black dots denote the parameter values used in Figs. 2.3d, 2.5b and 2.5c. Panel (b)
shows WDmin of equilibria for AII

M2
= 0.94m and φII

M2
varying in the range (0◦, 30◦). Panel (c) shows the same

information as in panel (b) but withφII
M2

= 15.5◦ and AII
M2

in the range (0.80m, 1.10m). The color indicates the

location of the WDmin , with warmer colors closer to (one of) the entrance(s), and colder colors more towards
the middle of the tidal basin. Solid lines in plots (b) and (c) denote linearly stable equilibrium configurations,
while dotted lines correspond to linearly unstable equilibrium configurations.
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Figure 2.6: The bed profiles corresponding to the equilibrium configurations E1, E2, E3 and E4 indicated by
black dots in Figs. 2.5b and 2.5c.

results in a shift of WDmin from a location closer to inlet I to a location closer to inlet
II. The black line in the figure denotes the location where WDmin vanishes and, conse-
quently, the double–inlet system reduces to two single–inlet systems.

In two regions in the (AII
M2

,φII
M2

)–space, complex bifurcation structures occur, indi-
cating that possibly multiple stable morphodynamic equilibria exist. To assess the num-
ber of equilibria, the bifurcation structure is carefully analysed over two paths in the
parameter space, with one path characterized by a fixed amplitude and varying phase,
and the second path by a fixed phase and varying amplitude.

The values of WDmin for the first path in parameter space, i.e. AII
M2

= 0.94m and

φII
M2

in the range of 0◦ to 30◦ is shown in Fig. 2.5b. This figure shows that the number of
morphodynamic equilibria depends sensitively on the phase angle. Similarly in Fig.2.5c,
WDmin is shown for M2 amplitudes varied between 0.80m and 1.10m, with the phase
fixed at 15.5◦. This figure illustrates that the number of morphodynamic equilibria also
depends sensitively on the tidal amplitude.

The vertical black lines in Figs. 2.5b and 2.5c correspond to the same parameter val-
ues (AII

M2
= 0.94m, φII

M2
= 15.5◦). Hence, the equilibrium bed configurations denoted

by E1, E2, E3 and E4, are the same in both figures. The corresponding bed profiles are
shown in Fig.2.6. Equilibria E1 and E3 are linearly stable, whereas E2 and E4 are linearly
unstable. Each equilibrium is characterized by a different balance between the various
tidally–averaged transport terms in Eq.(2.15), contributing to a different, spatially uni-
form, total sediment transport. These contributions, divided in two diffusive contribu-
tions and one total advective contribution (see Eq.(2.10) and (2.15)), and the total trans-
port are shown in Figs. 2.7a, c, e, g, while Figs. 2.7b, d, f, h show the different contribu-
tions to the advective contribition. In all cases, the total transport is positive, indicating
a net transport from inlet I to inlet II. These plots show that all transport mechanisms
result in significant contributions to the total transport.

Moreover, Fig. 2.8 indicates that the direction and magnitude of the total tidally–
averaged transport strongly depends on the forcing conditions at inlet II. Note the pres-
ence in the parameter space of a region in which the net sediment transport is negative,
indicating a tidally–averaged total transport from inlet II to inlet I. IncreasingφII

M2
results
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(a) E1–Transport Contributions (b) E1–Contributions of F 20
adv

(c) E2–Transport Contributions (d) E2–Contributions of F 20
adv

(e) E3–Transport Contributions (f) E3–Contributions of F 20
adv

(g) E4–Transport Contributions (h) E4–Contributions of F 20
adv

Figure 2.7: Panels (a), (c), (e) and (g) show the various transport contributions characterizing the equilibrium
configurations E1, E2, E3 and E4 as a function of the location within the inlet system. Panels (b), (d), (f) and
(h) depict the contributions to the tidally–averaged advective transport for E1, E2, E3 and E4.
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Figure 2.8: Total tidally–averaged transport characterizing the equilibrium bed profiles as a function of tidal
amplitude and tidal phase of the forcing applied at the inlet II. The thin black lines indicate equilibria with a
vanishing tidally–averaged total transport. The black dots denote the parameter values used in Figs. 2.3d, 2.5b
and 2.5c.

in a decrease of net transport from inlet II to inlet I on the left of the thin black lines, that
indicate a zero transport, or an increase of net transport from inlet I to inlet II on the
right of these lines.

2.4.2. CONSTANT–WIDTH SYSTEM SUBJECTED TO ALL FORCINGS
In this section, all hydrodynamic forcings are taken into account. They consist of M2

and M4 constituents prescribed at both inlets and a tidally–averaged water transport,
prescribed at inlet II. The complete morphodynamic equilibrium condition up to orders
O(ϵ2,ϵγ) has to be solved. It reads:

d

d x

(
<F 00

diff>+<F 00
topo>+<F 20

adv>+<F 11
adv>

)
= 0, (2.28)

with the transport terms on the left–hand side given in Eqs. (2.20)–(2.22). All parameter
values are taken from Tab. 2.1, except for the M4 phase at inlet II, φII

M4
, which is varied

between −180◦ and 180◦. Only linearly stable morphodynamic equilibria are discussed
below.

The sensitivity of morphodynamic equilibria to φII
M4

is illustrated in Fig. 2.9a, where

the water depth is shown as a function of distance from inlet I (horizontal axis) and φII
M4

(vertical axis). The total sediment transport of the stable morphodynamic equilibria is
shown in Fig. 2.9b as a function of φII

M4
, illustrating the sensitivity of both direction and

magnitude of the total transport to φII
M4

.

In Fig. 2.9c, the equilibrium water depths are shown for some selected values of φII
M4

.
Focusing on −121◦ (for the other phases, see Appendix A.4), while the total sediment
transport, split into its four main contributions is shown in Fig. 2.9d. The two diffusive
contributions, <F 00

diff> and <F 00
topo>, are only significant near inlet I. The sediment trans-

port related to the internally–generated overtides, <F 20
adv>, is mostly directed from inlet
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(a) (b)

(c) (d)

Figure 2.9: Stable morphodynamic equilibria obtained by varying φII
M4

and including all forcing terms. Panel

(a) shows the bed profiles of stable morphodynamic equilibria, with warmer (colder) colors indicating smaller
(larger) water depths. The black line indicates the location of WDmax . Panel (b) shows the total sediment
transport of the morphodynamic equilibria. Panel (c) reports equilibrium bed profiles for some selected values
ofφII

M4
, namelyφII

M4
= 0◦,−95◦ and −121◦, respectively. The water depths and total transports for these phases

are indicated by the blue, orange and green line in Fig. 2.9a–b. The associated tidally–averaged transports
obtained with φII

M4
= −121◦ (the default value for φII

M4
, see Tab. 2.1) are shown in panel (d). Total transport,

and contributions due to <F 00
diff>, <F 00

topo>, <F 20
adv> and <F 11

adv> are indicated by the purple, blue, orange,

green and red lines, respectively.
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(a) (b)

(c) (d)

Figure 2.10: Stable morphodynamic equilibria obtained for different width distributions of the double–inlet
system, including all forcings. Panel (a) shows the width distributions for some selected values of the width
parameter c0 (0, 0.5, 1). Panel (b) reports the corresponding bed profile. Panel (c) shows the stable equilibrium
bed profiles obtained for c0 varying from −0.1 to 1.1. Panel (d) shows the total tidally–averaged sediment
transport of stable equilibria for the same variations of c0.

II to inlet I, whereas the transport due to external overtides, <F 11
adv>, occurs in most of

the double–inlet system and is directed from inlet I to inlet II. The advective contribu-
tions can be further divided in different components (see Appendix A.4). It turns out
that only two contributions dominate <F 20

adv>, namely the transport of tidally–averaged
concentration by the tidally–averaged flow < u10 ><C 00 > and the correlation of u00

c1C 10
c1 .

Similarly, there are two main contributions to <F 11
adv>, i.e. u00

c1C 01
c1 and u01

c2C 00
c2 .

2.4.3. VARYING–WIDTH SYSTEM SUBJECTED TO ALL FORCINGS
To illustrate the influence of width variations on the morphodynamic equilibria, the
width is varied as

B/B I = 1+ c0

2tanh(2.5)

[
tanh

(
0.75−x/L

0.1

)
+ tanh

(
x/L−0.25

0.1

)]
, (2.29)
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where c0 is a parameter that controls the width variation. This width distribution is cho-
sen to systematically vary the width when moving away from the entrances, a geometric
trend often observed in tidal inlet systems. When c0 = 0 the geometry reduces to the
constant width–geometry analyzed in the previous sections. Increasing (decreasing) c0

results in a double–inlet system characterised by a width that increases (decreases) to-
wards the middle of the inlet system as shown in Fig. 2.10a. The associated equilibrium
water depths are shown in Fig. 2.10b, while Fig. 2.10c reports the equilibrium water depth
as a function of c0 (color scale) and of location in the double–inlet system (horizontal
axis). Fig. 2.10d shows the total sediment transport as a function of c0. This transport
is directed from inlet II to inlet I for a rectangular inlet system (c0 = 0), and decreases
for increasing width variation. If the width in the middle of the inlet system is approxi-
mately 50% larger than at the inlets, the total transport vanishes. For even larger width
variations, the transport is directed from inlet I to inlet II.

The various contributions to the transport can again be split into its different contri-
butions (see Appendix A.4). For small enough c0 (i.e. c0 < 0.5), the magnitude of <F 20

adv>
is larger than that of <F 11

adv>. Since <F 20
adv> is directed from inlet II to inlet I, the total

transport is negative. When c0 is increased, the relative importance of <F 11
adv> increases,

resulting in a total transport from inlet I to inlet II for large enough c0.

2.5. DISCUSSION

2.5.1. MORPHODYNAMIC EQUILIBRIA

The results presented in Sect. 2.4 suggest that the number and (linear) stability of mor-
phodynamic equilibria in double–inlet systems depends sensitively on the forcing con-
ditions and model geometry. For a rectangular geometry, with the water motion forced
by one tidal constituent, the full bifurcation diagram indicates that for most parame-
ter values, either one unique stable equilibrium or no morphodynamic equilibrium may
exist in a system with the two inlets connected together. However, in a small part of the
parameter space, more than one stable equilibrium was found.

Qualitatively, these observations are consistent with results obtained using the mod-
elling approach employed by Van de Kreeke et al. [18] and Brouwer et al. [19]. In these
models, only the tidal inlets are morphodynamically active, while the prescribed bathy-
metry in the back–barrier basin is assumed uniform and constant in time. In partic-
ular, Van de Kreeke et al. [18] investigated the influence of a topographic high on the
existence and stability of morphodynamic equilibria. They found that, depending on
the height of this topographic high, no equilibrium, one unique stable equilibrium or
two stable equilibria could exist. On the other hand, Brouwer et al. [19] showed that the
existence of these equilibria depends sensitively on the amplitude and phase of the M2

tide at the seaward side of the tidal inlets. Even though these results seem to confirm the
findings of Sect. 2.4 (i.e. sensitivity of the number and the stability of morphodynamic
equilibria to geometry and forcing), it should be pointed out that the model formula-
tions are quite different and hence that results obtained with the different approaches
are difficult to compare.
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2.5.2. COMPARISON WITH RESULTS OF A COMPLEX NUMERICAL MODEL

In this section, we compare the cross–sectionally averaged water motion provided by the
present model, with the results of a state–of–the–art process–based numerical model,
while the modeled equilibrium bathymetry is compared with that observed in the field.
The numerical model used to calculate the water motion is the General Estuarine Trans-
port Model (GETM), a three–dimensional model that solves the hydrodynamic equa-
tions using a finite difference approach. Effects of drying and flooding are included. For
an extensive discussion of the features of the model and of the application site we refer
the reader to Duran-Matute et al. [8]. The planform geometry and the bathymetry of
the double–inlet tidal system were obtained from field observations and are shown in
Fig. 2.2a. In this figure, the Marsdiep inlet is denoted as inlet I and the Vlie inlet as inlet
II. The Wadden islands and mainland are colored in white, whereas the water depth is
shown in color scale.

The width distribution as a function of distance from inlet I to be used in the present
model were obtained by smoothly connecting points with a water depth of 1m, indicated
with triangles in Fig. 2.2a. Using these lines, the basin centerline was constructed. This
line was parameterized by the spatial coordinate x, which starts at inlet I (x = 0) and
ends at inlet II (x = 59km). The width as a function of x is defined as the length of the
lines perpendicular to the basin centerline. Furthermore, the mean depth is obtained by
averaging the observed depths over the width.

The resulting width profile is shown in Fig. 2.11a. The double–inlet system is char-
acterized by a small width near the seaward sides, but also around kilometer 31. At this
location, the width is restricted by the presence of the tidal divide between the Eier-
landse gat and the Marsdiep–Vlie system on the northern side, and the mainland in
the south. This width profile has then been used to compute the values of the width–
averaged depth at both entrances, as well as the amplitudes and phases of the tidal con-
stituents (see Tab.2.1).

Fig. 2.11b shows the width–averaged amplitudes of the M2 and M4 tidal constituents
obtained with the present equilibrium model and computed through the GETM model.
The overall trend appears to be well captured. Furthermore, there is a good correspon-
dence with the tidal amplitudes computed with the present model and those presented
in Ridderinkhof [37], Hepkema et al. [45], in which the hydrodynamics of the Marsdiep–
Vlie system was investigated through cross–sectionally averaged models.

The width–averaged equilibrium water depth is shown in Fig. 2.11c. There is a good
qualitative comparison between the depths observed in the field and those computetd
by the model. In particular the dramatic depth increase when moving from inlet I a few
kilometers into the basin is well captured. When further moving towards inlet II, the
distribution of the depth variations is captured qualitatively, but the water depth in the
model is typically overestimated with respect to observed data. In Fig. 2.11d the various
transport contributions in morphodynamic equilibrium are shown. It is observed that
the total sediment transport is from inlet I to inlet II. In the first few kilometers, the dom-
inant transport contribution is given by topographic diffusion and is directed from inlet
I to II, whereas all other contributions are in the opposite direction. The topographic
diffusive sediment transport contribution is directly related to the relatively fast increase
of the water depth when moving into the basin. When moving further into the basin, the
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(a) (b)

(c) (d)

Figure 2.11: Comparison between the stable morphodynamic equilibria predicted by the present model
(marked by model in the figure), the real bathymetric data and the water motion obtained with the General
Estuarine Transport Model (GETM)(marked by data in the figure). The width of the double–inlet system is
shown in panel (a). The amplitude of the M2 and M4 tides obtained from the GETM and the present model
are compared in panel (b), while the bed profiles computed by the present model and observed in the field are
compared in panel (c). Panel (d) displays the various sediment transport contributions, together with the total
sediment transport (indicated with the purple line) which is directed from inlet I to inlet II.
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water depth decreases and topographic diffusion changes sign. However, still the net
transport is directed towards inlet II due to internally-generated advection and diffusion
that changes sign as well. Moving even further towards inlet II (x > 24km), the transport
due to the externally–prescribed overtide dominates, resulting in a net transport in the
direction of inlet II. The direction of transport at inlet I, the Marsdiep Inlet, is in agree-
ment with the transport direction found in Sassi et al. [9]. In our model setup, this finding
directly implies that at the second inlet, the Vlie, sediment should be exported. In Sassi
et al. [9] the median value of the sediment transport at the Vlie is close to zero, with pre-
vailing import or export, depending on the specific forcing conditions. However, in the
model setup of Sassi et al. [9], the Wadden Sea is modeled as a multiple–inlet system, al-
lowing for sediment transport over watersheds to adjacent basins that are not taken into
account in the model schematization used in this thesis.

Even though the main characteristics of the water motion (from a refined numerical
model), and the main bathymetric features (from observations), are reproduced quali-
tatively, still some qualitative differences are evident. They concern the hydrodynamic
quantities in regions with extensive tidal flats and multiple channels. In this study, how
variations over the cross–sectional area are not explicitly taken into account. It is possi-
ble to include these effects by modelling parametrically the effects of mass storage and
momentum sinks (Hepkema et al. [45], Friedrichs and Aubrey [46]). However, to capture
these effects dynamically, the existence and stability of morphodynamic equilibria in a
two–dimensional (depth–averaged) model have to be studied. The results obtained with
the cross–sectionally averaged model are essential input for models in which the above
effects are incorporated explicitly (Dijkstra et al. [43], Boelens et al. [47]). Furthermore,
in reality water and sediment are transported over the watersheds to adjacent tidal inlet
systems (Duran-Matute et al. [8], Sassi et al. [9]). These transport processes can only be
captured by extending the present model to a morphodynamic model for multiple inlet
systems (Roos et al. [21], Reef et al. [22]).

Also the width–averaged equilibrium bathymetry obtained with the present model
exhibits the largest deviations with respect to the observed data in regions with extensive
tidal flats. There, the effects of wind and waves can play an important role (de Swart and
Zimmerman [2], Marciano et al. [48]). Furthermore, the possible import of sediment due
to littoral drift along the coast of the sea is neglected in the present study. This transport
mechanism was shown to be important by Van de Kreeke et al. [18], Roos et al. [21].

2.6. CONCLUSIONS
An idealized model has been developed to systematically investigate the existence of
cross–sectionally averaged morphodynamic equilibria in double–inlet systems. A mor-
phodynamic equilibrium is defined by the condition for which the bottom does not
evolve anymore, requiring the tidally–averaged sediment transport to be spatially uni-
form. The present model is based on the cross–sectionally averaged shallow water equa-
tions, a width–averaged and depth–integrated advection–diffusion equation for the sus-
pended sediment dynamics and a width–averaged bed evolution equation.

The morphodynamic equilibria have been computed by using a so–called bifurca-
tion method. This approach allows to obtain the equilibrium bed profile (and associated
water surface elevation, velocity and concentration fields) directly for given values of the
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relevant parameters, of the tidal forcing constituents, of the water depth at the seaward
boundaries and the system geometry, without resorting to time–integration techniques.

Considering a double–inlet system with a constant width and forced by an M2 tidal
constituent at the seaward boundaries, it was shown that, depending on the prescribed
M2 amplitudes and phases, no equilibrium, one equilibrium or more than one mor-
phodynamic equilibrium configurations can exist. In the absence of a morphodynamic
equilibrium, the water depth vanishes somewhere within the tidal basin and the double–
inlet system reduces to two uncoupled single–inlet systems. In case of multiple morpho-
dynamic equilibria, most often two equilibrium solutions are found, one linearly stable
and the other one linearly unstable. However, for very specific regions of the parameter
space, more than one stable equilibrium can be found, with typically one equilibrium
having a much smaller minimum water depth than the other. When only one morpho-
dynamic equilibrium was found, the equilibrium was always linearly stable.

The location of the watershed, its local depth, and the total tidally–averaged sed-
iment transport are used to characterize the morphodynamic equilibria, since these
properties are sensitive to changes in tidal forcing. Typically, the watershed tends to
get closer to the inlet with a larger tidal amplitude. The total transport is usually directed
from the inlet with the largest tidal amplitude to the one with the smallest tidal ampli-
tude, with a weak dependency on the phase difference between the tidal forcing at the
two inlets.

The model results have been compared with field observations by forcing the system
with the first two tidal constituents and considering a tidally–averaged water velocity
at one of the inlets. Furthermore, the observed width distribution along the basin was
prescribed in the model. Taking parameter values representative of the Marsdiep–Vlie
system one stable morphodynamic equilibrium was found. To assess the robustness
of this equilibrium, the phase of the M4 tide at one of the inlets and the width distri-
bution throughout the double–inlet system were systematically varied. The resulting
bathymetry and direction of sediment transport were found to strongly depend on these
parameters. This finding suggests that information concerning morphodynamic equi-
libria for double–inlet systems with characteristics different from those of the Marsdiep–
Vlie system can only be obtained by dedicated numerical experiments to explore the
parameter space.

Taking the large–scale width variations observed in the Marsdiep–Vlie system into
account, the main characteristics of the observed width–averaged bathymetry in this
double–inlet system were qualitatively reproduced. The large water depth near the Texel
island was reproduced by the model results, as well as the presence of two shallower re-
gions, divided by a deeper part, when moving towards the Vlie inlet. Even though the
residual water transport observed in the field is directed from the Vlie inlet to the Mars-
diep inlet, the model predicts a sediment transport in the opposite direction, as also
resulting from much more refined numerical models. The order of magnitude of this
transport, predicted by these numerical models, is well–reproduced by the present ide-
alized model.
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3
INITIAL FORMATION OF

CHANNEL–SHOAL PATTERNS IN

DOUBLE–INLET SYSTEMS

Channel–shoal patterns are often observed in the back–barrier basins of inlet systems and
are important from both an economical and ecological point of view. Focussing on double–
inlet systems, the initial formation of these patterns is investigated using an idealized
model. The model is governed by the depth–averaged shallow water equations, a depth–
integrated concentration equation and a tidally–averaged bottom evolution equation. Fo-
cussing on rectangular basins and neglecting the effects of earth rotation, it is found that
laterally uniform morphodynamic equilibria can become linearly unstable, resulting in
initial patterns that resemble channels and shoals.

When the water motion is only forced by an M2 tidal constituent, the existence of (lat-
erally uniform) morphodynamic equilibria for which both inlets are connected strongly
depends on the relative phase and amplitudes of the tidal forcing. If such equilibria exist,
they can be either stable against small perturbations or linearly unstable. If these equilib-
ria are linearly unstable, two instability mechanisms can be identified, the first related to
the convergences and divergences of diffusive transports, the second mechanism related to
a combination of advective and diffusive transports. In the former case, all eigenvalues are
real and the bedforms grow exponentially in time. In the latter case, the eigenvalues are
complex, resulting in bedforms that both migrate and grow in time. In case external over-
tides and a time–independent discharge are included, no diffusive instabilities are found
anymore for the parameters considered in this thesis. This implies that all instabilities are
migrating in time.

