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Learning Stochastic Graph Neural Networks With
Constrained Variance

Zhan Gao , Graduate Student Member, IEEE, and Elvin Isufi , Member, IEEE

Abstract—Stochastic graph neural networks (SGNNs) are infor-
mation processing architectures that learn representations from
data over random graphs. SGNNs are trained with respect to the
expected performance, which comes with no guarantee about devi-
ations of particular output realizations around the optimal expec-
tation. To overcome this issue, we propose a variance-constrained
optimization problem for SGNNs, balancing the expected perfor-
mance and the stochastic deviation. An alternating primal-dual
learning procedure is undertaken that solves the problem by up-
dating the SGNN parameters with gradient descent and the dual
variable with gradient ascent. To characterize the explicit effect
of the variance-constrained learning, we analyze theoretically the
variance of the SGNN output and identify a trade-off between the
stochastic robustness and the discrimination power. We further
analyze the duality gap of the variance-constrained optimization
problem and the converging behavior of the primal-dual learning
procedure. The former indicates the optimality loss induced by the
dual transformation and the latter characterizes the limiting error
of the iterative algorithm, both of which guarantee the performance
of the variance-constrained learning. Through numerical simula-
tions, we corroborate our theoretical findings and observe a strong
expected performance with a controllable variance.

Index Terms—Stochastic graph neural networks, variance
constraint, primal-dual learning, duality gap, convergence.

I. INTRODUCTION

N ETWORKED data exhibits an irregular structure inher-
ent in its underlying topology and can be represented

as signals residing on the nodes of a graph [2]. Graph neural
networks (GNNs) exploit this structural information to model
task-relevant representations from graph signals [3], [4], [5],
[6], which have found applications in recommender systems [7],
[8], multi-agent coordination [9], [10], and wireless communi-
cations [11], [12], [13]. The success of GNNs can be attributed to
their ability to leverage the coupling between the signal and the
graph, but the latter may be perturbed due to adversarial attacks,
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link losses in distributed communications, or topological estima-
tion errors. In this setting, the graph encountered during testing
differs from the one used during training; hence, questioning the
stability to such perturbations.

The stability of GNNs has been investigated in [14], [15],
[16], [17], [18]. The work in [14] showed GNNs can be both
stable to small topological perturbations and discriminative at
high graph frequencies. The works in [15], [16] analyzed the
stability of graph filters –the linear inner working mechanism of
GNNs that captures the graph-data coupling [19]– and GNNs un-
der structural perturbations and provided interpretable stability
bounds. The work in [17] established GNNs can extract similar
representations on graphs that describe the same phenomenon,
while [18] extended the stability results to algebraic neural
networks where GNNs can be seen as a particular case. The
aforementioned works discuss the GNN stability w.r.t. small
deterministic perturbations. However, the graph often changes
randomly, resulting in stochastic perturbations that cannot be
addressed with the above analysis.

Stochastic perturbations appear when GNNs are implemented
distributively on physical networks [20], [21], [22], where com-
munication links fall with a certain probability due to channel
fading effects, leading to random communication graphs [23],
[24], [25]. Other cases, in which GNNs operate on stochas-
tic graphs, involve recommender systems, where the graph
stochasticity is introduced to improve the recommendation di-
versity [26], [27], [28]. The impact of stochastic perturbations
on graph filters has been analyzed in [20], while [29] extended
the analysis to scenarios with both graph randomness and
quantization effects. The work in [30] studied the stability of
low pass graph filters to edge rewiring on the stochastic block
model. Authors in [31] characterized the stability of GNNs to
stochastic perturbations and identified the role played by the
filter, nonlinearity, and architecture.

The work in [32] proposed stochastic graph neural networks
(SGNNs) that account for the graph stochasticity during training
to alleviate the performance degradation due to stochastic per-
turbations. Learning with uncertainty makes the trained model
robust to perturbations encountered during testing, and thus en-
dows the SGNN with robust transference properties. The graph
stochasticity has also been considered during training as a regu-
larization technique to prevent over-smoothing [33] or as a data
augmentation technique to avoid over-fitting [34], [35]. While
improving the stability to perturbations, training an SGNN im-
plies optimizing the expected performance w.r.t. the random
topology in an empirical risk minimization framework [32].
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However, such a strategy does not provide any guarantee about
the deviation of a single SGNN realization around the optimal
expectation; hence, an undesirable performance may appear in
individual realizations, even when the expected performance is
satisfactory.

Variance reduction techniques for GNNs have also been de-
veloped for graph sampling methods to reduce the computational
cost during training. Specifically, the work in [36] reduced the
mini-batch variance by maintaining the historical embedding of
the previous layer and assuming the embedding would be close
to its history. The works in [37], [38] reduced the number of sam-
pled nodes at each layer to keep the variance low, while [39], [40]
used an adaptive sampling and trained the sampling distribution
towards minimum sampling variance. The works in [41], [42]
optimized the sampling strategy based on task performance by
using the history of node embedding and gradient information
for variance reduction. The aforementioned works impose the
topological stochasticity during training to reduce computation,
but implement the architecture over deterministic graph during
inference. The latter results in a mismatch between training and
testing, and may suffer from performance degradation under
stochastic perturbations during implementation or when the
sampling during training is large [31]. Moreover, these works
reduce the variance by changing the graph sampling strate-
gies, e.g., the sampling probability and the neighborhood size.
However, stochastic perturbations are typically determined by
external factors such as channel fading effects in communication
networks and adversarial attacks, which cannot be changed
during training.

In this work, we propose a variance-constrained learning strat-
egy for SGNNs that does not control the sampling strategy and
is tailored to stochastic graphs during inference. The proposed
strategy adheres to solving a stochastic optimization problem
w.r.t. the expected performance subject to a variance constraint.
This is a challenging problem because of the constraint, the
stochastic nature of the topology, and the non-convexity of the
SGNN. Following recent advances in constrained learning [43],
we adopt a primal-dual learning procedure to solve the problem.
To study the effect of such strategy on the SGNN learning
capacity, we characterize theoretically its output variance and
identify a trade-off between the improved deviation robustness
and the degraded discrimination power. Our detailed contribu-
tion is threefold:

1) Variance-constrained learning (Section III): We formu-
late a constrained stochastic optimization problem that
balances the expected performance with the stochastic
deviation. We solve this problem via a primal-dual learn-
ing procedure that updates alternatively the primal SGNN
parameters with gradient descent and the dual variable
with gradient ascent. We show this strategy acts as a
self-learning variance regularizer.

2) Variance and discrimination (Section IV): We analyze
theoretically the variance of the SGNN output and identify
the effect of the filter property, graph stochasticity and ar-
chitecture. The variance-constrained learning restricts the
variance by allowing less variability of the filter frequency
response; ultimately, leading to a trade-off between the

stochastic deviation robustness and the SGNN discrimi-
nation power.

3) Duality gap and convergence (Sections V–VI): We analyze
the optimality loss of the variance-constrained learning
by characterizing the duality gap of the formulated op-
timization problem and the converging behavior of the
proposed primal-dual algorithm. The sub-optimality is
bounded proportionally by the representation capacity of
the SGNN, the gradient descent approximation at the
primal phase, and the gradient ascent step-size at the dual
phase. These findings validate the effectiveness of the
variance-constrained learning and identify our handle to
obtain near-optimal solutions.

This paper contains one additional minor contribution. It
conducts theoretical analysis of stochastic graph filters and
SGNNs with a more general stochastic graph model than earlier
works [20], [32], where a subset of edges are dropped with a
probability p and another subset are added with another prob-
ability q [Def. 1]. The theoretical findings of this work are not
presented in the preliminary version [1], which focused on the
algorithm. Numerical simulations on source localization and
recommender systems corroborate the theoretical findings in
Section VII. The conclusions are drawn in Section VIII. All
proofs and lemmas used in these proofs are collected in the
supplementary material.

II. STOCHASTIC GRAPH NEURAL NETWORK

Let G = (V, E ,S) be a graph with node set V = {1, . . . , n},
edge set E = {(i, j)} ⊆ V × V , and graph shift operator S ∈
Rn×n, e.g., the adjacency matrix A or the Laplacian matrix
L. Let also x = [x1, . . ., xn]

� ∈ Rn be a graph signal with
component xi the signal value associated to node i [44], [45],
[46], [47]. For example, in a recommender system nodes are
movies, edges are similarities between them, and the graph
signal is the ratings given by a user to these movies. We are
interested in learning representations from the tuple (G,x) for
tasks such as inferring user missing ratings, while we aim to keep
these representations robust w.r.t. random topological changes
on the nominal graph. These random changes may be due to
different factors such as adversarial attacks [48], communication
link outage [49], and edge rewiring in collaborative filtering to
improve diversity [50]. In these cases, existing edges may be lost
and new edges may be added, resulting in random topologies.
We characterize the latter with the generalized random edge
sampling (GRES) model.

