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Bus Network Design and Frequency Setting in
the Post-COVID-19 Pandemic: The Case of London

Manuel Filgueiras1; Konstantinos Gkiotsalitis2; Menno Yap3;
Oded Cats4; António Lobo5; and Sara Ferreira6

Abstract: A transit network design frequency setting model is proposed to cope with the postpandemic passenger demand. The multi-
objective transit network design and frequency setting problem (TNDFSP) seeks to find optimal routes and their associated frequencies
to operate public transport services in an urban area. The objective is to redesign the public transport network to minimize passenger costs
without incurring massive changes to its former composition. The proposed TNDFSP model includes a route generation algorithm (RGA)
that generates newlines in addition to the existing lines to serve the most demanding trips, and passenger assignment (PA) and frequency
setting (FS) mixed-integer programming models that distribute the demand through the modified bus network and set the optimal number
of buses for each line. Computational experiments were conducted on a test network and the network comprising the Royal Borough of
Kensington and Chelsea in London. DOI: 10.1061/JTEPBS.TEENG-7176. © 2023 American Society of Civil Engineers.

Introduction

After the detection of the COVID-19 virus, the risks of transmitting
the airborne infectious disease have had an enormous impact on
global mobility (Zhou et al. 2020). The accelerated propagation of
the virus is due to the extent of connections (Cartenì et al. 2021),
and the urgency to restrict contact forced many governments to im-
plement travel limitations and lockdowns (Przybylowski et al.
2021). Although the epidemic situation still varies from region to
region, as mentioned by Ghosh et al. (2020) and Cartenì et al. (2021),
cities with high access to public transport are prone to a higher trans-
mission rate. In fact, the transportation sector is one of the most dis-
rupted, due to implications such as reduced patronage, operational
impacts, and emerging financial issues (UITP 2020b; Gkiotsalitis
and Cats 2021c).

A sharp decline in public transport service is depicted in the
statistics of almost every city (Cui et al. 2021). For example, in the
early stages of the pandemic, cities such as London witnessed a
passenger demand reduction of 85% in bus services and 95% in sub-
way services (TfL 2020b). In New York, there was a 94% decrease
in the subway’s ridership, whereas in Budapest and Santander, there
was a 90% and 93% reduction in public transport usage, respectively
(Aloi et al. 2020; Bucsky 2020).

Regarding operational impacts, the decrease in ridership led
operators to limit their service, close stations, and suspend routes
(Gkiotsalitis 2021). In London, a reduction of the service frequency
generated criticism because some bus lines had higher waiting
times (UITP 2020b). Bus operators should not reduce bus frequen-
cies on a whole network without referring to service standards or
properly documented methods, because there are lines with dif-
ferent demands that may require a weighted allocation (Furth and
Wilson 1981).

In addition to the reduced number of passengers, public trans-
port operators had to comply with the health guidelines that intro-
duced capacity restraints to the vehicles and requested operators to
increase service frequency to ensure social distancing (UITP 2020a).
For example, London and Beijing limited the number of available
seats by 50% (TfL 2020a; UITP 2020b). In Poland, the public trans-
port capacity changed according to the stage of spread by 100%,
70%, and 50% (Wielechowski et al. 2020). The rapid service adap-
tations in cities such as London have been formulated mainly with ad
hoc knowledge (Gkiotsalitis and Cats 2021b), which leaves room for
improvements and optimization in the postpandemic future.

Currently, public transport operators seek to revise their tactical
plans to accommodate the near-future scenario in which the ex-
pected demand will grow. However, the predicted turnout still is
lower than the prepandemic levels (Ratho and Johns 2020). Both
the underground (tube) and the bus service usage in London remains
below the prepandemic levels of January 2020 (Fig. 1). Despite re-
cent increases in passenger demand, there still is a significant gap,
and new developments, such as the Omicron variant of the virus,
might postpone the passenger demand return to the prepandemic
levels.

To adapt the tactical plans of public transport service providers
to the new passenger demand levels without changing significantly
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the existing public transport schedules, this study introduces a route
design and a frequency setting (FS) model. The combined route
design and frequency settings model optimizes the bus service by
reducing the perceived travel time and incorporating the predicted
passenger demand. The model is based on the presumption that a
bus network exists, it has specific lines and service frequencies, and
it can be redesigned based on passenger demand projections. The
model redesigns the network to adapt without incurring massive
changes to the current network’s composition. The latter is ad-
dressed by adapting the existing routes to meet the demand and
creating an extra set of new routes tailored to satisfy the origin–
destination (OD) pairs with the highest demand. The frequency
setting part of our model assigns vehicles to bus lines according
to the distributed volume of passengers throughout the network.
Meng et al. (2018) defined the perceived travel time as the duration
that the passenger felt that he or she was spending between the
departure and arrival.

The transit network design and frequency setting problem
(TNDFSP) is an NP-hard problem in which every subproblem is
hard to solve. To rectify this, our formulation separates the transit
network design problem (TNDP) from the transit network fre-
quency setting problem (TNFSP). The TNDP is addressed with a
heuristic that generates extra lines based on the shortest paths of
the highest-demand OD pairs. The output of the route generation
model is used to solve the TNFSP. The TNFSP is composed of two
integrated mixed-integer programs (MIPs) that are solved itera-
tively. The first MIP assigns passengers to service lines, and the
second MIP determines the optimal line frequencies subject to the
passenger volumes. Our approach can help public transport plan-
ners and service providers to reduce operational costs by removing
low-frequency lines and altering routes without making radical
changes to the prepandemic composition of the public transport
network (i.e., altering the complete network plan and changing stop
locations).

The proposed model was implemented in a test network, and
then applied to an area of London comprising the Kensington and
Chelsea borough. Transport for London (TfL) provided the supply
data of this network. The remainder of this paper is structured as
follows. The literature review is presented in the section “Literature
Review.” Sections “Solution Framework” to “Upper-Level Model:

Frequency Setting Model” introduce the solution framework and
the formulation of the models. Section “Model Application” presents
numerical experiments on different networks. Section “Concluding
Remarks” concludes the paper and provides future research
directions.

Literature Review

Public transport operators need to replan their services in order to
meet passengers’ requirements and regain their trust in the postpan-
demic era. At the strategic level, replanning can include changes
in routes and service frequencies (Guihaire and Hao 2008). Due
to their computational complexity, most previous studies of bus
service planning solved the following subproblems sequentially:
transit network design (TND), frequency setting (FS), transit net-
work timetabling (TNT), vehicle scheduling problem (VSP), driver
scheduling problem (DSP), and driver rostering problem (DRP).
These subproblems were discussed in detail in the survey study by
Ibarra-Rojas et al. (2015).

Our literature review synthesizes studies that addressed the
TNDFSP. TNDFSP studies range from formulations with exact sol-
ution methods to heuristics and metaheuristics. Oftentimes, studies
used more than one solution strategy to reduce the computational
costs. One example is the work of Szeto andWu (2011), who aimed
to reduce the passenger waiting, transfer, and travel times in the
small area of Tin Shui Wai in Hong Kong. Szeto and Wu (2011)
formulated the problem as a mixed-integer nonlinear program using
a genetic algorithm (GA) hybridized with a neighborhood search
heuristic to design the network and solve the frequency setting prob-
lem. Other examples are the works of Fan and Machemehl (2004)
and Fan et al. (2016), who formulated multiobjective nonlinear
mixed-integer models applying a genetic algorithm to solve the
NP-hard problem. The metaheuristics involved prevent a guaran-
teed globally optimal solution in the context of several sources of
nonlinearities and nonconvexities. In addition to the heuristics, they
employed a neighborhood search, the simulated annealing algo-
rithm, to minimize passenger, operator, and unmet demand costs.

