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Abstract
This paper provides maximal function characterizations of anisotropic Triebel–
Lizorkin spaces associated to general expansive matrices for the full range of
parameters p ∈ (0,∞), q ∈ (0,∞] and α ∈ R. The equivalent norm is defined
in terms of the decay of wavelet coefficients, quantified by a Peetre-type space over
a one-parameter dilation group. As an application, the existence of dual molecular
frames and Riesz sequences is obtained; the wavelet systems are generated by trans-
lations and anisotropic dilations of a single function, where neither the translation nor
dilation parameters are required to belong to a discrete subgroup. Explicit criteria for
molecules are given in terms of mild decay, moment, and smoothness conditions.
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1 Introduction

Let A ∈ GL(d, R) be an expansive matrix; that is, all eigenvalues λ ∈ C of A satisfy
|λ| > 1. Choose a Schwartz function ϕ ∈ S(Rd) whose Fourier transform ϕ̂ has
compact support

supp ϕ̂ = {ξ ∈ Rd : ϕ̂(ξ) �= 0} ⊂ R
d \ {0} (1.1)

and satisfies

sup
j∈Z

|ϕ̂((A∗) jξ)| > 0, ξ ∈ R
d \ {0}, (1.2)

where A∗ denotes the transpose of A. Following Bownik and Ho [7], we define the
(homogeneous) anisotropic Triebel–Lizorkin space Ḟα

p,q(Rd ; A), with p ∈ (0,∞),
q ∈ (0,∞) and α ∈ R, as the collection of all tempered distributions f ∈ S′(Rd)

(modulo polynomials) satisfying

‖ f ‖Ḟα
p,q

:=
∥

∥

∥

∥

(

∑

j∈Z
(| det A| jα| f ∗ ϕ j |)q

)1/q∥
∥

∥

∥

L p
< ∞,

where ϕ j := | det A| jϕ(A j ·). The space Ḟα
p,∞(Rd; A) is defined via the usual modi-

fications.
The dilation group {A j : j ∈ Z} ≤ GL(d, R) generated by an expansive matrix A

induces the structure of a space of homogeneous type on R
d , which differs from

the usual isotropic homogeneous structure on R
d , unless A is C-diagonalizable

with all eigenvalues equal in absolute value, [3]. A particular motivation for the
study of function spaces defined through such non-isotropic structures is the anal-
ysis of mixed homogeneity properties of functions and operators. The scale of spaces
Ḟα

p,q(Rd; A) considered here contains, among others, the anisotropic and parabolic

Hardy spaces H p(Rd; A) ∼= Ḟ0
p,2(R

d ; A) for p ∈ (0, 1] and the Lebesgue spaces

L p(Rd) ∼= Ḟ0
p,2(R

d ; A) for p ∈ (1,∞); see Sect. 2.5. We refer to Bownik [3–7],
Calderón and Torchinsky [13–15], and Stein and Wainger [58] for more background
and motivation regarding anisotropic dilations and associated function spaces.

The purpose of the present paper is to derive various characterizations of the spaces
Ḟα

p,q(Rd; A), with p ∈ (0,∞) and q ∈ (0,∞], in terms of Peetre-type maximal
functions. Our main motivation for such characterizations is that they allow to identify
a Triebel–Lizorkin space as a coorbit space [25] associated with a Peetre-type space
on an affine-type group. This identification will be used to obtain decompositions of
the spaces Ḟα

p,q(Rd ; A) in which both the analyzing and synthesizing functions are
“molecular systems” (see Sect. 1.3); the recent discretization results [53, 64] are used
for this purpose.

Similar results for the endpoint case of p = ∞ are obtained in the subsequent paper
[45].
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Anisotropic Triebel–Lizorkin spaces and wavelet...

1.1 Maximal characterizations

Throughout, in addition to A being expansive, we assume that A is exponential, i.e.,
A = exp(B) for some B ∈ R

d×d , so that As = exp(s B) is well-defined for all s ∈ R;
see Remark 3.6 for additional comments on this assumption. Given ϕ ∈ S(Rd), s ∈ R

and β > 0, we define the Peetre-type maximal function of f ∈ S′(Rd) as

ϕ∗∗
s,β f (x) := sup

z∈Rd

| f ∗ ϕs(x + z)|
(1 + ρA(As z))β

, x ∈ R
d ,

where ϕs := | det A|sϕ(As ·) and ρA is an A-homogeneous quasi-norm on R
d ; see

Sect. 2.
Our first main result (Theorem 3.5) is the following characterization.

Theorem 1.1 Let A ∈ GL(d, R) be expansive and exponential. Suppose that ϕ ∈
S(Rd) has compact Fourier support and satisfies conditions (1.1) and (1.2). Then, for
all p ∈ (0,∞), q ∈ (0,∞], α ∈ R and β > max{1/p, 1/q}, the norm equivalences

‖ f ‖Ḟα
p,q

�
∥

∥

∥

∥

(∫

R

(| det A|αsϕ∗∗
s,β f

)q
ds

)1/q∥
∥

∥

∥

L p
�
∥

∥

∥

∥

(

∑

j∈Z

(| det A|α jϕ∗∗
j,β f

)q
)1/q∥

∥

∥

∥

L p

(1.3)

hold for all f ∈ S′(Rd)/P(Rd), with the usual modification for q = ∞.

Theorem 1.1 is classical in the setting of isotropic Triebel–Lizorkin spaces, where
it has been obtained under varying conditions on the multiplier ϕ ∈ S(Rd). Among
others, it can be found in Triebel [62], Bui, Paluszyński and Taibleson [10, 11], and
Rychkov [55, 56]; see Ullrich [63] for a self-contained overview of these characteri-
zations.

In the setting of anisotropic spaces, amaximal characterization of discrete type (i.e.,
a characterization involving the right-most term in (1.3)) was obtained by Farkas [23]
for diagonal dilations A = diag(2a1, ..., 2ad ) with anisotropy (a1, ..., ad) ∈ (0,∞)d .
For general expansive matrices, a discrete maximal characterization of inhomoge-
neous anisotropic Triebel–Lizorkin spaces has been obtained by Liu, Yang, and Yuan
[48]. However, in contrast to Theorem 1.1, the smoothness parameter α ∈ R in [48,
Theorem 3.4] is restricted to the range 0 < α < ∞. In particular, the results in [48]
do not apply to the Lebesgue spaces L p for 1 < p < ∞ (which correspond to α = 0),
whereas Theorem 1.1 is applicable to these spaces.

Our proof of Theorem 1.1 is inspired by the approach in Rychkov [56] (see also
[63]), which combines Fefferman-Stein vector-valued maximal inequalities with a
sub-mean-value property of the convolution products ( f ∗ϕs)s∈R for f ∈ S′(Rd) and
ϕ ∈ S(Rd). This method is a variation of a technique originally due to Strömberg and
Torchinsky [59, Chapter V], and is extended here to anisotropic matrix dilations.

In addition to Theorem 1.1, we also provide a maximal characterization for the
Triebel–Lizorkin sequence spaces; see Theorem 3.8.
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1.2 Wavelet transforms

The continuous maximal characterization provided by Theorem 1.1 can be naturally
rephrased in terms of decay properties of wavelet transforms associated to the quasi-
regular representation

π(x, s) f = | det A|−s/2 f (A−s(· − x)), (x, s) ∈ R
d × R, f ∈ L2(Rd), (1.4)

of the semi-direct product group G A = R
d

�A R; see Sect. 4 for basic properties.
To be more explicit, given an analyzing vector ψ ∈ S(Rd), the associated wavelet

transform of a distribution f ∈ S′(Rd) is the function on R
d × R defined by

Wψ f : G A → C, (x, s) → 〈 f , π(x, s)ψ〉.

Here, we use the sesquilinear dual pairing 〈 f , ϕ〉 := f (ϕ) for f ∈ S′(Rd) and
ϕ ∈ S(Rd). A function ψ is called admissible if Wψ : L2(Rd) → L∞(G A) defines
an isometry into L2(G A). Given a suitable admissible vector ψ ∈ S(Rd), a common
procedure for constructing an associated function space is by (formally) defining

Co(Y ) = {

f ∈ S′(Rd)/P(Rd) : Wψ f ∈ Y
}

, (1.5)

where Y is an adequate translation-invariant (quasi)-Banach function space on G A.
The function spaces such defined form so-called coorbit spaces, see, e.g., [17, 25,
30, 50, 64]. Generally, the definition of abstract coorbit spaces in the quasi-Banach
range [50, 64] requires an additional local property of the wavelet transform, but we
show that it is automatically satisfied in the concrete setting of the present paper (see
Remark 5.12 for details).

In this paper we prove several admissibility properties of functions ψ ∈ S(Rd) and
establish various decay and norm estimates of their associated wavelet transforms.
In particular, it is shown in Proposition 5.11 that membership of f ∈ S′(Rd) in
the Triebel–Lizorkin space Ḟα

p,q can be characterized trough decay properties of its
wavelet transform Wψ f , in the sense that

Ḟα
p,q(A) = Coψ(Y α

p,q), (1.6)

for a Peetre-type function space Y α
p,q on G A and arbitrary p ∈ (0,∞), q ∈ (0,∞] and

α ∈ R. Such a coorbit realization is new for non-isotropic Triebel–Lizorkin spaces
and complements the realizations of anisotropic Besov spaces [1, 4, 16] obtained in
[32, 33].

The isotropic Triebel–Lizorkin spaces have been identified as coorbit spaces (1.5)
from the very beginning [38]. The function spaces Y used in the identification [38]
are the tent spaces of Coifman, Meyer and Stein [18]. It was later shown by Ullrich
[47, 63] that alternatively one could use so-called Peetre-type spaces, which allow for
a simpler and more transparent treatment (cf. [63, Section 4.1]). Our use of Peetre
spaces in Sect. 5 is inspired by [63].
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Lastly, it is worth mentioning that the classical papers [25, 38] considered only
coorbit spaces associated with Banach spaces, while for treating Triebel–Lizorkin
spaces Ḟα

p,q in the range min{p, q} < 1 it is essential to deal with general quasi-
Banach spaces. The framework [49, 50] was used for this purpose in [47]. However,
the theory1 [49, 50] is based on an incorrect convolution relation occurring in [51];
in particular, it does not apply to the affine group (cf. [64, Example 3.13]), although
it is used for this purpose in [47]. The present paper uses the framework [64] instead
of [50], and it is thus expected that our results in Sect. 4 and Sect. 5 provide a relevant
contribution even for isotropic dilations.

1.3 Molecular decompositions

The identification (1.6) of anisotropic Triebel–Lizorkin spaces Ḟα
p,q as suitable coorbit

spaces Coψ(Y α
p,q) (cf. Proposition 5.11) enables us to apply general results on the latter

spaces to obtain new molecular decompositions of Ḟα
p,q . However, as was already

observed in [34], the classical results [25, 38] on coorbit spaces do not guarantee
the same form of localization of both the analyzing and synthesizing functions as the
decomposition theorems of Triebel–Lizorkin spaces in [28, 29, 34] do. For this reason,
the recent results [53, 64] on molecular decompositions will be used, which bridge a
gap between [25, 38] and [28, 29, 34].

For p ∈ (0,∞), q ∈ (0,∞], let r = min{1, p, q}. Given a countable, discrete set

 ⊂ G A, a family (φγ )γ∈
 of vectors φγ ∈ L2(Rd) is a (coorbit) molecular system
(with respect to the window ψ) if there exists an envelope  ∈ W(Lr

w) ⊂ L1(G A)

satisfying

|Wψφγ (g)| = |〈φγ , π(g)ψ〉| ≤ (γ −1g), γ ∈ 
, g ∈ G A; (1.7)

here, W(Lr
w) denotes a so-called Wiener amalgam space (cf. Sect. 5.3).

This notion of molecules depends on a so-called control weight w = wα
p,q : G A →

[1,∞) for the space Y α
p,q occurring in (1.6); see Sects. 5.2 and 6.2 for details. Note

also that the functions φγ need not be of the simple form π(γ )φ given by translates
and dilates of a fixed function (as in (1.4)); rather, the wavelet transform of φγ satisfies
appropriate size estimates as if it was obtained in this manner.

Theorem 1.2 Let A ∈GL(d, R) be expansive and exponential. For p ∈ (0,∞), q ∈
(0,∞] and α ∈ R, let r =min{1, p, q}, α′ = α+1/2−1/q, and β > max{1/p, 1/q}.

Suppose ψ ∈ L2(Rd) is an admissible vector satisfying Wψψ ∈ W(Lr
w) for the

standard control weightw = w
−α′,β
p,q : G A → [1,∞)defined in Lemma5.7. Moreover,

suppose Wϕψ ∈ W(Lr
w) for some (thus all) admissible ϕ ∈ S0(R

d). Then there exists
a compact unit neighborhood U ⊂ G A such that, for any 
 ⊂ G A satisfying

G A =
⋃

γ∈


γU and sup
g∈G A

#(
 ∩ gU ) < ∞, (1.8)

1 The published paper [50] is restricted to so-called IN groups, in contrast to the preprint [49]. The affine
group is not an IN group.
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there exist two molecular systems (φγ )γ∈
 ⊂ L2(Rd) and ( fγ )γ∈
 ⊂ L2(Rd) such
that any f ∈ Ḟα

p,q can be represented as

f =
∑

γ∈


〈 f , π(γ )ψ〉φγ =
∑

γ∈


〈 f , φγ 〉π(γ )ψ and f =
∑

γ∈


〈 f , fγ 〉 fγ ,

with unconditional convergence in the weak-∗ topology of S′(Rd)/P(Rd).
(The dual pairings 〈 f , π(γ )ψ〉and 〈 f , φγ 〉are defined suitably; see Definition6.5.)

The novelty of Theorem 1.2 is that it applies to possibly irregular sets 
 —i.e., aris-
ing from non-lattice translations—and that both {π(γ )ψ : γ ∈ 
} and {φγ : γ ∈ 
}
are molecular systems. It resembles the classical results for lattice translations by
Frazier and Jawerth [28, Remark 9.17] and Gilbert, Han, Hogan, Lakey, Weiland,
and Weiss [34, Theorem 1.5], and the work of Ho [42] for general expansive dila-
tions. In contrast to Theorem 1.2, the notion of molecules used in [7, 28, 34, 42] is
defined via explicit smoothness and moment conditions rather than decay estimates of
their wavelet transform as in Eq.1.7. For comparison, we provide explicit smoothness
criteria for coorbit molecular systems in Sect. 6.4.

It should be mentioned that for specific vectorsψ and particular construction meth-
ods, the validity of wavelet frame expansions in Hardy and Lebesgue spaces have,
amongothers, been obtained byBui andLaugesen [9] andCabrelli,Molter andRomero
[12]. The results in [9, 12] provide criteria and constructions that work for index sets

 satisfying (1.8) for some neighborhood U , whereas Theorem 1.2 above requires
U to be sufficiently small. We mention that even for a molecular frame for L2(Rd),
the extension of the canonical L2-frame expansions to Hardy and Lebesgue spaces is
non-automatic in general, and that such frames might fail to yield decompositions of
L p for p �= 2, see, e.g., Tao [60] and Tchamitchian [61].

Lastly,we complementTheorem1.2with a dual result onRiesz sequences. Theorem
1.3 shows that a solution to the interpolation or moment problem in discrete sequence

spaces ṗ−α′,β
p,q (
) ≤ C


 associated to a discrete 
 ⊂ G A and the Triebel–Lizorkin
spaces Ḟα

p,q can be obtained using molecular dual Riesz sequences; see Definition 6.1
and Remark 6.2 for details.

Theorem 1.3 Under the same assumptions of Theorem 1.2, the following holds:
There exists a compact unit neighborhood U ⊂ G A such that, for any 
 ⊂ G A

satisfying

γU ∩ γ ′U = ∅, for all γ, γ ′ ∈ 
 with γ �= γ ′, (1.9)

there exists a molecular system (φγ )γ∈
 ⊂ span{π(γ )ψ : γ ∈ 
} ⊂ L2(Rd) such
that the moment problem

〈 f , π(γ )ψ〉 = cγ , γ ∈ 
, (1.10)

admits the solution f := ∑

γ∈
 cγ φγ ∈ Ḟα
p,q for any given (cγ )γ∈
 ∈ ṗ−α′,β

p,q (
) ≤
C


.
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Theorem 1.3 seems to be the first result on Riesz sequences in anisotropic Triebel–
Lizorkin spaces and it is neweven for regular index sets arising from lattice translations.
We mention that for regular index sets, the sequence space appearing in Theorem 1.3
coincides with the standard anisotropic Triebel–Lizorkin sequence spaces defined in
[7]; see Remark 6.2.

1.4 General notation

We write s+ := max{0, s} and s− := −min{0, s} for s ∈ R.
Given functions f , g : X → [0,∞), we write f � g if there exists C > 0

satisfying f (x) ≤ Cg(x) for all x ∈ X . We write f � g for f � g and g � f .
The notation �α is sometimes used to indicate that the implicit constant depends on a
quantity α. If G is a group, we write f ∨(x) = f (x−1) for x ∈ G. The characteristic
function of� ⊂ X is denoted by 1�. For a measurable� ⊂ R

d , its Lebesgue measure
is denoted by m(�).

For a matrix A ∈ R
d×d , its transpose is denoted by A∗. The norm ‖A‖∞ denotes

the operator norm of the induced map A : R
d → R

d . The function ‖ · ‖ : R
d → R

will denote the Euclidean norm on R
d .

The space of Schwartz functionswill be denotedbyS(Rd) and the space of tempered
distributions by S′(Rd). Moreover, the setP(Rd) denotes the space of all polynomials
of d real variables, and S′(Rd)/P(Rd) denotes the space of equivalence classes of
tempered distributions modulo polynomials. The Fourier transform F : S(Rd) →
S(Rd) is normalized as ̂f (ξ) = ∫

Rd f (x)e−2π i x ·ξ dx . Its inverse F−1 f := ̂f (− · )
will also be denoted by qf . Similar notations will be used for the unitary Fourier-
Plancherel transform F : L2(Rd) → L2(Rd) and its inverse. For f : R

d → C and
y ∈ R

d , we define Ty f : R
d → C, x → f (x − y).