In all cases considered, the bed perturbations have only an appreciable amplitude at loca-
tions where the underlying laterally uniform equilibrium has a local minimum in water

This chapter is published as: X. Deng, T. De Mulder, and H. M. Schuttelaars. (2023) Initial formation of
channel–shoal patterns in double–inlet systems. Ocean Dynamics 73, 1-21.
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depth. This is consistent with observations from numerical models and laboratory exper-
iments.

3.1. INTRODUCTION
Around 12% of the world’s coastline (Mulhern et al. [1]) can be characterised as barrier
coasts. They consist of barrier islands, back–barrier basins and tidal inlets connecting
the back–barrier basins to the open sea (de Swart and Zimmerman [2]), and have shapes
and sizes changing from place to place (Glaeser [3], Stutz and Pilkey [4]). Barrier coasts
are very important in terms of ecology and economy. They provide a habitat for many
aquatic and terrestrial species and other ecosystem services, and are themselves impor-
tant elements of biodiversity. They are attractive areas for economical activities such as
gas–mining, dredging and recreation. Furthermore, these systems are of importance for
coastal safety (Glaeser [3]). An example of a barrier coast is the Wadden Sea along the
Dutch, German and Danish coast (Oost et al. [5]).

Barrier coasts are highly dynamic because of the complex interactions among water
motion, sediment transport and bottom evolution and because of external changes like
sea level rise and human interference (McBride et al. [6], Van der Spek [7]). In these mor-
phologically active areas, bottom patterns with multiple shoals separated by meander-
ing deep channels are often observed (Dalrymple and Rhodes [8]). These channel–shoal
patterns have length scales ranging from several meters to kilometers (de Swart and Zim-
merman [2]). Moreover, these patterns can exhibit a cyclic morphodynamic evolution of
several years to decades (Israel and Dunsbergen [9]).

To simulate the morphodynamic development of these channels and shoals in bar-
rier coasts, complex process–based models were developed (Marciano et al. [10], D’Alpaos
et al. [11], Hibma et al. [12, 13]). For example, Van der Wegen and Roelvink [14] simulated
bottom evolution of a laterally–uniform constantly–sloping bed profile in a tidal basin.
They found that channels and shoals are initiated in the shallow regions near the land-
ward end of the tidal basin, after which these patterns branch out toward the seaward
side of the tidal basin. However, the essential mechanisms that cause these bottom pat-
terns to develop are difficult to assess from these complex state-of-the-art models.

To gain insight into the physical mechanisms initializing channel and shoal develop-
ment in a single–inlet system, Schuttelaars and de Swart [15] analyzed the linear stability
of laterally uniform morphodynamic equilibria (Schuttelaars and de Swart [16]) in short
basins using an idealized width–averaged model. By assuming that, tidally averaged,
sediment was mainly transported by diffusive processes, they found that the basic states
were unstable if the bottom friction parameter exceeded a critical value. van Leeuwen
and de Swart [17, 18] extended the model with internally generated advective transport.
They found that channels and shoals were on the seaward boundary if the sediment
transport is dominated by advective processes. Ter Brake and Schuttelaars [19] further
discussed the effect of bottom friction including topographic variations in the diffusive
transport, and showed that channel–shoal patterns started to grow in the landward shal-
low regions.

However, these studies of channels and shoals focused on single–inlet systems, name-
ly tidal basins with one inlet connecting to the open sea. Recent studies show that there
is a strong water and sediment exchange between adjacent sub–basins in the Wadden



3.2. MODEL DESCRIPTION

3

55

Sea (Duran-Matute et al. [20], Sassi et al. [21]). Such interactions are also found in the Ria
Formosa in south Portugal (Salles et al. [22], Pacheco et al. [23]) and Venice Lagoon (Sem-
inara et al. [24], Tambroni and Seminara [25]). This strongly suggests that to understand,
model and predict the morphodynamic evolution of barrier coasts, back barrier basins
should be considered as multiple–inlet systems.

The present study aims at analyzing the initial formation of channels and shoals in
a double–inlet system, consisting of a basin with two inlets connecting to the open sea.
Only rectangular planform geometries will be considered and the effects of earth rota-
tion on the water motion is neglected. By studying the linear stability (Schuttelaars and
de Swart [15], van Leeuwen and de Swart [17], Ter Brake and Schuttelaars [19]) of laterally
uniform morphodynamic equilibria in double–inlet systems (Deng et al. [26]), insight in
the 2DH stability of these systems is obtained, thus extending the 1D stability analysis
performed in Deng et al. [26]. Furthermore, the mechanisms resulting in these instabil-
ities can be identified. Default parameters used are characteristic for the Marsdiep–Vlie
inlet system in the Dutch Wadden Sea, even though a direct comparison with the pat-
terns observed in this system cannot be made because of the assumption of a rectangu-
lar basin. The sensitivity of the linear stability of the basic state to tidal forcings will be
investigated in detail. The linear stability analysis is a first step in systematically obtain-
ing morphodynamic equilibria with a more complex (finite amplitude) channel–shoal
structure.

In Sect. 3.2, the equations governing water motion, transport of sediment and bed
evolution are presented. The scaling of the system of equations and the solution method
are presented in Sect. 3.3. In Sect. 3.4, morphodynamic equilibria in double–inlet sys-
tems and their linear stability are studied. In Sect. 3.5, the results are discussed and
conclusions presented.

3.2. MODEL DESCRIPTION

We consider a rectangular tidal basin with a prescribed length L and width B (see Fig. 3.1a
for a top view). This basin is connected to the open sea by two inlets, located at x = 0 and
x = L, with x the coordinate in the along–basin (or longitudinal) direction. The landward
boundaries of the rectangular tidal basin are located at y = 0 and y = B , where y is the co-
ordinate in the cross–basin (or lateral) direction. The landward boundaries are assumed
to be both impermeable for water and sediments, and non-erodible.

The free surface is located at z = ζ̂, measured from the undisturbed free surface found
at z = 0 (see Fig. 3.1b for a side view). The undisturbed water depth of the tidal basin at
x = 0 is denoted by H I and at x = L by H II , both are assumed to be laterally uniform. The
erodible bottom consisting of uniform sandy material is found at z = ĥ − H I , where ĥ
denotes the bed level measured from the reference depth H I . Hence, the instantaneous
local water depth is given by H I − ĥ + ζ̂.

The tidal basins we consider have a water depth much smaller than both the length
and width. Hence, the water motion can be described by the depth–averaged shallow
water equations for a homogeneous fluid (Csanady [27]). Assuming the basin width to
be much smaller than the Rossby deformation radius allows for neglecting earth rotation
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(a) (b)

Figure 3.1: A sketch of an idealized tidal basin connected to the open sea at both ends. (a) A top view of the
schematized double–inlet system with a uniform width B . The longitudinal and lateral velocities are denoted
by û and v̂ . (b) A longitudinal cross–section view of the double–inlet system, with the depth at inlet I denoted
by H I and the depth at inlet II denoted by H II . The bed profile (red line) is denoted by ĥ(x, y, t ), and the free
surface elevation (blue line) by ζ̂(x, y, t ).

effects. The resulting equations read:

∇· [(H I − ĥ + ζ̂)û]+ ζ̂t = 0, (3.1a)

ût + û ·∇û+ g∇ζ̂+ r∗û

H I − ĥ + ζ̂ = 0, (3.1b)

with Eq.(3.1a) the depth–averaged continuity equation and Eq.(3.1b) the depth–averaged
momentum equation. In these equations, the horizontal velocity is denoted by û =
(û, v̂), with û the velocity in the longitudinal and v̂ the velocity in lateral direction. Time
is denoted by t and g denotes the gravitational acceleration. Subscripts indicate a deriva-
tive with respect to that variable, and the horizontal derivative operator is denoted as
∇= (∂x ,∂y ). The inner product is denoted by a dot. Following Lorentz [28] and Zimmer-
man [29], bottom friction is linearized using the bottom friction coefficient defined as
r∗ = 8Ucd /3π, with U a characteristic velocity scale (which will be defined in Sect. 3.3.1)
and cd a drag coefficient.

The variables ζ̂ and û are decomposed into a tidally–averaged and a time–varying

contribution as ζ̂ =<ζ̂> + ¯̂ζ and û =<û> + ¯̂u, where the angular brackets <·>= ∫ T
0 ·d t/T

denote the tidally averaged contribution, with T the M2 tidal period, and an overbar ·̄
the instantaneous deviation from this tidal average such that <·̄>= 0.

The time-varying parts of the sea surface elevations at the two seaward sides of the
inlets are assumed to be forced by prescribed M2 and M4 tidal constituents,

¯̂ζ= AI
M2

cos(σt −φI
M2

)+ AI
M4

cos(2σt −φI
M4

) at x = 0, (3.2a)

¯̂ζ= AII
M2

cos(σt −φII
M2

)+ AII
M4

cos(2σt −φII
M4

) at x = L. (3.2b)
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The constants AI
M2

(AI
M4

) and AII
M2

(AII
M4

) denote the amplitudes of the M2 (M4) tidal

constituents at inlet I and II , while the corresponding phases are denoted by φI
M2

(φI
M4

)

and φII
M2

(φII
M4

). Even though these amplitudes and phases may in principle depend on
the lateral coordinate y , we assume them to be uniform in the lateral direction. The
angular frequency of the M2 tidal signal is given by σ= 2π/T .

Furthermore, the tidally averaged mean sea surface elevation at inlet I is required to
be zero and a tidally averaged discharge is prescribed at inlet II :

<ζ̂>= 0 at x = 0, y ∈ [0,B ], (3.3a)

<(H − ĥ − ζ̂)û>=Q∗/B at x = L, y ∈ [0,B ], (3.3b)

with Q∗ the residual water transport at inlet II . A positive (negative) Q∗ represents a
residual water transport out of (into) the system at inlet II . For an extensive discussion
of these boundary conditions, see Deng et al. [26].

The condition of impermeability at the landward boundaries of the back–barrier is-
lands reads

(H − ĥ + ζ̂)û ·n = 0 at y = 0 and B , (3.4)

in which n denotes the outward pointing unit vector normal to the boundary.
The sediment in the tidal basin consists of fine sand with a uniform grain size that is

mainly transported as suspended load (see the scaling analysis in Sect. 3.3, the bedload
transport contribution is given in Eq. (3.10)). The associated depth–integrated concen-
tration equation (Ter Brake and Schuttelaars [19, 30]) reads

Ĉt +∇· [ûĈ −kh∗(∇Ĉ + ws

kv∗
βĈ∇ĥ)] =αû · û− w2

s

kv∗
βĈ , (3.5)

where Ĉ is the depth–integrated suspended sediment concentration. The horizontal dif-
fusivity kh∗, the vertical diffusivity kv∗, the settling velocity ws and the erosion param-
eter α (with units kgsm−4) related to sediment properties (Dyer [31]) are assumed to be
constant in space and time. The deposition parameter β is defined by (see Ter Brake and
Schuttelaars [30] for details, also for the explicit expression of the settling term)

β= 1

1−exp(− ws
kv∗ (H I − ĥ + ζ̂))

. (3.6)

The boundary conditions at the two inlets read (Ter Brake and Schuttelaars [30], Schut-
telaars and de Swart [32])

lim
kh∗→0

Ĉ (x, t ,kh∗) = Ĉ (x, t ,kh∗ = 0) at x = 0 and L, (3.7)

which, based on Eqn. (3.5), can be rewritten as

Ĉt +∇· (ûĈ ) =αû · û− w2
s

kv∗
βĈ at x = 0 and L. (3.8)
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At the lateral boundaries we require that no suspended load transport occurs through
these boundaries,

[ûĈ −kh∗(∇Ĉ + ws

kv∗
βĈ∇ĥ)] ·n = 0 at y = 0 and B , (3.9)

with n defined above.
The bed evolution equation (Meerman et al. [33]) is derived from the mass balance

in the sediment layer and reads

ρs (1−p)
(
ĥt −λ∇2ĥ

)=−(αû · û− w2
s

kv∗
βĈ ). (3.10)

Here, ρs is the sediment density and p denotes the bed porosity. The first and sec-
ond term on the right–hand side of Eq. (3.10) model the local erosion and deposition
of sediment, respectively. The first term on the left–hand side models the temporal
bed changes, whereas the second term models the effects of the gravitational transport
present in the bedload transport, using a highly simplified parameterisation with con-
stant λ ∼ O (10−6 − 10−4)m2 s−1, see Schuttelaars and de Swart [16] for a detailed dis-
cussion. Following Schuttelaars and de Swart [15], Falqués et al. [34] this latter term is
retained because, even though bedload transport is typically small in the systems we
consider, the stabilizing effects of the slope terms may play an important role when con-
sidering the stability properties of morphodynamic equilibria.

Substituting Eq.(3.5) into Eq.(3.10) allows for rewriting the bed evolution equation as

ρs (1−p)ĥt + Ĉt =−∇·F, (3.11)

with

F =−kh∗∇Ĉ︸ ︷︷ ︸
Fdiff

−kh∗
ws

kv∗
βĈ∇ĥ︸ ︷︷ ︸

Ftopo

+ ûĈ︸︷︷︸
Fadv

−ρs (1−p)λ∇ĥ︸ ︷︷ ︸
Fbed

(3.12)

being the total depth–integrated sediment transport. This transport consists of four
terms, that is a classical diffusive contribution (Fdiff), a topographically induced diffu-
sive contribution (Ftopo), an advective contribution (Fadv), and a bedload contribution
(Fbed).

At the seaward boundaries the depths are assumed to be fixed:

ĥ = 0 at x = 0, (3.13a)

ĥ = H I −H II at x = L. (3.13b)

Using Eq. (3.9), the requirement of no sediment transport through the lateral bound-
aries reduces to

∇ĥ ·n = 0 at y = 0 and B , (3.14)

implying no bedload transport due to slope effects is allowed through these side walls.
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3.3. SOLUTION METHOD

3.3.1. SCALING AND EXPANSION
To assess the dominant balances in the system of equations (3.1), (3.5) and (3.10), the
relevant variables are made dimensionless by using the following scaling:

(x, y) = L(x̌, y̌), t =σ−1 ť , û =U ǔ, (3.15a)

ζ̂= AI
M2
ζ̌, ĥ = H I ȟ, Ĉ = αU 2kv∗

w2
s

Č , (3.15b)

where dimensionless quantitives are indicated by a check ·̌. The longitudinal x and lat-
eral coordinate y are made dimensionless by the length L of the double–inlet system
(implying that 0 ≤ y̌ ≤ B/L), time is made dimensionless using the M2 angular frequency
σ, the surface elevation is normalized with the M2 amplitude at the seaward side of inlet
I, denoted by AI

M2
, and the bed level is made dimensionless using the depth H I at inlet

I. The typical scale for the velocity is given by U = AI
M2
σL/H I (see Deng et al. [26] for

a motivation of this velocity scale). Assuming an approximate balance between erosion
and deposition, the suspended sediment concentration is made dimensionless using
αU 2kv∗/ω2

s .
Substituting these dimensionless variables in the governing equations and suppress-

ing the checks, the system of equations reads (see Tab. 3.1 for a definition of the various
dimensionless constants)

ζt +∇· [(1−h +ϵζ)u] = 0, (3.16a)

ut +ϵu ·∇u+λ−2
L ∇ζ+ r u

1−h +ϵζ = 0, (3.16b)

a[Ct +∇· (ϵuC −kh∇C −khλdβ∇hC )] = u ·u−βC , (3.16c)

ht +aδsCt =−δs a∇· [ϵuC −kh∇C −khλdβ∇hC
]−δb∇h, (3.16d)

with the dimensionless deposition parameter β now defined as

β= 1

1−exp(−λd (1−h +ϵζ))
. (3.17)

The parameter ϵ = AI
M2

/H I is the ratio of the M2 tidal amplitude to the water depth
at inlet I . The parameter λL = kg L is the product of the frictionless tidal wavenumber

kg =σ/
√

H I g and the length of the inlet system. The dimensionless friction parameter

is denoted by r and is defined as r = r∗/H Iσ. The ratio of the deposition timescale to the
tidal period is denoted by a = kv∗σ/w2

s , and the sediment Peclet numberλd = H I ws /kv∗
is the ratio of the typical time it takes for a particle to settle in the water column to the
typical time needed to mix particles through the water column. The dimensionless diffu-
sion parameter is denoted by kh = kh∗/L2σ. The parameter δs =αU 2/(ρs (1−p)H Iσ) de-
notes the ratio of tidal period T over the time scale related to suspended load, while δb =
λ/σH I L is the ratio between the tidal period T and the time scale related to the grav-
itational term in the bedload transport. For a definition of all parameters, see Tab.3.1.
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Parameters & Definition

ϵ= AI
M2

H I = U
σL λL = σLp

H I g

r = r∗
H Iσ

a = kv∗σ
w2

s

kh = kh∗
L2σ

Q = Q∗
B H I U

δs = αU 2

ρs (1−p)H Iσ
δb = λ

σH I L

λd = H I ws
kv∗ γ= AI

M4

AI
M2

AII
r 2 =

AII
M2

AI
M2

AII
r 4 =

AII
M4

AI
M4

∆φM2 =φII
M2

−φI
M2

φI
r 4 =φI

M4
−2φI

M2

φII
r 4 =φII

M4
−2φI

M2

Table 3.1: Definition of the dimensionless parameters.

Both parameters associated to sediment transport (i.e., morphodynamic) timescale
are small: δs ≪ 1 and δb ≪ 1 . Therefore, using equation (3.16d) it follows that the
bed changes on the tidal timescale are very small. Using a multiple timescale approach
(Sanders and Verhulst [35], Krol [36]), the evolution can be approximated by considering
the tidally averaged bed evolution equation:

hτ =−∇· <F>, (3.18)

with F =−akh∇C︸ ︷︷ ︸
Fdiff

−akhλdβC∇h︸ ︷︷ ︸
Ftopo

+aϵuC︸ ︷︷ ︸
Fadv

−δb

δs
∇h︸ ︷︷ ︸

Fbed

,

with τ= δs t the long (morphodynamic) timescale, i.e., the timescale at which bed chang-
es are significant.

The associated dimensionless boundary conditions read

ζ= cos t +γcos(2t −φI
r 4) at x = 0, (3.19a)

ζ̄= AII
r 2 cos(t −∆φM2 )+γAII

r 4 cos(2t −φII
r 4) at x = 1, (3.19b)

<(1−h +ϵζ)u>=Q at x = 1, (3.19c)

(1−h +ϵζ)u ·n = 0 at y = 0,B/L, (3.19d)

<u ·u−βC>= 0 at x = 0,1, (3.19e)

lim
kh→0

C̄ (x, t ,kh) = C̄ (x, t ,kh = 0) at x = 0,1 (3.19f)

(ϵuC −kh∇C −khλdC∇h) ·n = 0 at y = 0,B/L, (3.19g)

h = 0 at x = 0, (3.19h)

h = 1− H II

H I
at x = 1, (3.19i)

∇h ·n = 0 at y = 0,B/L. (3.19j)

Here, the parameterγ is the ratio of the amplitudes of the M4 and M2 tidal constituents at
inlet I , and AII

r 2 = AII
M2

/AI
M2

(AII
r 4 = AII

M4
/AI

M4
) the ratio of the amplitudes of the M2 (M4)
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tide at inlet II and at inlet I . The parameter ∆φM2 = φII
M2

−φI
M2

is the phase difference
between the M2 tide at inlet II and at inlet I . The relative phases at inlets I and II are
defined as φI

r 4 = φI
M4

−2φI
M2

and φII
r 4 = φII

M4
−2φI

M2
. The dimensionless residual water

transport at inlet II is denoted by Q =Q∗/(B H IU ) and is assumed to be of order ϵ.

For the systems we consider, the parameters ϵ and γ are much smaller than 1 (see
Tab. 3.2 for a typical example), allowing for the introduction of an asymptotic expansion
in ϵ and γ of the physical variablesΦ ∈ {ζ,u, v,C },

Φ=Φ00 +ϵΦ10 +γΦ01 +h.o.t., (3.20)

where the first superscript denotes the order in ϵwhile the second one denotes the order
in γ. Substituting this asymptotic expansion in Eqns. (3.16a)–(3.16c), (3.18) and in the
boundary conditions (3.19), we obtain a series of equations ordered with respect to the
small parameters ϵ and γ. At the leading order, the morphodynamic balance depends
only on the leading order and first order contributions of the water motion and concen-
tration equation in ϵ and γ. The time dependency of the various physical variables can
be written as an (infinite) sum of tidal constituents and a residual component,

Φi j (x, y, t ) =Φi j
res(x, y)+

∞∑
k=1

[
Φ

i j
ck (x, y)coskt +Φi j

sk (x, y)sinkt
]

, (3.21)

where the subscript ’res’ denotes the tidally–averaged (i.e., residual) contribution to the
variable Φ(x, y, t ), while the contributions that temporally vary as cosines (sines) with
frequency k are denoted with the subscript ck (sk). The superscript i denotes the order
in ϵ and the second superscript j the order in γ.

