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A B S T R A C T   

In this study, we explore the relationship between inter-organizational network dynamics and innovation out-
comes. We focus on node turnover and argue that both cluster and broker dynamics can range from low (stable) to 
high (volatile), resulting in differentiated outcomes. The data comprises 318 consortium members participating in 
104 R&D consortia forged in a 23-year period in the Dutch water sector. Our analysis reveals two equifinal 
combinations (stable brokers – volatile clusters and volatile brokers – stable clusters) that both generate 
significantly higher innovation outcomes compared to networks with low, moderate, or high dynamics across the 
entire network.   

1. Introduction 

The field of Social Networks has come a long way in analyzing and 
understanding the evolution and dynamics of networks. By now, the 
field has developed a variety of analytical tools, and researchers have 
examined a great variety of longitudinal relational data sets (see, for 
example, the special issues in Social Networks (Snijders and Doreian, 
2010) and Organization Science (Ahuja et al., 2012), the work around 
the development of Exponential Random Graph Models (Wang et al., 
2013, Wasserman and Robins, 2005), and stochastic actor-oriented 
models for network dynamics in general (Snijders, 2017). Scholars 
have analyzed the coevolution of networks, individual node character-
istics (Snijders et al., 2010), and the joint evolvement of groups (Hilbert 
et al., 2016), as well as the factors driving inter-organizational network 
dynamics (Amati et al., 2021; Chen et al., 2022; Gulati et al., 2012; 
Ingold and Fischer, 2014; Prell and Feng, 2016; Prell and Lo, 2016; 
Zhang et al., 2016). Accordingly, recent literature has confirmed but 
also responded to the critique that social networks are inherently dy-
namic and that earlier analyses of networks did not take that into ac-
count (Kilduff and Brass, 2010). 

This study contributes to research on interorganizational network 
dynamics by addressing two important research gaps: First, most studies 
focus on network dynamics as such, primarily using variations of 

exponential graph models and stochastic actor-oriented models, which 
analyze network evolution based on a combination of node and tie at-
tributes, node behavior, and network structural characteristics (for an 
overview of the different models and approaches see Chen et al., 2022). 
These studies refrain from explaining the effect of network dynamics on 
network outcomes (see Matous and Todo, 2017, for a notable excep-
tion). Therefore, despite the numerous studies on network dynamics, we 
still have limited insights into the consequences of network dynamics on 
outcomes both at the level of individual organizations (Chen et al., 
2022) and especially at the network level. Connecting network dy-
namics and outcomes is therefore regarded as one of the four most 
promising research directions in the recent review on network dynamics 
and organizations by Chen et al. (2022), which we address in this study. 

Second, we demonstrate the impact of exiting and entering nodes as 
a driver of network dynamics (Gay and Dousset, 2005; Hernandez and 
Menon, 2018; Sytch and Tatarynowicz, 2014; Zhang et al., 2017). While 
both node and tie turnover represent drivers of network dynamics, most 
of the work on network evolution and dynamics has been on tie turnover 
(Zhang and Guler, 2020). In principle, network dynamics occur in the 
basic building blocks of networks: in ties and nodes. Ties can be forged 
and dissolved (tie turnover) or change their content. Nodes can either 
drop out or newly enter a network (node turnover). Node and tie level 
changes aggregate into whole network dynamics regarding network 
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structure and composition changes (Ahuja et al., 2012; Chen et al., 
2022). For example, due to node turnover, clusters of nodes can change 
regarding their composition and their connectedness to other clusters. In 
this study, we focus on specific loci of dynamics of clustered nodes and 
the most central nodes, i.e., brokers between the clusters. 

Thus far, much research has focused on a network structure that 
exhibits a combination of clusters and brokers between these clusters as 
the primary source of innovation at the individual, organizational, 
consortium, and country levels (Chen and Guan, 2010; Den Hamer and 
Frenken, 2021; Filieri et al., 2014; Fleming et al., 2007; Schilling and 
Phelps, 2007; Van Rijnsoever et al., 2015). A structural combination of 
clusters and brokers, for example, provides both information trans-
mission capacity and knowledge access to the embedded firms, resulting 
in higher patenting outcomes (Schilling and Phelps, 2007). However, if 
clustering and brokers influence innovation outcomes while also being 
sensitive to network dynamics, as recently advocated by multiple 
scholars (Ahuja et al., 2012; Andersson et al., 2007; Tatarynowicz et al., 
2016), tension emerges between demands for stability and network 
dynamics. This tension has been acknowledged before in the interor-
ganizational network literature (e.g., Provan and Kenis, 2008), also in 
relation to innovation outcomes. While the network form of organizing 
was initially introduced as a flexible form, accommodating demand for 
speed (Powell, 1990) and novel information (Kumar and Zaheer, 2019), 
stability is also needed to facilitate the development of social capital 
(Coleman, 1990), trust, and knowledge sharing needed for innovation 
(Brunetta et al., 2020). Research has shown that both dynamics and 
stability can (co)-occur simultaneously (Quintane et al., 2013) and that 
this combination fosters innovation (Sytch and Tatarynowicz, 2014; 
Zheng and Yang, 2015). We conjecture that stability and dynamics 
should not be randomly distributed across the network, and some dy-
namics might influence innovative outcomes differently relative to 
others. Therefore, in our analysis, we introduce three combinations of 
stability and dynamics: stable brokers combined with cluster dynamics, 
stable clusters combined with broker dynamics, or medium dynamics in 
all network parts. More specifically, we argue that a natural influx and 
turnover of nodes in clustered loci of the network can foster innovation. 
In contrast, the turnover of brokers can significantly disrupt and limit all 
participants’ information access and put the network in a state of tur-
bulence. Therefore, we reason that broker turnover should only occur 
exceptionally and only under the condition of high levels of stability in 
clustered network loci. Thus, we contribute to the literature by devel-
oping a refined understanding of where dynamics and stability can occur 
in a network and how specific combinations of stability and dynamics 
influence innovation outcomes. 