Lastly, if V is a topological vector space consisting of (equivalence classes of)
functions such that the conjugationmapV → V , ϕ → ϕ is awell-defined, continuous
map, then the associated map

V ′ → V ∗, f → f with f (ϕ) := f (ϕ)

between the dual space V ′ and the anti-dual space V ∗ is a canonical isomorphism. In
this setting, we will not distinguish between f ∈ V ′ and f ∈ V ∗. In particular, the
dual pairings 〈·, ·〉 = 〈·, ·〉V ′,V and 〈·, ·〉 = 〈·, ·〉V ∗,V will always be taken to be anti-
linear in the second component, i.e., 〈 f , ϕ〉 := f (ϕ) for f ∈ V ′ and 〈 f , ϕ〉 := f (ϕ)

for f ∈ V ∗. The two most important cases where this applies is for V = S(Rd) and
V = S0(R

d) (cf. Definition 4.3).

2 Expansivematrices and Triebel–Lizorkin spaces

This section provides background on expansive matrices and associated function
spaces.
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2.1 Expansivematrices

A matrix A ∈ R
d×d is called expansive if minλ∈σ(A) |λ| > 1, where σ(A) ⊂ C

denotes the spectrum of A. The significance of an expansive matrix is that it induces
the structure of a space of homogeneous type on R

d ; see [19, 20] for background.
The following lemma is collected from [3, Definitions 2.3 and 2.5] and [3,

Lemma 2.2].

Lemma 2.1 [3] Let A ∈ GL(d, R) be expansive.

(i) There exist an ellipsoid �A (i.e., �A is the image of the open Euclidean unit ball
under an invertible matrix) and r > 1 such that

�A ⊂ r�A ⊂ A�A

and m(�A) = 1. The map ρA : R
d → [0,∞) given by

ρA(x) =
{

| det A| j , if x ∈ A j+1�A \ A j�A,

0, if x = 0,
(2.1)

is called the step homogeneous quasi norm associated to A. It is measurable and
there exists C ≥ 1 such that it satisfies the following properties:

ρA(−x) = ρA(x), x ∈ R
d ,

ρA(x) > 0, x ∈ R
d \ {0},

ρA(Ax) = | det A|ρA(x), x ∈ R
d ,

ρA(x + y) ≤ C
(

ρA(x) + ρA(y)
)

, x, y ∈ R
d . (2.2)

(ii) Define dA : R
d × R

d → [0,∞), (x, y) → ρA(x − y) and let m denote the
Lebesgue measure on R

d . Then the triple (Rd , dA,m) is a space of homogeneous
type.

For y ∈ R
d and r > 0, the dA-ball will be denoted by BρA(y, r) := {x ∈

R
d : ρA(x − y) < r}.
The following lemma shows that the homogeneous quasi-norm can be estimated

from above and below by (powers of) the Euclidean norm; cf. [3, Equation (2.7) and
Lemma 3.2].

Lemma 2.2 [3] Let A ∈ GL(d, R) be expansive. Let λ−, λ+ satisfy 1 < λ− <

minλ∈σ(A) |λ| and λ+ > maxλ∈σ(A)|λ|. Define

ζ− := ln λ−
ln | det A| ∈ (

0, 1
d

)

and ζ+ := ln λ+
ln | det A| ∈ ( 1

d ,∞)

.

Then there exists C ≥ 1 such that for every x ∈ R
d , we have

C−1[ρA(x)]ζ− ≤ ‖x‖ ≤ C[ρA(x)]ζ+ , if ρA(x) ≥ 1,
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C−1[ρA(x)]ζ+ ≤ ‖x‖ ≤ C[ρA(x)]ζ− , if ρA(x) ≤ 1.

We will also need the following fact about the integrability of powers of the quasi
norm ρA.

Lemma 2.3 Suppose A ∈ GL(d, R) is expansive. Then for all ε > 0 we have

∫

BρA (0,1)
[ρA(x)]ε−1dx < ∞ and

∫

Rd\BρA (0,1)
[ρA(x)]−1−εdx < ∞.

Proof Directly from the definition of ρA, we see

∫

Rd\BρA (0,1)
[ρA(x)]−1−εdx =

∞
∑

j=0

| det A|− j(1+ε)m(A j+1�A \ A j�A)

=
∞
∑

j=0

| det A|−ε jm(A�A \ �A) < ∞,

since | det A| > 1. The proof for
∫

BρA (0,1)[ρA(x)]ε−1dx is similar. ��

2.2 Exponential matrices

A matrix A ∈ R
d×d is called exponential if A = exp(B) for a matrix B ∈ R

d×d ;
here, exp(B) = ∑∞

n=0 Bn/n! denotes the usual matrix exponential. If A is expansive
and has only positive eigenvalues, then A is exponential by [16, Lemma 7.8]. See [21,
Theorem 1] for a precise characterization.

For an exponential matrix A = exp(B), the power As = exp(s B) is defined for
all s ∈ R. We have det As = det(exp(s B)) = etr(s B) = (etr(B))s = (det A)s , see,
e.g., [41, Theorem 2.12]. The family {As : s ∈ R} forms a continuous one-parameter
subgroup of GL(d, R).

The next lemma provides norm bounds for the powers As of an exponential matrix
A. For integral powers, these bounds are folklore2; see, e.g., [3, Equations (2.1) and
(2.2)].

Lemma 2.4 Let A ∈ GL(d, R) be expansive and exponential. Let λ−, λ+ be constants
such that 1 < λ− < minλ∈σ(A) |λ| and λ+ > maxλ∈σ(A)|λ|. Then there exists C ≥ 1
such that

C−1 λs− ‖x‖ ≤ ‖As x‖ ≤ C λs+ ‖x‖, s ≥ 0,

C−1 λs+ ‖x‖ ≤ ‖As x‖ ≤ C λs− ‖x‖, s ≤ 0,

for all x ∈ R
d .

2 Alternatively, they can be easily derived from the spectral radius formula.
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Proof Since t → At is continuous, there exists CA > 0 such that ‖At‖∞ ≤ CA for
t ∈ [−1, 1]. For s ≥ 0, we write s = k + t with k ∈ N0 and t ∈ [0, 1), and use the
result for integral powers [3] to conclude

‖As x‖ = ‖At Ak x‖ ≤ ‖At‖∞ ‖Ak x‖ ≤ CA C λk+ ‖x‖ ≤ CA C λs+ ‖x‖.

Similarly,

CA ‖As x‖ ≥ ‖A−t‖∞ ‖As x‖ ≥ ‖A−t As x‖
= ‖Ak x‖ ≥ C−1 λk− ‖x‖ ≥ (C λ−)−1 λs− ‖x‖.

The estimate for s ≤ 0 is shown using similar arguments. ��
Corollary 2.5 Let A ∈ GL(d, R) be expansive and exponential. Then there exists
C ≥ 1 such that

C−1| det A|sρA(x) ≤ ρA(As x) ≤ C | det A|s ρA(x) x ∈ R
d , s ∈ R.

Proof Due to the A-homogeneity ofρA, it suffices to verify the claim for x ∈ A �A \ �A

(with �A as in Lemma 2.1) and s ∈ [0, 1]. By Lemma 2.4 and by the compactness of
A �A\�A ⊂ R

d\{0}, there exist R1, R2 > 0 such that

R1 ≤ C−1 λs− ‖x‖ ≤ ‖As x‖ ≤ C λs+ ‖x‖ ≤ R2

uniformly for all x ∈ A�A\�A and s ∈ [0, 1]. Furthermore, there exists k ∈ N

such that A−k�A ∩ {y ∈ R
d : ‖y‖ ≥ R1} = ∅. Thus, we see for s ∈ [0, 1] and

x ∈ A�A\�A that As x /∈ A−k�A and hence

ρA(As x) ≥ | det A|−k = | det A|−kρA(x) ≥ | det A|−k−1| det A|sρA(x),

where we have used that ρA(x) = 1 for all x ∈ A�A\�A. This gives the lower bound
with C := | det A|k+1 ≥ 1. The upper bound follows by replacing x with A−s x . ��

An alternative proof of Corollary 2.5 can be obtained by using a homogeous quasi-
norm associated to the continuous one-parameter group {As : s ∈ R} (cf. [58,
Proposition 1-9]) and the equivalence of all homogeneous quasi-norms associated
to A (cf. [3, Lemma 2.4]).

2.3 Analyzing vectors

Let A ∈ GL(d, R) be expansive. Suppose ϕ ∈ S(Rd) is such that ϕ has compact
Fourier support

supp ϕ̂ := {ξ ∈ Rd : ϕ̂(ξ) �= 0} ⊂ R
d \ {0} (2.3)

123



Anisotropic Triebel–Lizorkin spaces and wavelet...

and satisfies

sup
j∈Z

∣

∣ϕ̂((A∗) jξ)
∣

∣ > 0, ξ ∈ R
d \ {0}. (2.4)

Then the function ψ ∈ S(Rd) defined through its Fourier transform as

̂ψ(ξ) =
{

ϕ̂(ξ)/
∑

k∈Z |ϕ̂((A∗)kξ)|2, if ξ ∈ R
d \ {0},

0, if ξ = 0,

is well-defined and satisfies

∑

j∈Z
ϕ̂((A∗) jξ) ̂ψ((A∗) jξ) = 1, ξ ∈ R

d \ {0}. (2.5)

We refer to [7, Lemma 3.6] for more details.

2.4 Triebel–Lizorkin spaces

Let A ∈ GL(d, R) be expansive and suppose that ϕ ∈ S(Rd) has compact Fourier
support satisfying (2.3) and (2.4). For given α ∈ R, 0 < p < ∞ and 0 < q ≤ ∞, the
associated (homogeneous) anisotropic Triebel–Lizorkin space Ḟα

p,q = Ḟα
p,q(A, ϕ) is

defined as in [7] as the set of all f ∈ S′(Rd)/P(Rd) for which

‖ f ‖Ḟα
p,q

:=
∥

∥

∥

∥

(

∑

j∈Z
(| det A| jα| f ∗ ϕ j |)q

)1/q∥
∥

∥

∥

L p
< ∞,

where ϕ j := | det A| j ϕ(A j ·), with the usual modification for q = ∞.
As shown in [7, Proposition 3.2], the inclusion map Ḟα

p,q ↪→ S′(Rd)/P(Rd) is

continuous and Ḟα
p,q is complete with respect to the quasi-norm ‖ · ‖Ḟα

p,q
. Moreover,

[7, Corollary 3.7] shows that the space Ḟα
p,q is independent of the choice of ϕ; we will

thus simply write Ḟα
p,q(A) instead of Ḟα

p,q(A, ϕ).

The sequence space ḟαp,q = ḟαp,q(A) on Z × Z
d associated to Ḟα

p,q is defined as the

collection of all c ∈ C
Z×Z

d
satisfying

‖c‖ḟαp,q
:=

∥

∥

∥

∥

(

∑

j∈Z

∑

k∈Zd

(| det A| j(α+1/2)|c j,k |1A− j ([0,1)d+k)

)q
)1/q∥

∥

∥

∥

L p
< ∞, (2.6)

with the usual modification for q = ∞.

2.5 Anisotropic Hardy spaces

Denoting by H p
A the anisotropic Hardy space introduced in [3], it follows by [5,

Theorem 7.1] and [3, Remark on p. 16] that
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H p
A = Ḟ0

p,2(A), p ∈ (0, 1]
L p = H p

A = Ḟ0
p,2(A), p ∈ (1,∞).

Two expansive matrices A1, A2 ∈ GL(d, R) are said to be equivalent if H p
A1

= H p
A2

for all p ∈ (0, 1]. Given an expansive A1, there exists an equivalent matrix A2 with
all eigenvalues positive and such that det A2 = | det A1|; see [16, Lemma 7.7] and
[8, Theorem 2.3 and Lemma 3.6]. Recall that such a matrix A2 is exponential (cf.
Sect. 2.2).

3 Maximal function characterizations

This section provides maximal function characterizations of Triebel–Lizorkin spaces.
In Sect. 3.1 we provide preliminaries on maximal functions. The characterizations of
distribution and sequence spaces will be proven in Sects. 3.2 and 3.3, respectively.

3.1 Anisotropic maximal functions

Let A ∈ GL(d, R) be expansive. For f : R
d → C measurable, the (anisotropic)

Hardy-Littlewood maximal operator MρA is defined as

MρA f (x) = sup
B�x

1

m(B)

∫

B
| f (y)| dy, x ∈ R

d , (3.1)

where the supremum is taken over all ρA-balls B = BρA(y, r) that contain x .
The following simple observation is central for the remainder of this article.

Lemma 3.1 Let A ∈ GL(d, R) be expansive. For f : R
d → C measurable, it holds

MρA [ f ◦ A j ] = [MρA f ] ◦ A j , j ∈ Z. (3.2)

Proof For z ∈ R
d , the property A j z ∈ BρA(y, r) is equivalent to z ∈ BρA(A− j y, r/

| det A| j ). Hence, the substitutions z = A− j y and s = r/| det A| j and the change-of-
variable v = A− jw show

(MρA f )(A j x) = sup
y∈Rd ,r>0

A j x∈BρA (y,r)

1

m(BρA(y, r))

∫

BρA (y,r)

| f (w)| dw

= sup
z∈Rd ,s>0

x∈BρA (z,s)

1

m(BρA(A j z, | det A| j s))

∫

BρA (A j z,| det A| j s)
| f (w)| dw

= sup
z∈Rd ,s>0

x∈BρA (z,s)

| det A| j

m(BρA(A j z, | det A| j s))

∫

BρA (z,s)
| f (A jv)| dv
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= (MρA [ f ◦ A j ])(x),

as desired. ��
A further central property is the vector-valued Fefferman-Stein inequality [24], in

the form stated in the following theorem. It follows, e.g., from [37, Theorem 1.2], by
using that (Rd , dA,m) is a space of homogeneous type.

Theorem 3.2 [37] Let A ∈ GL(d, R) be expansive. For p ∈ (1,∞), q ∈ (1,∞], there
exists C = C(p, q, A, d) > 0 such that

∥

∥

∥

∥

(

∑

i∈N
[MρA fi ]q

)1/q∥
∥

∥

∥

L p
≤ C

∥

∥

∥

∥

(

∑

i∈N
| fi |q

)1/q∥
∥

∥

∥

L p

for any sequence of measurable functions fi : R
d → C, i ∈ N, with the usual

modification for q = ∞.

The following majorant property of the anisotropic maximal operator can be found
in [2, Lemma 3.1] in a slightly different setting. Nevertheless, the proof given in [2]
applies verbatim in our setting.

Lemma 3.3 [2] Let θ : [0,∞) → [0,∞) be non-increasing, and assume that
� : R

d → [0,∞) given by �(x) = θ(ρA(x)) is integrable. Suppose that g ∈ L1(Rd)

satisfies |g(x)| ≤ �(x) for almost all x ∈ R
d . Then, for f ∈ L1(Rd),

|( f ∗ g)(x)| ≤ ‖�‖L1 MρA f (x)

for all x ∈ R
d .

Given an exponential matrix A ∈ GL(d, R) and s ∈ R, we define the dilation of
a function ϕ : R

d → C by ϕs(x) := | det A|sϕ(As x). For β > 0, the Peetre-type
maximal function of f ∈ S′(Rd) with respect to ϕ ∈ S(Rd) is defined as

ϕ∗∗
s,β f (x) := sup

z∈Rd

|( f ∗ ϕs)(x + z)|
(1 + ρA(As z))β

= ess sup
z∈Rd

|( f ∗ ϕs)(x + z)|
(1 + ρA(As z))β

, x ∈ R
d;

(3.3)

see Lemma A.1 for the validity of the second equality for the step homogeneous
quasi-norm ρA. If A is not exponential, we define ϕ∗∗

s,β also by (3.3), but only for
s ∈ Z.

The Peetre-type maximal function and the Hardy-Littlewood operator are related
by Peetre’s inequality, cf. [7, Lemma 3.4] for a proof.

Lemma 3.4 (Anisotropic Peetre inequality) Let K ⊂ R
d be compact and β > 0. There

exists C = C(K , β, A) > 0 such that for any g ∈ S′(Rd) with supp ĝ ⊂ K , we have

sup
z∈Rd

|g(x − z)|
(1 + ρA(z))β

≤ C
[

(MρA |g|1/β)(x)
]β (3.4)
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for all x ∈ R
d .

The expression g(x) in (3.4) makes sense, since every tempered distribution with
compact Fourier support is given by (integration against) a smooth function, cf. [54,
Theorem 7.23].

3.2 Function spaces

The following theorem is one of themain results of this paper. It provides an anisotropic
extension of corresponding results in [11, 62, 63].

Theorem 3.5 Let A ∈ GL(d, R) be expansive and exponential. Assume that ϕ ∈
S(Rd) has compact Fourier support and satisfies (2.3) and (2.4). Then, for all p ∈
(0,∞), q ∈ (0,∞], α ∈ R and β > max{1/p, 1/q}, the norm equivalences

‖ f ‖Ḟα
p,q

�
∥

∥

∥

∥

(∫

R

(| det A|αsϕ∗∗
s,β f

)q
ds

)1/q∥
∥

∥

∥

L p
�
∥

∥

∥

∥

(

∑

j∈Z

(| det A|α jϕ∗∗
j,β f

)q
)1/q∥

∥

∥

∥

L p

(3.5)

hold for all f ∈ S′(Rd)/P(Rd), with the usual modifications for q = ∞.
(The function ϕ∗∗

s,β f : R
d → [0,∞] is well-defined for f ∈ S′(Rd)/P(Rd), since

ϕ has infinitely many vanishing moments and hence P ∗ϕs = 0 for every P ∈ P(Rd).)