Concerning mathematically formulated problems, Hasselstrom
(1982) developed linear models for the TNDFS problems and solved
them using mathematical programming approaches to maximize the
total number of passengers. A set of routes was generated on a link-
connected network, and the lines were selected by assigning the fre-
quency using linear programming (LP). Ceder and Israeli (1998)
proposed a nonlinear mixed-integer program that considered both
passenger and operator costs. First, a set of feasible routes connect-
ing all nodes was generated. Next, a set covering problem was
solved by applying a multiobjective analysis to find the minimal
subsets of routes from which the most suitable subset is selected.
Wan and Lo (2003) examined modifying the routes and assigning
frequencies, and developed a linear mixed-integer programming
model to minimize operating costs. However, this mathematical ap-
proach has computational limitations, and it cannot be applied to
large networks. Borndörfer et al. (2005) dealt with a line planning
problem in public transport and formulated two multicommodity
flow models to minimize the total passenger travel time and the
operating costs. The developed linear model was examined using
a commercial LP solver to create the lines dynamically, and then
tested in the network of Potsdam, Germany. Ibarra-Rojas et al.
(2014) presented two integer linear programming models for the
timetabling and vehicle scheduling problems and combined them
in a biobjective integrated model. Numerical experiments showed
that the proposed approach can solve scenarios with as many as
50 bus lines.

Fig. 1. London’s bus and tube passenger ridership through the
pandemic.
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Lampkin and Saalmans (1967) utilized heuristics in the TNDFSP.
They developed a skeleton method to obtain the transit routes iter-
atively by extending the routes to improve the trip directedness, and
implemented a random greedy-based search method to obtain the
frequencies. The latter was adjusted to minimize passenger trip times
considering fleet size constraints and unlimited vehicle capacity.
Silman et al. (1974) minimized the passengers’ travel time and over-
crowding discomfort. Their method was split into two phases: first, a
candidate set of routes is selected based on the previously mentioned
skeleton method, and then the optimal assignment of frequencies is
performed under a fleet size constraint using the gradient descent
method. Dubois et al. (1979) presented a TNDFS problem in three
subproblems: determining the set of street selection, selecting routes,
and assigning the optimal frequency. A heuristic method was pro-
posed for determining the substantial subset of streets to minimize
the passengers’ journey time subject to a budgetary constraint. More-
over, the set of routes was selected from the generated subset of
roads. The frequency was assigned using a gradient-based search
heuristic to decrease the waiting time.

Mandl (1980) developed a two-stage approach: first, a feasible
set of routes is created, and then heuristics are applied to improve
the quality of the initial set of bus routes. Only in-vehicle travel
costs are considered to evaluate route quality. In Mandl’s pioneer-
ing work, a benchmark network of 15 Swiss cities was introduced.
Lee and Vuchic (2005) tackled the TNDFSP with a different meth-
odology, considering variable transit demand. Moreover, network
and operational specifications were included to minimize passenger
travel time. Using a practical heuristic approach, Fusco et al. (2002)
aimed to obtain the minimum overall system costs. Their heuristic
approach was based on a genetic algorithm to select suboptimal
routes or detours of the network. Their work considered and intro-
duced different criteria to generate routes simultaneously, and gen-
erated a hierarchical transit network by easing the set of constraints
to model the town’s structure.

Chakroborty and Wivedi (2002) implemented a different tech-
nique relying on genetic algorithms to determine an optimal set of
routes. Zhao and Gan (2003), Zhao (2006), and Zhao and Zeng
(2007) tried a mathematical approach to solve large-scale network
problems. They proposed a biobjective cost function minimizing
passenger and operator costs. For larger problems, the search is
conducted with a stochastic global search scheme that combines
simulated annealing, tabu, greedy, and bisection search methods.
Szeto and Jiang (2014) proposed a bilevel model that explicitly
minimizes the total number of passenger transfers in the objective
function of the upper-level problem and incorporates strict capac-
ity constraints to address the in-vehicle congestion in the lower-level
problem. They employed a hybrid artificial bee colony (ABC) al-
gorithm to determine route structures and a descent direction search
method to determine an optimal frequency setting for a given route
structure. Arbex and Cunha (2015) formulated a multiobjective
function to minimize passenger and operator costs by utilizing an
alternating objective genetic algorithm. For each iteration, the ob-
jective function changes until it converges. Nikolić and Teodorović
(2014) used the same objectives, applying a bee colony optimiza-
tion approach.

López-Ramos et al. (2017) integrated the TNDFSP in railway
transit rapid systems with the dual objective of minimizing passen-
ger riding time and operator costs. The solution method comprised
a corridor generation algorithm to extend the current network or
create lines, and a line-splitting algorithm to assign the train fre-
quency and deal with multiple line construction. Ngamchai and
Lovell (2003) optimized bus transit route design by manipulating
genetic algorithms. They introduced seven genetic operators to
incorporate unique service frequency settings for each route and

reduce the search time. Pattnaik et al.’s (1998) published benchmark
network showed that their model is more efficient than binary-coded
genetic algorithms. Pattnaik et al. (1998) developed a two-phase
model, which generates a set of candidate routes competing for
the optimum solution. The optimum set is selected by a genetic
algorithm. This work was tested in Madras, India.

Zhao et al. (2015) employed the memetic algorithm, an evolu-
tionary algorithm based on the genetic algorithm. The defined math-
ematical model minimized the passenger cost and unmet demand
under route and capacity constraints. A trial-and-error procedure
was introduced to verify the efficiency of the local search operator.
Jha et al. (2019) presented a multiobjective approach to TDNFSP by
solving the problem in two stages. First, the route design problem
was handled using an initial route set generation combined with a
genetic algorithm. Then the frequency setting problem was solved
with multiobjective particle swarm optimization (MOPSO). The de-
picted solutions improved trip directedness, reduced transfers, and
lowered the average travel time. Tom and Mohan (2003) minimized
the total system cost, which includes the user and operator costs.
Their integrated network design and frequency problem considered
the frequency as a variable. Their method’s structure is similar
to that of Pattnaik et al. (1998). Afandizadeh et al. (2013) further
investigated the TDNFSP by also considering an evaluation pro-
cedure, depot assignment, a penalty for empty seats, and unmet de-
mand to consider fleet constraints. The work was tested on Mandl’s
benchmark network and gave promising results compared with
other assignments.

Buba and Lee (2018) and Zhao et al. (2015) minimized passen-
ger cost and unmet demand by testing differential evolution algo-
rithms on Mandl’s network and other generic networks from the
literature. The results showed more-efficient searches than other
metaheuristics, such as the previously mentioned genetic algorithm.
Zhao (2006) defined a model that used a global search scheme based
on simulated annealing and objective functions to minimize user
costs and the unwillingness to make transfers. Fan et al. (2009) ad-
dressed the TNDFSP using an evolutionary multiobjective approach
to consider the trade-off between the user and operator costs. Their
work structure had three phases: finding candidate solutions, gen-
erating feasible route sets, and a routine system for making smart
neighborhood moves.

