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SUMMARY

Powered by the silicon revolution, microelectromechanical systems (MEMS) have made
their way into people’s every-day life. The accelerometers in smart phones, gyroscopes
in game controllers and inkjet printers in offices are a few examples. By looking at the
resonance of MEMS, ultra-sensitive sensors can be realized. In pursuit of low-noise in
these devices, reducing damping becomes critical. Among different damping sources,
dissipation through clamping points can be viewed as a dominant source that can be
quenched by levitation.

Among different levitation schemes, diamagnetic levitation stands out as the only
passive method that does not require continuous energy supply. Moreover, due to the
relatively strong magnetic potential, it can enable levitation of macroscopic objects
which are beneficial for developing ultra-sensitive accelerometers, gravimeters as well
as sensors for exploring macroscopic limits of quantum mechanics. Even though there
already exist plenty of studies and applications about diamagnetic levitation, its dynam-
ics is not yet fully understood and modeled. In this thesis, we study both the rigid body
and elastodynamics of diamagnetically levitating resonators, theoretically and experi-
mentally.

In Chapter 2, we focus on the linear rigid body dynamics of diamagnetically levitating
resonators. By modeling and measuring the levitation height and resonance frequencies
of millimeter graphite resonators, we investigate their stiffness change due to the mag-
netic field. By measuring the Q factors of the resonators in high vacuum, we reveal that
eddy current damping is the underlying mechanism of energy dissipation in these res-
onators, and further highlight the size dependency of Q.

After identifying that eddy currents are the root cause of energy dissipation in dia-
magnetically levitating resonators, in chapter 3 we present a route to suppress eddy
currents by fabricating diamagnetic composites. We disperse micro graphite particles
inside epoxy matrix and fabricate macroscopic composites that demonstrate Q factors
above 450,000, which are more than 400 times higher than graphite plates with simi-
lar dimensions. We then study the sensitivity of eddy currents to graphite particle size,
volume fraction and plate length, and show that these composites can achieve accelera-
tion noise floors as low as superconducting levitation systems that operate at cryogenic
temperatures.

In Chapter 4, we drive a levitating graphite resonator into the nonlinear regime to
study its nonlinear dynamic response. We actuate the levitating resonator into reso-
nance using base excitation and probe its nonlinear stiffness induced merely by the
magnetic force. We show that the levitating resonator exhibit softening type nonlinearity
and deviates from the common Duffing type nonlinearity due to the strongly asymmet-
ric magnetic force. Furthermore, we study the nonlinear damping originating from eddy
currents and squeeze-film gas damping when the resonator vibrates at large amplitudes.
By measuring and modeling the nonlinear frequency response in both air and vacuum
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x SUMMARY

conditions, we show that the nonlinearity of eddy current damping is negligible, while
the air damping has a significant effect.

Finally, in Chapter 5 we investigate the elastodynamics of a levitating resonator and
develop a mass sensor based on its frequency shift. We first characterize the first 10
bending modes of the levitating resonator experimentally, and then construct an analyt-
ical model to compare them with the modeled resonance frequencies. Next, we use the
third bending mode of the resonator to develop a levitating mass sensor and calibrate
its mass responsivity using micro glass beads. We validate the sensor, by measuring the
density of different kinds of liquids, and detecting the real-time evaporation of water
droplets. Finally, by measuring the Allan deviation of the sensor’s frequency stability, we
show that it can resolve mass changes down to 4 ng.

In Chapter 6, we conclude the main findings about diamagnetic levitation from this
thesis and give the outlook and recommendations for future directions.



SAMENVATTING

Micro-elektromechanische systemen (MEMS) hebben een plaats gevonden in ons dage-
lijks leven als gevolg van de revolutie in de halfgeleiderindustrie. Versnellingssensoren
in smart phones, gyroscopen in spelcontrollers en inkjet printers in kantoren zijn een
paar voorbeelden van toepassingen van MEMS. Ultra-gevoelige sensoren kunnen wor-
den gerealiseerd door de resonantiefrequentie van MEMS te meten. Om de ruis in deze
apparaten te verlagen, is vermindering van dissipatie essentieel. Van de verschillende
dempingsbronnen is dissipatie via de verankeringspunten van de resonator meestal do-
minant, en door de resonator te laten zweven kan deze bron van demping geëlimineerd
worden.

Van de verschillende levitatie methodes, is diamagnetische levitatie uniek, omdat
het de enige techniek die geen continu vermogen vraagt, en dus volledig passief werkt
bij kamertemperatuur. Bovendien maakt deze techniek het mogelijk, via de relatief
sterke magnetische potentiaal, om macroscopische objecten te laten zweven en zo
ultra-gevoelige accelerometers, gravimeters, en sensoren voor het meten van de macro-
scopische limieten van de kwantummechanica te realiseren. Ook al zijn er al veel studies
en toepassingen van diamagnetische levitatie, toch is de dynamica van diamagnetisch
zwevende objecten nog niet volledig begrepen en gemodelleerd. In dit proefschrift
bestuderen we resonanties van zowel starre als flexibele diamagnetisch zwevende licha-
men met theoretische en experimentele methodes.

In hoofdstuk 2 richten we ons op de lineaire dynamica van resonerende, diamagne-
tisch leviterende, starre lichamen. Via modellen en metingen van de levitatiehoogte en
resonantiefrequentie van grafiet resonatoren met afmetingen op de millimeterschaal,
onderzoeken we hun stijfheidsverandering als gevolg van het magneetveld. Door de
kwaliteitsfactoren Q van de resonatoren te meten in hoog vacuum, laten we zien dat
demping door eddy wervelstromen het onderliggende dempingsmechanisme is, en to-
nen we de afmetingsafhankelijkheid van dit dempingsmechanisme aan.

Na de vaststelling dat eddy stromen de oorzaak van energiedissipatie zijn, presente-
ren we in hoofdstuk 3 een methode om deze eddy stromen te onderdrukken door dia-
magnetische composieten te fabriceren. We dispergeren microscopische grafiet deeltjes
in een epoxy matrix en fabriceren macroscopische composieten die Q factoren van bo-
ven de 450,000 laten zien, meer dan 400 keer hoger dan grafiet plaatjes van dezelfde af-
metingen. We bestuderen daarna de afhankelijkheid van de eddy stromen van de deel-
tjesgrootte, volumefractie en plaat lengte, en tonen aan dat deze composieten bij ka-
mertemperatuur een acceleratie ruisvloer kunnen bereiken die even laag is als die van
supergeleidende leviterende systemen bij cryogene temperaturen.

In hoofdstuk 4, drijven we een leviterende grafiek resonator zo hard aan dat deze het
niet-lineaire regime bereikt om zo zijn niet-lineair dynamische response te bestuderen.
We actueren de zwevende resonator bij zijn resonantiefrequentie met behulp van ba-
sis aandrijving en meten de niet-lineaire stijfheid die puur door de magnetische kracht
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xii SAMENVATTING

wordt veroorzaakt. We laten zien dat deze resonator een ‘softening’ niet-lineariteitseffect
laat zien dat afwijkt van de normale niet-lineariteit van het Duffing-type, als gevolg van
de sterk asymmetrische magnetische kracht. Daarnaast bestuderen we de niet-lineaire
dempingseigenschappen die hun oorsprong vinden in de eddy stromen en het squeeze-
film gasdempingseffect als de resonator trilt met grote amplitudes. Door het meten en
modeleren van de niet-lineaire frequentieresponse, zowel in lucht als in vacuum, tonen
we aan dat de niet-lineariteit als gevolg van eddy stromen verwaarloosbaar is, terwijl gas
demping een significant effect heeft.

Tenslotte onderzoeken we in hoofdstuk 5 de elastodynamica van een zwevende re-
sonator en ontwikkelen een massa sensor die gebaseerd is op frequentieverschuivingen.
We karakteriseren de resonantiefrequenties van eerste 10 buigmodes van de zwevende
resonator experimenteel en vergelijken die met een analytisch model. Vervolgens, ge-
bruiken we de derde buigmode om een zwevende massameter te ontwikkelen en kali-
breren we de sensor met microscopische glaskralen. We valideren de sensor door de
dichtheid van verschillende vloeistoffen te meten en door het verdampen van water-
druppels te meten. Tenslotte tonen we aan, door het bepalen van de Allan deviation
van resonator’s frequentiestabiliteit, dat deze een oplossend vermogen heeft dat groot
genoeg is om massa veranderingen van slechts 4 nanogram te detecteren.

In hoofdstuk 6, concluderen we door de belangrijkste bevindingen over diamagneti-
sche levitatie samen te vatten, kijken we vooruit en geven aanbevelingen voor toekom-
stige onderzoeksrichtingen.



1
INTRODUCTION

In this chapter, we give an introduction to micro-electromechanical resonators and the
current research status of diamagnetic levitation. We explain the motivation for studying
diamagnetic levitation and formulate the research question of this thesis.

1



1

2 1. INTRODUCTION

1.1. BACKGROUNDS
Micro- and nano-electromechanical systems (MEMS/NEMS) are advancing our soci-
ety, ranging from people’s daily life [1] to fundamental science [2]. The rapid develop-
ment of MEMS/NEMS is due to their miniaturized size and compact structure, which
enable them to develop highly sensitive sensors with low cost at large scale. As most
MEMS/NEMS have one or more parts that undergo motion, studying the resonances
of MEMS/NEMS has become a topic of great importance and has lead to new appli-
cations. By coupling the resonance frequencies to external quantities, such as force or
mass, ultra-sensitive sensors that can detect force at zeptonewton scale [3] and mass of
single molecules [4] have been developed. Within these resonant sensors, the detection
limit is influenced by quality factor (Q factor), which is the measure of energy dissipa-
tion. A higher Q factor means that the resonator’s energy is less dissipated, and this is
beneficial to increase the sensitivity of resonant sensors [5]. Among different kinds of
energy dissipation sources, damping through the clamping points in the form of acous-
tic loss is dominant in many resonant systems. In literature, great efforts have been paid
to reduce the clamping loss by soft clamping [6] or confining the energy within a cer-
tain frequency band gap using phononic crystal structures [7]. However, the ultimate
method to prevent the energy leaking from a resonator through clamping points is by
levitation [8, 9].

1.2. LEVITATION SCHEMES
Levitation enables an object to be free from clamping and well isolated from its envi-
ronment. This not only has the potential to significantly reduce the energy loss of the
levitating system, but also enables unconstrained high-precision control of the object.
Levitation can be realised in different ways, using aerodynamic, acoustic, optical, elec-
trical and magnetic forces [8, 9]. Aerodynamic or acoustic radiation force can be used
to levitate any material and, thereby, has a great potential in contact-less transportation
and manipulation of objects [10, 11]. However, since these levitation schemes require
air as a medium for generating the levitation force, aerodynamic and acoustic levita-
tion are not able to operate in vacuum conditions. Thus, their performance is limited
by air damping and they are not conventionally used for sensing applications. For ultra-
sensitive sensors, attention has moved to optical, electrical and magnetic levitation, see
Fig. 1.1 for examples.

OPTICAL AND ELECTRICAL LEVITATION

Decades after its first demonstration in the 1970s [15], optical levitation (see Fig. 1.1a)
has became the most popular scheme among different levitation methods in pursuit of
ultra-sensitive sensors and platforms for quantum opto-mechanics [3, 12, 16–18]. This
is not only because optically levitating systems can be easily integrated with light for
detection and motion control, but also due to their advantages ranging from being com-
patible to many kinds of materials, having high resonance frequencies and controllable
levitation potentials. The remaining issues for optical levitation are that the levitating
particles tend to escape the optical trap before high vacuum can be attained, therefore
feedback control is always required for long-term stability in high vacuum [19]. More-
over, the optically trapped objects suffer from both the laser recoil heating [20] and the
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Figure 1.1: Different levitation schemes. (a) Optical levitation of a 140 nm silica particle [12] inside an optical
potential; (b) Electrical levitation of a 460 nm silica particle in a Paul trap [13]; (c) Superconducting levitation
of a 0.5 mm neodymium magnet sphere above a lead superconducting disk [14].

internal heating via absorption of laser light [21]. These drawbacks influence their per-
formance and limit their applications. To overcome the deficiencies of optical levitation,
electrical levitation (see Fig. 1.1b) is a promising technique for trapping charged dielec-
tric micro/nano particles using a Paul trap [13, 22] that uses a rapidly varying dynamic
electric field to eliminate electrostatic instabilities due to Earnshaw’s theorem. Free from
internal heating and having large potential depth, electrical levitation has been used as
an opto-mechanical platform for testing wave-function collapse models [13, 23, 24]. The
challenge of electric levitation is their dependence on the continuous energy input for
generating the levitation force. Adding to this, electrically levitated objects may suffer
from noise and drift from the applied electric fields [25].

MAGNETIC LEVITATION

Another method for defying gravity is magnetic levitation. Magnetic levitation can be
categorized into electromagnetic, superconducting and diamagnetic levitation based on
their working principles. Electromagnetic levitation is the most commonly known and
used magnetic levitation method, for instance, in maglev trains [26] or precision stages
[27]. Magnetic force is generated by actively controlled magnetic fields through elec-
tromagnetic coils, which enables high speed contact-less motion and precision control
of bodies. Apart from the active electromagnetic levitation method, many kinds of ma-
terials with negative magnetic susceptibility can be levitated by diamagnetic force [28].
In a particular case, superconductors are considered to be a perfect diamagnetic mate-
rial with magnetic susceptibility of -1 that can completely expel magnetic fields due to
the Meissner effect [29]. The levitation method using superconductors and diamagnetic
force is called superconducting levitation, where either a superconductor [30] or a mag-
net [31] is levitated. Among these two schemes, levitating a magnet above a supercon-
ductor is more attractive for sensing applications [14] or exploring quantum mechanics
[31], since it is easier to maintain the low temperature of the superconductor as a sub-
strate.

The last levitation method that is implemented using diamagnetic force is diamag-
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4 1. INTRODUCTION

netic levitation. Normally, diamagnetic levitation is referred to as the levitation of a dia-
magnetic material above magnets [32] or the levitation of a permanent magnet above
a diamagnetic material [33]. In contrast to electromagnetic levitation, that requires en-
ergy to generate magnetic field and feedback control, or superconducting levitation that
has to operate at cryogenic temperature to prepare the material into the diamagnetic
state, diamagnetic levitation with permanent magnets is a completely passive method
that does not require any energy supply and can operate at room temperature.

1.3. DIAMAGNETIC LEVITATION

1.3.1. DIAMAGNETISM
Materials can be classified into diamagnetic, paramagnetic, ferromagnetic, antiferro-
magnetic and ferrimagnetic materials based on their magnetization in an external mag-
netic field. Among the five categories, paramagnetic and diamagnetic materials exhibit
no collective magnetic interactions and are not magnetically ordered at the atomic scale,
and their magnetization M to an external magnetic field can be written as [34]:

M =χH, (1.1)

where χ is the magnetic susceptibility of the material, and H is the externally applied
magnetic field. For diamagnetic materials χ< 0 and the induced magnetization is oppo-
site to the applied magnetic field, therefore the materials will be repelled by the magnetic
field; for paramagnetic materials χ > 0 and the induced magnetization is parallel to the
applied magnetic field, therefore the materials will be attracted by the magnetic field (
see Fig. 1.2). In nature, there are many kinds of materials that present the property of
diamagnetism, such as bismuth, graphite, water and wood [28].

NSNS

HH

Dipole alignment with
magnetic field H

Reaction to
magnets

ParamagneticDiamagnetic

Examples Bismuth, water, wood... Aluminium, sodium...

Figure 1.2: Difference between diamagnetic and paramagnetic materials. The dipole alignment of diamag-
netic materials is opposite to the applied external magnetic field H, thus diamagnetic materials are repelled by
magnetic field; in contrast, the dipole alignment of paramagnetic materials is parallel to the applied external
magnetic filed H, thus paramagnetic materials are attracted by magnetic field. The green arrows indicate the
magnetic forces experienced by the materials.
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Due to the negative susceptibility and repelling magnetic force, stable diamagnetic
levitation becomes an exception to Earnshaw’s theorem [35] and was first demonstrated
by Lord Kelvin by the successful levitation of a bismuth sample [36]. When a diamagnetic
object is placed inside a magnetic field, the total magnetic force from the field on the
object FB is determined as

FB =∇
∫
V

M ·BdV

= µ0

2

∫
V
∇(χx H 2

x +χy H 2
y +χz H 2

z )dV , (1.2)

where V is the volume of the diamagnetic object, Hx,y,z are the components of the mag-
netic field strength, M is the magnetization, B = µ0H is the magnetic flux density in vac-
uum and µ0 is the magnetic permeability of vacuum. Since the diamagnetic suscepti-
bility χ is relatively small in the diamagnetic materials we study in this thesis, the ap-
proximation B = (1+χ)µ0H ≈ µ0H is made in equation (1.2). When the magnetic force
counteracting the gravitational force is sufficiently strong, an object can be levitated.

1.3.2. STATE-OF-THE-ART STUDIES ON DIAMAGNETIC LEVITATION
Over the last decades, diamagnetic levitation has been developing fast with the success-
ful levitation of a wide range of materials, and it has been applied in many areas such as
metrology, energy harvesting and motion manipulation, as shown in Fig. 1.3.

The most well known experiment of diamagnetic levitation might be the successful
levitation of a frog in a magnetic field of 16 T [28] and the levitation of a permanent
magnet between two fingertips [37], as shown in Fig. 1.3a and b, respectively. Even
though the above two experiments required dramatic power to enable the magnetic
field, they opened a new chapter for diamagnetic levitation. With miniaturised size, dia-
magnetic objects can be levitated by permanent magnets with a relatively weak mag-
netic field. Over the last decades, levitation of a wide range of materials, including water
[38], borosilicate [39], graphite [40], polyethylene glycol [41], poly (methyl methacrylate)
(PMMA) [48], silica [49], cells [50], has been demonstrated using different permanent
magnet arrangements. Among these, levitation of pyrolytic graphite is the most common
method since its magnetic susceptibility at room temperature is the largest. Therefore,
pyrolytic graphite structures with dimensions of centimeters can be easily levitated by
commercially available permanent magnets (Fig. 1.3e,g,k,l,m). Regarding other materi-
als with relatively weaker diamagnetism, special design of the magnetic field is needed,
and only objects with smaller dimensions can be levitated (see Fig. 1.3c,d,f,j).

Due to the advantages of passive levitation and being free from clamping loss, dia-
magnetically levitating systems have been developed into a wide range of sensors, in-
cluding accelerometers [39–41], force sensors [42] and viscosity/density sensors [51].
Being able to levitate a large mass and operate at low frequencies, these systems have
also shown potentials for vibration energy harvesting [33, 43]. These energy harvesters
tend to levitate permanent magnets since their mass is bigger. Furthermore, due to the
absence of mechanical friction and constraints, diamagnetic levitation is the technique
of choice in motion control and manipulation of objects. Using diamagnetic levitation,
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Figure 1.3: Examples of diamagnetic levitation. (a) Levitation of a frog above a 16T magnetic field [28]; (b) Levi-
tation of a NdFeB magnet stabilized by fingertips [37]; (c) Levitation of ∼ 30µm water microdroplets above per-
manent magnets [38]; (d) A 3D magneto-gravitational trap consisting of samarium-cobalt permanent magnets
that is able to levitate ∼ 60µm borosilicate particles [39]; (e) Diamagentically levitated MEMS accelerometers
above a checkerboard configuration of magnets [40]; (f) A diamagnetically levitated 7.8µm polyethylene gly-
col resonator with ultra-low damping and Q = 2×107 [41]; (g) An ultra-sensitive force sensor at sub-milligram
scales for testing theories of dark energy [42]; (h) A vibration energy harvester based on vertical diamagnetic
levitation [33]; (i) A low frequency vibration energy harvester based on horizontal diamagnetic levitation [43];
(j) A diamagnetically levitating particle moving by current pulses through electrodes [44]; (k) A precision dia-
magnetically levitated nanopositioner with large range and six degrees-of-freedom [45]; (l) A graphite rotor
levitating above permanent magnets and driven by electrostatic forces [46]; (m) A diamangetically levitated
graphite plate that can be moved by laser irradiation [47].

contact-less transportation of micro particles or droplets have been demonstrated [44].
Integrated with dedicated circuits and control methods, levitating stages with six degree-
of-freedoms and nanometer accuracy have been implemented [45]. Using round perma-
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nent magnets, frictionless rotors controlled through electrostatic or light-thermal force
have also been realized [46, 47].

The previous works have laid the foundation of diamagnetic levitation, ranging from
the basic theory of diamagnetism to novel applications. This makes diamagnetic levi-
tation a promising technique for the development of next-generation unclamped micro
electromechanical systems. However, the damping mechanism of diamagnetically lev-
itating systems is not fully understood, and its nonlinear and elastodynamics are rarely
exploited.

1.4. AIM OF THIS RESEARCH
The main aim of this thesis is to study the dynamics of diamagnetically levitating res-
onators to provide profound understanding of their stiffness and dissipation mecha-
nisms, which can be used for realizing ultra-low noise devices and extremely sensitive
sensors. To achieve the goal, the following research questions are formulated:

• What is the dominant source of energy dissipation in a levitating resonator?

• How to reduce the damping and increase the Q factor of a levitating resonator?

• How does the nonlinear dynamics of these levitating resonators look like in a mag-
netic potential well?

• How do diamagnetically levitating resonators perform as real-time density and
mass sensors?

To answer these questions, a levitation system consisting of four permanent mag-
nets and a diamagnetic plate is investigated through experimental and theoretical stud-
ies. These studies will provide insights into low-frequency rigid body dynamics, high-
frequency elastodynamics, and nonlinear dynamics.

1.5. THIS THESIS
In this thesis, we study the rigid body and elastodynamics of a diamagnetic plate that
stably levitates above a checkerboard array of permanent magnets, analytically and ex-
perimentally. The main Chapters except for Chapter 1 and Chapter 6 are based on four
published or to be submitted journal articles. The structure of the thesis is shown in Fig.
1.4.

