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Realization of a minimal Kitaev chain in 
coupled quantum dots

Tom Dvir1,2,4 ✉, Guanzhong Wang1,2,4, Nick van Loo1,2,4, Chun-Xiao Liu1,2, Grzegorz P. Mazur1,2, 
Alberto Bordin1,2, Sebastiaan L. D. ten Haaf1,2, Ji-Yin Wang1,2, David van Driel1,2, 
Francesco Zatelli1,2, Xiang Li1,2, Filip K. Malinowski1,2, Sasa Gazibegovic3, Ghada Badawy3, 
Erik P. A. M. Bakkers3, Michael Wimmer1,2 & Leo P. Kouwenhoven1,2 ✉

Majorana bound states constitute one of the simplest examples of emergent non- 
Abelian excitations in condensed matter physics. A toy model proposed by Kitaev 
shows that such states can arise at the ends of a spinless p-wave superconducting chain1. 
Practical proposals for its realization2,3 require coupling neighbouring quantum dots 
(QDs) in a chain through both electron tunnelling and crossed Andreev reflection4. 
Although both processes have been observed in semiconducting nanowires and carbon 
nanotubes5–8, crossed-Andreev interaction was neither easily tunable nor strong 
enough to induce coherent hybridization of dot states. Here we demonstrate the 
simultaneous presence of all necessary ingredients for an artificial Kitaev chain: two 
spin-polarized QDs in an InSb nanowire strongly coupled by both elastic co-tunnelling 
(ECT) and crossed Andreev reflection (CAR). We fine-tune this system to a sweet spot 
where a pair of poor man’s Majorana states is predicted to appear. At this sweet spot, 
the transport characteristics satisfy the theoretical predictions for such a system, 
including pairwise correlation, zero charge and stability against local perturbations. 
Although the simple system presented here can be scaled to simulate a full Kitaev 
chain with an emergent topological order, it can also be used imminently to explore 
relevant physics related to non-Abelian anyons.

Engineering Majorana bound states in condensed matter systems is an 
intensively pursued goal, both for their exotic non-Abelian exchange 
statistics and for potential applications in building topologically pro-
tected qubits1,9,10. The most investigated experimental approach looks 
for Majorana states at the boundaries of topological superconducting 
materials, made of hybrid semiconducting–superconducting hetero-
structures11–15. However, the widely-relied-upon signature of Majorana 
states, zero-bias conductance peaks, is by itself unable to distinguish 
topological Majorana states from other trivial zero-energy states 
induced by disorder and smooth gate potentials16–21. Both problems 
disrupting the formation or detection of a topological phase origi-
nate from a lack of control over the microscopic details of the electron 
potential landscape in these heterostructure devices.

In this work, we realize a minimal Kitaev chain1 using two QDs coupled 
by means of a short superconducting–semiconducting hybrid2. By 
controlling the electrostatic potential on each of these three elements, 
we overcome the challenge imposed by random disorder potentials.  
At a fine-tuned sweet spot where Majorana states are predicted to 
appear, we observe end-to-end correlated conductance that signals 
emergent Majorana properties such as zero charge and robustness 
against local perturbations. We note that these Majorana states in a 
minimal Kitaev chain are not topologically protected and have been 
dubbed ‘poor man’s Majorana’ (PMM) states3.

 
Realization of a minimal Kitaev chain
The elementary building block of the Kitaev chain is a pair of spin-
less electronic sites coupled simultaneously by two mechanisms: ECT 
and CAR. Both processes are depicted in Fig. 1a. ECT involves a single 
electron hopping between two sites with an amplitude t. CAR refers 
to two electrons from both sites tunnelling back and forth into a com-
mon superconductor with an amplitude Δ (not to be confused with 
the superconducting gap size), forming and splitting Cooper pairs4. 
To create the two-site Kitaev chain, we use two spin-polarized QDs, in 
which only one orbital level in each dot is available for transport. In the 
absence of tunnelling between the QDs, the system is characterized by 
a well-defined charge state on each QD: |nLD nRD⟩, in which nLD, nRD ∈ {0, 1} 
are occupations of the left and right QD levels. The charge on each QD 
depends only on its electrochemical potential μLD or μRD, schematically 
shown in Fig. 1b.

In the presence of interdot coupling, the eigenstates of the combined 
system become superpositions of the charge states. ECT couples |10⟩ 
and |01〉, resulting in two eigenstates of the form α|10⟩ − β|01⟩ (Fig. 1c), 
both with odd combined charge parity. These two bonding and anti-
bonding states differ in energy by 2t when both QDs are at their charge 
degeneracy, that is, μLD = μRD = 0. Analogously, CAR couples the two even 
states |00⟩ and |11⟩ to produce bonding and antibonding eigenstates 
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of the form u|00⟩ − v|11⟩, preserving the even parity of the original 
states. These states differ in energy by 2Δ when μLD = μRD = 0 (Fig. 1d). 
If the amplitude of ECT is stronger than CAR (t > Δ), the odd bonding  
state has lower energy than the even bonding state near the joint charge 
degeneracy μLD = μRD = 0 (see Methods for details). The system thus fea-
tures an odd ground state in a wider range of QD potentials, leading to 
a charge-stability diagram shown in Fig. 1f, i (ref. 22). The opposite case 
of CAR dominating over ECT, that is, t < Δ, leads to a charge-stability 
diagram shown in Fig. 1f, ii, in which the even ground state is more 
prominent. Fine-tuning the system such that t = Δ equalizes the two 
avoided crossings, inducing an even–odd degenerate ground state 
at μLD = μRD = 0 (Fig. 1f, iii). This degeneracy gives rise to two spatially 
separated PMM states, each localized at one QD3.