In summary, TNDFSP formulations result in NP-hard problems
due to their computational complexity (Guihaire and Hao 2008).
Many studies considered iterative processes to obtain near-optimal
solutions using heuristics and metaheuristics, given the difficulty of
obtaining a globally optimal solution. The evaluation of candidate
route sets can be challenging and time-consuming, and many po-
tential candidate solutions are rejected due to infeasibilities (Fan
et al. 2009; Arbex and Cunha 2015). Table 1 provides an overview
of the aforementioned papers that approached the TNDFSP, focus-
ing on their objective functions and solution methods.

Contributions

The model presented herein differs from the existing TNDFSP
models because it emphasizes on replanning and does not permit
radical line changes (i.e., altering the complete network plan and
changing stop locations). It also considers the impact of postpan-
demic effects in the model formulation, expressed in the projected
reduced number of passengers and negatively perceived in-vehicle
crowding. We decompose the TNDFSP into the transit network
design and the TNFSP subproblems. The TNDP is solved using
Dijkstra’s algorithm to create shortest paths tailored to high-
demand OD pairs. Subsequently, these paths generate lines for both

© ASCE 04023020-3 J. Transp. Eng., Part A: Systems
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OD pair directions. The bus network expands with the addition
of these new lines, and the probability of having low-usage lines
increases. Such lines will have a low frequency after solving the
subsequent TNFSP model. Because of this, some of the lines gen-
erated during the TNDP stage might be eliminated. The TNFSP
is solved by a two-stage model composed of two mixed-integer
programs. In the first stage, the passengers are assigned to the net-
work considering the crowdedness of each line segment and the bus
frequencies (Spiess and Florian 1989). Frequencies are assigned
optimally to the bus lines in the second stage, considering the fleet
size and operational constraints.

Solution Framework

The modeling framework developed to deal with the transit network
design and frequency setting problem is presented in this section.
Due to the complexity of the problem, each subproblem is described
individually. The description and assumptions are presented in each
subsection, followed by a mathematical formulation.

The first model is the line generation model (section “Line
Generation Model”) based on the works of Baaj and Mahmassani
(1995). The model is based on a route generation algorithm (RGA)
for the design of transit networks. The heuristic algorithm generates
additional lines for the existing bus network to directly serve the
OD pairs with the highest demand, thereby minimizing travel times.
The second model is the passenger assignment (PA) model (sec-
tion “Lower-Level Model: Passenger Assignment Model”). It was

adapted from the works of Spiess and Florian (1989) and comple-
mented by a penalty for passenger transferring lines at a macrolevel.
The overall objective aims to minimize the travel times of passen-
gers considering a probabilistic assignment based on the frequency
of the bus lines and the crowding of each line. The third model is the
frequency setting model (section “Upper-Level Model: Frequency
Setting Model”). The frequency setting model was developed in this
study to consider new variables due to the influence of COVID-19.
These variables consist mainly of the passengers’ negative percep-
tion of traveling in more-crowded buses. The output frequency
minimizes travel times and optimizes the bus fleet’s deployment
to meet the travelers’ demand. Further analysis of the assigned
frequencies can be used to remove low-usage lines to reduce opera-
tional costs.

The second and third models, namely the passenger assignment
(PA) and the frequency setting (FS) models, function as a combined
bilevel model. The output from the passenger assignment model is
the input of the frequency setting model, and vice-versa. The mod-
els iterate until convergence.

The input data consists of a network graph G ¼ ðS;AÞ contain-
ing the existing stops S, the direct connections between them A
with the respective length and travel time, the origin–destination
matrix, the bus company fleet size, and the average bus capacity.
Other parameters also can be adjusted, such as the convergence
tolerance parameter δ, perceived travel and waiting times, and
maximum distance travelled. Fig. 2 depicts the solution framework
characterizing each model’s inputs, outputs, decision variables, and
method used.

Table 1. Summary of TNDFSP literature

Authors Objective Solution method

Szeto and Wu (2011) Minimize passenger costs Metaheuristics (GA and NS)
Fan and Machemehl (2004) Minimize passenger and operator costs Metaheuristics (GA and NS)
Fan and Machemehl (2006) Minimize passenger and operator costs Metaheuristics (GA and SA)
Hasselstrom (1982) Minimize passenger costs Mathematical programming
Ceder and Israeli (1998) Minimize passenger and operator costs Mathematical programming
Wan and Lo (2003) Minimize operator costs Mathematical
Borndörfer et al. (2005) Minimize passenger and operator costs Mathematical programming
Ibarra-Rojas et al. (2014) Minimize passenger and operator costs Mathematical programming
Lampkin and Saalmans (1967) Minimize passenger costs Heuristic (GS)
Silman et al. (1974) Minimize passenger costs Heuristic
Dubois et al. (1979) Minimize passenger costs Heuristic
Mandl (1980) Minimize passenger costs Heuristic
Lee and Vuchic (2005) Minimize passenger costs Heuristic
Fusco et al. (2002) Minimize passenger and operator costs Metaheuristic (GA)
Chakroborty and Wivedi (2002) Minimize passenger and operator costs Metaheuristic (GA)
Zhao and Gan (2003) Minimize passenger and operator costs Metaheuristics (TS, SA, and GS)
Zhao (2006) Minimize passenger and operator costs Metaheuristics (TS, SA, and GS)
Zhao and Zeng (2007) Minimize passenger and operator costs Metaheuristics (TS, SA, and GS)
Szeto and Jiang (2014) Minimize passenger costs ABC
Arbex and Cunha (2015) Minimize passenger and operator costs Metaheuristic (GA)
López-Ramos et al. (2017) Minimize passenger and operator costs Heuristic
Ngamchai and Lovell (2003) Minimize passenger costs Metaheuristic (GA)
Pattnaik et al. (1998) Minimize passenger and operator costs Metaheuristic (GA)
Zhao et al. (2015) Minimize passenger costs Metaheuristic (MA)
Jha et al. (2019) Minimize passenger costs Metaheuristics (GA, MOPSO)
Tom and Mohan (2003) Minimize passenger and operator costs Metaheuristic (GA)
Tom and Mohan (2003) Minimize passenger and operator costs Metaheuristic (GA)
Afandizadeh et al. (2013) Minimize passenger costs Metaheuristic (GA)
Buba and Lee (2018) Minimize passenger costs Metaheuristics
Zhao et al. (2015) Minimize passenger costs Metaheuristics
Zhao (2006) Minimize passenger costs Metaheuristic (SA)
Fan et al. (2009) Minimize passenger costs Metaheuristics

Note: GA = genetic algorithm; NS = neighborhood search; SA = simulated annealing; GS = greedy search; TS = tabu search; and MOPSO = multiobjective
particle swarm optimization.
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The solution framework integrates the three models to solve
the TNDFSP. The line generation (LG) model runs independently,
whereas the passenger assignment and frequency setting models
iterate together to converge to the desired output. The structure
of the algorithms starts with the LG model receiving the input data,
which is used to generate additional direct bus lines. The generated
lines do not change subsequently. Next, the pre-existing lines and
new lines are combined, resulting in an extended network, and the
algorithm proceeds to the bilevel passenger assignment and fre-
quency setting model. A loop begins considering the initial frequen-
cies fo of all lines. The bilevel model runs iteratively until the
minimal convergence tolerance is satisfied. The process starts with
the lower-level passenger assignment model, considering the fre-
quency of the lines to board, the in-vehicle travel time, the crowd-
edness of the lines, and an additional transfer penalty. The output
from this model is used to readjust the frequencies of the upper-
level model according to the in-vehicle crowding perception and
boarding waiting times. The determined frequencies then are intro-
duced to the lower-level model, and the process repeats. When the

difference between the previous assignment and the current
assignment is less than the convergence tolerance, the iterative
algorithm stops, and the output of the final bus frequencies is
provided.