Remark 3.6 Let A ∈ GL(d, R) be expansive.

(a) The proof of Theorem 3.5 shows that the characterization

‖ f ‖Ḟα
p,q

�
∥

∥

∥

∥

(

∑

j∈Z

(| det A|α jϕ∗∗
j,β f

)q
)1/q∥

∥

∥

∥

L p
, f ∈ S′(Rd)/P(Rd),

does not require A to be exponential. Instead, it holds for arbitrary expansive
matrices: the estimate “�” is trivial, whereas Step 3 of the proof shows “�”.

(b) For anisotropic Hardy spaces H p
A with p ∈ (0,∞), the matrix A may be assumed

to be exponential by the discussion in Sect. 2.5.

Proof of Theorem 3.5 As seen in Sect. 2.3, there exists ψ ∈ S(Rd) with supp ̂ψ ⊂
supp ϕ̂ and such that

∑

j∈Z
ϕ̂
(

(A∗) jξ
)

̂ψ
(

(A∗) jξ
) = 1, ξ ∈ R

d \ {0}.

Note that with A, also A∗ is expansive and exponential. By Lemma 2.4, it follows that
there exist 0 < R1 ≤ R2 < ∞ such that

R1 ≤ ‖(A∗)−tξ‖ ≤ R2, t ∈ [−1, 1], ξ ∈ supp ϕ̂.
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Choose N > 0 such that (A∗) j supp ϕ̂ ∩{ξ ∈ R
d : R1 ≤ ‖ξ‖ ≤ R2} = ∅ for | j | ≥ N ,

and define  ∈ S(Rd) via its Fourier transform as

̂(ξ) :=
N
∑

�=−N

ϕ̂
(

(A∗)�ξ
)

̂ψ
(

(A∗)�ξ
)

,

noting that ̂(ξ) = 1 for R1 ≤ ‖ξ‖ ≤ R2. A direct calculation based on the preceding
observations and using the convolution theorem shows that

ϕk ∗ k+t = ϕk and ϕk+t ∗ k = ϕk+t , k ∈ Z, t ∈ [0, 1]. (3.6)

The remainder of the proof is split into three steps. For notational simplicity, we write
throughout νβ(y) := (1+ρA(y))β for y ∈ R

d . By Eq. (2.2), it follows that νβ satisfies
νβ(x + y) � νβ(x) νβ(y) for x, y ∈ R

d , with implicit constant only depending on
A, β.

Let f ∈ S′(Rd)/P(Rd) be arbitrary. We prove the equivalences in (3.5) in several
steps.

Step 1. In this step we show that ‖ f ‖Ḟα
p,q

can be estimated by the middle term of (3.5).

For arbitrary, but fixed t ∈ [0, 1], a direct calculation using (3.6) gives

∥

∥

∥

(

| det A|α j |( f ∗ ϕ j )(x)|
)

j∈Z

∥

∥

∥

�q
=
∥

∥

∥

(

| det A|α j |( f ∗  j+t ∗ ϕ j )(x)|
)

j∈Z

∥

∥

∥

�q

�
N
∑

�=−N

∥

∥

∥

(

| det A|α j |( f ∗ ϕ j+�+t ∗ ψ j+�+t ∗ ϕ j )(x)|
)

j∈Z

∥

∥

∥

�q
. (3.7)

To estimate (3.7), note that for arbitrary x ∈ R
d ,

|( f ∗ ϕ j+�+t ∗ ψ j+�+t ∗ ϕ j )(x)|
≤
∫

Rd

|( f ∗ ϕ j+�+t )(x + y)|
νβ(A j+�+t y)

νβ(A j+�+t y)|(ψ j+�+t ∗ ϕ j )(−y)| dy

≤ sup
y∈Rd

|( f ∗ ϕ j+�+t )(x + y)|
νβ(A j+�+t y)

∫

Rd
νβ(A j+�+t y)|(ψ j+�+t ∗ ϕ j )(−y)| dy

= ϕ∗∗
j+�+t,β f (x)

∫

Rd
νβ(A j+�+t y)|(ψ j+�+t ∗ ϕ j )(−y)| dy, (3.8)

where ϕ∗∗
s,β f is as in (3.3). We can estimate the integral in (3.8) by change-of-variables

as

∫

Rd
νβ(A j+�+t y)|(ψ j+�+t ∗ ϕ j )(−y)| dy

≤
∫

Rd
νβ(A j+�+t y)

∫

Rd
| det A| j+�+t |ψ(A j+�+tw)| | det A| j |ϕ(A j (−y − w))| dw dy
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=
∫

Rd

∫

Rd
νβ(A�+t z) |ψ(v)| |ϕ(−z − A−(�+t)v)| dz dv

=
∫

Rd

∫

Rd
νβ(A�+t y − v) |ψ(v)| |ϕ(−y)| dy dv

�
∫

Rd
νβ(A�+t y) |ϕ(−y)| dy

∫

Rd
νβ(v) |ψ(v)| dv. (3.9)

By Corollary 2.5 and Lemma 2.2, we see for −N ≤ � ≤ N and t ∈ [0, 1] that

νβ(A�+t y) � | det A|β(N+1)(1 + ρA(y))β � | det A|β(N+1)(1 + ‖y‖)β/ζ− .

(3.10)

The integrals in (3.9) can therefore be bound independently of −N ≤ � ≤ N and
t ∈ [0, 1]. Thus, (3.8) implies

| det A|α j |( f ∗ ϕ j+�+t ∗ ψ j+�+t ∗ ϕ j )(x)|
� | det A|−α(�+t)| det A|α( j+�+t)ϕ∗∗

j+�+t,β f (x)

where we can estimate | det A|−α(�+t) � 1 with implicit constants independent of �, t .
Combining this with (3.7) gives

∥

∥

∥

(

| det A|α j |( f ∗ ϕ j )(x)|
)

j∈Z

∥

∥

∥

�q
�

N
∑

�=−N

∥

∥

∥

∥

(

| det A|α( j+�+t) ϕ∗∗
j+�+t,β f (x)

)

j∈Z

∥

∥

∥

∥

�q

�
∥

∥

∥

∥

(

| det A|α( j+t)ϕ∗∗
j+t,β f (x)

)

j∈Z

∥

∥

∥

∥

�q
. (3.11)

Lastly, the left-hand sideof (3.11) being independent of t ,we averageover t ∈ [0, 1].
For this, let us assume q < ∞. Taking the q-th power of (3.11) and integrating gives

∑

j∈Z

(| det A| jα|( f ∗ ϕ j )(x)|)q �
∫ 1

0

∑

j∈Z

(| det A|α( j+t)ϕ∗∗
j+t,β f (x)

)q
dt

=
∫

R

(| det A|αsϕ∗∗
s,β f (x)

)q
ds,

and thus

∥

∥

∥

∥

(

∑

j∈Z
(| det A| jα| f ∗ ϕ j |)q

)1/q∥
∥

∥

∥

L p
�
∥

∥

∥

∥

(∫

R

(| det A|αsϕ∗∗
s,β f

)q
ds

)1/q∥
∥

∥

∥

L p
.

The case q = ∞ follows by the usual modifications.

Step 2. This step will show that the middle term can be bounded by the right-most
term in (3.5). Using the convolution identity (3.6), we calculate for x, z ∈ R

d , j ∈ Z,
and t ∈ [0, 1],
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|( f ∗ ϕ j+t )(x + z)|
νβ(A j+t z)

≤
N
∑

�=−N

∫

Rd

|( f ∗ ϕ j+�)(x + y + z)|
νβ(A j+t z)

|(ψ j+� ∗ ϕ j+t )(−y)| dy

≤
N
∑

�=−N

sup
w∈Rd

|( f ∗ ϕ j+�)(x + w)|
νβ(A j+�w)

∫

Rd

νβ(A j+�(z + y))

νβ(A j+t z)
|(ψ j+� ∗ ϕ j+t )(−y)| dy.

(3.12)

To estimate the integral in (3.12), note that the essential submultiplicativity of νβ and
a change-of-variable gives

∫

Rd

νβ(A j+�(z + y))

νβ(A j+t z)
|(ψ j+� ∗ ϕ j+t )(−y)| dy

≤
∫

Rd

νβ(A j+�(z + y))

νβ(A j+t z)

∫

Rd
| det A| j+�|ψ(A j+�w)|| det A| j+t |ϕ(A j+t (−y − w))| dw dy

≤
∫

Rd

∫

Rd

νβ(A j+�z + A�−t ζ )

νβ(A j+t z)
|ψ(v)| |ϕ(−ζ − At−�v)| dv dζ

�
∫

Rd

∫

Rd

νβ(A j+�z)

νβ(A j+t z)
νβ(A�−t ζ ) |ψ(v)| |ϕ(−ζ )| dv dζ. (3.13)

Next, by Corollary 2.5, we have ρA(At z) � ρA(z) for t ∈ [0, 1] and z ∈ R
d .

Therefore, we see for −N ≤ � ≤ N and t ∈ [0, 1] that

1 + ρA(A�z)

1 + ρA(At z)
≤ | det A|N 1 + ρA(z)

1 + ρA(At z)
� 1, (3.14)

with an implicit constant independent of j, �, t and z. Combining (3.14) with (3.10),
we then see that the integral (3.13) can be estimated independently of j, �, t . Therefore,
(3.12) shows for q < ∞ that

(

| det A|α( j+t)ϕ∗∗
j+t,β f (x)

)q

�
N
∑

�=−N

(

sup
w∈Rd

|( f ∗ ϕ j+�)(x + w)|
νβ(A j+�w)

| det A|α( j+�+t−�)

)q

�
N
∑

�=−N

(

| det A|α( j+�)ϕ∗∗
j+�,β f (x)

)q

. (3.15)

The right-hand side of (3.15) being independent of t , integrating (3.15) over [0, 1]
shows that

∫

R

(| det A|αsϕ∗∗
s,β f (x)

)q
ds =

∑

j∈Z

∫ 1

0

(| det A|α( j+t)ϕ∗∗
j+t,β f (x)

)q
dt

�
∑

j∈Z

N
∑

�=−N

(

| det A|α( j+�)ϕ∗∗
j+�,β f (x)

)q
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�
∑

j∈Z

(| det A|α jϕ∗∗
j,β f (x)

)q
, (3.16)

and thus

∥

∥

∥

∥

(∫

R

(| det A|αsϕ∗∗
s,β f

)q
ds

)1/q∥
∥

∥

∥

L p
�
∥

∥

∥

∥

(

∑

j∈Z

(| det A|α jϕ∗∗
j,β f

)q
)1/q∥

∥

∥

∥

L p
.

The case q = ∞ follows by the usual modifications.

Step 3. This final step will show that the right-most term in (3.5) can be estimated by
‖ f ‖Ḟα

p,q
. Note first that

ϕ∗∗
j,β f (x) = sup

z∈Rd

|( f ∗ ϕ j )(x + A− j z)|
(1 + ρA(z))β

= sup
z∈Rd

∣

∣[( f ∗ ϕ j ) ◦ A− j ](A j x + z)
∣

∣

(1 + ρA(−z))β
,

(3.17)

where the symmetry of ρA is used. In order to estimate (3.17), we apply Peetre’s
inequality in Lemma 3.4 to g j := ( f ∗ϕ j ) ◦ A− j . To this end, note with the (bilinear)
dual pairing 〈·, ·〉S′,S that

〈ĝ j , φ〉S′,S = 〈

f ∗ ϕ j , | det A j |̂φ ◦ A j 〉

S′,S = 〈

f̂ ∗ ϕ j , φ ◦ (A∗)− j 〉

S′,S
= 〈

̂f , (ϕ̂ ◦(A∗)− j ) · (φ ◦(A∗)− j )
〉

S′,S = 0

for all φ ∈ S(Rd) with suppφ ⊂ R
d\supp ϕ̂. Thus, supp ĝ j ⊆ supp ϕ̂ is contained in

the same compact set for all j ∈ Z. An application of Lemma 3.4 therefore provides
a uniform constant C > 0 such that, for all j ∈ Z,

ϕ∗∗
j,β f (x) = sup

z∈Rd

|g j (A j x + z)|
(1 + ρA(−z))β

≤ C
[

(MρA |g j |1/β)(A j x)
]β

,

where MρA is as in (3.1). Therefore, the right-hand side of (3.5) can be estimated
using Lemma 3.1 and the vector-valued Fefferman-Stein inequality (Theorem 3.2) as
follows:

∥

∥

∥

∥

(

∑

j∈Z

(| det A|α j ϕ∗∗
j,β f

)q
)1/q∥

∥

∥

∥

L p
�
∥

∥

∥

∥

(

∑

j∈Z

(

| det A|α j [(MρA |g j |1/β)(A j ·)]β
)q)1/q∥

∥

∥

∥

L p

=
∥

∥

∥

∥

(

∑

j∈Z

(

MρA

[

(| det A|α j |g j |)1/β
]

(A j ·))βq
)1/q∥

∥

∥

∥

L p

=
∥

∥

∥

∥

(

∑

j∈Z

(

MρA (| det A|α j | f ∗ ϕ j |)1/β
)βq

)1/(qβ)∥
∥

∥

∥

β

L pβ
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�
∥

∥

∥

∥

(

∑

j∈Z

(| det A|α j | f ∗ ϕ j |
)q
)1/q∥

∥

∥

∥

L p
.

The last step used that pβ, qβ > 1, so that Theorem 3.2 is applicable. ��

3.3 Sequence spaces

This section provides a maximal function characterization of the sequence spaces ḟαp,q
defined in Sect. 2.4. We start with a simple lemma.

Lemma 3.7 Let A ∈ GL(d, R) be expansive, let K ⊂ R
d be bounded and measurable

with positive measure, and let β ≥ 0. For � ∈ Z and z ∈ R
d , set K�,z := A−�(K + z).

Then

(

1 + ρA(A�x − z)
)−β �

(

1K�,z ∗ | det A|�
(1 + ρA(A�·))β

)

(x) x ∈ R
d ,

where the implied constant only depends on K , β, A.

Proof Define ν(x) := (1 + ρA(x))−β . Note that

1K�,z (x) = | det A|−�(1K )�(x − A−�z) = | det A|−�
[

TA−�z(1K )�
]

(x).

By applying similar manipulations to the left-hand side of the target estimate, and
multiplying both sides of the target estimate by | det A|�, it is easily seen that the claim
is equivalent to

TA−�zν� � [TA−�z(1K )�] ∗ ν�.

Since convolution commutes with translation, we can assume that z = 0, i.e., we need
to show that ν� � (1K )� ∗ ν�. Furthermore, using the identity ( f ◦ A) ∗ (g ◦ A) =
| det A|−1 · ( f ∗g)◦ A, it follows that it suffices to prove ν � 1K ∗ν. For this, note that
since ρA is bounded on K , we have 1+ρA(x − y) � 1+ρA(x)+ρA(−y) � 1+ρA(x)

and hence
(

1 + ρA(x − y)
)−β �

(

1 + ρA(x)
)−β for x ∈ R

d and y ∈ K . Therefore,

1K ∗ ν(x) =
∫

K

(

1 + ρA(x − y)
)−β

dy �
∫

K

(

1 + ρA(x)
)−β

dy = m(K ) · ν(x),

which completes the proof. ��
The following is a discrete counterpart of Theorem 3.5 and will be used in Sect. 6.1.

Theorem 3.8 Let A ∈ GL(d, R) be expansive and exponential. Then, for all p ∈
(0,∞), q ∈ (0,∞], α ∈ R and β > max{1/p, 1/q}, the (quasi)-norm equivalence

‖c‖ḟαp,q
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�
∥

∥

∥

∥

(∫

R

(

ess sup
z∈Rd

| det A|−(α+1/2)s

(1 + ρA(A−s z))β

∑

�∈Z,k∈Zd

|c�,k |1A−�([−1,1)d +k)
(· + z)1−�+[−1,1)(s)

)q
ds

)1
q
∥

∥

∥

∥

L p

holds for all c = (c�,k)�∈Z,k∈Zd ∈ C
Z×Z

d
, with the usual modifications for q = ∞.

Proof We only prove the case q < ∞; the case q = ∞ can be proven by the usual
modifications. For � ∈ Z and k ∈ Z

d , define Q�,k := A−�([−1, 1)d + k) and P�,k :=
A−�([0, 1)d + k). Given c = (c�,k)�∈Z,k∈Zd ∈ C

Z×Z
d
, let F : R

d × R → [0,∞] be
defined by

F(x, s) :=
∑

�∈Z,k∈Zd

|c�,k |1Q�,k (x)1−�+[−1,1)(s), (x, s) ∈ R
d × R.