Figure 1e illustrates our coupled QD system and the electronic meas-
urement circuit. An InSb nanowire is contacted on two sides by two Cr/Au  
normal leads (N). A 200-nm-wide superconducting lead (S) made of 
a thin Al/Pt film covering the nanowire is grounded and proximitizes 
the central semiconducting segment. The chemical potential of the 
proximitized semiconductor can be tuned by the gate voltage the VPG. 

This hybrid segment shows a hard superconducting gap accompanied 
by discrete, gate-tunable Andreev bound states (Extended Data Fig. 1). 
Two QDs are defined by finger gates underneath the nanowire. Their 
chemical potentials μLD and μRD are linearly tuned by voltages on the 
corresponding gates VLD and VRD. Bias voltages on the two N leads, VL and 
VR, are applied independently and currents through them, IL and IR, are 
measured separately. Transport characterization shows charging ener-
gies of 1.8 meV on the left QD and 2.3 meV on the right QD (Extended 
Data Fig. 1). Standard DC+AC lock-in technique allows measurement 
of the full conductance matrix:
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Measurements were conducted in a dilution refrigerator in the 
presence of a magnetic field B = 200 mT applied approximately 
along the nanowire axis. The combination of Zeeman splitting EZ 
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Fig. 1 | Coupling QDs through ECT and CAR. a, Illustration of the basic 
ingredients of a Kitaev chain: two QDs simultaneously coupled by means of  
ECT with amplitude t and by means of CAR with amplitude Δ through the 
superconductor in between. b, Energy diagram of a minimal Kitaev chain. Two 
QDs with gate-controlled chemical potentials are coupled through both ECT and 
CAR. The two ohmic leads enable transport measurements from both sides.  
c, Energy diagram showing that coupling the |01⟩ and |10⟩ states through ECT 
leads to a bonding state ∣ ∣( 10⟩ − 01⟩)/ 2  and antibonding state ( 10⟩ + 01⟩)/ 2∣ ∣ . 
d, Same as c showing how CAR couples |00⟩ and |11⟩ to form the bonding state 
( 00⟩ − 11⟩)/ 2∣ ∣  and antibonding state ( 00⟩ + 11⟩)/ 2∣ ∣ . e, Illustration of the 
N-QD-S-QD-N device and the measurement circuit. Dashed potentials indicate 
QDs defined in the nanowire by finger gates. f, Charge-stability diagram of the 

coupled-QD system, in the cases of t > Δ (i), t = Δ (ii) and t < Δ (iii). Blue marks 
regions in the (μLD, μRD) plane where the ground state is even and orange where the 
ground state is odd. g, False-coloured scanning electron microscopy image of the 
device, before the fabrication of the N leads. InSb nanowire is coloured green. QDs 
are defined by bottom finger gates (in red) and their locations are circled. The 
gates controlling the two QD chemical potentials are labelled by their voltages, 
VLD and VRD. The central thin Al/Pt film, in blue, is grounded. The proximitized 
nanowire underneath is gated by VPG. Two Cr/Au contacts are marked by yellow 
boxes. The scale bar is 300 nm. h, Right-side zero-bias local conductance GRR in 
the (VLD, VRD) plane when the system is tuned to t > Δ (1) and t < Δ (2). The arrows 
mark the spin polarization of the QD levels. The DC bias voltages are kept at 
zero, VL = VR = 0 and an AC excitation of 6 μV RMS is applied on the right side.
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and orbital level spacing allows single-electron QD transitions to be 
spin-polarized. Two neighbouring Coulomb resonances correspond to 
opposite spin orientations, enabling the QD spins to be either parallel  
(↑↑ and ↓↓) or antiparallel (↑↓ and ↓↑). We report on two devices, 
A in the main text and B in the extended data (Extended Data Figs. 7 
and 8). A scanning electron microscopy image of device A is shown in  
Fig. 1g.

Transport measurements are used to characterize the charge-stability 
diagram of the system. In Fig. 1h, (1), we show GRR as a function of QD 
voltages VLD and VRD when both QDs are set to spin-down (↓↓). The meas-
ured charge-stability diagram shows avoided crossing, which indicates 
the dominance of ECT. In Fig. 1h, (2), we change the spin configuration 
to ↓↑. The charge-stability diagram now develops the avoided crossing 
of the opposite orientation, indicating the dominance of CAR for QDs 
with antiparallel spins. This is, to our knowledge, the first verification 
of the prediction that spatially separated QDs can coherently hybridize 
through CAR coupling to a superconductor23. Thus we have introduced 
all the necessary ingredients for a two-site Kitaev chain.

 
Tuning the relative strength of CAR and ECT
Majorana states in long Kitaev chains are present under a wide range 
of parameters owing to topological protection1. Notably, even a chain 
consisting of only two sites can host a pair of PMM states despite a 
lack of topological protection, if the fine-tuned sweet spot t = Δ and 
μLD = μRD = 0 can be achieved3. This, however, is made challenging by 
the above-mentioned requirement to have both QDs spin-polarized. If 
spin is conserved, ECT can only take place between QDs with ↓↓ or ↑↑ 
spins, whereas CAR is only allowed for ↑↓ and ↓↑. Rashba spin–orbit 
coupling in InSb nanowires solves this dilemma2,24,25, allowing finite 
ECT even in antiparallel spin configurations and CAR between QDs 
with equal spins.