Line Generation Model

The line generationmodel extends the work of Baaj andMahmassani
(1995). Our line generation is complementary to the existing bus
transit network in such a way as not to incur massive changes to
the current network composition. In the scenario in which the
disruption caused by COVID-19 in travel patterns leads to ineffi-
ciencies of the service, the model creates new lines tailored to the
future travel demand. From the set of old and new lines, public
transport service providers may choose the line plan to be estab-
lished for their service according to the volume of passengers
served. A line plan comprises the bus line routes and their respective
frequencies.

Fig. 2. Solution framework.
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Given the OD matrix corresponding to a selected period of op-
eration, a description of the node network specifies for each node (s)
• its neighboring nodes;
• the in-vehicle travel times on all connecting street links (PTN);
• the maximum load factor allowed on any bus route; and
• the seating capacity of the fleet’s buses.

Then a route generation algorithm determines the sets of routes
that correspond to different trade-offs between the user and oper-
ator’s costs.

The RGA’s overall structure is described in Fig. 3. It starts by
sorting the OD pairs of the matrix in decreasing order of the number
of trips into a new variable. Then, the first user input regarding the

Fig. 3. Adapted route generation algorithm.
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trade-off between the user and operator costs is considered by intro-
ducing parameter Dmin. The value of Dmin specifies the minimum
percentage of trips that are to be satisfied directly by the generation
of the new routes by the RGA. The greater this percentage, the more
lines are generated and, therefore, the greater are the operating costs,
although the demand is served more directly and user costs are
reduced.

Next, the algorithm sums the trips of the first sorted OD
pairs until the accumulated sum, as a percentage, is higher than
or equal to Dmin. The summed OD pairs are removed from the
sorted OD and are selected to generate lines. They are considered
to be the OD pairs with the highest demand. For each high-
demand OD pair, the algorithm finds the shortest path using,
for example, Dijkstra’s algorithm from stop s to destination q,
ðs; qÞ, and from destination q to source stop s, ðq; sÞ. These
paths are concatenated and form a temporary line. The next steps
filter the temporary line to check for overlapping. For example,
if both stop s and destination q are already served directly by
the bus network, the temporary line is removed to avoid redundant
lines. Furthermore, overlapping filtering is applied. According to the
requirements of the public transport service provider, one can intro-
duce parameter K indicating the maximum percentage of overlap-
ping links compared with an existing line. If this condition is not
met, the temporary line is removed. Again, this is a trade-off be-
tween the operator’s and users’ costs, because a low value of K will
generate fewer lines. The temporary line is stored as a new line of
the bus network if the filtering steps do not remove it. After all
high-demand OD pairs are checked, the algorithm outputs the
set of generated lines.

Lower-Level Model: Passenger Assignment Model

The output of this lower-level model is the distribution of the de-
manded volume of passengers through the network composed of
arcs (links) and stops (nodes). An arc a is a directed road connec-
tion between two bus stops. The arc contains information on the
frequency of buses that travel the arc, the average travel time, and
the respective length of the arc. The passenger assignment is a prob-
abilistic assignment that depends on the frequency of the bus lines.
As in Spiess and Florian (1989), we introduce a nonlinear term in
the objective function to consider the perceived travel cost due to
congestion. This aspect is incorporated here, but also is considered
and explored further at the microlevel in the frequency settingmodel.
One of the limitations of the model of Spiess and Florian (1989) is
that it considers the general waiting time and not the passengers’
perception of making a transfer to another bus. To rectify this, we
introduce a fixed penalty to the volume of transfer passengers,
which contributes to passengers opting more for direct lines when
such an option is available.

Assumptions for the Passenger Assignment Model

Trip Components
The formulation of a traveler’s trip is segmented into trip components
that can be represented by the arcs a ∈ A in a network G ¼ ðS;AÞ.
These arcs can be boarding arcs, alighting arcs, and in-vehicle travel
arcs. The stops, S, are nodes of the network with incoming and out-
going arcs. The set of outgoing arcs at a stop s ∈ S is denoted Aþ

s ,
whereas the incoming arcs are denoted A−

s . Spiess and Florian (1989)
introduced the possibility of having more than one stop at the exact
physical location to allow the construction of a network in which an
arc corresponds to one and only one line (Fig. 7).

Information about the Arcs
Each arc has a given travel time ta, a frequency fa ∈ ½0;þ∞�, and
a waiting time wa ∈ ½0;þ∞�. Boarding and alighting arcs have a
null value for travel time. Because boarding arcs imply waiting,
the frequency needs to be greater than zero, i.e., fa ∈ Rþ. In con-
trast, in-vehicle travel arcs have a frequency fa ¼ þ∞ and waiting
time wa ¼ 0. To summarize, three types of trip components are
considered
• waiting for boarding (ta ¼ 0, fa ∈ Rþ, wa ∈ Rþ);
• in-vehicle travel (ta > 0, fa ¼ þ∞, wa ¼ 0); and
• alighting (ta ¼ 0, fa ¼ 0, wa ¼ 0).

Probabilistic Assignment
As mentioned previously, the assignment of passengers depends on
the frequency. In a probabilistic model, this is done by considering
at every stop a set of potential outgoing arcs Aþ

s . Let xa;s ¼ 1 if arc
a is an outgoing arc of node s, and xa;s ¼ 0 otherwise. The prob-
ability of choosing an arc over another is given by

Pa;s ¼
faxa;sP

a 0∈A fa 0xa 0;s
; ∀ a ∈ A ð1Þ

where the denominator represents the sum of all other outgoing
arcs xa 0;s multiplied by the respective frequencies fa 0 . Probability
Pa;s ¼ 0 if a is not an outgoing arc of s, because xa;s ¼ 0. Follow-
ing this method, the volume of passengers will be distributed more
densely on high-frequency lines that also have reduced waiting
times. The total passenger volume at a node (vs) can be given by

vs ¼
X
a∈A−

s

va þ ds; ∀ s ∈ S ð2Þ

where ds = predicted demand at node s from origins of OD matrix;
and va = passenger volume of arc a ∈ A−

s . Furthermore, the ex-
pected waiting time ws at node s is expressed as

ws ¼
θP

a∈Afaxa;s
; ∀ s ∈ S ð3Þ

where θ ≥ 0 is a coefficient that can take the value of 1=2 if the arc
is a high-frequency service, in which passengers arrive randomly
at the station, or a value of 1 for a low-frequency service. In the
case θ ¼ 1, the distribution of interarrival times is an exponential
distribution of headways with mean 1=fa and a uniform passenger
arrival rate.

Bus Capacity
The bus capacity bcap is assumed to be a constant value for the
whole fleet; this is the average bus capacity. The previously men-
tioned in-vehicle crowding perception negatively impacts travel
time as buses become overcrowded. For a network with a much-
varying fleet size, some model development would be desired to
adjust the crowding function of the travel time in order to consider
different space areas within the vehicle. The equivalent is valid for
the frequency setting model, in which another crowding function is
considered.

Perceived Travel Cost due to Congestion
To consider the in-vehicle congestion on the passenger’s path selec-
tion, the riding travel time of an arc ta can be no longer immutable,
but rather a continuous nondecreasing function of the corresponding
arc flow taðvaÞ. The function adopted to update the travel time was
retrieved from the Bureau of Public Roads (BPR)
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taðvaÞ ¼
�

va
fabcap

�
β

ð4Þ

where va = passenger volume of trip component a; bcap = nominal
capacity of bus; and β = BPR function parameter that, in this case,
takes the value of 2 and the function becomes quadratic to reduce the
complexity of the optimization problem.