Then we can re-write

I :=
∫

R

(

ess sup
z∈Rd

| det A|−(α+1/2)s
(1+ρA(A−s z))β

∑

�∈Z,k∈Zd

|c�,k |1A−�([−1,1)d+k)(· + z)1−�+[−1,1)(s)

)q
ds

=
∫

R

(

| det A|−(α+1/2)s ess sup
z∈Rd

|F(· + z, s)|
(1 + ρA(A−s z))β

)q
ds

=
∑

j∈Z

∫

(0,1)

(

| det A|(α+1/2)( j+t) ess sup
z∈Rd

|F(· + z, −( j + t))|
(1 + ρA(A j+t z))β

)q
dt . (3.18)

Note that for j ∈ Z and t ∈ (0, 1), we have F(x + z,−( j + t)) ≤
∑ j+1

�= j

∑

k∈Zd |c�,k |1Q�,k (x + z) for x, z ∈ R
d . Moreover, for fixed j ∈ Z, each

y ∈ R
d belongs to at most a fixed number of sets from the family (Q j,k)k∈Zd ; thus,

∑

k∈Zd

|c j,k |1Pj,k (x + z) �
∣

∣F(x + z,−( j + t))
∣

∣

q

�
j+1
∑

�= j

∑

k∈Zd

|c�,k |q 1Q�,k (x + z). (3.19)

Therefore,

I �
1
∑

m=0

∑

j∈Z

∫

(0,1)
| det A|(α+1/2)( j+m−m+t)q ess sup

z∈Rd

∑

k∈Zd |c j+m,k |q1Q j+m,k (· + z)

(1 + ρA(A j+m−m+t z))βq
dt

�
∑

�∈Z
| det A|(α+1/2)�q ess sup

z∈Rd

∑

k∈Zd |c�,k |q1Q�,k (· + z)

(1 + ρA(A�z))βq
, (3.20)

where the last step follows by using Corollary 2.5 and noting that | det A|t−m,

| det A|m−t � 1, with implicit constants independent of t ∈ (0, 1) and m ∈ {0, 1}.
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Next, since β min{p, q} > 1, we can choose r ∈ (0, β) such that r min{p, q} > 1,
and estimate

I �
∑

j∈Z

∑

k∈Zd

| det A|(α+1/2) jq |c j,k |q
(

ess sup
z∈Rd

1Q j,k (· + z)

(1 + ρA(A j z))β/r

)qr

. (3.21)

To estimate (3.21) further, note that x+z ∈ Q j,k for x ∈ R
d , implies A j (x+z)−k ∈

[−1, 1]d , hence

1 + ρA(A j x − k) = 1 + ρA
(

A j x + A j z − k + (−A j z)
)

� (1 + ρA(A j (x + z) − k))(1 + ρA(−A j z))

� 1 + ρA(A j z).

Therefore, for arbitrary x ∈ R
d ,

ess sup
z∈Rd

1Q j,k (x + z)

(1 + ρA(A j z))β/r
� 1

(1 + ρA(A j x − k))β/r

�
(

1Pj,k ∗ | det A| j

(1 + ρA(A j ·))β/r

)

(x), (3.22)

where the last inequality follows from Lemma 3.7. The function g j := | det A| j (1 +
ρA(A j ·))−β/r is in L1(Rd) by Lemma 2.3. Moreover, we have ‖g j‖ = ‖g0‖L1 for
every j ∈ Z. Therefore, noting that g j (x) = | det A| j (1 + | det A| j ρA(x))−β/r

and applying the majorant property of the Hardy-Littlewood maximal function (see
Lemma 3.3) to the right-hand side of (3.22) gives

ess sup
z∈Rd

1Q j,k (x + z)

(1 + ρA(A j z))β/r
� MρA1Pj,k (x), x ∈ R

d . (3.23)

Combining (3.21) and (3.23) yields

I �
∑

j∈Z

∑

k∈Zd

| det A|(α+1/2) jq |c j,k |q
(

MρA1Pj,k (·)
)qr

=
∑

j∈Z

∑

k∈Zd

(

MρA

[

| det A|(α+1/2) j/r |c j,k |1/r1Pj,k

]

(·)
)qr

.

This, together with an application of the Fefferman-Stein inequality of Theorem 3.2,
gives

∥

∥I 1/q
∥

∥

L p �
∥

∥

∥

∥

(

∑

j∈Z

∑

k∈Zd

(

MρA

[| det A|(α+1/2) j/r |c j,k |1/r1Pj,k

]

(·)
)qr)1/q∥

∥

∥

∥

L p
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=
∥

∥

∥

∥

(

∑

j∈Z

∑

k∈Zd

(

MρA

[| det A|(α+1/2) j/r |c j,k |1/r 1Pj,k

]

(·)
)qr)1/(rq)∥

∥

∥

∥

r

L pr

�
∥

∥

∥

∥

(

∑

j∈Z

∑

k∈Zd

(| det A|(α+1/2) j |c j,k |1Pj,k (·)
)q
)1/q∥

∥

∥

∥

L p
= ‖c‖ḟαp,q

.

The reverse estimate follows easily by combining the lower bound

F(x, s) � ess sup
z∈Rd

|F(x + z, s)|
(1 + ρA(A−s z))β

, (x, s) ∈ R
d × R,

(see Lemma B.1) with (3.18) and (3.19). ��

4 Admissible Schwartz functions and wavelet coefficient decay

Let A ∈ GL(d, R) be an exponentialmatrix. Define the associated semi-direct product

G A = R
d

�A R = {(x, s) : x ∈ R
d , s ∈ R} (4.1)

with multiplication (x, s)(y, t) = (x + As y, s + t) and inversion (x, s)−1 =
(−A−s x,−s). Left Haar measure on G A is given by dμG A (x, s) = | det A|−sdsdx ,
and the modular function on G A is�G A(x, s) = | det A|−s . To ease notation, we often
simply write μ := μG A .

For p ∈ (0,∞), the Lebesgue space on G A is denoted by L p(G A) =
L p(G A, μG A ). The left and right translation by h ∈ G A of a function F : G A → C

are defined by

Lh F = F(h−1·) and Rh F = F(· h)

respectively.

4.1 Admissible vectors

The quasi-regular representation (π, L2(Rd)) of G A = R
d

�A R is given by

π(x, s) f = | det A|−s/2 f (A−s( · − x)), f ∈ L2(Rd).

For fixed ψ ∈ L2(Rd), the associated wavelet transform is defined as

Wψ : L2(Rd) → L∞(G A), Wψ f (x, s) = 〈 f , π(x, s)ψ〉, (x, s) ∈ G A,
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and ψ is admissible if Wψ defines an isometry into L2(G A). This implies
W ∗

ψ Wψ = idL2(Rd ), which gives rise to the reconstruction formula

f = W ∗
ψ Wψ f =

∫

G A

Wψ f (g)π(g)ψ dμG A (g), f ∈ L2(Rd), (4.2)

with the integral interpreted in the weak sense. Furthermore, the reproducing formula

Wϕ f = Wψ f ∗ Wϕψ, f , ϕ ∈ L2(Rd) (4.3)

follows directly from the isometry of Wψ and the intertwining property Wψ [π(g) f ] =
Lg[Wψ f ].

Admissibility of a vector can be conveniently characterized in terms of its Fourier
transform, see, e.g., [46, Theorem 1.1] and [31, Theorem 1].

Lemma 4.1 [31, 46] A vector ψ ∈ L2(Rd) is admissible if, and only if,

∫

R

∣

∣̂ψ((A∗)sξ)
∣

∣

2
ds = 1, a.e. ξ ∈ R

d . (4.4)

The significance of A being expansive is that this guarantees the existence of admis-
sible vectors with convenient additional properties:

Theorem 4.2 [3, 22, 39, 44] Let A ∈ GL(d, R) be an exponential matrix. Then the
following assertions are equivalent:

(i) Either A or A−1 is expansive.
(ii) There exists an admissible vector ψ ∈ L2(Rd) such that ̂ψ ∈ C∞

c (Rd).

If A is expansive, there exists an admissible ϕ ∈ S(Rd) satisfying ϕ̂ ∈ C∞
c (Rd\{0}).

In addition, it can be chosen to satisfy the support condition (2.4).

Proof The claimed equivalence is proven in [39, 44], see also [57, p. 319]. The final
claim easily follows from [22, Proposition 10] or [3, Chapter II, Theorem 4.2] and
their proofs. ��

In the sequel, a matrix A ∈ GL(d, R) will be assumed to be expansive and expo-
nential.

4.2 Decay estimates

This section concerns decay properties of the wavelet transform. The derived decay
estimates will play an important role in the subsequent sections, but are also of inde-
pendent interest.

We recall the following Fréchet space of Schwartz functions with all moments
vanishing.
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Definition 4.3 Let S0(R
d) denote the space of all ϕ ∈ S(Rd) satisfying

∫

Rd
ϕ(x)xαdx = 0

for all multi-indices α ∈ N
d
0 . The space S0(R

d) will be equipped with the subspace
topology coming from S(Rd). Its (topological) dual space will be denoted by S′

0(R
d).

The dual space S′
0(R

d) can be identified with S′(Rd)/P(Rd); see, e.g., [36, Propo-
sition 1.1.3].

The following lemmawill be helpful in establishing decay of the wavelet transform.
It is a generalization to the anisotropic setting of a well-known estimate, see, e.g., [36,
Appendix B.1].

Lemma 4.4 If s ≥ 0 and L > 1, then

∫

Rd

(

1 + ρA(y)
)−L(1 + ρA(A−s(y − x))

)−L
dy �d,A,L

(

1 + ρA(A−s x)
)−L

for all x ∈ R
d .

Proof Since L > 1, an application of Lemma 2.3 shows
∫

Rd (1 + ρA(y))−L dy � 1.
Therefore, if ρA(A−s x) ≤ 1, then

∫

Rd

(

1 + ρA(y)
)−L(1 + ρA(A−s(y − x))

)−L
dy ≤

∫

Rd
(1 + ρA(y))−L dy

� (1 + ρA(A−s x))−L .

In the remainder of the proof, it may therefore be assumed that ρA(A−s x) > 1.
Let C1 ≥ 1 with ρA(x + y) ≤ C1(ρA(x) + ρA(y)), and let C2 ≥ 1 denote the

constant in Corollary 2.5, so that ρA(As x) ≤ C2 | det A|sρA(x) for all x, y ∈ R
d and

s ∈ R. Define

U := {

y ∈ R
d : ρA(y) ≥ (2C1C2)

−1| det A|sρA(A−s x)
}

and V := {

y ∈ R
d : ρA(A−s(y − x)) ≥ ρA(A−s x)/(2C1)

}

. Then R
d = U ∪ V ;

otherwise,

ρA(A−s x) ≤ C1
(

ρA(A−s(x − y)) + ρA(A−s y)
)

≤ C1
(

ρA(A−s(x − y)) + C2 | det A|−sρA(y)
)

< C1
(

ρA(A−s x)/(2C1) + C2 | det A|−s(2C1C2)
−1| det A|sρA(A−s x)

)

= ρA(A−s x),

for any y ∈ R
d \ (U ∪ V ).
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On the one hand, it follows by ρA(A−s x) ≥ 1 and a change-of-variable that

∫

U

(

1 + ρA(y)
)−L (1 + ρA(A−s(y − x))

)−L
dy

≤ (2C1C2)
L · | det A|−Ls

ρA(A−s x)L

∫

Rd

(

1 + ρA(A−s(y − x))
)−L

dy

≤ (4C1C2)
L | det A|−(L−1)s

(1 + ρA(A−s x))L

∫

Rd
(1 + ρA(z))−L dz

� 1

(1 + ρA(A−s x))L
,

where the last inequality uses Lemma 2.3 and | det A|−(L−1)s ≤ 1 since L > 1 and s ≥
0. On the other hand, if y ∈ V , then 1+ρA(A−s(y − x)) ≥ (2C1)

−1(1+ρA(A−s x)).

Therefore,
∫

V

(

1 + ρA(y)
)−L(1 + ρA(A−s(y − x))

)−L
dy � 1

(1 + ρA(A−s x))L

by Lemma 2.3. Combining these estimates yields the claim. ��
Lemma 4.5 Let f1, f2 ∈ L2(Rd).

(i) If | fi (·)| ≤ Ci (1 + ρA(·))−L a.e. for some L > 1 and all i ∈ {1, 2}, then

|W f1 f2(x, s)| � C1C2 | det A|−|s|/2(1 + ρA(A−s+
x)
)−L (4.5)

for all s ∈ R, where the implied constant only depends on d, L, A.
(ii) If f1 ∈ C N (Rd) satisfies |∂α f1(x)| ≤ C3 for all α ∈ N

d
0 such that |α| ≤ N, and

∫

Rd
‖x‖N | f2(x)| dx ≤ C4, and

∫

Rd
xα f2(x) dx = 0 for |α| < N ,

then

|W f1 f2(x, s)| � C3C4 | det A|−s/2 ‖A−s‖N∞, (4.6)

for all s ∈ R, where the implied constant only depends on d, N.

Proof (i) s ≥ 0, Lemma 4.4 implies

|W f1 f2(x, s)| ≤ C1C2

∫

Rd
(1 + ρA(y))−L | det A|−s/2 (1 + ρA(A−s(y − x))

)−L
dy

� C1C2 | det A|−s/2 (1 + ρA(A−s x)
)−L

,

as claimed. For s ≤ 0, note that

∣

∣W f1 f2(x, s)
∣

∣ = ∣

∣W f2 f1(−A−s x,−s)
∣

∣
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� C1C2| det A|−|−s|/2(1 + ρA(−A−(−s)+ A−s x)
)−L

= C1C2| det A|−|s|/2(1 + ρA(A−s+
x)
)−L

.

(ii) By Taylor’s theorem, there exists a polynomial Px of degree N − 1 that satisfies

| f1(x + z) − Px (z)| � C3‖z‖N for all z ∈ R
d ,

with implied constant only depending on d, N . Since
∫

Rd P(y) f2(y) dy = 0 for any
polynomial P with degree at most N − 1, it follows that

|W f1 f2(x, s)| =
∣

∣

∣

∫

Rd
f2(y)| det A|−s/2 f1(A−s(y − x)) dy

∣

∣

∣

=
∣

∣

∣

∫

Rd
f2(y)| det A|−s/2[ f1(A−s y − A−s x) − P−A−s x (A−s y)] dy

∣

∣

∣

� C3 | det A|−s/2
∫

Rd
| f2(y)|‖A−s y‖N dy

≤ C3C4 | det A|−s/2 ‖A−s‖N∞,

as required. ��
The following consequence is what we will actually use in most applications.

Corollary 4.6 Let ψ, ϕ ∈ S0(R
d) and 1 < λ− < minλ∈σ(A) |λ| be as in Lemma 2.4.

Then, for every L, N ∈ N,

|Wψϕ(x, s)| �
(

1 + ρA(x)
)−L

λ
−|s|N
− ‖ψ‖ ‖ϕ‖, (4.7)

where ‖ · ‖ is a suitable continuous Schwartz semi-norm. The implied constant and
the choice of the semi-norms depend only on L, N , A, d, λ−.

Proof Note that ψ, ϕ ∈ S0(R
d) guarantees that all assumptions of Lemma 4.5 are

satisfied and the bounds C1, . . . , C4 can be replaced by suitable Schwartz semi-norms
of ψ or ϕ.

We first use the estimate (4.5). Note that ρA(A−s+
x) � | det A|−s+

ρA(x) by Corol-
lary 2.5. Therefore, we see for any K > 1 that

|Wψϕ(x, s)| � ‖ψ‖ ‖ϕ‖ | det A|−|s|/2(1 + | det A|−s+
ρA(x)

)−K

� ‖ψ‖ ‖ϕ‖ | det A|−|s|/2 max
{

1, | det A|K s+} (
1 + ρA(x)

)−K

� ‖ψ‖ ‖ϕ‖ | det A|K s+(
1+ρA(x)

)−K

≤ ‖ψ‖ ‖ϕ‖ | det A||s|K (

1+ρA(x)
)−K

, (4.8)

where ‖ · ‖ is a suitable Schwartz semi-norm depending on K , A.
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We now show for arbitrary M ∈ N that

|Wψϕ(x, s)| � λ
−|s|M
− ‖ψ‖ ‖ϕ‖. (4.9)

Indeed, if s ≥ 0, then ‖A−s‖∞ � λ−s− by Lemma 2.4 and the claim follows
immediately from (4.6). The claim for s ≤ 0 follows from the case s ≥ 0 via
Wψϕ(x, s) = Wϕψ(−A−s x,−s).

Finally, we interpolate between (4.8) and (4.9). To this end, note that a priori the
seminorms in (4.8) and (4.9) are distinct, but that we can assume that they are equal
by possibly enlarging them. Now, since λ− > 1, we can choose H = H(A, λ−) ∈ N

such that λH− ≥ | det A|. Taking K = 2 L and M = 2(H L + N ) yields that

|Wψϕ(x, s)| = |Wψϕ(x, s)|1/2|Wψϕ(x, s)|1/2
� ‖ψ‖ ‖ϕ‖ | det A||s|L (1 + ρA(x)

)−L
λ

−|s|(H L+N )
−

� ‖ψ‖ ‖ϕ‖(1 + ρA(x))−Lλ
−|s|N
− ,

as claimed. ��

4.3 Extended wavelet transform

The wavelet transform can be extended via duality to S′
0(R

d) ∼= S′(Rd)/P(Rd).
Throughout, we will use the dual bracket defined by

〈·, ·〉 : S′
0(R

d) × S0(R
d) → C, 〈 f , ϕ〉 := f (ϕ). (4.10)

The bracket is a sesquilinear form naturally extending the L2-inner product.
If ψ ∈ S0(R

d), then the (extended) wavelet transform

Wψ : S′
0(R

d) → C(G A), Wψ f (x, s) = 〈 f , π(x, s)ψ〉, (x, s) ∈ R
d × R,

(4.11)

is well-defined. Here, we implicitly use the continuity of R
d ×R → S(Rd), (x, s) →

π(x, s)ψ . In addition to the wavelet transform, we also extend the representation π

to S′
0(R

d) by defining

〈π(h) f , ϕ〉 := 〈 f , π(h−1)ϕ〉 for f ∈ S′
0(R

d) and ϕ ∈ S0(R
d).

The following lemma extends the reconstruction formula (4.2) to all of S′
0(R

d).

Lemma 4.7 Let ψ ∈ S0(R
d) be admissible. Then

∫

G A

Wψ f (g) Wψϕ(g) dμG A (g) = 〈 f , ϕ〉 (4.12)

for all f ∈ S′
0(R

d) and ϕ ∈ S0(R
d).
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Proof The proof follows [32, Lemma 2.11] and [33, Lemma 40], with suitable modi-
fications.