By using the specific forcing of the water motion prescribed at the inlets (see Eqs.
(3.2) and (3.3)), it follows that the temporal variation of the physical variables is restricted
to only a few tidal constituents. This can be seen by substituting the Fourier expansion
Eqn. (3.21) in the system of equations (3.16). Next, collecting terms of the same order
in ϵ and γ and of same tidal constituent and using the prescribed boundary conditions,
the water motion at leading order is found to be controlled by the M2 tidal constituent
only; at order ϵ a residual and M4 contributions are generated, while M4 contributions
are found at order γ:

u(x, y, t ) =u00
c1(x, y)cos(t )+u00

s1(x, y)sin(t )

+ϵ[u10
res(x, y)+u10

c2(x, y)cos(2t )+u10
s2(x, y)sin(2t )

]
(3.22)

+γ[
u01

c2(x, y)cos(2t )+u01
s2(x, y)sin(2t )

]
.

A similar expansion holds for the sea surface elevation ζ(x, y, t ). These water motion
components act as forcing terms in the concentration equation. At the leading order, a
residual and M4 concentrations are generated. At order ϵ and γ only the M2 concentra-
tions are calculated, as the concentration that varies with the M6 tidal frequency does not
produce a residual sediment transport at the leading order. The expansion of C (x, y, t )
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then reads

C (x, y, t ) =C 00
res(x, y)+C 00

c2 (x, y)cos(2t )+C 00
s2 (x, y)sin(2t )

+ϵ[C 10
c (x, y)cos(t )+C 10

s (x, y)sin(t )
]

(3.23)

+γ[
C 01

c (x, y)cos(t )+C 01
s (x, y)sin(t )

]
.

Using expressions (3.22) and (3.23), the leading order tidally–averaged sediment trans-
port contributions are given by

<F00
diff>=−akh∇C 00

res, (3.24)

<F00
topo>=−akhβλdC 00

res∇h, (3.25)

<F20
adv>=

1

2
aϵ2(u00

c1C 10
c1 +u00

s1C 10
s1 +2u10

resC 00
res +u10

c2C 00
c2 +u10

s2C 00
s2 ), (3.26)

<F11
adv>=

1

2
aϵγ(u00

c1C 01
c1 +u00

s1C 01
s1 +u01

c2C 00
c2 +u01

s2C 00
s2 ), (3.27)

<Fbed>=−δb

δs
∇h, (3.28)

in which F00
diff is the classical diffusive contribution and F00

topo is the topographically in-
duced diffusive contribution. The advective transport is decomposed in two contribu-
tions, the internally generated advection denoted as F20

adv and the externally generated
advection denoted as F11

adv. The transport due to the gravitational effect on bedload is
denoted by Fbed. This term is always much smaller than the topographically induced
diffusive contribution (Hepkema et al. [37]) and will be added to the topographically in-
duced diffusive transport when plotting the various contributions.

3.3.2. BASIC STATE AND LINEAR STABILITY
The resulting system of morphodynamic equations, ordered according to the small pa-
rameters ϵ, γ and expanded in terms of the tidal constituents, can be written as

KΨτ =G(Ψ), (3.29)

where Ψ is a 29–dimensional vector of the amplitudes of all physical variables consid-
ered. Namely, Ψ = (ζ00

c1, ζ00
s1 , ζ10

r es , ζ10
c2, ζ10

s2 , ζ01
c2, ζ01

s2 , ...,h), where the dots indicate the
amplitudes of the longitudinal velocity u, lateral velocity v and concentration C . The
matrix K is a diagonal matrix, with a non–zero element (equal to one) only at the row as-
sociated with the bed evolution equation and G (see Appendix E for a simple discussion
of operator G) is a nonlinear operator applied to the vectorΨ.

For a double inlet system with a rectangular geometry and in which the forcing due to
the earth rotation is neglected, the system of equations (3.29) allows for morphodynamic
equilibriaΨe =Ψe (x) that are laterally uniform and satisfy

G(Ψe) = 0. (3.30)

These morphodynamic equilibria do not depend on the lateral coordinate y and the am-
plitudes of the lateral velocities considered are zero. To obtain these basic statesΨe, the
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system of equations is first discretized using a finite element method with continuous
Langrange elements. The number of elements used in the longitudinal direction is 800
(increasing the number of elements resulting in small relative changes, typically smaller
than 0.01 in the amplitudes, not shown) with the degree of each element 2, resulting in a
total number of degrees of freedom of 46429. Next, a Newton–Raphson iterative method
is employed to numerically find the solution of Eq. (3.30), see Deng et al. [26] for a de-
tailed discussion.

These laterally uniform morphodynamic equilibria can be unstable against both one
dimensional (laterally uniform) and two–dimensional perturbations (perturbations with
lateral structure). To assess this stability for infinitesimal perturbations, a small two–
dimensional perturbation is added to the basic stateΨe,

Ψ(x, y,τ) =Ψe(x)+Ψ′(x, y,τ), (3.31)

which is then substituted into Eq. (3.29). Since the perturbations are small, only lin-
ear terms are retained. The resulting linearized equations allow for a solution using the
ansatz

Ψ′ =ℜ[
Ψ̂′(x, y)exp(ωτ)

]
.

The quantity ℜ(ω) is the real part of ω, indicating the exponential growth rate of pertur-
bations. The imaginary part of ω, ℑ(ω), gives the frequency. Substituting eq. (3.31) into
eq. (3.29) results in the following eigenvalue problem

ωK Ψ̂′ = L(Ψe)Ψ̂′, (3.32)

with L the Jacobian matrix associated with the operator G , evaluated at Ψe. This eigen-
value problem is discretized using the same method adopted to solve the equilibrium
problem. Note that the linear stability analysis only gives information of the patterns
that might start to develop on the laterally uniform equilibrium configuration, no infor-
mation concerning the final bathymetry can be directly inferred from this analysis. In
system (3.32), the lateral structure of the various components of the eigenvector Ψ̂′ can
be inferred from the boundary conditions, resulting in:

û′(x, y) = u′
n(x)cos(ln y), v̂ ′(x, y) = v ′

n(x)sin(ln y),

ζ̂′(x, y) = ζ′n(x)cos(ln y), Ĉ ′(x, y) =C ′
n(x)cos(ln y),

ĥ′(x, y) = h′
n(x)cos(ln y).

The longitudinal structure of the eigenfunctions is indicated by ·′ while the dimension-
less wave number ln is defined by

ln = nπL/B , n = 0,1,2, . . . , (3.34)

with n the lateral mode number. When n = 0, the eigenpatterns are laterally uniform and
the associated eigenvalues determine stability against perturbations without any lateral
structure. For n ̸= 0, the eigenpatterns are laterally varying and the eigenvalues deter-
mine the stability of the laterally uniform morphodynamic equilibria against laterally
varying perturbations.
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Quantities in the dimensional model
System Sediment & Bed

L = 59km kh∗ = 102 m2 s−1

g = 9.81ms−2 α= 0.5 ·10−2 kgsm−4

cd = 0.0025 λ∼ 10−6 −10−4 m2 s−1

σ= 1.4 ·10−4 s−1 kv∗ = 0.1m2 s−1

T = 44.9 ·103 s d50 = 2 ·10−4 m
Q∗ =−900m3s−1 ρs = 2650kgm−3

p = 0.4
ws = 0.015ms−1

Inlet specific parameters
Marsdiep Inlet Vlie Inlet

H I = 11.7m H II = 11.9m
AI

M2
= 0.62m AII

M2
= 0.77m

φI
M2

= 148◦ φII
M2

=−158◦

B I = 5.954km B II = 5.619km
AI

M4
= 0.11m AII

M4
= 0.06m

φI
M4

= 155◦ φII
M4

=−121◦

Quantities in the non–dimensional model
ϵ= 5.30 ·10−2 λL = 0.77
r = 5.67 ·10−1 a = 6.22 ·10−2

kh = 2.05 ·10−4 Q =−2.95 ·10−2

δs = 3.68 ·10−4 δb ∼ 10−8 −10−6

λd = 1.75 γ= 1.83 ·10−1

AII
r 2 = 1.25 AII

r 4 = 0.535
∆φM2 = 54◦ φI

r 4 =−141◦
φII

r 4 =−57◦

Table 3.2: Characteristic values representative for the Marsdiep-Vlie inlet system (Duran-Matute et al. [20],
Ridderinkhof [38]). In the experiments in this paper, the depth at inlet II is taken to be 11.7 m, a rectangular
inlet system is used with a uniform width of 6 km. This results in ln = 30.9n

3.4. RESULTS

The linear stability of laterally uniform morphodynamic equilibria is investigated and
the associated instability mechanisms are discussed. In Sect. 3.4.1, the water motion in
the double inlet system is forced by a prescribed M2 tidal forcing at both inlets. The influ-
ence of prescribed external overtides and discharge are treated in Sect. 3.4.2. All results
are obtained using parameter values representative of the Marsdiep–Vlie inlet system
(see Tab. 3.2), unless mentioned otherwise. A uniform width B of 6 km is considered in
all numerical experiments. Furthermore, since the undisturbed water depths observed
at both inlets, H I and H II , are very close together, they are for simplicity both taken to be
equal to 11.7m. Hence, the dimensionless boundary condition (3.19i) reduces to h = 0
at x = 1.
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(a) (b)

Figure 3.2: Laterally uniform morphodynamic equilibria when taking diffusive and internally generated ad-
vective transport, as well as bedload transport into account. The water motion is only forced with M2 tidal
constituents. Panel (a) shows WDmin , the minimum water depth of equilibrium bed profiles, with its location
coded with color. Panel (b) shows the equilibrium bed profiles for three different values of ∆φM2 .

3.4.1. M2 TIDAL FORCING
In this section, the water motion is forced by prescribed M2 tidal amplitudes and phases
at inlets I and II , while the amplitudes of the externally prescribed overtides (AI

M4
and

AII
M4

) and the discharge Q at inlet II are assumed to be zero. With this forcing, the sedi-
ment transport is controlled by diffusive processes (both the standard diffusive process
and the one related to the topographic variations), advective transport driven by inter-
nally generated overtides and bedload transport. Hence, the bottom evolution equa-
tion (3.18) reduces to

hτ =−∇·
(
<F00

diff>+<F00
topo>+<F20

adv>+<Fbed>
)

,

with the various transport terms defined in Eqns. (3.24)–(3.26) and Eq.(3.28).
To systematically investigate the influence of the M2 tidal forcing on the linear stabil-

ity of associated laterally uniform equilibria, we first determined these equilibria using
the bifurcation approach discussed in Deng et al. [26]. The system of morphodynamic
equations is thus averaged over the width and morphodynamic equilibrium solutions
(i.e., not varying on the long timescale) are directly searched for using a continuation
procedure (for details, see Deng et al. [26]). In Fig. 3.2a the minimum water depth WDmin

of the resulting equilibrium is shown as a function of the relative phase between inlet I
and II ,∆φM2 (varied between −60◦ and 60◦). The distance of WDmin from inlet I is color
coded.

From these results it follows that the number of morphodynamic equilibria and their
linear stability to one–dimensional perturbations (denoted as 1D–stability) strongly de-
pend on the relative phase. For ∆φM2 between −2◦ and −14◦ (indicated by the labels L2
and L1, respectively) no morphodynamic equilibrium is found for which both inlets are
connected. For the other phases considered, there is always one 1D–stable equilibrium
(indicated by the solid line), while for most phases also a 1D–unstable equilibrium exists
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(dotted line).
The 1D–stable morphodynamic equilibria are not necessarily 2D–stable, i.e. linearly

stable against perturbations with a lateral structure. To illustrate this, we consider three
morphodynamic solutions that are stable against one–dimensional perturbations, ob-
tained with ∆φM2 = −11◦, ∆φM2 = 15◦ and ∆φM2 = 19◦ (see the orange, blue and green
crosses in Fig. 3.2a, with the laterally uniform equilibrium beds shown in Fig. 3.2b).

In Fig. 3.3a (Fig. 3.3b) the real (imaginary) part of the eigenvalue of the most unstable
eigenfunction is shown as a function of the lateral wavenumber ln = nπL/B for three
relative phases. The results can be summarized as follows:

• ∆φM2 = −11◦ (orange lines in Fig. 3.3): all eigenvalues are real. Eigenpatterns as-
sociated with ln ≲ 100 and ln ≳ 1010 are linearly stable, while for 100 ≲ ln ≲ 1010
the eigenmodes are linearly unstable. The maximum growth rate is found for
ln ≈ 550. The longitudinal structure of the most unstable eigenmode is shown
in Fig. 3.3c, indicating that the bed perturbations are nonzero within a region of
∼ 10km around the location where the water depth of the equilibrium is min-
imal. The spatial structure of the fastest growing bed perturbation superposed
on the laterally uniform underlying morphodynamic equilibrium is illustrated in
Fig. 3.3e. Here, a width of B = 6km is used, resulting in n = 18 (see Eqn. (3.34)).
This finding suggests the formation of channels and shoals close to the middle of
the inlet system. Note that, because of the linear nature of the considered stability
analysis, the amplitude used for the bed perturbation is arbitary.

• ∆φM2 = 15◦ (blue lines in Fig. 3.3): all eigenvalues of the most unstable mode are
again real. However, in contrast to the previous case, all eigenpatterns have a neg-
ative growth rate, indicating that the considered laterally uniform equilibrium bed
profile is linearly stable. The solid blue line in Fig. 3.3c shows the longitudinal
structure of the bed perturbation associated with the ln = 0 eigenmode.

• ∆φM2 = 19◦ (green lines in Fig. 3.3): the eigenvalues of the most unstable eigen-
mode are real for 0 ≤ ln ≲ 500. When ln ∼ 500, two complex–conjugated eigen-
modes, characterised by complex conjugate eigenvalues, become the fastest grow-
ing ones. The real part of these complex eigenvalues is positive for 850≲ ln ≲ 1750,
whereas the absolute values of the imaginary parts increase for increasing ln . In
Fig. 3.3d the real (solid green) and imaginary (dashed green) parts of the most un-
stable bed pattern are shown. The bottom perturbations tend to concentrate near
inlet I : their spatial extent is ∼ 2km, and the associated bed variations have multi-
ple crests and troughs.

From the above, it follows that the linear stability of 1D–stable laterally uniform equi-
libria strongly depends on the relative phase difference ∆φM2 . In Fig. 3.4 this depen-
dency is further illustrated by analysing the linear stability as a function of AII

M2
and

∆φM2 . In this figure, the region in parameter space where no laterally uniform mor-
phodynamic equilibrium exists is indicated by the white color. Linearly stable equilib-
ria correspond to the black colored area. In both the dark and light gray colored areas,
the laterally uniform morphodynamic equilibria are linearly unstable. The mechanisms
controlling this instability (i.e., for which the growth rate is largest) in the light gray area
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(a) (b)

(c) (d)

(e)

Figure 3.3: The dimensionless growth rate ℜ(ω) and, the associated imaginary part ℑ(ω) (if non–zero) of the
most unstable eigenmode (panels (a) and (b), respectively) for ∆φM2 =−11◦ (orange), ∆φM2 = 15◦ (blue) and
∆φM2 = 19◦ (green) are plotted as a function of wave number ln . The corresponding bed patterns (scaled to
have a dimensionless amplitude of one for the real part) of the most unstable eigenmodes for the first two
phases are shown in panel (c). The orange solid line denotes the bed pattern associated with ln ≈ 550 and
∆φM2 = −11◦, the blue solid line corresponds to the pattern for ln = 0 and ∆φM2 = 15◦. In panel (d), corre-
sponding to ∆φM2 = 19◦, the green solid (dotted) line indicates the real (imaginary) part of the complex bed
eigenfunction with mode number ln ≈ 1200. Panel (e) shows the spatial structure of the bed perturbation for
∆φ=−11◦.
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Figure 3.4: Linear stability of stable laterally uniform morphodynamic equilibria as a function of the M2 tidal
amplitude at inlet II (horizontal axis) and the relative phase (vertical axis). The white area corresponds to
the absence of any laterally uniform equilibrium configuration. Black, dark–gray and light–gray regions indi-
cate where linearly stable, diffusively unstable and advectively unstable morphodynamic equilibria are found,
respectively. If the considered equilibrium configuration is unstable, the mechanism resulting in the largest
positive growth rate is assumed to control the instability mechanism. The crosses indicate the experiments
discussed in detail in the main text.

are due to diffusive transport, whereas advective transport dominates in the dark gray
region.

To illustrate the two instability mechanisms, we again consider the results obtained
for ∆φM2 = −11◦ and ∆φM2 = 19◦ with the default AM2 amplitudes. In the first case in-
stability is due to a diffusive mechanism, while in the latter case instability is due to an
advective mechanism.

DIFFUSIVELY DOMINATED INSTABILITY MECHANISM

To determine the prevailing instability mechanisms, we consider the divergence of the
various transport contributions for the relative phase ∆φM2 = −11◦ and ln ∼ 550. The
longitudinal bed profile associated with the most unstable eigenfunction is shown in
Fig. 3.3c, orange line. The associated divergences of the classical diffusive flux <F00

diff>,
the topographically induced diffusive flux <F00

topo>, the internally generated advective

flux <F20
adv> and the total flux <F>, evaluated at y = 0, are shown in Fig. 3.5a. The clas-

sical diffusive transport is destabilizing, i.e., it leads to a convergence of sediment near
the tops of the bed perturbation, while the topographically induced diffusive transport
is stabilizing causing a divergence of the transport at the maxima of bed perturbation.
These two transport terms are much bigger than the other two contributions, and they
almost balance. To evaluate the net diffusive effect, the divergence of the total diffusive
transport defined as ∇· (<F00

diff> + <F00
topo>) is compared with the divergence of the inter-

nally generated advective and total transport in Fig. 3.5b. It appears that the combined
contribution of the different diffusive transport terms is still dominant; the advective
contribution only modifies the divergence of the total transport. Hence the instability
mechanism is a diffusive one. This observation is corroborated by experiments in which
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(a) (b)

Figure 3.5: Dimensionless divergences of the various transport contributions for ∆φM2 = −11◦ and ln ∼ 550,
together with the associated bed perturbation (orange line) at y = 0. Panel (a) shows all divergences separately,
while in Panel (b) the two diffusive contributions are combined.

only the diffusive transport is considered: similar eigenpatterns, resulting from the same
instability mechanism, are found (see Appendix C, Fig. C.3). The driving physical mech-
anism is described in detail in Schuttelaars and de Swart [15] with the stability effect of
the topographically induced diffusive transport dominating over that of bedload trans-
port (see also Hepkema et al. [37] and Appendix C).

Whether a bed perturbation is linearly stable or unstable strongly depends on the
lateral wave number ln considered, see the linear stability curve in Fig. 3.3a: for stable
(unstable) eigenfunctions, the stabilizing effects of the divergences of the topograph-
ically induced transports dominate over (are dominated by) those of the destabilizing
classical diffusive ones.

ADVECTIVELY DOMINATED INSTABILITY MECHANISM

The eigenvalue for the case with∆φM2 = 19◦ and ln ∼ 1200 is complex (Figs. 3.3a and 3.3b).
This implies that also the eigenfunction consists of a real and an imaginary part. The real
and imaginary part of the fastest growing bed perturbation are plotted in Fig. 3.6a and
Fig. 3.6c as the green solid and green dotted lines. In Figs. 3.6a and 3.6c the associated
divergences of the various transport terms are shown. As in the previous case, the con-
vergences of diffusive transports are dominant and approximately balance each other.
The relative importance of the divergences of the advective and total transports is larger
in this case than in the case discussed in Sect. 3.4.1. Again, by considering the diffusive
transports together, we can focus on the relative importance of the diffusive and advec-
tive contributions to the total divergence. From Figs. 3.6b and 3.6d, it follows that the
divergences of the advective transport are larger than those of the total diffusive trans-
port, and is very similar to the divergence of the total transport. This suggests that the
instabilities are mainly driven by advective processes, hence the instability mechanism
is advective. This is confirmed by the experiments discussed in Appendix C, in which
the advective transport was neglected and consequently the instabilities observed in the
present section were not found.
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(a) (b)

(c) (d)

Figure 3.6: Dimensionless divergences of the various transport contributions for∆φM2 = 19◦ and ln ∼ 1200, to-
gether with the associated bed perturbation (green line) at y = 0. Panels (a) and (c) show the real and imaginary
part of the divergences separately, while in Panels (b) and (d) the two diffusive contributions are combined.
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(a)

(b) (c)

Figure 3.7: (a) Laterally uniform morphodynamic equilibrium obtained with AII
M2

= 0.87m and ∆φM2 =−11◦.

(b) The real and imaginary parts of the eigenvalue associated with the most unstable eigenfunction are plotted
as a function of the lateral wave number. (c) Bed pattern of the most unstable eigenfunction.

It should also be noted that the divergences associated with the real and imaginary
parts of the eigenfunction are out of phase with the bed pattern associated with this
eigenfunction. This is consistent with the fact that these bed patterns do not only grow
in time, but are also periodic in time, with the angular frequency given by ℑ(ω).

The location where the fastest growing eigenpatterns have appreciable amplitudes
coincides with a local minimum in water depth of the underlying width–averaged equi-
librium. In the previous example, the minimum water depth was found at inlet I , and
the linearly fastest growing mode was also observed close to that inlet. When changing
the parameters to AII

M2
= 0.87m and ∆φM2 =−11◦ (red cross in Fig. 3.4) the correspond-

ing morphodynamic equilibrium configuration has a local minimum in water depth at
30km from inlet I (Fig. 3.7a). This laterally uniform equilibrium is linearly unstable
(Fig. 3.7b). The spatial structure of the bed pattern associated with the fastest growing
eigenmode (ln ∼ 470) is shown in Fig. 3.7c. The instability mechanism is still dominated
by convergences of internally generated advective transports (not shown). The largest
amplitudes of the eigenfunctions are also found at 30km from inlet I , coinciding with a
local minimum in water depth of the underlying morphodynamic equilibrium.
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3.4.2. ALL FORCINGS INCLUDED

In this section, the water motion is forced by both the M2 and M4 tidal constituents,
prescribed at each inlet, and a discharge Q at inlet II . Since all forcings are included,
all contributions in the bottom evolution equation (3.18) have to be taken into account
when calculating the morphodynamic equilibria and their linear stability.