Specifically, in Chapter 1, we first give an introduction to different kinds of levitation
schemes and then the theory and state-of-the-art studies of diamagnetic levitation. In
Chapter 2, we focus on the rigid body dynamics of a diamagnetically levitating graphite
plate. To understand the resonance frequency and damping mechanism, we conduct
dynamic measurements in a vacuum condition to get rid of the influence of air damp-
ing. Using numerical methods, we find out that the dissipation source in a diamagneti-
cally levitating object is eddy currents and then study its dependency to plate size. Based
on these findings, in Chapter 3, we demonstrate a new route for reducing eddy current
damping by dispersing graphite particles in an epoxy matrix, and eventually increase
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the Q factor of a diamagnetically levitating resonator by two orders. Apart from the lin-
ear dynamics, in Chapter 4, we actuate the levitating resonator into nonlinear regime
and study its nonlinear dynamic response. This study provides new understandings on
the role of nonlinear magnetic stiffness and air damping on nonlinear dynamics of these
levitating systems. In Chapter 5, we emphasize on elastodynamics and characterize the
elastic modes of these resonators in kHz regime. Using the shift in resonance frequen-
cies, we then develop a sensitive mass sensor with a resolution down to nanogram and
validate it by measuring the evaporation of water droplets. Finally, we conclude and
summarize the research conducted in this thesis and provide an outlook for future re-
search in Chapter 6.

Introduction:
diamagnetic levitation

Chapter 1

Rigid body
dynamics

Elastodynamics

Nonlinear
dynamics

High-Q
resonators

Conclusions
and oultlooks

Chapter 2

Chapter 3 Chapter 4

Chapter 5

Chapter 6

Mass
sensing

Chapter 5

Figure 1.4: Structure of this thesis.
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2
RIGID BODY DYNAMICS OF

DIAMAGNETICALLY LEVITATING

GRAPHITE RESONATORS

Diamagnetic levitation is a promising technique for realizing resonant sensors and en-
ergy harvesters, since it offers thermal and mechanical isolation from the environment at
zero power. To advance the application of diamagnetically levitating resonators, it is im-
portant to characterize their dynamics in the presence of both magnetic and gravitational
fields. Here we experimentally actuate and measure rigid body modes of a diamagnetically
levitating graphite plate. We numerically calculate the magnetic field and determine the
influence of magnetic force on the resonance frequencies of the levitating plate. By ana-
lyzing damping mechanisms, we conclude that eddy current damping dominates dissipa-
tion in mm-sized plates. We use finite element simulations to model eddy current damp-
ing and find close agreement with experimental results. We also study the size-dependent
Q-factors (Qs) of diamagnetically levitating plates and show that Qs above 100 million
are theoretically attainable by reducing the size of the diamagnetic resonator down to mi-
croscale, making these systems of interest for next generation low-noise resonant sensors
and oscillators.

Parts of this chapter have been published in Applied Physics Letters 116, 243505 (2020) [1]
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2.1. INTRODUCTION
Levitation, as the means to defy gravity, has always been a dream of mankind. This
dream has been realized at large scale with the design of aircrafts, hovercrafts, and
maglev trains, however, the potential of levitation is yet to be fully explored at small
scale. Levitation requires forces that act in the absence of mechanical contact, like opti-
cal, acoustic, aerodynamic or magnetic forces [2]. Among them diamagnetic levitation
stands out as the only means of stable levitation at room temperature that is passive,
because it can be sustained indefinitely without feedback control or cooling systems
that consume energy. Although stable levitation in a constant magnetic field may seem
to be impossible, centuries back Lord Kelvin showed that there is an exception to Earn-
shaw’s theorem: diamagnetic materials can levitate stably in a magnetic field [3]. One of
the most renowned experiments in this respect is the levitation of a living frog using a
16.5 Tesla magnetic field [4]. That experiment required much power to drive large elec-
tromagnets, however at small scale the story is different because the magnetic field of
permanent magnets is sufficient to overcome gravitational forces and enable levitation.
During the last decades, levitation of liquid droplets [5, 6], cells [7] and solid particles [6]
have been demonstrated using small permanent magnets. Moreover, this passive levi-
tation has been used for realizing devices like accelerometers [8, 9], energy harvesters
[10–12], viscosity/density sensors [13], and force sensors [14].

To realize highly sensitive resonant sensors, it is essential to characterize their fre-
quency response and dissipation mechanisms, that are closely linked to the precision
with which frequencies of a resonant sensor can be determined and that are intrinsically
coupled to the thermomechanical noise floor via the fluctuation dissipation theorem
[15]. In particular, minimization of damping is an essential consideration in the design
of low phase noise oscillators and highly precise resonant sensors.

One of the most important dissipation mechanisms in Micro-Electro-Mechanical
Systems (MEMS) is acoustic loss, which occurs when mechanical energy leaves the
structure as sound waves, via the anchors or clamping points. In literature great ef-
forts are undertaken to minimize acoustic loss by suspending resonators via thin, high-
tension tethers [16] or optimized clamping points [17]. However, the ultimate way of
eliminating acoustic losses is levitation in vacuum, since acoustic waves cannot prop-
agate in the absence of matter. For this reason optical levitation has been applied to
obtain high Q resonators [18]. Even though promising, this technique has the drawback
that it requires high-power lasers, that can significantly increase the temperature of the
levitating object and affect its microstructure. In this respect, zero power levitation of
diamagnetic materials at room temperature combined with their vacuum compatibil-
ity make them ideal candidates for tackling this challenge. Moreover, since the main
sources of dissipation in diamagnetic resonators are air and eddy current damping [10,
12, 19], by operating the resonator in vacuum, one can eliminate air damping so that the
only remaining dissipative force is eddy current force which can be minimized to obtain
high Q resonators.

In this Chapter we study the rigid body resonances and dissipation mechanisms of
a diamagnetic resonator that levitates above permanent magnets at different pressures.
The diamagnetic material used in our experiments is pyrolytic graphite which has large
negative magnetic susceptibility and thus can levitate easily above permanent magnets.
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In contrast to studies on conventional microelectromechanical resonators, these levi-
tating resonators allow us to study the dynamics of nearly free-body objects, in the ab-
sence of mechanical clamping or anchor effects. Interestingly, the restoring force, that is
generally provided by a compliant mechanical spring, is here provided by magnetic and
gravitational forces. By using a laser Doppler vibrometer (LDV), 3 rigid body transla-
tional and 2 rotational modes of the plate are detected and their resonance frequencies
and Qs are characterized experimentally. To understand the effect of air damping on
our resonator, we perform experiments over a pressure range of 10−4 to 1000 mbar. This
pressure-dependent study also allows us to study the effect of eddy current damping on
plates of different sizes in vacuum. To get a deeper insight into the magnetically induced
stiffness and eddy current damping of the resonator, numerical finite element method
(FEM) models are used to simulate the magnetic force and eddy currents on the levitat-
ing plate. With our FEM model, the effect of plate size on the Q is studied, from which we
conclude that the Qs of rigid body modes for diamagnetically levitating objects increases
at small dimensions.
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Figure 2.1: The levitating resonator and experimental setup. (a) Levitating pyrolytic graphite plate above 4 cu-
bic Nickel coated NdFeB magnets with alternating magnetization, where N and S stand for north and south
pole of the magnet, respectively. The origin of the coordinate system is at the center of the plate. (b) Schematic
of the measurement setup comprising a MSA400 Polytec LDV for the read out and electrostatic excitation
method. The actuation voltage is generated by the LDV junction box and is amplified by a 40× voltage am-
plifier that drives the levitating plate into resonance using electrostatic actuation. The electrostatic force is
generated via two electrodes beneath the levitating plate. By focusing MSA laser beam on the plate, the vibra-
tion signal is detected,and the acquired velocity is transferred to a PC for frequency response analysis.

2.2. EXPERIMENTAL SETUP
Pyrolytic graphite (from Magnetladen Seiler GmbH) is cut into square plates of different
side length L using a laser cutter after which their surfaces are slightly polished using fine
sand paper (5µm grain) to a thickness of 280 microns. The literature values of the mate-
rial properties of the pyrolytic graphite resonator used for experiments and simulations
are given in Table 2.1. Our diamagnetic pyrolytic graphite plates are levitating above a
checkboard arrangement of 4 cubic NdFeB ferromagnets (side length D=12 mm) with
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Table 2.1: Material properties of the levitating pyrolytic graphite.

Property Symbol Value Unit
Density ρ 2070 kg/m3

Susceptibility ⊥ [4] χz -450 ×10−6

Susceptibility ∥ [4] χx,y -85 ×10−6

Conductivity ⊥[20] σz 200 S/m
Conductivity ∥[20] σx,y 200000 S/m

alternating magnetization (Fig. 2.1a). The remanent magnetic flux density of the cubic
magnets is Br = 1.4T. The magnetic field gradient in the z-direction provides an up-
ward force on the plate to compensate the gravitational force. Together with the lateral
magnetic gradients it provides a stable energy minimum that determines the plate’s rest
position. The figure shows that we define x and y-axes along parallel to the plate edges.

To probe the motion of the levitating resonator, we use the experimental setup shown
in Fig. 2.1b. It includes an MSA400 Polytec LDV that measures the out-of-plane speed
of the plate. In our experiments, the excitation voltage is generated by LDV junction box
that drives the levitating plate into resonance using electrostatic forces. These forces are
generated via two electrodes (thin copper tapes isolated from the magnets, not shown
in Fig. 2.1a) beneath the levitating plate. When a voltage is applied between the two
electrodes (Fig. 2.1b), the levitating plate acts as a floating electrode between the two
electrodes, thus forming a capacitive divider. In the area at which the plate overlaps with
the electrodes, an electrostatic downward force is exerted that depends on the overlap-
ping area, voltage difference, and gap size. In order to efficiently excite different modes
of the plate, an asymmetric arrangement of the electrodes is used, as shown in Fig. 2.1b.
Due to this asymmetry, the electrostatic forces between each of the electrodes and the
plate are different, and generate both a translational force and a rotational moment on
the plate. A periodic chirp voltage signal (VAC =1.0 V) is superposed on an offset voltage
(VDC =-1.2 V) and amplified by a voltage amplifier (40×) that applies the voltage across
the electrodes. The DC offset voltage is used to make sure that the electrostatic force,
that is proportional to the square of the voltage, has a component of the same frequency
as the chirp signal. With the LDV, the frequency response curves are measured, and by
scanning the laser over the plate the mode shapes are obtained using the Polytec soft-
ware. In this Chapter, the LDV measurements are conducted in a vacuum chamber over
a pressure range of 10−4 to 1000 mbar because air damping is negligible when pressure
is below 10−4 and it takes more time to reach to lower pressure.

2.3. RESULTS

2.3.1. MAGNETIC STIFFNESS
Since there are 3 translational and 3 rotational degrees-of-freedom, the plate is expected
to exhibit 6 different rigid-body resonances. In Fig. 2.2a, the levitating plate is driven
from 8−25Hz, and 5 of these 6 rigid body modes are observed. These mode shapes, as
obtained by LDV and from camera movies, are schematically shown in Fig. 2.2a. Movies
of the detected mode shapes are also shown in supplementary material A1. The rota-
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Figure 2.2: Dynamic characterization of the levitating resonator in its rigid body modes. (a) Frequency re-
sponse curve of a 4.28×4.14×0.28mm3 levitating graphite plate. The lowest frequency peaks have been mul-
tiplied by a factor 50 for visibility. Observed mode shapes are shown schematically near the corresponding
resonance peaks. (b) Simulated and measured levitation height with different plate lengths (the thickness of
all plates is 0.28mm). (c) Experimental and simulated resonance frequencies at different plate lengths. All di-
mensions and material parameters used for the simulations are found in the text and in Table 2.1, without free
parameters.

tional mode around the z-axis is not observed, probably because it is not efficiently ex-
cited by the employed electrode configuration. Even if it were excited, it would not be
efficiently detected by the LDV, that is only sensitive to motion in the z-direction. The
frequency responses shown in Fig. 2.2a are determined at an off-centered point on the
plate such that also the rotational modes 3 and 4 can be measured. Even though the am-
plitudes are small, it is surprising that modes 1 and 2 are detected using the vibrometer
since their motion is in-plane, whereas the LDV is mainly sensitive to out-of-plane mo-
tion. It is likely that the in-plane motion of the plate is accompanied by an out-of-plane
rotation or translation related to the shape of the magnetic potential well. We also note
that both modes 1 and 2 as well as modes 3 and 4 are degenerate with almost identical
resonance frequencies, and similar mode shapes (Fig. 2.2a).

To investigate the plate size, side length L, dependence of the observed effects and for
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model verification, experiments are carried out on larger plates of 6.28, 8.14 and 10.25
mm. After placing the plates of different sizes above the magnet array, the levitation
height of the plate is determined with a Keyence digital microscope (VHX-6000) using
defocus method that measures depth based on the microscope’s focus on the surface
(Fig. 2.2b). Using the LDV then the resonance frequencies of modes 2, 4 and 5 of the plate
are determined and are shown in Fig. 2.2c. A clear reduction in resonance frequency with
increasing plate size is observed. We will analyze these observations in more detail using
quantitative models.

In the static levitating state only the gravitation force and magnetic force act on the
plate. A model for the magnetic field generated by the 4 cubic NdFeB magnets is con-
structed and used to determine the levitation height. The FEM and analytical modelling
results for the magnetic field [21, 22], forces and levitation height, and its comparison
to experiment can be found in the supplementary material A2. The total magnetic force
from the field on the plate FB is determined as:

FB =∇
∫
V

M ·BdV

= µ0

2

∫
V
∇(χx H 2

x +χy H 2
y +χz H 2

z )dV , (2.1)

where V is the volume of the plate, Hx,y,z are the components of the magnetic field
strength, M is the magnetization and B the magnetic flux density. In this analysis it is
assumed that the plate does not significantly affect the magnetic field, since its relative
magnetic permeability is close to 1. The results of the FEM simulations, that determine
the height at which the z-component of FB is equal and opposite to the gravitational
force, are shown in Fig. 2.2b. The dependence of the levitation height on plate size L is
well captured.

We also obtain the resonance frequencies of the plate numerically. The undriven
free-body dynamics of translational modes 1,2 and 5 can be modelled by the differen-
tial equation mq̈ + cq̇ +kq = 0, where q is the translational displacement and m,c and
k are the mass, viscous damping coefficient and stiffness of that degree-of-freedom, re-
spectively. Similarly for the rotational modes 3 and 4 the dynamics can be modelled by
I θ̈+Γθ̇+µθ = 0, where θ is the rotational angle around the x or y-axis and I ,Γ and µ are
the moment of inertia, rotational viscous damping coefficient and torsional stiffness of
the mode, respectively.

Since the gravitational force is independent from position, the stiffness of the reso-
nant modes is solely determined by the derivative of the magnetic force FB, or magnetic
torque, with respect to translational or rotational motion around its equilibrium posi-
tion. When the plate translates or rotates, the spatial volume V over which the integral
in Eq. (2.1) is taken changes, and results in a restoring force or moment. For the torques,
the integral in Eq. (2.1) is taken over the torque per volume element r×dFB, where r is
the position of the element with respect to the rotational axis. Using these integrals, the
translational and torsional stiffnesses of the rigid body modes of the plate are numeri-
cally obtained.

From the FEM simulations the resonance frequencies are computed using 2π fr es =p
k/m and 2π fr es =

√
µ/I for the translational and rotational modes, respectively. The
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FEM results are shown in Fig. 2.2c and show close agreement to the experimental results.
The observed reduction in resonance frequency is less than what would be expected
for a fixed stiffness system for which fr es ∝ L−1. This indicates that the stiffnesses of
the system increase with plate size despite the higher levitation height, which can be
attributed to the larger volume over which the integral in Eq. (2.1) is taken.

2.3.2. EDDY CURRENT DAMPING
For the rigid body modes of diamagnetically levitating resonators, many types of dis-
sipation are negligible. In particular, mechanical friction, radiation loss, surface and
material damping are all expected to be negligible or absent during rigid body vibra-
tions. Air damping is still significant, and can be eliminated by performing experiments
at low pressure. In Fig. 2.3a it is shown that the resonator’s Q significantly increases and
saturates at lower pressures. The saturation shows that at a pressure of 10−4 mbar, the
damping of the rigid body modes is dominated by another mechanism, that is eddy cur-
rent damping. To verify this, we compare the measured Qs on plates of different sizes in
Fig. 2.3b. Included in the figure are also our FEM simulations of eddy current damping
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Figure 2.3: Damping of levitating resonators. (a) Pressure-dependent Q of a 8.03×8.24×0.28mm3 levitating
plate. (b) Experimental and simulated Qs of the levitating resonators of different plate lengths L (thickness
t=0.28mm). All measurements have been performed at room temperature and low pressure (0.001 mbar). (c)
and (d) Eddy current density simulations for modes 4 and 5, respectively. The colour map indicates the eddy
current density and the arrows show the trajectory of the eddy currents.
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To quantify the eddy current damping of the levitating resonator, we have developed
a FEM model to evaluate the eddy current damping force. When a conductor moves with
velocity vector v through a magnetic flux density field B, the charge carriers inside the
conductor feel an electric field v×B due to the Lorentz’ force in addition to the field from
the electric potential Ve , that generates an eddy current density J given by

J =−σ∇Ve +σ(v×B), (2.2)

where σ is the electrical conductivity matrix, that has nonzero diagonal elements σx ,
σy , and σz . By combining Eq. (2.2) with the current continuity condition ∇ · J = 0 and
the boundary condition J ·n = 0 (n is the unit vector perpendicular to the boundary),
the eddy current density distribution J and potential Ve can be determined numerically
for known v, σ, B and plate dimensions. The simulated current density J distribution
through the plate for the rotational mode 4 and translational mode 5 are shown in Figs.
2.3c,d respectively.

The total damping contribution due to eddy currents can now be evaluated for the
translational modes by integrating the eddy current forces J×B to obtain Feddy [23]. Sim-
ilarly for the rotational modes the torques r× (J×B) can be integrated to obtain the total
torque τeddy. Since for thin plates and motion under consideration, the eddy currents
run mainly in-plane and the motion is out-of-plane, it is the in-plane component of B
that contributes mainly to the relevant out-of-plane force Feddy ∝ (v×B)×B. Since the
in-plane component of the B field is largest near the boundary between the magnets, it
is expected that these regions contribute most to the Feddy.

As expected, the eddy current damping force Feddy is found to be proportional and
in the opposite direction of the velocity q̇ and similarly the torque τeddy is opposite and
proportional to the rotational velocity θ̇. From the proportionality constants the coeffi-
cients c and Γ for the translational and rotational modes can be determined. Using our
FEM simulations, and material parameters given in table 2.1, we found the Qs associated
with modes 4 and 5 for different plate lengths L as follows

Q = 2πm fres

c
(translational modes),

Q = 2πI fres

Γ
(rotational modes). (2.3)

The simulated Q corresponds well to the experimental values as shown in Fig. 2.3b.
This provides evidence that eddy current damping can account largely for the observed
Qs, and their size dependence for the rigid body modes of diamagnetically levitating
plates. A difference is observed between the simulated and measured Q of mode 4, which
is attributed to the fact that the actual experimentally obtained rotation is observed to
occur not exactly around the x or y-axis. Fig. 2.3b shows a steep increase in Q with
decreasing plate length L for translational mode 5. A reduction of plate length L by a
factor of 2 results in an increase of Q by a factor of ∼4. For the rotational mode 4 such
an increase in Q is not observed. The observed experimental trend suggests that very
high Qs might be achieved in diamagnetically levitating plates of microscopic dimen-
sions. To test this hypothesis we simulate the Q of the z-direction translational mode 5
for levitating graphite plate resonators with L=10−4-101 mm. Besides scaling the lateral
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dimensions of the plate, also the dimension of the magnets D = 1.2L and plate thick-
ness t = 0.03L are scaled proportionally. For each value of L, first the magnetic field and
levitation height are calculated, then the resonance frequency, eddy currents and Q are
determined according to the procedure outlined before. The result is plotted in Fig. 2.4.
In Fig. 2.4a, we show that the resonance frequency is increasing with smaller plate size,
and this can be attributed to the significant decrease in mass. In terms of the damping
as can be seen in Fig. 2.4b, for a reduction of L by a factor 104 the Q increases by a factor
3.8× 106. For plate sizes of the order of 1 µm, Qs above 100 million might be achiev-
able, competitive to the Q of the best mechanical resonators currently available [16].
This suggests that levitating nano/micro particles could be interesting candidates for re-
alizing high-Q resonators for accurate sensors and for studying quantum mechanics at
room temperature [16, 24–26].
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Figure 2.4: Frequency and damping dependency on size. Simulation of the frequency (a) and Q-factor (b) as a
function of plate length L down to the microscale. In this simulation the plate thickness t and magnet size D
is also scaled down (D = 1.2L and t = 0.03L).

2.4. CONCLUSIONS
In conclusion, we experimentally study the rigid body motion of diamagnetically levi-
tating resonators at different pressures. By levitating graphite plates above magnets we
eliminate external mechanical effects, such that their dynamics is solely governed by
magnetic field. The levitation height, resonance frequencies and Qs are measured as
a function of plate size by laser Doppler vibrometry, and are modeled effectively using
FEM simulations. In particular the Q of the out-of-plane translational mode is found to
increase significantly with reducing dimensions. Using simulations evidence is provided
that this increase in Q continues at smaller dimensions where Q factors above 100 mil-
lion might be attainable, making levitating diamagnetic resonators an interesting candi-
date for high-Q, low-noise oscillators and sensors.
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2.5. APPENDIX

A1: MOVIES OF THE RIGID BODY MODES OF A DIAMAGNETICALLY LEVITAT-
ING RESONATOR
As supporting information, movies of the rigid body motion of a levitating plate are
included. The slow-motion movies are recorded at a frame rate of 240 fps and played
back eight times slower. They are recorded on a 4.28×4.14×0.28mm pyrolytic graphite
plate that levitates above 4 permanent cubic NdFeB magnets, with an edge length of
12 mm, and alternating out-of-plane magnetization. The plate is actuated by elec-
trostatic force using two asymmetric electrodes (copper tapes) that are isolated from
the magnets. A sinusoidal voltage signal (VAC =1.0 V) at different specific frequency
(10.23,10.75,19.41,19.81 and 22.72Hz) is superposed on an offset voltage (VDC =-1.2 V)
and amplified by a voltage amplifier (40×) that applies the voltage across the electrodes.