Definition 1 (GRES(p, q) model): Consider the nominal graph
G = (V, E). LetEd ⊆ E be a set ofMd existing edges that may be
dropped and Ea � E a set ofMa new edges that may be added. A
GRES graph realization Gk = (V, Ek) of G comprises the same
node setV and the edge set Ek where the edges in Ed are dropped
independently with a probability 0 ≤ p < 1 and the edges in Ea
are added independently with a probability 0 ≤ q < 1.

We denote by Sk the random shift operator of the GRES(p, q)
graph Gk with 2Md+Ma possible realizations.

Stochastic graph neural network (SGNN) [32]: An SGNN is
a graph neural network that learns representations over random
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topologies. The key of this architecture is the stochastic graph
filter. When applied to a graph signalx, the output of a stochastic
graph filter over a sequence of K GRES(p, q) graph realizations
{Sk}Kk=0 can be written as

H(SK:0)x :=

K∑
k=0

hkSk . . .S1S0x =

K∑
k=0

hk

k∏
i=0

Six (1)

with {hk}Kk=0 the filter coefficients and S0=I the identity
matrix [32]. In the filter output (1), the first shift S1x collects at
each node the information from its immediate neighbors and the
successive k-shifts

∏k
i=0 Six collect information from k-hop

neighbors that can be reached via the randomly present edges in
S1, . . . ,Sk. The stochastic graph filter aggregates these shifted
signals {

∏k
i=0 Six}Kk=0 and weighs them with coefficients

{hk}Kk=0; ultimately, allowing for a distributed implementation
– see also [19], [22], [45].

An SGNN is a layered architecture, in which each layer
comprises a bank of stochastic graph filters followed by a
pointwise nonlinearity. At layer � = 1, . . ., L, the input is a
collection ofF graph signal features {xg

�−1}Fg=1 generated at the
former layer �− 1. These features are processed by a bank of
F 2 stochastic graph filters {Hfg

� (SK:0)}fg [cf. (1)], aggregated
over the input index g, and finally passed through a nonlinearity
σ(·) to generate F output features

xf
� =σ

(
F∑

g=1

ufg
�

)
=σ

(
F∑

g=1

Hfg
� (SK:0)x

g
�−1

)
, for f=1, . . ., F.

(2)

To ease exposition, we consider a single input x1
0 = x and

output x1
L. We represent the SGNN as the nonlinear map

Φ(·;SP :1,H) : Rn → Rn, which applies on the input x and
generates the output Φ(x;SP :1,H) := x1

L. The set H =

{hfg
0� , . . . .h

fg
K�}fg� collects all filter coefficients and SP :1 in-

dicates the sequence of all P = K[2F + (L− 2)F 2] shift op-
erators in the SGNN.

Problem motivation: The SGNN outputΦ(x;SP :1,H) is ran-
dom because of the graph stochasticity and the data distribution.
Given a training set T = {(x,y)} and a loss function C(·, ·), we
train the SGNN with stochastic gradient descent, which is shown
equivalent to solving an unconstrained stochastic optimization
problem over the graph and the data distributions [32]. I.e.,

Pun := min
H

EM[CT (y,Φ(x;SP :1,H))] (3)

where CT (y,Φ(x;SP :1,H)) := ET[C(y,Φ(x;SP :1,H))] is
the expected cost over the data distribution and M is the dis-
crete set of the shift operator sequences SP :1, which contains
2P (Md+Ma) elements. The expectation of a function f(x;SP :1)
over the discrete set M is EM =

∑
SP :1∈M f(x;SP :1)μ(SP :1)

where μ(·) is the probability measure over M such that
μ(SP :1) = 1/2P (Md+Ma) for each SP :1 ∈ M. The training
converges to a stationary solution of (3), which accounts for
the graph stochasticity and makes the SGNN robust when tested
with random graphs [32]. However, problem (3) only guarantees
robustness w.r.t. the expected performance but ignores stochastic
deviations around it. The latter may lead to a single SGNN

output far from the optimal expectation and be problematic when
uncertainty must be controlled.

To overcome this issue, we propose a variance-constrained
learning strategy to balance the expected performance with
stochastic deviations. Specifically, we propose the constrained
stochastic optimization problem as

Pcon := min
H

EM [CT (y,Φ(x;SP :1,H))]

s.t. Var [Φ(x;SP:1,H)] ≤ Cv (4)

where Var[Φ(x;SP:1,H)] is a variance measure that charac-
terizes stochastic deviations of the SGNN output and Cv is
a variance bound we can tolerate. Problem (4) is challenging
because of the non-convexity of the SGNN, the stochasticity of
the GRES(p, q) model, and the variance constraint. We solve
the problem via a primal-dual learning method in Section III.
Since the proposed variance-constrained learning trades the
variance with the discrimination power, we characterize this
trade-off explicitly and show the role played by different factors
in Section IV. We further analyze the optimality loss induced by
the primal-dual method in Section V and prove this learning
procedure converges to a neighborhood of the saddle point
solution in Section VI.

III. VARIANCE-CONSTRAINED LEARNING

We consider the average variance experienced over all nodes

Var [Φ(x;SP:1,H)] :=
1

n

n∑
i=1

Var [[Φ(x;SP:1,H)]i]

=
1

n

n∑
i=1

(
EM
[
[Φ(x;SP :1,H)]2i

]
−EM[[Φ(x;SP :1,H)]i]

2
)
.

(5)

This expression measures how individual node outputs
{[Φ(x;SP :1,H)]i}ni=1 deviate from their expectations. It is a
standard criterion used in multi-dimensional systems and is
related to the A-optimality of the confidence ellipsoid [51]. In
what follows, we use (5) as the variance measure in (4) and
solve the latter problem with a primal-dual learning procedure.
We further show how this learning strategy behaves as a self-
learning variance regularizer that provides explicit theoretical
guarantees about stochastic deviations.

Since problem (4) is a constrained optimization problem,
we solve it in the dual domain. However, the variance con-
straint is a non-convex function of EM[Φ(x;SP :1,H)] and
EM[Φ(x;SP :1,H)2]. The latter makes it difficult to analyze
the duality gap, which quantifies the optimality loss of the solu-
tion in the dual domain; consequently, there is no performance
guarantee for any dual method solving (4) as we shall detail in
Section V. To provide theoretical guarantees, we consider the
surrogate problem where we constrain separately the first and
second order moments in (5), i.e.,

P := min
H

EM [CT (y,Φ(x;SP :1,H))] (6)
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s.t.
1

n
EM

[
n∑

i=1

[Φ(x;SP :1,H)]i

]
≥ Cf ,

1

n
EM

[
n∑

i=1

[Φ(x;SP :1,H)]2i

]
≤ Cs.

The constraints of (6) are convex functions (the outer function
not the composed function with the SGNN) of the first order
moment EM[Φ(x;SP :1,H)] and of the second order moment
EM[Φ(x;SP :1,H)2], respectively.1 Through scalar Cf ≥ 0 we
lower bound the expected output and through scalar Cs ≥ 0 we
upper bound the output autocorrelation. The latter are related to
the variance (5); hence, we bound the variance as

Var [Φ(x;SP :1,H)] ≤ Cs − C2
f . (7)

Since there always exist Cf and Cs such that Cs − C2
f = Cv ,

e.g., Cf = 0 and Cs = Cv , the surrogate problem (6) restricts
the SGNN output and balances the expected performance with
the stochastic deviation as the original problem (4). However,
Cf and Cs introduce certain bias on the first-order moment (ex-
pectation) and the second-order moment (energy) of the SGNN
output, which may affect the learning performance. Specifically,
the first-order constraint withCf affects the space of feasible so-
lutions, i.e., a larger Cf denotes a smaller space and reduces the
representational capacity of feasible SGNNs. The second-order
constraint with Cs affects the energy of output signals, i.e., a
smallerCs denotes a lower energy and increases the information
loss. These factors need taking into consideration when selecting
constraint constants for experiments – as we will discuss in
Section VII.

A. Primal-Dual Learning

By introducing the non-negative dual variable γ=[γ1, γ2] ∈
R2

+, we define the Lagrangian L(H,γ) of (6) as

L(H,γ) = EM[CT (y,Φ(x;SP :1,H))]

+ γ1

(
Cf − 1

n
EM

[
n∑

i=1

[Φ(x;SP :1,H)]i

])

− γ2

(
Cs −

1

n
EM

[
n∑

i=1

[Φ(x;SP :1,H)]2i

])
.

(8)

Given the dual function D(γ) = minH L(H,γ), it holds that
D(γ) ≤ P for any γ [52]. The goal now is to find the optimal
dual variable γ∗ that maximizes the dual function as

D = max
γ

D(γ) := max
γ

min
H

L(H,γ). (9)

That is, search for an optimal primal-dual pair (H∗,γ∗) sat-
isfying the saddle-point relationship L(H∗,γ) ≤ L(H∗,γ∗) ≤
L(H,γ∗) for any H and γ in the neighborhood of the optimal
solution.

1A more intuitive constraint for the first order moment is to
lower bound its absolute value

∣∣EM[Φ(x;SP :1,H)]
∣∣ ≥ Cf , i.e., Cf −∣∣EM

[∑n

i=1
[Φ(x;SP :1,H)]i

]
/n
∣∣ ≤ 0. However, the latter is still a non-

convex function and thus does not allow for the duality gap analysis as (6).