A further challenge is to make the two coupling strengths equal for 
a given spin combination. References24–26 show that both CAR and ECT 
in our device are virtual transitions through intermediate Andreev 
bound states residing in the short InSb segment underneath the super
conducting film. Thus varying VPG changes the energy and wavefunction 
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Fig. 2 | Tuning the relative strength of CAR and ECT for the ↑↓ spin 
configuration. a–c, Conductance matrices measured with VPG = 198, 210 and 
218 mV, respectively. d–f, GLR and GRR as functions of VR when VLD and VRD are set 
to the centre of each charge-stability diagram in panels a–c, indicated by the 
black dots in the corresponding panels above them. g, Local (GRR) and nonlocal 

(GLR) conductance as a function of VR and VPG while keeping μLD ≈ μRD ≈ 0, showing 
the continuous crossover from t > Δ to t < Δ. h, Green dots: peak-to-peak distance 
(VPP) between the positive-bias and negative-bias segments of GRR, showing the 
closing and reopening of QD avoided crossings. Purple dots: average GLR (⟨GLR⟩) 
as a function of VPG, showing a change in the sign of the nonlocal conductance.
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of said Andreev bound states and, thereby, t and Δ. We search for the  
VPG range over which Δ changes differently from t and look for a cross
over in the type of charge-stability diagrams.

Figure 2a–c shows the resulting charge-stability diagrams for the ↓↑ 
spin configuration at different values of VPG. The conductance matrix 
G(VL = 0, VR = 0) at VPG = 198 mV is shown in Fig. 2a. The local conduct-
ance on both sides, GLL and GRR, exhibit level repulsion indicative of 
t > Δ. We emphasize that ECT can become stronger than CAR even 
though the spins of the two QD transitions are antiparallel because of 
the electric gating mentioned above. The dominance of ECT over CAR 
can also be seen in the negative sign of the nonlocal conductance, GLR 
and GRL. During ECT, an electron enters the system through one dot 
and exits through the other, resulting in negative nonlocal conduct-
ance. CAR, by contrast, causes two electrons to enter or leave both 
dots simultaneously, producing positive nonlocal conductance27. 
The residual finite conductance in the centre of the charge-stability 
diagram can be attributed to level broadening resulting from finite 
temperature and dot-lead coupling (see Extended Data Fig. 10). In 
Fig. 2d, we show the conductance spectrum measured as a function 
of VR, with VLD and VRD tuned to μLD ≈ μRD ≈ 0 (black dots in Fig. 2c, ii 
and iv). A pair of conductance peaks or dips is visible on either side 
of zero energy.

Figure 2c shows G at VPG = 218 mV (the GRR component is also used 
for Fig. 1h, (2)). Here all the elements of G exhibit CAR-type avoided 
crossings. The spectrum shown in panel f, obtained at the joint charge 
degeneracy point (black dots in panel c, ii and iv), similarly has two 
conductance peaks surrounding zero energy. The measured nonlocal 

conductance is positive, as predicted for CAR. The existence of both 
t > Δ and t < Δ regimes, together with continuous gate tunability, allows 
us to approach the t ≈ Δ sweet spot. This is shown in panel b, taken with 
VPG = 210 mV. Here GRR and GLL exhibit no avoided crossing, whereas 
GLR and GRL fluctuate around zero, confirming that CAR and ECT are in 
balance. Accordingly, the spectrum in panel e confirms that the even 
and odd ground states are degenerate and transport can occur at zero 
excitation energy by means of the appearance of a zero-bias conduct-
ance peak. The crossover from the t > Δ regime to the t < Δ regime can 
be seen across several QD resonances (Extended Data Fig. 9).

To show that gate-tuning of the t/Δ ratio is indeed continuous, we 
repeat charge-stability diagram measurements (Extended Data Fig. 3) 
and bias spectroscopy at more VPG values. As before, each bias sweep 
is conducted while keeping both QDs at charge degeneracy. Figure 2g 
shows the resulting composite plot of GRR (i) and GLR (ii) versus bias volt-
age and VPG. The X-shaped conductance feature indicates a continuous 
evolution of the excitation energy, with a linear zero-energy crossing 
agreeing with predictions in ref. 3. Following analysis described in Meth-
ods, we extract the peak spacing and average nonlocal conductance in 
Fig. 2h to visualize the continuous crossover from t > Δ to t < Δ.

PMM sweet spot
Next we study the excitation spectrum in the vicinity of the t = Δ sweet 
spot. The predicted zero-temperature experimental signature of the 
PMM states is a pair of quantized zero-bias conductance peaks on both 
sides of the devices. These zero-bias peaks are persistent even when one 
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applied bias and VRD (c) or VLD (d), taken along the paths indicated by the dashed 
blue line and the dotted green line in panel a, respectively. e, G as a function of 
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of the QD levels deviates from charge degeneracy3. We focus on the ↑↑ 
spin configuration because it exhibits higher t and Δ values when they 
are equal (see Extended Data Fig. 4). Figure 3a shows the charge-stability 
diagram measured through IR under fixed VL = 0 and  VR = 10 μV. No 
level repulsion is visible, indicating t ≈ Δ. Figure 3b, i shows the excita-
tion spectrum when both dots are at charge degeneracy. The spectra 
on both sides show zero-bias peaks accompanied by two side peaks. 
The values of t and Δ can be read directly from the position of the side 
peaks, which correspond to the antibonding excited states at energy 
2t = 2Δ ≈ 25 μeV. The height of the observed zero-bias peaks is 0.3 to 
0.4 × 2e2/h, probably because of a combination of tunnel broadening 
and finite electron temperature (Extended Data Fig. 2). Figure 3b, ii 
shows the spectrum when the right QD is moved away from charge 
degeneracy while μLD is kept at 0. The zero-bias peaks persist on both 
sides of the device, as expected for a PMM state. By contrast, tuning 
both dots away from charge degeneracy, shown in Fig. 3b, iii, splits 
the zero-bias peaks.