For M, N ∈ N≥d+1, let SM,N (Rd) denote the space of all functions f ∈ C N (Rd)

satisfying

‖ f ‖M,N := maxβ∈Nd
0 ,|β|≤N sup

x∈Rd
(1 + ‖x‖)M |∂β f (x)| < ∞. (4.13)

The function space SM,N (Rd) equipped with the norm in (4.13) is a Banach space.
Furthermore, S(Rd) ↪→ SM,N (Rd). Since G A → S(Rd), g → π(g)ψ is continuous
and G A is σ -compact, this implies that the map

G A → SM,N (Rd), g → Wψϕ(g) π(g)ψ (4.14)

is continuous and has a σ -compact (and hence separable) range. Moreover, the decay
estimates of Corollary 4.6 show

∫

G A
|Wψϕ(g)| ‖π(g)ψ‖M,N dμG A (g) < ∞. Overall,

this shows that the map in (4.14) is Bochner integrable, for arbitrary M, N ∈ N≥d+1.
The reconstruction formula (4.2) shows for ϕ ∈ S0(R

d) ⊂ L2(Rd) ∩ SM,N (Rd)

that

ϕ =
∫

G A

Wψϕ(g) [π(g)ψ] dμG A(g) (4.15)

where the integral is understood in the weak sense in L2(Rd). As shown above, the
right-hand side also exists as a Bochner integral in SM,N (Rd). Since M ≥ d + 1,
we have SM,N ↪→ L2(Rd). Furthermore, if ϕ ∈ SM,N satisfies 〈ϕ, f 〉 = 0 for all
f ∈ L2(Rd), then ϕ ≡ 0. Hence the identity (4.15) also holds in SM,N (Rd).
Lastly, if f ∈ S′

0(R
d), then f extends to a continuous linear functional on S(Rd)

by [36, Proposition 1.1.3]. Hence, there are M, N ∈ N≥d+1, such that the restriction
of f to S0(R

d) is continuous with respect to ‖ · ‖M,N ; see [35, Proposition 2.3.4].
Using the Hahn-Banach theorem, we can extend f to a bounded linear functional ˜f on
SM,N (Rd). In view of (4.15), and using that the Bochner-integral can be interchanged
with bounded linear functionals by [66, V.5, Corollary 2], we obtain that

〈 f , ϕ〉 = ˜f (ϕ) = ˜f
(

∫

G A

Wψϕ(g)π(g)ψ dμG A (g)
)

=
∫

G A

Wψϕ(g)〈 f , π(g)ψ〉 dμG A (g)

for any ϕ ∈ S0(R
d). ��

Corollary 4.8 (Reproducing formula) Let ψ ∈ S0(R
d) be admissible. Then

Wϕ f = Wψ f ∗ Wϕψ (4.16)

holds for all f ∈ S′
0(R

d) and ϕ ∈ S0(R
d).
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Proof Replacing ϕ by π(h)ϕ in Lemma 4.7 easily yields the claim. ��

5 Coorbit spaces associated to Peetre-type spaces

This section is devoted to characterizations of anisotropic Triebel–Lizorkin spaces in
terms of wavelet transforms. Explicitly, it will be shown that Triebel–Lizorkin spaces
can be identified with coorbit spaces associated to so-called Peetre-type spaces.

5.1 Peetre-type spaces

For p, q ∈ (0,∞], the mixed-norm Lebesgue space L p,q(G A) consists of all (equiv-
alence classes of a.e. equal) measurable functions F : G A → C satisfying

‖F‖L p,q := ∥

∥x → ‖F(x, ·)‖Lq (ν)

∥

∥

L p(Rd )
< ∞, (5.1)

relative to the Borel measure ν on R defined by ν(M) = ∫

M
ds

| det A|s . The weighted

space is given by L p,q
w (G A) = {F : G A → C : w · F ∈ L p,q(G A)}, with norm

‖F‖L p,q
w

:= ‖w · F‖L p,q .

Definition 5.1 For α ∈ R, β > 0, and p ∈ (0,∞) and q ∈ (0,∞], the Peetre-type
space Ṗα,β

p,q (G A) on G A is defined as the collection of all (equivalence classes of a.e.
equal) measurable F : G A → C satisfying

‖F‖Ṗα,β
p,q

:=
∥

∥

∥

∥

x →
(∫

R

(

| det A|αs ess sup
z∈Rd

|F(x+z, s)|
(1+ρA(A−s z))β

)q ds

| det A|s
)1/q∥

∥

∥

∥

L p
<∞,

with the usual modification for q = ∞.

An essential property of the Peetre-type spaces for our purposes is their two-sided
translation invariance. For proving this, the following lemma will be used. Its proof is
deferred to Appendix 1.

Lemma 5.2 The weight function

v : G A → [0,∞), (y, t) → sup
(z,u)∈G A

1 + ρA(A−uz)

1 + ρA(A−u At z − y)
(5.2)

is well-defined, measurable, and submultiplicative. Furthermore, we have

v(y, t) � max
{

1, | det A|−t}(1 + min{ρA(y), ρA(A−t y)})

� 1 + | det A|−t + ρA(A−t y). (5.3)

The basic properties of Peetre-type spaces are collected in the following lemma.
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Lemma 5.3 Let α ∈ R, β > 0, and p ∈ (0,∞) and q ∈ (0,∞]. Then the Peetre-type
space Ṗα,β

p,q (G A) is a solid quasi-Banach function space (Banach function space if
p, q ≥ 1). Furthermore, the operator norms of the translation operators Lg and Rg

acting on Ṗα,β
p,q (G A) can be bounded by

∣

∣

∣

∣

∣

∣L(y,t)
∣

∣

∣

∣

∣

∣ = | det A|t(α+1/p−1/q) and
∣

∣

∣

∣

∣

∣R(y,t)
∣

∣

∣

∣

∣

∣ ≤ | det A|−t(α−1/q)(v(y, t))β,

where ||| · ||| := ‖ · ‖Ṗα,β
p,q →Ṗα,β

p,q
and v is the weight function defined in Lemma 5.2.

Proof It is easy to see that ‖ · ‖Ṗα,β
p,q

is a solid quasi-norm, as defined in [65, Chapter 2],

and a solid norm if p, q ≥ 1. The positive definiteness of ‖·‖Ṗα,β
p,q

follows fromLemma

B.1.
For the completeness of Ṗα,β

p,q , suppose that (Fn)n∈N satisfies lim infn→∞ ‖Fn‖Ṗα,β
p,q

<

∞, and let F ∈ Ṗα,β
p,q (G A) be such that |F(x, s)| ≤ lim infn→∞ |Fn(x, s)| for a.e.

(x, s) ∈ R
d × R. Then it follows directly from Fatou’s lemma and the definition of

‖ · ‖Ṗα,β
p,q

that

‖F‖Ṗα,β
p,q

≤ lim inf
n→∞ ‖Fn‖Ṗα,β

p,q
, (5.4)

and thus Ṗα,β
p,q satisfies the so-called Fatou property, which in particular implies that

Ṗα,β
p,q is complete; see [67, Section 65, Theorem 1] and [65, Lemma 2.2.15].

We show the translation-invariance for q ∈ (0,∞). Let F ∈ Ṗα,β
p,q (G A) and

(y, t) ∈ R
d × R be arbitrary. Then a direct calculation using the substitutions x̃ =

x − y and x = A−t x̃ , as well as z̃ = A−t z shows

‖L(y,t) F‖Ṗα,β
p,q

=
∥

∥

∥

∥

x →
(∫

R

[

| det A|αs ess sup
z∈Rd

|F(A−t (x + z − y), s − t)|
(1 + ρA(A−s z))β

]q ds

| det A|s
)1/q∥

∥

∥

∥

L p

=
∥

∥

∥

∥

x →
(∫

R

[

| det A|αs ess sup
z∈Rd

|F(A−t x̃ + A−t z, s − t)|
(1 + ρA(A−s z))β

]q ds

| det A|s
)1/q∥

∥

∥

∥

L p

= | det A| t
p

∥

∥

∥

∥

x →
(∫

R

[

| det A|αs ess sup
z̃∈Rd

|F(x + z̃, s − t)|
(1 + ρA(A−(s−t )̃z))β

]q ds

| det A|s
)1/q∥

∥

∥

∥

L p

= | det A|t/p| det A|t(α−1/q)‖F‖Ṗα,β
p,q

.

For the right-translation, the substitutions z̃ = z + As y and s̃ = s + t show that

∥

∥R(y,t) F
∥

∥

Ṗα,β
p,q

=
∥

∥

∥

∥

x →
(∫

R

[

| det A|αs ess sup
z∈Rd

|F(x + z + As y, s + t)|
(1 + ρA(A−s z))β

]q ds

| det A|s
)1/q∥

∥

∥

∥

L p

=
∥

∥

∥

∥

x →
(∫

R

[

| det A|α(̃s−t) ess sup
z̃∈Rd

|F(x + z̃, s̃)|
(1 + ρA(A−̃s At z̃ − y))β

]q ds̃

| det A|s̃−t

)1/q∥
∥

∥

∥

L p
.

By Lemma 5.2,
(

1+ρA(A−s At z− y)
)−1 ≤ v(y,t)

1+ρA(A−s z) for all (z, s), (y, t) ∈ R
d ×R,

showing the desired estimate. The case q = ∞ follows via the usual modifications. ��
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Lastly, the following simple observation allows to apply results of [64] in the remain-
der.

Lemma 5.4 Let α ∈ R, β > 0. For p ∈ (0,∞), q ∈ (0,∞], let r := min{1, p, q}.
The quasi-norm ‖ · ‖Ṗα,β

p,q
is an r-norm, i.e.,

‖F1 + F2‖r
Ṗα,β

p,q
≤ ‖F1‖r

Ṗα,β
p,q

+ ‖F2‖r
Ṗα,β

p,q
for F1, F2 ∈ Ṗα,β

p,q .

Proof The case p, q ≥ 1 follows directly by Lemma 5.3, so let p, q < 1 throughout
the proof. For Fi ∈ Ṗα,β

p,q with i = 1, 2, define

Hi (x, s) = | det A|αs ess sup
z∈Rd

|Fi (x + z, s)|
(1 + ρA(A−s z))β

, (x, s) ∈ R
d × R.

Using this notation and the inequalities r = min{1, p, q} < 1 and q/r , p/r ≥ 1, a
direct calculation yields

‖F1 + F2‖r
Ṗα,β

p,q
=
∥

∥

∥

∥

(∫

R

(

| det A|αs ess sup
z∈Rd

|F1(· + z, s) + F2(· + z, s)|
(1 + ρA(A−s z))β

)r · q
r ds

| det A|s
) r

q · 1r ∥∥
∥

∥

r

L p

≤
∥

∥

∥

∥

(∫

R

(

H1(·, s)r + H2(·, s)r
)

q
r ds

| det A|s
) r

q · 1r ∥∥
∥

∥

r

L p

≤
∥

∥

∥

∥

∥

∥Hr
1

∥

∥

Lq/r (ν)
+ ∥

∥Hr
2

∥

∥

Lq/r (ν)

∥

∥

∥

∥

L p/r

≤ ‖F1‖r
Ṗα,β

p,q
+ ‖F2‖r

Ṗα,β
p,q

,

where ν denotes the Borel measure on R given by ν(M) = ∫

M
ds

| det A|s as in Eq.5.1. ��

5.2 Standard envelope and control weight

The notion of a control weight plays an essential role in coorbit theory, see, e.g., [25,
30, 38, 64]. For the study of control weights in the setting of the present paper, the
class of functions will be useful.

Definition 5.5 For σ = (σ1, σ2) ∈ (0,∞)2 and L ∈ R, define ηL : G A → (0,∞)

and θσ : R → (0,∞) by

ηL(x, s) := (

1 + min{ρA(x), ρA(A−s x)})−L and θσ (s) :=
{

σ s
1 , if s ≥ 0,

σ s
2 , if s < 0.

The standard envelope �σ,L : G A → (0,∞) is given by�σ,L (x, s) := θσ (s)ηL(x, s).

Lemma 5.6 For each L ∈ R, we have ηL(x, s) � (

1+ρA(A−s+
x)
)−L

for all (x, s) ∈
G A.
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Proof Corollary 2.5 shows ρA(A−s x) � | det A|−sρA(x). Because of | det A| > 1,
this implies

min{ρA(x), ρA(A−s x)} � min{ρA(x), | det A|−sρA(x)}
� | det A|−s+

ρA(x) � ρA(A−s+
x),

where Corollary 2.5 was again used in the last step. This estimate easily implies the
claim. ��

The next lemma provides the existence of a so-called control weight for Ṗα,β
p,q and

shows how to estimate it by a standard envelope.

Lemma 5.7 Let α ∈ R, and β > 0. For p ∈ (0,∞), q ∈ (0,∞], let r := min{1, p, q}.
As in Lemma 5.3, write ||| · ||| := ‖ · ‖Ṗα,β

p,q →Ṗα,β
p,q

. There exists a continuous, submulti-

plicative weight w = w
α,β
p,q : G A → [1,∞) such that

w(g) = �1/r (g−1) w(g−1),
∣

∣

∣

∣

∣

∣Lg−1

∣

∣

∣

∣

∣

∣ ≤ w(g),
∣

∣

∣

∣

∣

∣Rg
∣

∣

∣

∣

∣

∣ ≤ w(g), g ∈ G A,

with implicit constant depending on A, β. The weight w is called a standard control
weight.

Furthermore, define σ1 := | det A|1/r+|α+1/p−1/q| and σ2 := | det A|−|α+1/p−1/q|,
as well as

κ1 :=
{

| det A|1/r+α+β−1/q if α ≥ − 1/r+β−2/q
2 ,

| det A|−(α−1/q) otherwise,

and

κ2 :=
{

| det A|−(α+β−1/q) if α ≥ − 1/r+β−2/q
2 ,

| det A|1/r+α−1/q otherwise.

Then the standard control weight w satisfies w � �σ,0 + �κ,−β.

Proof The weight v : G A → [0,∞) constructed in Lemma 5.2 is submultiplicative,
measurable, and locally bounded; see Eq.5.3. Furthermore, v ≥ 1. Thus, v is a weight
function in the sense of [52, Definition 3.7.1] and by the proof of [52, Theorem 3.7.5],
there exists a continuous, submultiplicative function v0 : G A → [1,∞) satisfying
v � v0.

Let τ ∈ R and set aτ (g) = aτ (x, s) := | det A|sτ for g = (x, s) ∈ G A. Note that
aτ is multiplicative and that� = a−1. For γ, δ ∈ R, define the function wγ,δ : G A →
[1,∞) by

wγ,δ := max
{

1, a1/r , aγ , a−γ , aγ+1/r , a1/r−γ , aδ+1/r · (v∨
0 )β, a−δ · v

β
0

}

.

Thenwγ,δ is again continuous and submultiplicative. Since a∨
τ = a−τ , it follows easily

that (�1/r )∨ · w∨
γ,δ = wγ,δ. Choosing γ := α + 1/p − 1/q and δ := α − 1/q and
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setting w = w
α,β
p,q := wγ,δ yields, by Lemma 5.3, that

∣

∣

∣

∣

∣

∣Lg−1

∣

∣

∣

∣

∣

∣ = a−γ (g) ≤ w(g)

and
∣

∣

∣

∣

∣

∣Rg
∣

∣

∣

∣

∣

∣ � a−δ(g) v0(g)β ≤ w(g).

For proving the second part of the lemma, note that w � w1 + w2 for the weights
given by w1 := max{a0, a1/r , aγ , a−γ , a1/r+γ , a1/r−γ } and w2 := max

{

aδ+1/r ·
(v∨

0 )β, a−δ · v
β
0

}

. It remains therefore to show that w1 � �σ,0 and w2 � �κ,−β ,
with κ and σ as in the statement of the lemma. To estimate w1, note that if
I = {0, 1/r , γ,−γ, 1/r + γ, 1/r − γ }, then

maxτ∈I aτ (x, s) =
{

| det A|s·maxI , if s ≥ 0,

| det A|s·min I , if s < 0,

=
{

| det A|s·(1/r+|γ |), if s ≥ 0,

| det A|−s|γ |, if s < 0.

Hence, by the choice of γ and σ , this yields w1(x, s) = maxτ∈I aτ (x, s) = θσ (s) =
�σ,0(x, s). Lastly, for estimatingw2, note that the estimate for v in Lemma 5.2 implies

v∨
0 (x, s) � max{1, | det A|s}(1 + min{ρA(−A−s x), ρA(−As A−s x)})

= | det A|s+(
1 + min{ρA(x), ρA(A−s x)})

= | det A|s+
η−1(x, s).

Similarly, one can show that v0(x, s) � | det A|s−
η−1(x, s). In case of s ≥ 0, this

gives

w2(x, s) � (

η−1(x, s)
)βmax

{| det A|(1/r+δ+β)s, | det A|−δs}

= η−β(x, s)κs
1

= �κ,−β(x, s),

sincemax{1/r +δ+β,−δ} = max{1/r +α+β−1/q,−α+1/q} = 1/r +α+β−1/q
if and only if α ≥ − 1/r+β−2/q

2 . The estimate for s < 0 follows similarly. ��

5.3 Norm estimates

Let Q ⊂ G A be a relatively compact unit-neighborhood. The two-sided local maximal
function MQ F of a measurable function F :G A →C is defined by

MQ F(g) := ess sup
u,v∈Q

|F(ugv)|. (5.5)

Two properties of this maximal function that will be used below are its measurabil-
ity (see, e.g., [43, Lemma B.4]) and the estimate |F | ≤ MQ F a.e. (see, e.g., [65,
Lemma 2.3.3]).
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For p ∈ (0,∞), q ∈ (0,∞], let r := min{1, p, q}. The (weighted) Wiener amal-
gam space W(Lr

w) is defined by

W(Lr
w) := WQ(Lr

w) :=
{

F ∈ C(G A) : MQ F ∈ Lr
w(G A)

}

,

where w : G A → [1,∞) is a standard control weight for Ṗα,β
p,q as provided by

Lemma 5.7.
The space W(Lr

w) is independent of the choice of Q. 3 In particular, this implies
that

F ∈ W(Lr
w) if and only if F∨ ∈ W(Lr

w); (5.6)

since the condition w(g) = �1/r (g−1)w(g−1) in Lemma 5.7 implies ‖F∨‖Lr
w

=
‖F‖Lr

w
, and by choosing Q to be symmetric it follows that MQ(∨) = (MQ)∨.