We approach the dual problem (9) by alternatively updating
the primal variable H with stochastic gradient descent and the
dual variable γ with stochastic gradient ascent.

Primal phase: At iteration t, given the primal variable Ht and
the dual variable γt, we set H(0)

t = Ht and update the primal
variable with gradient descent for Γ steps as

H(τ)
t =H(τ−1)

t − ηH∇HL(H(τ−1)
t ,γt), for τ=1, . . .,Γ, (10a)

Ht+1 := H(Γ)
t (10b)

where ηH > 0 is the primal step-size. The challenge in (10) is to
compute the gradient ∇HL(H(τ−1)

t ,γt), which requires evalu-
ating the expectationEM[·]. The latter needs to be estimated over
2P (Md+Ma) realizations resulting in an expensive computation.
To overcome this issue, we approximate the expectation with
empirical alternatives over N sampled realizations {S(j)

P :1}Nj=1

as

EM[CT (y,Φ(x;SP :1,H))]≈ 1

N

N∑
j=1

CT (y,Φ(x;S
(j)
P :1,H)),

(11a)

EM

[
n∑

i=1

[Φ(x;SP :1,H)]i

]
≈ 1

N

N∑
j=1

n∑
i=1

[Φ(x;S
(j)
P :1,H)]i,

(11b)

EM

[
n∑

i=1

[Φ(x;SP :1,H)]2i

]
≈ 1

N

N∑
j=1

n∑
i=1

[Φ(x;S
(j)
P :1,H)]2i .

(11c)

The sampling average is a standard procedure in stochastic
optimization methods, such as Monte-Carlo simulation [53] and
stochastic gradient descent [54]. A larger N leads to better
approximations but needs more computations, which yields a
trade-off between performance and complexity. The selection
of N depends on the number of graph shift operators P (i.e., the
architecture width F and depth L) and the graph size n because
these factors affect the randomness of the SGNN output. We shall
show in Section VII that for a graph of 50 nodes, an N ≥ 10
suffices.

Dual phase: Given the updated primal variableHt+1, the dual
variable is updated with a single step gradient ascent as

γ1,t+1=

[
γ1,t+ηγ

(
Cf−

1

n
EM

[
n∑

i=1

[Φ(x;SP :1,Ht+1)]i

])]
+

,

(12a)

γ2,t+1=

[
γ2,t−ηγ

(
Cs−

1

n
EM

[
n∑

i=1

[Φ(x;SP :1,Ht+1)]
2
i

])]
+

(12b)

where ηγ > 0 is the dual step-size and [·]+ is the non-negative
projection since γ1, γ2 ≥ 0. In (12a) and (12b), we substitute
the expectations with their empirical alternatives as in (11b) and
(11c). These stochastic approximations allow updating the dual
step and completing the iteration t. The algorithm is stopped
either after a maximum number of iterations T or when a
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Algorithm 1: Primal-Dual Learning Procedure.

1: Input: Training set T , loss function C(·, ·), initial
primal variable H0, initial dual variable γ0, bounds
Cf and Cs, primal step-size ηH, and dual step-size ηγ

2: Establish the Lagrangian (8) and the dual problem (9)
3: for t = 0, 1, 2, . . . do
4: Primal phase. Given Ht and γt, update the primal

variable with gradient descent for Γ steps [cf. (10)]
5: Approximate L(H(τ−1)

t ,γt) stochastically [cf. (11)]
6: Dual phase. Given Ht+1 and γt, update the dual

variable with stochastic gradient ascent [cf. (12)]
7: end for

tolerance on the gradient norm is reached. Algorithm 1 recaps
this procedure.

Remark 1: Algorithm 1 is applicable to both the original
problem (4) and the surrogate problem (6). We focus on the
surrogate problem (6) because it allows to analyze its duality gap
in Section V; hence, providing a unified exposition throughout
the paper. However, if the duality analysis is not of interest
and any local minima is acceptable, we can work with the
original problem (4) directly. All the other theoretical findings
– the above primal-dual learning, the discrimination analysis in
Section IV and the convergence analysis in Section VI – apply
to the original problem as well.

Remark 2: Any stochastic optimization algorithm can be used
at the primal phase to solve the dual function minH L(H,γ)
[cf. (9)]. We apply the stochastic gradient descent in (10) as a
baseline method to ease the exposition. Other choices include
the ADAM method, the quasi-Newton method, etc.

B. Self-Learning Variance Regularizer

An intuitive alternative to the variance-constrained problem
(4) is to consider the variance as a regularizer for problem (3),
i.e.,

min
H

EM[CT (y,Φ(x;SP :1,H))]+βVar[Φ(x;SP:1,H)] (13)

where β > 0 is the regularization parameter. The regularization
term βVar[Φ(x;SP:1,H)] incentivizes the SGNN output to
have a small variance by forcing its parameters to trade between
the expected cost and the variance. Problem (13) can be solved
directly with stochastic gradient descent. However, we find it
limiting in two aspects: (i) It does not provide theoretical guar-
antees for stochastic deviations. The explicit relation between
the regularization term and the stochastic deviation is unclear,
thus little insight or implication can be obtained; (ii) It is difficult
to select a suitable regularization parameter β that well balances
the expected performance and the variance. If β is too large,
the SGNN would only restrict the variance but sacrifice the
performance; if β is too small, the SGNN may generate outputs
with a large variance. Deciding the value of β requires extensive
cross-validation and could be computationally demanding.

Differently, the variance-constrained learning not only opti-
mizes the SGNN parameters H akin to the variance regularized

objective, but also learns the regularization parameter γ based
on the variance bound. To see this, recall that minimizing the
Lagrangian (8) at the primal phase is equivalent to solving

min
H

EM[CT (y,Φ(x;SP :1,H))]− γ1
n
EM

[
n∑

i=1

[Φ(x;SP :1,H)]i

]

+
γ2
n
EM

[
n∑

i=1

[Φ(x;SP :1,H)]2i

]
. (14)

This is similar to the variance regularizer in (13), where the
dual variable γ = [γ1, γ2] is the regularization parameter and
the primal variable H is updated in the direction that reduces
the variance [cf. (5)]. However, instead of hand-fixing γ at the
outset, the variance-constrained learning updates γ at the dual
phase based on the bounds of the first and second order moments
Cf , Cs [cf. (12)]; ultimately, based on the variance boundCv [cf.
(7)]. Hence, we can consider the latter as a self-learning variance
regularizer, where the regularization parameter is learned based
on the variance bound Cv .

More importantly, feasible solutions of the variance-
constrained problem provide explicit theoretical guarantees
about stochastic deviations of the SGNN output around its ex-
pectation. The following proposition establishes the probability
contraction bound for the SGNN output and the role of the
variance constraint.

Proposition 1: Consider the variance-constrained problem
(4). Let H be a feasible solution that satisfies the variance
constraint. Then, for any ε > 0, it holds that

Pr

(
1

n

∥∥Φ(x;SP :1,H)−EM[Φ(x;SP :1,H)]
∥∥2≤ε

)
≥1−Cv

ε
.

Proof: See Appendix A in the supplementary material. �
That is, the probability that an SGNN realization deviates

from its expectation by at most ε is no more than a fraction
of Cv/ε. When the variance constraint is strict, i.e., Cv → 0,
the bound approaches one and stochastic deviations are well-
controlled, but it may be challenging to find a feasible solution.
The result shows an explicit relation between the variance con-
straint and random SGNN behavior, which cannot be established
by the regularizer in (13).

IV. VARIANCE AND DISCRIMINATION

Compared to the unconstrained problem (3), problem (4)
trades the bounded variance with the expected performance.
However, the explicit trade-off is unclear, i.e., how the imposed
constraint affects the overall performance. To address the latter,
we characterize theoretically the variance of the SGNN output
and show that the variance-constrained learning improves the
robustness to stochastic deviations by shrinking the frequency
response of stochastic graph filters [cf. (1)] within the SGNN;
thus, reducing the discrimination power. To obtain this result, we
analyze next the SGNN behavior in the graph spectral domain.
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Fig. 1. The 2-dimensional frequency response of a stochastic graph filter.
Function h(λ) is independent of graph realizations and it is completely defined
by parameters {hk}Kk=0 [cf. (17)]. For a specific chain of graph realizations
{S1,S2}, h(λ) is instantiated on specific eigenvalues {λ11, . . .,λ1n} deter-
mined by S1 and {λ21, . . .,λ2n} determined by S2.