The movie can be found through the link below:
https://aip.scitation.org/doi/suppl/10.1063/5.0009604

A2: SIMULATION OF THE MAGNETIC LEVITATION HEIGHT
In order to determine the levitation height, we calculate the magnetic field both using an
analytical derivation and using the Finite Element Method (FEM). The FEM simulations
are performed using COMSOL Multiphysics 5.3a. For comparison with experiments we
model the field distribution of 4 permanent magnets of 12×12×12 mm3 with a rema-
nent magnetic flux density Br =1.4 T and rounded edges with a fillet radius of 1 mm. The
summed magnetic field B(x, y, z) of the magnets is determined analytically and using
FEM. Then, assuming that the influence of the diamagnetic plate on the field is negli-
gible, the integrated magnetic force on the diamagnetic plate, FB, can be determined
using

FB =∇
∫
V

M ·BdV

= µ0

2

∫
V
∇(χx H 2

x +χy H 2
y +χz H 2

z )dV , (2.4)

where χx ,χy ,χz are the magnetic susceptibility of the levitating plate in x, y, z directions,
V is the volume of the plate, and M is the plate’s magnetization. The components of the
magnetic field inside the plate are Hx,y,z = Bx,y,z /µ, where the magnetic permeability
µ≈µ0 for graphite.

The magnetic field is determined and in Fig. 2.5 we compare the volume integrated
upward magnetic force FB ,z calculated analytically for 4 cubes without fillets to the force
obtained from FEM simulations as a function of levitation height h. The correspondence
between analytical and FEM simulation verifies the accuracy of the FEM simulation. In
the same figure the integrated downward gravitational force on the diamagnetic plate
is shown. The plate levitates at the height h where the curves intersect. This agrees
well with the measured levitation height (solid blue circle) of the plate with dimensions
10.23×10.26×0.28mm3.
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3
DIAMAGNETIC COMPOSITES FOR

HIGH-Q LEVITATING RESONATORS

Levitation offers extreme isolation of mechanical systems from their environment, while
enabling unconstrained high-precision translation and rotation of objects. Diamagnetic
levitation is one of the most attractive levitation schemes, because it allows stable levita-
tion at room temperature without the need for a continuous power supply. However, dissi-
pation by eddy currents in conventional diamagnetic materials significantly limits the ap-
plication potential of diamagnetically levitating systems. Here, we present a route towards
high Q macroscopic levitating resonators by substantially reducing eddy current damping
using graphite particle based diamagnetic composites. We demonstrate resonators that
feature quality factors Q above 450,000 and vibration lifetimes beyond one hour, while
levitating above permanent magnets in high vacuum at room temperature. The com-
posite resonators have a Q that is more than 400 times higher than that of diamagnetic
graphite plates. By tuning the composite particle size and density, we investigate the dis-
sipation reduction mechanism and enhance the Q of the levitating resonators. Since their
estimated acceleration noise is as low as some of the best superconducting levitating ac-
celerometers at cryogenic temperatures, the high Q and large mass of the presented com-
posite resonators positions them as one of the most promising technologies for next gener-
ation ultra-sensitive room temperature accelerometers.
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3.1. INTRODUCTION
The low dissipation and high quality factor (Q) of mechanical resonators makes them
the devices of choice in precision time-keeping, frequency filtering, and sensing appli-
cations. With the emergence of nano- and micro-electromechanical systems, and the
drive towards quantum limited mechanical elements, pushing the performance bound-
aries of resonators has become a matter of high scientific and societal relevance [1–6].
In particular, mechanical energy loss via the clamping points has become a dominant
factor, limiting the Q of these resonators. As a consequence, attention has moved to-
wards the field of levitodynamics [7, 8]. By employing levitating resonators that are well
isolated from their environment, losses can be minimised and extreme sensitivities can
be achieved.

Optically, superconducting, and electrically levitating micro and nanoresonators
have been shown to feature high Qs in the range 106 −107 [9–12]. Although these tech-
niques are of great interest for fundamental studies, the requirement for continuous
position control and cooling power supply [8], narrows their application range, since
the levitating object will collapse in a situation of power loss. Diamagnetic levitation is
the only known method for realizing stable continuous vacuum levitation of objects at
room temperature without external power supply [13–16]. Moreover, unlike optical and
electrical levitation that are limited to nano-gram objects [17, 18], diamagnetic levita-
tion is the method of choice for levitating macroscopic objects whose larger mass can
significantly enhance the sensitivity of sensors like accelerometers [19] and gravime-
ters [20–23]. However, the Q of conventional diamagnetic materials such as graphite
that has high magnetic susceptibilities is significantly limited by eddy current damping
forces [15]. While the diamagnetic levitation of non-conductive materials such as silica
could make the levitodynamic system immune to the presence of eddy current damping
forces, their magnetic susceptibility is lower, such that it normally only is suitable for
levitating microscopic objects [24, 25].

Here, we demonstrate millimeter scale composite plates comprising graphite mi-
croparticles dispersed in epoxy resin that levitate stably above permanent magnets and
exhibit Qs above 450,000. The strong diamagnetic susceptibility of the graphite particles
allows passive levitation of the composite plates, while the epoxy acts as an insulating
material that suppresses eddy currents. To investigate the dependence of Q on compos-
ite properties, we perform simulations and experiments on composites with different
particle sizes and volume fractions. We confirm that by reducing particle size, damp-
ing can be significantly decreased while maintaining the macroscopic size of the levitat-
ing object. Finally, we compare the performance of the realized diamagnetic composite
resonator to state-of-the-art accelerometers and show that it leads to one of the lowest
acceleration noise figures achieved thus far in levitating sensors.
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3.2. RESULTS

3.2.1. DIAMAGNETICALLY LEVITATING COMPOSITES
To realize diamagnetically levitating resonators with high Qs, we fabricate composite
materials with distributed graphite microparticles by dispersing them in epoxy resin
through mechanical mixing, and then curing the resin in an oven (see Methods and
A1). The fabrication process enables a high degree of freedom in size of graphite parti-
cles and selection of resin composition. Due to the strong diamagnetic susceptibility of
graphite, the composite levitates stably above permanent Nd2Fe14B magnets arranged in
a checkerboard configuration with alternating magnetization (see Fig. 3.1a). We expect
that the epoxy between the microparticles acts as an insulator, confining eddy currents
within the particles (Fig. 3.1b), and thus diminishing eddy current damping forces and
increasing Q [15]. Furthermore, since for a composite with particle size d moving in a
magnetic field, the eddy current damping force per volume scales quadratically with par-
ticle size (Fe ∝ d 2 see Fig. 3.1c and A5 [26]), we expect that by reducing the microparticle
size in the composite, high mechanical Qs can be achieved while maintaining macro-
scopic mass. To experimentally investigate this effect, square graphite/epoxy composite
plates of different size with a constant 90µm thickness are prepared, as shown in Fig.
3.1d. The successful levitation of the composite plates with graphite volume fraction
Vf of 21 %, as shown in Fig. 3.1d, confirms that the diamagnetism of graphite is main-
tained in the microparticles and that the diamagnetic force remains strong enough to
oppose the gravitational force, even though the graphite particles have anisotropic mag-
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netic susceptibilities and are randomly oriented inside the epoxy matrix. In Fig. 3.1e,f
we show microscopic images of the composite and graphite microparticles from which
we note that the particle sizes are distributed over a wide range (see the particle size
measurement in A2.1). Moreover, we quantitatively analyze the particle distribution (see
A2.2) and observe that the graphite particles are randomly distributed inside the epoxy
matrix.

3.2.2. Q-FACTOR MEASUREMENT
To probe the vibrations of the levitating plates, we use a Polytec MSA400 Laser Doppler
Vibrometer (LDV) and measure their out-of-plane velocity in a vacuum chamber at a
pressure of 0.1 mbar (see Fig. 3.2a and the Methods). We characterize the spectral re-
sponse of the levitating objects by driving them electrostatically at different frequencies.
Fig. 3.2b shows the area-averaged magnitude of the spectral response for a 1.8× 1.8×
0.09mm3 composite plate with 8.6µm graphite particles. Three plate resonance peaks
can be identified in the spectral response, which correspond to the two rotational modes
at 29.7 Hz (Mode 1) and 31.4 Hz (Mode 2) and the translational rigid body mode of vibra-
tion at 34.0 Hz (Mode 3). In this work, we focus on the Q of the out-of-plane translational
mode that relates to the vertical motion (Mode 3). The mode shapes are identified by
scanning the laser over the plate surface at the corresponding resonance frequencies,
and are shown in Fig. 3.2b.
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Figure 3.2: Experimental setup and rigid body dynamic response of a levitating composite resonator. (a)
Schematic of the measurement setup comprising a MSA400 Polytec Laser Doppler Vibrometer (LDV) for the
readout and electrostatic force as the actuation means. The drive voltage is generated by the function genera-
tor and is amplified by a 20× voltage amplifier that drives the levitating plate into resonance. The electrostatic
force is generated by applying voltage between the magnets beneath the levitating plate. By focusing the vi-
brometer’s laser beam on the plate, the plate motion is captured, and the acquired velocity is used for spectral
analysis. To isolate environment noise, we place the LDV and vacuum chamber on an optical table. (b) The
frequency response curve of a 1.8× 1.8× 0.09mm3 levitating composite plate with 8.6µm graphite particles
measured at 0.1 mbar. Three of the measured mode shapes using LDV are shown close to the corresponding
resonance peaks.

Since eddy current and air damping [15] are the major sources of dissipation in dia-
magnetically levitating objects, we minimize the effect of air damping by operating the
composite plate resonator in high vacuum (10−6mbar). In Fig. 3.3a, we compare the res-
onant response of the plate’s translational mode in low (0.1mbar) and high (10−6mbar)
vacuum environments. We find an increase in the resonance frequency which we at-
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tribute to a reduction in mass loading by the surrounding gas. Moreover, the high vac-
uum results in a much sharper peak, with much higher Q, due to the reduction of air
damping effects. In fact, the Q is so high that it is difficult to accurately determine it us-
ing a frequency response measurement, due to the limited resolution bandwidth of the
measurement setup.

To determine the Q more accurately while also minimizing the influence of spectral
broadening, we perform ringdown measurements. These are conducted by first electro-
statically exciting the composite plate at its resonance frequency, then switching off the
excitation voltage and recording the free vibration decay. The amplitude of the under-

damped vibration decays proportional to ∝ e−
t
τ , where τ = Q

π fres
is the decay constant

and fres is the resonance frequency of the plate. In Fig. 3.3b we show a typical mea-
surement for the translational mode of the levitating composite. Note that a very long
vibration lifetime of ∼ 4,000s is observed, corresponding to a Q of 8.2×104. In the inset
of Fig. 3.3b we also show the free vibrations of the plate over a 0.5 s time interval, demon-
strating a clear sinusoidal response during the energy decay measurements. It is noted
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Figure 3.3: Energy dissipation measurements. (a) Frequency response curves for the translational mode of
the 1.8× 1.8× 0.09mm3 levitating composite plate measured at 0.1 mbar and 2×10−6mbar. The frequency
response curve at 0.1 mbar has been multiplied by a factor of 20 for visibility. (b) Undriven ringdown of the
same composite plate for a duration of 4.000 s at 2×10−6mbar and its fitted envelope. The time signal for a 0.5 s
interval is also shown in the inset. (c) The Q as a function of pressure for two sizes of composite plate shows
three characteristic regions comprising the region where air damping is dominant (right), region where both
air and eddy current damping contribute to dissipation (middle), and region where eddy current damping is
dominant (left). (d) Ringdowns of a levitating graphite plate and three composite plates composed of different
particle size, revealing that decreasing the particle size results in higher Q of the samples. The dashed line
separates the time span between the excitation is on and off.
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that due to the presence of low-frequency perturbations from the vacuum pump and the
environment, the amplitude of the high-Q composites might fluctuate during the ring-
down measurements as shown in Fig. 3.3d. However, the fluctuations do not influence
the Q factor measurements as they are very small compared to the vibration amplitude.

To ensure that the energy decay constant τ is not limited by air damping, we sweep
the pressure from 10−6 − 103 mbar and measured Q as a function of air pressure (see
Fig. 3.3c). The data for two composite plates with d = 8.6µm particle size and differ-
ent graphite volume fractions show three distinct regions in the Q versus pressure plot.
When the pressure is reduced below 3×10−5 mbar, Q reaches a plateau, as shown in Fig.
3.3c. This suggests that air damping has become negligible, and Q is solely limited by
eddy currents. The Qs shown in the rest of this work are measured at a pressure below
5×10−6 mbar to eliminate the effect of air damping in our measurements.

3.2.3. TAILORING COMPOSITE PROPERTIES TO SUPPRESS EDDY CURRENTS

To investigate the effect of the graphite particle size and volume fraction on the levitation
forces and the eddy current damping, we fabricate square plates with different graphite
volume fractions Vf, side length L and particle size d . In Fig. 3.3d we compare the ring-
down response of three 1.8×1.8×0.09mm3 graphite composite plates with different par-
ticle sizes, namely d = 15.0,8.6 and 2.7µm. We find that the plate that encompasses the
smallest particle size exhibits the largest value of Q. Remarkably, we observe an increase
of nearly 410 times in Q for the 2.7µm particle composite plates compared to the levitat-
ing graphite plate.

To better understand this observation and gain deeper insight into the mechanisms
accountable for Q enhancement, simulations based on Finite Element Method (FEM)
are performed to calculate the levitation height and eddy current damping force using
COMSOL multiphysics. These simulations are carried out assuming that the graphite
particles have a spherical shape and are distributed inside the matrix (see A3 for details
of the numerical modelling and parameter values used in our simulations). In our sim-
ulations, we treat the epoxy as air since its magnetic susceptibility and electrical con-
ductivity are negligible compared to graphite. We also note that graphite is inherently
anisotropic [13]. However, in our fabrication procedure graphite particles are randomly
oriented in the epoxy matrix, and thus by considering all possible orientations in the
matrix, the local anisotropy can be averaged out and the effective macroscopic behavior
can be viewed isotropic. For this reason, in our study we treat the magnetic susceptibil-
ity of graphite as an effective value χeff which we evaluate by fitting our FEM simulations
to the measured levitation height of the composite from experiments (see Fig. 3.13 for
more details).

In Fig. 3.4a we show the levitation height of the composite plates with particle size
d = 17.6µm as a function of volume fraction Vf. We find that composites with a graphite
volume fraction below 14% (Vf < 0.14) do not provide sufficient diamagnetic force to
counteract gravity and thus do not levitate. For composites with a graphite volume frac-
tion above 43% (Vf > 0.43), the samples can not be produced with sufficient structural
integrity due to the high particle content. Between these two limits, we observe a steady
increase in the levitation height which agrees well with the simulations. These results in-
dicate that the increase of the magnetic force is dominant over the increase in the overall
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Figure 3.4: Dependence of the levitation force and dissipation on composite particle and plate size. (a) Levita-
tion gap H of the 1.8×1.8×0.09mm3 plate with 17.6µm particles as a function of volume fraction. (b) Q-factor
of two 1.8×1.8×0.09mm3 plates with different particle size as a function of volume fraction. The gray area in
Fig. 3.4a-b represents the volume fraction of which the composites can not be levitated. (c) Q-factor of square
composite plates with a thickness of 90µm as a function of plate side length L. The composite plates are made
from d=17.6µm particles with 0.21 volume fraction. (d) Dependence of Q on particle size. The left side of
the graph (before the short dashed line) shows the Q of composite plates with varying graphite particle size.
Since the Q is only weakly dependent on the volume fraction and side length (see Fig. 3.4b-c), the error bars
in the data on the left side of Fig. 3.4d are obtained by analyzing the Qs obtained from plates with a thickness
of 90µm but different side lengths (1.2-2.7 mm) and volume fraction (0.14-0.32) at fixed d . The right side of
the graph (after the short dashed line) shows the experimental Q of levitating plates made of pyrolytic graphite
with 0.28 mm thickness and different side lengths L on the x-axis. The insets show schematics of the compos-
ite and graphite plate. In Fig. 3.4, the dashed and solid lines correspond to the FEM simulations for composite
and graphite plates as described in A3, respectively. Moreover, the dashed-dotted line in Fig. 3.4d represents
the Qs obtained from Eq. (3.1). The dots represent experimental data.

gravitational force through the higher mass density of the graphite particles compared
to the epoxy, see Table 3.2 in A3.

We also study the influence of volume fraction Vf on the measured Q for composite
plates with particle sizes d = 8.6µm and d = 17.6µm, as shown in Fig. 3.4b. It is inter-
esting to see that unlike levitation height, Q does not significantly change with Vf, even
though the measured bulk conductivity reveals an increase in the conductivity with the
increase of Vf (see A4). This result suggests that the variations in bulk conductivity do
not contribute considerably to the observed dissipation. A similar effect is seen in Fig.
3.4c, where we show the experimentally obtained Q of square plates with different side
lengths L, that are cut out of the same composite with d = 17.6µm and Vf = 0.21. It is
observed from the figure that a reduction in side length does not substantially increase
Q. This observation contrasts with Qs estimated from COMSOL simulations for pyrolytic
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graphite plates, that increase close to an order of magnitude with reducing L[15].
The volume fraction and plate size independent Qs obtained from both experiments

and simulations in Fig. 3.4b-c indicate that the majority of eddy current damping oc-
curs inside the graphite particles and is not caused by currents flowing in between them.
Thus, increasing the particle density increases the stored kinetic energy Ek (proportional
to the mass) by approximately the same factor as the eddy current dissipation Ed (pro-
portional to number of particles) (see Fig. 3.14 in A3.2), such that the Q, which is pro-
portional to their ratio Ek/Ed, remains nominally constant.

After having investigated the effect of volume fraction and composite plate size, we
now investigate the effect of graphite particle size d on Q. It can be observed from both
the experimental and numerical results (see left side of Fig. 3.4d) that reducing the par-
ticle size d results in a clear increase in the Q of the composite plates. The Q increases
from about 10,000 at d=22.7µm, to a value as high as 460,000 at d = 2.7µm, which is
to our knowledge a record value for passively levitating diamagnetic resonators at room
temperature. On the right side of Fig. 3.4d the Qs of pyrolytic graphite plates with vary-
ing side lengths are shown. These plates also show an increasing Q with decreasing plate
size[15].

3.3. DISCUSSION AND CONCLUSIONS
To understand these findings, and in particular the increase in Q as a function of d , we
use Faraday’s law and obtain an analytic expression for the Q of a graphite/epoxy com-
posite plate that moves in a magnetic field (see A5 for the detailed derivation):

Q = 80π fresρr((ρg −ρe)+ρe/Vf)

(Crd)2B2
, (3.1)

where ρr is the resistivity, ρg is the density of graphite, ρe is the density of epoxy, and Cr

is the effective particle size factor which we use to account for experimental deviations
from the theoretical model due to variations in particle size, composition, morphology
and distribution. Moreover, B2 represents:

B2 =
∫

Vplate

(
dB
dz

)2
dVplate

Vplate
. (3.2)

To compare our experimental findings in Fig. 3.4d to the analytical expression Eq. (3.1),
we take fres = 35Hz,ρr = 5×10−6Ω ·m,ρg = 2260kg/m3,ρe = 1100kg/m3 , and use COM-
SOL simulations to calculate B2 = 1.1× 106 (T/m)2 for a 1.8× 1.8× 0.09mm3 plate that
levitates 0.26 mm above the magnets, corresponding to a composite with Vf = 0.32 (see
Fig. 3.4a). Using these values and Cr = 6.3 as a fit parameter, we can match the experi-
mental data shown in Fig. 3.4d with good accuracy. These results show that the Q in our
levitating composites is inversely proportional to d 2, providing evidence that the strong
dependence of Q on particle size can be mainly accounted for using Eq. (3.1), which is
based on dissipation due to eddy currents that flow inside the graphite particles. The
high sensitivity of Q to d , allows us to engineer and increase the Q of our levitating res-
onators by using different particle size while keeping the macroscopic dimensions of the
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plate constant. The highest Q we obtain with this fabrication process is 4.6× 105 for a
2.7×2.7×0.09m3 composite plate with d = 2.7µm particles and Vf = 0.21 volume frac-
tion, which is two orders of magnitude higher than a pyrolytic graphite plate of the same
size as shown in Fig. 3.4d.

It is of interest to note that extrapolation of the graphite plate data in the right side of
Fig. 3.4d to smaller values of d leads to much higher values of Q than that are obtained
experimentally with the composites in the left part of Fig. 3.4d. Several mechanisms
might account for this difference, including the random orientation of the graphite par-
ticles in the composite, the particle size and shape variations, inactive layers on the par-
ticle surfaces and material parameter differences between the graphite in the plates and
particles. In Fig. 3.4d the combined effect of these mechanisms are captured by the ef-
fective particle size factor Cr. Although we can not fully account quantitatively for the
relatively large value of Cr = 6.3 of this factor, possibly a small fraction of larger particles
or clusters of particles in the composite accounts for a large part of the damping force.
Microscopic images of the composites in A2 support this hypothesis, by showing that the
dispersion of the particles is random and less homogeneous inside the epoxy matrix with
local particle clusters. It might also be that not all sources of damping are included in Eq.
(3.1) and more sophisticated models will need to be developed. Nevertheless, we foresee
that by further control of the particle size and optimization of its distribution, levitat-
ing composites can achieve Qs above 1 million for millimeter composites with 1µm or
smaller particles.

The combination of high Q and large mass of the levitating composites promises
low noise floor levels in accelerometry. In Fig. 3.5 we benchmark the presented levi-
tating composite plates against state-of-the-art levitodynamic systems by plotting mass
against Q (Fig. 3.5a) and the square root of the acceleration noise power spectral den-
sity Saa ∝ fres/(mQ) [19] (Fig. 3.5b), which is a measure of the limit of detection of an
accelerometer. The plots compare a range of superconducting, diamagnetically, elec-
trically, and optically levitating systems, at room temperature (labeled with RT in Fig.
3.5), at cryogenic temperature (CT) or using feedback cooling (RT-FC). Note that RT-
FC stands for natural Qs that are estimated from feedback cooling measurements. The
plots also show the theoretical estimates of Q and

p
Saa (dashed lines) as a function of

mass for diamagnetically levitating pyrolytic graphite. It appears from this benchmark
that in terms of acceleration noise floor and Q, diamagnetic composites stand out, pro-
viding the possibility to levitate large, high-Q objects using relatively weak fields from
permanent magnets. The combination of large levitating proof mass and high Q make
these composites attractive materials for realizing next generation room temperature ac-
celerometers with theoretical sensitivities as low as 0.16ng/

p
Hz, that are comparable to

superconducting levitodynamic systems at cryogenic temperatures (Fig. 3.5b).