In Fig. 3c,d, we show the evolution of the spectrum when varying 
VRD and VLD, respectively. The vertical feature appearing in both GLL 
and GRR shows correlated zero-bias peaks in both QDs, which persist 
when one QD potential departs from zero. This crucial observation 
demonstrates the robustness of PMM states against local perturba-
tions. The excited states disperse, in agreement with the theoretical 
predictions3. Nonlocal conductance, on the other hand, reflects the 
local charge character of a bound state on the side where current is 
measured28–30. Near-zero values of GLR in panel c and GRL in panel d are 
consistent with the prediction that the PMM mode on the unperturbed 
side remains an equal superposition of an electron and a hole, and 
therefore chargeless.

Finally, when varying the chemical potential of both dots simultane-
ously (panel e), we see that the zero-bias peaks split away from zero 
energy. This splitting is not linear, in contrast to the case when Δ ≠ t 
(see Extended Data Fig. 5). The profile of the peak splitting is consist-
ent with the predicted quadratic protection of PMM states against  
chemical potential fluctuations3. This quadratic protection is 

expected to develop into topological protection in a long-enough 
Kitaev chain2.

Discussion
To facilitate comparison with data, we develop a transport model (see 
Methods) and plot in Fig. 4a–c the calculated conductance matrices 
as functions of excitation energy, ω, versus μRD (panel a), μLD (panel b) 
and μ ≡ μLD = μRD (panel c). These conditions are an idealization of those 
in Fig. 3 (a more realistic simulation of the experimental conditions is 
presented in Extended Data Fig. 6). The numerical simulations capture 
the main features appearing in the experiments discussed above.

Particle–hole symmetry ensures that zero-energy excitations in this 
system always come in pairs. These excitations can extend over both 
QDs or be confined to one of them. In Fig. 4d, we show the calculated 
spatial extent of the zero-energy excitations for three scenarios. The 
first, in Fig. 4d, i, illustrates Fig. 3b, i and shows that the sweet-spot 
zero-energy solutions are two PMM states, each localized on a different 
QD. The second scenario, Fig. 4d, ii, illustrating Fig. 3b, ii, is varying μLD 
while keeping μRD = 0. This causes some of the wavefunction localized 
on the perturbed left side, γ1, to leak into the right QD. Because the 
right-side γ2 excitation has no weight on the left, it does not respond 
to this perturbation and remains fully localized on the right QD. As the 
theory confirms3, it stays a zero-energy PMM state. Because Majorana 
excitations always come in pairs, the excitation on the left QD must 
also remain at zero energy. This provides an intuitive understanding of 
the remarkable stability of the zero-energy modes at the sweet spot in 
Fig. 3c,d when moving the chemical potentials of one of the QDs away 
from zero. Finally, zero-energy solutions can be found away from the 
sweet spot, t ≠ Δ, as illustrated in Fig. 4d, iii. These zero-energy states 
are only found when both QDs are off-resonance and none of them are 
localized Majorana states, extending over both QDs and exhibiting 
no gate stability. Measurements under these conditions are shown 
in Extended Data Fig. 5, in which zero-energy states can be found in a 
variety of gate settings (panels a, c therein).
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Conclusion
In summary, we realize a minimal Kitaev chain in which two QDs in an 
InSb nanowire are separated by a hybrid semiconducting–supercon-
ducting segment. Compared with past works, our approach solves three 
challenges: strong hybridization of QDs through CAR, simultaneous 
coupling of two single spins through both ECT and CAR, and continu-
ous tuning of the coupling amplitudes. This is made possible by the 
two QDs as well as the middle Andreev bound state mediating their 
couplings all being discrete, gate-tunable quantum states. The result 
is the creation of a new type of nonlocal state that hosts Majorana-type 
excitations at a fine-tuned sweet spot. The zero-bias peaks at this spot 
are robust against variations of the chemical potential of one QD and 
quadratically protected against simultaneous perturbations of both. 
This discrete and tunable way of assembling Kitaev chains shows good 
agreement between theory and experiment by avoiding the most con-
cerning problems affecting the continuous nanowire experiments: 
disorder, smooth gate potentials and multi-subband occupation31. The 
QD-S-QD platform discussed here opens up a new frontier to the study 
of Majorana physics. In the long term, this approach can generate topo-
logically protected Majorana states in longer chains2. A shorter-term 
approach is to use PMM states as an immediate playground to study 
fundamental non-Abelian statistics, for example, by fusing neighbour-
ing PMM states in a device with two such copies.
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Methods

Device fabrication
The nanowire hybrid devices presented in this work were fabricated on 
prepatterned substrates, using the shadow-wall lithography technique 
described in refs. 32,33. Nanowires were deposited onto the substrates 
using an optical micromanipulator setup. Eight nanometres of Al was 
grown at a mix of 15° and 45° angles with respect to the substrate.  
Subsequently, device A was coated with 2 Å of Pt grown at 30°. No Pt was 
deposited for device B. Finally, all devices were capped with 20 nm of 
evaporated AlOx. Details of the substrate fabrication, the surface treat-
ment of the nanowires, the growth conditions of the superconductor, 
the thickness calibration of the Pt coating and the ex situ fabrication of 
the ohmic contacts can be found in ref. 34. Devices A and B also slightly 
differ in the length of the hybrid segment: 180 nm for A and 150 nm for B.