To examine this network dynamics and its impact on innovation 
outcomes, we use unique quantitative data over 23 years, com-
plemented with 51 interviews. The data represents a one-mode projec-
tion of a two-mode network of organizations and R&D consortia (multi- 
member R&D projects, subsequently referred to as consortia). Organi-
zations cluster within a project and become brokers when they partici-
pate simultaneously in different projects. The temporality of the projects 
(average duration 4–5 years) causes node turnover of both brokers and 
clustered actors. 

We address the following research question: To what extent do broker 
and cluster dynamics within networks influence the innovation outcomes of 
research and development (R&D) consortia embedded in these networks? 

Building on Valente and Fujimoto (2010), we conducted a simulation 
study to exemplify how node turnover induces structural network dy-
namics. We simulate the case-by-case exit of all network members and 
compute the difference in network stability to build an instrument for 
network dynamics, as shown in the Supplementary Information. Then, 
we turn to our primary analysis exploring how node dynamics among 
clustered and brokering actors influence the innovation outcomes of 
consortia. 

2. Theoretical background 

Prior research has established how small-world networks foster 
innovation (Den Hamer and Frenken, 2021; Schilling and Phelps, 2007; 
Uzzi and Spiro, 2005). “Small-world” networks (Watts, 1999) are 
characterized by the presence of clustered organizations, with connec-
tions present between these tightly-knit clusters of organizations (Baum 
et al., 2003). A small world network structure is conducive to innovation 
because brokers enable information flows between fields of expertise, 
which fosters idea generation and development in the clusters (Steen 
et al., 2011). Small-world research has thus shown the importance of 
brokers and clusters for innovation outcomes but does not address how 
network dynamics influence these innovation outcomes. We ask: Would 
high turnover among brokers, in clusters, or in both brokers and clusters 
influence innovation outcomes generated by consortia? 

To analyze the combined effects of network average broker and 
network average cluster dynamics on innovation outcomes, we intro-
duce four stylized combinations of cluster and broker dynamics as 
visualized in Fig. 1. We define organizations participating in only one 
consortium at a time as clustered actors. In addition, we distinguish 
brokers, hub organizations participating in multiple consortia simulta-
neously and creating connections between different consortia. Thus, we 
use a structural conceptualization of brokerage, in which “brokerage 
occurs when one actor (the broker) is connected to two other actors 
(alters) who are not themselves connected” (Kwon et al., 2020, p.1095). 
This network structural conceptualization does not include further re-
quirements regarding secondary structural holes (Burt, 1992), process 
(Marsden, 1982; Obstfeld et al., 2014), or entrepreneurial behavior 
(Burt, 2005). Our theoretical arguments explain how stability and dy-
namics occurring in clusters and brokers within the network influence 
the ability of consortia to generate innovation outcomes. 

Prior endeavors to integrate network stability and dynamics as pre-
requisites for innovation have led researchers to assert that moderate 
turnover of network members generally favors the network’s innovation 
outcomes (e.g., Sytch and Tatarynowicz, 2014). However, this conclu-
sion leaves undisputed whether dynamics are moderate in both clusters 
and brokers or whether this outcome is brought about through high 
dynamics in clusters combined with stable brokers or vice versa. 
Therefore, this perspective can be refined by analyzing the combined 
effects of stability and dynamics of clusters and brokers separately rather 
than using the average turnover of clustered actors and brokers. We 
argue that innovation requires novel knowledge and idea generation 
induced by a renewal of information sources either in clusters or bro-
kers. At the same time, innovation requires relational experience and 
meaningful integration induced by either stable brokers or stable clus-
ters. In the following, we discuss the four quadrants of Fig. 1 in relation 
to innovation outcomes. 