In conclusion, we demonstrate diamagnetic high Q composite plate resonators con-
sisting of graphite particles dispersed in an epoxy matrix that can be levitated at room
temperature above permanent magnets with graphite volume fractions as low as 14%. By
insulating the graphite particles, eddy currents are reduced and confined within the par-
ticles, allowing us to suppress the associated damping forces. This enables a remarkable
enhancement in Q, reaching values as high as nearly 0.5 million at room temperature.
Measurements of the dependence of damping to particle volume fraction, plate length,
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Figure 3.5: (a) Q-factor versus mass of different levitating systems (optical [9, 10, 27–29], diamagnetic [15, 24,
25, 30, 31], superconducting [11, 19, 32, 33] and electrical [12]). (b) Plot of acceleration noise floor against
mass of different levitating accelerometers (optical [9, 10, 17, 27–29, 34–38], diamagnetic [15, 24, 25, 30, 31],
superconducting [11, 19, 32, 33] and electrical [12]). RT stands for Qs measured at room temperature with-
out feedback cooling, CT stands for Qs measured at cryogenic temperature without feedback cooling, RT-FC
stands for natural Qs estimated from feedback cooling measurements. The Q and

p
Saa of different levitating

systems are also shown in Table 3.3-3.5 of A6. The Q and
p

Saa shown as dashed lines are simulated using
COMSOL for graphite plates with different size L (detailed material parameter values used for these simula-
tions can be found in Table 3.3 of A3). In the simulations the plate thickness t and magnet size D are taken
proportional to the plate side length (D = 1.2L and t = 0.03L). The grey area in Fig. 3.5a-b sets the boundary of
the Q and acceleration noise floor against mass of available levitodynamic systems in the literature.

and particle size are compared to FEM models, and show good agreement with an an-
alytical model for eddy current damping forces that predicts Q to be inversely propor-
tional to the squared particle size Q ∝ 1/d 2. Reduction of the particle size and optimiza-
tion of particle distribution and orientation, can lead to novel composites that further
enhance the performance of future macroscopic levitating devices used as accelerom-
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eters[19], gravimeters[20–23], or sensors for exploring macroscopic limits of quantum
mechanics [5, 39–41].

3.4. METHODS

3.4.1. COMPOSITE FABRICATION
Graphite micro powders (purity >99.9%) with mean sizes from 2.7− 22.7µm are pur-
chased from Nanografi Nano Technology. Particle size distribution measurements are
performed using Malvern Mastersizer 3000 on 0.1% weight/volume aqueous solution of
the powders using sodium dodecyl sulfate solution as surfactant. The particle size d of
each type of powder is represented by the mean value of the distribution. The morphol-
ogy of these powders is confirmed via Scanning Electron Microscopy (JEOL JSM-7500F).

The details of the graphite composite fabrication process are shown in Fig. 3.6. First,
the two components of the epoxy (Epotek 302-3M from Gentec Benelux) are mixed at
3500 rpm for 5 minutes in a Dual Asymmetric Centrifuge mixer (DAC 150.1 FVZ-K ) fol-
lowed by the addition and mixing of the graphite powder at 500 rpm for 5 minutes. To
reduce the viscosity of the resulting graphite-epoxy paste, ethanol is added, and further
mixed at 500 rpm for 5 mins. This maximises dispersion and homogeneity of the paste
with the graphite particles in the epoxy-ethanol matrix. The paste is then transferred into
circular holes (φ= 10mm) in a thin plastic mould with thickness of 0.12 mm on the top
of a flat steel mould. The deposited paste is left at room temperature and pressure for 30
minutes to let the ethanol fully evaporate before curing the epoxy in order to minimise
porosity. The graphite/epoxy paste is then compressed by steel moulds and cured in an
oven at 100 °C for around 12 hours. After curing, an Optec micro laser cutter is used to
cut the composite into square plates with desired lengths. Finally, fine sand paper (5µm
grain) is used to polish composite surface to the desired thickness.

3.4.2. MEASUREMENT
In our experiments, the excitation voltage is generated by the Polytec MSA400 vibrome-
ter for the resonance frequency measurements, and by a function generator for the ring-
down response measurements. The electrostatic force is generated as shown in Fig. 3.2a,
by applying a voltage difference between the magnets beneath the levitating plate. To
isolate the magnets from one another we use Kapton tape. When a voltage is applied
between the two electrodes, the levitating plate acts as a floating electrode between the
two electrodes, thereby forming a capacitive divider. In the area at which the plate over-
laps with the electrodes, an electrostatic downward force is exerted that depends on the
overlap area, voltage difference, and gap size. Since the electrostatic force is proportional
to the square of the voltage, a DC offset voltage is added to make sure the electrostatic
force has a component of the same frequency as the output voltage. Finally, to read out
the motion, a Polytec LDV is used. The LDV measurements are conducted in a vacuum
chamber over a pressure range of 10−6 −1000mbar at room temperature.

3.5. APPENDIX
In A1, we show the details of graphite composite fabrication process. A2 details out par-
ticle size measurement (A2.1) and particle dispersion analysis (A2.2). A3 presents the
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FEM methodology used to calculate the eddy current damping in a graphite (A3.1) and a
composite plate (A3.2). A4 shows the electrical conductivity measurements of compos-
ites with different volume fractions. In A5, we present the analytical model to calculate
the eddy current damping of a composite plate moving in a magnetic field. Finally, in A6
we show the Qs and acceleration noise floor of state-of-the-art levitodynamic systems.

A1: COMPOSITE FABRICATION PROCESS

Epoxy resin Ethanol

Graphite powder Mix in a SpeedMixer 
at 500 rpm for 5 mins 

Ethanol evaporate at RT 
and pressure for 30 mins

Plastic mould

Cure at 100°C with pressure
 for 12 hours

Steel mould

Figure 3.6: The schematic of composite fabrication process.

The details of graphite composite fabrication process is shown in Fig. 3.6.

A2: PARTICLE SIZE MEASUREMENT AND PARTICLE DISPERSION

ANALYSIS

A2.1: PARTICLE SIZE MEASUREMENT
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Figure 3.7: Particle size distribution for different particles used in the experiments.

Fig. 3.7 shows the size distribution of the graphite powders used in our experiments.
The particle size distribution measurements are performed using Malvern Mastersizer
3000 on 0.1% weight/volume aqueous solution of the powders using sodium dodecyl
sulfate solution as surfactant. The measurement of each type of powders is repeated five



3.5. APPENDIX

3

39

times. From this figure, it can be seen that the particle size of each type of powder has a
wide range of distribution. In the main text, we use the mean value of the distribution to
represent the particle size d .

A2.2:PARTICLE DISPERSION ANALYSIS
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Figure 3.8: Microscopic images of composites with 17.6µm particles and different volume fractions.
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Figure 3.9: Particle dispersion analysis on a composite with 17.6µm particles and 20.8 % volume fraction.
To obtain the Area Disorder AD , we first take an image of the composite (a) and then identify the particles
(b) using ImageJ. Afterwards, the particles’ center of mass (c) is located, from which we build their Delaunay
network (d) to calculate the AD .

Fig. 3.8 shows microscopic images of composites with 17.6µm particles and differ-
ent volume fractions. To obtain these images, samples are first polished with a fine sand
paper to obtain a clear interface between the graphite particles and epoxy. The graphite
particles are appearing in white color due to the reflection of light from the microscope.
To quantify the dispersion quality of the particles inside epoxy, we use the Area Disor-
der (AD) of the Delaunay network as described in reference [42]. AD is a dimensionless
quantity with values between 0 and 1. AD = 0 means the dispersion is perfect and par-
ticles are homogeneously distributed inside the matrix. AD = 1 means the dispersion is
worst with clusters, as shown in Fig. 3.10. To obtain the AD , we first identify the particle
boundaries (Fig. 3.9b) from the optical image (Fig. 3.9a), and then locate the particles’
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Figure 3.10: Quantitative analysis of the particle dispersion in composites with different volume fractions. The
Area fraction A f is obtained via image processing.

center of mass (Fig. 3.9c). Next, we build the Delaunay network (Fig. 3.9d) to calculate
AD . Fig. 3.10 shows the AD for the composites in Fig. 3.8. From Fig. 3.10, we can see
that the dispersion of our composites is random-like.

A3: COMSOL SIMULATIONS FOR OBTAINING EDDY CURRENT

DAMPING FORCES

A3.1. FEM: EDDY CURRENT DAMPING IN A GRAPHITE PLATE

Figure 3.11: Geometry model of magnets and graphite plate.

This section details out the methodology we use to calculate the eddy current damp-
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ing forces of a square graphite plate levitating above four permanent magnets. The ge-
ometry of the model is shown in Fig. 3.11.

We simulate the magnetic field using COMSOL Multiphysics 5.6. Assuming that the
influence of the diamagnetic plate on the field is negligible, the integrated magnetic
force on the plate, FB, can be determined using

FB =∇
∫
V

M ·BdV = µ0

2

∫
V
∇(χx H 2

x +χy H 2
y +χz H 2

z )dV , (3.3)

where χx ,χy ,χz are the magnetic susceptibility of the levitating plate in x, y, z directions,
V is the volume of the plate, B is the magnetic field and M is the plate’s magnetization.
The components of the magnetic field inside the plate are Hx,y,z = Bx,y,z /µ, where µ≈µ0

is the magnetic permeability of graphite. By calculating the magnetic force in z direc-
tion with different levitation gaps between the plate and magnets, the levitation height
where the z-component of magnetic force is equal and opposite to the gravitational force
is obtained. Using the levitation height, the stiffness of the magnetic force k can then ob-
tained by taking the derivative of Fz over z at the equilibrium point. Next, the resonance

frequency fres is calculated using fres = 1
2π

√
k
m , where m is the mass of the plate.

Then, we simulate the eddy current damping of the plate. We note that when a con-
ductor moves with velocity vector v through a magnetic flux density field B, the charge
carriers inside the conductor feel an electric field v×B due to the Lorentz’ force in addi-
tion to the field from the electric potential Ve , that generates an eddy current density J
given by

J =−σ∇Ve +σ(v×B), (3.4)

whereσ is the electrical conductivity. By combining Eq. (3.4) with the current continuity
condition ∇·J = 0 and the boundary condition J·n = 0 (n is the unit vector perpendicular
to the boundary), we determine the eddy current density distribution J numerically for
known v,σ, B. We then evaluate the the total damping contribution due to eddy currents
as follows

Fe =
∫
V

J×BdV , (3.5)

where integration is done over the graphite plate volume V . Noting that the eddy current
damping force Fe is proportional and in the opposite direction of the velocity v , we then
estimate the damping coefficient c. Finally, Q of the plate can be obtained as

Q = 2πm fres

c
. (3.6)

All the parameters used in our simulations for pyrolytic graphite plates are listed in Table
3.1.

A3.2 EDDY CURRENT DAMPING IN A COMPOSITE PLATE
In this section we explain how the eddy current damping forces of a composite plate
levitating above four permanent magnets are calculated. Because the magnetic suscep-
tibility and electrical conductivity of the epoxy are negligible, the composite is modeled
only by the graphite spheres to reduce the computation time, assuming that spheres are
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Table 3.1: Material properties used for the simulations of the levitating pyrolytic graphite.

Property Symbol Value Unit
Density ρ 2070 kg/m3

Susceptibility ⊥ [13] χz -450 ×10−6

Susceptibility ∥ [13] χx,y -85 ×10−6

Conductivity ⊥[43] σz 200 S/m
Conductivity ∥[43] σx,y 200000 S/m

Figure 3.12: COMSOL model. (a) Geometry model of magnets and graphite particles. (b) Spherical graphite
particles.

(a) (b)

distributed homogeneously. As discussed in the main text, to account for experimen-
tal deviations from the theoretical model due to variations in particle size, composition,
morphology and distribution, we use Crd as the effective particle size in the simula-
tion for particles with mean size of d , where Cr = 6.3 is an effective particle size factor.
Fig. 3.12a shows the geometry model of four permanent magnets and 1/8 fraction of the
graphite particles. The simulation procedure is similar to that of graphite plates. The
parameters used in our simulations for the composite plates are given in Table 3.2.

We note that graphite is inherently anisotropic [13]. However, in our fabrication pro-
cedure graphite particles are randomly oriented in the epoxy matrix, and thus by con-
sidering all possible orientations in the matrix, the local anisotropy can be averaged out
and the effective macroscopic behavior can be viewed isotropic. For this reason , in our
study we treat the magnetic susceptibility of graphite as an effective value χeff which we
evaluate by fitting our FEM simulations to the measured levitation height of the com-
posite from experiments. In Fig. 3.13 we showcase how χeff is estimated from experi-
ments. We first measure the natural levitation gap of the composite using the Keyence
microscope. By knowing the natural levitation gap and the gravitational force we then
use our FEM model to estimate the magnetic force for different values of χeff, and find
the best value that fits the experimental finding. In Fig. 3.13 we show this procedure
for a composite plate with 1.8×1.8×0.09mm3, with volume fraction Vf = 0.21 and par-
ticle size d = 17.6µm. It can be seen that the green line which matches our experi-
mental result is below the upper bound of the magnetic forces evaluated considering
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Figure 3.13: Magnetic force as a function of levitation gap obtained by COMSOL simulations using different
susceptibilities (solid lines), and the measured natural levitation gap (dot).

anisotropic magnetic susceptibilities, and the evaluated effective magnetic susceptibil-
ity χeff =−120×10−6 agrees well with the reported value in reference [44].

Table 3.2: Material properties of the graphite particles and epoxy used for the simulations of the levitating
composite plates.

Property Symbol Value Unit
Graphite density ρg 2250 kg/m3

Epoxy density ρe 1100 kg/m3

Graphite susceptibility χeff -120 ×10−6

Graphite resistivity[43] ρr 1/200000 Ωm

Fig. 3.14a-c show the change of mass m, resonance frequency fres and damping coef-
ficient c of composite plates with different particle volume fraction Vf. Fig. 3.14d-f show
the change of mass m, resonance frequency fres and damping coefficient c of composite
plates with different plate length L. Fig. 3.14g-i show the change of mass m, resonance
frequency fres and damping coefficient c of composite plates with different particle size
d .

A4: ELECTRICAL CONDUCTIVITY OF THE COMPOSITES
Fig. 3.15 shows the bulk conductivity of two composites made from d = 8.6µm and d =
17.6µm particles with different volume fractions. The conductivity is measured by the
two-point measurement method with Agilent 4263B LCR meter (Santa Clara, CA, USA).
It can be seen from the figure that the bulk conductivity of the composite is increasing
with higher graphite volume fractions.
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Figure 3.14: (a-c) Changes in mass m, resonance frequency fres and damping coefficient c of 1.8 × 1.8 ×
0.09mm3 composite plates with d=17.6µm particles and different volume fraction Vf; (d-f) Changes in mass
m, resonance frequency fres and damping coefficient c of composite plates with d=17.6µm particles and vol-
ume fraction Vf = 0.21, but different plate length L; (g-i) Changes in mass m, resonance frequency fres and
damping coefficient c of 1.8× 1.8× 0.09mm3 composite plates with volume fraction Vf = 0.32 and different
particle size d . The lines correspond to data obtained from COMSOL simulations and dots represent mea-
sured data.
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Figure 3.15: Conductivity of two composites as a function of volume fraction.

A5: ANALYTICAL MODELLING OF EDDY CURRENT DAMPING

x

y

z

v

B

R

r

w(r)

Figure 3.16: A sphere model.

In this section we obtain the Q-factor of a diamagnetic particle moving in a mag-
netic field, analytically. We consider a spherical particle with radius R = d/2 that moves
inside a magnetic field

#»
B as shown in Fig. 3.16. To calculate the eddy current loss of

the sphere, we assume the sphere consists of cylinders with varying radius r and height
w(r ) as shown in Fig. 3.16. It is also assumed that the sphere is small compared to the
magnetic field distribution and that the magnetic field B is not changing in different lo-
cations on the sphere. According to Faraday’s law of induction, the induced voltage on
each ring (dr ) of the sphere can then be calculated as [26]:

em f = dΦ

dt
= d(πr 2B)

dt
=πr 2 dB

dz

dz

dt
=πr 2v

dB

dz
, (3.7)

where Φ is the magnetic flux, and v is the velocity of the sphere. The induced current in
the ring will then be

dI =πr 2v
dB

dz

w(r )dr

2πrρr
, (3.8)
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where ρr is the electrical resistivity of the sphere. Using Eq. (3.7) and (3.8), the power
loss in the ring can then be calculated as

dP =πr 3v2
(

dB

dz

)2 w(r )dr

2ρr
, (3.9)

from which the total loss inside the sphere will become

P =πv2
(

dB

dz

)2 1

2ρr

∫ R

0
r 32

√
R2 − r 2dr = 2πv2R5

15ρr

(
dB

dz

)2

. (3.10)

Finally, the eddy current loss per unit volume of the sphere becomes

Punit = v2R2

10ρr

(
dB

dz

)2

. (3.11)

Considering Punit = Feddyv = cunitv2, and using Eq. (3.11), the damping coefficient cunit

can then be expressed as

cunit = R2

10ρr

(
dB

dz

)2

. (3.12)

Which results in the following expression for the Q-factor solely due to eddy currents:

Qsphere =
2πmsphere fres

csphere
= 2πρdVsphere fres

cunitVsphere
= 2πρd fres

cunit
= 20π fresρdρr

R2(dB/dz)2 , (3.13)

in which msphere is the mass of the particle, fres is the resonance frequency, ρd is the
density and Vsphere is the volume of the sphere.

For a composite plate consisting of spheres of radius R dispersed in an insulating
matrix, the Q can be determined similar to Eq.(3.13) as follows:

Qplate =
2πmplate fres

cplate
= 2πρpVplate fres∫

Vspheres
cunitdVspheres

= 20π fresρpρrVplate

R2
∫

Vspheres

(
dB
dz

)2
dVspheres

, (3.14)

where ρp is the density of the composite plate, Vplate is the volume of the plate, and
Vspheres is the volume of the spherical particles. For a graphite/epoxy composite plate
with volume fraction of Vf, the Q is then

Qplate =
20π fresρrVplate(Vf(ρg −ρe)+ρe)

(CrR)2
∫

Vspheres

(
dB
dz

)2
dVspheres

= 20π fresρrVplate(Vf(ρg −ρe)+ρe)

(CrR)2B2VfVplate

= 20π fresρr((ρg −ρe)+ρe/Vf)

(CrR)2B2
, (3.15)

where ρg is the density of graphite, ρe is the density of epoxy, and Cr is the apparent par-
ticle size factor that accounts for the uncertainties related to particle size, morphology
and distribution. And

B2 =
∫

Vplate

(
dB
dz

)2
dVplate

Vplate
, (3.16)
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that can be obtained numerically using Comsol.

A6: Q-FACTORS AND ACCELERATION NOISE FLOOR OF STATE-
OF-THE-ART LEVITODYNAMIC SYSTEMS
In Table 3.3-3.5 we list the Qs and acceleration noise floors

p
Saa of different levitody-

namic systems showed in Fig. 3.5 of the main text. In Table 3.3, the Qs were measured
directly without feedback cooling either at room temperature or cryogenic temperature.
In Table 3.4, we show the Qs measured at room temperature with feedback cooling and
the natural Qs estimated at room temperature without feedback cooling. In Table 3.5,
the reported acceleration noise floor of different levitodynamic systems under different
measurement conditions are listed. The data marked with [∗] are estimated using the
following equation [19]: √

Saa =
√

8π freskBT

mQ
(3.17)

where fres is the resonance frequency, m is the mass, Q is the quality factor, T is the
temperature and kB is the Boltzmann constant.

Table 3.3: Q-factors of different levitodynamic systems without feedback cooling (RT: room temperature).

mass(kg) Q Levitation method Temperature Reference
3.3×10−18 1.0×107

optical
RT [9]

3.7×10−14 2.1×104 RT [27]
9.6×10−17 1.5×106 electrical RT [12]
6.1×10−10 1.3×107

superconducting

4.2K [11]
1.1×10−10 1.0×106 <90K [32]
5.7×10−11 5.0×104 5K [33]
4.0×10−6 5.5×103 5K [19]
2.7×10−13 2.0×107

diamagnetic

3K [30]
7.8×10−8 1.5×105 RT [31]
1.0×10−5 362 RT [15]
2.3×10−5 176 RT [15]
3.9×10−5 115 RT [15]
6.3×10−5 76 RT [15]
2.3×10−6 4.6×105 RT this work
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4
NONLINEAR DYNAMICS OF

DIAMAGNETICALLY LEVITATING

RESONATORS

The ultimate isolation offered by levitation offers new opportunities for studying funda-
mental science and realizing ultra-sensitive sensors. Among different levitation schemes,
diamagnetic levitation is attractive because it allows stable levitation at room temperature
without continuous power supply. While the dynamics of levitating objects in the linear
regime is well studied, their nonlinear dynamics has remained largely unexplored. Here,
we experimentally and theoretically study the nonlinear dynamic response of graphite res-
onators that levitate in permanent magnetic traps. By large amplitude actuation of the
diamagnetic plates, we drive them into nonlinear regime while measuring their motion
using laser Doppler interferometry. In contrast to common nanomechanical resonators,
that show an increased stiffness at high amplitude due to nonlinear geometric effects, we
observe a resonance frequency reduction with amplitude that is attributed to the softening
effect of the magnetic force. To account for this, we analyze the asymmetric magnetic po-
tential and construct a model that captures the experimental nonlinear dynamic behavior
over a wide range of excitation forces. We also investigate the linearity of damping forces
on the plate, concluding that while eddy current damping is linear over a large range, gas
damping opens a route for tuning nonlinear damping forces via the squeeze-film effect.

