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Fractional Fourier Transform Receiver for
Modulated Chirp Waveforms

Nikita Petrov and Alexander G. Yarovoy, Fellow, IEEE

Abstract— A novel receiver structure for the reception of
linearly frequency modulated (LFM) chirps carrying additional
narrowband (phase) modulation is proposed. A linear relation
between the time delay and the beat frequency shift of the target
response in stretch processing is exploited to estimate the target
range via correlation of the received signal with the replica in
a Fractional Fourier Transform (FrFT) domain. According to
numerical simulations, the proposed FrFT receiver demonstrates
improved performance and computational efficiency over the
state-of-the-art solutions for the moderate-to-large bandwidth
of the information-carrying modulation. The receiver was inte-
grated into the waveform-agile radar polarimetric agile radar in
S band (PARSAX) and its performance has also been verified
experimentally.

Index Terms— Automotive radar, fractional correlation,
fractional Fourier transform (FrFT), linearly frequency modu-
lated (LFM), phase-coded frequency modulated continuous wave
(FMCW), radar signal processing.

I. INTRODUCTION

A LINEARLY frequency modulated (LFM) waveform
has been widely used in various radar applications for

decades. The simplicity of the hardware with low requirements
on analog to digital converter (ADC) sampling frequency, con-
stant peak-to-average power ratio (PAPR) and good Doppler
tolerance are the key advantages of the LFM waveform. These
advantages come with the cost of the limited flexibility of
LFM signals, crucial for the realization of multiple-input
multiple-output (MIMO) radars and interference mitigation
between different radars. To associate the received signals with
the proper transmit channel, different multiplexing schemes
are used in MIMO radars. They imply that the transmitted
signals are different in time, frequency, chirp slope or code
domains, but at the same time lead to the degradation of radar
performance by shortening the unambiguous Doppler velocity,
degrading the range resolution, or increasing the sidelobe
level [1].

A promising approach to address the aforementioned lim-
itations consists of applying information-carrying modulation
to chirps. In that way, the received waveform can be processed
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after mixing with the reference LFM signal (known as dechirp-
ing, deramping, and stretch processing)–preserving all the
advantages of the LFM signal mentioned above, and adding
to them the ability to discriminate different signals, essential
for MIMO beam-forming, interference mitigation between
different radars, and realization of joint communication and
sensing.

The initial research on applying phase modulation to chirps
was carried out in [2] and [3] and some insight into the sensing
capabilities of such modulation was given in [4]. A filter-bank
receiver structure to deal with phase-modulated frequency
modulated continuous wave (FMCW) waveform was proposed
in [5] and [6]. Therein the authors noticed that the received
signal after dechirping has a time delay and the beat frequency
shift proportional to the range of the target. To consider these
two effects together, the authors proposed the compensated
stretch processing [5], [6], which takes both these effects
into account. The implementation of the compensated stretch
processing requires applying a filter bank for all ranges of
interest. Therefore it has the computational complexity of dig-
ital Fourier transform (DFT) O(N2), where N is the number
of samples per chirp at fs . That is significantly larger than
that of the standard dechirping realized via the fast Fourier
transform (FFT): O(N log2(N)). Thus, the high computational
complexity of the compensated stretch processing makes chal-
lenging its realization on low-cost FMCW radar applications,
e.g., an automotive radar chip.

The state-of-the-art approaches to process phase-modulated
FMCW waveforms [7], [8], [9], [10] use the group delay filter
in the receiver to align the responses at all range cells before
decoding, followed by FFT for range extraction. The original
idea of such delay compensation comes from the correction of
non-linearity of chirp slope for stretch processing, e.g., [11],
[12], [13]. This receiver design, derived with an assumption
of a narrowband deviation of the signal from the LFM,
significantly degrades for long codes (modulation signals with
the bandwidth comparable to the beat signal ADC sampling
frequency), which are of the main interest in applications
mentioned above. An appropriate predistortion of the transmit
signal to compensate for this effect has been proposed [14],
[15], which, however, leads to an increase in the PAPR
of the transmitted signal, undesirable for the transmission
chain.

A conceptually similar approach is proposed in [16] with
application to chirps modulated by an orthogonal frequency
division multiplexing (OFDM) waveform. Instead of the group
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delay filter, they propose a certain rearrangement of the
OFDM sub-carriers to realize a symbol-canceling receiver.
This, however, imposes multiple constraints on the selection
of the waveform parameters.

In this article, we propose a novel receiver design for mod-
ulated LFM signals, which demonstrates the ability to recover
the range profile accurately, similar to the compensated stretch
processing, and does so in the computational complexity of
FFT. To do that, we present in Section II-A the signal model
and derive the matched filter receiver, which coincides with the
compensated stretch processing [5], [6]. It is further shown
that due to the linear relation between the time delay and
the beat frequency, the matched filter can be realized via
the fractional correlation [17], [18], which can be computed
efficiently using the fractional Fourier transform (FrFT) with
the computational load of FFT [18], [19]. Consequently,
in Section III we propose a received based on fractional
correlation. The performance of the proposed receiver is com-
pared to the other state-of-the-art solutions through numerical
simulations in Section IV and via processing of measured
radar data in Section V. Finally, the conclusions are drawn
in Section VI.