In this section the influence of the relative M2 phase ∆φM2 on the stability of the
possible width–averaged equilibria is investigated by changing the M2 phase at inlet II .
All other parameters maintain their default values, reported in Tab. 3.2. To assess this
influence, first the associated laterally uniform morphodynamic equilibria have to be
obtained. Similar to the numerical experiments described in Sect. 3.4.1, these equilib-
ria are computed using a continuation technique, which results in the bifurcation dia-
gram shown in Fig. 3.8a. In this figure, the minimum water depth of the morphodynamic
equilibria is shown as a function of ∆φM2 . In the interval 5◦ ≲ ∆φM2 ≲ 25◦ no morpho-
dynamic equilibria exist for which the two inlets are connected. For −60◦ ≤ ∆φM2 ≲ 5◦
and 25◦ ≤ ∆φM2 ≤ 60◦ two morphodynamic equilibria are found, one 1D–stable (solid
line) and the other one 1D–unstable (dashed line).

The two–dimensional stability of the 1D–stable equilibria depends on∆φM2 . For val-
ues of∆φM2 between−17◦ and 3◦, the 1D–stable equilibria are also linearly stable against
two–dimensional perturbations (not shown). For all other ∆φM2 , the laterally uniform
equilibria that were 1D–stable turn out to be linearly unstable against two–dimensional
perturbations (not shown). All instabilities are dominated by advective transport, due to
both internally generated and externally prescribed advection. To illustrate this, we con-
sider ∆φM2 = 31◦. The associated equilibrium bed profile is shown in Fig. 3.8b. The real
and imaginary part of the eigenvalues are shown in Fig. 3.8c. From this figure it follows
that eigenfunctions with lateral wave number ln between 400 and 2750 have a positive
growth rate, with a maximum growth rate found for ln ∼ 1100. This maximum growth
rate increases very quickly for increasing ∆φM2 and is associated with ever increasing
lateral mode number (not shown). The real and imaginary part of the associated eigen-
function are shown in Fig. 3.8d, indicating that the bed perturbations are located close
to inlet I .

In Fig. 3.9 the various contributions to the real (panels a and b) and imaginary (pan-
els c and d) part of the divergence of suspended sediment transports are shown. As ob-
served in Sect. 3.4.1, the diffusive contributions dominate when considered separately,
but when adding them together all contributions are of the same order of magnitude.
From Figs. 3.9b and 3.9d it appears that the total diffusive transports <F00

diff> + <F00
topo>

and the advective transport due to external overtides <F11
adv> are in phase, except near

the entrance where the term <F11
adv> dominates the transport. All contributions are of

the same order of magnitude, indicating that the advective transport mechanism, due
to both internally generated and externally prescribed overtides, is important for these
instabilities.

3.5. DISCUSSION AND CONCLUSIONS
In this paper, we show that stable laterally uniform morphodynamic equilibria of rect-
angular double–inlet systems can become linearly unstable when two dimensional per-
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(a) (b)

(c) (d)

Figure 3.8: Panel (a) shows WDmin , the minimum water depth of laterally uniform equilibrium bed profiles,
with the location of WDmin color–coded. Panel (b) shows the laterally uniform equilibrium bed profile for
∆φM2 = 31◦, (c) the real and imaginary parts of the eigenvalue associated with the most unstable eigenfunction
as a function of the lateral wave number and (d) the bed perturbations of the most unstable eigenfunction.
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(a) (b)

(c) (d)

Figure 3.9: Dimensionless divergences of the various sediment transport contributions for ∆φM2 = 31◦ and
ln ∼ 1100, together with the associated bed perturbation (green line) at y = 0. Panels (a) and (c) show the real
and imaginary part of the divergences separately, while in panels (b) and (d) the two diffusive contributions
are summed together.
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turbations are considered. The instability leads to the formation of channels and shoals
as a result of a positive feedback mechanism between the tidal flow and the bottom dy-
namics. The water motion is described by the shallow water equations and is driven by
the M2 and M4 tidal constituents, prescribed at both inlets, and by a constant discharge,
prescribed at one of the inlets. Sediment is transported both as suspension load due to
advective and diffusive processes and as bedload due to bedslope effects. Coriolis circu-
lations are neglected owing to the relatively small size of the total system. Since the tidal
time scale is much shorter than the morphodynamic time scale, the method of averag-
ing is applied to describe separately the dynamics of the water motion and the bottom.
Owing to the assumption of a rectangular inlet system, no direct comparison can be
made with observations of real world systems. However, the result study provides valu-
able insights for better understanding the various mechanisms causing the instability of
double–inlet systems.

When the water motion is forced only by an M2 tidal constituent, both advective and
diffusive processes contribute to tidally averaged suspended sediment transport. The
advective transport arrises from nonlinear interactions between the directly forced sig-
nals. Two different sediment transport mechanisms are identified: for diffusive sediment
transport the classical one related to spatial gradients in the depth–integrated tidally–
averaged suspended sediment concentrations and a topographically induced suspended
sediment transport associated with gradients in the bed level. Keeping the amplitude
and phase of the M2 tidal forcing at one inlet fixed, and varying these parameters for
the other inlet, it is found that there exists an area in the amplitude–phase plane where
no laterally uniform morphodynamic equilibria exist for which both inlets are still con-
nected. In regions of the parameter space where such equilibria exist, the equilibrium
can be stable against two–dimensional perturbations, linearly unstable due to conver-
gences of diffusive transport terms, or linearly unstable due to convergences related to
advective terms.

When the morphodynamic equilibrium becomes unstable due to diffusive sediment
transport, the classical diffusive mechanism destabilizes laterally uniform morphody-
namic equilibria, while the sediment diffusion related to topographic gradients has a
stabilizing effect. The relative importance of these mechanisms determines whether a
laterally uniform equilibrium is linearly stable or unstable. This instability mechanism
is similar to the one described by Schuttelaars and de Swart [15], Ter Brake and Schutte-
laars [19] for single–inlet systems. The eigenvalues are all real, implying an exponential
growth in time. When advective sediment transport contributes dominantly to linear
instability, the eigenvalues are found to be complex–valued. This implies that bedforms
do not only grow in time, but also migrate. In this case divergences of both advective
and diffusive transports contribute significantly to the linear growth of the bed pertur-
bations.

When including external overtides and a residual discharge, the dependency on the
relative M2 phase between the M2 forcing at the two inlets is studied, using default val-
ues for all other parameters. In particular, it was found that either no morphodynamic
equilibria that connect both inlets exists or equilibria are unstable due to the divergences
of both advective and diffusive transport terms which are of equal importance. The ad-
vective transport is a result of internally generated overtides as well as of the prescribed
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external overtide and sediment discharge.
In all cases the bed perturbations are found to have their largest amplitudes in the re-

gions where the water depth of the considered morphodynamic equilibrium has a local
mimimum. This observation is in line with the remark of Schuttelaars and de Swart [15]
that a necessary condition for instability is the presence of bottom frictional torques.
In the present model, a similar conclusion can be drawn: when reducing the friction
parameter below a critical value, the laterally uniform morphodynamic equilibrium is
always stable. Conversely, when introducing the effects of bottom friction, the under-
lying equilibria become unstable, both when the sediment transport is dominated by
diffusive and advective mechanisms.

The linear instabilities found in this paper lead to the initial formation of channels
and shoals in the shallower regions of the tidal basin system. The location of these
patterns coincides with results obtained in numerical models and laboratory experi-
ments (Hibma et al. [12], Van der Wegen and Roelvink [14], Leuven and Kleinhans [39]).
To compare results beyond the initial stage of channel–shoal formation, a nonlinear
analysis has to be performed. This will be the topic of a subsequent study.
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4
THE CHANNEL AND SHOAL

PATTERNS IN SHORT

DOUBLE–INLET SYSTEMS

Channel–shoal patterns are common features in back–barrier basins of many barrier coa-
sts. These bedforms are very sensitive to internal and external forcing conditions and their
changes. In particular, for short double–inlet systems of uniform width it is here shown
that small patterns develop due to a positive feedback between water motion, sediment
transport and bedforms. The water motion is governed by the depth–averaged (2DH) shal-
low water equations forced by a prescribed laterally uniform sea surface elevation at the
seaward sides. The suspended sediment is transported only by diffusion (including ef-
fects of topographic variations), with source and sink terms, while the bed evolution is
controlled by the divergence of the suspended sediment transport. The resulting morpho-
dynamic equilibria, i.e., bed profiles that do not evolve on the morphodynamic time scale
anymore, are systematically obtained using a dynamical system’s approach in which the
equilibria are sought for without employing time integration.

For all systems considered in this chapter, laterally uniform equilibria were found char-
acterised by a shallow region in between the two inlets connected to the sea. These later-
ally uniform morphodynamic equilibria become unstable when the friction is sufficiently
large. For larger widths, the critical value of the friction for which the laterally uniform
morphodynamic equilibria become linearly unstable decreases. For friction values larger
than the critical value, new linearly stable morphodynamic equilibria exist that are char-
acterised by channel–shoal patterns located in shallow regions. The number of channels
and shoals depends sensitively on the width of the double–inlet system and the frictional
strength. It is found that the patterns forming when considering values of the parameters
close to the critical ones do not necessarily predict the number of channels and shoals for
values of the parameters far from the critical ones.
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4.1. INTRODUCTION
Barrier coasts consist of one or more back–barrier basins separated from the near sea by
barrier islands and connected to the open sea by tidal inlets (de Swart and Zimmerman
[1]). This type of coasts is common along the world’s coastlines (Stutz and Pilkey [2],
Mulhern et al. [3]). Examples are the Wadden Sea along the Dutch, German and Danish
coast (Oost et al. [4]), the Ria Formosa in south Portugal (Salles et al. [5], Pacheco et al.
[6]) and Venice Lagoon in Italy (Tambroni and Seminara [7]).

In the back–barrier basins, fractal–like patterns are often observed: large channels
starting at the seaward side branch into smaller channels. In the Wadden Sea it has been
shown by Cleveringa and Oost [8] that these networks can be characterised as three to
four times branching networks. These complex channel and shoal systems are a result of
strong interactions between water motion, sediment transport and the bed topography.

To study the formation of these channel–shoal systems in back–barrier basins, mor-
phodynamic models are typically employed. In single inlet systems (in which one inlet
channel connects the back–barrier basin to the open sea) these channel–shoal patterns
have been found to form in both process–based idealized and high complexity morpho-
dynamic models. One of the first results obtained with a high complexity model was pre-
sented by Wang et al. [9] who used a 2DH complex process–based model to reproduce
the channel–shoal patterns in the Frisian inlet system, one of the back–barrier basins in
the Dutch part of the Wadden Sea. Since then, this work has been extended using nu-
merical models with a varying level of complexity (Marciano et al. [10], D’Alpaos et al.
[11], Van der Wegen and Roelvink [12], Zhou et al. [13], Styles et al. [14]), see also the re-
view of Dissanayke et al. [15]. Most of the numerical experiments performed in these pa-
pers start from an idealized bathymetry. For example, Van der Wegen and Roelvink [12]
simulated the bed evolution in a rectangular basin, starting from a constantly sloping
bed profile. They found that channels and shoals first develop in the relatively shallow
part near the landward end of the basin. Only after approximately 50 years bedforms
appear at the seaward end of the rectangular basin.

Concerning idealized models, they were initially used to assess the physical mecha-
nisms that result in the initial formation of channels and shoals (Schuttelaars and de Swart
[16], van Leeuwen and de Swart [17, 18], Ter Brake and Schuttelaars [19]). Ter Brake and
Schuttelaars [19] found that the initial formation of channels and shoals took place near
the landward boundary, in agreement with the simulation model results of Van der We-
gen and Roelvink [12]. Recently, some advances have been made in obtaining finite am-
plitude channel-shoal patterns using exploratory models (Ter Brake [20], Dijkstra et al.
[21], Boelens [22]).

The results discussed above are all obtained for single inlet systems. However, re-
cent studies have clearly shown that there is a strong exchange of water (Duran-Matute
et al. [23]) and sediment (Sassi et al. [24]) between the various subbasins of multiple–
inlet systems. This strongly suggests that to understand, model and predict the mor-
phodynamic evolution of these systems, including the observed channel–shoal systems,
the interactions between sub-basins have to be taken into account by considering these
sub-systems as part of a multiple inlet system. However, the morphodynamic evolution
of multiple inlet systems has not received much attention in the literature. Using a sim-
ulation model, Dastgheib et al. [25] analysed the long–term sediment transport and bot-
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tom evolution for a double–inlet system, resulting in the development of channel-shoal
systems in the back-barrier basin. After simulating 2,000 years, the system was assumed
to be close to a morphodynamic equilibrium with both inlets still open. A detailed anal-
ysis of the physical mechanisms responsible for the observed morphodynamic equilib-
rium as well as an assessment of the sensitivity to parameters variations are however
very challenging when using this type of models. To obtain such information, typically
exploratory models are used. However, at this point no idealized models exist that allow
for such an analysis.

In view of this, the aim of the present study is to develop an exploratory model for a
double–inlet system in which both the tidal inlets and back-barrier basin are morpho-
dynamically active. The model will be an extension of the model presented in Dijkstra
et al. [21] to double–inlet systems. Using this newly developed model, the existence and
stability of morphodynamic equilibria possibly with an appreciable lateral variation will
be systematically investigated, thus complementing the results of chapter 2 an 3. As a
first step, a rectangular geometry will be considered. The influence of the strength of the
bed friction and the width on the resulting channel–shoal patterns will be systematically
investigated using tools from dynamical system theory.

In section 2 the equations governing the water motion, sediment transport and bed
evolution are presented. This system of equations is scaled and analyzed using an asymp-
totic method in section 3. Furthermore, numerical methods to obtain morphodynamic
equilibria, to analyze linear stability and bifurcation are introduced in this section. In
section 4 resulting morphodynamic equilibria and their linear stability are studied. In
section 5 the results are discussed, and in the final section conclusions are presented.

4.2. MODEL DESCRIPTION
The morphodynamic model, derived in this section, is specifically geared toward the
investigation of the formation of channels and shoals in double–inlet systems in which
the dominant instability mechanism is a diffusive one. Following Deng et al. [26], this
implies that only the leading order tidal forcing (Sect. 4.2.2) and only diffusive sediment
transport (Sect. 4.2.3) is considered. Before discussing these model equations, first the
geometry of the system is introduced in Sect. 4.2.1; in Sect. 4.2.4 the associated bed
evolution equation is discussed.

4.2.1. GEOMETRY

The geometry under consideration is that of a rectangular tidal inlet system with pre-
scribed length L and width B (see Fig. 4.1a for a top view). The coordinate in the along
basin direction is denoted by x and in the cross basin direction by y . The tidal inlet sys-
tem is connected to the open sea at x = 0 and x = L respectively. The coastal boundaries
of the rectangular tidal basin, located at y = 0 and y = B , are assumed to be both imper-
meable to the transport of water and sediment. Furthermore, they are assumed to be
non-erodible.

The free surface is described by the equation z = ζ̂, with the undisturbed free surface
located at z = 0. The undisturbed width–averaged water depth at x = 0 is denoted by H I ,
and at x = L by H II (see Fig. 4.1b for a side view). In the following both undisturbed water
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(a) (b)

Figure 4.1: A sketch of a tidal embayment connected to the open sea at both ends. Panel (a) shows a top
view of the schematized double–inlet system with a uniform width. The longitudinal and lateral velocities are
denoted by û and v̂ , respectively. Panel (b) shows a cross–sectional view of the double–inlet system, with the
undisturbed width–averaged depth at inlet I denoted by H I and the undisturbed width–averaged depth at
inlet II denoted by H II . The bed profile is denoted by ĥ(x, y, t ), and the surface elevation by ζ̂(x, y, t ).

depths are assumed to be laterally uniform. The erodible bottom, which is assumed to
consist of sandy material with a single grain size d50 = 2×10−4 m, is located at z = ĥ−H I .
Here H I is used as reference depth and ĥ is the local bed elevation measured from the
reference depth. Hence the instantaneous local water depth is given by H I − ĥ + ζ̂.

4.2.2. HYDRODYNAMIC EQUATIONS
Both the length and width of the tidal basins under consideration are much larger than
the reference water depth, allowing the water motion to be described by the depth–
averaged shallow water equations for a homogenous fluid. Since the width is typically
much smaller than the Rossby deformation radius, Coriolis effects can be neglected.
Moreover, the ratio of the amplitude of the M2 tidal constituent and the water depth
is much smaller than one, which allows the use of a perturbation approach to solve the
equations (Schuttelaars and de Swart [27], Meerman et al. [28]). From this analysis, it
follows that at leading order the nonlinear terms can be neglected such that the water
motion at leading order is described by the linearized shallow water equations:

ζ̂t +∇· [(H I − ĥ)û] = 0, (4.1a)

ût + g∇ζ̂+ r∗û

H I − ĥ
= 0. (4.1b)

Here, the horizontal velocity vector is denoted by û = (û, v̂) with û the velocity in lon-
gitudinal direction and v̂ in lateral direction. Time is denoted by t , and g denotes the
gravitational acceleration. Subscripts denote a derivative with respect to that variable,
and the horizontal derivative operator is denoted by ∇ = (∂x ,∂y ). The inner product is
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denoted by a dot. A linearized formulation of the bottom friction is used with the bot-
tom friction coefficient defined as r∗ = 8Ucd /3π (see Lorentz [29] and Zimmerman [30]).
In this expression, U is a characteristic velocity scale (which will be introduced in sec-
tion 4.3.1) and cd a drag coefficient.

Assuming that the deep sea limit (Roos and Schuttelaars [31]) is a good approxima-
tion at the seaward boundaries, the sea surface elevations ζ̂ at the entrances can be pre-
scribed as

ζ̂= AI
M2

cos(σt −φI
M2

) at x = 0, (4.2a)

ζ̂= AII
M2

cos(σt −φII
M2

) at x = L. (4.2b)

Here, the constants AI
M2

and AII
M2

denote the amplitudes of the M2 tide at the seaward

sides of inlet I and II , respectively. Their corresponding phases are given by φI
M2

and

φII
M2

. The angular frequency of the M2 tidal signal is given by σ = 2π/T , with T the M2

tidal period.
Since the coastal boundaries are assumed to be impermeable, the boundary condi-

tion at the lateral boundaries of the tidal basin read

(H − ĥ)û ·n = 0 at y = 0 and y = B , (4.3)

with n denoting the outward pointing unit vector normal to the boundaries.

4.2.3. CONCENTRATION EQUATION
The sediment, consisting of non–cohesive sandy material with a uniform grain size,
is mainly transported as suspended load. Following Ter Brake and Schuttelaars [32],
the evolution of the suspended sediment is modeled as a depth–integrated advection–
diffusion equation, with sink and source terms. The source term is assumed to not only
depend on the tide induced velocity, but also on wind induced velocity (Roos et al. [33]).
It is assumed that the wind induced velocity is independent of the tide induced veloc-
ity. Similar to the hydrodynamics, a perturbation approach is employed. From this ap-
proach, it follows that at leading order sediment advection can be neglected, resulting
in the following concentration equation (Ter Brake and Schuttelaars [19, 32], Roos et al.
[33]):

Ĉt −∇· [kh∗∇Ĉ +kh∗
ws

kv∗
βĈ∇ĥ)] =α(û · û+ 1

2
û2

w )− w2
s

kv∗
βĈ , (4.4)

where Ĉ is the depth–integrated suspended sediment concentration. The horizontal dif-
fusivity kh∗, the vertical diffusivity kv∗, the settling velocity ws and the erosion parame-
ter (Dyer [34]) related to sediment properties α are all assumed to be constant in space
and time. It is assumed that the deposition parameter β is defined by

β= 1

1−exp(− ws
kv∗ (H I − ĥ))

. (4.5)

The erosion of sediment due to wind waves is modeled as α
2 û2

w (Roos et al. [33]), with
ûw the wave–induced near–bed orbital velocity amplitude. Following Roos et al. [33], it
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is assumed that ûw is inversely proportional to the local water depth, i.e.,

ûw =Uw (
H I − ĥ

H I
)−m , (4.6)

where m is taken as m = 1. The coefficient Uw is smaller than the characteristic velocity
scale U in magnitude, and is taken to be 1.0×10−2 ms−1. It should be remarked that the
effect of wave breaking is not taken into account.