2.1. The rigid network 

In the first type of network (Fig. 1, upper left quadrant), clusters and 
brokers are stable due to prolonged network membership and low inflow 
of novel organizations. We refer to this combination as the “rigid 
network”. Through persistent connections between the same consortia, 
the information space becomes more homogenous and equally distrib-
uted over actors, increasing the likelihood of information being redun-
dant. Without new entrants, consortia will suffer from a lack of novel 
knowledge and become over-embedded and inert (Ahuja et al., 2012; 
Kumar and Zaheer, 2019; Soda et al., 2021; Zheng and Yang, 2015). This 
inertia will likely result in low innovation potential. 

2.2. The volatile network 

The second combination, the “volatile network” (Fig. 1, lower right 
quadrant), is characterized by dynamic brokers and dynamic clusters. 
Although this combination satisfies the demand for novel skills and 
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perspectives, the inflow of novel knowledge might not be absorbed 
effectively as new actors bring in too much novelty. Such dynamics lack 
the trust and hamper meaningful integration required for successful 
collaborative innovation (Brunetta et al., 2020; Dyer and Singh, 1998; 
Filieri et al., 2014; Mannak et al., 2019; Zhang et al., 2017; Zheng and 
Yang, 2015). Therefore, when both clusters and brokers change simul-
taneously, it constrains the productive recombination within fixed time 
frames. The knowledge exchange in volatile networks limits the 
deployment of collaboration routines and requires too frequent revision 
and development of new routines, which is likely to happen at the 
expense of time and resources for R&D activities. 

2.3. The stable broker-dynamic cluster network 

This type of network (Fig. 1, lower left quadrant) combines stable 
brokers and dynamic clusters. This combination promotes innovation 
outcomes because the brokers accumulate collaborative routines that 
smoothen knowledge access, flow, and deployment by various con-
sortium organizations over time. Moreover, the accumulated relational 
experience of the brokers expands their shared network memory (Soda 
et al., 2004). This network memory allows the brokers to integrate 
heterogeneous bodies of knowledge they are exposed to as the network 
evolves (Burt and Merluzzi, 2016). Thus, the advantage of stable bro-
kers’ abundant relational experience compensates for the heterogeneous 
knowledge influx of dynamics clusters. In this network, stable brokers 
can access, distribute and (re-)combine the diverse knowledge origi-
nating from the varying sets of clusters. In the absence of cluster dy-
namics, brokers would likely suffer from social and cognitive rigidity, 
“becoming entrenched and fixated in their ways of collaborating and 
coordinating […] diminishing their ability to generate creative ideas” 
(Soda et al., 2021, pp. 9–11). 

2.4. The dynamic broker-stable cluster network 

This type of network (Fig. 1, upper right quadrant) combines high 
turnover among brokers, whereas clusters are stable. High broker 
turnover induces new shortcuts and, thus, network restructuring. From a 
knowledge diversity perspective, the broker dynamics provide novel 
knowledge that rejuvenates knowledge repertoires of clusters while 
avoiding lock-in among clustered members (Ahuja et al., 2012; Kumar 
and Zaheer, 2019). At the same time, such a shakeup creates turbulence 
and therefore requires cluster stability to balance these dynamics. The 
dynamic broker-stable cluster combination offers the benefits of mean-
ingful integration of knowledge because the clusters are characterized 
by high trust and supportive norms among the tightly-knit organizations 
(Coleman, 2009; Reagans and McEvily, 2003). Over time, repeated/-
frequent interaction allows clustered actors to understand each other 
better, improving the participants’ communication and trust (Brunetta 

et al., 2020; Narayan and Kadiyali, 2016). 
In sum, we explore our balancing proposition that the probability of 

innovation outcomes for consortia is higher in networks with broker dynamics 
combined with stable clusters and in networks with stable brokers combined 
with cluster dynamics than in rigid or volatile networks..1 

3. Method 

3.1. Data 

We explore the research question with longitudinal network data in 
the Dutch water sector over 23 years (1982–2004) from 318 organiza-
tions participating in 104 consortia. The Netherlands has a long tradi-
tion of generating innovative solutions regarding delta and maritime 
water management and is considered one of the most innovative eco-
nomic sectors in The Netherlands, with a world-renowned reputation 
(Van de Ven, 1993). The Dutch water sector operates in a complex 
technological environment. Relevant expertise about this sector resides 
in public universities (e.g., Delft University of Technology), 
public-private research institutes (e.g., the former National Institute for 
Integrated Water Management and Wastewater Treatment, RIZA being 
the Dutch acronym), and commercial corporations (e.g., DSM Research 
and Shell Research and Technology Centre). The innovation locus of this 
world-leading sector resides in interorganizational networks (Powell 
et al., 1996). The historical data of this industry offers unique oppor-
tunities to study dynamics in interorganizational relations over time. We 
acquired secondary data on consortium composition, duration, funding, 
and innovation outcomes from annual evaluation reports published by a 
Dutch technology program that facilitates demand-driven uni-
versity-industry collaboration (see Raesfeld et al., 2012, for a similar 
approach). Each consortium funded by this policy instrument consists of 
a consortium leader, professors affiliated with a Dutch university, and 
around five to six organizations from the Dutch water sector. Funded 
consortia are expected to apply state-of-the-art fundamental research to 
advance technologies and applications in three water-related areas: 
maritime, delta, and water technology. 