Parts of this chapter are to be submitted in a journal by X. Chen, Tjebbe de Lint, F. Alijani, P. G. Steeneken.
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4.1. INTRODUCTION
Gaining control over the dynamics of levitating objects has been a long sought goal, both
because contactless levitation provides extreme isolation from external sources of heat
and friction and because it allows six degrees-of-freedom motion. Recently, the interest
in the field of levitodynamics[1] has surged, stimulated by the demonstration of quan-
tum ground state cooling [2, 3] and the use of extremely high-Q levitating resonators
for highly-sensitive sensors [4–6]. Diamagnetic levitation has the advantage of being the
only passive levitation method that does not require continuous energy supply or cryo-
genic temperatures [5, 7, 8], which differentiates it from other kinds of levitation schemes
[1, 9] like optical, superconducting and electrical levitation. Moreover, the passive, zero
power nature of diamagnetic levitation does not incur heating and noise that can be
limits in optical and electrical schemes[4, 10, 11]. Moreover, suitably designed magnetic
traps from permanent magnets allow stable diamagnetic levitation in high vacuum with-
out active feedback[8], enabling levitation of high-mass macroscopic objects, that pro-
vide increased sensitivity in accelerometers[12] and gravitational field sensors[13, 14].

In contrast to the low-amplitude linear dynamics of levitating resonators[5, 7], their
large-amplitude motion has received relatively little attention. Since damping forces are
small in levitating systems, small forces are often sufficient to drive resonators into the
high-amplitude regime[15, 16] which is relevant for applications like levitating mirrors,
translation stages, rotors and pumps. Moreover, high-amplitude oscillation improves
the signal-to-noise ratio of resonant sensors[17, 18]. However, the amplitude of these
devices cannot be increased indefinitely due to the presence of nonlinear effects which
constrain the operation range of levitating devices and affecting their performance. A
good understanding of the nonlinear dynamic effects that govern the dynamics of levi-
tating resonators in the high-amplitude regime is therefore important for their applica-
tion.

Here, we study the nonlinear dynamics of diamagnetic graphite plates that stably lev-
itate in a magnetic trap formed by four permanent magnets. By measuring the frequency
response of the plates in vacuum and driving their motion by base excitation, the non-
linearity of the resonant motion is determined and analyzed. By characterization of the
magnetic forces it is shown that the magnetic levitation potential is the largest source
of nonlinearity. By rising the driving force, the frequency response of the plate in the
nonlinear dynamic regime is obtained, in close agreement with models based on the
measured nonlinear magnetic stiffness. Finally, we perform nonlinear dynamic mea-
surements in air, which show that eddy current damping is linear, while squeeze-film
gas-damping forces contribute strongly to nonlinear damping.

4.2. RESULTS

4.2.1. EXPERIMENTAL METHODS

The magnetic levitation system used in our experiments consists of a pyrolytic graphite
plate and four permanent magnets, as shown in Fig. 4.1b. The graphite is purchased
from MTI Corporation and cut into a 10× 10× 0.28m3 plate using a Optec micro laser
cutter, after which its surface is polished using sand paper with 5µm grains to improve
the reflected optical readout signal. The plate levitates stably above four cubic NdFeB
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Figure 4.1: Measurement setup and nonlinear frequency response of a diamagnetically levitating plate. (a)
Schematic of the experimental setup consisting of a Polytec Laser Doppler Vibrometer MSA400 for velocity
readout and a Bruel & Kjaer shaker 4810 for base excitation. The excitation voltage is generated by a Zurich
lock-in amplifier HF2LI that drives the levitating plate to vibrate in the vertical direction. The vibration signal
is recorded by the MSA vibrometer and transferred to the lock-in amplifier for signal analysis. (b) Image of a
10×10×0.28m3 plate levitating over four 12 mm cubic NdFeB magnets with alternating magnetization, where
N stands for north pole and S stands for south pole. (c) Frequency response curves of the levitating plate
excited by different driving voltage when backwards sweeping the frequency from 20 Hz to 14 Hz.

magnets in a checkerboard arrangement with alternating out-of-plane magnetization
(Fig. 4.1b). In order to obtain a minimum magnetic potential, the plate rotates under the
effect of the magnetic field until it attains a 45° angle between its edges and the edges of
the magnets. The natural levitation gap where the gravitational force of the plate equals
the magnetic force is H0 = 1.18mm, as measured by a Keyence digital microscope (VHX-
6000).

To drive the levitating plate into motion, we use a mini shaker which is attached
under the magnets as shown in Fig. 4.1a. To detect the motion of the levitating plate,
we use a Polytec Laser Doppler Vibrometer to measure the out-of-plane velocity of the
plate. The spectral response of the plate is obtained by sweeping the excitation fre-
quency around the plate’s resonance using a Zurich Lock-in Amplifier. To eliminate ef-
fects[7] of air damping, measurements are conducted in a vacuum chamber at a pres-
sure below 10−5mbar. Fig. 4.1c shows the frequency response of the levitating plate
when sweeping the excitation frequency downward from 20 Hz to 14 Hz, for different
driving voltages. When the driving voltage is small Vac = 0.05V, the frequency response
of the plate is linear with a resonance frequency of fr = 16.9Hz and a quality factor of
Q = 48. With the excitation voltage increasing from 0.05 to 1.8 V, the peak frequency de-
creases and the displacement amplitude increases. Since the natural levitation gap is
H0 = 1.18mm, the plate almost touches the magnets when driving with 1.8 V at the peak
frequency, obtaining a displacement amplitude close to H0 (see Fig. 4.1c). In the follow-
ing we keep the driving voltage on the shaker below 1.8 V, to prevent impact of the plate
on the magnets. The observed dynamics of the diamagnetic plate is clearly nonlinear,
resembling a Duffing resonator with negative nonlinear stiffness. To analyze the origin
of this nonlinear dynamics, characterization of the magnetic forces is needed.
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4.2.2. NONLINEAR MAGNETIC FORCE
To analyze the nonlinear dynamic behaviour of the levitating plate, we first determine
the stiffness of the magnetic force using experimental and analytic methods. As shown
in the inset of Fig. 4.2a, there are only two forces acting on the plate when it is levitating
in static equilibrium: the magnetic force and gravitational force. Since the gravitational
force is independent of displacement, only the magnetic force influences the plate’s stiff-
ness.
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Figure 4.2: Position-dependent nonlinear magnetic force on the levitating plate. (a) The total mass mtot of
the levitating pyrolytic graphite plate is varied by adding non-magnetic polymer blocks. For each datapoint
the levitation gap H between the bottom of the plate and the top of the permanent magnets is measured using
a Keyence digital microscope, while the magnetic force is determined from the static equilibrium with the
gravitational force |Fm | = mtot. H0 stands for the natural levitation gap of the plate. Experimental data are
compared to FEM and analytical simulations. (b) Potential energy of the plate as a function of its displacement
x (x = H0 − H) based on the FEM Fm − H curve in Fig. 4.2a. The dot-dash line shows its center of motion
(midpoint between maximum and minimum displacement) when the plate is in free vibration.

To determine the position dependent magnetic force experimentally, we add non-
magnetic polymer blocks with different weights on top of the diamagnetic graphite plate
and measure the mass mtot of the plate with blocks, from which we determine the mag-
netic force in static equilibrium which equals the gravitational force Fm = mtotg . For
each mass value, we measure the levitation gap H between plate and magnet using a
Keyence digital microscope. To correct for non-uniformities in plate height, we mea-
sure the levitation gap on all four corners and obtain the average gap H . The results are
shown in Fig. 4.2a, from which a clear reduction of the magnetic force with increasing
gap H is observed. Since we cannot easily reduce the gravitational force on the plate be-
low mg , where m is the mass of the graphite plate without polymer blocks, the levitation
gap cannot be raised above H0, the equilibrium gap for which Fm(H0) = mg .

To determine the full Fm(H) curves, also for H > H0, we perform analytic and finite
element method calculations. The magnetic force of the four magnets on the diamag-
netic plate can be analytically calculated using:

FB =∇
∫
V

M ·BdV

= µ0

2

∫
V
∇(χx H 2

x +χy H 2
y +χz H 2

z )dV , (4.1)
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where V is the volume of the plate, Hx,y,z are the components of the magnetic field vec-
tor, M is the magnetization vector and B the magnetic flux density vector. In this analysis
it is assumed that the plate does not significantly affect the magnetic field, since its rel-
ative magnetic permeability is close to 1. To calculate the magnetic force acting on the
plate, we model the magnetic field of the four permanent magnets analytically using the
charge model[19] and numerically using COMSOL Multiphysics (see details of modelling
in A1 and A2). In Fig. 4.2a the calculated magnetic force Fm is plotted as a function of
levitation gap H for both methods. It can be seen that the COMSOL simulations cor-
respond well with the experimental data, while a small discrepancy is observed for the
analytical model, especially for small values of H . This discrepancy is attributed to the
fact that the edges of the cube magnets are not sharp, but slightly rounded, an effect that
is included in FEM but not in the analytical model.

In the linear regime, the magnetic stiffness around the equilibrium position H0 is
obtained from the slope of the graph in Fig. 4.2a, kL = dFz

dH = 0.6625N/m. Knowing the
mass of the plate m = 5.88×10−5 kg, the resonance frequency of the vertical rigid body

mode of the plate is found to be fr es = 1
2π

√
kL
m = 16.89Hz, which matches closely with

the measured value of fres = 17.0Hz (Fig. 4.1c).
However, for large amplitude motion, nonlinear terms in the force-displacement

curve need to be taken into account. We describe the motion of the plate in terms of
its displacement x = H0−H with respect to the equilibrium position, for the total restor-
ing force is given by Fr = Fm −mg . Fig. 4.2b shows the potential energy obtained by∫

Frdx using the simulated magnetic force (red circles in Fig. 4.2a). It is observed from
Fig. 4.2b that interestingly, the potential well is not symmetric around the axis x = 0, in
contrast with many non-levitating mechanical systems that derive their nonlinear stiff-
ness from nonlinear geometric effects. As a consequence, the center of motion (middle
between maximum and minimum displacement) will be amplitude dependent and will
not coincide with H0 for large amplitude motion. For the maximal free vibration am-
plitude that the plate can sustain before colliding with the magnet, it displays a large
assymmetry in its maximal displacement (zero kinetic energy) positions xmax=1.18 mm
and xmin−2.5 mm, as shown in Fig. 4.2b.

The restoring force Fr of the plate as a function of its displacement x between
−3.0mm < x < 1.2mm, as simulated by FEM, is plotted in Fig. 4.3a. A linear fit of
the data at x = 0 is shown as a black solid line. It is interesting to note from Fig. 4.3a
that, unlike conventional mechanical spring structures, like double-clamped beams
that have symmetric force-displacement curves for reflection around x = 0, the force-
displacement curve of the levitating plate is asymmetric. Whereas asymmetries induced
by external forces in nonlinear resonators [20, 21] have recently received interest from
the community for affecting nonlinear parameters and inducing nonlinear phenomena
like frequency combs, this asymmetry is intrinsic in the diamagnetically levitating plates,
due to the asymmetric arrangement of the permanent magnets below the plate and the
effect of gravity. As a consequence of the asymmetry, the force-displacement curve in
Fig. 4.3a shows hardening when x > 0 and softening when x < 0, implying that the
magnetic force can not be fully described by a third order polynomial with Duffing-type
nonlinear stiffness. To illustrate this, and determine the minimal degree of polynomial
needed to capture the magnetic nonlinearity, we fit the FEM data around x = 0 with



4

58 4. NONLINEAR DYNAMICS OF DIAMAGNETICALLY LEVITATING RESONATORS

- 3 . 0 - 2 . 5 - 2 . 0 - 1 . 5 - 1 . 0 - 0 . 5 0 . 5 1 . 0

- 0 . 5

0 . 5

1 . 0

1 . 5

 F E M
 L i n e a r
 D u f f i n g
 C u b i c  f u n c t i o n
 Q u a r t i c  f u n c t i o n
 Q u i n t i c  f u n c t i o n

F r ( m N )

x ( m m )

( a )

1 4 1 5 1 6 1 7 1 8 1 9 2 00 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

1 . 2
 E x p e r i m e n t
 L i n e a r
 D u f f i n g
 C u b i c  f u n c t i o n
 Q u a r t i c  f u n c t i o n
 Q u i n t i c  f u n c t i o n

Dis
pla

ce
me

nt 
(m

m)

E x c i t a t i o n  f r e q u e n c y  ( H z )

( b )

Figure 4.3: (a) Restoring force Fr = Fm −mg of the levitating plate as a function of its displacement x when
the plate is in free vibration. The hollow circles stand for the data obtained from FEM simulations and the
lines are fits by polynomials from linear to quintic degree. (b) Frequency response curves of the plate with a
driving voltage Vac = 1.5V obtained by experiments (dots) and nonlinear dynamic simulations based on the
polynomial stiffness functions from Fig. a (solid lines).

polynomials from first to fifth degree in Fig. 4.3a, and list the fit parameters in Table 4.1.
The functional form of the polynomials is Fr = km1x +km2x2 +km3x3 +km4x4 +km5x5.
We conclude from the fits that only the quintic, fifth degree polynomial fits well to the
FEM data and will use this function constructing the plate’s equation of motion and
analyzing its nonlinear dynamics.

Table 4.1: Fit parameters of the polynomial restoring force obtained from Fig. 4.3a.

Function km1(N/m) km2(N/m2) km3(N/m3) km4(N/m4) km5(N/m5)
Linear 0.6625 - - - -

Duffing 0.3732 - −2.571×104 - -
Cubic 0.8110 479.4 9.381×104 - -

Quartic 0.7338 564.0 2.315×105 3.549×107 -
Quintic 0.6625 530 3.25×105 1.114×108 1.474×1010
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4.2.3. DYNAMIC MODELLING
After having determined the restoring force Fr(x), the equation of motion of the plate
under base excitation can be written as:

mẍ + ceẋ +Fr(x − y) = 0. (4.2)

where ce is the linear damping coefficient due to eddy currents [7], y = a cos(ωt ) is the
motion of the base as driven by the shaker, and the conversion between the base motion
and the input voltage is a = 0.0158Vac (see also A3 for more details). For the quintic
polynomial stiffness function, the nonlinear equation of motion is:

mẍ + ceẋ +km1(x − y)+km2(x − y)2 + (4.3)

km3(x − y)3 +km4(x − y)4 +km5(x − y)5 = 0.

Next, we nondimensionalize the system using the natural levitation gap H0 and the nat-
ural period T . In terms of the nondimensional variables x̂ = x

H0
and t̂ = t

T , the nondi-
mensional equation of motion becomes:

¨̂x + 2ζe ˙̂x + x̂ − f1 cos(Ωt̂ )+
α

(
x̂ − f1 cos(Ωt̂ )

)2 +β(x̂ − f1 cos(Ωt̂ ))3 + (4.4)

α2
(
x̂ − f1 cos(Ωt̂ )

)4 +β2(x̂ − f1 cos(Ωt̂ ))5 = 0,

where α= km2 H0
km1

, β= km3 H 2
0

km1
, α2 = km4 H 3

0
km1

, β2 = km5 H 4
0

km1
, ζe = ce

2
p

km1m
, f1 = a

H0
andΩ= ω

ωres
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Figure 4.4: Comparison between the measured and modelled nonlinear frequency response of the levitating
plate. (a)-(d) Experimental and modelled frequency response curves at four different driving voltages. The
dots represent the experimental data and the lines represent the modelled data with stable (solid line) and
unstable (dashed) solutions. Experimental (e) and modelled (f) frequency response curves with a wide range
of driving voltages from 0.1 V to 1.8 V, where the color represents the vibration amplitude.

Using the stiffness parameters in Table 4.1, we solve equation Eq. (4.4) using AUTO
[22] and obtain the amplitude-frequency curves for the 5 polynomial stiffness functions
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determined from Fig. 4.3a and plot them in Fig. 4.3b, comparing it to the experimental
data (Fig. 4.1c) for a driving voltage Vac = 1.5V. We thus confirm that the quintic poly-
nomial stiffness function corresponds well to the experimental response function at this
driving force, in contrast to lower order polynomial stiffness function. We note that, even
though the quartic function can capture the stiffness reasonably well (see Fig. 4.3a), it
deviates substantially from the experimental frequency response curve. In Figs. 4.4a-d
the experimental data for different driving voltages are compared to simulations based
on the equation of motion (4.4) and the quintic polnomial nonlinear magnetic force.
Fig. 4.4e shows the experimental frequency response curves for all the curves shown in
Fig. 4.1c which correspond well to the modelled curves in Fig. 4.4f over a large range of
displacement. This correspondence provides confidence that nonlinear dynamics might
also prove to be a useful tool for determining the nonlinear stiffness in levitating systems
where no analytical models for the trap potential are available.

4.2.4. GAS-INDUCED NONLINEAR DAMPING
After characterizing the nonlinear stiffness, we next study the nonlinearity of the damp-
ing in the levitating plate. It is known that eddy current forces dominate damping mech-
anism in vacuum[7]. The fact that we obtained close agreement between experiment
and model in Fig. 4.4 while using only a single quality factor Q = 48, indicates that the
eddy current damping force is quite linear, proportional to the plate velocity. This can
also be seen from Fig. 4.5a, where the normalized maximum displacement xmax/a is
almost independent of the driving amplitude a, a signature that nonlinear terms in the
eddy current damping force are small.

Since operating in air is favorable for many types of sensors, we next measure the lev-
itating plate’s frequency response in open air to study the influence of air on its nonlinear
dynamics. The experimental procedure is similar as shown in Fig. 4.1a, except that the
experiments are conducted in air at atmospheric pressure at room temperature without
the vacuum chamber. In Fig. 4.5b, we show normalized frequency response curves for
four excitation forces. In contrast to the results measured in vacuum (Fig. 4.5a), a clear
reduction in the normalized amplitude is observed when driven at higher voltages. This
reduction is a clear signature of nonlinear damping, which originates from air damping
[23]. Because the air gap between the levitating plate and the magnets is relatively small
(H0 = 1.189mm), it is likely that the major source of nonlinear damping is squeeze-film
damping [24], which is proportional to ẋ/H 3) , leading to the following equation of mo-
tion:

mẍ + ceẋ + cn

(1− x−y
H0

)3
ẋ +Fr(x − y) = 0, (4.5)

where cn is the nonlinear squeeze-film damping coefficient. Using Reynold’s equation,
the damping coefficient of a square plate can be written as [25]:

cn = 0.42µ(L+∆L)4

H 3
0

, (4.6)

where µ = 1.825 × 10−5 kg/(m · s) is the viscosity of air under atmospheric conditions,
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Figure 4.5: Air-induced nonlinear damping. (a) Normalized frequency response curves with different excita-
tion voltages measured in vacuum. (b) Normalized frequency response curves with different excitation volt-
ages measured in air. (c) Frequency response curves with different excitation voltages measured in air and
their corresponding modelled curves using Eq. (4.5). (d) Nonlinear damping ratio ζn as a function of normal-
ized drive f1. The red line represents the damping ratio used in fitting the curves shown in Fig. 4.5c. The blue
line coresponds to the damping ratio calculated from Eq. (4.6).

L = 10mm is the side length of the square plate and ∆L = 1.3H0 is the elongation of the
plate taking into account the border effects.

Using cn as a fit parameter, we can model the frequency response curves of the plate
in air using Eq. (4.5) for different driving levels, as shown in Fig. 4.5c. We also note that
in order to get a good fit, we need to adjust the resonance frequencies slightly due to the
significant effect of air damping (see A4 for the resonance frequencies used in the fitting).
It can be seen that the experimental data is quite well fitted by the squeeze-film damp-
ing model, although we did observe that the fitted value of the squeeze-film damping
constant cn depended on the driving amplitude. This can be seen in 4.5d, where we plot
the nonlinear squeeze-film damping ratio ζn = cn

2
p

km1m
versus normalized drive ampli-

tude. When the driving force is small and the plate is in linear regime, the theoretical Q
factor is Q = 1/(2ζe +2ζn) = 29.6, which is close to the linear Q = 24.8. With increasing
driving force, the normalized damping ratio increases from 0.01 to 0.03, deviating from
the theoretical value more with increasing amplitude, indicating that more sophisticated
damping models will be needed to fully capture the nonlinear dynamic air damping of
levitating plates.
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4.3. CONCLUSIONS

In conclusion, we have explored the nonlinear dynamics of diamagnetically levitating
graphite plates. Using gravitational force, we characterized the nonlinearity of the mag-
netic force field in which the plate is trapped. With dynamic measurements, we observe
that the intrinsic nonlinearity of the repulsive magnetic force causes a spring softening
nonlinearity that leads to lower peak amplitude for increasing driving. Due to asym-
metries in the magnetic potential, it is found that a quintic polynomial is needed to
describe the force-displacement function with sufficient accuracy. Thus good agree-
ment between experimental and simulated nonlinear dynamic frequency response is
obtained in vacuum. Finally, we compare the normalized frequency response of the
plate in air at atmospheric conditions, concluding that the eddy current damping is
nearly linear and the squeeze film effect leads to strong nonlinear damping. This study
of the nonlinear dynamics of levitating systems provides insight into the effects of the
nonlinear stiffness of a magnetic trap and squeeze film damping forces on the nonlinear
dynamics of levitating plates in the presence of base excitation. Moreover, it demon-
strates an approach for analyzing the nonlinear dynamics of other levitating systems
that will likely become of increasing relevance considering the growing interest in the
field of levitodynamics.

4.4. APPENDIX

A1. MAGNETIC FIELD CALCULATION BY ANALYTICAL MODEL-
ING

In this section, we determine the magnetic field B outside a rectangular permanent mag-
net using the charge model following the derivation in reference [19]. We first introduce
the charge model of determining the magnetic field of a unit magnet source, and then
expand it to one rectangular permanent magnet.