A. Frequency Response of Stochastic Graph Filter

Consider the shift operator eigendecomposition Sk =
VkΛkV

�
k with eigenvectors Vk = [vk1, . . . ,vkn] and eigen-

values Λk = diag([λk1, . . ., λkn]). The graph Fourier trans-
form (GFT) is the projection of signal x onto Vk, i.e., x =∑n

i=1 x̂ivki, where x̂ = [x̂1, . . . , x̂n]
� are the Fourier coeffi-

cients [46]. Given the eigendecompositions of k + 1 successive
shift operatorsS0, . . .,Sk, we can perform a chain ofk + 1GFTs
on x as

k∏
i=0

Six=
n∑

i0=1

n∑
i1=1

· · ·
n∑

ik=1

x̂0i0 x̂1i0i1 · · · x̂kik−1ik

k∏
j=0

λjijvkik

(15)
for all k = 0, . . .,K, where we first perform the GFT over S0,
then over S1, and so on. Here, {x̂0i0}ni0=1, {x̂jij−1ij}kj=1 are the
Fourier coefficients of expanding x on the chain of S0, . . .,Sk

– see also [31], [32]. Thus, we can represent the filter output
u=H(SK:0)x as

u=
n∑

i0=1

n∑
i1=1

· · ·
n∑

iK=1

x̂0i0 x̂1i0i1 · · · x̂KiK−1iK

K∑
k=0

hk

k∏
j=0

λjijvKiK.

(16)

As it follows from (16), the input-output relation of the fil-
ter in the spectral domain is determined by the eigenvalues
ΛK , . . .,Λ1 and eigenvectors VK , . . .,V1. We can then define
the frequency response of the stochastic graph filter as

h(λ) :=

K∑
k=0

hk

k∏
j=0

λj (17)

which is a K-dimensional analytic function of the generic fre-
quency vector variable λ = [λ1, . . . , λK ]� ∈ RK with λ0 = 1
by default (i.e., S0 = I) [32]. The frequency response h(λ) is
a multivariate function of a K-dimensional vector variable λ,
where the kth entry λk is the analytic variable corresponding to
the kth shift operator Sk. The shape of h(λ) is determined by
the coefficients {hk}Kk=0, while a specific chain of SK , . . . ,S1

only instantiates the eigenvalues {λKi}ni=1, . . . , {λ1i}ni=1 on the
K-dimensional variable λ – see Fig. 1 for an example.

B. Variance Analysis

Given the filter frequency response over stochastic graphs, we
make the following conventional assumptions.

Assumption 1: Let h(λ) be the filter frequency response [cf.
(17)] of the K-dimensional variable λ satisfying |h(λ)| ≤ 1.
The stochastic graph filter is Lipschitz, i.e., there exists a con-
stant CL such that

|h(λ1)−h(λ2)|≤CL‖λ1−λ2‖, ∀λ1,λ2 ∈ ΛK (18)

where ΛK is the considered K-dimensional domain.
Assumption 2: The nonlinearity σ(·) satisfies σ(0)=0 and it

is Lipschitz, i.e., there exists a constant Cσ such that

|σ(x)− σ(y)| ≤ Cσ|x− y|, ∀x, y ∈ R. (19)

Assumption 3: The nonlinearity σ(·) is variance non-
increasing, i.e., for any real random variable x, it holds that
Var[σ(x)] ≤ Var[x].

Assumption 1 implies that the frequency response h(λ) does
not change faster than linear in any frequency direction of λ,
which is standard in the stability analysis of GNNs [14]. It holds
for filter coefficients {hk}Kk=0 and graph eigenvalues λ of finite
values because h(λ) is a finite-order polynomial, such that it
is bounded and Lipschitz for some CL < ∞. Given {hk}Kk=0,
we can express h(λ) and estimate CL as the maximal finite
difference in the considered domain. Assumptions 2 and 3 hold
for popular nonlinearities such as the ReLU and the absolute
value [32, Lemma 1]. The following theorem then formalizes
the SGNN output variance.

Theorem 1: Consider the SGNN in (2) ofL layers,F features,
and filter order K over the GRES(p, q) model with Md dropping
edges and Ma adding edges [Def. 1]. Let the stochastic graph
filters with the frequency responses (17) satisfy Assumption 1
with CL and the nonlinearity σ(·) satisfy Assumptions 2–3 with
Cσ . Then, for any input graph signalx, the variance of the SGNN
output is upper bounded as

Var[Φ(x;SP:1,H)] ≤C2
L (Mdp(1−p)+Maq(1−q))C‖x‖2

+O(p2(1−p)2) +O(q2(1−q)2) (20)

where C = 4K
∑L

�=1F
2L−3C2�−2

σ /n is a constant.
Proof: See Appendix B in the supplementary material. �
Theorem 1 states that the SGNN output variance is upper

bounded proportionally to the Lipschitz term C2
L and quadrat-

ically to the edge dropping\adding probability p\q. The result
guarantees the deviation of the SGNN output from the optimal
expectation is finite and bounded, and the constant C embeds
the role of the architecture hyper-parameters, i.e., the number of
features F , the number of layers L and the Lipschitz constant of
nonlinearity Cσ . Three explicit factors that affect the variance
are identified:

1) Filter property: The term C2
L captures the variation of the

filter frequency response h(λ). The variance decreases
with the Lipschitz constantCL, which is determined by pa-
rameters H. A smaller CL implies the frequency response
h(λ) changes slower in the spectral domain; thus, it is
more stable to frequency deviations induced by the graph
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stochasticity and leads to a lower variance. However, this
flatter response reduces the filter capacity to discriminate
between nearby spectral features, i.e., the filter has similar
responses for graph frequencies that are close to each
other. The latter indicates an implicit trade-off between
decreasing the variance and increasing the discrimination
power.

2) Graph stochasticity: The term Mdp(1−p) +Maq(1− q)
represents the impact of the graph stochasticity. The vari-
ance decreases when the number of dropping edges Md

or adding edges Ma is small. The variance decreases
also when edges are stable (p\q → 0) or highly unstable
(p\q → 1). The latter is because the maximal uncertainty
on an edge is for p = q = 0.5. Such a graph stochasticity
depends typically on external factors (e.g., interference,
attacks) or design choices (e.g., graph dropout).

3) SGNN architecture: The term 4K
∑L

�=1 F
2L−3C2�−2

σ /n
indicates the effect of the SGNN architecture. The variance
increases exponentially with the number of features F
and the Lipschitz constant Cσ with exponents controlled
by the number of layersL, i.e., the wider/deeper an SGNN,
the larger the variance. This is the consequence of the
graph stochasticity propagating through the architecture.
That is, an architecture with more filters/layers contains
more random components, generates more intermediate
features, and ultimately results in a larger variance, which
indicates a trade-off between the representational capacity
and the stochastic deviation of the SGNN. The Lipschitz
constant Cσ is typically one implying the non-expansivity
of the nonlinearity such as the ReLU or the absolute value.

The aforementioned analysis indicates that we can constrain
the variance in three ways: (1) reducing the Lipschitz constant
CL; (2) reducing the number of random edges Md,Ma or edge
probabilities p, q; (3) reducing the architecture width F and
depth L. However, (2) and (3) are determined at the outset
and cannot be controlled during training. This implies that the
variance-constrained learning keeps the variance bounded by
tuning parameters H to lower the Lipschitz constant CL of
the stochastic graph filters [As. 1]. Consequently, the stochastic
graph filters exhibit flatter frequency responses and restricting
the variance comes at the expense of the discrimination power.
From this perspective, the variance bound Cv cannot be set
too small; i.e., if Cv is small, CL decreases yielding a flatter
frequency response; hence, a lower discrimination power. This
is an implicit trade-off we have to cope with for improving
the SGNN robustness to stochastic deviations. We also note
that Theorem 1 extends the variance analysis in [32], which
is the particular case when all edges are only dropped with a
probability p.

Remark 3: The bound in (20) may be loose when Md, Ma

are large and the graph changes dramatically, i.e., p\q are
around 0.5, essentially because this bound holds uniformly for
all graphs. However, this result still shows that the SGNN output
variance is bounded and there is a trade-off between robustness
to stochasticity and discrimination power. In turn, this indicates
how the variance-constrained learning affects the performance,
which mechanisms in the SGNN are mostly responsible, and

which are our handle to reduce this bound (potentially the output
variance).

V. DUALITY GAP

We solved problem (6) in the dual domain, where there exists
a duality gap P− D between the primal and dual solutions. The
null duality gap can be achieved for convex problems, while
problem (6) is typically non-convex. The latter makes it unclear
how close is the dual solutionD of (9) to the primal solution P of
(6). In this section, we argue that the formulated problem could
have a small duality gap despite its nonconvexity, which guaran-
tees a small optimality loss caused by the dual transformation.
To show such a result, we first consider a more general version
of (6), where we generalize the SGNN to an unparameterized
function and the discrete set of shift operator sequences to a
continuous set. Upon proving this generalized setting has a null
duality gap, we then analyze the duality deviation induced by
two generalizations and characterize the duality gap of problem
(6).

A. Problem Generalization

We consider the SGNN Φ(x;SP :1,H) as a parameterized
model of a function f(x;SP :1) that takes as inputs a graph
signal x and a discrete sequence of shift operators SP :1 ∈ M
and generates representational features as outputs. Problem (6)
considers the expected objective and constraints over the discrete
set M. The latter can be extended to a continuous set M̃ via the
following ε-Borel set [55].