3.2. Dependent variable 

Ten years after being launched, the innovation outcomes of consortia 
were evaluated by an external committee of specialists from industry 
and academia appointed by the funding agency. The evaluation covered 

Fig. 1. Types of dynamics in networks.  

1 A priori we do not have any theoretical expectations regarding the differ-
ences in innovation outcomes when comparing these two particular combina-
tions. In Section 4 we compare the predicted effects of the different 
combinations. 
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the entire ten-year period, thus taking into account that it can take up to 
ten years for any outcomes to materialize. Our study includes innovation 
outcomes from 97 consortia, for which the funding agency consistently 
used the same coding matrix. The consortia’s innovation outcomes were 
coded high (1) in case consortium members participated actively, a 
preliminary or ready-to-use product was developed, and an occasional 
or persistent revenue stream was foreseen or realized. Otherwise, 
innovation outcomes were coded as low (0). Robustness tests with a 
continuous operationalization or with separate outcome dimensions 
yielded identical results, as shown in the Supplementary Information. 
Examples of consortia with high innovation outcomes include a 301.370 
Euro wave modeling project to predict wave drift forces on offshore 
constructions and ships and a 222.790 Euro project to develop an aer-
obic granular sludge reactor for wastewater treatment. Both R&D pro-
jects resulted in the successful application of patents and actual 
applications in the field. 

3.3. Independent variables: network average broker stability and network 
average cluster stability 

The network has evolved over 23 years through membership turn-
over, which results from entry, exit, and actors repeating their collab-
oration in multiple consortia over multiple years. Nodes in the network 
are organizations, including (representatives of) universities and other 
organizations in the Dutch water sector. Interorganizational relations 
are counted if they are part of a joint consortium in a given year. A 
typical consortium lasted 4–5 years. In this research setting, ties be-
tween consortium members expire when the consortium ends (as 
formally noted in the annual report) unless the members repeat their 
collaboration in a second consortium. Most organizations (64.8%) 
participate in only one consortium in the entire observation period, 
entering the network at the start of a consortium and permanently 
exiting when its funding expires, i.e. each year, approximately 16.7% of 
the organizations exit the network. Other organizations opt to stay in the 
network by joining a second consortium (13.5%) and/or participating in 
multiple consortia at the same time (21.7%). Through multi-consortia 
membership, brokers are in-between other network actors, with their 
betweenness centrality being higher than 0, with the betweenness cen-
trality of clustered actors being 0, because clustered actors only partic-
ipate in one consortium at a time. The number of brokers and clustered 
actors vary over time. Of the 318 actors, 69 function as a broker at some 
point in time, and 249 are clustered actors. 

We define stability for brokers and clustered actors as the average 

proportion of prior years in which these actors participated in the 
network since 1982. Therefore, the measure for network stability is the 
reverse of the measure for network dynamics. To ensure comparability 
of scores across years, we expressed the years of network participation as 
a proportion of the observation period and computed the network 
average across all brokers or clustered actors present in the network at 
that time. For example, in 1984, the network contained eight brokers, of 
which two joined the network in 1982, five joined the network in 1983, 
and one joined the network in 1984, resulting in the network average 
broker stability of (2 *1 + 5 *0.5 + 1 *0)/8 = 56.3%. In other words, 
network average broker stability and network average cluster stability 
increase with the length of time in which brokers and clustered actors 
have each participated in the network. Corresponding to prior research 
on the innovation capacity of small-world networks (e.g., Den Hamer 
and Frenken, 2021; Schilling and Phelps, 2007), network average broker 
stability and network average cluster stability are measured at the 
network level, although a robustness test with consortium-level aver-
ages yields comparable results (see: Supplementary Information). 

Fig. 2 illustrates these network dynamics, showing the network 
respectively in 1989 and 2000. In both years, the network structure is 
highly comparable regarding the clustering coefficient and average path 
length. However, in 1989, both the network average broker stability and 
network average cluster stability were high (rigid network), while in 
2000, the broker stability was high, while the cluster stability was low. 
In 1989, one-third of the consortia achieved innovation outcomes 
against two-thirds in 2000. 

As discussed in the Supplementary Information, we use an instru-
mental variable approach to address the endogeneity issue of network 
dynamics models. The issue is that unobserved factors may influence 
both network dynamics and innovation outcomes, i.e., the endogenous 
regressors and the error term of the dependent variable. Our instru-
mental variable approach addresses this issue by identifying instruments 
that influence the endogenous regressors without being correlated with 
the error term of the dependent variable, in our case, instruments 
observed in the time window before the consortium starts. Our approach 
builds on the reasoning that whole network dynamics are a cumulative 
function of the addition, retention, and exit of all organizations in the 
network. Employing a simulation study and regression analysis, we 
determine the weighted contribution of each organization to the next 
year’s network average stability if the organization were to remain in 
the network. Next, we instrument organizational retention vs. exit by 
means of observed reorganizations (see Supplementary Information). 