THE CHARGE MODEL

The charge model is a useful method to calculate the magnetic field distribution of per-
manent magnets. In this model, a magnet is taken as a distribution of equivalent ‘mag-
netic charge’, which is the source of magnetic field. For a current-free region and mag-
netostatic field, ∇×H = 0 and ∇ ·B = 0, where H,B are the magnetic field strength and
magnetic flux density due to a magnetic source, respectively. Then, the irrotational mag-
netic vector field H can be written as the gradient of the magnetic scalar potential φm:

H =−∇φm. (4.7)

Because B =µ0(H+M), whereµ0 is the vacuum permeability and M is the magnetization,
combining Eq. (4.7) and ∇·B = 0 results in:

∇2φm =∇·M. (4.8)
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For a free space without boundary conditions, we can solve Eq. (4.8) using Green’s func-
tion G(x,x0) for ∇2 and obtain a particular solution:

φm(x) =
∫

G(x,x0)∇′ ·M(x0)dv0 (4.9)

=− 1

4π

∫ ∇′ ·M(x0)

|x−x0|
dv0, (4.10)

where x is the observation point, x0 is the source point, ∇′ operates on the primed coor-
dinates, and the integration is over the volume for which the magnetization exists. As-
suming M is confined in a volume V with boundary surface S and falls abruptly to zero
outside of this volume, Eq. (4.10) can be written as:

φm(x) =− 1

4π

∫
V

∇′ ·M(x0)

|x−x0|
dv0 + 1

4π

∮
S

M(x0)× n̂

|x−x0|
ds0, (4.11)

where n̂ is the outward unit normal to S. Therefore, the volume charge densities ρm and
surface charge densities σm can be defined as:

ρm =−∇·M (4.12)

σm = M·n̂. (4.13)

For free space, B =µ0H, and subtituting Eq. (4.11) into Eq. (4.7) obtains:

B(x) = µ0

4π

∫
V

ρm(x0)(x−x0)

|x−x0|3
dv0 + µ0

4π

∮
S

σm(x0)(x−x0)

|x−x0|3
ds0, (4.14)

MAGNETIC FIELD OF ONE PERMANENT MAGNET
For a permanent magnet as shown in Fig. 4.6, assuming that its magnetization is M =
Mr ẑ along z direction and its dimension can be denoted by two points P1(x1, y1, z2) and

x

y

z

M

P2(x2,y2,z1)

P1(x1,y1,z2)

Figure 4.6: Schematic of one permanent magnet with magnetization M and its corresponding coordinate
system. The charge densities on the top and bottom surfaces of the magnet are represented with + and -,
respectively.
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P2(x2, y2, z1), its magnetic field B can be calculated using the charge model. For perma-
nent magnets, the volume charge density inside the magnets is zero ρm = −∇ ·M = 0,
while the surface charge densities on top and bottom surfaces are:

σm =
{

Mr (z = z2)

−Mr (z = z1).
(4.15)

Based on Eq. (4.14), the magnetic field of the rectangular magnet is:

B(x, y, z) = µ0Mr

4π

2∑
k=1

(−1)k ×
∫ y2

y1

∫ x2

x1

[(x −x0)x̂+ (y − y0)ŷ+ (z − zk )ẑ]dx0dy0

[(x −x0)2 + (y − y0)2 + (z − zk )2]3/2
. (4.16)

Therefore, by integrating Eq. (4.16) with respect to x0 and y0, we can obtain the x-
component of the magnetic field:

Bx (x, y, z) = µ0Mr

4π

2∑
k=1

2∑
m=1

(−1)k+m ln[
(y − y1)+ [(x −xm)2 + (y − y1)2 + (z − zk )2]1/2

(y − y2)+ [(x −xm)2 + (y − y2)2 + (z − zk )2]1/2
],

(4.17)

and the y-component of the magnetic field:

By (x, y, z) = µ0Mr

4π

2∑
k=1

2∑
m=1

(−1)k+m ln[
(x −x1)+ [(x −x1)2 + (y − ym)2 + (z − zk )2]1/2

(x −x2)+ [(x −x2)2 + (y − ym)2 + (z − zk )2]1/2
].

(4.18)

Similarly, the z-component of the magnetic field can be obtained:

Bz (x, y, z) =µ0Mr

4π

2∑
k=1

2∑
n=1

2∑
m=1

(−1)k+n+m (4.19)

× tan−1[
(x −xn)(y − ym)

z − zk

1

[(x −xn)2 + (y − ym)2 + (z − zk )2]1/2
]. (4.20)

Normally, the magnetic property of a permanent magnet is described by its remanent
magnetic flux density Br, and Br = µ0Mr. Therefore, with a known Br and demensions,
the magnetic field outside a permanent magnet can be calculated using Eq. (4.17), Eq.
(4.18) and Eq. (4.19). For example, for a magnet with Br = 1.4T and dimensions of 10×
10×10mm3 (x1 =−5, x2 = 5, y1 =−5, y2 = 5, z1 =−5, z2 = 5), its magnetic field Bx ,By ,Bz

along a line (x = 2mm, y = 3mm,5mm < z < 10mm) are calculated using Eq. (4.17-4.19)
and shown in Fig. 4.7. For comparison, we also use a finite element method (COMSOL
Multiphysics) to calculate the magnetic field of the same magnet and the results are also
shown in Fig. 4.7, from which a good agreement between the two methods is observed.

MAGNETIC FIELD OF AN ARRAY OF MAGNETS
For an array of multiple permanent magnets, the magnetic field in free space can also be
determined using Eq. (4.17-4.19). For example, for a magnet array as shown in Fig. 4.8,
it magnetic field can be calculated by:

B(x, y, z) =
4∑

i=1
Bi (x, y, z), (4.21)
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Figure 4.7: Schematic of one magnet with magnetization M and its corresponding coordinate system.
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Figure 4.8: An array of four permanent magnets with alternating magnetic poles, where ‘N’ represents the
north pole and ‘S’ the south pole, respectively.

where Bi (x, y, z) is the magnetic filed of the i−th magnet.
After the magnetic field is determined, the magnetic force applied on the graphite

plate can be calculated with:

FB =∇
∫
V

M ·BdV

= µ0

2

∫
V
∇(χx H 2

x +χy H 2
y +χz H 2

z )dV , (4.22)

where V is the volume of the plate, Hx,y,z are the components of the magnetic field vec-
tor, M is the magnetization vector and B the magnetic flux density vector. In this analysis
it is assumed that the plate does not significantly affect the magnetic field, since its rel-
ative magnetic permeability is close to 1. All the parameters used in our calculations for
pyrolytic graphite plates are listed in Table 4.2.

A2. MAGNETIC FIELD CALCULATION BY FEM MODELING
In order to compare with the analytical modeling and take into account the fillets on
the edges of the magnets, we also use FEM method to calculate the magnetic force. The
geometry model of the magnets and graphite plate is shown in Fig. 4.9. The magnets
are with dimensions of 12×12×12mm3 and with rounded edges with a fillet radius of
1 mm. The remanent magnetic flux density of the magnets is Br = 1.4T. The material
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Table 4.2: Material properties used for the simulations of the levitating pyrolytic graphite.

Property Symbol Value Unit
Density ρ 2070 kg/m3

Susceptibility ⊥ [26] χz -450 ×10−6

Susceptibility ∥ [26] χx,y -85 ×10−6

properties of the 10×10×0.28mm3 graphite plate are listed in Table 4.2. Using COMSOL
Multiphysics 5.6, we can simulate the magnetic field and then calculate the magnetic
force using Eq. (4.22).

Figure 4.9: Geometry model of one graphite plate levitating over four permanent magnets.

A3. CHARACTERIZATION OF SHAKER
To determine the relations between the output motion and driving voltage of the shaker,
we shine the laser directly on the magnets and measure their displacement amplitude
a with different driving voltages Vac. The measurement results for 4 different driving
frequencies are shown in Fig. 4.10. It can be seen that the displacement of the shaker is
approximately liner with the driving voltage and a = 0.0158Vac.
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Figure 4.10: Displacement amplitude of the shaker as a function of driving voltages for four driving frequen-
cies.
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A4. LINEAR RESONANCE FREQUENCIES IN THE FITTING OF FIG.
4.5C
Table 4.3 lists the Linear resonance frequencies used for the frequency response curve
fitting in Fig. 4.5c.

Table 4.3: Linear resonance frequencies used for the frequency response curve fitting in Fig. 4.5c

Driving voltage (V) 0.1 0.5 1 3 4 5
Resonance frequency (Hz) 16.78 16.80 16.82 16.86 16.89 16.92
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5
DIAMAGNETICALLY LEVITATING

RESONANT WEIGHING SCALE

Diamagnetic levitation offers stable confinement of an object from its environment at zero
power, and thus is a promising technique for developing next generation unclamped reso-
nant sensors. In this work, we realize a resonant weighing scale using a graphite plate that
is diamagnetically levitating over a checkerboard arrangement of permanent magnets. We
characterize the bending vibrations of the levitating object using laser Doppler vibrome-
try and use microgram glass beads to calibrate the responsivity of the sensor’s resonance
frequency to mass changes. The sensor is used for real-time measurement of the evapora-
tion rate of nano-litre droplets with high-accuracy. By analyzing the resonator’s frequency
stability, we show that the millimeter graphite sensor can reach mass resolutions down to
4.0ng, relevant to biological and chemical sensing concepts.

Parts of this chapter have been published in Sensors and Actuators A: Physical 330, 112842 (2021) [1]
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5.1. INTRODUCTION
Mechanical resonators are nowadays being adopted in billions of products, including
quartz crystals, Micro-Electro-Mechanical Systems (MEMS), and acoustic wave res-
onators for time-keeping, frequency referencing and electronic filtering, but also for
addressing a wide range of sensor applications in modern technology. These resonant
sensors can be used to measure parameters like mass [2–4], stiffness [5], density [6],
viscosity [7], and pressure [8], for a diverse range of applications, ranging from envi-
ronmental monitoring to life sciences [9–11]. The working principle of these devices is
based on tracking a resonance frequency fr of the sensor that depends on the sensing
parameter. In this framework, the minimum resonance frequency change that can be
detected by the sensor, its limit of detection, depends both on its responsivity and on
the uncertainty σa in the resonance frequency measurement. For low uncertainty or
low operation power, a high mechanical quality factor Q of the resonance is beneficial.
However, Q can be substantially degraded through clamping, friction, adhesion and
aerodynamic losses [12].

In literature great efforts have been undertaken to reduce these dissipation mech-
anisms in resonant sensors. For instance, optimizing clamping points by high tension
tethers [13], or using bulk acoustic modes [7], acoustic Bragg mirrors [14], and phononic
crystals [15], have been used for boosting Q of resonant sensors and isolating them from
their environment. Ultimate confinement of a sensor though can be obtained by levitat-
ing it, which therefore has the potential to significantly improve Q of resonant sensors.

Levitation of objects can be realized in different ways, using optics, acoustics, or
magnetic forces [16]. Among them, diamagnetic levitation stands out as the only method
that obtains stable levitation at room temperature without power consumption [17].
Such passive levitation is important in many practical, high-volume microscale appli-
cations, not only because it is difficult to guarantee a continuous power supply for levi-
tation, but also because collapse of a levitating microstructure in the absence of power
leads to failure by adhesion. Additionally, unlike optical levitation [18], passive levitation
does not dissipate power that can heat the levitating object. Interestingly, many mate-
rials are diamagnetic, exhibiting negative magnetic susceptibility [19], thus making dia-
magnetic levitation potentially a widely applicable method, especially at the microscale
where larger magnetic field gradients can be achieved such that also weakly diamagnetic
materials can be levitated. During the last decade, liquid droplets [20] and small solid
particles [21] have been levitated stably by micro magnets. In addition, diamagnetic lev-
itation has shown the potential for realizing accelerometers [22], energy harvesters [23],
density [24], and force sensors [25].

In this paper, we propose a resonant mass sensor based on diamagnetic levitation.
The sensor comprises a pyrolytic graphite plate that is passively levitating over a checker-
board arrangement of permanent magnets. Compared to conventional clamped reso-
nant mass sensors, the levitating sensor offers contactless and free motion of the res-
onator in the absence of clamping and friction forces, potentially leading to higher Q
and thus more sensitive sensor design. We characterize the first 10 bending modes of
the levitating plate in the kHz regime using a Polytec laser Doppler vibrometer (LDV),
and calibrate its mass responsivity using glass microbeads. With the calibrated plate we
measure the mass evaporation rate of small liquid droplets on the plate, which is found



5.2. MASS SENSING WORKING PRINCIPLE

5

71

to be in good agreement with estimates made using the droplet volume. Finally, we char-
acterize the Allan deviation of the resonance frequency σa and use it to show that the
mass resolution of the weighing scale is as low as a few nano-grams (ng).

5.2. MASS SENSING WORKING PRINCIPLE
The working principle of a resonant mass sensor is based on the frequency shift δ f of
the resonant mode when a mass δm is attached to the resonator. The dynamics of the
bare plate can be described by an effective stiffness Keff and an effective mass Meff,plate.
When a small mass δm is placed at the anti-node, the effective mass becomes Meff =
Meff,plate +δm, and the resonance frequency can be written as fr = 1

2π

√
Keff
Meff

. Assuming

that the added mass does not influence Keff and the quality factor Q of the resonator, the
following relation between δ f and δm can be obtained by differentiating the resonance
frequency fr with respect to δm:

δm =− 1

R
δ f , (5.1)

in which R = fr
2Meff,plate

is the mass responsivity of the resonator.

From Eq. (5.1), it can be shown that the sensitivity of a resonant sensor is determined
by the mass responsivity R and the minimum detectable frequency shift δ f . It is known
that R is determined by the structure and material properties of the resonator, while
the minimum detectable frequency change is determined by the short- and long-term
resonance frequency stability of the device that can be evaluated by the Q factor and
amplitude of oscillation [26]. It is also worth noting that in the presence of adsorbates,
the resonance frequency shift δ f is a convolution of both the stiffness and the mass.
However, the stiffness effect comes into play at regions where the resonator undergoes
high changes of curvature, close to the nodal lines [27, 28]. Therefore, by placing an
added adsorbate or particle close to an anti-node, this effect can be minimized.

5.3. EXPERIMENTS
Experiments are performed on levitating pyrolytic graphite plates, which are used to
measure the mass of glass beads or liquid droplets that are placed on their surface (Fig.
4.1a). The graphite is purchased from MTI Corporation and is cut using a micro laser
cutter to obtain 10×10×0.24 mm3 plates. The surface of the plate is polished using a
sand paper with 5µm grain to improve the reflected optical readout signal. In order to
levitate the plates, a checkerboard arrangement of 4 cubic permanent NdFeB magnets
with alternating out-of-plane magnetization is used (Fig. 4.1b). The remanent magnetic
flux density of the magnets is Br = 1.4T.

To determine the frequency response of the graphite plate, we use an experimental
setup that comprises a Polytec MSA-400 laser Doppler vibrometer (LDV) to measure the
out-of-plane velocity of the plate and a Zurich UHFLI lock-in amplifier to drive the lev-
itating plate into resonance through a dedicated electromagnetic coil (Fig. 4.1c) that is
surrounding the permanent magnets. The current through the coil generates an alter-
nating magnetic field in the vertical direction that actuates the permanent magnets. The
motion of the magnets modulates the magnetic field on the plate and brings it into res-
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Figure 5.1: Levitating resonator and experimental setup. (a) Levitating pyrolytic graphite plate above 4 NdFeB
magnets with alternating magnetization. A water droplet is dispensed on top of the graphite plate; (b) Top view
of the levitating plate (not to scale) shows the position (point P) of the droplet, where N and S stand for north
and south pole of the magnet, respectively; (c) Schematic of the sensing principle and the measurement setup
comprising a Polytec LDV, an electromagnetic excitation coil, a lock-in amplifier for actuation and readout
and, a USB microscope to measure the dimensions of the droplet. The actuation voltage is amplified by a
40× voltage amplifier that drives the levitating plate into resonance via a coil; (d) Schematic of a sessile liquid
droplet as captured by the in-plane microscope on the surface of the graphite plate (not to scale), where β is
the contact angle and r is the contact radius.

onance. Although there is also a direct electromagnetic force on the plate from the coil,
this force is estimated to be significantly smaller than the forces generated by the motion
of the permanent magnets. To detect the velocity of the resonator, the LDV laser beam is
focused on the plate surface and the vibrometer signal obtained by the MSA laser head
is analyzed using the Polytec decoder. Next, the acquired velocity is transferred to the
Polytec PSV software for frequency response analysis and obtaining the resonance fre-
quencies and Q factor, or the lock-in amplifier for evaluating the frequency stability in
closed loop. To accurately measure the dimensions of the droplet, an in-plane oriented
microscope is also used in our setup (Fig. 4.1a,d). The microscope is used to trace the
variations in the contact angle β and contact radius r of the liquid droplet throughout
evaporation. All our experiments are conducted at atmospheric conditions and at room
temperature.

5.4. RESULTS AND DISCUSSION

5.4.1. DYNAMIC CHARACTERIZATION
To characterize the resonant response of the levitating plate, we place the bare plate
on the magnets and excite the plate with a periodic chirp signal over a large frequency
range. Once we identify a resonance peak, we perform a narrow-band frequency sweep
around the resonance frequency while positioning the laser on the anti-node (point of
maximum amplitude) of the excited mode. The outcome of this procedure is shown in
Fig. 5.2 where the first 10 resonance modes of the levitating plate are found. In Fig. 5.2,
for each resonance peak a schematic of the corresponding mode shape as determined
by the LDV is also shown. To extract the quality factor associated with the modes, we fit
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Figure 5.2: Experimental resonance peaks, Q-factors and mode shapes, as experimentally determined by the
LDV, of 10 bending modes of the graphite plate with dimensions of 10×10×0.24mm, levitating above 4 cubic
NdFeB magnets with side length of 12 mm. The dashed lines indicate the nodal lines of the measured modes.
Peaks have been rescaled by the indicated factors, and Q factors determined by fits. In particular mode 3 has a
high amplitude, which is attributed to its efficient actuation by the magnet configuration (Fig. 4.1b).

a Lorentzian to each resonance peak and obtain Q ≈ 1500 for the first five modes of vi-
bration in air, which is much higher than the Q of the levitating plate’s rigid body modes
[17]. It is noted that the Q of the resonator is a result of three main energy dissipation
sources: material damping, air damping and eddy current damping. The relatively high
Qs observed in air make our graphite resonator an interesting candidate for mass sens-
ing applications, where high Qs are beneficial for improving detection limits [26].

5.4.2. MASS RESPONSIVITY OF THE RESONATOR

To calibrate the responsivity of the resonant mass sensor, small glass beads with mass
δm are placed on the graphite plate. This causes a change in the resonance frequency
δ f associated with a bending mode. We choose to perform our mass measurements us-
ing the 3r d bending mode since it has the highest amplitude of all modes of vibration
(see Fig. 5.2), i.e., this mode has the highest signal-to-noise ratio. We attribute the high
amplitude of the third mode mainly to the high efficiency actuation due to the resem-
blance of the mode shape (Fig. 5.2) to the magnet configuration(see Fig. 4.1b), while
noting that the direction of the force of the coil on the magnets depends on their respec-
tive magnetization direction.

Eq. (5.1) states that in order to obtain the added mass δm, it is essential to first de-
termine the responsivity of the sensor. Here, we use glass beads of diameter 250µm with
known density to obtain the experimental mass responsivity Rexp. The glass beads are
placed using water droplets created by syringe near the anti-node of the 3r d bending
mode (point P: x = 5mm, y = 1mm in Fig. 5.3c and Fig. 4.1b). To add the glass beads,
the graphite plate is removed from the experimental setup, and is then placed back to
measure the resonance frequency in the presence of added particles. We note that since
the levitation system does not require any clamping, no calibration is required every
time the resonator is placed back on top of the magnets. The frequency shift of the res-
onator after adding different numbers of glass beads is plotted in Fig. 5.3a. A linear
relationship is apparent between the added mass and the frequency shift, with a slope
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Figure 5.3: Mass responsivity and error analysis. (a) Frequency shift as a function of the mass of the added glass
beads, as obtained from experiments and as estimated using Rayleigh-Ritz method. The inset shows an image
of three glass beads on top of the levitating plate, taken with a microscope; (b) Frequency shift as a function
of the added mass obtained numerically, showing a linear relationship between the frequency shift and added

mass; (c) Relative error (
δmP−δm

δm ), where δm is the actual added mass and δmP is the mass calculated from
Eq. (5.1) using the mass responsivity of point P (RP).

of −0.24 Hz/µg that is the experimental mass responsivity Rexp of our resonator, from
which Meff,exp = 2.24×10−5 kg.

In order to evaluate the accuracy of our measurements, we construct a numerical
model of the levitating plate using the Rayleigh-Ritz method [29, 30] and calculate the
resonance frequency shifts of the plate with added mass (details of the numerical mod-
elling can be found in Appendix A1). Using the numerical model, we determine the
frequency shift δ f as a function of add mass δm which is placed on point P. Our nu-
merical results are also included in Fig. 5.3a obtaining a theoretical mass responsivity
Rth =−0.25Hz/µg in good agreement with the experimental value. Using the numerical
model, we can estimate the range of δm over which the shift in the resonance frequency
δ f varies linearly with the added mass. For this, we perform simulations over a large
number of added mass increments and find that when the added mass is below 0.96 mg,
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Figure 5.4: Plot of the estimated droplet mass from the change in the resonance frequency of the graphite
plate, versus droplet volume determined from the microscope image for droplets of water, ethylene glycol and
glycerol placed near the antinode position P.

the relative error between the real and the estimated mass using Eq. (5.1) is less than 5 %
(see Fig.5.3b). This result suggests that we can use Eq. (5.1) with confidence to measure
mass changes smaller than 1 mg. We note that this value is much smaller than the bear-
ing capacity of the levitating plate which is estimated to be 227 mg (4 times the plate’s
mass).