Definition 2 (ε-Borel set): For a shift operatorSk, the ε-Borel
set of Sk is

Bε(Sk) :={S̃k∈Rn×n:‖S̃k−Sk‖≤ε}, for k=1, . . ., P (21)

where ‖ · ‖ is the �2-norm.
The ε-Borel set Bε(Sk) is a continuous set of shift operators

S̃k and has countless points [cf. (21)]. For each sequence of
the shift operators SP :1={S1, . . . ,SP }∈M, we can construct
the corresponding sequence of the ε-Borel sets Bε(SP :1) =
{Bε(S1), . . . ,Bε(SP )}. The latter is a set of shift opera-
tor sequences S̃P :1={S̃1, . . . , S̃P } with each S̃k ∈ Bε(Sk)
for k = 1, . . ., P and contains also countless points. Given
two discrete sequences S

(i)
P :1,S

(j)
P :1 ∈ M, the union of the re-

spective ε-Borel set sequences {Bε(S
(i)
1 ), . . . ,Bε(S

(i)
P )} and

{Bε(S
(j)
1 ), . . . ,Bε(S

(j)
P )} is defined as⋃

SP :1∈
{
S

(i)
P :1,S

(j)
P :1

} {Bε (S1) , . . .,Bε (SP )}

:=
{
Bε

(
S
(i)
1

)
∪ Bε

(
S
(j)
1

)
, . . . ,Bε

(
S
(i)
P

)
∪ Bε

(
S
(j)
P

)}
(22)

which is also a set of shift operator sequences S̃P :1 =

{S̃1, . . . , S̃P } with each S̃k ∈ Bε(S
(i)
k ) ∪ Bε(S

(j)
k ) for k =
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1, . . ., P . This union contains all possible shift operator se-
quences that belong to the constituted ε-Borel set sequences.
We then define the ε-Borel generalization M̃ as follows.

Definition 3 (ε-Borel generalization): The ε-Borel general-
ization of the discrete set M with shift operator sequences SP :1

is defined as the union of the ε-Borel set sequences

M̃ :=
⋃

SP :1∈M
{Bε(S1), . . . ,Bε(SP )} . (23)

where
⋃

SP :1∈M stands for the union of all ε-Borel set sequences
w.r.t. all sequences SP :1 ∈ M [cf. (22)].

The ε-Borel generalization M̃ contains countless points
S̃P :1 = {S̃1, . . . , S̃P } and the expectation of any function
f̃(x; S̃P :1) over M̃ is

E[Φ(x; S̃P :1,H)] =

∫
S̃P :1∈M̃

f̃(x; S̃P :1)dμ(S̃P :1) (24)

whereμ(·) is the probability measure overM̃. Such a probability
measure is non-atomic, i.e., for any set A ∈ M̃ with positive
measure μ(A) > 0, there always exists a subset A′ ⊂ A such
that 0 < μ(A′) < μ(A). Given the function f(x;SP :1) and
the ε-Borel generalization M̃, problem (6) can be seen as a
particular instance of

P̃ := min
f̃

EM̃

[
ET
[
C(y, f̃(x; S̃P :1))

]]
(25)

s.t.
1

n
EM̃

[
n∑

i=1

[f̃(x; S̃P :1)]i

]
≥ Cf ,

1

n
EM̃

[
n∑

i=1

[f̃(x; S̃P :1)]
2
i

]
≤ Cs

where f̃(x; S̃P :1) is the function defined on M̃ and S̃P :1 is a
sequence of random shift operators in M̃. We now establish the
strong duality for problem (25).

Proposition 2: Suppose there exists a feasible solution
f̃(x; S̃P :1) satisfying the constraints in (25) with strict inequal-
ity. Then, problem (25) has a null duality gap P̃ = D̃.

Proof: Definez1 = EM̃[f̃(x; S̃P :1)],z2 = EM̃[f̃(x; S̃P :1)
2]

where (·)2 is the pointwise square operation, and z = [z�1 , z
�
2 ]

�.
Let g1(z) =

∑n
i=1[z1]i, g2(z) =

∑n
i=1[z2]i be functions of z.

Substituting these representations into problem (25) yields

P̃ := min
f̃

EM̃

[
ET
[
C(y, f̃(x; S̃P :1))

]]
, (26)

s.t.− g1(z) + Cf ≤ 0, g2(z)− Cs ≤ 0,

z =

[
EM̃

[
f̃(x; S̃P :1)

]�
,EM̃

[
f̃(x; S̃P :1)

2
]�]

.

Since −g1(z) and g2(z) are convex functions of z, problem
(26) can be considered as a sparse functional program [43]. By
using [43, Theorem 1], we prove the strong duality P̃ = D̃. Note
that−g1(z) and g2(z) are also composite functions of (x, S̃P :1),
which integrally may not be convex. But from the condition

in [43], we need only the outer form convex but not the composite
form. �

That is, problem (25) can be solved in the dual domain without
loss of optimality. We leverage this results to characterize the
duality gap of problem (6) where the SGNN Φ(x;SP :1,H)
operates over a discrete set M.

Remark 4: Proposition 2 proves the null duality gap for the
general version of the surrogate problem (6). If we were to
consider the general version of the original problem (4), we
would have not proven such strong duality. This is because the
variance constraint in problem (4) takes the form

g(z)− Cv ≤ 0 with g(z) =
n∑

i=1

[z2]i − [z1]
2
i . (27)

Since g(z) is a non-convex function of z, the conditions of [43,
Theorem 1] do not apply.

B. Duality Analysis

We now analyze the duality deviation induced by the problem
generalization. First, we particularize the function f̃(x; S̃P :1) to
the SGNN Φ(x; S̃P :1,H) via the ε-universal parameterization.

Definition 4 (ε-universal parameterization): A parameteriza-
tion2 Φ(x; S̃P :1,H) is ε-universal if for any function f̃(x; S̃P :1)
in the considered domain, there exist a set of parameters H such
that

EM̃

[
‖f̃(x; S̃P :1)−Φ(x; S̃P :1,H)‖2

]
≤ ε2 (28)

where the expectation EM̃[·] is over the generalized set M̃ of

the shift operator sequence S̃P :1.
An ε-universal parametrization can model any function in the

considered domain within some accuracy ε. Such a property
holds for a number of machine learning architectures, including
radial basis function networks [56], reproducing kernel Hilbert
spaces [57], and deep neural networks [58].

Assumption 4: For a given SGNNΦ(x; S̃P :1,H), there exists
a finite accuracy ε > 0 such that the SGNN is an ε-universal
parameterization w.r.t. the generalized set M̃.

Assumption 4 implies that for the considered SGNN, there
exists some finite ε > 0 to make it an ε-universal parameteriza-
tion. The value of ε depends on the representational capacity
of the considered SGNN, i.e., a deeper (high L) and wider
(high F ) SGNN may have a higher representational capacity
and we may choose a smaller ε for it w.r.t. a stronger ε-universal
parameterization. This property characterizes the deviation in-
duced by particularizing f̃(x; S̃P :1) to Φ(x; S̃P :1,H) and will
be reflected in the duality gap. Second, we particularize the
continuous set M̃ to the discrete set M. The relation between
these two sets is characterized by the ε-Borel set [Def. 2]. To
proceed the analysis, we assume the following.

Assumption 5: The loss C(·, ·) is Lipschitz over T =
{(x,y)}, i.e., for any y1 and y2, there exists a constant C� such

2A parameterization is defined as a mathematical model that represents some
mapping as a function of some independent parameters.
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that

∣∣ET [C(y,y1)]−ET [C(y,y2)]
∣∣≤C�‖y1−y2‖. (29)

Assumption 6: The SGNN output Φ(x;SP :1,H) is bounded,
i.e., there exists a constant Cy s.t. ‖Φ(x;SP :1,H)‖ ≤ Cy .

Assumption 5 is a continuity statement on the loss C(·, ·),
which is common in optimization theory [59] and holds for
popular classification and regression losses. Assumption 6 con-
siders the SGNN output bounded by a constant Cy independent
of the filter coefficients, which has been proven for the SGNN
in Lemma 2 of the supplementary material.

The following theorem quantifies the duality gap of problem
(6).

Theorem 2: Consider problem (6) with primal and dual so-
lutions P and D, respectively. Let the SGNN Φ(x;SP :1,H) be
of L layers comprising F filters of order K. Let the frequency
responses (17) of these filters satisfy Assumption 1 with CL and
the nonlinearity σ(·) satisfy Assumptions 2-3 with Cσ . Let also
the SGNN satisfy Assumption 4 w.r.t. the ε-Borel generalization
M̃with ε, its output be bounded according to Assumption 6 with
Cy , and the cost function C(·, ·) satisfy Assumption 5 with C�.
Then, the duality gap of problem (6) is bounded by

|P−D|≤
(
C� +

γ̃∗
1√
n
+γ̃∗

2

(
2Cy√
n
+

ε

n

))
ε+Cε+O(ε2)

(30)

where γ̃∗ = [γ̃∗
1, γ̃

∗
2]

� is the optimal dual variable of problem
(25) and C is a constant related to the SGNN architectural prop-
erties – see the expression of C in (S.28) of the supplementary
material.