Transport measurement and data processing
We have fabricated and measured six devices with similar geometry. 
Two of them showed strong hybridization of the QD states by means 
of CAR and ECT. We report on the detailed measurements of device A 
in the main text and show qualitatively similar measurements from 
device B in Extended Data Figs. 7 and 8. All measurements on device A 
were done in a dilution refrigerator with base temperature 7 mK at the 
cold plate and electron temperature of about 40–50 mK at the sample, 
measured in a similar setup using an NIS metallic tunnel junction. Unless 
otherwise mentioned, the measurements on device A were conducted 
in the presence of a magnetic field of 200 mT approximately oriented 
along the nanowire axis with a 3° offset. Device B was measured similarly 
in another dilution refrigerator under B = 100 mT along the nanowire 
with 4° offset.

Figure 1e shows a schematic depiction of the electrical setup used 
to measure the devices. The middle segment of the InSb nanowire 
is covered by a thin Al shell, kept grounded throughout the experi-
ment. On each side of the hybrid segment, we connect the N leads to a 
current-to-voltage converter. The amplifiers on the left and right sides 
of the device are each biased through a digital-to-analogue converter 
that applies DC and AC biases. The total series resistance of the volt-
age source and the current meter is less than 100 Ω for device A and 
1.11 kΩ for device B. Voltage outputs of the current meters are read 
by digital multimeters and lock-in amplifiers. Current amplifier off-
sets are calibrated using known zero-conductance features when the 
device is pinched off or in deep Coulomb blockade. When DC voltage 
VL is applied, VR is kept grounded and vice versa. AC excitations are 
applied on each side of the device with different frequencies (17 Hz 
on the left and 29 Hz on the right for device A, 19 Hz on the left and 
29 Hz on the right for device B) and with amplitudes between 2 and 
6 μV RMS. In this manner, we measure the DC currents IL and IR and 
the conductance matrix G in response to applied voltages VL and VR 
on the left and right N leads, respectively. The conductance matrix 
is corrected for voltage-divider effects (see ref. 35 for details) taking 
into account the series resistance of sources and meters and in each 
fridge line (1.85 kΩ for device A and 2.5 kΩ for device B), except for 
the right panels of Figs. 1h and 2d. There, the left half of the conduct-
ance matrix was not measured and correction is not possible. We 
verify that the series resistance is much smaller than device resist-
ance and the voltage-divider effect is never more than about 10% of  
the signal.

Characterization of QDs and the hybrid segment
To form the QDs described in the main text, we pinch off the finger 
gates next to the three ohmic leads, forming two tunnel barriers in each 
N-S junction. VLD and VRD applied on the middle finger gates on each 
side accumulate electrons in the QDs. We refer to the associated data 
repository for the raw gate voltage values used in each measurement. 
See Extended Data Fig. 1a–f for results of the dot characterizations.

Characterization of the spectrum in the hybrid segment is done using 
conventional tunnel spectroscopy. In each uncovered InSb segment, 
we open up the two finger gates next to the N lead and only lower the 
gate next to the hybrid to define a tunnel barrier. The results of the 
tunnel spectroscopy are shown in Extended Data Fig. 1g,h and the raw 
gate voltages are available in the data repository.

Determination of QD spin polarization
Control of the spin orientation of QD levels is done by means of select-
ing from the even versus odd charge degeneracy points following the 
method detailed in ref. 36. At the charge transition between occupancy 
2n and 2n + 1 (n being an integer), the electron added to or removed 
from the QD is polarized to spin-down (↓, lower in energy). The next 
level available for occupation, at the transition between 2n + 1 and 
2n + 2 electrons, has the opposite polarization of spin-up (↑, higher in 
energy). To ensure that the spin polarization is complete, the experi-
ment was conducted with EZ ≈ 400 μeV > |eVL|, |eVR∣ (see Extended Data 
Fig. 1 for determination of the spin configuration). In the experimental 
data, a change in the QD spin orientation is visible as a change in the 
range of VLD or VRD.

Controlling ECT and CAR through electric gating
Reference24 describes a theory of mediating CAR and ECT transitions 
between QDs by means of virtual hopping through an intermediate 
Andreev bound state. Reference26 experimentally verifies the appli-
cability of this theory to our device. To summarize the findings here, 
we consider two QDs both tunnel-coupled to a central Andreev bound 
state in the hybrid segment of the device. The QDs have excitation 
energies lower than that of the Andreev bound state and thus transi-
tion between them is second order. The wavefunction of an Andreev 
bound state consists of a superposition of an electron part, u, and a 
hole part, v. Both theory and experiment conclude that the values of 
t and Δ depend strongly and differently on u and v. Specifically, CAR 
involves converting an incoming electron to an outgoing hole and thus 
depends on the values of u and v jointly as |uv|2. ECT, however, occurs 
over two parallel channels (electron-to-electron and hole-to-hole) and 
its coupling strength depends on u and v independently as |u2 − v2|2.  
As the composition of u and v is a function of the chemical potential 
of the middle Andreev bound state, the CAR-to-ECT ratio is strongly 
tunable by VPG. We thus look for a range of VPG at which Andreev bound 
states reside in the hybrid segment, making sure that the energies of 
these states are high enough so as not to hybridize with the QDs directly 
(Extended Data Fig. 1). Next we sweep VPG to find the crossover point 
between t and Δ, as described in the main text.