In addition, when using bending vibrations for mass sensing, the position where the
mass is placed on the resonator can influence the accuracy of the mass responsivity [27].
To investigate how the position of the added mass affects the accuracy of our measure-
ments, we use the same model to estimate the frequency shift associated with a certain
mass (10µg) added at different locations on the plate. The result of this numerical study
is shown in Fig. 5.3c, and highlights the error that can be induced in determining δm, if
the added mass is placed on different locations. The relative error can be expressed as
δmP−δm

δm , where δm is the actual mass of the particle and δmP is the mass determined
from Eq. (5.1) using the mass responsivity of point P (RP). It could be seen that putting
the point mass 0.3 mm away from point P (x = 5mm, y = 0.7mm) results in an error
of 20 %, indicating that the sensor is pretty sensitive to the placement. Also, this error
grows when placing the added mass further away from P and closer to the nodal lines.
Therefore, the choice of vibration mode to be used for sensing, depends on the number
and distribution of nodal lines associated with that mode. Among the identified mode
shapes shown in Fig. 5.2, the first three bending modes have the lowest number of nodal
lines while exhibiting a decent Q. Therefore, they are ideal resonances for investigat-
ing the mass sensing concept, especially for droplets which require a certain amount of
contact area.
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Figure 5.5: Measuring evaporation rate of water droplets. (a) Resonance frequency (green) and Q-factor (pink)
as a function of time while the water droplet is evaporating, measured using the setup shown in Fig. 5.1c; (b)
Contact angle (green) and contact radius (pink) measurements during evaporation; (c) Measured mass of 4
water droplets with different initial volume as a function of time, obtained using both the in-situ microscope
(green) and frequency shift method (pink).

5.4.3. MEASURING LIQUID DENSITY AND EVAPORATION RATE

Measuring the mass and density of liquid droplets has many applications in bio/chemical
technologies [9, 31–33]. Here, we measure the density of different liquids and evapora-
tion rate (mass change over time) of nL volume droplets using our calibrated levitating
graphite plate. To measure liquid density, we first dispense droplets of different liquids
and volume using a syringe near the anti-node of the resonator (point P in Fig. 5.1b)
and detect the frequency shift due to the added mass. Next, using the experimental
mass responsivity Rexp determined in Section 5.4.2, we estimate δm associated with
the dispensed droplets. At the same time, using an in-situ microscope and an image
processing code implemented in Matlab (details given in Appendix A2), we measure the
volume of the droplets by estimating their contact radius r and contact angle β (Fig.
5.1d). In Fig. 5.4 we report the mass of droplets of water, ethylene glycol, and glycerol of
different volumes, measured using our resonator. It can be observed that the measured
values follow the theoretical curves for known densities of these liquids.
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To investigate the applicability of our levitating resonator for real-time sensing, we
next use the resonant levitating mass sensor for detecting the evaporation rate of water
droplets using resonance frequency shifts. We dispense droplets of different volumes,
and estimate evaporation rate as ṁ = δm/δt , where δm is the mass change over time δt
as evaluated using Eq. (5.1). Fig. 5.5a shows the real-time change of resonance frequency
and Q of the resonator during the evaporation of a 94 nL water droplet. An increase in
the resonance frequency of the resonator is observed consistent with a decrease in the
volume of the droplet. It is seen that the rate d fr /d t increases after 120s and becomes
zero beyond 250s confirming complete evaporation of the droplet. In Fig. 5.5a, the Q
of the resonance mode in the presence of the droplet is around ∼ 1000 and increases to
around 1200 after evaporation. The change of the Q is due to the viscous damping from
the interaction between the water droplet and air. However, the influence of the change
of Q on the observed resonance frequency shift is found to be negligible during evapora-

tion since fr = fu

√
1− ( 1

2Q )2, where fu is the undamped resonance frequency. It should

also be noted that surface interactions between the droplet might affect the stiffness Keff

and might be extracted separately by monitoring both amplitude and frequency of the
resonator.

To compare our results to a second method for estimating mass change from volume
change assuming constant density, we also use the in-situ microscope of the setup to
monitor the volumetric changes of the water droplet. In Fig. 5.5b we show the variation
of droplet’s contact angle β and contact radius r during evaporation using this second
method (see Appendix A2). It can be seen that the droplet initially evaporates in the con-
stant contact radius mode until 120s, after which r starts to decrease linearly in time.
This decrease is consistent with the increase in d fr /d t that we observed in Fig. 5.5a,
since the resonance frequency is influenced by the distribution of the added mass (see
Fig. 5.3c). By detecting β and r throughout evaporation, we can now calculate the vol-
ume changes and, accordingly, the mass of the water droplet using this second technique
(m = πρ

3 ( r
sinβ )3(2+cosβ)(1−cosβ)2 [34]).

We repeat the same experiment for 4 water droplets of nL volumes and compare the
mass estimations by both methods. These measurements are summarized in Fig. 5.5c
where it can be observed that the estimated mass using our resonator is close to the
one obtained by tracing volumetric changes using the microscope, with differences at-
tributed to measurement errors.

5.4.4. FREQUENCY STABILITY

The mass precision of resonant mass sensors depends on the resolution with which fre-
quency changes due to added particles/droplets can be determined. Therefore, the mass
resolution or the minimum detectable particle mass is influenced not only by the re-
sponsivity R of the resonant sensor, but also by its frequency stability. In other words, for
a mass change δm to be detected by the frequency change δ f , it is essential that the shift
in the frequency is greater than the frequency imprecision σa of the resonator [35]. This
frequency imprecision depends on the time τ over which a frequency measurement is
averaged, and can be defined as the Allan deviation of consecutive resonance frequency
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Figure 5.6: Frequency stability measurement. (a)Frequency fluctuation as a function of time; (b)Allan devia-
tion and mass imprecision as a function of gate time of the levitating plate measured using a LDV and lock-in
amplifier.

measurements each averaged over a time period τ (gate time) as follows:

σa =
√√√√ 1

2N

N−1∑
n=0

(
f̄n+1 − f̄n

f0

)2

, (5.2)

in which f̄n is the time average of the frequency measurement during the nth gate time
within a total N intervals and f0 is the mean frequency calculated over the frequency
tracking operation. To measure the frequency stability and thus Allan deviation of our
levitating resonator, we use the PLL of the Zurich UHFLI lock-in amplifier and operate
our measurements in closed loop. The PLL uses the output phase of the resonator’s 3r d

bending mode to control the excitation frequency applied to the coil using a PI controller
with proportional constant kp and integral constant ki . To implement the PLL, we use
constants kp =−1.4 Hz/deg and ki = −2.8 Hz/deg/s that ensure a stable closed-loop op-
eration and establish a PLL bandwidth of 111.6 Hz. Moreover, to maintain the resonator
close to resonance, we set the phase set-point to π/2 after correcting for the shift intro-
duced by the equipment.

Fig. 5.6a shows the recorded resonance frequency data in a time span of 1000 s and
Fig. 5.6b shows its associated Allan deviation σa . We observe that the Allan deviation
is approximately proportional to τ−1/2 for short gate times, which can be attributed to
white noise sources, like from thermomechanical noise or from the LDV and actuation
system [36]. For long gate times, the Allan deviation is proportional to τ which might be
attributed to drift. Using the measured Allan deviation and experimental mass respon-
sivity, we evaluate the mass imprecision of our resonant sensor (σm = 2Meff,expσa[36] ),
and report the values in Fig. 5.6b. The minimum mass imprecision is found to be 4.0 ng
at τ = 3s, which shows the potential of our resonant weighing scale for detecting mass
changes due to particles down to a few ng, for example the mass fluctuation in cells [37].
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5.5. CONCLUSIONS

In summary, we demonstrate a diamagnetically levitating graphite mass sensor that is
electromagnetically driven into resonance. We use a laser Doppler vibrometer to charac-
terize the first 10 elastic modes of the resonator and use glass beads with known mass to
calibrate the mass responsivity of the levitating plate. By dispensing nano-liter droplets
of different liquids and tracking the resonance frequency changes, we show the potential
of the weighing scale to measure small mass changes due to the evaporation of the liquid.
Finally, by operating the resonator in closed loop and measuring the Allan deviation of
the frequency fluctuations, we show that mass resolutions down to a few nano-gram are
within reach with low cost millimeter scale diamagnetically levitating sensors, showing
the potential of these resonators for biological and chemical sensing applications.

5.6. APPENDIX

A1: RAYLEIGH-RITZ METHOD

x

y

z

a
b

h

Mid-plane

Figure 5.7: Geometry of the rectangle plate and coordinate system

A rectangular plate with in-plane dimensions a and b and thickness h is considered
in an orthogonal coordinate system (O : x, y, z), as shown in Fig. 5.7. Three displace-
ments u, v and w are used to describe the plate middle surface deformation. The strain-
displacement relations of the plate can be written as:

ϵx = ϵx0 + zkx ,

ϵy = ϵy0 + zky ,

γx y = γx y0 + zkx y ,

(5.3)



5

80 5. DIAMAGNETICALLY LEVITATING RESONANT WEIGHING SCALE

where

ϵx0 =
∂u

∂x
,

ϵy0 =
∂v

∂y
,

γx y0 =
∂v

∂x
+ ∂u

∂y
,

kx =−∂
2w

∂x2 ,

ky =−∂
2w

∂y2 ,

kx y =− ∂2w

∂x∂y
.

(5.4)

The kinetic energy of the plate is obtained as:

Tp = 1

2
ρh

∫ a

0

∫ b

0
(u̇2 + v̇2 + ẇ2)dxdy + 1

2
madd(u̇(xa , ya)2 + v̇(xa , ya)2 + ẇ(xa , ya)2), (5.5)

where the overdot indicates differentiation with respect to time, and madd is the mass of
the added particle. Moreover, xa and ya are the x, y coordinates of the point where the
particle is attached.

The elastic strain energy of the plate assuming isotropic material properties is [29]:

Up = 1

2

Eh

1−ν2

∫ a

0

∫ b

0
(ϵ2

x0
+ϵ2

y0
+2νϵx0ϵy0 +

1−ν
2

γ2
x y0

)dxdy

+ 1

2

Eh3

12(1−ν2)

∫ a

0

∫ b

0
(k2

x +k2
y +2νkx ky + 1−ν

2
k2

x y )dxdy,

(5.6)

where E is the Young’s modulus and ν is the Poisson’s ratio. In order to obtain natural
frequencies and modes of vibration of the plate, we assume synchronous motion and
express displacements u, v and w in the follwoing form:

u(x, y, t ) =U (x, y)g (t ),

v(x, y, t ) =V (x, y)g (t ),

w(x, y, t ) =W (x, y)g (t ),

(5.7)

where the functions U (x, y),V (x, y) and W (x, y) represent the mode shapes, while g (t )
is harmonic time function and is the same for all displacements. To obtain mode of
vibration we use power polynomials:

U (x, y) =
M∑

m=0

N∑
n=0

amn xm yn ,

V (x, y) =
M∑

m=0

N∑
n=0

bmn xm yn ,

W (x, y) =
M∑

m=0

N∑
n=0

cmn xm yn .

(5.8)
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In order to find the linear free vibration response, a vector p comprising all unknown
coefficients of Eq. (5.8) is built as follows:

p = {a00, ..., amn ,b00, ...,bmn ,c00, ...,cmn} . (5.9)

The dimension of vector p is Nmax that is equal to the total number of unknowns in Eq.
(5.8). Therefore, Nmax = 3(M + 1)(N + 1). Next, the Lagrange equations of motion are
obtained by assuming g(t ) = pg (t ) where g (t ) = e jωt with j being the imaginary unit and
ω the vibration frequency as follows:

d

dt

∂Tp

∂ġk
− ∂Tp

∂gk
+ ∂Up

∂gk
= 0,k = 1, ..., Nmax , (5.10)

which results in
(−ω2M+K)p = 0, (5.11)

where M is the mass matrix and K is the stiffness matrix of dimension Nmax × Nmax .
Setting the determinant of the vector p equal to zero, the eigenvalues will be obtained
and substituting each eigenvalue into Eq. (5.11) gives its corresponding eigenvector. In
order to obtain the natural mode corresponding to the ith eigenvector, we substitute the
coefficients amn ,bmn , and cmn with ai

mn ,bi
mn and c i

mn which are the components of the
i − th eigenvector obtained from Eq. (5.8) as:

U (i )(x, y) =
M∑

m=0

N∑
n=0

a(i )
mn xm yn ,

V (i )(x, y) =
M∑

m=0

N∑
n=0

b(i )mn xm yn ,

W (i )(x, y) =
M∑

m=0

N∑
n=0

c(i )mn xm yn .

(5.12)

It is worth to note that in order to avoid matrix ill-conditioning in using power polyno-
mials, high numerical accuracy is required. In this work the software Mathematica 11.3
has been used with 300 digits of accuracy to avoid matrix ill-conditioning.

Using this model, by comparing the estimated resonance frequencies and the exper-
imental resonance frequencies from Fig. 5.2 of the paper, we find that the graphite plate
has an experimentally estimated Young’s modulus E = 3.72×1010 Pa and Poisson’s ratio
ν=−0.25 in reasonable agreement with literature values [38]. After that, by changing the
madd, we can calculate the frequency shift δ f , thus calculating the mass responsivity of
the third mode at point P to be Rth =−0.25Hz/µg.

A2: IMAGE PROCESSING METHOD
Typically, a liquid droplet can be viewed as a spherical cap when the contact radius of the
droplet is smaller than the capillary length [39–41]. The capillary length lc of a droplet
can be obtained as

lc =
√

σ

ρg
, (5.13)
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(b)

(c) (d)

(a)

Figure 5.8: Image processing method. (a)Image of a droplet on top of the plate; (b) Gray scale image and a
fitted circle and straight line; (c) Black and white image; (d) Edges of the droplet and plate.

where σ and ρ are the surface tension and density of the liquid, respectively, and g is the
gravitational constant. For a water droplet, the capillary length is 2.7mm which is much
larger than the maximum contact radius of the droplet measured in our experiments i.e.
r = 0.4mm. The same holds true for our measurements with ethylene glycol (r = 0.5mm)
and glycerol (r = 0.4mm) whose capillary lengths are 2.1mm and 2.3mm, respectively.
Therefore, the droplets in our experiments can be seen as spherical caps, and their side
view can be fitted with a circle.

After taking an image of the sessile droplet on the surface of graphite plate, we ex-
tract the contact radius r and contact angle β using an image processing method using
Matlab. We first convert the image taken by the microscope (Fig. 5.8a) into grey scale
(Fig. 5.8b) to make the edges of the droplet and plate more clear. Next, the grey picture
is converted to black and white (Fig. 5.8c), and from this image, droplet and plate edges
are identified ( Fig. 5.8d). Finally to obtain the contact radius and contact angle, a line
is drawn at the edge of the plate and a circle is fitted using three points on the edge of
the droplet (see Fig. 5.8b). With the fitted circle and the straight line, the contact angle
and radius are calculated in pixels. Using the known thickness of the plate as a reference,
these values are then converted to mm.
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6.1. CONCLUSIONS
This dissertation aims at providing new insights into the dynamics of diamagnetically
levitating resonators for developing ultra-low noise devices and sensors. In the previ-
ous four chapters, we studied both the rigid body and elastodynamics of a levitating
resonator through modeling and experiments, with each chapter focusing on different
topics and using different experimental strategies. We now summarize the main find-
ings from our measurements and theoretical studies, and discuss their potential on the
future research about diamagnetic levitation.

RIGID BODY DYNAMICS

In Chapter 2 we studied the rigid body dynamics of a diamagnetically levitating graphite
resonator to have a better understanding of its stiffness and damping mechanisms.
Through dynamic measurements and numerical simulations, we demonstrated that the
stiffness and damping of a levitating resonator are determined by the magnetic field
that enables the levitation. By calculating the magnetic force as a function of levitation
height, we determined the natural levitation height and resonance frequencies, which
agreed well with the detected rotational and translational modes. Moreover, to find out
the dissipation root of the levitating resonator, we conducted measurements in vac-
uum conditions and modeled the damping using FEM methods. The good agreement
between the measured Q factors and simulations provided strong evidence that eddy
current damping is dominant in a diamagnetically levitating resonator in rigid body
dynamics. With modeling, we found that the Q factors are increasing when scaling the
resonator down and predicted that Q factors above 100 million might be attainable when
the resonator size reduces to micro scale. The study in this Chapter not only revealed the
relations between the magnetic field and the levitating resonator’s stiffness and damp-
ing, but also provided a method to model magnetic stiffness and eddy current damping
in more general situations.

After finding out the underlying dissipation source in the levitating resonators, the
next step was to decrease the damping. Instead of reducing the resonator size as pre-
dicted in Chapter 2, in Chapter 3 we improved the Q factors by fabricating diamagnetic
composites in order to keep the resonators at macroscopic scale, noting that high-Q
macroscopic resonators are advantageous in sensing applications, e.g., accelerometers
or gravimeters, and are interesting in quantum mechanics. The composites were made
by randomly dispersing micro graphite particles in an epoxy matrix. The results showed
that millimeter composite plates are able to levitate stably above permanent magnets in
high vacuum (10−6mbar) with graphite volume fraction as low as 14 % due to the strong
diamagnetic property of graphite. Meanwhile, by isolating the graphite particles using
insulating epoxy, eddy currents are confined inside the particles and damping can be
remarkably diminished. With those composites, Q factors as high as nearly 0.5 mil-
lion are achieved at room temperature for resonators with mass bigger than 1 mg. We
also studied the dependency of damping on particle size, volume fraction and plate size,
concluding that the damping is most sensitive to particle size with Q inversely propor-
tional to the square of particle size Q ∝ 1/d 2. The combination of large mass and high
Q make these levitating composite resonators attractive for realizing room temperature
accelerometers with theoretical noise levels as low as 0.16ng/

p
Hz, that are comparable



6.1. CONCLUSIONS

6

89

to superconducting levitodynamic systems at cryogenic temperatures. Reduction of the
particle size and optimization of particle distribution and orientation, can lead to novel
composites that further enhance the performance of future macroscopic levitating de-
vices used as accelerometers, gravimeters, or sensors for exploring macroscopic limits of
quantum mechanics. More generally, the proposed method in Chapter 3 can be used to
reduce eddy current damping in areas where eddy currents are a limiting factor of per-
formance, such as in applications of energy harvesters, rotors, bearings and trains based
on magnetic levitation, as well as transformer cores.

To get a more comprehensive understanding of the dynamics of a diamagnetically
levitating system, we explored the nonlinear dynamics of a levitating graphite resonator
in Chapter 4. We actuated the levitating resonator using a shaker and conducted the dy-
namic measurements in vacuum, thus its stiffness was not influenced by either the exci-
tation method such as electrostatic force or the air squeeze force. The experimental re-
sults showed that the frequency response curves of the levitating resonators exhibit soft-
ening behaviour. Since their stiffness is solely governed by magnetic field, by measuring
and modeling the magnetic force as a function of displacement, we concluded that the
effective magnetic stiffness is softening even though the restoring force is strongly asym-
metric around the motion at origin. By modeling the dynamic response, we found that
the cubic Duffing nonlinearity coefficient does not suffice to fully capture the large am-
plitude motion of a levitating resonator, and quintic functions are required to fully probe
its stiffness with accuracy. Furthermore, measurements in both air and vacuum condi-
tions showed that the eddy current damping is approximately linear with the vibration
amplitude, while the air damping is strongly nonlinear and amplitude dependent. The
study in this Chapter provides new insights into the dynamics of a diamagnetic levita-
tion system in terms of nonlinear stiffness and damping. This is crucial especially when
the levitating resonator’s size shrinks down to micro scale where the nonlinear regime
is more easily reached due to the low damping. On the other hand, the study provides
new opportunities for bifurcation-based sensors which might be superior compared to
linear resonant sensors in certain cases.

ELASTODYNAMICS

In the rigid body dynamics, the levitating resonator’s stiffness and damping are coupled
to the magnetic field that is required for the levitation. Therefore, the levitating object is
not truly free from its environment. However, with the frequency increasing, magnetic
field and gravitational forces become negligible compared to the elastic forces of the ma-
terial, such that a levitating object can be viewed as truly free in terms of its elastodynam-
ics. In Chapter 5, we investigated the bending vibrations of a diamagnetically levitating
graphite resonator and developed a resonant mass sensor. Using an electromagnetic ac-
tuator, the elastic modes of the levitating resonator can be sufficiently excited and its
first 10 modes were detected, which agreed well with our analytical model for an all edge
free plate. Based on the frequency shift of the resonator, we detected mass changes and
developed a mass sensor using its third mode and calibrated its mass responsitivity us-
ing micro glass beads. To validate the sensor, we utilized it to measure the density of
three kinds of liquids and detected the real-time evaporation of water droplets. Finally
by measuring the Allan deviation of the sensor’s frequency stability, we determined the



6

90 6. CONCLUSIONS AND OUTLOOK

detectable mass resolution to be 4 ng. The study in this Chapter demonstrated that dia-
magnetic levitation can be used to develop easy to use sensors for biological or chemical
applications.

In summary, we studied diamagnetic levitation because it is the only passive levita-
tion method that does not require any energy input and its strong magnetic potential can
enable levitation of macroscopic objects. With a checkerboard arrangement of four per-
manent magnets, millimeter plates can be stably levitated. In this thesis, we focused on
the resonant response of the levitating plates in both rigid body and elastic modes, with
the goal towards attaining low-noise devices. We believe the findings in this thesis, es-
pecially in the aspects of magnetic stiffness, eddy current damping and elastodynamics,
will shed light on the future studies and applications of diamagnetic levitation. Due to
its nature of being passive and compatible to macro objects, diamagnetic levitation is as
simple as it is promising in the development of next-generation unclamped low-noise
devices that require macroscopic mass or length, such as accelerometers, gravimeters
and platforms for testing macroscopic limits of quantum mechanics.
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6.2. OUTLOOKS AND RECOMMENDATIONS
In addition to the above studies, there are many other topics about diamagnetic levita-
tion that are worthy to follow up. We list some of them in this section.