Proof: See Appendix C in the supplementary material. �
The duality gap is induced by two types of errors: the param-

eterization error ε of the SGNN [Def. 4] and the generalization
error ε of the set [Def. 3]. The parameterization error is present
in the first term of (30), which is small when the SGNN exhibits
a strong representational capacity to approximate unparameter-
ized functions. This is an irreducible error that indicates how
well the SGNN covers the function space and exists for any
GNN solutions. The generalization error is present in the second
term of (30), which can be sufficiently small by considering
small Borel sets that satisfy Assumption 4. A small duality gap
indicates that solving the problem in the dual domain comes
with a contained optimality loss, compared to solving it directly
in the primal domain, which justifies the primal-dual learning
procedure.

Theorem 2 discusses the duality gap induced by solving
problem (6) in the dual domain exactly. However, it is still
unclear if the primal-dual learning procedure [Alg. 1] converges
to a neighboorhood of the dual solutionD. In the next section, we
answer this question affirmative and combine the convergence
error with the duality gap to provide a unified performance
analysis.

VI. CONVERGENCE

The main challenge to prove the convergence of the primal-
dual learning, stands in the fact that we approximate the min-
imization at the primal phase with stochastic gradient descent
[cf. (9)] and every Γ primal updates we run a single dual update.
To characterize this convergence, we make the following mild
assumption.

Assumption 7: Let H∗ be the minima of the Lagrangian
L(H,γ) [cf. (8)] andH(Γ) the approximate solution obtained by
the primal phase with gradient descent [cf. (10)]. There exists a
constant ξ ≥ 0 such that for any dual variable γ ∈ R+, it holds
that

|L(H∗,γ)− L(H(Γ),γ)| ≤ ξ. (31)

That is, the gradient descent applied in the primal phase
solves the dual function D(γ) = minH L(H,γ) within an error
neighborhood ξ. The value of ξ depends on the performance of
the gradient descent and on the steps Γ, which has exhibited
success in a wide array of optimization problems [60]. The
following theorem then establishes the convergence result.

Theorem 3: Consider the primal-dual learning for problem
(6) [Alg. 1]. Let the SGNN output satisfy Assumption 6 with Cy

and the primal phase satisfy Assumption 7 with ξ. Then, for an
accuracy δ > 0, Algorithm 1 converges to an error neighborhood
of the dual solution D of problem (6) as

|L(H(Γ)
T ,γT )−D|≤2ξ+

((
Cf+

Cy√
n

)2
+
(
Cs+

C2
y

n

)2)
2

ηγ+ δ

(32)

in at most T iterations with T ≤ ‖γ0 − γ∗‖2/(2ηγδ), where γ0

and γ∗ are the initial and optimal dual variables for the dual
problem [cf. (9)], and ηγ is the dual step-size.

Proof: See Appendix D in the supplementary material. �
Theorem 3 states that the primal-dual learning converges to an

error neighborhood of the dual solution within a finite number of
iterations that is inversely proportional to the desirable accuracy
δ. The error size depends on the suboptimality of the solution of
the primal phase and the step-size of the dual phase. Inspecting
(32), the error size consists of three terms:

1) The term 2ξ decreases when we perform sufficient gradi-
ent steps at the primal phase and the parameters H(Γ)

t [cf.
(10)] are close to the optimal H∗

t at iteration t.
2) The term is proportional to the dual step-size ηγ , which

could be set sufficiently small [cf. (12)].
3) The term δ is inversely proportional to the number of

iterations T , which decreases if we run the primal-dual
learning for more iterations.

By combining Theorems 2-3, we can characterize completely
the solution suboptimality of the primal-dual learning procedure
w.r.t. both the duality gap and the iterative method.

Corollary 1: Under the same settings of Theorems 2–3, the
suboptimality of solving problem (6) with the primal-dual learn-
ing procedure can be bounded as

|L(H(Γ)
T ,γT )−P| ≤ C1ε+2ξ+C2ηγ+σ+C3ε+O(ε2) (33)
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Fig. 2. (a) Convergence of the cost with different edge dropping probabilities. (b) Expected classification accuracy and standard deviation with and without (w/o)
the variance-constrained learning for source localization. (c) Performance with large edge dropping probabilities p.

where constants C1, C2 are specified in (30) and constant C3 is
specified in (32).

This result indicates that the proposed variance-constrained
learning converges to a solutionL(H(Γ)

T ,γT ) in the dual domain
within a finite number of iterations, which is close to the optimal
solution P of problem (6).

Remark 5: The convergence result (32) holds when the pri-
mal phase obtains parameters in a neighborhood of the global
solution [cf. (31)]. Since working with neural networks is in a
non-convex setting, it is likely to obtain parameters close to a
local minima. In this context, (32) indicates what can be achieved
at best via the primal-dual learning and what is our handle to
control it. We corroborate next that the variance-constrained
learning converges satisfactorily in numerical simulations.

VII. NUMERICAL RESULTS

We compare the variance-constrained learning with the
vanilla GNN and the SGNN using synthetic data from source
localization and real data from recommender systems [61].
The vanilla GNN is the standard GNN trained over the de-
terministic underlying graph [5] and has the same architecture
hyper-parameters as the SGNN. In the stochastic setting, the
vanilla GNN has shown a lower performance compared with the
SGNN [32] and thus, we focus principally on the comparison
with the latter and report the performance of the vanilla GNN
as a baseline. For all architectures we tested both the stochastic
gradient descent and the ADAM optimizer [62] for training,
while used the latter because it has shown consistently a bet-
ter performance. The learning rate is μ = 10−3 and decaying
factors are β1 = 0.9, β2 = 0.999. The assumptions made in
Section IV–VI typically hold for these practical applications,
where the graph signals, graph eigenvalues and architecture
parameters are of finite values, while the assumption constants
depend on specific problem settings that vary among different
applications. We consider the latter hold in our experiments for
some finite constants. It is also worth mentioning that these are
assumed properties for theoretical analysis to shed insights on
the proposed algorithm but are not necessary for the algorithm
implementation.

A. Source Localization

We consider a diffusion process over a stochastic block model
(SBM) graph of 50 nodes divided into 5 communities, with
the intra- and inter-community edge probabilities 0.8 and 0.2
respectively. The goal is to find the community originating the
diffusion distributively at a node. The initial graph signal is
a Kronecker delta δs ∈ R50 originated at a source node s ∈
{s1, . . . , s5} of a community, where {s1, . . . , s5} are the five
source nodes of five communities respectively. The signal at time
t is x(t)

s = Stδs + n with n ∈ R50 a zero-mean Gaussian noise.
We generate 15000 samples by randomly selecting a source node
s and a diffused time t ∈ [0, 50], which are split into 10000,
2500, and 2500 samples for training, validation, and testing,
respectively. We consider all edges of the nominal graph may fall
with a probability p due to channel fading effects and no edges
are added during testing, according to the GRES(p, q) model
with q = 0. The SGNN has two layers, each with F = 32 filters
of order K = 8 and the ReLU nonlinearity. The mini-batch
contains 50 samples and the cost function is the cross entropy.
We set Cf = 0 to maximize the space of feasible solutions and
Cs = 0.5 to balance the variance and the information loss, i.e.,
Cv = 0.5 according to (7). The performance is measured by
the classification accuracy and the results are averaged over 10
SBM graph realizations, conditioned on which different graph
stochasticity scenarios are investigated.

Convergence: First, we corroborate the convergence of the
variance-constrained learning. Fig. 2(a) displays the primal-dual
learning procedure over 10000 iterations with the edge dropping
probability p = 0.05, 0.15 and 0.25. The expected cost decreases
with the number of iterations, while the decreasing rate reduces
gradually; ultimately, approaching a stationary point in all cases.
The expected cost of p = 0.05 converges slightly later than that
of p = 0.15, 0.25 because p = 0.05 yields a more stable graph
with a better performance, so that it takes more iterations to
reach a lower cost. The convergent value increases with the
edge dropping probability p because of the increased graph
randomness. Moreover, the convergence curves fluctuate with
iterations because the graph stochasticity and the mini-batch
sampling render the SGNN output random. The fluctuation
reduces from p = 0.25 to p = 0.05, which can be explained by
the decrease of the graph stochasticity as indicated in Theorem 1.
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Fig. 3. (a) Expected classification accuracy and standard deviation with different numbers of GRES(p, q) realizations N . (b) Convergence of the cost with
different numbers of gradient steps Γ at the primal phase. (c) Expected classification accuracy and standard deviation with different numbers of dropping edges
Md. (d) Expected Lipschitz constant CL with different variance bounds Cv .

Comparison: We compare the performance of the SGNN
w/o the variance-constrained learning w.r.t. both the surrogate
problem (6) and the original problem (4). Fig. 2(b) and (c)
shows the classification accuracy under different edge dropping
probabilities: (mild) p ∈ [0.05, 0.25] and (harsh) p ∈ [0.3, 0.7].
The proposed variance-constrained learning exhibits a better
performance with a comparable expected value and a lower
standard deviation. The latter is emphasized when p increases,
i.e., when more edges are dropped. The expected performance
degrades as p increases, which can be explained by the increased
graph variation. The variance-constrained learning maintains a
smaller standard deviation, while the unconstrained training in-
creases the standard deviation inevitably. For small probabilities
p, the variance-constrained learning w.r.t. the surrogate problem
(6) performs comparably to that w.r.t. the original problem (4).
We attribute the latter to the fact that the surrogate constraints in
(6) provide similar guarantees on stochastic deviations as the
variance constraint in (4) [cf. (7)]. For large probabilities p,
the surrogate exhibits a lower expected performance but tighter
standard deviation. This is because the surrogate is a stronger
constraint, i.e., the surrogate is a strict bound of the original [cf.
(7)].