Further details on the measurement of the coupled QD 
spectrum
The measurement of the local and nonlocal conductance shown in 
Fig. 2g was conducted in a series of steps. First, the value of VPG was set 
and a charge-stability diagram was measured as a function of VLD and 
VRD. Representative examples of such diagrams are shown in Extended 
Data Fig. 3. Second, each charge-stability diagram was inspected and 
the joint charge degeneracy point (μLD = μRD = 0) was selected manually 
(V V,LD

0
RD
0 ). Last, the values of VLD and VRD were set to those of the joint 

degeneracy point and the local and nonlocal conductance were meas-
ured as a function of VR.

The continuous transition from t > Δ to t < Δ is visible in Fig. 2g 
through both local and nonlocal conductance. GRR shows that level 
repulsion splits the zero-energy resonance peaks both when t > Δ (lower 
values of VPG) and when t < Δ (higher values of VPG). The zero-bias peak 
is restored in the vicinity of t = Δ, in agreement with theoretical predic-
tions3. The crossover is also apparent in the sign of GLR, which changes 
from negative (t > Δ) to positive (t < Δ).

To better visualize the transition between the ECT-dominated and 
CAR-dominated regimes, we extract VPP, the separation between the 



Article
conductance peaks under positive and negative bias voltages, and plot 
them as a function of VPG in Fig. 2h. When tuning VPG, the peak spacing 
decreases until the two peaks merge at VPG ≈ 210 mV. Further increase 
of VPG leads to increasing VPP. Furthermore, to observe the change in 
sign of the nonlocal conductance, we follow ⟨GLR⟩, the value of GLR aver-
aged over the bias voltage VR between −100 and 100 μV at a given VPG. 
We see that ⟨GLR⟩ turns from negative to positive at VPG ≈ 210 mV, in 
correspondence to a change in the dominant coupling mechanism.

Figure 3c–e presents measurements at which the conductance was 
measured against applied biases along some paths within the 
charge-stability diagram (panel a). Before each of these measurements, 
a charge stability-diagram was measured and inspected, on the basis 
of which the relevant path in the (VLD, VRD) plane was chosen. Following 
each bias spectroscopy measurement, another charge-stability diagram 
was measured and compared with the one taken before to check for 
potential gate instability. In case of noticeable gate drifts between the 
two, the measurement was discarded and the process was repeated. 
The values of μLD and μRD required for theoretical curves appearing in 
panel b were calculated by μ α V V= ( − )i i i i

0 , in which i = LD, RD and αi is 
the lever arm of the corresponding QD. The discrepancy between the 
spectra measured with GLL and GRR probably results from gate instabil-
ity, as they were not measured simultaneously. Finite remaining GLR in 
panel c and GRL in panel d probably result from small deviations of μLD 
and μRD from zero during these measurements.

Model of the phase diagrams in Fig. 1f
To calculate the ground state phase diagram in Fig. 1f, we write the 
Hamiltonian in the many-body picture, with the four basis states being 
|00⟩, |11⟩, |10⟩ and |01⟩:
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in block-diagonalized form. The two 2 × 2 matrices yield the energy 
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The ground state phase transition occurs at the boundary Eo,− = Ee,−. 
This is equivalent to

ε ε t= − Δ (5)L R
2 2

Transport model in Figs. 3 and 4
We describe in this section the model Hamiltonian of the minimal 
Kitaev chain and the method we use for calculating the differential 
conductance matrices when the Kitaev chain is tunnel-coupled to two 
external N leads.

The effective Bogoliubov-de-Gennes Hamiltonian of the double-QD 
system is
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R
† ⊤ is the Nambu spinor, εL/R is the level energy 

in dot-L/R relative to the superconducting Fermi surface and t and Δ 
are the ECT and CAR amplitudes. Here we assume t and Δ to be real 
without loss of generality3. The presence of both t and Δ in this Hamil-
tonian implies breaking spin conservation during QD-QD tunnelling 
by means of either spin–orbit coupling (as done in the present exper-
iment) or non-collinear magnetization between the two QDs (as pro-
posed in ref. 3). Without one of them, equal-spin QDs cannot recombine 
into a Cooper pair, leading to vanishing Δ, whereas opposite-spin QDs 
cannot support finite t. The exact values of t and Δ depend on the spin–
orbit coupling strength and we refer to ref. 24 for a detailed discussion.

To calculate the differential conductance for the double-QD system, 
we use the S-matrix method37. In the wide-band limit, the S matrix is
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in which W = diag{ Γ , Γ , − Γ , − Γ }L R L R  is the tunnel matrix, with Γα 
being the tunnel coupling strength between dot-α and lead-α. The 
zero-temperature differential conductance is given by
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in which α, β = L/R. The finite-temperature effect is included by a convo-
lution between the zero-temperature conductance and the derivative 
of Fermi–Dirac distribution, that is,
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The theoretical model presented above uses five input parameters 
to calculate the conductance matrix under given μLD, μRD, VL and VR. 
The input parameters are: t, Δ, ΓL, ΓR and T. To choose the parameters 
in Fig. 3b, i, we fix the temperature to the measured value T = 45 mK and 
make the simplification t = Δ and Γ ≡ ΓL = ΓR. This results in only two free 
parameters t and Γ, which we manually choose and compare with data. 
Although oversimplified, this approach allows us to obtain a reasonable 
match between theory and data taken at μLD = μRD = 0 without the risk 
of overfitting. To obtain the other numerical curves shown in Fig. 3, we 
keep the same choice of t and Γ and vary μLD, μRD, VL and VR along various 
paths in the parameter space. Similarly, to model the data shown in 
Extended Data Fig. 5, we keep T = 45 mK and Γ the same as in Fig. 3. The 
free parameters to be chosen are thus t and Δ. The theory panels are 
obtained with the same t and Δ, and only μLD, μRD, VL, and VR are varied 
in accordance with the experimental conditions.