The following norm estimate will be used repeatedly in the remainder.

Lemma 5.8 Let Q ⊂ G A be a relatively compact unit neighborhood. Let ψ ∈ S0(R
d)

and let w : G A → [0,∞) be any weight such that w � �, where � is a linear
combination of standard envelopes (see Definition 5.5).

Then, for all p, q ∈ (0,∞], there exists a continuous Schwartz seminorm ‖ · ‖ such
that

‖Wψϕ‖L p,q
w

≤ ‖MQ(Wψϕ)‖L p,q
w

� ‖ϕ‖

for all ϕ ∈ S0(R
d); in particular, Wψϕ ∈ W(Lr

w) for all r ∈ (0,∞].
Proof Let 1 < λ− < minλ∈σ(A) |λ|. By Corollaries 4.6 and 2.5 and Lemma 5.6, it
follows that for all L, N ∈ N and ϕ ∈ S0(R

d),

|Wψϕ(x, s)| � ‖ϕ‖(1 + ρA(x))−L λ
−|s|N
− � ‖ϕ‖(1 + | det A|−s+

ρA(x)
)−L

λ
−|s|N
−

� ‖ϕ‖�L,τ (x, s),

where τ := (λ−N− , λN−) and a suitable continuous Schwartz seminorm ‖ · ‖, depending
on L, N . Lemma B.2 yields MQ�L,τ � �L,τ , and hence MQ[Wψϕ] � ‖ϕ‖�L,τ .

In addition, Lemma 5.6 shows that ηL(x, s) � (

1 + | det A|−s+
ρA(x)

)−L ≤
| det A||s|L(1 + ρA(x))−L . Therefore,

MQ[Wψϕ](x, s) � ‖ϕ‖(1 + ρA(x))−L(| det A||L|/λN−)|s|, (5.7)

where L, N ∈ N are arbitrary and ‖·‖ is a continuous Schwartz semi-norm depending
on N , L .

3 Given two relatively compact unit neighborhoods P, Q ⊂ G A , one can write Q ⊂ ⋃N
i=1 xi P and

Q ⊂ ⋃M
j=1 Py j , and this easily implies MQ F ≤ ∑

i, j Rxi L
y−1

j
(MP F). The result then follows by

noting that Lr
w(G A) is invariant under left- and right-translations, since w is submultiplicative.
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It clearly suffices to prove the claim for the case where w = θσ · ηM is a standard
envelope, with σ = (σ1, σ2) ∈ (0,∞)2 and M ∈ R. Define σ̃ := max{σ1, σ−1

2 }; then
θσ (s) ≤ σ̃ |s| for all s ∈ R. Since ηM ≤ 1 = η0 for M ≥ 0, we may assume that
M ≤ 0. Then, Lemma 5.6 and Corollary 2.5 imply

ηM (x, s) �
(

1 + ρA(A−s+
x)
)−M �

(

1 + | det A|−s+
ρA(x)

)|M| ≤ (1 + ρA(x))|M|.

Since | det A|− s
q ≤ | det A||s|/q , we thus have

| det A|− s
q w(x, s)MQ[Wψϕ](x, s) � ‖ϕ‖(1 + ρA(x)

)|M|−L(| det A||L|+ 1
q σ̃ /λN−

)|s|
.

(5.8)

Therefore, choosing L, N sufficiently large, it is an easy consequence of Lemma 2.3
that

‖MQ[Wψϕ]‖L p,q
w

= ∥

∥| det A|− s
q w(·) MQ[Wψϕ](·)∥∥L p,q � ‖ϕ‖,

which completes the proof. ��

5.4 Coorbit spaces

This section proves wavelet characterizations of anisotropic Triebel–Lizorkin spaces
by identifying them with so-called coorbit spaces (cf. [25, 64]).

For technical reasons, coorbit spaces associated with quasi-Banach function spaces
are commonly defined in terms of merely left local maximal functions. For a function
F ∈ L∞

loc(G A), its left maximal function is defined by

M L
Q F(g) = ess sup

u∈Q
|F(gu)|, g ∈ G A,

where Q ⊂ G A is a relatively compact unit neighborhood.

Definition 5.9 Let p ∈ (0,∞), q ∈ (0,∞], α ∈ R, and β > 0. Let A ∈ GL(d, R)

be expansive exponential and let Q ⊂ G A be a relatively compact, symmetric unit
neighborhood.

For an admissible vector ψ ∈ S0(R
d), the coorbit space Co(Ṗα,β

p,q ) = Coψ(Ṗα,β
p,q )

is the collection of all f ∈ S′
0(R

d) satisfying

‖ f ‖
Co(Ṗα,β

p,q )
= ‖ f ‖

Coψ(Ṗα,β
p,q )

= ∥

∥M L
Q(Wψ f )

∥

∥

Ṗα,β
p,q

< ∞,

and equipped with the norm ‖ . ‖
Co(Ṗα,β

p,q )
.

In the above definition, note that there exist admissible vectors ψ ∈ S0(R
d) by

Theorem 4.2.
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Remark 5.10 The space Co(Ṗα,β
p,q ) defined in Definition 5.9 can be identified with the

abstract coorbit spaces defined in [64, Definition 4.7]. In particular, several basic
properties of coorbit spaces, such as independence of the defining vector ψ ∈ S0(R

d)

and neighborhood Q, follow directly from the theory [64]. See Lemma D.1 for details
on the identification.

Anisotropic Triebel–Lizorkin spaces are identified with coorbit spaces by the fol-
lowing proposition.

Proposition 5.11 Let p ∈ (0,∞), q ∈ (0,∞], α ∈ R, and β > max{1/p, 1/q}. Then

Ḟα
p,q = Co

(

Ṗ−α′,β
p,q

)

for α′ = α + 1

2
− 1

q
.

Proof Throughout, let ψ ∈ S0(R
d) be admissible (4.4) with compact Fourier support

in R
d\{0} satisfying the support condition (2.4). The existence of such vectors is

guaranteed by Theorem 4.2. Furthermore, let Q := [−1, 1)d × [−1, 1). The space
Co(Ṗα,β

p,q ) is independent of these choices by Remark 5.10. To ease notation, set α′ :=
α + 1/2 − 1/q.

The proof is split into three steps.
Step 1. Let ψ ∈ S0(R

d) be an admissible vector (4.4) with compact Fourier support
in R

d\{0} satisfying (2.4). Then also ψ∗ ∈ S0(R
d) satisfies (2.4), where ψ∗(t) :=

ψ(−t). Since

π(x, s)ψ = | det A|−s/2 ψ(A−s( · − x)) = | det A|s/2 Txψ−s,

it follows that

Wψ f (x, s) = 〈 f , π(x, s)ψ〉 = 〈 f , | det A|s/2Txψ−s〉 = | det A|s/2 f ∗ ψ∗−s(x).

(5.9)

Therefore, using ψ∗ as the analyzing vector in Theorem 3.5 yields

‖ f ‖Ḟα
p,q

�
∥

∥

∥

∥

x →
(∫

R

(

| det A|−αs sup
z∈Rd

|( f ∗ ψ∗−s)(x + z)|
(1 + ρA(A−s z))β

)q
ds

)1/q∥
∥

∥

∥

L p

=
∥

∥

∥

∥

x →
(∫

R

(

| det A|−(α+1/2−1/q)s sup
z∈Rd

|Wψ f (x + z, s)|
(1 + ρA(A−s z))β

)q ds

| det A|s
)1/q∥

∥

∥

∥

L p

= ‖Wψ f ‖
Ṗ−α′,β

p,q
(5.10)

for any f ∈ S′
0(R

d).

Step 2.Since |F | ≤ M L
Q F a.e. onG A for F ∈ L1

loc(G A) (see, e.g., [65, Lemma 2.3.3]),
it follows by Step 1 that

‖ f ‖Ḟα
p,q

� ‖Wψ f ‖
Ṗ−α′,β

p,q
≤ ‖M L

Q(Wψ f )‖
Ṗ−α′,β

p,q
= ‖ f ‖

Co(Ṗ−α′,β
p,q )

,
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for f ∈ S′
0(R

d).

Step 3. This step will show the remaining estimate ‖ f ‖
Co(Ṗ−α′,β

p,q )
� ‖ f ‖Ḟα

p,q
for

f ∈ S′
0(R

d). Parts of the used arguments resemble Step 2 in the proof of Theorem 3.5
and will for this reason only be sketched.

First, a direct calculation using the involved definitions and a change-of-variable
yields that

ess sup
z∈Rd

|M L
Q(Wψ f )(x + z, s)|
(1 + ρA(A−s z))β

= ess sup
z∈Rd

(y,t)∈Q

|Wψ f (x + z + As y, s + t)|
(1 + ρA(A−s z))β

= ess sup
z∈Rd

(y,t)∈Q

|Wψ f (x + z, s + t)|
(1 + ρA(A−s z − y))β

�A,β ess sup
z∈Rd

t∈[−1,1)

|Wψ f (x + z, s + t)|
(1 + ρA(A−s z))β

, (5.11)

where the last inequality follows from (1+ ρA(As z − y))−β � (1+ ρA(As z))−β for
y ∈ [−1, 1)d .

For fixed s ∈ R and t ∈ [−1, 1), the identity (5.9) and Corollary 2.5 allows to
estimate

| det A|−s/2 ess sup
z∈Rd

|Wψ f (x + z, s + t)|
(1 + ρA(A−s z))β

�A ess sup
z∈Rd

|( f ∗ ψ∗
−(s+t))(x + z)|

(1 + ρA(A−s z))β

�A,β ess sup
z∈Rd

|( f ∗ ψ∗
−(s+t))(x + z)|

(1 + ρA(A−(s+t)z))β

= (ψ∗)∗∗
−(s+t),β f (x).

This, combined with (5.11) and | det A|−αt �A,α 1 for t ∈ [−1, 1), yields that

| det A|−s/2 ess sup
z∈Rd

|M L
Q(Wψ f )(x + z, s)|
(1 + ρA(A−s z))β

�A,β | det A|−s/2 ess sup
z∈Rd

t∈[−1,1)

|Wψ f (x + z, s + t)|
(1 + ρA(A−s z))β

�A,β ess sup
t∈[−1,1)

(ψ∗)∗∗
−(s+t),β f (x)

�A,α ess sup
t∈[−1,1)

| det A|−αt (ψ∗)∗∗
−(s+t),β f (x).
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Now let q < ∞. Then arguments similar to proving (3.15) yield N ∈ N such that

(

| det A|−α(s+t)(ψ∗)∗∗
−(s+t),β f (x)

)q

�
N
∑

�=−N

(

| det A|−α(s+�)(ψ∗)∗∗
−(s+�),β f (x)

)q

.

The right-hand side being independent of t ∈ [−1, 1), it follows that

(

| det A|−(α+1/2)s ess sup
z∈Rd

|M L
Q(Wψ f )(x + z, s)|
(1 + ρA(A−s z))β

)q

� ess sup
t∈[−1,1)

(

| det A|−α(s+t)(ψ∗)∗∗
−(s+t),β f (x)

)q

�
N
∑

�=−N

(

| det A|−α(s+�)(ψ∗)∗∗
−(s+�),β f (x)

)q

. (5.12)

Combining this estimate with Theorem 3.5 gives

‖ f ‖
Co(Ṗ−α′,β

p,q )

=
∥

∥

∥

∥

(∫

R

(

| det A|−(α+1/2−1/q)s ess sup
z∈Rd

|M L
Q(Wψ f )(· + z, s)|

(1 + ρA(A−s z))β

)q ds

| det A|s
)1/q∥

∥

∥

∥

L p

�
∥

∥

∥

∥

( N
∑

�=−N

∫

R

(

| det A|−α(s+�)(ψ∗)∗∗
−(s+�),β f

)q

ds

)1/q∥
∥

∥

∥

L p

�
∥

∥

∥

∥

(∫

R

(| det A|αs(ψ∗)∗∗
s,β f

)q
ds

)1/q∥
∥

∥

∥

L p

� ‖ f ‖Ḟα
p,q

.

The case q = ∞ follows from (5.12) by similar arguments. ��

Remark 5.12 For p ∈ [1,∞) and q ∈ [1,∞], the coorbit spaces Co(Ṗα,β
p,q ) of Defi-

nition 5.9 are genuine Banach spaces, which are well-known to admit the equivalent
norm

‖ f ‖
Co(Ṗα,β

p,q )
:= ‖M L

Q(Wψ f )‖Ṗα,β
p,q

� ‖Wψ f ‖Ṗα,β
p,q

,

see, e.g., [26, Theorem 8.3] and [64, Proposition 4.10]. The proof of Proposition 5.11
shows that the same holds for the Peetre-type spaces Ṗα,β

p,q in the quasi-Banach range
min{p, q} < 1.
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6 Molecular characterizations

This section provides newmolecular characterizations of anisotropic Triebel–Lizorkin
spaces. The results will be obtained from [53, 64] by exploiting the coorbit identifi-
cation of Triebel–Lizorkin spaces provided by Proposition 5.11.

6.1 Peetre-type sequence space

Let 
 ⊂ G A be arbitrary and let U ⊂ G A be a relatively compact unit neighborhood.
The set 
 is relatively separated if

sup
g∈G

#
(


 ∩ gU ) = sup
g∈G

∑

γ∈


1γU−1(g) < ∞

and is called U -dense if G = ⋃

γ∈
 γU . The set 
 is U -separated in G if μG A (γU ∩
γ ′U ) = 0 for all γ, γ ′ ∈ 
 with γ �= γ ′ and is separated if it is U -separated for
some unit neighborhood U . Any separated set is relatively separated. Furthermore,
the notion of being relatively separated is independent of the choice of the relatively
compact unit neighborhood U .

Definition 6.1 Let 
 ⊂ G A be relatively separated and let U ⊂ G A be a relatively
compact unit neighborhood. For p ∈ (0,∞), q ∈ (0,∞], α ∈ R, and β > 0, the
sequence space ṗα,β

p,q(
, U ) associated to the Peetre-type space Ṗα,β
p,q (G A) is defined

as the set of all c = (cγ )γ∈
 ∈ C

 such that

‖c‖ṗα,β
p,q

:=
∥

∥

∥

∥

∑

γ∈


|cγ |1γU

∥

∥

∥

∥

Ṗα,β
p,q

< ∞

and equipped with the (quasi)-norm ‖ · ‖ṗα,β
p,q
.

The sequence space ṗα,β
p,q(
, U ) is a well-defined quasi-Banach space, independent

of the choice of the defining neighborhoodU ; see, e.g., [25, 51] or [65, Lemma 2.3.16].

Remark 6.2 The Triebel–Lizorkin space ḟαp,q defined in (2.6) can be identified with a

sequence space ṗα,β
p,q via Theorem 3.8. To be more explicit, if 
 = {(A− j k,− j) : j ∈

Z, k ∈ Z
d}, then the map

ṗα,β
p,q

(


, [−1, 1)d × [−1, 1)
) → ḟ

−(α+ 1
2− 1

q )

p,q , (cγ )γ∈
 → (

c(A− j k,− j)

)

( j,k)∈Z×Zd

is an isomorphism of (quasi)-Banach spaces, for any p ∈ (0,∞), q ∈ (0,∞], α ∈ R

and β > max{1/p, 1/q}.
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6.2 Molecular systems and the extended pairing

Following [40, 53, 64], the notion of molecular systems used in this paper is defined
through properties of the associated wavelet transform.

Definition 6.3 Let 
 ⊂ G A be relatively separated and let ψ ∈ L2(Rd) be an admis-
sible vector such that Wψψ ∈ W(Lr

w), where w = w
α,β
p,q : G A → [1,∞) is the

standard control weight of Lemma 5.7.
A family (φγ )γ∈
 of vectors φγ ∈ L2(Rd) is an Lr

w-molecular system if there
exists an envelope  ∈ W(Lr

w) such that

|Wψφγ (x)| ≤ Lγ (x), (6.1)

for x ∈ G A and γ ∈ 
.

Remark 6.4 The condition (6.1) is independent of the choice of the window ψ in the
following sense: Ifψ, ϕ ∈ L2(Rd) are both admissible satisfying Wψϕ, Wψψ, Wϕϕ ∈
W(Lr

w), then (φγ )γ∈
 ⊂ L2(Rd) is a molecular system with respect to the window
ψ if and only if the same holds with respect to the window ϕ; see [64, Lemma 6.3].

In order to treat molecular systems consisting of general vectors in L2(Rd) in a
meaningful manner, we define the following extended dual pairing.

Definition 6.5 Let ψ ∈ S0(R
d) be admissible. For f ∈ S′

0(R
d) and φ ∈ L2(Rd),

define the extended pairing as

〈 f , φ〉ψ :=
∫

G A

〈 f , π(x, s)ψ〉 〈φ, π(x, s)ψ〉L2 dμG A (x, s),

provided that the integral converges.

Remark 6.6 Let ψ ∈ S0(R
d) be admissible.

(a) If f ∈ S′
0(R

d) and φ ∈ S0(R
d), then the extended pairing 〈 f , φ〉ψ coincides with

the standard conjugate linear pairing 〈 f , φ〉 := f (φ) by Lemma 4.7.
(b) If both f , φ ∈ L2(Rd), then 〈 f , φ〉ψ coincides with the L2-inner product 〈 f , φ〉

by Eq. (4.2).