Fig. 2. Water networks in 1989 and 2000.  

R.S. Mannak et al.                                                                                                                                                                                                                              



Social Networks 74 (2023) 62–70

66

3.4. Control variables 

In our analysis of innovation outcomes, we use the control variables 
sub-field (Maritime technology, Delta technology, Water technology); 
consortium size (number of consortium members); consortium duration 
(years since consortium start until consortium end); allocated funding 
(in €100,000 corrected for inflation, with 2004 as the reference year), 
researcher quality (expressed as the number of publications per research 
associate in the five years following consortium start), clustering coef-
ficient, network average path length, and a two-mode network auto- 
correlation term (Fujimoto et al., 2011). By controlling for clustering 
coefficient and network average path length, our study builds on prior 
literature that established how small-world networks, being network 
structures characterized by a high degree of clustering and short average 
path length, drive the innovation outcomes of embedded actors (Den 
Hamer and Frenken, 2021; Schilling and Phelps, 2007; Uzzi and Spiro, 
2005). Our study adds a dynamic component to this literature. 

3.5. Analytical procedure 

Our analyses show the extent to which network dynamics, in terms of 
network average broker stability and cluster stability, influence the 
innovation outcomes of consortia in the network. The consortium is the 
unit of analysis, with broker and cluster stability measured at the 
network level. All models include heteroscedasticity-robust standard 
errors clustered at the network level, as well as the abovementioned 
consortium-level and network-level control variables. We apply a two- 
stage instrumental variable (IV) probit model. The model has a lagged 
structure: network average broker stability and cluster stability are 
measured at t0, with innovation outcomes measured at t+10. 

The results section presents the regression coefficients and several 
model statistics. We include a Chi-squared test for model fit showing the 
extent to which the whole model fits the data (i.e., the coefficients 
jointly differ from zero), the log-likelihood value of the model, and a 
likelihood ratio test showing the model improvement as compared to a 
model with only control variables. We include an F-test for instrument 
strength showing the extent to which the instruments jointly provide an 
adequate prediction of the instrumented variables. The instruments 
should be sufficiently correlated with the endogenous regressors (Bascle, 
2008), being network average broker stability and cluster stability. In 
addition, we provide the endogeneity statistic showing whether the 
instrumented variables should be considered endogenous, and thus an 
IV model is needed. Finally, the overidentification restriction shows 
whether the instruments used are uncorrelated from the error term of 
the dependent variable (the last statistic should not be statistically sig-
nificant while all the others should be). Building on Hoetker’s (2007) 
work on logit and probit models, we also computed and visualized the 
marginal effects to facilitate adequate interpretation of the results. 
Finally, our post hoc analysis compared the computed margins using 
Bonferroni-adjusted chi-squared tests. 

3.6. Interviews 

To enrich our findings with qualitative insights into the functioning 
and development of the network, we conducted 51 interviews with 
stratified sampled respondents. The stratification was based on the actor 
type (13 university representatives; 38 representatives of water sector 
organizations), sub-field (14 Maritime technology, 15 Delta technology, 
17 Water technology; 5 mixed), experience (21 repeated consortium 
members; 30 one-time only members), and innovation outcomes (28 
from consortia achieving innovation outcomes, and 23 from consortia 
not achieving innovation outcomes). During the interviews, we dis-
cussed, among others, motivations for joining the consortia, experience 
with new entrants and repeated collaborations, innovation outcomes, 
and key developments in the network. All interviews were transcribed 
verbatim and analyzed using an open, axial, and selective coding 

approach. Interviews lasted, on average, 1 h and 6 min and transcripts 
averaged 9107 words. 

4. Results 

In this section, we present the results of the IV probit model. 
Approximately 56% of the consortia achieved innovation outcomes 
(Table 1). The network average broker stability varies between 
approximately 11% and 72%, with cluster stability varying between 
15% and 49%. The variance inflation factors (VIF) indicate no sign of 
multicollinearity. Table 2 displays the instrumental variable model re-
sults with a probit regression transformation for the probability of 
innovation outcomes. All models show a significant fit to the data 
(Chi^2). 

Based on likelihood ratio tests, we compared the model fit of a model 
with only control variables (Model 1), a model with linear terms (Model 
2), and an interaction term (Model 3). Model 3 best fits the data, in line 
with our proposition. Model 3 fits significantly better to the data than 
Model 1 (Chi^2: 9.230; p < .050) and Model 2 (Chi^2: 4.790; p < .050). 
Model 3 also fits significantly better than a model with non-linear direct 
effects of broker and cluster stability (see Supplementary Information). 
Finally, Model 3 also fits significantly better to the data than an alter-
native model specification in which the locus of stability is not specified, 
i.e., with moderate average network stability regardless of the position 
of organizations (see Supplementary Information). Hence, rather than 
moderate average stability across the entire network, stability and dy-
namics should be differentiated in different parts of the network. 