Transfer Waiting Time and Associated Penalty
The transfer waiting time for a complex network such as London’s
is hard to predict because it depends on at least two factors: the
passenger arrival time at the transfer stop, and the frequency of
the interchange bus line. The arrival time is considered to be ran-
dom because the generation of lines and frequency settings are not
formulated to coordinate the transfers. Coordination means that in
a transfer stop, two or more lines meet simultaneously to reduce
transfer waiting times. However, the transfer waiting time consid-
ers only the frequency of the transfer bus line, and it has the same
formulation as the waiting time to board at a stop.

In this model, for simplification, the walking time is omitted if a
transfer is conducted, because transfers can happen only at inter-
change stops. We aim to reduce the necessity of transfers to provide
passengers with direct services, because in reality uninterrupted
connections are preferable (Stradling et al. 2007). However, a
journey might be incomplete without a transfer if there is no direct
connection. In that case, the volume of transfers at a network level
is accounted for and penalized by a fixed parameter βtrans. The value
of βtrans is based on the work of Yap et al. (2020) in The Hague, in
which a five-minute penalty was considered to be plausible.

To keep track of the volume of transfers, this term is considered
at a network level. The formulation can be given by the difference
between the sum of the outgoing volume of all boarding arcs and
the original demand, i.e., the number of boarding passengers of the
OD matrix (d)

vtransfer ¼
X
a∈B

X
q∈Q

~va;q − d ð5Þ

where B ⊆ A = set of boarding arcs; and ~va;q = flow in arc a of all
passengers traveling to destination q.

Objective Function for the Passenger
Assignment Model

The optimization model assigns passengers to their optimal paths
considering all origins and destinations q ∈ Q. For this, it is defined
as a subset Sq ⊆ S containing all the stops before destination q.
Additionally, variables ~va;q and ws;q, indicating, respectively, the
flow in arc a and the total waiting time at stop s for passengers
travelling to destination q are added

minZ ≔
X
a∈A

t0ava þ
X
q∈Q

X
s∈S

ws;q þ
X
a∈A

t0a

�
va

fabcap

�
β

þ βtransvtransfer ð6Þ
subject to

va ¼
X
q∈Q

~va;q ∀ a ∈ A ð7Þ

X
a∈A

~va;qxa;s −
X
a∈A

~va;qya;s ¼ ds;q; ∀ s ∈ Sq; q ∈ Q ð8Þ

~va;qxa;s ≤ faws;q; ∀ a ∈ A; s ∈ S; q ∈ Q ð9Þ
~va;q ≥ 0; ∀ a ∈ A; ∀ q ∈ Q ð10Þ

ws;q ≥ 0; ∀ s ∈ S; ∀ q ∈ Q ð11Þ

vtransfer ¼
X
a∈B

X
q∈Q

~va;q − d ð12Þ

where t0a = average travel time of arc a without congestion; ds;q =
demand of passengers travelling from s to q; xa;s = binary dummy
variable that checks if arc a is an outgoing arc of s; ya;s = binary
dummy variable that checks if arc a is an incoming arc of s; d =
total demand; and va = volume of passengers on arc a.

The model minimizes the total arc travel time and waiting time
at nodes. Constraint Eq. (7) ensures that the volume of arc a is
the sum of the volume that flows to all destinations q on arc a.
Constraint Eq. (8) is the passenger flow conservation constraint,
which ensures that the outgoing flow from all outgoing arcs from
node s equals the incoming flow to node s plus the passenger de-
mand. Constraint Eq. (9) ensures that the passenger volume va in
the outgoing arc a of node s is lower than or equal to the frequency
of that arc multiplied by the total waiting time for all trips at node s;
if a is not an outgoing arc of node s, constraint Eq. (9) is satisfied
because the left-hand-side is equal to zero. Constraints Eqs. (10)
and (11) ensure that the volume of passengers in an arc and the wait-
ing time at a stop cannot be negative. Finally, constraint Eq. (12)
results in the number of transfers at a network level. For a BPR
parameter value β ¼ 2, the objective function is quadratic, and the
resulting mathematical program is an easy-to-solve inequality-
constrained quadratic program (IQP) that can be solved with active
set or interior point methods.

Upper-Level Model: Frequency Setting Model

The frequency setting model formulated as a mixed-integer linear
program aims to attract more passengers by minimizing passenger
costs. It utilizes the distribution of passengers and bus lines from
the passenger assignment and line pool models output, respectively,
as inputs.

The model adjusts the frequencies of the routes (bus lines) to
meet the passenger demand. This adjustment ultimately alters the
passengers’ waiting time and in-vehicle travel time, which are ad-
dressed as passenger costs in this study. It follows the basic prin-
ciples of frequency settings models expressed in the survey paper
by Schöbel (2012). The waiting time is directly dependent on the
frequency of a route at a given stop, because more-frequent routes
have a lower time headway between vehicles, and therefore a re-
duced waiting time.

The in-vehicle crowding is related indirectly to the frequency,
i.e., the frequency determines how many buses operate on a given
route in a given period. Consequently, if the bus capacity is given
and we multiply it by the number of buses, this indicates the maxi-
mum passenger flow possible to transport over that period. The
crowding of each bus then is determined by the difference between
the sum of the assigned bus capacity and the total demand if the
demand is distributed evenly across a time interval. If the number of
buses is underestimated, the model adds more frequency to routes
to reduce the crowding perception and ultimately to reduce the in-
vehicle travel time.

Assumptions for the Frequency Setting Model

In-Vehicle Travel Time and Crowding Time Penalty
The perceived in-vehicle travel time increases when there is crowding
onboard. According to Pel et al. (2014), passengers start to experience
a disutility for crowding when the demand exceeds 50%–70% of the
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bus seat capacity. In our scope, even after COVID-19, people likely
are reluctant to travel or relax in crowded public spaces. To consider
such hesitation, the perceived in-vehicle travel time between two
stops connected by an arc a of a given route r is given by the average
road travel time tr;a multiplied by the in-vehicle crowding perception
βivt
r;a. The crowding perception is formulated as a piecewise linear

function of three conditionals

βivt
r;a ¼

8>>><
>>>:

M · vivtr;a vivtr;a > bcap

λ − ðλ − 1Þðbcap − vivtr;aÞ
bcap − bsc

bsc < vivtr;a ≤ bcap

1 bsc ≤ vivtr;a

ð13Þ

vivtr;a ¼
vr;a
fr

ð14Þ

where vivtr;a = in-vehicle load per bus that runs on arc a of route r;
vr;a = passenger volume of arc a of route r over period T; fr = fre-
quency on route r; bcap = total bus capacity; bsc = bus seat capacity;
M is a very large positive number; and λ = crowding parameter.

If the occupancy exceeds the total capacity bcap, the multiplier
takes a considerable value of M, making it infeasible to board the
bus considering the resulting increase in in-vehicle travel time. If
the occupancy is below bcap, a linear interpolation is used on the
second conditional between the seating capacity bsc and the stand-
ing bus capacity scenarios bcap. The penalty takes the value of 1,
i.e., no liability, if the number of passengers is less than or equal

to bsc. In the latter scenario, if it is impossible to board more pas-
sengers, the penalty takes another value according to a crowding
parameter λ. Eq. (14) expresses the number of present passengers
on every bus at an arc of a specific route. The passenger demand is
assumed to be distributed evenly across the time horizon. The time
horizon is one hour, because the frequencies also are defined per
hour. The proposed piecewise linear (PWL) function that returns
βivt
r;a is depicted in Fig. 4.