At the seaward boundary, it is assumed that no diffusive boundary layer develops
(Schuttelaars and de Swart [27]). Hence, the boundary conditions at the entrances read

Ĉt =α(û · û+ 1

2
û2

w )− w2
s

kv∗
βĈ , at x = 0 and L. (4.7)

At the lateral boundaries of the back–barrier basin, a vanishing suspended load trans-
port is required:

[kh∗∇Ĉ +kh∗
ws

kv∗
βĈ∇ĥ)] ·n = 0 at y = 0 and y = B. (4.8)

4.2.4. BED EVOLUTION EQUATION
The bed evolution equation is derived from the mass balance in the sediment layer and
reads

ρs (1−p)(ĥt −λ∇2ĥ) =−
[
α(û · û+ 1

2
û2

w )− w2
s

kv∗
βĈ

]
. (4.9)

Here, ρs is the density of the sediment, and p denotes the bed porosity. The first term on
the left hand side accounts for the temporal bed changes, whereas the second term mod-
els the divergence of the bed load transport due to gravitational effects, using a highly
simplified parameterisation with constant λ∼O (10−6−10−4) (Schuttelaars and de Swart
[35]). The terms on the right of Eq. (4.9) are associated with the local erosion caused by
the tide, the local erosion caused by wind and the deposition of sediment, respectively.

Substituting Eq.(4.4) into Eq.(4.9) results in the following bed evolution equation:

ρs (1−p)ĥt + Ĉt =−∇·F, (4.10)

with

F =−kh∗∇Ĉ︸ ︷︷ ︸
Fdiff

−kh∗
ws

kv∗
βĈ∇ĥ︸ ︷︷ ︸

Ftopo

−ρs (1−p)λ∇ĥ︸ ︷︷ ︸
Fbed

(4.11)

the total depth–integrated sediment transport. This transport consists of a classical dif-
fusive contribution (Fdiff), a topographically induced diffusive contribution (Ftopo) and a
bed load contribution (Fbed).

At seaward boundaries, we prescribe the undisturbed bed level as

ĥ = 0 at x = 0, (4.12a)

ĥ = H I −H II at x = L. (4.12b)
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Parameter & Definition

U = AI
M2

σL

H I λL = σLp
H I g

r = r∗
H Iσ

a = kv∗σ
w2

s

kh = kh∗
L2σ

λd = H I ws
kv∗

δw = Uw
U

δs = αU 2

ρs (1−p)H Iσ
δb = λ

σH I L

AII
r 2 =

AII
M2

AI
M2

∆φM2 =φII
M2

−φI
M2

Table 4.1: The definition of dimensionless parameters.

Using Eq.(4.8), the requirement of no sediment transport through the lateral bound-
aries reduces to

∇ĥ ·n = 0 at y = 0 and y = B , (4.13)

which implies no bed load transport is allowed through the lateral boundaries.

4.3. SOLUTION METHOD

4.3.1. DIMENSIONLESS EQUATIONS
To make the equations dimensionless, the physical variables are scaled as

(x, y) = L(x̌, y̌), t = 1
σ ť , û =U ǔ, (4.14a)

ζ̂= AI
M2
ζ̌, ĥ = H I ȟ, Ĉ = αU 2kv∗

w2
s

Č , (4.14b)

where the dimensionless variables are indicated by a check ∗̌. The horizontal coordi-
nate x and lateral coordinate y are made dimensionless by L, the tidal system length.
Time is made dimensionless using σ, the M2 angular frequency, the surface elevation is
scaled using AI

M2
, the M2 amplitude at the seaward side of inlet I, and the bed level is

made dimensionless using H I , the depth at inlet I. The typical scale for the velocity is
U = AI

M2
σL/H I (Deng et al. [36]). The suspended sediment concentration is made di-

mensionless using αU 2kv∗/w2
s , a scaling which is determined by assuming an approxi-

mate balance between erosion by tides and deposition.
Substituting these dimensionless variables in the equations and suppressing the che-

cks ∗̌, the system of dimensionless equations becomes:

ζt +∇· [(1−h)u] = 0, (4.15a)

ut +λ−2
L ∇ζ+ r u

1−h
= 0, (4.15b)

a[Ct −∇· (kh∇C −khλdβ∇hC )] = u ·u+ 1

2
δ2

w (1−h)−2 −βC , (4.15c)

ht +aδsCt =∇· [δs akh∇C +δs akhλdβ∇hC +δb∇h
]

, (4.15d)
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with the dimensionless deposition parameter β given by

β= 1

1−exp(−λd (1−h))
. (4.16)

The parameter λL = kg L is the product of the frictionless tidal wavenumber kg =
σ/

√
H I g and the length of the inlet system L. The dimensionless friction parameter is

denoted by r and defined as r = r∗/H Iσ. The ratio of the deposition timescale to the tidal
period is denoted by a = kv∗σ/w2

s , and the sediment Peclet number λd = H I ws /kv∗ is
the ratio of the typical time a particle takes to settle in the water column to the typical
time needed to mix particles through the water column. The dimensionless diffusion
parameter is denoted by kh = kh∗/L2σ. The ratio of the typical scale of orbital velocity
due to the wind stress and the typical tidal velocity scale is denoted by δw =Uw /U . The
parameter δs =αU 2/(ρ(1−p)H Iσ) denotes the ratio of tidal period T over the time scale
related to suspended load, and δb = λ/σH I L is the ratio of tidal period T to the time
scale related to slope term in the bed load transport. All parameters are summarized in
Tab. 4.1.

From the bed evolution equation (4.15d) it follows that the bed changes on the tidal
timescale are very small, because both morphodynamic timescales δs and δb are much
smaller than one. Hence, a multiple timescale approach (see Sanders and Verhulst [37],
Krol [38]) is employed to approximate the bed evolution by considering the tidally aver-
aged bed evolution equation

hτ =−∇· <F>, (4.17)

with F =−akh∇C︸ ︷︷ ︸
Fdiff

−akhλdβ∇hC︸ ︷︷ ︸
Ftopo

−δb

δs
∇h︸ ︷︷ ︸

Fbed

,

where the angular brackets <·> denote tidally averaging. In these equations, τ = δs t is
the long timescale at which the bed changes significantly.

The associated dimensionless boundary conditions read

ζ= cos t at x = 0, (4.18a)

ζ= AII
r 2 cos(t −∆φM2 ) at x = 1, (4.18b)

(1−h)u ·n = 0 at y = 0 and y = B/L, (4.18c)

lim
kh→0

C (x, t ,kh) =C (x, t ,kh = 0) at x = 0,1 (4.18d)

(kh∇C +khλdβC∇h) ·n = 0 at y = 0 and y = B/L, (4.18e)

h = 0 at x = 0, (4.18f)

h = 1− H II

H I
at x = 1, (4.18g)

∇h ·n = 0 at y = 0 and y = B/L. (4.18h)

The parameter AII
r 2 = AII

M2
/AI

M2
is the ratio of the amplitude of the M2 tide at inlet II

to that at inlet I , and parameter ∆φM2 =φII
M2 −φI

M2 is the phase difference between the
M2 tide at inlet II and that at inlet I .
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From the boundary condition (4.18a) and (4.18b), the sea surface elevation ζ can be
decomposed as the sum of a cosine and a sine component:

ζ= ζc1 cos(t )+ζs1 sin(t ), (4.19)

with the subscript c1(s1) denoting the amplitude of the sea surface elevation that varies
as a cosine (sine) with unit radial frequency. Similarly, the longitudinal velocity u and
the lateral velocity v can be written as

u = uc1 cos(t )+us1 sin(t ), v = vc1 cos(t )+ vs1 sin(t ). (4.20)

From eq. (4.15c) it follows that the sediment concentration C has a residual and a
M4 component. Since we are focusing on the morphodynamic evolution of tidal inlets
in which diffusive transport is dominant, only the residual component is calculated, re-
sulting in

C =Cr es . (4.21)

With these expressions and boundary conditions, the leading order tidally averaged
sediment transport contributions are given by

<Fdiff>=−akh∇Cres, (4.22a)

<Ftopo>=−akhβλdCres∇h, (4.22b)

<Fbed>=−δb

δs
∇h. (4.22c)

It should be remarked that the bed load contribution is much smaller than the topo-
graphically induced diffusive contribution (Hepkema et al. [39]).

4.3.2. MORPHODYNAMIC EQUILIBRIA AND LINEAR STABILITY
After substituting eqns. (4.19)-(4.21) in equations (4.15) and boundary conditions (4.18),
the system of morphodynamic equations can be written as

KΨτ =G(Ψ,p), (4.23)

whereΨ= (ζc1, ζs1 uc1, us1, vc1, vs1, Cr es , h) is the vector of the amplitudes of the phys-
ical variables, and p the vector of model parameters. The matrix K is an 8×8 diagonal
matrix, with a non–zero element only at the row associated with the bed evolution equa-
tion. The nonlinear operator G , which contains derivatives w.r.t. both x and y , depends
on the parameters p and works on the vectorΨ.

For a specific parameter setting pe , a stationary morphodynamic equilibrium Ψe =
Ψe (x, y) of eqn. (4.23) is found when

G(Ψe ,pe ) = 0. (4.24)

To get a morphodynamic equilibrium, an initial guess Ψ0 of the unknown Ψe has to
be provided. If the initial guess is close to the actual morphodynamic equilibriumΨe , a
Newton–Raphson iterative method can be employed to obtainΨe iteratively. To this end,
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the ith approximationΨi ofΨe (withΨ0 the initial guess) is used to obtain a correction
∆Ψi+1 toΨi by solving the systems of equations

G(Ψi ,pe )+ JG (Ψi ,pe )∆Ψi+1 = 0, (4.25)

in which JG (Ψi ,pe ) is the Jaccobian matrix of the nonlinear operator G evaluated in
(Ψi ,pe ). In the next iteration, Ψi+1 = Ψi +∆Ψi+1 (see Deng et al. [36] for a detailed
discussion). If the correction ∆Ψi+1 is small enough (i.e., smaller than 10−6), Ψi is con-
sidered to be close enough to the actual morphodynamic equilibrium and the iterative
process is stopped.

The linear stability of the morphodynamic equilibriaΨe can be investigated by sub-
stituting

Ψ(x, y,τ) =Ψe (x, y)+ Ψ̃(x, y,τ) (4.26)

into Eq.(4.23) and linearizing the resulting equation. Here, Ψ̃(x, y,τ) is an infinitesimally
small perturbation. The resulting linearized equation allows for the ansatz

Ψ̃=ℜ[Ψ′(x, y)exp(ωτ)], (4.27)

where ω denotes the (generally complex) eigenvalue andΨ′ the associated eigenvector.
The real part of ω, ℜ(ω), denotes the exponential growth rate, while the imaginary part
ℑ(ω) is the perturbation frequency. Substituting (4.26) into (4.23), the resulting eigen-
value problem reads

ωKΨ′ = JG (Ψe ,pe )Ψ′, (4.28)

in which JG (Ψe ,pe ) is the Jacobian associated with the operator G , evaluated at (Ψe ,pe ).
An equilibrium is called linearly stable if all exponential growth rates are negative, and
unstable if at least one exponential growth rate ℜ(ω) is positive.

When varying one or more parameters of the vector p, one or more of the exponential
growth rates ℜ(ω) can change sign. Such a change in stability is called a bifurcation. This
allows for a systematic way of identifying the various equilibrium solutions (Seydel [40]):
By using the eigenvector Ψ′(x, y) that changed stability as a load vector, the arclength
method allows for switching from one branch to another (see also Deng et al. [36]).

In this chapter, a rectangular geometry is considered. Within this setting, morpho-
dynamic equilibria can be expressed as a combination of laterally uniform components
and an infinite sum of laterally varying ones. The lateral variations consist of cosines
and/or sines characterized by a lateral mode number n. Specifically, taking the associ-
ated boundary conditions into account, the bed profile can be decomposed as

he = h1D (x)+
∞∑

n=1
hn(x)cos(ln y), (4.29)

where h1D is the laterally uniform component of the bed profile and hn is the amplitude
of the laterally varying cosine component with lateral mode number n. The associated
dimensionless lateral wave number is defined by ln = nπL/B .
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By changing parameter values, the number and stability of morphodynamic equilib-
ria as function of this parameter can change. This is visualized in a so–called bifurcation
diagram, with on the horizontal axis the parameter that is varied and on the vertical axis
the maximum of the absolute value of the real part of the bed profile component with
mode n,

|ℜ(hn(x0))| ≥ |ℜ(hn(x))| for all x, (4.30)

as characteristic value (vertical axis) for this mode.
To explicitly obtain morphodynamic equilibria Ψe from system (4.24), and to ob-

tain the eigenvector Ψ′ from system (4.28), these systems of equations are spatially dis-
cretized using the finite element method. Here, a structured mesh is used with 100 ele-
ments in longitudinal direction and 20 elements in lateral direction. The degree of each
element considered is 2. The total number of degrees of freedom is 129928.

4.4. RESULTS
In this section, the sensitivity of the existence and number of morphodynamic equilib-
ria to the friction parameter and width will be investigated for a rectangular double–
inlet system with characteristic parameter values given in Tab. 4.2. Most of the param-
eter values are those observed for the Marsdiep–Vlie inlet system (Duran-Matute et al.
[23], Ridderinkhof [41]) except for the length (30 km instead of the 59 km characterising
the Marsdiep–Vlie inlet system). The choice of a shorter length is motivated by our focus
on morphodynamic instabilities resulting from diffusive processes. Indeed in Deng et al.
[26] it was shown that both advective and diffusive sediment transport are of equal im-
portance for the observed system length. By reducing the length, diffusive instabilities
become dominant, thus allowing us to focus on the morphodynamic equilibria resulting
from diffusive processes only.

In Sect. 4.4.1, the laterally uniform morphodynamic equilibrium associated with the
default parameter values for a rectangular inlet system with a length of 30 km is dis-
cussed. Next, in Sect. 4.4.2, a bifurcation analysis is performed, in which the friction pa-
rameter is used as bifurcation parameter. The resulting morphodynamic equilibria are
characteristized by the mode amplitudes defined in Eqn. (4.30). Bifurcation diagrams
obtained considering different uniform basin widths are studied in Sect. 4.4.2.

4.4.1. LATERALLY UNIFORM MORPHODYNAMIC EQUILIBRIA AND THEIR LIN-
EAR STABILITY

DEFAULT PARAMETER VALUES

The bed profile of the laterally uniform morphodynamic equilibrium obtained using the
default values of Tab. 4.2 is shown in Fig. 4.2a. This figure shows that at the seaward
entrances, the water depth is approximately 11.7 m, while a minimum water depth of
1.8 m is found at a distance of about 16 km from inlet I.

The linear stability of this morphodynamic equilibrium with respect to two dimen-
sional perturbation is shown in Fig. 4.2b. In this figure, the three largest growth rates, de-
noted by ℜ(ω0), ℜ(ω1) and ℜ(ω2), are plotted as a function of the dimensionless lateral
wave number ln . The largest growth rate ℜ(ω0) is negative when ln = 0, and hence the
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Quantities in the dimensional model
System Sediment & Bed

L = 30km kh∗ = 100m2 s−1

g = 9.81ms−2 α= 0.5×10−2 kgsm−4

cd = 0.0020 λ∼ 10−6 −10−4m2 s−1

σ= 1.4×10−4 s−1 kv∗ = 0.2m2 s−1

T = 44.9×103 s d50 = 2×10−4 m
ρs = 2650kgm−3

p = 0.4
ws = 0.015ms−1

Uw = 1.0×10−2 ms−1

Inlet specific parameters
Inlet I Inlet II

H I = 11.7m H II = 11.7m
AI

M2
= 0.62m AII

M2
= 0.62m

φI
M2

= 0◦ φII
M2

= 1◦

B I = 1000m B II = 1000m
Quantities in the non-dimensional model
ϵ= 5.30 ·10−2 λL = 0.39

r = 0.23 a = 0.28
kh = 7.9 ·10−4 δs = 9.5 ·10−5

λd = 0.59 AII
r 2 = 1.0

δw = 4.5 ·10−2 φII
r 2 = 1◦

Table 4.2: Parameter values adopted in the model.

(a) (b)

Figure 4.2: The laterally uniform equilibrium bed profile obtained for the default parameter setting is plotted
as a function of the distance from inlet I in panel (a). Panel (b) shows the three largest growth rates of this
morphodynamic equilibrium as function of dimensionless (lateral) wave number ln .
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morphodynamic equilibrium is stable against laterally uniform perturbations. Increas-
ing ln from 0 to 200, ℜ(ω0) quickly becomes positive and increases to approximately
0.011, which corresponds to a dimensional growth rate of 4.6×10−3 yr−1. When increas-
ing ln further, ℜ(ω0) starts to decrease and becomes again zero at ln = 300. Next, in-
creasing ln results in ℜ(ω0) becoming negative. The figure also shows that the second
and third eigenmodes are linearly stable, because both ℜ(ω1) and ℜ(ω2) are negative for
all the considered ln .

Using the parameter values in Tab. 4.2, the dimensionless lateral wave number of the
mode n = 1 is l1 = πL/B = 94.2. In a similar way, l2, l3 etc can be obtained. In Fig. 4.2b,
these lateral wave numbers are indicated by the solid vertical lines. It appears that modes
n = 1, 2, 3 have a positive growth rate ℜ(ω), indicating that these perturbations will grow
in time. All perturbations with a higher mode number (n ≥ 4) are linearly stable.

SENSITIVITY TO THE FRICTION PARAMETER

In Fig. 4.3a the equilibrium bed profiles of the laterally uniform morphodynamic equilib-
ria are shown as a function of the distance from inlet I (horizontal axis) and the friction
parameter cd (vertical axis). From this figure it follows that when increasing the friction
parameter cd from 0.0015 to 0.0025 the morphodynamic equilibria do not change too
much: for example the location of WDmin, indicated by the gray line, is always found at
x ∼ 16km. This is also evident from Fig. 4.3b where the equilibrium bed profiles for three
selected friction parameter values, namely cd = 0.0018, cd = 0.0019 and cd = 0.0020, are
shown.

However the linear stability properties of the laterally uniform morphodynamic equi-
libria sensitively depend on the friction parameter cd . In Fig. 4.3c the largest growth rate
ℜ(ω0) is shown for the cd values used in Fig. 4.3b. By increasing the friction parameter
cd , the growth rate ℜ(ω0) of the fastest growing eigenpattern becomes larger for all wave
numbers ln . This is also demonstrated in Fig. 4.3d, in which the neutral stability curve
of ℜ(ω0), i.e., the location in the ln − cd space where ℜ(ω0) = 0 is plotted as a blue solid
line. The neutral stability curves of the eigenpattern with the second and third largest
growth rate, ℜ(ω1) and ℜ(ω2), are shown as red and orange solid lines, respectively. The
three black vertical lines in this figure indicate the value of the wave number of mode 1
(l1 = 94.2), mode 2 (l2 = 188.4) and mode 3 (l3 = 282.6). When the friction parameter cd

increases from 0.0015 to 0.0025, first mode 2 becomes linearly unstable ( indicated by P0
for cd = 0.00184). Next modes 1 and 3 become unstable, as indicated by P1 (cd = 0.00188)
and P2 (cd = 0.00196), respectively.

SENSITIVITY TO THE WIDTH

In the above discussion, the width is taken to be B = 1km. When this width is varied,
the laterally uniform morphodynamic equilibrium does not change. Its linear stabil-
ity, on the other hand, may change because the values of the admissable wave number
ln change: indeed the dimensionless wave number ln is inversely proportional to the
width B . In Fig. 4.4, the three largest growth rates are shown as a function of dimension-
less wave number ln , using the default value for cd (=0.002). The black lines indicate the
admissable wave numbers of the first mode, indicated by l1, for different basin width.
For B = 0.25km, the first admissable wave number becomes l1 = 376.8. The associated
growth rate is negative. The growth rates associated with admissable wave number ln
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(a) (b)

(c) (d)

Figure 4.3: Morphodynamic equilibria for different values of the friction parameter cd . Panel (a) shows the
water depth of the morphodynamic equilibria as a function of distance from inlet I and friction parameter cd ,
with cold color denoting large water depth and warm color small water depth. Panel (b) shows the water depth
for three selected values of the friction parameter cd . Panel (c) shows the growth rate of the most unstable/least
stable eigenfunctions R(ω0), is shown as a function of dimensionless lateral wave number ln . In panel (d) the
neutral stability curves of R(ω0), R(ω1) and R(ω2) are shown.
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Figure 4.4: The three largest growth rates of the morphodynamic equilibria using default parameter values (see
table 4.2) are shown as functions of the dimensionless (lateral) wave number ln . The black lines indicates the
first associated wavenumber l1 for different basin widths.
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with n ≥ 2 are all negative (not shown), and the corresponding laterally uniform mor-
phodynamic equilibrium is linearly stable. When the width becomes larger, the first ad-
missable wave number becomes smaller. For example, when B = 0.5km (B = 1.0km),
l1 = 188.4 (l1 = 94.2). The associated growth rate is positive, and the associated laterally
uniform morphodynamic equilibrium is linearly unstable. For B = 2.0km, the first ad-
missable wave number becomes l1 = 47.1 and the corresponding largest growth rate as-
sociated with l1 = 47.1 is negative. However, since there are other modes with a positive
growth rate (for example, l2), the associated laterally uniform morphodynamic equilib-
rium is linearly unstable.

4.4.2. LATERALLY VARYING MORPHODYNAMIC EQUILIBRIA

When the laterally uniform morphodynamic equilibria change their linear stability prop-
erties, dynamical system theory (see for example Dijkstra et al. [21]) stipulates that a so–
called bifurcation has occurred. In Sect. 4.4.2, we focus on the bifurcation structure of
a double–inlet system with a uniform width of B = 1km, varying the friction parameter
cd . The influence of width variations is studied in Sect. 4.4.2.