For showing that the extended pairing defined in Definition 6.5 is well-defined, in
the sense that it does not depend on the choice of admissible vectors, the following
approximation property will be used.

Lemma 6.7 Let f ∈ S′
0(R

d) and let ψ ∈ S0(R
d) be admissible with Wψ f ∈

L∞
1/w(G A), where w : G → [1,∞) denotes the standard control weight provided

by Lemma 5.7.
There exists a sequence ( fn)n∈N of functions fn ∈ L2(Rd) with the following

properties:

(i) As n → ∞, fn → f with weak-∗-convergence in S′
0(R

d);
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(ii) For each ϕ ∈ S0(R
d), there is a constant C = C(ϕ, ψ, f ) > 0 such that

|Wϕ fn(g)| ≤ Cw(g), g ∈ G A.

Proof For n ∈ N, define �n := [−n, n]d × [−n, n] and Fn := Wψ f · 1�n .
Note that since w is continuous and �n ⊂ G A is compact, for each n ∈ N

there is Cn > 0 satisfying w(x) ≤ Cn for all x ∈ �n . This implies |Fn(·)| ≤
Cn‖Wψ f ‖L∞

1/w
1�n (·) ∈ L1(G A). Since g → π(g)ψ is continuous from G A

into L2(Rd) and ‖Fn(·) π(·)ψ‖L2 ≤ ‖ψ‖L2 |Fn(·)| ∈ L1(G A), this shows that
fn := ∫

G A
Fn(g) π(g)ψ dμG A (g) ∈ L2(Rd) is well-defined as a Bochner integral.

Let ϕ ∈ S0(R
d) be arbitrary. For h ∈ G A, a direct calculation gives

|Wϕ fn(h)| ≤
∫

G A

|Fn(g)||〈π(g)ψ, π(h)ϕ〉| dμG A(g)

≤
∫

G A

|Wψ f (g)||Wψϕ(h−1g)| dμG A(g)

≤ ‖Wψ f ‖L∞
1/w

∫

G A

w(h) w(h−1g) |Wψϕ(h−1g)| dμG A(g)

≤ w(h) ‖Wψ f ‖L∞
1/w

‖Wψϕ‖L1
w
,

where ‖Wψϕ‖L1
w

< ∞ by Lemma 5.8. This proves (ii).
To prove (i), applying the dominated convergence theorem and Corollary 4.8 gives

lim
n→∞ Wψ fn(h) = lim

n→∞

∫

G A

Fn(g)〈π(g)ψ, π(h)ψ〉 dμG A(g)

= (Wψ f ∗ Wψψ)(h) = Wψ f (h).

As shown above, Wψ fn → Wψ f pointwise and |Wψ fn(g)| ≤ Cw(g). On the other
hand, given ϕ ∈ S0(R

d), Lemma 5.8 shows that Wψϕ ∈ L1
w(G A). Therefore, a

combination of Corollary 4.8 with the dominated convergence theorem shows that

〈 f , ϕ〉 = lim
n→∞

∫

G A

Wψ fn(g)Wψϕ(g) dμG A (g) = lim
n→∞〈 fn, ϕ〉,

proving that fn → f with respect to the weak-∗-topology on S′
0(R

d). ��
Lemma 6.8 Let w : G A → [1,∞) be a standard control weight as in Lemma 5.7. Let
ψ ∈ S0(R

d) be admissible.
If f ∈ S′

0(R
d) satisfies Wψ f ∈ L∞

1/w(G A) and φ ∈ L2(Rd) satisfies Wψφ ∈
L1

w(G A), then 〈 f , φ〉ψ is well-defined and independent of the choice of ψ ∈ S0(R
d).

Proof We first show for Y = L∞
1/w(G A) or Y = L1

w(G A) that if f ∈ S′
0(R

d) sat-

isfies Wψ f ∈ Y , then Wϕ f ∈ Y for every ϕ ∈ S0(R
d). For this, first note that

Wϕ f = Wψ f ∗ Wϕψ ; seeCorollary 4.8. IfY = L1
w(G A), the submultiplicativity ofw
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impliesY ∗L1
w(G A) ⊂ L1

w(G A), while Lemma5.8 shows thatWϕψ ∈ L1
w(G A). Thus,

Wϕ f ∈ L1
w(G A). In case of Y = L∞

1/w(G A), note that |(Wϕψ)(h)| = |(Wψϕ)(h−1)|,
and

1

w(g)

∣

∣Wϕ f (g)
∣

∣ ≤
∫

G A

1

w(h)

∣

∣Wψ f (h)
∣

∣

w(h)

w(g)

∣

∣Wψϕ(g−1h)
∣

∣ dμG A (h)

≤ ‖Wψ f ‖L∞
1/w

‖Wψϕ‖L1
w

for all g ∈ G A; here, we used that w(h)
w(g)

≤ w(g)w(g−1h)
w(g)

= w(g−1h). Thus, also
Wϕ f ∈ L∞

1/w(G A).

Since Wψ f ∈ L∞
1/w(G A) and Wψφ ∈ L1

w(G A) by assumption, it is clear

that 〈 f , φ〉ψ ∈ C is well-defined. Next, let ϕ ∈ S0(R
d) be admissible, and let

( fn)n∈N ⊂ L2(Rd) as provided by Lemma 6.7. Note that Wφ fn(g) = 〈 fn, π(g)φ〉 →
〈 f , π(g)φ〉 = Wφ f (g) for all φ ∈ S0(R

d) and g ∈ G A. Therefore, an application of
the dominated convergence theorem implies

〈 f , φ〉ψ = 〈Wψ f , Wψφ〉 = lim
n→∞〈Wψ fn, Wψφ〉L2

= lim
n→∞〈Wϕ fn, Wϕφ〉L2 = 〈 f , φ〉ϕ,

where we used the isometry of Wϕ, Wψ : L2(Rd) → L2(G A). ��

6.3 Molecular decompositions

This section provides the proofs of Theorems 1.2 and 1.3.
We first show the following auxiliary claim which is implicit in the statements of

Theorems 1.2 and 1.3.

Lemma 6.9 Let p ∈ (0,∞), q ∈ (0,∞], α ∈ R, and β > 0. Let w = w
α,β
p,q : G A →

[1,∞) be a standard control weight as defined in Lemma 5.7 and let r = min{1, p, q}.
If ψ ∈ L2(Rd) and if ϕ ∈ S0(R

d) is admissible with Wϕψ ∈ W(Lr
w), then Wφψ ∈

W(Lr
w) for all φ ∈ S0(R

d).

Proof ByEq.4.3, the identityWφψ = Wϕψ∗Wφϕ holds. Note thatWφϕ ∈ W(Lr
w) by

Lemma 5.8 and Wϕψ ∈ W(Lr
w) by assumption. The weight w := w

α,β
p,q is continuous

and submultiplicative with w ≥ 1 and satisfies w(g) = w(g−1)�1/r (g−1), meaning
that it is an r -weight in the terminology of [64, Definition 3.1]. Therefore, using the
convolution relation W(Lr

w) ∗ W(Lr
w) ↪→ W(Lr

w) from [64, Corollary 3.9], we see
that Wφψ ∈ W(Lr

w), as claimed. ��
Proof of Theorem 1.2 Let ϕ ∈ S(Rd) be an admissible vector satisfying ϕ̂ ∈
C∞

c (Rd\{0}) and the support condition (2.4); see Theorem 4.2. Then an application of

Proposition 5.11 yields that Ḟα
p,q = Coϕ

(

Ṗ−α′,β
p,q

)

. Furthermore, since ψ, ϕ ∈ L2(Rd)

are admissible and satisfy Wψψ, Wϕϕ, Wϕψ ∈ W(Lr
w) (see Lemma 5.8 and 6.9),
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it follows by Lemma D.1 that Ḟα
p,q can be identified with the abstract coorbit space

CoHψ
(

Ṗ−α′,β
p,q

)

used in [64].
An application of [64, Theorem 6.14] yields a compact unit neighborhoodU ⊂ G A

such that for any 
 ⊂ G A satisfying condition (1.8), there exist molecular systems

(φγ )γ∈
 ⊂ L2(Rd) and ( fγ )γ∈
 ⊂ L2(Rd), such that every f ∈ CoHψ (Ṗ−α′,β
p,q ) can

be represented as

f =
∑

γ∈


〈 f , π(γ )ψ〉Rw,H1
w
φγ =

∑

γ∈


〈 f , φγ 〉Rw,H1
w
π(γ )ψ =

∑

γ∈


〈 f , fγ 〉Rw,H1
w

fγ ,

(6.2)

with unconditional convergence of the series in the weak-∗-topology on the space
Rw = Rw(ψ) introduced in Sect. 1. By Lemma D.1, any f ∈ Ḟα

p,q can be extended

uniquely to an element ˜f ∈ CoHψ (Ṗ−α′,β
p,q ). Since (φγ )γ∈
 and ( fγ )γ∈
 are molecules

with respect toψ , they also satisfy themolecule condition with respect to ϕ by Remark
6.4. Therefore, Eq.D.2 shows that the dual pairings occurring in Eq.6.2 coincide with
the extended dual pairing from Definition 6.5. Lastly, applying Eq.6.2 to ˜f , using
Eq.D.2, and restricting the domain of both sides of Eq. 6.2 to S0(R

d) ⊂ H1
w(ϕ) =

H1
w(ψ), we see that Eq.6.2 holds for all f ∈ Ḟα

p,q , with unconditional convergence
of the series in the weak-∗-topology on S′(Rd)/P(Rd) = S′

0(R
d) ↪→ Rw(ψ). ��

Proof of Theorem 1.3 As in the proof of Theorem 1.2, the Triebel–Lizorkin space

Ḟα
p,q can be identified with CoHψ (Ṗ−α′,β

p,q ) of Lemma D.1. An application of [64,
Theorem 6.15] yields a compact unit neighborhood U ⊂ G A such that for any

 ⊂ G A satisfying condition (1.9), there exists a molecular systems (φγ )γ∈


in span{π(γ )ψ : γ ∈ 
} such that, given (cγ )γ∈
 ∈ ṗ−α′,β
p,q , the vector ˜f :=

∑

γ∈
 cγ φγ ∈ CoHψ (Ṗ−α′,β
p,q ) satisfies

〈˜f , π(γ )ψ〉Rw,H1
w

= cγ , γ ∈ 
. (6.3)

Arguing as in the proof of Theorem 1.2, another application of Lemma D.1 yields that
the restriction f = ˜f |S0 ∈ Ḟα

p,q satisfies 〈 f , π(γ )ψ〉ϕ = 〈˜f , π(γ )ψ〉Rw,H1
w
for all

γ ∈ 
. ��

6.4 Explicit criteria

This section provides explicit criteria for coorbit molecules. The proof relies on the
following lemma concerning the standard envelope from Definition 5.5.

Lemma 6.10 Let r ∈ (0, 1]. If σ ∈ (0,∞)2 satisfies σ1 < 1, σ2 > | det A|1/r and if
L > 1/r , then �σ,L ∈ Lr (G A).

Proof Using Lemma 5.6, a change-of-variable yields

∫

Rd
|ηL(x, s)|r dx �

∫

Rd

(

1+ρA(A−s+
x)
)−Lr

dx =| det A|s+
∫

Rd

(

1+ρA(y)
)−Lr

dy
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� | det A|s+
,

where the last step follows from Lemma 2.3 and the assumption Lr > 1. Therefore,

‖�σ,L‖Lr (G A) =
∫

R

| det A|−s(θσ (s))r
∫

Rd
(ηL(x, s))r dx ds

�
∫

R

| det A|s+−s(θσ (s))r ds

=
∫ ∞

0
σ rs
1 ds +

∫ 0

−∞
| det A|−sσ rs

2 ds

=
∫ ∞

0
esr ln σ1ds +

∫ 0

−∞
es(r ln σ2−ln | det A|) ds < ∞

since ln σ1 < 0 and r ln σ2 > ln | det A| by assumption. ��
Theorem 6.11 For p ∈ (0,∞), q ∈ (0,∞], let r = min{p, q, 1}. Let α ∈ R, β > 0.
Choose constants L > 1, N ∈ N0 and δ ∈ (0, 1) such that L · (1− δ) > 1/r + β and

λδN− > max

{

| det A| 1r − 1
2+|α+ 1

p − 1
q |

, | det A|− 1
2+ 1

r +α+β− 1
q , | det A|− 1

2−(α− 1
q )

}

,

(6.4)

where λ− ∈ R satisfies 1 < λ− < minλ∈σ(A) |λ| as in Sect.2.1.
Suppose f ∈ L2(Rd) ∩ C N (Rd) satisfies

| f (x)| � (1 + ρA(x))−L ,

∫

Rd
‖x‖N | f (x)| dx < ∞, and max|α|≤N sup

x∈Rd
|∂α f (x)| < ∞,

(6.5)

as well as
∫

Rd
xα f (x) dx = 0 for all α ∈ N

d
0 with |α| < N . (6.6)

Then W f f ∈ W(Lr
w) for the control weight w = w

α,β
p,q provided by Lemma 5.7.

Proof We need to show that MQ(W f f ) ∈ Lr
w(G A). The proof is split into two steps.

Step 1. In this step, we show that |W f f (x, s)| � �τ,L(1−δ)(x, s), where τ = (τ1, τ2)

with τ1 := | det A|−1/2λ−Nδ− and τ2 := | det A|1/2λNδ− . Assumptions (6.5) and (6.6)
together with Lemma 4.5 imply that

|W f f (x, s)| � | det A|−|s|/2(1 + ρA(A−s+
x)
)−L

, x ∈ R
d , s ∈ R, (6.7)

and |W f f (x, s)| � | det A|−s/2‖A−s‖N∞ � | det A|−s/2λ−s N− for x ∈ R
d , s ≥ 0,

by Lemma 2.4. Applying this latter estimate to W f f (x, s) = W f f (−A−s x,−s) for
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s < 0 yields immediately that |W f f (x, s)| = |W f f (−A−s x,−s)| � | det A|s/2λs N−
and therefore

|W f f (x, s)| � | det A|−|s|/2λ−|s|N
− , x ∈ R

d , s ∈ R. (6.8)

Combining (6.7) and (6.8) gives

|W f f (x, s)| = |W f f (x, s)|δ|W f f (x, s)|1−δ

� | det A|−|s|/2λ−|s|Nδ
−

(

1 + ρA(A−s+
x)
)−L(1−δ)

,

as desired.

Step 2.Step 1 andLemmaB.2 yieldwMQ(W f f ) � wMQ(�τ,L(1−δ)) � w�τ,L(1−δ).

Recall from Lemma 5.7 that the standard control weight satisfies w � �σ,0 + �κ,−β ,
where σ, κ ∈ (0,∞)2 are as in the statement of Lemma 5.7. Denote by τ � σ :=
(τ1σ1, τ2σ2) component-wise multiplication. Then

wMQ(W f f ) � w�τ,L(1−δ) � �τ�σ,L(1−δ) + �τ�κ,L(1−δ)−β. (6.9)

It remains to verify the integrability conditions for standard envelopes of
Lemma 6.10 for the right-hand side of (6.9). The assumption L · (1 − δ) > 1/r + β

guarantees that

min{L(1 − δ), L(1 − δ) − β} > 1/r ,

while the assumption (6.4) implies that both of the conditionsmax{τ1σ1, τ1κ1} < 1 and
min{τ2σ2, τ2κ2} > | det A|1/r are satisfied. An application of Lemma 6.10 therefore
yields MQ(W f f ) ∈ Lr

w(G A). ��
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Appendix A. The Peetre-typemaximal function

Lemma A.1 Let A ∈ GL(d, R) be expansive and β > 0. Let either s ∈ Z or let s ∈ R

and assume that A is exponential. Let f : R
d → [0,∞) be continuous. Then

sup
z∈Rd

f (z)

(1 + ρA(As z))β
= ess sup

z∈Rd

f (z)

(1 + ρA(As z))β
.

Proof First, we see from the definition of ρA (see Eq. (2.1)) for arbitrary λ ∈ R that

{x ∈ R
d : ρA(x) < λ} =

{

∅, if λ ≤ 0,

Ak+1�A, if | det A|k < λ ≤ | det A|k+1 for k ∈ Z.

(A.1)

Since �A ⊂ R
d is open, this shows that {x ∈ R

d : ρA(x) < λ} is always open.
We now show for arbitrary θ ∈ R that W := {

z ∈ R
d : f (z)/(1+ρA(As z))β > θ

}

is open; this then easily implies the claim of the lemma, since every non-empty open
set has positive Lebesgue measure. First, if θ < 0, then W = R

d is open. Next, if
θ = 0, then W = {z ∈ R

d : f (z) �= 0} is open. Finally, let θ > 0, z0 ∈ W , a := f (z0),
and b := (1+ ρA(As z0))β . Then a/b > θ > 0 and hence a > 0. We can thus choose
0 < a′ < a with a′/b > θ , meaning that ρA(As z0) < (a′/θ)1/β − 1. Note that
U := {z ∈ R

d : f (z) > a′} is an open neighborhood of z0. Similar, the considerations
from the beginning of the proof show that V := {z ∈ R

d : ρA(As z) < (a′/θ)1/β − 1}
is an open neighborhood of z0. Finally, note that U ∩ V ⊂ W . Since z0 ∈ W was
arbitrary, this shows that W ⊂ R

d is indeed open. ��

Appendix B. Peetre-typemaximal function on R
d × R

Let A ∈ GL(d, R) be an expansive exponential matrix and β > 0. For any measurable
function F : R

d × R → C, define

(F∗∗)β(x, s) := ess sup
z∈Rd

|F(x + z, s)|
(1 + ρA(A−s z))β

for (x, s) ∈ R
d × R. We use the following basic properties repeatedly.