Waiting Time and Associated Penalty
The waiting time ws at a stop s is a feature that resembles the pas-
senger perception of the bus service’s reliability and efficiency. Pas-
sengers are more attracted to using public transport if the expected
waiting time is low and consistent. Nowadays, more travelers arrive
at the stations closer to the departure time due to technology that
provides real-time service data (Lüthi et al. 2007). Because of this
information, the waiting time at a stop in the frequency setting
model no longer is based on a probabilistic assignment, but on two
assumptions. The first considers a random arrival pattern if the stop
is served by a high-frequency service, i.e., it has short interarrival
times, and one does not need to check the schedule before arriving.
The second is that travelers will plan their arrival closer to the de-
parture of the vehicle if they wish to use a less frequent route. Re-
garding the former assumption’s randomness, an average waiting
time of half the time headway between successive vehicles was
used, according to the literature (Gkiotsalitis and Cats 2021a). The
latter assumption considers a fixed waiting time ξ when the time
headway is longer, because passengers will coordinate their arrivals
at the stops with the departure times of the vehicles (Liu et al. 2021).
These two assumptions are depicted in Fig. 5.

The waiting time at any given stop for route wr is expressed as a
conditional function derived from the frequency of the route fr

wr ¼
8<
:

ξ; fr < ω ðveh=hÞ
1

2fr
; fr ≥ ω ðveh=hÞ ð15Þ

where ω = threshold service frequency that distinguishes high-
frequency routes from low-frequency routes.

The waiting time at a station usually is perceived as costlier than
the in-vehicle time. There are many studies of the waiting time multi-
plier, resulting in quite a range of values. Many authors determined
different factors based on their research cases and local surveys.
On average, passengers with no access to real-time information per-
ceived the waiting time to be 0.83 min (multiplier ¼ 1.15) longer in

Fig. 4. In-vehicle crowding penalty function.

Fig. 5. Passengers’ assumed waiting time versus vehicle time-headways.
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the work of Watkins et al. (2011) and 0.84 min (multiplier ¼ 1.21)
longer in the work of Fan et al. (2016). These studies showed that
passengers perceived the waiting time cost to be significantly less
(about 30%) when they had access to real-time information. In our
case study, we adopted a value of βwait ¼ 1.2. However, the param-
eter can be modeled and updated to a specific case study.

Reduced Traveled Length
Because of the financial strain that several transit operators face and
the reduced ridership, a limit to the maximum hourly traveled dis-
tance is introduced in our model. Such a measure diminishes oper-
ating costs by limiting the frequencies and deploying fewer buses
and drivers. The length of each bidirectional route r is calculated as
the sum of each arc’s length lr;a. Thus, it is possible to calculate the
distance per hour by multiplying the length of each route by the
assigned frequency. The hourly covered distance of the network
then can be given by

L ¼
X
r

X
a∈r

lr;afr ð16Þ

Objective Function for the Frequency Setting Model

The objective function is

MIN∶Z ¼
X
r∈R

X
a∈r

ðβivt
r;atr;a þ βwaitwrgr;aÞvr;a ð17Þ

For every route, r in the set of routes R and for all arcs a in the
route r, the model is subjected to the following constraints:

βivt
r;a ¼

8>>><
>>>:

M · vivtr;a vivtr;a > bcap

λ − ðλ − 1Þðbcap − vivtr;aÞ
bcap − bsc

bsc < vivtr;a ≤ bcap

1 bsc ≤ vivtr;a

ð18Þ

vivtr;a ¼
vr;a
fr

ð19Þ

wr ¼
8<
:

ξ; fr < ω
1

2fr
; fr ≥ ω

ð20Þ

Nbuses ¼
X
r

X
a∈r

tr;a
fr

ð21Þ

Nbuses ≤ NMAX ð22Þ

L ¼
X
r

X
a∈r

lr;afr ð23Þ

L ≤ LMAX ð24Þ
where tr;a = travel time of arc a of route r; wr = waiting time at any
given stop for route r; βivt

r;a = penalty associated with in-vehicle
crowding; βwait = fixed penalty associated with perceived waiting
time before boarding; lr;a = length of arc a belonging to route r;
Nbuses = number of deployed buses in network; NMAX = network’s
fleet size; L = traveled length in network per hour; LMAX = maxi-
mum span travel length of network per hour; fr = frequency of
route r; and B = set of boarding arcs.

The formulation minimizes the users’ cost, which is related
implicitly to the frequency of the routes. Similarly to the passenger
assignment model, a journey is divided into trip components: board-
ing, riding, transferring, waiting, and alighting. The formulation

works on a network level as follows: the waiting time cost is em-
ployed if arc a is a boarding arc, and the in-vehicle time cost is
applied for all arcs in A; however, apart from the riding arcs, the
travel times of boarding and alighting arcs are set to zero. Therefore
only the riding arcs are penalized with the crowding perception.

Considering the objective function, in the case of a being an
alighting arc, there is no associated cost. The first component regards
the perceived in-vehicle travel time considering the crowding level
of all buses and all arcs. The second component includes the waiting
times of all passengers on arcs that are boarding arcs. Parameter gr;a
is a binary parameter that takes the value of 1 if an arc is a boarding
arc and zero otherwise. The last term, vr;a, is the output of the pas-
senger assignment model, and corresponds to the volume of passen-
gers on every arc.

Constraint Eq. (18) is a piecewise linear function of vivtr;a ensuring
that the in-vehicle crowding perception penalty is updated accord-
ingly. Constraint Eq. (19) is a fractional constraint that calculates the
number of passengers in a particular bus running on a specific arc of
a route. Because each arc corresponds to one route only, if the total
volume of the assigned passengers per arc vr;a is divided by the
frequency of the operated buses of the route containing such arc, the
average number of travelers per arc and per bus (vivtr;a) is obtained.
The waiting time to board a bus, if it is the first boarding or a transfer
boarding, is given by the function in constraint Eq. (20). Constraint
Eq. (21) calculates the number of buses deployed per route r with
regard to the round trip time: this is the sum of the average time to
ride each arc of the route. Furthermore, Eq. (22) constrains the maxi-
mum number of deployed buses according to the fleet size NMAX.

Finally, constraints Eqs. (23) and (24) determine the distance
traveled over the study period and limits it according to the maxi-
mum allowed traveled length and available resources from the op-
erating company.

In this mathematical formulation, constraints Eqs. (19)–(21) are
fractional (and thus nonlinear). These fractional constraints can be
reformulated as quadratic equality constraints, which are supported
by optimization solvers (i.e., Gurobi). We can introduce variable f 0

r
and add the quadratic equality constraint

f 0
rfr ¼ 1 ð25Þ

This allows us to reformulate the fractional constraint Eq. (19)
as the following linear constraint:

vivtr;a ¼ vr;af 0
r ð26Þ

In addition, the fractional constraint Eq. (21) can be reformu-
lated as the following linear constraint:

Nbuses ¼
X
r

X
a∈r

tr;af 0
r ð27Þ

Finally, the conditional constraint Eq. (20) can be replaced by
the following set of linear and quadratic equality constraints:

wr ¼ ð1 − binÞξ þ
1

2
binf 0

r ð28Þ

fr ≥ ω −Mð1 − binÞ ð29Þ

fr ≤ ωþMbin − ϵ ð30Þ
where bin = binary (0–1) variable; M = very large positive number
(parameter); and ϵ = parameter that takes a small positive value to
simulate constraint fr < ωþMbin. If fr < ω then bin is forced to
be equal to 0 to satisfy constraint Eq. (29), thus yielding wr ¼ ξ. On
the other hand, if fr ≥ ω then bin is forced to be equal to 1 to satisfy

© ASCE 04023020-10 J. Transp. Eng., Part A: Systems
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constraint Eq. (30), thus yielding wr ¼ ð1=2Þf 0
r which is equivalent

to ð1=2frÞ.