VARIATIONS OF THE FRICTION PARAMETER

For the friction values indicated by the points P0, P1 and P2 in Fig. 4.3b bifurcations oc-
cur. To further study these bifurcations, Fig. 4.5a shows the bifurcation diagram using the
default parameter values for the double–inlet system, except for the friction parameter
cd which is used as bifurcation parameter. In this diagram all morphodynamic equilib-
ria that exist for a specific value of cd are characteristized by the amplitudes of the first
three lateral modes of the bed profile. In Fig. 4.5a it is shown that when increasing the
friction parameter cd from 0.0018 to 0.0021, three supercritical pitchfork bifurcations,
denoted by P0 (cd = 0.00184), P1 (cd = 0.00188) and P2 (cd = 0.00196) are found on
the branch of laterally uniform morphodynamic equilibria, denoted as branch B0 (black
line, with solid, dotted and dashed indicating none, 1 and 2 eigenpatterns with positive
growth rates; the dash–dotted line indicates that at least three linearly unstable eigen-
patterns exist). This branch is characterized by all mode amplitudes equal to zero (see
B0 in Fig. 4.5e for the bed profile obtained for cd = 0.002).

The first pitchfork bifurcation P0 results in two new branches, denoted by B1 and
B2, of linearly stable morphodynamic equilibria (indicated by the solid blue lines in
Fig. 4.5a). The branch B1 is characterized by a positive amplitude for mode 2, branch
B2 by a negative amplitude. Following branch B1 by increasing the friction parame-
ter cd , a supercritical pitchfork bifurcation P3 is found at cd = 0.00195. At this bifurca-
tion, branch B1 becomes unstable (indicated by the dotted blue line), while two new
branches, denoted by B3 and B4, of linearly stable morphodynamic equilibria are found
that are characterized by a positive amplitude of mode 2 (blue solid lines), and non–zero
amplitudes for all other modes as well. Here, only the amplitudes of mode 1 for these
two new branches are shown as the solid red lines (see also Appendix D for a further
explanation). The amplitude of mode 1 on branch B3 is positive, while on branch B4
a negative amplitude is found for mode 1. The bed profiles of branches B1 to B4 for
cd = 0.002 are shown in Fig. 4.5b. In the lateral direction, the bed profile of branch B1
(B2) is shallow (deep) near the lateral boundaries and deep (shallow) in the middle of the
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(a)

(b)

Figure 4.5: Bifurcation diagram for morphodynamic equilibria obtained by varying the friction parameter cd .
In panel (a) the bifurcation configuration is shown. Lines colored with red, blue and orange indicate the ampli-
tudes of mode 1, 2 and 3 of morphodynamic equilibria, respectively. The black line indicates laterally uniform
morphodynamic equilibria. Solid, dotted and dashed lines indicate the number of positive growth rates: none,
1 and 2. The crosses on the horizontal axis denote the friction values used in Figs. 6–8. Panel (b) shows rep-
resentative morphodynamic equilibria for each branch, with warm colors denoting smaller water depths and
cold colors larger water depths. These equilibria are all obtained by using a friction parameter cd = 0.002.
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basin, which is typical for a positive (negative) amplitude of mode 2. In both cases, the
morphodynamic equilibria are symmetric around y = 500m (= B/2). The bed profiles
associated with branch B3 (B4) are shallow (deep) near the right lateral boundary and
deep (shallow) near the left lateral boundary, looking from inlet I to inlet II .

Just right of the second pitchfork bifurcation P1 on branch B0 two new unstable
branches (red dotted lines) are found, characteristized by one unstable eigenmode. The
laterally uniform morphodynamic equilibrium is now unstable with two eigenpatterns.
The newly found branches are denoted by B5 (characteristized by a positive amplitude
of mode 1) and B6 (characteristized by a negative amplitude). The representative bed
profiles of branches B5 and B6 are shown in Fig. 4.5b again for cd = 0.002. Note that
these equilibria are linearly unstable. Looking from inlet I to inlet II , the bed profile of
B5 (B6) is shallow (deep) in the left coastal boundary and deep (shallow) in the right
coastal boundary, while the shallowest region is observed in the middle left. This indi-
cates that the characteristic bed profile of B5 (B6) not only consists of mode 1, but is also
strongly influenced by the amplitude of mode 2 (not shown in Fig. 4.5, see Appendix D).

The third pitchfork bifurcation at B0 is denoted by P2 and new unstable branches
are found, one with positive amplitude of mode 3, denoted by B7 (upper dashed orange
line), and another with negative amplitude, denoted by B8 (lower dashed orange line).
These two branches are characteristized by two positive growth rates ℜ(ω), while the
number of positive growth rate ℜ(ω) of the branch (black dash-dotted line) of laterally
uniform morphodynamic equilibria becomes 3. Associated (linearly unstable) morpho-
dynamic equilibria of branches B7 and B8 for cd = 0.002 are shown in Fig. 4.5b as well.
Looking from inlet I to inlet II , the bed profile of B7 (B8) is shallow (deep) in the left
coastal boundary and has another shallow (deep) region near the middle right.

VARIATIONS OF UNIFORM WIDTH B
Similar to variations of friction parameter cd , a rich bifurcation structure forms when
the uniform width B of the system is varied. Fig. 4.6a shows the bifurcation diagram for
friction parameter cd = 0.00184, with width B varying from 200 m to 1800 m. The fig-
ure shows that five pitchfork bifurcations are found on the branch of laterally uniform
morphodynamic equilibria (denoted by B0 and indicated by the black line), denoted by
P0-P4. The first bifurcation P0, which is a supercritical pitchfork bifurcation, is found
at B = 510m. Two new branches (solid red lines) with non–zero amplitudes of mode
1 are found, one with a positive amplitude (denoted by B1) and the other one with a
negative amplitude (denoted by B2). It should be noted that these two branches also
have non–zero amplitudes for the other modes. As an example, the amplitude of mode 2
(solid blue line connecting P0 and P1) is shown in figure 4.6a. These two branches come
again together with the B0 branch at B = 755m, forming the (subcritical) pitchfork bi-
furcation P1. Like the pitchfork bifurcation P0, the bifurcation P2, found at B = 1020m,
is a supercritical pitchfork bifurcation. The bifurcation P2 results in two new branches
of morphodynamic equilibria with a non–zero amplitude of mode 2 (solid blue lines),
the branch with a positive amplitude is denoted by B3 and a negative amplitude by B4.
These two branches join the branch B0 at B = 1510m, forming the (subcritical) pitch-
fork bifurcation P3. Similar to P0 and P2, the last bifurcation P4 found at B = 1530m
is a supercritical pitchfork bifurcation. This bifurcation results in two new branches of
morphodynamic equilibria with a non–zero amplitude of mode 3 (solid orange lines),
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(a) (b)

Figure 4.6: Bifurcation diagram for morphodynamic equilibria obtained for varying width. Panel (a) shows
the bifurcation diagram with a friction parameter cd =0.00184. The black lines indicate laterally uniform mor-
phodynamic equilibria, while the red, blue and orange colored lines indicate branches of morphodynamic
equilibria with a lateral structure. The amplitude of the mode 1 pattern is indicated in red, for the amplitude
of the mode 2 pattern, blue is used, and orange is used for the amplitude of mode 3. Solid lines indicate that
the morphodynamic equilibria are linearly stable. The dotted lines indicate morphodynamic equilibria with 1
positive growth rate Re(ω), while dash–dotted lines indicate equilibria with one or more positive growth rates.
These equilibria are not discussed in detail in the text. The vertical green dashed line indicates the morpho-
dynamic solutions found for a width of 1 km. The characteristic lateral variations of bed profile are shown in
panels (b).

one with a positive amplitude (denoted by B5) and the other with a negative amplitude
(denoted by B6). Between bifurcations P0 (P2) and P1 (P3), the branch B0 is unstable
(black dotted lines). The lateral deviations from the underlying laterally uniform mor-
phodynamic equilibrium of characteristic bed profiles for branches B0-B4 are shown in
Fig. 4.6b. It appears that the lateral variations of branches B1-B6 affect the bed topogra-
phy in the middle between the two inlets. The variations of branches B1 and B2 (B3 and
B4, B5 and B6) are typical of bed patterns associated with mode 1 (2, 3).

In Fig. 4.7a, the bifurcation diagram for uniform widths varying between 200 m and
1800 m and friction parameter cd = 0.00185 is shown. In Fig. 4.7b the bifurcation struc-
ture for widths between 1400 m and 1700 m is shown in detail. The lateral deviations
from the underlying laterally uniform component of the morphodynamic equilibrium
bed profiles for different branches are shown in Fig. 4.7c and 4.7d. Similar to the case
with cd = 0.00184 (Fig. 4.6a), pitchfork bifurcations P0-P4 and the branches B0-B6 are
found, even though these bifurcations occur for different width values (P0 at B = 470m,
P1 at B = 810m, P2 at B = 940m, P3 at B = 1620m and P4 at B = 1440m). Compared
to the bifurcation structure shown in Fig. 4.6a for a lower cd value, the morphodynamic
equilibria on branches B5 and B6 resulting from bifurcation P4 are linearly unstable.

On branches B5 and B6, new supercritical pitchfork bifurcations, denoted by P7 and
P8, are found (at B = 1510m, see Fig 4.7b). Bifurcation P7 (P8) results in two new un-
stable branches (dotted orange lines and dotted blue lines) with a non–zero amplitude
of mode 2. The branches with a positive amplitude of mode 2 are denoted by B7 and
B8, while the branches with a negative amplitude by B9 and B10. Starting at P7 (P8)
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(a) (b)

(c) (d)

Figure 4.7: Bifurcation diagram for morphodynamic equilibria with the width as bifurcation parameter. Panel
(a) shows the bifurcation diagram with friction parameter cd fixed as 0.00185, with a closer look at the complex
bifurcation structure around B = 1550m in panel (b). In all panels, the black line indicates laterally uniform
morphodynamic equilibria, while the lines with red, blue and orange colors indicate amplitudes of mode 1,
mode 2 and mode 3 of the laterally varying components of the morphodynamic equilibria. Solid, dotted and
dashed lines indicate the number of possible eigenmodes: 0, 1 and 2 positive growth rates. The vertical green
dashed line indicates the morphodynamic equilibria found for a width of 1 km. The characteristic lateral vari-
ations of bed profile are shown in panels (c), (d).
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(a) (b)

(c) (d)

Figure 4.8: Bifurcation diagram for morphodynamic equilibria with the width as bifurcation parameter. Panels
(a) and (c) show the bifurcation diagrams with friction parameter cd equal to 0.0019 and 0.0020, respectively.
In all panels, the black lines indicate laterally uniform morphodynamic equilibria, while the lines colored with
red, blue, orange and cyan indicate amplitudes of mode 1, mode 2, mode 3 and mode 4. Solid, dotted and
dashed lines indicate the number of postive eigenmodes: 0, 1 and 2 postive growth rates. The dash–dotted line
indicate equilibria with one or more positive growth rates. These equilibria are not discussed in detail in the
text. The vertical green dashed line indicates the morphodynamic solutions found for a width of 1 km. The
characteristic lateral variations of bed profile are shown in panels (b) and (d).
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and increasing the width B , branch B5 (B6) becomes linearly stable. Branches B7 (B9)
and B8 (B10) join the branch B3 (B4) at B = 1590m (B = 1570m), forming a subcritical
pitchfork bifurcation P5 (P6). Between P5 (P6) and P3, branch B3 (B4) becomes linearly
unstable.

Similar to the plots in Fig. 4.6b, the largest lateral variations of morphodynamic equi-
libria on branches B1-B10, shown in Fig. 4.7c and 4.7d, are found in the middle between
the two inlets. The lateral variations of the morphodynamic equilibria on branches B1
(B2), B3 (B4) and B5 (B6) are typical for bed patterns associated with a positive (neg-
ative) amplitude of mode 1, 2 and 3, respectively. The variations of branches B7 ∼ B10
consist of an amplitude of mode 2 and 3.

The bifurcation configuration for the friction parameter cd = 0.0019 is shown in Fig.
4.8a, with the lateral deviations from the underlying laterally uniform component of the
morphodynamic equilibrium bed profiles for various branches shown in Fig. 4.8b. Com-
pared to the bifurcation structure obtained with cd = 0.00185, the supercritical bifurca-
tion P2 is found for a smaller width value than the bifurcation P1 on the branch B0. At
the supercritical pitchfork bifurcation P0 two stable branches are found, denoted by B1
and B2. At the supercritical bifurcation P2 two linear unstable branches, denoted by
B3 and B4 are found. The branches B1 and B2 join branch B3 at a subcritical pitch-
fork bifurcation, denoted by P9, resulting in B3 becoming linearly stable. On the branch
B4, a supercritical pitchfork bifurcation denoted by P10 is found. At this bifurcation the
branch B4 becomes linearly stable and two new unstable branches are generated (dot-
ted blue line and dotted red lines), one with a positive amplitude of mode 1 (B11) and
one with a negative amplitude (B12). These two new branches connect to the branch B0
at the subcritical bifurcation P1. On branch B0, supercritical pitchfork bifurcation P4 is
also found, resulting in two unstable branches B5 and B6.

When using the default friction parameter cd = 0.002, the bifurcation structure be-
comes more complicated. The resulting bifurcation diagram is shown Fig. 4.8c, with the
lateral deviations from the underlying laterally uniform component of the morphody-
namic equilibrium bed profiles for various branches shown in Fig. 4.8d. Even though
the bifurcation diagram for this default value shows many differences, compared to the
one obtained with cd = 0.0019, the bifurcation structure of the stable branches is quite
similar. The pitchfork bifurcation B0 results in two stable branches (B1 and B2) of mor-
phodynamic equilibria. These two branches join the unstable branch B3 at P9, resulting
in branch B3 becoming stable. The supercritical pitchfork bifurcation P10 results in B4
becoming stable. B3 and B4 are branched from supercritical pitchfork bifurcation P2.
On branch B0, the supercritical pitchfork bifurcation P4 is found for a smaller width
value than bifurcation P1 on the branch B0. At this pitchfork bifurcation, two linearly
unstable branches are found, denoting the one with a positive amplitude of mode 3 by
B5 and the one with a negative amplitude of mode 3 by B6. The branches B5 and B6 join
to a new branch (B13 cyan dash-dotted line, see also Fig. 4.8a) with positive amplitude
of mode 4 at a new bifurcation P12.

4.5. DISCUSSIONS
The results presented in the previous section indicate that the existence and number of
morphodynamic equilibria, depends on the friction parameter and width.
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Figure 4.9: The stable morphodynamic equilibria obtained for a width of 1 km and cd = 0.00184, cd = 0.00185,
cd = 0.0019 and cd = 0.0020.

Figure 4.10: The largest growth rate ℜ(ω0) obtained by using friction parameter cd = 0.00184 as function of
dimensionless wave number ln . The blue, green and red vertical lines indicate mode numbers for width B =
1200m, B = 900m and B = 600m, respectively.
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Focusing on the stable morphodynamic equilibria for a double–inlet system with a
width of 1 km (Fig. 4.5), we see that for cd ≲ 0.00184 the only morphodynamic equi-
librium found is laterally uniform. This is consistent with the results shown in Fig. 4.6,
where for a fixed value of cd = 0.00184 the solutions for a width of 1 km are indicated
by the vertical green dashed–green line: only the laterally uniform equilibrium is found
for this set of parameters. The deviation from the laterally uniform equilibrium (in this
case zero everywhere) is depicted in Fig. 4.9, is linearly stable. Keeping the width equal
to 1 km and increasing the friction parameter first results in two morphodynamically
stable equilibria, one characterised by a channel flanked by two shallow regions, see
B1(cd = 0.00185) and B1(cd = 0.0019) in Fig. 4.9. The other equilibrium is characterized
by a shallow region in the middle flanked by two deeper channels near the landward
boundaries, see B2(cd = 0.00185) and B2(cd = 0.0019) in Fig. 4.9. Note that for the larger
friction value, the channels get deeper and the shallow regions get shallower. These solu-
tions are also found in Fig. 4.7, 4.8a and 4.8b, indicated by the vertical green–dashed line.
For even larger friction parameters, three stable morphodynamic equilibria are found.
The first one, shown as B2(cd = 0.0020) in Fig. 4.9, still consists of two channels at the
landward boundaries, separated by a channel, but with a larger amplitude than for the
smaller friction values. The other two stable equilibria consist of a channel to one side,
flanked by a shoal attached to the other landward boundary, see B3(cd = 0.0020) and
B3(cd = 0.0020) in Fig. 4.9. These solutions do not resemble the characteristic bottom
pattern associated with those found at the onset of instablity (i.e. around cd ∼ 0.00184),
indicating that the patterns at onset are not necessarily a good predictor of the pat-
terns observed far from equilibrium. Again, the three stable solutions are also found
in Fig. 4.8c and 4.8d.

In Figs. 4.6–4.8 the influence of the width on the number and stability of morpho-
dynamic equilibria is systematically investigated for different values of the friction pa-
rameter. Even though the resulting bifurcation structure becomes more complicated for
increasing cd , some overarching conclusions can be drawn regarding the stable mor-
phodynamic solutions. For relatively small friction values, the bifurcation structure is
quite simple: for wider double–inlet systems, the resulting morphodynamic equilibria
are characterised by higher mode numbers. However, there are widths for which the un-
derlying laterally uniform morphodynamic equilibrium is linearly stable. This can be
understood by plotting the growth rate of the linearly most unstable mode, see Fig. 4.9b.
From this figure it follows that for a relatively small width, only mode n = 1 is linearly
unstable, resulting in a pattern consisting of a channel to one lateral side of the double–
inlet system and a shoal to the other side. It should be noted that all other modes also
have a non–zero amplitude. Then, if the width is increased all eigenmodes are linearly
stable, indicating that the laterally uniform morphodynamic equilibrium is expected to
be observed for these parameter values. Increasing the width further, mode n = 1 stays
linearly stable but mode n = 2 becomes unstable resulting in the channel-shoal structure
depicted in Fig. 4.6b.

The relatively simple bifurcation structure, observed for cd = 0.00184, becomes more
complicated when the friction parameter is increased. For a slightly larger friction value
and for a relatively small width, the first non-trivial morphodynamic equilibria are again
dominated by the n = 1 mode (all other modes have a non–zero amplitude as well). In-
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creasing the width further results in laterally uniform stable morphodynamic equilibria.
Similar as for cd = 0.00184, for widths ∼ 1000m mode 2 dominates the resulting stable
morphodynamic equilibria. Contrary to the results for cd = 0.00185 there are no large
widths anymore for which the laterally uniform morphodynamic equilibria become lin-
early stable again. Now, for larger widths a linearly stable morphodynamic equilibrium
appears that is dominated by the n = 3 mode. For intermediate width values (here
1510m ≤ B ≤ 1570m) there are four linearly stable morphodynamic equilibria, two dom-
inated by the n = 2 mode and two by the n = 3 mode.

When increasing the friction parameter even further, the dependency of the stable
morphodynamic equilibria on width seems to simplify a bit. For small enough widths,
the laterally uniform morphodynamic equilibrium is linearly stable. The largest width
for which this is the case decreases with increasing value of the friction value cd . When
the width exceeds a critical value, there are two linearly stable morphodynamic equi-
libria, both dominated by the n = 1 mode. When the width is further increased, a third
linearly stable equilibrium is formed; this equilibrium is dominated by the n = 2 mode.
Increasing the width even further, the stable equilibria dominated by the n = 1 mode
disappear and, apart from the already existing n = 2 equilibrium, another equilibrium
dominated by n = 2 is found. Hence two stable equilibria, both dominated by n = 2 are
found for widths that are large enough. For widths considered in our experiments (up to
1800 m) no other equilibria were found.

Even though morphodynamic equilibria are obtained that have a channel-shoal stuc-
ture in shallow locations, these results are difficult to compare with both field observa-
tions and lab experiments. There are two main reasons for that: first, in the model devel-
oped in this paper the focus was on diffusive sediment transport processes, neglecting
advective transport mechanisms. This leads to large–scale morphodynamic structures,
while in both observations and lab experiments smaller scale structures also are typi-
cally observed. This suggests that advective processes are important as well, since these
processes result, at least initially, in smaller scale bottom patterns (Deng et al. [26]). A
second reason why a comparison with observations is limited is the fact that most inlet
systems in the real world have a complicated planform geometry. This strongly influ-
ences the underlying lateral uniform equilibrium (Deng et al. [36]) which may in turn
influence the channel-shoal patterns (Boelens [22], Boelens et al. [42]).

4.6. CONCLUSION
In this paper an exploratory model was developed to investigate the morphodynamic
equilibria of tidal inlet systems that are connected to the outer sea by two inlets. To sys-
tematically gain first insights in the spatial structure of the bed patterns associated with
these equilibria a highly schematized domain is considered, i.e., a rectangular one with
only the bed erodible. The water motion is described by the linearized depth–averaged
shallow water equations, neglecting the Coriolis force, and forced by prescribed M2 sea
surface elevations at both connections to the open sea. Sediment is eroded from the
bed and transported in suspension by diffusive processes, while the sediment can settle
again on the bed because of gravitation. Convergences and divergences of the diffusive
transports result in changes of the bathymetry.

Instead of studying the morphodynamic evolution of the double–inlet system, we
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aim at identifying the existence of morphodynamic equilibria directly. A tidal inlet sys-
tem is considered to be in morphodynamic equilibrium if the divergence of the tidally–
averaged sediment transport vanishes. To compute these equilibria directly, a good ini-
tial guess or an actual equilibrium has to be known for a specific set of parameters.
Here we use the laterally uniform morphodynamic equilibria obtained by Deng et al.
[36]. Next, a continuation method (Newton–Raphson method together with arclength
method (Crisfield [43])) is employed to get possible morphodynamic equilibria. This
also allows one to assess the number of morphodynamic equilibria and their linear sta-
bility. The linear stability is obtained by calculating the growth rates of infinitesimally
small perturbations. Characteristic amplitudes of the morphodynamic equilibria and
their stability are plotted as a function of the parameter that is varied, resulting in so–
called bifurcation diagrams.