The results of Model 3 demonstrate that the effect of broker stability 
is conditional on cluster stability and vice versa. The results are in line 
with our proposition that consortia in networks with a combination of 
high and low stability of brokers and clusters (i.e., networks in which 
either brokers are stable while clusters are dynamic, or clusters are stable 
while brokers are dynamic) have a higher probability of innovation 
outcomes than networks with low, moderate, or high levels of both 
broker and cluster stability. We also ran a bootstrapped model with 1000 
replications, which provides identical results given the limited sample 
size. A robustness test with a split-sample approach confirms that broker 
(cluster) stability only stimulates innovation under low cluster (broker) 
stability conditions, as shown in the Supplementary Information. 

Fig. 3 provides a graphic representation of the average marginal 
effects of network average broker and cluster stability on the probability 
of innovation outcomes for consortia in the network. The surface rep-
resents the observed range of the two variables (approximately 
0.125–0.500 for cluster stability and 0.125–0.750 for broker stability), 
and the wireframe represents the predicted effect. As indicated in Fig. 3, 
the probability of innovation outcomes is lowest (close to 0%) in net-
works that either combine low (0.125) levels of broker stability with low 
(0.125) levels of cluster stability (volatile network) or that combine high 
(0.750) levels of broker stability with high (0.500) levels of cluster 
stability (rigid network). The probability of innovation outcomes is 
highest (close to 100%) in networks that either combine low (0.125) 
levels of broker stability with high (0.500) levels of cluster stability 
(dynamic broker – stable cluster network) or that combine high (0.750) 
levels of broker stability with low (0.125) levels of cluster stability 
(stable broker – dynamic cluster network). The probability of innovation 
outcomes in networks with moderate cluster and broker stability is 
approximately 54%. Bonferroni adjusted post hoc tests on the marginal 
effects further support our proposition. In networks with the ‘dynamic 
broker-stable cluster’ combination and networks with the ‘stable broker- 
dynamic cluster’ combination, consortia have a significantly (p < .050) 
higher probability of innovation outcomes than they do in ‘rigid’, ‘vol-
atile’, and networks with moderate levels of stability, equally distrib-
uted across the entire network. Thus, differentiation of network 
dynamics matters for the innovation outcomes of the consortia 
embedded in the network. 

R.S. Mannak et al.                                                                                                                                                                                                                              



Social Networks 74 (2023) 62–70

67

4.1. Qualitative findings 

The qualitative findings derived from our interviews substantiate the 
arguments we used to explain our quantitative findings. Regarding 
cluster stability, respondents argue that: “the greatest advantage is that 
partners get used to each other and become increasingly effective and 
productive” (Resp. 3). Cluster stability gives consortium members time 
to “overcome deficiencies in the collaboration” (Resp. 9), “to become 
familiar with each other’s backgrounds” (Resp. 2), and “to gain expe-
rience with the involvement and reliability of partners” (Resp. 3). 
However, to realize innovation outcomes, at some point a consortium 
needs “fresh blood” (Resp. 1 and 2). Respondents suggest that new en-
trants provide injections of novel skills and perspectives, both mitigating 
“group-think” (Resp. 1) and “intellectual inbreeding” (Resp. 3). At the 

same time, ongoing addition of new entrants to existing consortia may 
cause several complications for incumbent organizations, like the 
disruption of the “preceding learning process” (Resp. 4) and established 
practices related to “confidentiality” (Resp. 5) and non-disclosure 
agreements. From these findings, we infer that clusters should alter-
nate between periods of relative stability and periods of membership 
turnover. 

Given that clusters are not islands in themselves but are integrated 
into the broader network through brokers, we also asked respondents 
about the sources of network-level dynamics. Interview respondents 
argue that, on the one hand, socio-economic trends (23 respondents), 
such as the increasing need to pool scarce resources and growing habit of 
collaboration, and policy initiatives (21 respondents) spur collabora-
tion. On the other hand, the network is mostly shaken up by 

Table 1 
Descriptive statistics and correlations.   

Variables Mean SD Min Max VIF 

1 Consortium outcomes 0.557 0.499 0 1  
2 Consortium size 5.608 3.002 0 22 1.260 
3 Consortium duration 4.485 1.234 1 8 1.490 
4 Allocated funding 3.307 2.110 0.098 12.390 1.580 
5 Researcher quality 6.308 6.774 0 47 1.210 
6 Network autocorrelation 0.494 0.288 0 1 1.370 
7 Clustering coefficient 7.485 2.572 2.329 11.803 2.220 
8 Path length 1.312 0.134 1.108 1.686 1.270 
9 Broker stability 0.527 0.109 0.114 0.720 1.890 
10 Cluster stability 0.270 0.100 0.149 0.486 1.580  

1 2 3 4 5 6 7 8 9 10 

1 1.000          
2 0.008 1.000         
3 -0.121 0.139 1.000        
4 0.015 0.290 0.443 1.000       
5 0.141 -0.063 -0.109 -0.033 1.000      
6 -0.047 0.138 0.093 0.121 -0.073 1.000     
7 -0.105 0.147 -0.048 0.034 0.166 0.338 1.000    
8 0.053 0.077 -0.138 -0.140 -0.014 0.095 0.400 1.000   
9 -0.049 -0.052 -0.102 -0.248 -0.082 -0.043 0.461 0.229 1.000  
10 -0.040 -0.275 -0.252 -0.063 -0.225 0.113 -0.065 -0.002 0.291 1.000 

Note: 97 consortia 

Table 2 
IV-probit model of probability of innovation outcomes for consortia.   