Training sensitivity: We evaluate the effects of training param-
eters on the variance-constrained learning, i.e., the GRES(p, q)
realizations N for empirical estimations [cf. (11)] in Fig. 3(a),
the gradient steps Γ at the primal phase [cf. (10)] in Fig. 3(b)
and the number of dropping edges Md in Fig. 3(c).

Fig. 3(a) shows that the expected cost fluctuates with N and
the fluctuation reduces as N becomes large, while the standard
deviation decreases with N . This is because the empirical es-
timation with a larger N approximates better the variance and
the corresponding model becomes more stable, which however
takes more training time. The model with N = 1 has the largest
variance despite better expected performance. We attribute the
latter to that the estimated variance with N = 1 is more inac-
curate, which may lead to a more relaxed constraint; hence, a
lower effect during training and a better expected performance.
However, the corresponding constraint is not as tight/strict as it
is with a large N so the model has the largest variance.

Fig. 3(b) shows that the variance-constrained learning con-
verges faster and to a lower value as Γ increases. This cor-
roborates Theorem 3 since more gradient steps approach better
the optimal solution at each primal phase, which reduces the
error size ξ and accelerates the convergence. It is remarkable

from Fig. 3(a)–(b) that small values of graph realizations, e.g.,
N ≥ 10, and gradient steps, e.g., Γ ≥ 1, achieve a satisfactory
performance, indicating an efficient implementation.

Fig. 3(c) shows that the expected accuracy decreases and
the standard deviation increases with Md. This follows our
finding in Theorem 1 that more unstable edges increase the graph
stochasticity and the latter degrades the performance.

Finally, we corroborate the relation between the variance and
the discrimination power analyzed in Section IV. Fig. 3(d) shows
that the expected Lipschitz constant CL of stochastic graph
filters increases with the variance bound Cv . This corresponds
to the theoretical finding in Theorem 1 that constraining the
variance may lead to a less discriminative architecture, which
contains filters with less variability in their frequency responses.

Hyper-parameter sensitivity: we perform the variance-
constrained learning under different hyper-parameters; namely,
the number of features F in Fig. 4(a), the number of layers L
in Fig. 4(b), the graph size n in Fig. 4(c), and the second-order
moment bound Cs in Fig. 4(d), to show their effects on the
learning performance. The number of GRES(p, q) realizations
is set to N = 10.

Fig. 4(a) shows that the expected performance and the vari-
ance increase with the number of features F . The former is
because of the improved representational capacity, while the
latter is because SGNNs with more features generate outputs
with more randomness and may require a larger N to estimate
the variance for constrained learning. Similar results and dis-
cussions apply on different numbers of layers L in Fig. 4(b).
In Fig. 4(c), we see that the expected performance decreases
with the graph size n because the problem becomes more
difficult. The variance increases with n because SGNNs over
larger graphs suffer more the randomness. In this case, the
variance-constrained learning needs a larger N to have a better
estimation of the variance. Fig. 4(d) illustrates that both the
expected performance and the variance increase with the value
of Cs. This is because a constraint with a larger Cs affects less
the cost function but results in a looser constraint, indicating a
trade-off between the expected performance and the variance as
suggested by Theorem 1.

B. Recommender Systems

We now show an interesting application of the proposed
approach in the diversity-enhancing recommender system
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Fig. 4. Expected classification accuracy and standard deviation with different hype-parameters. (a) Different numbers of features F . (b) Different numbers of
layers L. (c) Different graph sizes n. (d) Different values of Cs.

Fig. 5. (a) Expected RMSE and standard deviation of the GNN, the SGNN w/o the variance-constrained learning for movie recommendation. (b)-(c) Expected
AD and standard deviation of the GNN, the SGNN w/o the variance-constrained learning for movie recommendation.

(RecSys). We consider the MovieLens 100K dataset, which
comprises 943 users and 1682 movies [61]. Following the pre-
processing steps in [26], we build the graph by considering nodes
as movies and edges as similarities between them. We compute
the movie similarity via the Pearson correlation and keep the
35 edges with the highest correlation. The graph signal is the
ratings given by a user to the movies, where the signal value is
zero if the movie is unrated.

In the RecSys, accuracy measures how well we predict the
ratings a user has given to the movies. However, high accuracy
is not necessarily linked to a better user satisfaction. Diversity
also plays an important role, which measures the capability
of the RecSys to include items of different categories in the
recommendation list [63]. To measure accuracy we use the
root mean squared error (RMSE), which is a standard criterion
for the rating-based RecSys. To measure diversity we use the
aggregated diversity for the recommendation list containing top
ten items (AD@10), which is defined as the number of different
items included in the list. A lower RMSE indicates a better
accuracy and a higher AD implies a more diversified RecSys,
i.e., the system does not overfit accuracy by recommending only
niche items. The joint goal is to tweak the accuracy-diversity
trade-off, i.e., predict accurate ratings and increase the recom-
mendation diversity.

Parameterization: We consider the SGNN comprising a
single layer with F = 32 filters of order K = 4 and the Leaky
ReLU nonlinearity. The graph stochasticity throughout the
architecture is leveraged as a training strategy to aid diversity
because it will randomly remove some similarity edges between
movies and connect different movies with each other [26]. We
consider the first 35 edges with the highest correlation may be

dropped and the next 20 edges may be added with a probability
p, corresponding to the GRES(p, q) model with p = q for
simplicity. The constraint bounds are set as Cf = 0 and
Cs = 0.5.

Performance: We compare the accuracy-diversity trade-off
of the vanilla GNN, the SGNN with and without the variance-
constrained learning. Fig. 5(a) shows the expected RMSE and
the standard deviation under different edge dropping/adding
probabilities p ∈ [0.05, 0.25]. For a lower p → 0, the graph is
stable and the SGNN exhibits comparable accuracies to the
GNN; for a higher p, the graph varies more dramatically and the
SGNN degrades gradually. The variance-constrained learning
accounts for the variance during training, and thus maintains a
lower standard deviation around the expected RMSE. Contrarily,
the baseline method ignores this factor and has a higher standard
deviation that increases with p.

Fig. 5(b)–(c) display the expected AD@10 and the standard
deviation around it. The SGNN improves the diversity compared
to the GNN, which can be explained by the involved graph
stochasticity. While restricting the variance during training,
the variance-constrained learning achieves a comparable
(slightly lower) AD@10 to the baseline method. This
result together with the well-controlled RMSE in Fig. 5(a)
indicate that the variance-constrained learning exhibits a better
accuracy-diversity trade-off.

VIII. CONCLUSION

We proposed a variance-constrained learning strategy for
stochastic graph neural networks that achieves a trade-off be-
tween the expected performance and stochastic deviations.
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This strategy adheres to solving a constrained stochastic
optimization problem. We developed a primal-dual learning
method to solve the problem in the dual domain, which alternates
gradient updates between the SGNN parameters and the dual
variable. The variance-constrained learning can be interpreted
as a self-learning variance regularizer that provides explicit
guarantees for stochastic deviations. A statistical analysis on the
SGNN output is conducted to identify how the output variance
is decreased and indicates the constrained variance comes at the
expense of the discrimination power. We further analyzed the
duality gap of the variance-constrained optimization problem
and the convergence of the primal-dual learning method, which
characterize the solution suboptimality and provide theoretical
guarantees for the performance. Numerical results corroborate
that the variance-constrained learning finds a favorable balance
between the optimal performance and the deviation degradation.
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[2] A. Ortega, P. Frossard, J. Kovačević, J. M. F. Moura, and P. Vandergheynst,
“Graph signal processing: Overview, challenges, and applications,” Proc.
IEEE, vol. 106, no. 5, pp. 808–828, May 2018.

[3] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini,
“The graph neural network model,” IEEE Trans. Neural Netw., vol. 20,
no. 1, pp. 61–80, Jan. 2009.

[4] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural
networks on graphs with fast localized spectral filtering,” in Proc. Conf.
Neural Inf. Process. Syst., 2016, pp. 3844–3852.

[5] F. Gama, E. Isufi, G. Leus, and A. Ribeiro, “Graphs, convolutions, and
neural networks: From graph filters to graph neural networks,” IEEE Signal
Process. Mag., vol. 37, no. 6, pp. 128–138, Nov. 2020.

[6] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip, “A com-
prehensive survey on graph neural networks,” IEEE Trans. Neural Netw.
Learn. Syst., vol. 32, no. 1, pp. 4–24, Mar. 2020.

[7] R. Ying, R. He, K. Chen, P. Eksombatchai, W. L. Hamilton, and J.
Leskovec, “Graph convolutional neural networks for web-scale recom-
mender systems,” in Proc. 24th ACM Int. Conf. Knowl. Discov. Data
Mining, 2018, pp. 974–983.