Model Application

Case Study—Toy Network

The experiments with the bilevel model began with a test toy net-
work, containing all the considered trip components. Fig. 6 illustrate
the test network, and Fig. 7 depicts the different trip components of
the same network.

In this example, there was a total of 14 nodes (4 stations and 10
auxiliary nodes) and 18 edges (6 boarding arcs, 6 riding arcs, and

6 alighting arcs). Table 2 presents an example OD matrix with the
number of passengers traveling from an origin stop to a destination
stop. The OD table also contains a demand with nondirect routes to
destination vertexes, which was relevant for testing how the model
processes the transfers.

Results from the Toy Network

The experiments started by verifying the implementation of the new
transfer penalty in the passenger assignment model. The experi-
ment was conducted by solving the lower-level model first using
commercial solver Gurobi 9.1.2. The results of the different percep-
tions of the transfer penalty are depicted in Fig. 8.

The introduction of the transfer penalty reduced the number of
transfers, which resembles the passengers’ negative perceptions of
transfers when a direct route is available. In this specific network,
the effect was more evident when the transfer penalty was higher
than 6 min (Fig. 8). It is expected that for a more extensive network,
the transfer penalty will have an increased effect.

Furthermore, the bi-level optimization model was tested with
the parameters in Table 3. The test results in Table 4 were obtained
using different fleet sizes while keeping the other variables fixed. In
this test, round trips were not considered for the bus assignment, so
the frequency reflects the number of buses assigned to a route over
1 h. The output also gives the total volume of passengers that used
at least one arc belonging to a route. A number of iterations was
completed until the convergence tolerance of 1% was met.

The frequency assigned in the upper-level model also was
optimized and validated by checking the passenger perception of
the bus route. Under these circumstances, more vehicles will run
on a higher-demand route so that the demand is satisfied and the
vehicles are not overcrowded. As a consequence of assigningFig. 6. Example test network.

Fig. 7. Component representation of the test network.

Table 2. Example OD matrix for period of 1 h

O=D A X Y B

A — 0 80 100
X 0 — 20 0
Y 0 0 — 0
B 0 0 0 —

Fig. 8. Volume of direct and transfer passengers.

Table 3. Parameter values of test network of Fig. 6

Parameter Value

bsc (seats) 60
bcap (seats) 87
λ (min) 2.5
ξ (min) 6
ω (bus=h) 10
βwait (min) 1.2
βtrans (min) 5
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more buses, there is an increased chance of having more seats
available. The waiting times also were generated according to
the assigned frequency.

The computational time to solve the bilevel model depends on
the size of the network, the size of OD demand, and the relative
tolerance for convergence. The chosen convergence alters the num-
ber of iterations the model will perform. For the example network,
with a relatively low value of 1%, the convergence was less than
30 s with three iterations when using a conventional computer with
8 GB RAM and a 2.1-GHz Ryzen 5 processor.

The results in Table 4 provide information on the number of
passengers distributed on the existing four lines with the respective
bus frequencies. As the fleet size availability increased, the model
converged to an improved assignment of passengers, eliminating
the number of subtours and unnecessary transfers. The assigned
frequency also improved to reduce crowding. The model provides
more-accurate results when the number of available buses provides
more capacity than the OD demand requests.

Case Study—Area of the London Network

The scope of this case study was within the geographical area of
Chelsea (within the Royal Borough of Kensington and Chelsea).
The Borough of Kensington and Chelsea is one of the affluent areas
in London, characterized by a high share of high-income residents.
These residents opt more often for car usage, causing road traffic
congestion and making it challenging to provide an attractive bus
network with a reasonable cost recovery rate. TfL provided the sup-
ply data of this network. Considering the operational impacts of
COVID-19, some parameters also were given by TfL (Table 5). The
first experiments using the complete model were conducted using a
reduced OD matrix that contained the 15 OD pairs with the highest
demand.

Results from the London Network

The first experiments in the Borough of Kensington and Chelsea of
the London Network began with programming and running the LG
model in Python 3.8. Computational times differed according to the
percentage of the total demand to be satisfied directly. That is, they
increased as the number of considered OD pairs increased. The OD
matrix input covered the complete area of the study compromising

thousands of OD pairs (7,077) at first. A small OD matrix compris-
ing the 15 most-demanded OD pairs also was considered to dem-
onstrate further the three models working together (LG, PA, and
FS), because large networks cannot be solved to global optimality
due to the NP-hardness of the subproblems. The latter OD matrix
additionally was used to test different scenarios and the robustness
of the three models. Table 6 depicts the percentage of Dmin con-
sidered and the number of new generated lines.

The results show that for different values of Dmin, the size of the
constructed lines differed drastically. It is desirable to have a limited
number of lines to reduce network complexity in practice, but also
to serve the demand fast and directly. The LG heuristic model is
capable of producing results in reasonable computational time. How-
ever, the output number of lines is substantially large, which is not
optimal. The introduction of new constraints, such as the minimum
number of stops for a path to be considered as a new line, helps to
reduce the generated lines.

To implement the PA and the FS models, three line configura-
tions were considered. These were the existing lines, the lines gen-
erated from the LG model, and a combination of both existing and
generated lines. Table 7 presents the optimization of the existing
lines.

The assignment employed 279 of a total of 376 buses, with a
summed frequency of 124 buses=h. Lines with more passenger de-
mand were prone to have higher frequencies. In contrast, lines with
a null value represent lines that might be discarded because they
serve little to no demand. This line elimination can be conducted
manually or by implementing a line-elimination algorithm, such
that presented by Gkiotsalitis et al. (2019). In addition to not meet-
ing the demand, such lines do not generate revenue and should be
reallocated or discarded in further analysis to cut users’ and oper-
ators’ costs.

Because the FS model was limited to 1 h, the results were ob-
tained when running the first iteration. The total computational time
for both models was 7 h. The models were run on a computer with
8 GB RAM and a 2.1-GHz Ryzen 5 processor. Although the OD

Table 6. Number of lines created by line generation model with different
percentages of demand to be served by direct connection

Dmin Overlap (%)
Number of additional

generated lines

10%: complete OD matrix 70 12
25%: complete OD matrix 70 24
50%: complete OD matrix 70 40
60%: complete OD matrix 70 34
75%: complete OD matrix 70 31
100%: small OD matrix 100 9

Table 5. Parameter values for running bilevel model in Borough of
Kensington and Chelsea

Parameter Value

bsc (seats) 60
bcap (seats) 87
λ 2.5
ξ (min) 6
ω (bus=h) 10
βwait 2
βtrans (min) 3.5
NMAX (buses) 376
LMAX (km) 2,932

Table 4. Output of bilevel optimization model in example network of
Fig. 6 with different fleet sizes

Fleet size Route Passengers Frequency

6 1 46 0.77
2 153 4
3 3 0.03
4 72 1.2

7 1 100 1.67
2 100 5.3
3 0 0
4 0 0

10 1 100 1.67
2 100 8.3
3 0 0
4 0 0

15 1 100 7.5
2 100 7.5
3 0 0
4 0 0
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matrix was small, a solution was reached in a total of 19 lines.
Including the auxiliary edges and vertexes needed to run, the net-
work comprised over 1,800 stops and 3,800 arcs.