The sensitivity of morphodynamic equilibria to the friction coefficient and the sys-
tem width is investigated. It is found that laterally uniform morphodynamic equilibria
are quite insensitive to both the width and the magnitude of the friction coefficient, but
that their linear stability strongly depends on these parameters. If the width is small
enough, laterally uniform morphodynamic equilibria are linearly stable. The larger the
friction parameter, the narrower the inlet system has to be for having a stable equi-
librium. For relatively small values of the friction coefficient intervals of larger widths
exist for which laterally uniform equilibria are still linearly stable. These intervals be-
come smaller and eventually disappear when the strength of the bottom friction is large
enough.

If the laterally uniform morphodynamic equilibrium is linearly unstable, either two
or four linearly stable morphodynamic equilibria are found that are characterised by a
channel–shoal pattern. These patterns are found close to the middle of the double–inlet
system where the depth of the laterally uniform equilibrium configuration is relatively
small. For narrow tidal inlet systems, there are two stable morphodynamic equilibria
with bathymetries consisting of one channel and one shoal (mode 1 patterns). Increas-
ing the width, but considering small enough values of the drag coefficient, non-trivial
morphodynamic equilibria are found that are characterised by a pattern of two chan-
nels to the lateral sides to the system separated by a shoal in the middle, or by two shoals
to the lateral sides separated by a deep channel (mode 2 patterns). Such equilibria are
also found for larger values of the friction coefficient when considering larger widths.
In this case, however, also slightly smaller widths exist for which four stable morphody-
namic equilibria exist. The resulting channel–shoal patterns are a combination of mode
1 and mode 2 patterns.

Even though the results are promising, it is not possible to directly compare them
to field observations or results obtained with lab experiments. To be able to make such
a comparison, the physical formulation has to be extended to allow for advective pro-
cesses. Furthermore, a more realistic geometry has to be considered as it is shown that
the planform geometry of the double–inlet system can strongly influence the morpho-
dynamic equilibrium (Deng et al. [36]), and hence the resulting channel–shoal patterns.
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5
CONCLUSIONS

5.1. GENERAL CONCLUSIONS
Motivated by Schuttelaars and de Swart [1] and Meerman et al. [2], an idealized model is
developed to study the morphodynamic equilibria in a double–inlet system. The model
consists of depth–averaged water motion equations forced by tidal constituents, a depth–
integrated advection–diffusion equation for sediment transport with sink and source
terms and a depth–averaged bed evolution equation. Using scaling analysis to make
the system of equations dimensionless, a tidal time scale and a morphodynamic time
scale are identified. The system is taken to be in a morphodynamic equilibrium state
if the bed profile does not evolve on the long morphodynamic timescale. This condi-
tion essentially occurs when the divergence of the tidally averaged sediment transports
vanishes.

First, morphodynamic equilibria are obtained and analysed by using direct root–
finding approaches to numerically solve the dimensionless system of equations. In the
parameter space spanned by the relative phase and amplitudes of M2 tidal forcing, it was
found that there are regions where no equilibrium, one equilibrium or multiple equilib-
ria can exist. In the absence of morphodynamic equilibria, the double–inlet system is
reduced to two uncoupled single–inlet systems. For specific contributions of M2 and M4

tidal forcing, four morphodynamic equilibria, two unstable and two stable, were found.
The width–averaged characteristics of the Marsdiep–Vlie inlet system are reproduced by
the idealized model.

Next, using a 2DH (depth–averaged) model with a rectangular geometry, the ini-
tial formation of channels and shoals is investigated for the morphodynamic equilibria
which are linearly stable against one–dimensional perturbations, using perturbations
that have a lateral structure. When morphodynamic equilibria are unstable due to dif-
fusive mechanisms, the associated eigenvalues are real, and, hence the channel–shoal
patterns can only grow/decay in time. When morphodynamic equilibria are unstable
due to advective mechanisms, the associated eigenvalues become complex, such that
the eigen patterns not only can grow/decay in time, but also migrate.
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An idealized 2DH model is finally used to study the morphodynamic equilibria with
a lateral structure in a short rectangular double–inlet system. In this case, only diffu-
sive mechanisms are important and considered. If the friction parameter and the width
are larger than a critical value, multiple morphodynamic equilibria can exist. The cor-
responding bifurcation diagrams are constructed by varying seperately the friction pa-
rameter and the tidal system width.

5.2. DISCUSSION OF THE RESEARCH QUESTIONS
In this thesis, the morphodynamic equilibria of a double–inlet system, as well as their
linear stability have been studied using an idealized model. These investigations enable
us to answer the research questions posed in Chap. 1. In what follows, the questions
addressed in Chap. 1 are repeated and answered.

• Q1: How do variations in tidal forcings influence the morphodynamic equilib-
ria in double–inlet systems? Specifically, how do these variations influence the
existence and uniqueness of morphodynamic equilibria?

Using direct root–finding approaches in a cross–sectionally averaged model, the
sensitivity of the morphodynamic equilibria on tidal forcings was studied. It has
been shown that no morphodynamic equilibrium, one morphodynamic equilib-
rium or more than one equilibrium configurations can exist, depending on the
M2 tidal constituent prescribed at the seaward boundaries. In case of no morpho-
dynamic equilibrium, the water depth vanishes somewhere within the tidal basin
and the double inlet system reduces to two uncoupled single–inlet systems. For a
specific tidal forcing condition, even four morphodynamic equilibria, two stable
and two unstable, were found. (Chap. 2)

• Q2: How does the planform geometry of the double–inlet systems influence
the resulting morphodynamic equilibria and how do resulting morphodynamic
equilibria compare with observations in the Marsdiep–Vlie inlet system?

The equilibrium bed profiles, as well as the directions of the sediment transport,
were found to strongly depend on the prescribed width profile. In order to qual-
itatively compare the model results with the observations in the Marsdiep–Vlie
inlet system, the width variations observed in this inlet system were taken into ac-
count, The resulting equilibrium bed profile showed a good qualitative agreement
with the observed width–averaged basin bathymetry. Moreover, the model pre-
dicts a sediment transport from the Marsdiep inlet to the Vlie inlet, which has the
same order of magnitude as the transport computed with more advanced numer-
ical models. (Chap. 2)

• Q3: What are key mechanisms resulting in the initiation and formation of chan-
nels and shoals in double–inlet systems?

Both diffusive and advective mechanisms are responsible for the formation of cha-
nnel–shoal patterns. These patterns are usually localized near local maxima of
water depth. When the morphodynamic equilibria are linearly unstable due to a
diffusive mechanism, the associated eigenvalues are real. When the instabilities
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are governed by both diffusive and advective mechanisms, the associated eigen-
values become complex, resulting in a cyclic growth of equilibrium bed profiles.
(Chap. 3)

• Q4: How does the number and stability of the resulting two–dimensional mor-
phodynamic equilibria depend on the friction and width?

The number of the resulting two–dimensional morphodynamic equilibria sensi-
tively depends on the friction parameter and tidal system width. When both the
friction and width are larger than a critical value, multiple morphodynamic equi-
libria exist leading to intricate bifurcation configurations (Chap. 4)

5.3. OUTLOOKS
In this thesis, the morphodynamic equilibria in a double–inlet system were studied, an-
swering to the research questions reported above. However, improvements of the analy-
sis and further investigations are recommended.

Further attention must be paid to study the influence of different parameterizations.
In the present idealized model many assumptions were made, which might have an in-
fluence on the resulting morphodynamic equilibria. For example, the width distribu-
tions can seriously change equilibrium bed profiles, as well as the direction of the net
sediment transport. In this thesis, a rectangular geometry has been used as a first ap-
proximation when discussing the 2DH results. The type of sediment, which is assumed
to be fine sand in this thesis, might also have an influence on the morphodynamic equi-
libria.

It is also recommended to investigate the linear stability of the morphodynamic equi-
libria. In this thesis, the channel–shoal patterns are very localized, while the observed
channels and shoals are usually longer in extent and further studies are necessary. More-
over, the formulation of sediment transport might also influence linear stability.

It is also recommended to further study channels and shoals in a long double–inlet
system, including in the model also the advective transports. The 2DH idealized model
in this thesis studied a short basin, which is a half of the length of the Marsdiep–Vlie inlet
system. Long basins might be charaterised by different morphodynamic equilibria, and
bifurcation configurations.

REFERENCES
[1] H. M. Schuttelaars and H. E. de Swart, Multiple morphodynamic equilibria in tidal

embayments, Journal of Geophysical Research 105, 105 (2000).

[2] C. J. Meerman, H. M. Schuttelaars, and V. Rottschafer, Influence of geometrical vari-
ations on morphodynamic equilibria for single inlet systems, Ocean Dynamics 69, 2
(2019).

http://dx.doi.org/10.1007/s10236-018-1236-7
http://dx.doi.org/10.1007/s10236-018-1236-7




A
SUPPORTING INFORMATION FOR

"MORPHODYNAMIC EQUILIBRIA IN

DOUBLE–INLET SYSTEMS: THEIR

EXISTENCE AND STABILITY"

A.1. VELOCITY SCALE
To obtain the typical velocity scale, a double–inlet system of constant width B , length L
and uniform depth H is considered. The linearized continuity and momentum equa-
tion, ignoring bottom friction and Coriolis, are combined, resulting in (Ippen [1]):

∂2ζ

∂t 2 + g H
∂2ζ

∂x2 = 0, (A.1)

with boundary conditions ζ(0, t ) = AI
M2

cos(σt −φI
M2

) and ζ(L, t ) = AII
M2

cos(σt −φII
M2

). By

substituting ζ(x, t ) = ζ̂exp(iσt ), an explicit expression for ζ̂ is found, reading

ζ̂= 1

e i kL −e−i kL

[(
B̃ − Ãe−i kL

)
e i kx +

(
Ãe i kL − B̃

)
e−i kx

]
, (A.2)

with Ã = AI
M2

exp(−iφI
M2

), B̃ = AII
M2

exp(−iφII
M2

), and k = σ/
√

g H . Using the linearized
momentum equation, the velocity u = û exp(iσt ) is found to have as amplitude

û =− g k

σ

1

e i kL −e−i kL

[(
B̃ − Ãe−i kL

)
e i kx +

(
Ãe i kL − B̃

)
e−i kx

]
. (A.3)

To get an estimate for the typical velocity scale in the double–inlet systems, assume that
kL ≪ 1. Using a Taylor expansion for û, we find that

û ∼− g

σ

{
B̃ − Ã

L
−

[
3(x/L)2 −1

]
B̃ − [

3(x/L)2 −6 x/L+2
]

Ã

6L
(kL)2

}
. (A.4)
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Scheme
Degree of Langrange element

corresponding to
[h,ζ00,u00,C 00,ζ10,u10,C 10, ,ζ01,u01,C 01]

Number
of elements

Degrees
of freedom

Advective [1, 1, 1, 1, 1, 1, 1, 1, 1, 1] 1000 22022
HR Advective [2, 2, 2, 2, 2, 2, 2, 2, 2, 2] 1000 44044

Table A.1: The possible choices of degree of Lagrange elements for each variable and the number of elements.
The variables, for example ζ00

c1 and ζ00
s1 , are abreviated as ζ00. In total there are 22 unknows per element when

using p = 1 elements and 44 unknowns when using p = 2 elements.

Assuming Ã ̸= 0, substitute B̃ = Ã+∆Ã in the above expression (if Ã = 0, interchange the
role of Ã and B̃). This results in

û ∼− g

σ

{
∆Ã

L
+ (2x/L−1)

2L
Ã (kL)2

}
, (A.5)

where it has been assumed that |∆Ã| ≪ |Ã|. If the first term on the right hand side is
much larger than the second term (i.e., if |∆Ã|/Ã ≫ (kL)2), the typical velocity scale is
given by U1 = g |∆Ã|/σL. If the second term dominates, the characteristic velocity scale
reads U2 = g |Ã|Lk2/σ= |Ã|σL/H . The first velocity scale U1 can be rewritten as

U1 = 1

(kL)2

|∆Ã|
|Ã| U2. (A.6)

For the double–inlet systems considered in this paper, we assume that U1 ∼U2. Hence
the typical velocity scale used to make the equations dimensionless is defined as U =
U2 = AI

M2
σL/H . We would like to stress that this derivation is only strictly valid for short

basins. However, we will use this scaling for long basins as well. We checked a posteriori
that the scaling of the resulting velocities was valid for all cases considered.

A.2. DETAILS CONCERNING THE NUMERICAL IMPLEMENTATION

A.2.1. ELEMENT ORDER
When discretizing the system of equations using a finite element method, the order of
the continuous Lagrange elements (Alnæs et al. [2]) used for the various physical quan-
tities has to be chosen. In Tab.A.1, two choices of the degree of the Lagrange elements
for each variable, the number of elements used and the resulting number of degrees of
freedom to discretize the equations are given. The first choice, denoted as Advective is
generally used to obtain the results in the main text. However, there are small regions
in the parameter space where either a better spatial resolution or a higher degree of the
Lagrange elements is necessary to get well converged results. The numerical setup for
these experiment is denoted by HR (high resolution) Advective.

A.2.2. NUMERICAL BIFURCATION APPROACH

By employing a root-finding method, we directly solve for equilibrium states Ψ̃e of the
discretized system of equations,

G (Ψ̃e,p0) = 0, (A.7)
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in which p0 is a vector of prescribed parameter values. To obtain equilibrium solu-
tions Ψ̃e of Eq. (A.7), a Newton-Raphson iterative method is used. The iterations in the
Newton-Raphson method are given by

G (Ψ̃i ,p0)+JG (Ψ̃i ,p0)∆Ψ̃i+1 = 0, (A.8)

in which Ψ̃i is the ith approximation of Ψ̃e, ∆Ψ̃i+1 is a correction to Ψ̃i , and JG (Ψ̃i ) is
the Jaccobian matrix of operator G evaluated in Ψ̃i . In the next iteration, Ψ̃i+1 = Ψ̃i +
∆Ψ̃i+1. During the iterations, it may occur that max(h̃i+1) > 1, which is not allowed from
a physical point of view, as this indicates that the bed level is above the undisturbed
water level somewhere in the domain of interest. This can be avoided by introducing a
control parameter θ, which satisfies 0 < θ ≤ 1, such that h̃i +θ∆h̃i+1 < 1. Numerically,
this is reflected by using underrelaxation to obtain the next update: Ψ̃i+1 = Ψ̃i +θ∆Ψ̃i+1.
If the correction ∆Ψ̃i+1 is sufficiently small (in our experiments when the maximum of
the absolute value of ∆Ψ̃i+1 is smaller than 10−8), we stop the iteration and identify Ψ̃i

as a morphodynamic equilibrium Ψ̃e.
In this paper, we aim at finding morphodynamic equilibria using the numerical bi-

furcation approach. In this approach parameters are slowly varied, and the previously
obtained equilibrium solutions are used as first guess in the iteration process. The con-
tinuation method employed in this paper is the arclength method [3], resulting in a fast
convergence, even when the water depth is very small. For the arclength method, the
known morphodynamic equilibrium, denoted by Ψ̃e, is associated with the value pe cor-
responding to parameter p, which is the only parameter varied out of all parameters in
the parameter vector p0. The new equilibrium Ψ̃′

e, and value p ′
e are expected to be ap-

proximated by Ψ̃e +Ψ̃f and pe +pf, where Ψ̃f is a small correction to Ψ̃e and pf is a small
correction to parameter pe.

To obtain Ψ̃f and pf, the Newton–Raphson method is again applied, but now the
operator G is derived with respect to both Ψ̃ and p:

JG (Ψ̃e + Ψ̃f,i , pe +pf,i )∆Ψ̃i+1 +Gp (Ψ̃e + Ψ̃f,i , pe +pf,i )∆pi+1

+ G (Ψ̃e + Ψ̃f,i , pe +pf,i ) = 0, (A.9)

where Gp , which is usually referred to as the load vector, is the derivative of operator G

with respect to parameter p. The update of Ψ̃f is Ψ̃f,i+1 = Ψ̃f,i +∆Ψ̃i+1, and the update of
pf is pf,i+1 = pf,i +∆pi+1.

Because an extra variable is introduced, the unknown parameter ∆pi+1, one more
equation, the so–called constraint equation is required. Following Crisfield [4], the con-
straint equation reads

∥Ψ̃f,i +∆Ψ̃i+1∥2 + (pf,i +∆pi+1)2∥Gp (Ψ̃e + Ψ̃f,i , pe +pf,i )∥2 =∆l 2, (A.10)

in which ∆l is a fixed parameter, called the arc length. ∥Ψ̃f∥ =
√
Ψ̃T

f · Ψ̃f is the length

of Ψ̃f. If both ∆Ψ̃i+1 and ∆pi+1 are sufficiently small, we stop iteration, and identify
Ψ̃e + Ψ̃f,i as the morphodynamic equilibrium corresponding to pe +pf,i .
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A.2.3. TIME-INTEGRATION METHOD
To assess the morphodynamic evolution to a morphodynamic equilibrium from an ar-
bitrary initial condition, a time-integration method has to be applied. Here we use the
backward Euler method to integrate the discretized morphodynamic system of equa-
tions,

K
Ψ̃n − Ψ̃n−1

∆τ
=G (Ψ̃n ,p0), (A.11)

where∆τ is the morphodynamic time step size, Ψ̃n = Ψ̃(t = n∆τ) is the evolution of Ψ̃ at
time τ= n∆τ. The prescribed initial condition is denoted by Ψ̃0. In all experiments, we
take ∆τ such that its dimensional value corresponding to a time step of 100 years.

Eq.(A.11) can be numerically solved using the Newton-Raphson method, resulting in

K
Ψ̃n,i +∆Ψ̃n,i+1 − Ψ̃n−1

∆τ
=G (Ψ̃n,i ,p0)+JG (Ψ̃n,i ,p0)∆Ψ̃n,i+1. (A.12)

The new approximation, denoted by Ψ̃n,i+1, is Ψ̃n,i+1 = Ψ̃n,i +θ∆Ψ̃n,i+1, where θ is again
a control parameter. If the correction ∆Ψ̃n,i+1 is sufficiently small, we stop the Newton–
Raphson iteration and Ψ̃n,i is the morphodynamic solution at time n∆τ. If the difference
between Ψ̃n and Ψ̃n−1 is sufficiently small (here 10−8 is taken), an equilibrium state is
reached.

A.3. SENSITIVITY OF MORPHODYNAMIC EQUILIBRIA TO INLET

DEPTH AND PRESCRIBED TIDALLY–AVERAGED WATER TRANS-
PORT

A.3.1. VARYING INLET DEPTHS
To assess the influence of a depth difference between the two inlets, the depth of inlet II is
varied from 9m to 14m. Again, the amplitude of the externally prescribed overtides and
the tidally–averaged water transport at inlet II are put to zero, using the default values for
all other parameters. For clarity, we only focus on linearly stable equilibria.

In Fig. A.1a the water depth (with colder colors denoting larger water depths and
warmer colors smaller water depths) of the stable equilibria is shown as a function of
position in the embayment (horizontal axis) and the water depth at inlet II, H II on the
vertical axis. From this figure, it follows that the location of WDmax is found closer to
inlet I. When H II becomes larger, WDmax is moving towards the middle of the tidal inlet
system. In Fig. A.1c the water depth of the stable equilibria with H II = 10,11.9,14m is
explicitly shown.

Fig.A.1b shows the total sediment transport of the stable morphodynamic equilibria
as a function of H II . When H II increasing from 9m to 14m, the total sediment transport
decreases from 64kgs−1 to 20kgs−1.

A.3.2. VARYING RESIDUAL WATER TRANSPORT AT INLET II
To assess the influence of the prescribed tidally–averaged water transport Q∗ at inlet II
on the morphodynamic equilibria, Q∗ is varied from −2000m3 s−1 to 2000m3 s−1, with
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(a) (b)

(c)

Figure A.1: Stable morphodynamic equilibria for varying H II , including diffusive and internally generated
advective processes with AII

M2
= 0.77m and φII

M2
= 54◦. In panel (a), the bed profiles of stable morphodynamic

equilibria with H II varying from 9m to 14m are shown as a color image. Panel (b) shows the total sediment
transport (horizontal axis) of stable equilibria as a function of H II (vertical axis). In panel (c), some selected
bed profiles of stable morphodynamic equilibria are shown.
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(a) (b)

(c)

Figure A.2: Stable morphodynamic equilibria for varying Q∗, including diffusive and internally generated ad-
vective processes, with AII

M2
= 0.77m, φII

M2
= 54◦ and H II = 11.9m. In panel (a), the bed profiles of stable

morphodynamic equilibria with Q∗ varying from −2000m3 s−1 to 2000m3 s−1 are shown as a color image.
Panel (b) shows the total sediment transport of stable equilibria on the horizontal axis as a function of Q∗ on
the vertical axis. In panel (c), some selected bed profiles of stable morphodynamic equilibria are shown.
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positive values indicating tidally-averaged water transport from inlet I to inlet II. The am-
plitude of the externally prescribed overtides and the tidally–averaged water transport at
inlet II are put to zero, using the default values for all other parameters. For clarity, we
only focus on linearly stable equilibria, and all other parameters have their default val-
ues.