Model 1  Model 2  Model 3  

Innovation outcomes Innovation outcomes Innovation outcomes 

Intercept -0.622 (1.092) -2.620 (1.909) -20.043*** (3.267) 
Consortium size 0.011 (0.052) 0.006 (0.044) -0.001 (0.044) 
Consortium duration -0.169 (0.134) -0.228† (0.133) -0.070 (0.146) 
Allocated funding 0.079 (0.074) 0.167* (0.078) 0.136† (0.078) 
Researcher quality 0.041 (0.026) 0.054* (0.021) 0.071** (0.023) 
Network autocorrelation -0.249 (0.696) 0.556 (0.735) 0.034 (0.804) 
Clustering coefficient -0.098† (0.058) -0.254** (0.079) -0.041 (0.078) 
Path length 1.579† (0.951) 1.495 (1.030) 1.673† (0.911) 
Endogenous regressors:       
Broker stability   6.405* (2.734) 33.979*** (5.287) 
Cluster stability   -1.958 (1.786) 52.004*** (8.379) 
Broker * cluster stability     -95.803*** (14.388) 
Subfield dummies YES  YES  YES  
Model fit (Chi^2) 22.060** 61.930*** 84.070*** 
Log-likelihood -61.513  -59.288  -56.895  
Df 10  12  13  
Model improvement   4.450  9.230*  
Instrument strength:       
Broker stability   9.000***  11.070***  
Cluster stability   73.180*** 79.530*** 
Broker * cluster stability     21.850*** 
Endogeneity of stability   8.680*  3.930  
Overidentifying restrictions   0.506  0.611  

Note: 97 consortia. Standard errors in parenthesis. Heteroscedasticity-robust standard errors clustered at the network level. † p < .100; * p < .050; ** p < .010; *** 
p < .001; 
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reorganizations of research institutes (20 respondents). The latter one is 
particularly relevant in relation to network average broker dynamics. 
Since their founding, the most prominent brokers in this network ach-
ieved highly institutionalized positions in the Dutch water sector 
(Rijkswaterstaat: 1798, Deltares - WL | Delft Hydraulics: 1927 RIZA: 
1933). Interviewees widely acknowledged that these organizations are 
crucial to providing stable connections between clustered organizations 
in the network (e.g., Resp. 2, 4, and 6). The research institutes function 
as “intermediaries between academic and industrial parties within the 
R&D consortia” (Resp. 7) and act as central brokers between consortia 
and subfields within the broader infrastructure of the network, so-called 
“spiders in the web” (Resp. 8). Respondents closely monitor the strate-
gies and activities and activities of these brokers. “[Research Institute A] 
is an important player in this kind of research projects. They are 
involved in many projects, and they just have that networking role” 
(Resp. 3) or “[Research Institute B] really acts as a hub for the entire 
knowledge infrastructure in the Netherlands in this field. So you will 
have contact with them.” (Resp. 10). Research institutes that fulfill a 
brokerage position can foster innovation outcomes for organizations in 
the network, using their large knowledge pool and experience. 

However, the qualitative analysis also reveals the vulnerability of the 
network to broker dynamics. In the early 1990 s, the Dutch government 
imposed an organizational change to reduce the scope of activities in 
one of the two most important research centers and brokers in the 
network. This downsizing loosened its ties to organizations in various 
subfields and made the network vulnerable to disintegration. Two years 
later, the entire network collapsed due to different exogenous shocks – 
oil crisis, flooding risks in the Netherlands, and the dropout of Rijks-
waterstaat - that disintegrated the vulnerable network. Several years 
later, the research center restored the scope of its activities and regained 
a position as a central broker, resulting in the re-integration and growth 
of the network. This led to a rebound in innovation outcomes, such as 
the development of new water treatment plants or new models to predict 
wave impacts on ships, offshore installations or coastal areas. The case 
illustrates how some organizations fulfill a major role in broker dy-
namics within the network and consequentially in the innovation out-
comes of all consortia embedded in the network. 