Finally, we comment on the physical meaning of the theory predic-
tions in Fig. 4a–c. Tuning μRD leads to symmetric GLL and asymmetric GRR, 
as well as zero GLR and finite GRL with an alternating pattern of positive and 
negative values. As discussed in the main text, these features, also seen 
in the measurements, stem from the local charge of the system: keeping 
μLD = 0 maintains zero local charge on the left dot, whereas varying μRD 
creates finite local charge on the right dot. The complementary picture 
appears when varying μLD in panel b. The asymmetry in both GLL and GRR 
and the negative nonlocal conductance when tuning simultaneously 
μLD = μRD are also captured in the numerical simulation in panel c. We 
note that, although there is a qualitative agreement between the features 
in Figs. 3e and 4c, they were obtained under nominally different condi-
tions. As mentioned, the theoretical curve follows μLD = μRD, whereas the 
experimental curve was taken through a path along which VLD changed 
twice as much as VRD, although the lever arms of both QDs are similar. 
In Fig. 4c, we calculate the conductance along a path reproducing the 
experimental conditions. We speculate that the discrepancy between 
Fig. 3e and Fig. 4c could arise from some hybridization between the left 
QD and the superconducting segment as seen in Extended Data Fig. 1.
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Extended Data Fig. 1 | Characterization of the QDs. a, Coulomb blockade 
diamonds of the left QD when the right QD is off-resonance. IL is measured as a 
function of VL and VLD. The data are overlaid with a constant interaction model38 
with 1.8-meV charging energy and gate lever arm of 0.32. b, A high-resolution 
scan of a with a symmetric logarithmic colour scale to show the presence of a 
small amount of Andreev current at sub-gap energies. This is because of the  
left QD being weakly proximitized by local Andreev coupling to Al. c, Field 
dependence of the Coulomb resonances. IL is measured as a function of VLD and 
B with a constant VL = 600 μV. The resonances of opposite spin polarization 
evolve in opposite directions with a g-factor of about 35, translating to Zeeman 
energy of 400 μeV at B = 200 mT. d–f, Characterization of the right QD, as 
described in the captions of panels a–c. Overlaid model in d has charging 
energy 2.3 meV and gate lever arm of 0.33. No sub-gap transport is detectable 

in e. B dispersion in f corresponds to g = 40. g,h, Bias spectroscopy results of 
the proximitized InSb segment under the thin Al/Pt film. IL and IR are measured 
as a function of VL and VPG. GLL and GRL are obtained by taking the numerical 
derivative of IL and IR along the bias direction after applying a Savitzky–Golay 
filter of window length 15 and order 1. The sub-gap spectrum shows discrete, 
gate-dispersing Andreev bound states. The presence of nonlocal conductance 
correlated with the sub-gap states shows that these Andreev bound states 
extend throughout the entire hybrid segment, coupling to both left and right N 
leads30. Parts of this dataset are also presented in ref. 34. (Reproduced under the 
terms of the CC-BY Creative Commons Attribution 4.0 International license 
(https://creativecommons.org/licenses/by/4.0). Copyright 2022, The Authors, 
published by Wiley-VCH.).

https://creativecommons.org/licenses/by/4.0


Extended Data Fig. 2 | Theoretical temperature dependence of the height 
of Majorana zero-bias conductance peaks. The height of the Majorana 
zero-bias peaks is only quantized to 2e2/h at zero temperature. At finite 
electron temperature T, the peak height is generally lower, with the exact value 
depending on T and tunnel broadening ΓL and ΓR owing to coupling between 
QDs and N leads. The local zero-bias conductance GLL at the sweet spot (t = Δ 
and μLD = μRD = 0) is calculated and shown in this plot as a function of T, using the 
parameters presented in Fig. 3: t = Δ = 12 μeV. Three curves are calculated 
assuming three different values of tunnel coupling Γ = ΓL = ΓR. The orange curve 
assumes a Γ value that matches the experimentally observed peak width (both 

of the zero-bias peaks and of generic QD resonant peaks at other conductance 
features), showing that conductance approaching quantization would only  
be realized at electron temperatures <5 mK, unattainable in our dilution 
refrigerator. The blue curve, calculated with lower Γ = 2 μeV, shows even lower 
conductance. Increasing Γ would not lead to conductance quantization either, 
as the zero-bias peaks would merge with the conductance peaks arising from 
the excited states (pink curve). The green dot marks the experimentally 
measured electron temperature and peak height (averaged between the values 
obtained on the left and right leads).
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Extended Data Fig. 3 | Evolution of the charge-stability diagram for the ↓↑ 
spin configuration. Each panel shows IL (nonlocal) and IR (local) as functions of 
VLD and VRD measured under fixed biases VL = 0 and VR = 10 μV. VPG is tuned from 

196.5 mV, showing signatures of the t > Δ regime in both local and nonlocal 
currents, to 220 mV, featuring the opposite t < Δ regime.