[8] W. Fan et al., “A graph neural network framework for social recommen-
dations,” IEEE Trans. Knowl. Data Eng., vol. 34, no. 5, pp. 2033–2047,
May 2022.

[9] E. Tolstaya, F. Gama, J. Paulos, G. Pappas, V. Kumar, and A. Ribeiro,
“Learning decentralized controllers for robot swarms with graph neural
networks,” in Proc. Conf. Robot Learn., 2020, pp. 671–682.

[10] Z. Gao, F. Gama, and A. Ribeiro, “Wide and deep graph neural network
with distributed online learning,” IEEE Trans. Signal Process., vol. 70,
pp. 3862–3877, 2022.

[11] M. Eisen and A. Ribeiro, “Optimal wireless resource allocation with
random edge graph neural networks,” IEEE Trans. Signal Process., vol. 68,
pp. 2977–2991, 2020.

[12] Z. Gao, M. Eisen, and A. Ribeiro, “Resource allocation via graph neural
networks in free space optical fronthaul networks,” in Proc. IEEE Glob.
Commun. Conf., 2020, pp. 1–6.

[13] Z. Gao, Y. Shao, D. Gunduz, and A. Prorok, “Decentralized chan-
nel management in WLANs with graph neural networks,” 2022,
arXiv:2210.16949.

[14] F. Gama, J. Bruna, and A. Ribeiro, “Stability properties of graph neural
networks,” IEEE Trans. Signal Process., vol. 68, pp. 5680–5695, 2020.

[15] H. Kenlay, D. Thanou, and X. Dong, “Interpretable stability bounds
for spectral graph filters,” in Proc. Int. Conf. Mach. Learn., 2021,
pp. 5388–5397.

[16] H. Kenlay, D. Thano, and X. Dong, “On the stability of graph convolutional
neural networks under edge rewiring,” in Proc. IEEE Int. Conf. Acoust.,
Speech Signal Process., 2021, pp. 8513–8517.

[17] R. Levie, W. Huang, L. Bucci, M. Bronstein, and G. Kutyniok, “Transfer-
ability of spectral graph convolutional neural networks,” J. Mach. Learn.
Res., vol. 22, no. 272, pp. 1–59, 2021.

[18] A. Parada-Mayorga and A. Ribeiro, “Algebraic neural networks: Stability
to deformations,” IEEE Trans. Signal Process., vol. 69, pp. 3351–3366,
2021.

[19] E. Isufi, F. Gama, D. I. Shuman, and S. Segarra, “Graph filters for signal
processing and machine learning on graphs,” 2022, arXiv:2211.08854.

[20] E. Isufi, A. Loukas, A. Simonetto, and G. Leus, “Filtering random graph
processes over random time-varying graphs,” IEEE Trans. Signal Process.,
vol. 65, no. 16, pp. 4406–4421, Aug. 2017.

[21] A. Zou, K. Kumar, and Z. Hou, “Distributed consensus control for
multi-agent systems using terminal sliding mode and Chebyshev neural
networks,” Int. J. Robust Nonlinear Control, vol. 23, no. 3, pp. 334–357,
2013.

[22] D. I. Shuman, P. Vandergheynst, D. Kressner, and P. Frossard, “Dis-
tributed signal processing via Chebyshev polynomial approximation,”
IEEE Trans. Signal Inf. Process. Netw., vol. 4, no. 4, pp. 736–751,
Dec. 2018.

[23] S. Kar and J. M. F. Moura, “Sensor networks with random links: Topology
design for distributed consensus,” IEEE Trans. Signal Process., vol. 56,
no. 7, pp. 3315–3326, Jul. 2008.

[24] G. Antonelli, F. Arrichiello, F. Caccavale, and A. Marino, “Decentralized
time-varying formation control for multi-robot systems,” Int. J. Robot.
Res., vol. 33, no. 7, pp. 1029–1043, 2014.

[25] D. Deng, C. Shahabi, U. Demiryurek, L. Zhu, R. Yu, and Y. Liu, “Latent
space model for road networks to predict time-varying traffic,” in Proc.
22nd ACM Int. Conf. Knowl. Discov. Data Mining, 2016, pp. 1525–1534.

[26] F. Monti, M. Bronstein, and X. Bresson, “Geometric matrix completion
with recurrent multi-graph neural networks,” in Proc. Conf. Neural Inf.
Process. Syst., 2017, pp. 3697–3707.

[27] R. Berg, T. Kipf, and M. Welling, “Graph convolutional matrix comple-
tion,” in Proc. 24th ACM Int. Conf. Knowl. Discov. Data Mining, 2018,
pp. 1–7.

[28] E. Isufi, M. Pocchiari, and A. Hanjalic, “Accuracy-diversity trade-off in
recommender systems via graph convolutions,” Inf. Process. Manage.,
vol. 58, no. 2, 2021, Art. no. 102459.

[29] L. Ben Saad, B. Beferull-Lozano, and E. Isufi, “Quantization analysis and
robust design for distributed graph filters,” IEEE Trans. Signal Process.,
vol. 70, pp. 643–658, 2022.

[30] H. S. Nguyen, Y. He, and H. T. Wai, “On the stability of low pass graph filter
with a large number of edge rewires,” in Proc. IEEE Int. Conf. Acoust.,
Speech Signal Process., 2022, pp. 5568–5572.

[31] Z. Gao, E. Isufi, and A. Ribeiro, “Stability of graph convolutional neural
networks to stochastic perturbations,” Signal Process., vol. 188, 2021,
Art. no. 108216.

[32] Z. Gao, E. Isufi, and A. Ribeiro, “Stochastic graph neural networks,” IEEE
Trans. Signal Process., vol. 69, pp. 4428–4443, 2021.

[33] W. Feng et al., “Graph random neural networks for semi-supervised
learning on graphs,” in Proc. Conf. Neural Inf. Process. Syst., 2020,
pp. 22092–22103.

[34] Y. Rong, W. Huang, T. Xu, and J. Huang, “Dropedge: Towards deep graph
convolutional networks on node classification,” in Proc. Int. Conf. Learn.
Representations, 2019, pp. 1–17.

[35] Z. Gao, S. Bhattacharya, L. Zhang, R. S. Blum, A. Ribeiro, and B. M.
Sadler, “Training robust graph neural networks with topology adaptive
edge dropping,” 2021, arXiv:2106.02892.

[36] J. Chen, J. Zhu, and L. Song, “Stochastic training of graph convolutional
networks with variance reduction,” in Proc. Int. Conf. Mach. Learn., 2018,
pp. 942–950.

[37] J. Chen, T. Ma, and C. Xiao, “FastGCN: Fast learning with graph con-
volutional networks via importance sampling,” in Proc. Int. Conf. Learn.
Representations, 2018, pp. 1–15.

[38] D. Zou, Z. Hu, Y. Wang, S. Jiang, Y. Sun, and Q. Gu, “Layer-dependent
importance sampling for training deep and large graph convolutional net-
works,” in Proc. Conf. Neural Inf. Process. Syst., 2019, pp. 11249–11259.

[39] W. Huang, T. Zhang, Y. Rong, and J. Huang, “Adaptive sampling towards
fast graph representation learning,” in Proc. Conf. Neural Inf. Process.
Syst., 2018, pp. 4563–4572.

[40] Z. Liu et al., “Bandit samplers for training graph neural networks,” in Proc.
Conf. Neural Inf. Process. Syst., 2020, pp. 6878–6888.

[41] W. Cong, R. Forsati, M. Kandemir, and M. Mahdavi, “Minimal variance
sampling with provable guarantees for fast training of graph neural net-
works,” in Proc. 26th ACM Int. Conf. Knowl. Discov. Data Mining, 2020,
pp. 1393–1403.

Authorized licensed use limited to: TU Delft Library. Downloaded on February 27,2023 at 10:51:42 UTC from IEEE Xplore.  Restrictions apply. 



GAO AND ISUFI: LEARNING STOCHASTIC GRAPH NEURAL NETWORKS WITH CONSTRAINED VARIANCE 371

[42] M. Fey, J. E. Lenssen, F. Weichert, and J. Leskovec, “GNNAutoScale:
Scalable and expressive graph neural networks via historical embeddings,”
in Proc. Int. Conf. Mach. Learn., 2021, pp. 3294–3304.

[43] L. F. O. Chamon, Y. C. Eldar, and A. Ribeiro, “Functional nonlinear sparse
models,” IEEE Trans. Signal Process., vol. 68, pp. 2449–2463, 2020.

[44] D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Vandergheynst,
“The emerging field of signal processing on graphs: Extending high-
dimensional data analysis to networks and other irregular domains,” IEEE
Signal Process. Mag., vol. 30, no. 3, pp. 83–98, May 2013.

[45] S. Segarra, A. G. Marques, and A. Ribeiro, “Optimal graph-filter design
and applications to distributed linear network operators,” IEEE Trans.
Signal Process., vol. 65, no. 15, pp. 4117–4131, Aug. 2017.
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