Fig.A.2a shows that WDmax of the stable equilibria is approximately 16.5m when
−2000m3 s−1 and located 10km from inlet I. Varying Q∗ from −2000m3 s−1 to 500m3 s−1,
WDmax of the stable equilibria becomes larger, with WDmax found closer to the middle
of the double–inlet system. Increasing Q∗ further from 500m3 s−1 to 1500m3 s−1 results
in a smaller WDmax found closer to the middle of the double–inlet system. When in-
creasing Q∗ even further, WDmax still decreases but the location of maximum depth now
moves away from the center of the double–inlet system, closer to inlet I. In Fig.A.2c the
equilibrium water depth of the stable equilibria with Q∗ =−900, 0, 900m3 s−1 is shown.

Fig.A.2b shows the total sediment transport (horizontal axis) as a function of Q∗ (ver-
tical axis). When Q∗ increasing from −2000m3 s−1 to 2000m3 s−1, the total sediment
transport decreases from 245kgs−1 to −150kgs−1.

A.4. ADVECTIVE TRANSPORT CONTRIBUTIONS
The transport contributions in morphodynamic equilibria for a double–inlet system with
rectangular planform geometry, including all forcing contributions, are shown in Fig. A.3
for φII

M4
∈ {

0◦,−95◦,−121◦
}
, thus complementing Fig. 8 in the main text. The upper row

concerns the transport terms for φII
M4

= −121◦, for the middle row φII
M4

= −95◦, and

φII
M4

= 0◦ for the bottom row. The left column shows the aggregated transport contri-
butions, whereas the middle and right column show the various contributions to the
internally generated and externally forced advective contributions, respectively.

The transport contributions in morphodynamic equilibria for a double–inlet system
with varying width are shown in Fig. A.4, thus complementing Fig. 9 in the main text. The
upper row concerns the transport terms for c0 = 0 (a rectangular planform geometry), for
the middle row c0 = 0.5, and for the bottom row c0 = 1. The left column shows the aggre-
gated transport contributions, whereas the middle and right column show the various
contributions to the internally generated and externally forced advective contributions,
respectively.

REFERENCES
[1] A. T. Ippen, Tidal dynamics in estuaries, I: Estuaries of rectangular section, in Estuary

and Coastline Hydrodynamics, edited by A. T. Ippen (McGraw-Hill, New York, 1966)
pp. 493–522.

[2] M. Alnæs, J. Blechta, J. Hake, A. Johansson, B. Kehlet, A. Logg, C. Richardson, J. Ring,
M. E. Rognes, and G. N. Wells, The FEniCS project version 1.5, Archive of Numerical
Software 3 (2015), 10.11588/ans.2015.100.20553.

[3] R. Seydel, Practical Bifurcation and Stability Analysis (Springer, New York, 1994).

http://dx.doi.org/10.11588/ans.2015.100.20553
http://dx.doi.org/10.11588/ans.2015.100.20553


A

122 REFERENCES

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure A.3: Full decomposition of the various transport contributions, complementing Fig. 8 of the main paper.

[4] M. A. Crisfield, A fast incremental/iterative solution procedure that handles snap
through, Computers and Structures 13, 55 (1981).
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure A.4: Full decomposition of the various transport contributions, complementing Fig. 9 of the main paper.





B
MORPHODYNAMIC EQUILIBRIA IN

SYSTEMS WITH DIFFUSIVELY

DOMINATED TRANSPORT

When only taking diffusive transport into account, the influence of the forcing condi-
tions on morphodynamic equilibria is presented in this appendix. The system of equa-
tions, forced only by prescribed M2 tides at both inlets, is modeled in a rectangular ge-
ometry. In B.1, the morphodynamic equilibria when the system is dominated by dif-
fusive transport without topographical variations is presented, while morphodynamic
equilibria when taking diffusive transport with topographical variations into account is
presented in B.2. All results are obtained using the parameter values in Tab.B.1, which
are representavie for the Marsdiep–Vlie inlet system, unless mentioned otherwise.

B.1. MORPHODYNAMIC EQUILIBRIA OF DIFFUSION WITHOUT

TOPOGRAPHICAL VARIATIONS
When only diffusion without topographical variations is taken into account, neglecting
the other processes, the bed evolution equation for morphodynamic equilibria reduces
to

d

d x
<F 00

diff>= 0. (B.1)

In Fig.B.1a, the depth of the watersheds, i.e. WDmin (vertical axis), and their loca-
tion (color code, with warmer colors closer to (one of) the entrance(s), and colder colors
more towards the middle of the channel) for the morphodynamic equilibria are shown.
Increasing AII

M2
from 0.37 [m] to 1.48 [m] results in a shift of the watershed from from a

location closer to inlet I to a location closer to inlet II. The black line in the figure denotes
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(a) (b)

(c) (d)

Figure B.1: Morphodynamic equilibria when only diffusion without topographical variations is taken into ac-
count. Panel (a) shows the WDmin of the morphodyanmic equilibria, its location is indicated by color code,
as a function of AII

M2
varying from 0.37m to 1.24m and φII

M2
varying from −180o to 180o . Panel (b) shows the

same WDmin again, but its color code indicates the total (width–averaged) diffusive transport. In panel (c), the
WDmin of morphodynamic equilibria for AII

M2
= 0.74[m] is shown as a function of φII

M2
varying from −60o to

60o . In panel (d) morphodynamic equilibrium bed profiles for AII
M2

= 0.74[m] is shown as a function of φII
M2

varying from −180o to 180o and the distance from inlet I, where the location of WDmin is indicated by gray
contours and the location of the WDmax is indicated by black contours.
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System Sediment Bed
L = 59km kh∗ = 102 m2 s−1 ρs = 2650kgm−3

g = 9.81ms−2 α= 0.5 ·10−2 kgsm−4 p = 0.4
cd = 0.0025 ws = 0.015ms−1

σ= 1.4 ·10−4 s−1 kv∗ = 0.1m2 s−1

T = 44.9 ·103 s d50 = 2 ·10−4 m
Marsdiep Inlet Vlie Inlet

H I = 12m H II = 12m
AI

M2
= 0.74m AII

M2
= 0.84m

φI
M2

= 148◦ φII
M2

=−158◦

B I = 6000m B II = 6000m

Table B.1: The variables in this table are defined in the following paragraphs. Characteristic values for the
Marsdiep-Vlie inlet system are taken from Ridderinkhof [1], Duran-Matute et al. [2].

the location where the WDmin vanishes, namely where two single-inlet systems begin
to form. The diffusive transport without topographical variations defined in Eq.(2.20) is
location–independent in morphodynamic equilibrium, and hence indicates the direc-
tion of the residual sediment transport. This is show in Fig.B.1b by color code. The two
thin black contour lines indicate where a zero diffusive transport is found. Positive total
diffusive transport implies that there is a net (i.e., tidally averaged) sediment transport
from inlet I to inlet II, while negative diffusive transport indicates a net transport from
inlet II to inlet I. Increasing AII

M2
and/or φII

M2
results in a decrease of net transport from

inlet II to inlet I on the left of the two contour lines, and an increase of net transport on
the right of those contours.

To demonstrates the bifurcation structure, the WDmin of morphodynamic equilibria
for AII

M2
= 0.74 [m] and varying φII

M2
between −60o and 60o is shown in Fig.B.1c, while

the location of the watershed is indicated by color code.This figure corresponds to the
results in Fig.B.1a for AII

M2
= 0.74 [m], which is indicated by a black dot. Using arclength

method, increasing (decreasing)φII
M2

from−60o (60o) to−28.1o (28.1o), morphodynamic
equilibria can be with WDmin decreasing from 12 [m] to 5.5 [m] and a limit point indi-
cated by a black dot can be found at ±28.1o . After the limit point, decreasing (Increasing)
φII

M2
from −28.1o (28.1o) to −45o (45o), new morphodynamic equilibria with WDmin de-

creasing from 5.5 [m] to zero can be found. The analysis of the linear stability of the
morphodynamic equilibria by calculation of the associated eigenvalues shows that the
morphodynamic equilibria indicated by the solid line, are linearly stable, while those
indicated by the dashed line are linearly unstable.

In Fig.B.1d, the water depth (with colder colors denoting larger water depths and
warmer colors smaller water depths) of morphodynamic equilibria for AII

M2
= 0.74 [m]

are shown as a function of φII
M2

varying from −180o to 180o and the distance from inlet
I. If no equilibrium for which the two inlets are connected is found, a white color code
is used. The equilibrium water depth strongly depends on the tidal phase at inlet II. In-
creasing φII

M2
from −180o to −29o or decreasing φII

M2
from 180o to 29o results in reducing

the WDmin , its location is indicated by gray lines, from 12 [m] to 7.7 [m]. The WDmax is
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indicated by black lines.

B.2. MORPHODYNAMIC EQUILIBRIA OF DIFFUSION WITH TO-
POGRAPHICAL VARIATIONS

When diffusion with topographical variations is taken into account, the resulting equi-
libria satisfy the following morphodynamic equilibrium condition:

d

d x
(<F 00

diff>+<F 00
topo>) = 0. (B.2)

In Fig.B.2a, the WDmin and its location (color coded as in B.1a) of morphodynamic
equilibria are shown for AII

M2
varying from 0.37 [m] to 1.48 [m] and φII

M2
varying from

−60o to 60o . Similar to Fig.B.1a, increasing AII
M2

from 0.37 [m] to 1.48 [m] results in a shift
of the watershed from a location closer to inlet I to a location closer to inlet II. The black
line in this figure also denotes the location where the WDmin vanishes. Like Fig.B.1b,
the total sediment transport, which is a constant every where in the model rectangular
embayment and consists of contributions of diffusive transport and topographical vari-
ations, is depicted in Fig.B.2b, with positive values indicating a net sediment transport
from inlet I to inlet II, while negative values indicate a net sediment transport from inlet
II to inlet I.

Unlike the case when taking diffusion without topographical variations into account,
there exists three the morphodynamic equilibria in certain combination of M2 ampli-
tude and phase at inlet II when diffusive transport with topographical variations being
taken into account, which is demonstrates in Fig.B.2c. In this figure, the WDmin is shown
for fixed AII

M2
= 1.080 [m] corresponding to the black dot in B.1a and φII

M2
varying from

−60o to 60o , with its position color coded. Increasing φII
M2

from −60o to approximately

27o results in a decrease of the WDmin . For approximately φII
M2

= 27o the WDmin be-

comes zero. Decreasing φII
M2

from 60o to 22.2o results in a decrease of the MinWD to

approximately 6[m]. For φII
M2

= 22.2o a limit point is found, indicated by a black dot in

Fig.B.2a. Increasing φII
M2

again, starting from the equilibria at the limit point, results in a
decreases of the WDmin to zero. Linear stability analyses of the various morphodynamic
equilibria show that the morphodynamic equilibria indicated by the solid lines are sta-
ble, while those indicated by the dashed lines are unstable. From Fig.B.2a it follows that
for phases 22.2o ≤φII

M2
≤ 27o , there exist multiple equilibria, of which two are stable.
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(a) (b)

(c)

Figure B.2: Morphodynamic equilibria when taking diffusive transport with topographical variations into ac-
count. Both panel (a) and (b) show the WDmin of morphodynamic equilibria as a functions of AII

M2
varying

from 0.37 [m] to 1.48 [m] and φII
M2

varying from −60o to 60o . In panel (a) the position of WDmin is color

coded, and in panel (b) the total transport. In panel (a) the WDmin of the morphodynamic equilibria is shown
for a fixed AII

M2
= 1.080 [m] and φII

M2
varied from −60o to 60o , the positions of WDmin are color coded.





C
INITIAL FORMATION OF

CHANNEL–SHOAL PATTERNS IN

DOUBLE–INLET

SYSTEMS:DIFFUSIVELY DOMINATED

TRANSPORT

The influence of the relative M2 phase, ∆φM2 , on the diffusively dominated morphody-
namic equilibria is investigated. For simplicity, the undisturbed water depth at inlet II
is taken to be equal to 11.7 m, the same water depth as inlet I . All other parameter val-
ues are taken from Tab. 3.2. When the sediment transport is dominated by diffusion, the
morphodynamic equilibrium condition reduces to

∇·
(
<F00

diff>+<F00
topo>+<Fbed>

)
= 0. (C.1)

In a rectangular geometry, morphodynamic equilibria which are laterally uniform
can be found using the bifurcation approach discussed in Deng et al. [1]. As an example,
Fig. C.1a shows the minimum water depths WDmin of these morphodynamic equilibria
as a function of ∆φM2 varying from −60◦ to 60◦. It demonstrates that the existence of
morphodynamic equilibria depends on the relative M2 phase: for ∆φM2 between 10◦ to
16◦, no morphodynamic equilibrium is found for which both inlets are connected. For
other relative M2 phases considered, there is always a 1D–stable equilibrium.

To investigate the linear stability of these 1D–stable morphodynamic equilibria to the
perturbations with lateral structure, morphodynamic equilibria obtained with ∆φM2 =
19◦ (orange), ∆φM2 = 20◦ (green) and ∆φM2 = 25◦ (red) are examined. Their bed profiles
are shown in Fig. C.1b. These three equilibrium bed profiles correspond to WDmin indi-
cated by crosses (with colors associated to their bed profiles) in Fig. C.1a. The largest
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(a) (b)

Figure C.1: Laterally uniform morphodynamic equilibria for diffusively dominated transport. Panel (a) shows
WDmin the minimum water depth of equilibrium bed profiles, with its location coded with color. Panel (b)
shows the equilibrium bed profiles for three different values of∆φM2 . The minimum water depths in the cases
shown in panel(b) are indicated by cross-shaped markers in panel (a).

dimensionless growth rate ℜ(ω) of these three morphodynamic equilibria as a func-
tion of dimensionless wave number ln is shown in Fig.C.2a. It shows that at ln = 0 the
largest dimensionless growth rate ℜ(ω) is negative for all three selected ∆φM2 , which
shows these three morphodynamic equilibria are 1D–stable. Increasing the dimension-
less wave number ln from 0 to 1200, the largest dimensionless growth rate ℜ(ω) for
∆φM2 = 19◦ first increases, till a maximum is obtained at approximately ln = 560, and
then decreases to become negative for ln ∼ 1200. Positive ℜ(ω) indicates that the later-
ally uniform morphodynamic equilibrium for ∆φM2 = 19◦ is unstable against perturba-
tions with a lateral structure. Unlike ∆φM2 = 19◦, the largest dimensionless growth rate
ℜ(ω) for ∆φM2 = 25◦ is negative for all ln considered, which indicates the corresponding
equilibrium is stable against perturbations with lateral structure. The critical value of
the relative M2 phase, ∆φM2 , that seperates stable and unstable morphodynamic equi-
librium against perturbations with lateral structure, is ∆φM2 = 20◦.

When using width B = 6 km, the dimensionless wave number ln = 555.9, at which
ℜ(ω) for ∆φM2 = 19◦ reaching a maximum, corresponds to a mode number n = 18. The
bed patterns hn for n = 18 (ln = 555.9) are shown in Fig. C.2c. Compared with the bed
patterns for n = 0 shown in Fig. C.2b, the bed patterns for n = 18 are more localized, i.e.,
the bed patterns for n = 18 are nonzero within a region of approximately 15km, while
the bed patterns for n = 0 are nonzero everywhere between the two inlets. Fig. C.2c
also shows that the bed patterns for n = 18 are close to where WDmin is found. The
morphodynamic equilibrium for ∆φM2 = 19◦ is called diffusively unstable, since only
diffusive transport plays a role.

To study the instability mechanism in detail, the classical diffusive transport <F00
diff>,

the topographically induced diffusive transport <F00
topo> and the total transport <F> of

the first 1 km in lateral direction for ∆φM2 = 19◦ and mode number n = 0 are shown
in Fig. C.3a, C.3c and C.3e, while those for ∆φM2 = 19◦ and mode number n = 18 are
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(a)

(b) (c)

Figure C.2: The dimensionless growth rate ℜ(ω) for three different ∆φM2 (Panel (a)). The corresponding
bottom patterns hn for mode number n = 0 (ln = 0) are shown in panel (b), while those for mode number
n = 18 (ln = 555.9) are shown in panel (c).
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(a) (b)

(c) (d)

(e) (f)

Figure C.3: Bottom patterns of laterally uniform morphodynamic equilibria for diffusively dominated trans-
port. Panels (a), (c) and (e) show the bottom patterns for ∆φM2 = 19◦ and n = 0, with white areas representing
crests and dark areas representing troughs. The arrows indicate the direction and relative magnitude of clas-
sical diffusive flux <F00

diff>, the topographically induced diffusive flux <F00
topo> and the total flux <F>. Panels

(b), (d) and (f) show the same but for ∆φM2 = 19◦ and n = 18.
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(a) (b)

Figure C.4: Divergences of sediment fluxes. Panel (a) shows the divergences of the sediment fluxes for∆φM2 =
19◦ and mode number n = 0 at y = 0, together with the corresponding bottom pattern. Panel (b) shows the
same but for ∆φM2 = 19◦ and mode number n = 18.

shown in Fig. C.3b, C.3d and C.3f, respectively. These figures show that the topographi-
cally induced diffusive transport <F00

topo> is directed from crests to troughs and stablizes

the bottom pattern, while the classical diffusive transport <F00
diff> is generally directed

from troughs to crests and destablizes the bottom patterns. These two diffusive trans-
port result in a total transport <F>, which can be either directed from crests to troughs
(n = 0) or from troughs to crests (n = 18), depending on the mode number n, as well as
the relative M2 phase. When mode number n = 0, these three sediment transports flow
in a longitudinal direction, since there is no lateral structure, while these transports flow
laterally when mode number n = 18.

The instability mechanism can also be studied using the divergences of these three
sediment fluxes, which have the same lateral structure as their corresponding bottom
pattern. Fig. C.4a shows these divergences in the longitudinal direction at y = 0 for
∆φM2 = 19◦ and mode number n = 0, together with the corresponding bottom pattern,
while the ones for ∆φM2 = 19◦ and mode number n = 18 are shown in Fig. C.4b. From
these figures it follows that the divergence of the classical diffusive transport <F00

diff>
enhances perturbations of bottom patterns, and the divergence of topographically in-
duced diffusive transport <F00

topo> reduces the amplitudes of the perturbations. These
two sediment transports almost balance each other, resulting in a divergence of the to-
tal transport <F> with smaller magnitude. When mode number n = 0 is considered,
<F> transports sediment from troughs to crests, while for mode number n = 18, <F>
transports sediment from crests to troughs.

The existence and stability of laterally uniform morphodynamic equilibria depends
not only on the relative M2 phase but also on the M2 amplitude at inlet II , which is shown
in Fig. C.5. In this figure, the region in parameter space where no laterally uniform mor-
phodynamic equilibrium exists, is indicated by the white color. Linearly stable equilibria
are found in the black colored area, while linearly unstable equilibria (resulting from the
diffusive mechanism) in the light gray colored area.
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Figure C.5: Existence and linear stability of stable laterally uniform morphodynamic as a function of the M2
tidal amplitude at inlet II and the raltive phases when dominated by diffusive transport. The white, black,
adrk region indicate where no, linearly stable, diffusively unstable morphodynamic equilibria are found. If
the underlying equilibrium is unstable, the mechanism resulting in the largest positive growth rate is used
as indicateive of the instability mechanism. The crosses indicate the experiments discussed in detail in this
appendix
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D
BIFURCATION DIAGRAM FOR

MORPHODYNAMIC EQUILIBRIA BY

VARYING FRICTION PARAMETER

To complete the bifurcation diagram for variation of friction parameter cd shown in
Fig. 4.3a, the characteristic values for amplitudes of mode 1, 2 and 3 of the bed pro-
file are shown in Fig. D.1a, D.1b and D.1c, respectively. From Fig. D.1a it follows that only
branches B3−B6 have a nonzero amplitude of mode 1. Fig. D.1b shows that B1−B6
have a nonzero amplitude of mode 2, in which the amplitudes of mode 2 for branches
B5 and B6 are positive. Fig. D.1c demonstrates that B3−B8 have a nonzero amplitude
of mode 3. The amplitudes of mode 3 for branches B3 (B4) and B5 (B6) are positive.
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PARAMETER

(a) (b)

(c)

Figure D.1: Bifurcation diagram for morphodynamic equilibria by varying friction parameter cd . Panel (a), (b)
and (c) show the characteristic values of mode 1, 2 and 3 of morphodynamic equilibria, respectively. Solid,
dotted and dashed lines indicate the number of positive growth rates : none, 1 and 2. Dash-dotted line indi-
cates regions out of consideration.



E
THE OPERATOR G

In Chapter 2, 3 and 4, the nonlinear operator G is used. The operator works on the solu-
tion vector Ψ and has the same dimension as Ψ. The vector Ψ contains the amplitudes
of all physical variables, associated with the tidal constituents taken into account. Here
we will illustrate how to obtain two of these entries. From this, we consider the scaled
leading order continuity equation (2.13a) which reads

Bζ00
t + [B(1−h)u00]x = 0, (E.1)

where the superscript ’00’ denotes leading order in both ϵ and γ. Now, at leading order,
both ζ00 and u00 only have an M2 temporal dependency. Using this, it is found that at
Eq. (E.1) can be written as

−ζc1 + [(1−h)us1]x = 0, (E.2)

ζs1 + [(1−h)uc1]x = 0. (E.3)

Now these two equations constitute the first two entries of G :

G =
−ζc1 + [(1−h)us1]x

ζs1 + [(1−h)uc1]x

...

 . (E.4)

The other entries of G can be obtained by using a similar procedure.
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