6.2.1. INFLUENCE OF MAGNET ARRANGEMENT ON THE RIGID BODY DY-
NAMICS

In the above studies, from Chapters 2 to 5, the plate is levitating above a 2× 2 array of
magnets, as shown in Fig. 6.1a. However, there are many other magnet arrangements
that can generate a potential well required for stable levitation, for example the 4× 4
and 5 × 5 array of magnets as shown in Fig. 6.1a. Here we study the dependency of
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Figure 6.1: (a) Image of a 10.24×10.24×0.28mm3 pyrolytic graphite plate levitating above 4 cubic neodymium
magnets with alternating magnetization, where N and S stand for north and south pole of the magnet, respec-
tively; and schematic of three magnet arrangements: 2×2, 4×4 and 5×5. The edge lengths of the cube magnets
used in these configurations are 12, 5 and 3 mm, respectively; (b) Frequency response curves of the levitating
plate over 3 different magnet arrangements in air and fitted curves using a damped harmonic oscillator model.
The inset shows the associated rigid body motion schematically; (c) Spring constant of the resonator obtained
by experiments and FEM simulations; (d) Levitation height of the plate over three magnet arrangements mea-
sured using Keyence Digital Microscope VHX-6000; (d) Q-factor measured in air and vacuum(0.01 mbar) as
well as those obtained by FEM simulations.
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levitation height, resonance frequencies and Q-factor of a levitating plate on magnet
arrangements.

The magnet arrangements, as shown in Fig. 6.1a, consist of cubic magnets with size
of 12 mm (2×2 array), 5 mm (4×4 array) and 3 mm (5×5 array). With these three mag-
net arrangements, a 10.24×10.24×0.28mm3 pyrolytic graphite plate can levitate stably
above them and their levitation heights are show in Fig. 6.1b. From Fig. 6.1b, we ob-
serve a clear decreasing trend of levitation height with smaller magnets, which is because
the magnetic field of smaller magnets diminishes faster with distance, thus generating a
smaller magnetic field at the plate location even though their remanent magnetic fields
of the magnets themselves are the same. Using the experimental setup in Fig. 2.1, we can
detect the frequency response of the plate levitating above these magnet arrays in air (see
Fig. 6.1c). From the figure, we see that the resonance frequency of the plate is increasing
with smaller magnets. This can be explained by their increasing stiffness (see Fig. 6.1d)
due to the smaller levitation height which increases the magnetic field gradient. In Fig.
6.1c, we also plot the spring constant k for the 3 magnet arrangement calculated using
COMSOL simulations (see A3 in Chapter 3 for more details), which agrees well with the
measurements.

Next, we study the influence of magnet arrangements on the damping of the levitat-
ing plate in both air and vacuum conditions. In Fig. 6.1e, the experimental Q-factor at
atmospheric (1000 mbar) and low pressure (0.01 mbar) is plotted for the 3 magnet ar-
rangements. It is seen that at low pressure the Q-factor increases significantly, because
gas damping is eliminated at this pressure level (see Fig. 2.3a). At atmospheric pressure,
the air damping is dominant, thereby the Q is decreasing with smaller levitation gaps
(see Fig. 6.1e). At low pressure, the main damping source of the levitating resonator is
eddy currents. Therefore, the Qs for different magnet arrangements can be calculated
by only considering the eddy current damping and are shown in Fig. 6.1e, which match
well with the trend of measured results in vacuum. It is noted that the dependency of
eddy current damping on magnet arrangements is a combined effect from the magnetic
field distribution, levitation height and resonance frequency.

In conclusion, in Fig. 6.1, we show that the rigid body dynamics of a diamagnetically
levitating plate is strongly dependent on the magnet arrangements. For the 3 magnet
arrangements studied in this section, we find that the levitation height is decreasing with
smaller magnets, which results in a increase in the resonance frequencies and a decrease
in the Q in air. For the eddy current damping, the Q shows a complicated dependency
on the magnet arrangement, which can be well captured by our numerical modeling.

In the future, we can tune the resonance frequencies and damping by using different
magnet arrangements, in order to meet different application requirements. Moreover,
using the numerical modeling methods, we can accurately predict the stiffness and Q of
a diamagnetically levitating resonator with any magnet arrangement.

6.2.2. ELASTODYNAMICS OF A LEVITATING RESONATOR

From the previous section, we know that even though the levitating resonator is free
from mechanical constraints, its rigid body dynamics are still coupled with the magnetic
field that supplies the levitation force, i.e., its resonance frequencies and Q-factors are
dependent on the magnetic field. Therefore, the levitating resonator is not truly free in
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terms of rigid body dynamics. However, the story for elastodynamics is different. In this
section, we will study the influence of the magnet arrangements on the elastodynamics
of a levitating resonator and then use the levitation to study the elastodynamics of a free
plate.

Like in Chapter 5, using the experimental setup in Fig. 5.1c, we can excite and mea-
sure the kHz bending modes of a 10.24× 10.24× 0.28mm3 levitating plate over a 2× 2
magnet array. Fig.6.2a shows the first 10 resonance peaks and their corresponding mode
shapes of the levitating plate. To investigate how the magnetic field influences the bend-
ing modes, we measure the resonance frequencies and Qs of the first 3 elastic modes of
the plate levitating over 3 different magnet arrangements. In contrast to the rigid body
dynamics (Fig. 6.1c), Fig. 6.2b shows that the kHz elastic resonance frequencies are in-
dependent from the magnet arrangements. This implies that the bending rigidity which
determines the elastic resonance frequencies of the levitating plate is not influenced by
the magnetic field.
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Figure 6.2: (a) Experimental resonance peaks and mode shapes of 10 elastic modes of a 10.24×10.24×0.28mm3

levitating plate over the 2× 2 magnet arrangement in air; (b) Resonance frequency of the first three elastic
modes of the plate levitating over 3 magnet arrangements measured in air; (c) Q-factor of the first three elastic
modes of the plate levitating over different magnet arrangements measured in air and vacuum (0.01 mbar).

Next we study the damping of the bending modes of the levitating plate, by measur-
ing the Qs of the first 3 modes of the plate over different magnet arrangements in both
atmospheric (1000 mbar) and vacuum (0.01 mbar) pressures, and show the results in Fig.
6.2c. It can be seen from the figure that the Qs have a slight decreasing trend with smaller
magnets in air due to the smaller levitation gaps (Fig. 6.1b). However, when conducting
experiments in vacuum conditions, the dependency of Qs on magnet arrangements is
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not significant (see Fig. 6.2c), which contrasts with the Qs of rigid body modes (see Fig.
6.1e). This is because for kHz bending modes, the material damping is dominant and it
is independent from magnetic field. Therefore, from Fig. 6.2b-c, we can conclude that
the elastodynamics of a levitating plate is independent from the magnetic field and the
levitating plate can be approximated to be truly free.

Since the levitating plate is free from mechanical constrains and magnetic field, it
can be modelled as a free plate and used for material property characterization. Us-
ing the same analytical method described in Section 5.6A1, we can identify the Young’s
modulus and Poission’s ratio of the levtitating material by comparing the calculated and
measured resonance frequencies. The material we use in our experiments is pyrolytic
graphite, and its Young’s modulus and Poisson’s ratio are estimated to be E = 21.679GPa
and ν=−0.213, respectively, as shown in Fig. 6.3a. In Fig. 6.3a, we also include the data
calculated by FEM simulations using the estimated E and ν, which agree well with the
analytical and measured results. In order to further validate our analytical modelling, the
same experiments are performed on plates with different dimensions. The good agree-
ment between analytical and experimental data (see Fig. 6.3b-c) verifies that elastody-
namics of diamagnetically levitating objects can be very well modelled as free vibrations
of floating structures.
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Figure 6.3: (a) Comparison between the measured resonance frequencies and the estimated ones obtained by
analytical and FEM methods using the identified E ,ν; (b) Comparison between the measured and estimated
resonance frequencies of plates with different lengths and the same thickness of 0.28 mm; (c) Comparison
between the measured and estimated resonance frequencies of plates with different thickness and the same
length of 10.24 mm; (d) The change of the normalized first three frequencies fn / f1( f1 is the frequency of mode
1) with Poisson’s ratio ν obtained by the analytical method, and the measured first three resonance frequencies
of a 10.24×10.24×0.28mm3 pyrolytic graphite (ν = −0.213) and an 9.48×9.48×0.46mm3 isostatic graphite
plate (ν=0.230, purchased from Tokai Carbon).
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An interesting observation here is the negative Poisson’s ratio that is extracted for the
pyrolytic graphite resonator (ν = −0.21). The negative Poisson’s ratio is found to be in
agreement with previously reported values [1]. Materials with a negative Poisson’s ratio
are also called auxetic materials. To highlight the role of such auxetic behavior on the
dynamics of our diamagnetically levitated resonator, we model the elastic modes of a
plate with varying Poisson’s ratio. It is noted that the normalized resonance frequencies
are only dependent on Poisson’s ratio, independent from the Young’s modulus and plate
dimensions [2]. Thereby, in Fig. 6.3d, we show the change on the normalized resonance
frequencies of the first 3 modes and their mode shapes as a function of ν. It is inter-
esting to observe that, the order of mode 2 and mode 3 swaps when the Poisson’s ratio
changes from negative to positive. In Fig. 6.3d, we also plot the measured data of a py-
rolytic graphite (ν=−0.213) and an isostatic graphite plate (ν=0.230), which verifies our
theoretical observations.

This result shows the potential of modal analysis in determining the auxetic nature
and Poisson’s ratio of materials. We also note that the swap of mode shapes only occurs
in plates with free boundary conditions, while the clamped plates do not demonstrate
this unique property (see Fig. 6.4). Thereby, it concludes that the presented levitating
resonant measurement methodology provides a useful platform for characterizing ma-
terial properties of thin plates, since the levitating objects can be viewed as free plates.
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Figure 6.4: Change of the normalized resonance frequency fn / f1( f1 is the frequency of mode 1) with Poisson’s
ratioν of the first 3 modes of a 10×10×0.2mm3 single-clamped plate. The data is obtained by FEM simulations.

A future direction of studying diamagnetically levitating resonators is to utilize the
resonators’ elastodynamics further and this research field is in fact rarely exploited in
literature. Unlike other levitation methods, diamagnetic force enables levitation of large
objects and free boundary conditions of the levitating structures. Thus, it provides a
unique platform to study the elastodynamics of a free structure that is completely iso-
lated from its environment, which is useful in material characterization based on dy-
namics [3]. For example, by depositing a thin layer of any material on top of a millimeter
graphite plate, the material’s properties can be identified by looking at its dynamic re-
sponse. Moreover, with the reduction of size, structures of many diamagnetic materials
can be levitated. This will not only enable property characterization of different materi-
als, but also make it possible to study many interesting phenomena like the resonance
of water droplets.
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6.2.3. DIAMAGNETICALLY LEVITATING COUPLED RESONATORS

While the studies from Chapter 2-5 are concerned with the dynamics of only one levitat-
ing resonator, it is interesting to study the dynamics of two resonators levitating above
a magnet array and investigate the coupling mechanism between them. This is because
through coupling, sensitivity of resonant sensors can be significantly improved [4, 5].

Here we study the dynamics of two levitating resonators that are coupled through
air1. The two graphite plates are levitating above four NdFeB magnets with alternating
magnetizations, as shown in Fig. 6.5a. The dimensions of the plates are 4×4×0.2mm3

and 8× 8× 0.2mm3, respectively. Therefore, they levitate at different heights, with the
large plate on the top and the small one on the bottom, as shown in Fig. 6.5b. In order to
shine a laser on the smaller plate and detect its motion, a hole with a diameter of 2 mm is
cut at the center of the larger plate (see Fig. 6.5b). The experimental setup used to mea-
sure the dynamic response of the levitating resonators is shown in Fig. 6.5b. To excite
the levitating plates, we place a piezoelectric disc beneath the magnets. The excitation
signal is generated by a function generator (junction box) and amplified by a amplifier,
which is then connected to the piezo disc. To detect the motion of the plates, a Polytec
MSA400 is used to measure the velocity of the vibration by shining a laser beam on the
plate. Finally, the detected signal is transferred to a PC for frequency response analysis.
The experiments are conducted in a vacuum chamber with pressure from 0.003 mbar to
1000 mbar.

Levitating
plates

Ampli�er

MSA
Velocity

PC

N S

×5

+
-

Vacuum chamber

×20
1

0

(b)

Junction box

(a)
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N S
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Figure 6.5: Levitating resonators and measurement setup. (a) Top view of two graphite plates levitating over
four NdFeB magnets (also see the side view in Fig. 6.5b). The big plate has a hole at the center to enable the
motion detection of the small plate beneath it. (b) Schematic of the measurement setup comprising a MSA400
Polytec LDV for the read out and piezoelectric excitation method. The actuation voltage is generated by the
LDV junction box and is amplified by a 20× voltage amplifier that drives the levitating plate into resonance
using base actuation through the piezo disc. By focusing a MSA laser beam on the plate, the vibration signal is
detected,and the acquired velocity is transferred to a PC for frequency response analysis.

To identify the resonance frequency of the plates individually, we place one plate
above the magnet array at a time and measure its frequency response. The frequency re-
sponse curves of the two plates measured in both air and vacuum conditions are shown
in Fig. 6.6. At atmospheric pressure, we observe resonance of the plates at 22.8 Hz for
the 4 mm plate and at 18.1 Hz for the 8 mm plate, respectively. The mode shapes cor-

1Parts of the results about coupled resonators were measured and analyzed together with Chris Wattjes for his
Bachelor Honours Programme project
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responding to these resonances are the rigid vertical motion, as schematically shown in
Fig. 6.6. When measured in vacuum (0.003 mbar), the resonance peaks become sharper
(see Fig. 6.6), corresponding to higher Qs due to the removal of air damping. It is noted
that the resonance frequency of the small plate has a slight decrease in vacuum, which
we contribute to the reduction in mass loading by the surrounding gas. In contrast, the
resonance frequency of the larger plate increases slightly in vacuum. This is possibly
because for this plate, the frequency is more influenced by the stiffness due to the sur-
rounding gas and the stiffness is smaller in vacuum.
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Figure 6.6: Frequency response of the 4 mm and 8 mm levitating plates in air (1000 mbar) and vacuum (3×
10−3 mbar). The data is measured individually by placing each plate above the magnets. The inset shows the
mode shape of the resonance.

To study the coupling effects, we place both the plates above the magnets and mea-
sure the frequency response of the small plate at different pressures. The results are
shown in Fig. 6.7. In the figure, we show that when the pressure is low (below 0.23 mbar),
only one peak is observed at around 22.8 Hz, which agrees with the resonance frequency
of the small plate measured individually (see Fig. 6.6). With the pressure increasing, a
second peak shows up in the frequency response curves at a pressure of 1.4 mbar. The
second mode is at around 18.3 Hz, which is corresponding to the resonance frequency
of the larger plate (see Fig. 6.6). This indicates that a coupled mode on the small plate
is triggered by the big plate through air damping. The two peaks exist together at a cer-
tain range of pressure. After a certain pressure, only the resonance frequency related
to the larger plate (around 18.3 Hz) is detected in the frequency response curve of the
small plate. The reason is that at high pressure, the air drag force from the big plate is
significant, thereby dominating the small plate’s motion by driving it to move together.

To better understand the coupling mechanism between the two levitating res-
onators, a dynamic model of the system is needed. One example is a two degree-of-
freedom system shown below:

m1ẍ + c1ẋ +k1x +kc(x − y)+ cc (ẋ − ẏ) = F1 · sin(ωt ),

m2 ÿ + c2 ẏ +k2 y −kc(x − y)− cc (ẋ − ẏ) = F2 · sin(ωt ), (6.1)

where m1,c1,k1, x are the mass, viscous damping coefficient, stiffness and displacement
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Figure 6.7: Frequency response curves of the 4 mm plate measured in different pressures, when both the plates
are placed above the magnets.

of the small plate; and m2,c2,k2, y are the mass, viscous damping coefficient, stiffness
and displacement of the big plate; F · sin(ωt ) is the driving force; kc is the coupling stiff-
ness, which is a function of pressure. It is interesting to note that in this system (Eq.
(6.1)), c1,c2,kc are all changing with pressure. The term cc , that depends on the pressure
dependent squeeze-film damping in the gap between the plates, also causes coupling.

More detailed modeling is needed to understand the coupling mechanism by com-
parison with the measurements. The coupling terms kc and cc can be physically inter-
preted by analysing the stiffness or damping force due to the gas pressure between the
two resonators. Apart from coupling through gas, the levitating resonators can also be
coupled through forces like electrostatic force or laser beams. We have tried to study
the coupling effects using electrostatic force for two millimeter levitating plates, but the
force is not strong enough to observe the coupling phenomenon. By reducing the size of
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the levitating resonators, it is still possible to couple the resonators through electrostatic
force. One more interesting topic to pursue might be coupling two levitating graphite
plates using laser light, since the heat induced by laser is able to control the motion of a
graphite plate [6].

6.2.4. DIAMAGNETICALLY LEVITATING MICRO OBJECTS
Reducing the size of diamagnetic levitation systems will bring many new possibilities.
First, according to Fig. 2.3e in Chapter 2, the Q of levitating resonators increases signif-
icantly with reduced size. Moreover, based on the size reduction law [7], small objects
can be levitated easier and this makes it possible for the levitation of a wide variety of
materials with weak diamagnetism. Finally, with a smaller structure, mass is smaller and
frequency is higher, which is important for applications like force sensing.

Here we demonstrate the successful levitation of a micro particle above a millimeter
permanent magnet. To levitate an object above a single permanent magnet, we modify
the magnetic field distribution by cutting holes on the surface of the magnet, as shown
in Fig. 6.8a. With the cutting, the magnet will possess a potential well that enables stable
levitation of a particle. Fig. 6.8b shows a 10×5×3mm3 NdFeB magnet with an array of
holes with radius of 200µm and different depths. The holes are cut using a Lasea fem-
tosecond micro laser cutter and the depths are controlled by applying different cutting
time during the fabrication process. With the cut magnet, graphite particles with nomi-
nal size of 20µm purchased from Sigma-Aldrich are spread above the holes using a cot-
ton stick. The particles fall down freely and randomly towards the magnet, and some of
them are trapped inside the holes. Fig. 6.8c demonstrates a particular case of successful
trapping of a particle inside a hole with radius of 200µm and depth of 350 um. The par-
ticle levitates inside the hole with a distance of approximately 100µm to the top surface
of the magnet. In contrast to our simulations where the particle is at the center of the
hole, the trapped particle levitates at an off-centered position, as shown in Fig. 6.8c. The
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Figure 6.8: (a) Schematic of a micro sphere levitating inside a hole of a permanent magnet in three viewing
directions (not to scale). N stands for the north pole of the magnet. (b) A NdFeB magnet with an array of holes
with radius of 200µm and different depths. The holes are cut using a Lasea micro laser cutter. (c) A 20µm
graphite particle levitating inside a hole of a magnet. The radius and depth of the hole are 200µm and 350µm,
respectively.
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reason might be that the cut is not perfectly round through the depth and the bottom of
the hole is not flat, which influences the distribution of the magnetic field. Moreover, in
our experiments, successful levitation of one or multiple particles are observed in holes
with depths from 300µm to 480µm.

In the future, more systematic research can be done to study how the dimensions
of the holes and particles influence the stable levitation by both simulations and ex-
periments. Afterwards, it would be interesting to study the dynamics of the levitating
particles. Based on the prediction in Fig. 2.3e of Chapter 2, the Q of the levitating micro
particles is expected to be significantly higher under high vacuum conditions. With the
extremely low damping and isolation from environment, highly sensitive force or accel-
eration sensors could be developed.

6.2.5. HIGH-Q LEVITATING MACROSCOPIC RESONATORS

Levitating macroscopic structures has many advantages. Firstly, the shape is more con-
trollable for a macroscopic structure and the loading of it in a levitation trap is easier,
which makes a resonator more compatible with different applications. Moreover, for
many sensors, e.g., accelerometer and gravimeter, a larger mass results in a better sen-
sitivity because mass is directly coupled with the force or phenomena to be sensed. In
quantum mechanics, there is an increasing interest in observing the quantum super-
position and entanglement in macroscopic objects, and high-Q levitating macroscopic
resonators might make this possible.

In Chapter 3, we demonstrate a high-Q levitating resonator based on diamagnetic
composites, and conclude that there are still a lot of improvements that can be made
to push their Qs further. One drawback in the composite materials is that the particles
are randomly dispersed inside the epoxy matrix without control of the particles’ size,
shape and distribution. Therefore the Q of the composite resonator is still limited by the
eddy current damping due to the imperfect fabrication. To overcome these limitations,
we propose a new fabrication method to reduce the eddy currents by laser cutting. The
fabrication procedure is shown in Fig. 6.9a. We first coat a thin layer of epoxy resin on the
bottom surface of a graphite sheet and let the epoxy cure in open air. We then use a laser
cutter to cut through the graphite sheet and make a pattern. To maintain the rigidity,
epoxy resin is again used to fill the trench in the graphite sheet. After curing, sand paper
is used to polish the composite into desired thickness. A particular sample with grids of
100µm is shown in Fig. 6.9b.

Due to the strong diamagnetism of the graphite, we were able to levitate these
meshed graphite samples. In the future, we will measure their Qs in high vacuum.
By tailoring the graphite grid size, shape and distribution in a controllable way, the Q of
a millimeter meshed graphite plate with grids below 10µm is predicted to be above 1
million. With a combination of high Q and large mass by designing the composites, it is
possible to realize ultra-sensitive accelerometers or gravimeters.

Another direction that is worthy of investigation is using these high-Q composites as
platforms for quantum experiments. The first step for quantum experiments is to pre-
pare these resonators at quantum ground state, which seems not yet possible for these
levitation systems at room temperature due to their low Q and frequency. However, by
engineering the composites and magnetic field, it could be possible to have the Q and
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Figure 6.9: (a) Fabrication process of composites. A layer of epoxy resin is first coated on the bottom surface
of a graphite sheet and wait for 10 minutes to let the epoxy cure; after which a Lasea laser cutter is used to cut
through the graphite and make a pattern. To maintain the rigidity, epoxy resin is again used to fill the trench in
the graphite sheet. After the epoxy is cured, sand paper is used to polish the composite into desired thickness.
(b) A graphite sample after laser cutting.

frequency of a levitating resonator reach Q = 1×108 and f = 2000Hz, where quantum
ground state cooling might become achievable [8]. The efforts are worthy to make, since
diamagnetic levitation shows a significant potential compared to optical and electrical
levitation which can only levitate micro objects, and superconducting levitation that re-
quires operation in cryogenic temperatures.

This outlook shows only a few examples of the large number of avenues that might
still be explored in the field of levitodynamics using diamagnetic devices. Hopefully, this
thesis will contribute to paving the way for future levitation-based science and applica-
tions.
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