Extended Data Fig. 4 | Evolution of the charge-stability diagram for the ↑↑ 
spin configuration. Each panel shows IL (nonlocal) and IR (local) as functions of 
VLD and VRD measured under fixed biases VL = 0 and  VR = 10 μV. VPG is tuned from 

210 mV, showing signatures of the t > Δ regime in both local and nonlocal 
currents, to 219 mV, featuring the opposite t < Δ regime.
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Extended Data Fig. 5 | Conductance spectroscopy when t < Δ. a, IR versus μLD 
and μRD with VR = 10 μV. The evolution of the spectrum with the chemical potential 
is taken along the dashed, dashed-dotted and dotted lines in panels b, c and d, 
respectively. Data taken at the ↓↑ spin configuration with fixed VPG = 218 mV.  
b, Local conductance spectroscopy taken at gate setpoints marked by 
corresponding symbols in panel a. c, Conductance matrix as a function of bias 
and VLD, taken along the dashed blue line in panel a, that is, varying the detuning 
between the QDs δ = (μLD − μRD)/2 while keeping the average chemical potential 

μ μ μ= ( + )/2LD RD  close to 0. d, Conductance matrix as a function of bias and VLD, 
taken along the dotted green line in panel a, keeping the detuning between the 
QDs around 0. e, Conductance matrix as a function of bias and VLD, taken along 
the dashed-dotted pink line in panel a, keeping roughly constant non-zero 
detuning between the QDs. f–h, Numerically calculated G as a function of 
energy ω and μLD and μRD along the paths shown in panel a. All of the numerical 
curves assume the same parameters as those in Fig. 3, except with Δ = 23 μeV 
and t = 6 μeV.



Extended Data Fig. 6 | Calculated conductance matrices at the t = Δ sweet 
spot. a, Numerically calculated G as a function of energy ω and μLD and μRD 
along the path shown in Fig. 3c. The presence of finite GLR and asymmetric GRL 
result from a slight deviation from the μLD = 0 condition, which is depicted  
in Fig. 4a. These features appear in the experimental data shown in Fig. 3c.  
b, Numerically calculated G as a function of energy ω and μLD and μRD along the 
path shown in Fig. 3d. The presence of finite GRL and asymmetric GLR result from 

a slight deviation from the μRD = 0 condition, which is depicted in Fig. 4b.  
These features appear in the experimental data shown in Fig. 3d. c, Numerically 
calculated G as a function of energy ω and μLD and μRD along the path shown in 
Fig. 3e. Because the path does not obey μLD = μRD, the calculated spectral lines 
do not follow parallel trajectories, in slight disagreement with the experimental 
data. The conversion from VLD and VRD to μLD and μRD is carried out as explained 
in Methods with the measured lever arms of both QDs.
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Extended Data Fig. 7 | Reproduction of the main results with device B. a–c, Conductance matrices measured at VPG = (976, 979.6 and 990 mV, respectively.  
d, Conductance matrix as a function of VL and VR and VPG while keeping μLD ≈ μRD ≈ 0. This device shows two continuous crossovers from t > Δ to t < Δ and again to t > Δ.



Extended Data Fig. 8 | Device B spectrum versus gates. a, Charge-stability 
diagram measured through GRR of another t = Δ sweet spot of device B,  
at VPG = 993 mV. Dashed lines mark the gate voltage paths along which the 
corresponding panels are taken. b–d, Conductance matrices when varying  
VRD (b), VLD (c) and the two gates simultaneously (d), similar to Fig. 3. The sticking 
zero-bias conductance peak feature when only one QD potential is varied 

around the sweet spot is clearly reproduced in GRR of panel b. The quadratic 
peak splitting profile when both QD potentials are varied by the same amount is 
also reproduced the panel d. The left N contact of this device was broken and a 
distant lead belonging to another device on the same nanowire was used 
instead. This and gate jumps in VRD complicate interpretation of other panels.
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Extended Data Fig. 9 | CAR-induced and ECT-induced interactions across 
several QD resonances. a,b, Local (IL) and nonlocal (IR) currents as a function 
of VLD and VRD measured with VPG = 200 mV and fixed VL. All resonances show an 
ECT-dominated structure and a negative correlation between the local and the 
nonlocal currents. c,d, Local (IL) and nonlocal (IR) currents as a function of VLD 
and VRD measured with VPG = 218 mV and fixed VL. Some resonances show the 

structure associated with the t = Δ sweet spot, showing both positive and 
negative correlations between the local and nonlocal currents. e,f, Local  
(IL) and nonlocal (IR) currents as a function of VLD and VRD measured with 
VPG = 200 mV and fixed VL. All orbitals show a CAR-dominated structure and  
a positive correlation between the local and the nonlocal currents. All 
measurements were conducted with VL = 10 μV, VR = 0 and B = 100 mT.



Extended Data Fig. 10 | Theoretical effect of tunnel broadening on the 
charge-stability diagrams. In some charge-stability diagrams in which level 
repulsion is weak, such as Fig. 2a and Extended Data Fig. 4, some residual 
conductance is visible even when μLD = μRD = 0. This creates the visual feature of 
the two conductance curves appearing to ‘touch’ each other at the centre.  
In the main text, we argued that this is owing to level broadening. Here we plot 
the numerically simulated charge-stability diagrams at zero temperature 

under various dot-lead tunnel coupling strengths. We use coupling strengths 
t = 20 μV and Δ = 10 μV as an example. From panels a–c, increasing the tunnel 
coupling and thereby level broadening reproduces this observed feature. 
When the level broadening is comparable with the excitation energy, |t − Δ|, 
finite conductance can take place at zero bias. This feature is absent in, for 
example, Fig. 2c, in which |t − Δ| is greater than the level broadening.
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