Lemma B.1 If F : R
d × R → C is measurable, then (F∗∗)β : R

d × R → [0,∞] is
measurable. Furthermore, there is a constant C = C(β, A) ≥ 1 such that for each
s ∈ R, there is a null-set Ns ⊂ R

d such that for all x, w ∈ R
d with x + w /∈ Ns, we

have

|F(x + w, s)|
(1 + ρA(A−sw))β

≤ C(F∗∗)β(x, s).

In particular, if (F∗∗)β = 0 almost everywhere, then F = 0 almost everywhere.
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Proof Since the map H : (x, z, s) → |F(x+z,s)|
(1+ρA(A−s z))β

is measurable, it is well-known

that (F∗∗)β(x, s) = ess supz∈Rd H(x, z, s) is measurable as well; see, e.g., [43,
Lemma B.4].

Let us fix s ∈ R and write Fs(x) := F(x, s) and Qs := As�A, with �A ⊂ R
d

as in Lemma 2.1. For the open unit neighborhood Qs ⊂ R
d , we consider the local

maximal function M L
Qs

f (x) = ess supq∈Qs
| f (x + q)| of a measurable f : R

d → C.

Note that if x ∈ �A\{0}, then x ∈ A j�A for someminimal j ∈ Z, which necessar-
ily satisfies j ≤ 0. Hence, x ∈ A( j−1)+1�A\A j−1�, so that ρA(x) = | det A| j−1 ≤
| det A|−1 ≤ 1, by definition of ρA. Furthermore, Lemma 2.1 yields C ′ ≥ 1 with
ρA(x + y) ≤ C ′[ρA(x)+ρA(y)] for all x, y ∈ R

d . For q ∈ Qs , we then have A−sq ∈
�A and hence ρA(A−sq) ≤ 1. Thus, 1+ρA(A−s(z + q)) ≤ (1+ C ′)(1+ρA(A−s z))
for q ∈ Qs and z ∈ R

d .
Now, by definition of (F∗∗)β , given x ∈ R

d and s ∈ R, there is a null-set Ns,x ⊂ R
d

with

|F(x + z, s)|
(1 + ρA(A−s z))β

≤ (F∗∗)β(x, s), z ∈ R
d \ Ns,x .

Fix x, z ∈ R
d and s ∈ R. Then, for q ∈ Qs\(Ns,x − z), we have z + q ∈ R

d\Ns,x ,
and hence

(F∗∗)β(x, s) ≥ |Fs(x + z + q)|
(1 + ρA(A−s(z + q)))β

≥ (1 + C ′)−β |Fs(x + z + q)|
(1 + ρA(A−s z))β

.

Therefore, M L
Qs

Fs(x + z) ≤ C(1 + ρA(A−s z))β(F∗∗)β(x, s) for all x, z ∈ R
d and

s ∈ R, with C := (1 + C ′)β .
Lastly, it follows by [65, Lemma 2.3.3] that there exists a null-set Ns = Ns,F ⊂ R

d

with |Fs(x)| ≤ M L
Qs

Fs(x) for all x ∈ R
d\Ns . For x, w ∈ R

d with x + w /∈ Ns , we
then see that

|F(x + w, s)| = |Fs(x + w)| ≤ M L
Qs

Fs(x + w)

≤ C(1 + ρA(A−sw))β (F∗∗)β(x, s),

which completes the proof. ��

The following lemmaallows to estimatemaximal functions of the standard envelope
defined in Definition 5.5.

Lemma B.2 For arbitrary σ ∈ (0,∞)2 and L ≥ 0, let �σ,L : G A → (0,∞) denote
the standard envelope defined in Definition 5.5. Then for any relatively compact unit-
neighborhood Q ⊂ G A, there exists a constant C = C(Q, σ, L, A) > 0 such that
MQ�σ,L ≤ C · �σ,L .
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Proof Since Q ⊂ G A is relatively compact, we have Q ⊂ [−N , N ]d × [−N , N ] for
some N ≥ 1. Recall that �σ,L(x, s) = θσ (s) · ηL(x, s) with

ηL(x, s) � (

1 + ρA(A−s+
x)
)−L and θσ (s) =

{

σ s
1 , if s ≥ 0,

σ s
2 , if s < 0,

where the first estimate is due to Lemma 5.6 and s+ := max{0, s}.
We split the proof into several steps and treat the two factors separately.

Step 1. We show that, for all s ∈ R and t ∈ [−N , N ], we have θσ (s + t) ≤ c4θσ (s),
where c := max

{

σ N
1 , σ−N

1 , σ N
2 , σ−N

2

} ∈ [1,∞). Note that if s > N , then s + t > 0,
and hence θσ (s + t) = σ s+t

1 = σ t
1θσ (s) ≤ cθσ (s). Likewise, if s < −N , then

s + t < 0 and thus θσ (s + t) = σ s+t
2 = σ t

2θσ (s) ≤ cθσ (s). Lastly, if s ∈ [−N , N ],
then s, s + t ∈ [−2N , 2N ]. But for x ∈ [−2N , 2N ], it follows that c−2 ≤ θσ (x) ≤ c2,
and hence θσ (s + t) ≤ c4θσ (s).

Step 2. We show that M R
QηL � ηL , where M R

Q F(g) := ess supu∈Q |F(ug)| for
any measurable F : G A → C. Let (x, s) ∈ G A and (y, t) ∈ Q be arbitrary. Then
Corollary 2.5 implies

ρA(A−s+
x) � | det A|−s+−tρA(At x)

� | det A|−s+−t
(

ρA(At x + y) + ρA(−y)
)

� | det A|−s++(s+t)+−t
(

ρA
(

A−(s+t)+(At x + y)
) + 1

)

,

where we used in the last step that ρA(y) � 1 for y ∈ [−N , N ]d ; see Lemma 2.2.
Note that (s + t)+ ≤ s+ + t+ ≤ s+ + N for t ∈ [−N , N ], and hence −s+ + (s +

t)+ − t ≤ 2N for all s ∈ R and t ∈ [−N , N ]. Therefore, | det A|−s++(s+t)+−t � 1
and consequently

ηL
(

(y, t)(x, s)
) = ηL(At x + y, s + t) � (

1 + ρA
(

A−(s+t)+(At x + y)
))−L

�
(

1 + ρA(A−s+
x)
)−L � ηL(x, s)

for all (x, s) ∈ G A and (y, t) ∈ Q; here, we used that L ≥ 0.

Step 3. Similar to Step 2, we show that M L
QηL � ηL , for M L

Q F(g) =
ess supv∈Q |F(gv)|. Let (x, s) ∈ G A and (y, t) ∈ Q be arbitrary. Then Corollary 2.5
again implies

ρA(A−s+
x) � | det A|−s+

ρA(x)

� | det A|−s+(
ρA(x + As y) + ρA(−As y)

)

� | det A|−s++(s+t)+ρA
(

A−(s+t)+(x + As y)
) + | det A|−s++sρA(y)

� ρA
(

A−(s+t)+(x + As y)
) + 1,
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since we have | det A|−s++(s+t)+ , | det A|−s++s � 1 for all s ∈ R and t ∈ [−N , N ],
and since ρA(y) � 1 for y ∈ [−N , N ]d by Lemma 2.2. Therefore,

ηL
(

(x, s)(y, t)
) = ηL(x + As y, s + t) � (

1 + ρA
(

A−(s+t)+(x + As y)
))−L

�
(

1 + ρA(A−s+
x)
)−L � ηL(x, s)

for all (x, s) ∈ G A and (y, t) ∈ Q.
In combination, the obtained estimates easily imply the claim. ��

Appendix C. Proof of Lemma 5.2

Proof Step 1. In this step, we prove the bound

v(y, t) � max{1, | det A|−t } (1 + min{ρA(y), ρA(A−t y)}), (C.1)

which will also imply that v is well-defined. To this end, first note by the quasi-triangle
inequality for ρA that there exists H ≥ 1 such that

1 + ρA(x) ≤1 + H
(

ρA(x − y) + ρA(y)
)

≤ H(1 + ρA(x − y) + ρA(y))

≤ H(1 + ρA(x − y))(1 + ρA(y)),

and hence (1 + ρA(x − y))−1 ≤ H · 1+ρA(y)
1+ρA(x)

. Next, we note as a consequence of

Corollary 2.5 that 1+ρA(A−(u−t)z) � 1+| det A|tρA(A−uz) ≥ min{1, | det A|t }(1+
ρA(A−uz)), so that

(

1 + ρA(A−(u−t)z)
)−1 �

(

min
{

1, | det A|t})−1(1 + ρA(A−uz)
)−1

= max
{

1, | det A|−t}(1 + ρA(A−uz)
)−1

.

Combining this with the previous estimate, we see

(

1 + ρA(A−u At z − y)
)−1 � 1 + ρA(y)

1 + ρA(A−u At z)
� max{1, | det A|−t } 1 + ρA(y)

1 + ρA(A−uz)
,

which shows that v(y, t) � max{1, | det A|−t }(1 + ρA(y)).
On the other hand, using Corollary 2.5, we see

(

1+ρA(A−(u−t)z − y)
)−1 = (

1+ρA(At [A−uz − A−t y]))−1

� (

1+| det A|tρA(A−uz − A−t y)
)−1

≤ max{1, | det A|−t }
1 + ρA(A−uz − A−t y)
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� max
{

1, | det A|−t}1 + ρA(A−t y)

1 + ρA(A−uz)
,

which implies v(y, t) � max{1, | det A|−t }(1 + ρA(A−t y)). This shows Eq.C.1.

Step 2. As a consequence of (A.1), we see for arbitrary θ > 0 and λ ∈ R that

{

x ∈ R
d : θ

1+ρA(x)
> λ

}

=
{

x ∈ R
d : ρA(x) < θ

λ
− 1

}

is open, meaning that θ
(1+ρA)β

is lower semi-continuous. Based on this, it is not hard to
see that v is lower semi-continuous as a supremum of continuous functions; see [27,
Proposition 7.11]. This means that {(y, t) ∈ G A : v(y, t) > λ} is open for all λ ∈ R,
so that v is measurable.

Step 3. Define γ (x, s) := 1 + ρA(A−s x) for brevity. Note that

γ
(

(z, u)(y, t)−1) = γ
(

z − Au A−t y, u − t
)

= 1 + ρA
(

A−(u−t)(z − Au A−t y)
)

= 1 + ρA
(

A−u At z − y
)

.

Thus, v(y, t) = sup(z,u)∈G A
γ (z, u)/γ

(

(z, u)(y, t)−1
)

and hence v(g) = supκ∈G A

γ (κ)/γ (κg−1) for g ∈ G A. This easily implies that v is submultiplicative; indeed, for
g, h ∈ G A, we see for κ̃ := κ h−1 that

v(gh) = sup
κ∈G A

γ (κ)

γ (κh−1g−1)

= sup
κ∈G A

γ (κ)

γ (κh−1)

γ (κh−1)

γ (κh−1g−1)

≤ v(h) sup
κ̃∈G A

γ (̃κ)

γ (̃κg−1)
≤ v(h)v(g),

as claimed.
Step 4. Starting from the definition (5.2) of v, the substitutions a = A−uz and b =
At a − y show by Corollary 2.5 that

v(y, t) = sup
a∈Rd

1 + ρA(a)

1 + ρA(At a − y)
= sup

b∈Rd

1 + ρA(A−t (b + y))

1 + ρA(b)

� sup
b∈Rd

1 + | det A|−tρA(b + y)

1 + ρA(b)
.

By using the second-to-last expression and setting b = 0, we see v(y, t) ≥ 1 +
ρA(A−t y).
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Next, note that ρA(b) ≤ H
(

ρA(b + y) + ρA(−y)
)

and hence ρA(b + y) ≥ H−1

ρA(b)ρA(y), by the symmetry of ρA. Furthermore, Lemma 2.2 shows ρA(b) → ∞
as ‖b‖ → ∞. Therefore, as ‖b‖ → ∞,

v(y, t)� sup
b∈Rd

1+| det A|−tρA(b+y)

1+ρA(b)

≥ 1+| det A|−t ·(H−1ρA(b)−ρA(y))

1+ρA(b)

→ H−1| det A|−t ,

so that we also get v(y, t) � | det A|−t . Overall, we see v(y, t) � 1 + | det A|−t +
ρA(A−t y).

There are now two cases: If t ≥ 0, then Corollary 2.5 shows that

max
{

1, | det A|−t}(1 + min{ρA(y), ρA(A−t y)})

= 1 + min{ρA(y), ρA(A−t y)}
� 1 + min{ρA(y), | det A|−tρA(y)}
� 1 + ρA(A−t y)

� 1 + | det A|−t + ρA(A−t y)

� v(y, t).

Otherwise, in case of t < 0, we see

max
{

1, | det A|−t}(1+min{ρA(y), ρA(A−t y)})

� | det A|−t(1+min{ρA(y), | det A|−tρA(y)})

= | det A|−t(1 + ρA(y)
)

� | det A|−t + ρA(A−t y)

� 1 + | det A|−t + ρA(A−t y)

� v(y, t).

In combination with Eq.C.1, this proves Eq.5.3. ��

Appendix D. Independence of coorbit reservoir

Let ψ ∈ L2(Rd) be an admissible vector satisfying Wψψ ∈ W(Lr
w) for the standard

control weight w = w
α,β
p,q : G A → [1,∞) provided by Lemma 5.7. Define the space

H1
w(ψ) = {

f ∈ L2(Rd) : Wψ f ∈ L1
w(G A)

}
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and equip it with the norm ‖ f ‖H1
w(ψ) := ‖Wψ f ‖L1

w
. Let Rw(ψ) := (H1

w(ψ))∗ be

the anti-dual space of H1
w(ψ) and write Vφ f := 〈 f , π(·)φ〉Rw,H1

w
for f ∈ Rw(ψ)

and φ ∈ H1
w(ψ).

The following lemma is a special case of [64, Corollary 4.9].

Lemma D.1 Let α ∈ R, β > 0, and p ∈ (0,∞), q ∈ (0,∞], with r := min{1, p, q}.
Let w = w

α,β
p,q : G A → [1,∞) be a standard control weight for Ṗα,β

p,q as provided
by Lemma 5.7. Suppose ϕ ∈ S0(R

d) is admissible and ψ ∈ L2(Rd) is admissible
satisfying Wψψ ∈ W(Lr

w) and Wϕψ ∈ W(Lr
w). Then

CoHψ (Ṗα,β
p,q ) := {

f ∈ Rw(ψ) : M L
Q Vψ f ∈ Ṗα,β

p,q

} = Coϕ(Ṗα,β
p,q )

in the sense that the restriction f → f |S0 is a well-defined bijection. Furthermore,

given the unique extension ˜f ∈ CoHψ (Ṗα,β
p,q ) of f ∈ Coψ(Ṗα,β

p,q ), then

〈˜f , φ〉Rw,H1
w

= 〈 f , φ〉ϕ φ ∈ H1
w(ϕ),

where 〈·, ·〉ϕ denotes the extended pairing of Definition 6.5.

Proof We first verify that the Peetre-type spaces Ṗα,β
p,q satisfy the standing assumptions

of [64]. As shown in Lemma 5.3, the Peetre space Ṗα,β
p,q is a solid, translation-invariant

quasi-Banach space, and Lemma 5.4 shows that ‖ · ‖Ṗα,β
p,q

is an r -norm. Moreover,

the standard control weight w := w
α,β
p,q : G A → [1,∞) defined in Lemma 5.7 is

continuous, submultiplicative and satisfies w(g) = w(g−1)�1/r (g−1). Furthermore,
Lemma 5.7 shows that ‖Lh−1‖Ṗα,β

p,q →Ṗα,β
p,q

≤ w(h) and ‖Rh‖Ṗα,β
p,q →Ṗα,β

p,q
≤ w(h) for

all h ∈ G A. Together, this shows that w is a strong control weight for Ṗα,β
p,q in the

terminology of [64, Definition 3.1]. By [64, Corollary 3.9], this implies that the pair
(Ṗα,β

p,q , w) is Lr
w-compatible in the sense of [64, Definition 3.5].

Since ψ, ϕ ∈ L2(Rd) are admissible and satisfy Wψψ, Wϕϕ, Wϕψ ∈ W(Lr
w), it

follows from [64, Lemma 4.3 and Proposition 4.8] that H1
w(ψ) = H1

w(ϕ) and hence
alsoRw(ψ) = Rw(ϕ). Therefore,

CoHψ (Ṗα,β
p,q ) = {

f ∈ Rw(ψ) : M L
Q Vψ f ∈ Ṗα,β

p,q

} = {

f ∈ Rw(ϕ) : M L
Q Vϕ f ∈ Ṗα,β

p,q

}

.

(D.1)

Lemma 5.8 easily shows that S0(R
d) ↪→ H1

w(ϕ), and Lemma 4.7 shows that [64,
Equation (4.14)] is satisfied for S0(R

d). Therefore, invoking [64, Corollary 4.9], it
follows that the restriction map f → f |S0(Rd ) is a bijection from CoHϕ

(

Ṗα,β
p,q

)

onto

Coϕ

(

Ṗα,β
p,q

)

. Combining this with Eq.D.1 yields that

Coψ

(

Ṗα,β
p,q

) → Coϕ

(

Ṗα,β
p,q

)

, f → f |S0(Rd )

is a well-defined bijection.
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By the above, any f ∈ Coϕ(Ṗα,β
p,q ) uniquely extends to an element of ˜f ∈

Coψ

(

Ṗα,β
p,q ) ⊂ Rw(ψ), denoted by ˜f . Note that Vϕ

˜f = Wϕ f . Then, a combina-
tion of [64, Lemma 4.6(iii)] and Definition 6.5 shows for any φ ∈ L2(Rd) with
Wϕφ ∈ L1

w(Rd) (i.e., φ ∈ H1
w(ϕ)) that

〈˜f , φ〉Rw,H1
w

= 〈Wϕ f , Wϕφ〉L∞
1/w,L1

w
= 〈 f , φ〉ϕ. (D.2)

This completes the proof. ��
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