A test network was generated with the LG model to serve the 20
OD pairs with the highest demand. A broader number of OD pairs
was considered to create a more diverse network without guaran-
teeing that all lines generated will be fully used. The results of
the optimization after running the PA and FS models with the OD
matrix are presented in Table 8.

The optimization for the generated network was completed
within two iterations after setting the tolerance convergence of
δ ¼ 0.1 between iterations. The running time was 4.5 min, which is
considerably different from the previous computation using the ex-
isting lines. The number of buses used was 243, and the summed
frequency was 753 buses=h. This is reflected in the reduced length
of the generated lines. For this assignment, Line L2 Auxiliary may
be discarded.

Finally, the optimization of the combined existing and gener-
ated routes is presented in Table 9. The results show that passen-
gers used both the existing and the newly created lines. In terms
of the number of boardings, 37% of the total demand boarded
existing lines and 63% of the total demand boarded the generated
lines. Although the generated lines were tailored to serve the 20
most demanding OD pairs, some existing lines still were in use,
which is a vital indicator that the model can combine the old and
new lines and provide a better solution. Lines that serve practically

no demand should be discarded to avoid unnecessary operating costs.
The number of buses used was 264, and the summed frequency was
362 trips=h. The model solved one iteration in 8 h 30 min. The con-
vergence of the FS model depends on the number of linear variables
and constraints. For this study, the FS model stabilized the conver-
gence after 1 h.

Concluding Remarks

The replanning of a bus network is a continuous optimization pro-
cess that requires attention in every stage. Because of the trade-off
between operating and user cost changes, and because the passenger
demand fluctuates over time, planners and public transport com-
panies must embrace constant adaptations to new scenarios and
prepare to mitigate disruptions, such as those caused by COVID-19.
Concerning the effects of the pandemic, replanning bus service
through modeling is essential to provide operators with an evidence-
based tool that can deliver more-efficient solutions. The new plan
should address the current problems, because many companies
still are struggling to provide efficient service to the community
(Tirachini and Cats 2020). To this end, our TNDFS model opti-
mizes the routes and frequencies of pre-existing public transport
networks in the aftermath of the pandemic crisis considering the
ensuing service disruptions. Our model considers several variables
to regain passenger’s trust in public transport, such as the in-
vehicle crowding and the transfer penalties. Special consideration
is given to the passengers’ reluctance to gather in crowded vehicles
by penalizing the perceived travel times of travelers. Further re-
search on this subject, whether through literature studies or surveys,
will help improve the realism of these penalties and better meet the
passengers’ requirements while maintaining low operational costs.

Table 8. Optimization of generated network lines

Line Frequency
Volume of

boarding passengers

L1 Auxiliary 178 373
L2 Auxiliary 0 0
L3 Auxiliary 104 167
L4 Auxiliary 41.85 17
L5 Auxiliary 84 105
L6 Auxiliary 86 68
L7 Auxiliary 102.8 201
L8 Auxiliary 66.6 64
L9 Auxiliary 89.7 202

Table 9. Optimization of combined existing and generated network lines

Line Frequency
Volume of

boarding passengers

11 0 0
14 0 0
19 0 0
22 0 0
28 14.4 77.7
49 0 0
70 7.7 49.2
74 0 0
137 16 87.6
170 0 0
211 0 0
319 12.2 37
328 8.4 50
345 0 0
360 14.4 111.1
414 9.7 55.6
430 0 0
452 0 0
C1 0 0
L1 Auxiliary 98.6 286
L2 Auxiliary 27 78.9
L3 Auxiliary 30.8 55.6
L4 Auxiliary 18.8 14.2
L5 Auxiliary 27.3 49.2
L6 Auxiliary 26.3 34
L7 Auxiliary 24 114.4
L8 Auxiliary 28.5 32
L9 Auxiliary 33.4 134.7

Table 7.Optimization of existing lines of Kensington and Chelsea network

Line Frequency
Volume of

boarding passengers

11 0 0
14 0 0
19 9 100
22 0 0
28 14.7 150.6
49 8.9 23.6
70 8.7 93.6
74 0 0
137 12.3 137.6
170 0 0
211 5 20
319 15 136.5
328 13 137
345 9 100
360 19.6 302
414 9.18 73.6
430 0 0
452 0 0
C1 0 0
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Notation

The following symbols are used in this paper:
A = set of arcs;

Aþ = outgoing arcs;
A− = incoming arcs;
a = arc;
B = set of boarding arcs;

bcap = bus capacity;
bsc = bus seat capacity;

Dmin = minimum percentage of OD pairs for LG model;
d = passenger demand;
f = frequency;
f0 = initial frequency;
G = graphic network;
g = boarding arc binary parameter;
K = maximum percentage of overlapping arcs for

LG model;
L = covered distance of network;

LMAX = maximum network covered distance;
la = length of arc;
M = very large positive number;

NMAX = network’s fleet size;
Pa;s = probability of choosing arc;
Q = set of destinations;
q = destination stop;
r = bus line (i.e., route);
S = set of stops;
Sq = subset of all destinations before q;
s = stop or origin stop;
T = period;
t = travel time;

tðvÞ = travel time in function of passenger volume;
t0a = arc travel time without congestion;
v = volume of passengers;

~va;q = passenger volume for destination q on arc a;
vivt = in-vehicle volume of passengers;

vtransfer = volume of transfers;
w = waiting time;

ws;q = passenger waiting time for destination q at stop s;
x = outgoing arc dummy variable;
y = incoming arc dummy variable;
β = BPR function parameter;

βivt = in-vehicle crowding perception;
βtrans = transfer penalty;
βwait = waiting time penalty;

λ = crowding parameter;
δ = convergence parameter;
θ = frequency coefficient; and
ξ = fixed waiting time.
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López-Ramos, F., E. Codina, Á. Marín, and A. Guarnaschelli. 2017. “In-
tegrated approach to network design and frequency setting problem in
railway rapid transit systems.” Comput. Oper. Res. 80 (Apr): 128–146.
https://doi.org/10.1016/j.cor.2016.12.006.

Lüthi, M., U. Weidmann, and A. Nash. 2007. “Passenger arrival rates
at public transport stations.” In Proc., TRB 86th Annual Meeting
Compendium of Papers. Washington, DC: Transportation Research
Board.

Mandl, C. E. 1980. “Evaluation and optimization of urban public transpor-
tation networks.” Eur. J. Oper. Res. 5 (6): 396–404. https://doi.org/10
.1016/0377-2217(80)90126-5.

Meng, M., A. Rau, and H. Mahardhika. 2018. “Public transport travel time
perception: Effects of socioeconomic characteristics, trip characteristics
and facility usage.” Transp. Res. Part A Policy Pract. 114 (Aug): 24–37.
https://doi.org/10.1016/j.tra.2018.01.015.

Ngamchai, S., and D. J. Lovell. 2003. “Optimal time transfer in bus tran-
sit route network design using a genetic algorithm.” J. Transp. Eng.
129 (5): 510–521. https://doi.org/10.1061/(ASCE)0733-947X(2003)
129:5(510).
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