5. Discussion 

By exploring how clusters in networks and brokers between these 
clusters can range from stable to dynamic, resulting in four stylized 
combinations of network dynamics, our study contributes to the litera-
ture on network dynamics and the explanation of outcomes in particular 
regarding innovation (e.g., Andersson et al., 2007; Burt and Merluzzi, 

2016; Kumar and Zaheer, 2019; Leminen et al., 2020; Soda et al., 2021; 
Sytch and Tatarynowicz, 2014). Our findings confirm prior research, 
which concluded that the locus of innovation resides in interorganiza-
tional networks (Powell et al., 1996; Yaqub et al., 2020) and refine these 
insights by showing that neither rigid nor volatile networks promote 
innovation outcomes. Moreover, this study shows where and how dy-
namics occur in an inter-organizational network in relation to network 
outcomes. The study shows that it is not just average dynamics that 
facilitate superior outcomes but the (combination of) dynamics in 
clusters and brokers that matters. Therefore, identifying parts of the 
network where high, moderate, or low stability occurs is essential to an 
enhanced understanding of the network dynamics–outcome nexus (Gay 
and Dousset, 2005). Without this distinction, high and low levels of 
stability that co-occur in different parts of the network might be aver-
aged out in the analysis, and the findings might be erroneously attrib-
uted to aggregate network dynamics. Our results reveal that, instead of 
moderate stability in all parts of the network, fostering innovation re-
quires high membership turnover in one part of the network (either in 
the clusters or the brokers), combined with prolonged membership in 
another part of the network. In that sense, our results demonstrate 
equifinality of the effects of (combinations of) broker and cluster dy-
namics on outcomes. Indeed, “Stability and change co-exist and must do 
so. More stability in one part of a network will increase change in a 
different part, and vice versa.” (Freytag and Ritter, 2005, p. 646). This 
combination seems to be particularly important for innovation out-
comes because it facilitates the combination of “critical access to het-
erogeneous knowledge and resources” (Sytch and Tatarynowicz, 2014, 
p. 274) on the one hand and the trust-building and meaningful inte-
gration of knowledge on the other. Generally, this comes back to an 
observation that networks are characterized by “dynamic stability” 
(Kilduff et al., 2006). 

The study also contributes to our understanding of the effect of node 
turnover on network evolution and especially the effect of network 
dynamics on network outcomes. Our results demonstrate that even in 
institutionalized fields, node turnover does occur and greatly impacts 
network dynamics and, ultimately, network outcomes. This demon-
strates that although tie turnover is important for network dynamics, 
node turnover might have an even more radical impact on network 
dynamics since the related ties also disappear with a node. Therefore, 
node turnover should be included in the analysis of network evolution in 
social network studies (Zhang and Guler, 2020). For research on 
intra-organizational networks, for example, that means that employee 
turnover is crucial for understanding network dynamics as crucial 
boundary spanners might leave an organization influencing the func-
tioning of an organization (e.g., Methot et al., 2018). 

Fig. 3. Marginal effects broker stability and cluster stability on the probability of innovation outcomes. The surface represents an observed range, and the wireframe 
represents the predicted effect on 97 consortia. 
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This study is subject to several limitations that invite future research. 
First, our theoretical arguments for the quantitative findings have strong 
validity based on prior work (e.g., Sytch and Tatarynowicz, 2014). 
However, we have no direct measures to investigate the underlying 
mechanism between network dynamics and innovation outcomes. More 
work is needed to understand better how network structure and dy-
namics contribute to changes in network composition and outcomes 
(Kaartemo et al., 2020; Leminen et al., 2020; Möller et al., 2020; Ter Wal 
et al., 2016; Yaqub et al., 2020). Second, we study a network of consortia 
in The Netherlands, representing a specific institutional context with 
specific outcomes. The Dutch context has some unique characteristics 
regarding innovation policy and organizations active in fundamental 
and applied research. Traditionally, the Dutch government has played 
an active role in stimulating innovation by providing subsidies and 
orchestrating the innovation system (e.g., Raesfeld et al., 2012). This is 
precisely the case within the water sector, which is of existential 
importance for the Netherlands. This has implications for the general-
izability of our findings. Future work on network dynamics in varied 
contexts, including other countries, sectors, and other outcomes, is 
needed (Leminen et al., 2020). A third limitation is that our Dutch 
research context occurs in a confined geographical area. In geographical 
terms, The Netherlands is the same size as some large US metropolitan 
areas, and we only study domestic consortia. A final limitation regards 
the availability of measures for network dynamics. While the field has 
made progress in analyzing network dynamics such as relational event 
modeling (Vu et al., 2017) as well as ERGM and stochastic actor-oriented 
models for network dynamics (Snijders, 2017, Wang, Pattison and 
Robins 2013, Kevork and Kauermann, 2022), we still lack established 
measures for the level of dynamics as an important network-level 
characteristic. Therefore, we have developed our own measures. 
Future research should further develop them, for example, in the di-
rection of time-weighted network measures. 

Our study contributes to a comprehensive framework for future 
research to explore how network dynamics and structure interplay in 
various contexts. We agree with Chen et al. (2022) that this opens up a 
new research agenda of organizational network research, which will 
help us understand how networks change over time and how dynamics 
co-evolve with the network capacity of nodes active in a network, and 
the subsequent effects on outcomes. With the present article, we aim to 
encourage network scholars to further investigate network structure, tie 
and node turnover dynamics, and their impact on network outcomes. 
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