II. SIGNAL MODEL AND MATCHED FILTER RECEIVER

A. Signal Model

Assume that the radar transmits a wideband LFM chirp
modulated with a narrowband modulation signal m(t)

st (t) = m(t)e
− j2π

(
fct+ βt2

2

)
, t ∈ [0, T ] (1)

where fc stands for the carrier frequency of the radar, β =
B/T is the chirp rate, B and T are the bandwidth of the
duration of the chirp, respectively. Moreover, we assume that
the bandwidth of m(t) is much smaller than that of the chirp
Bm � B .

Signal (1) impinges on a target at a range r0 moving with
a constant radial velocity v0 toward or away from the radar.
The reflected signal is received by the radar with a time delay

τ0(t) = 2

c
(r0 + v0t) = τ0 + 2v0

c
t (2)

attenuated proportionally to the target radar cross-section
(RCS) and two-way propagation of the way by the complex
coefficient α0. Hereafter, we incorporate all constant terms of
signal processing into α0 with no loss of generality. The signal
impinging the receiver becomes

sr (t) = α0st (t − τ0(t))

= α0m

((
1 − 2v0

c

)
t − τ0

)
e

− j2π fc

(
1− 2v0

c

)
t

·e j2π fcτ0 e
− j2π β

2

(
t
(

1− 2v0
c

)
−τ0

)2

≈ α0m(t − τ0) · e− j2π( fc t− fD t+ β
2 (t2−2tτ0)) (3)

where fD = 2v0 fc/c, the constant phase terms are substituted
into α0 and we used (1 − 2v0/c) ≈ 1 considering that the
velocities typical of automotive scenarios satisfy v0 � c.
Applying the stretch processing on receive, which consists of

multiplication of the received signal with the transmitted chirp
and filtering out high-frequency components, results in

s(t) = sr (t)e
j2π

(
fct+ βt2

2

)

= α0m(t − τ0)e
j2π(βτ0+ fD )t

≈ α0m(t − τ0)e
j2πβτ0t . (4)

It comprises two main components: the delayed modulated
signal and the beat frequency. The second item is standard
for dechirping of LFM signals. It also comprises Doppler fre-
quency shift due to target motion, which is typically negligible
compared to the frequency resolution of the beat signal after
applying FFT to it, i.e., fD � fs/N , where fs is the sampling
frequency of the beat signal and N is the number of fast-time
samples.

B. Signal Processing-Filter Bank

The form of (4) can be alternatively interpreted if we denote
fVD = βτ0 as a virtual Doppler frequency shift, which is
significantly (about two orders of magnitude) larger than the
typical Doppler frequency shift for automotive radars fD in
(4). In this formulation, it resembles a conventional response
of a waveform m(t) with the time delay τ0 and the Doppler
frequency shift fVD. This representation is similar to the recep-
tion of a general waveform m(t) with a large Doppler shift.
In this case, the optimal receiver in white noise is a matched
filter for each range-Doppler hypothesis [20]. It can be realized
either via a search over all possible range-Doppler bins or via
performing Doppler processing prior to range compression.
Due to the explicit relation between the parameters fVD = βτ0,
a 1-D search is needed on the parameter τ . Thus, the receiver
calculates for each τ

y(τ ) =
∫

s(t)m∗(t − τ )e− j2πβτ tdt . (5)

Modern radars perform baseband signal processing digitally,
after the received beat signal is sampled by ADC at the
sampling frequency fs and stored in vector s ∈ CN×1

s = α0m(n/ fs − τ0)e
j2πβτ0n/ fs (6)

where t = n/ fs , n = 0, . . . , N − 1.
The reference signal in the integral (5) for the fixed τ can

be given via a Hadamard product of two vectors a(τ ) � m(τ )

a(τ ) = e j2πβτn/ fs

m(τ ) = m(n/ fs − τ ) (7)

n = 0, . . . , N − 1; a(τ ), m(τ ) ∈ CN×1.
Stacking the steering vectors of the beat signal and the

delayed modulation signal as columns in matrices A =
[a(τ0), . . . , a(τNr )] and M = [m(τ0), . . . , m(τNr )] respec-
tively, with Nr being the predefined number of range cells,
it is possible to write the convolution (5) via a vector product

y = (A � M)H s. (8)

This receiver structure has previously been proposed in [5]
and [6] and is called compensated stretch processing. The
compensation referred to in the name of the algorithm realizes
the proper shift of the reference modulation signal for each

Authorized licensed use limited to: TU Delft Library. Downloaded on March 07,2023 at 13:44:34 UTC from IEEE Xplore.  Restrictions apply. 



820 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 71, NO. 2, FEBRUARY 2023

range hypothesis, realized here via matrix M. Filter bank
realization of compensated stretch processing leads to the
computational complexity of DFT O(N2).

C. Waveform Analysis and Design

The key block of the receiver (5) [or its digital counter-
part (8)] correlates the received signal with the time delay and
frequency-shifted template. This is equivalent to calculating
the cross correlation of s(t) and m(t) along the diagonal line
in the time delay/Doppler shift domain. If we further expand
(5), considering the target Doppler frequency shift as in (4),
we get

y(τ ) = α0

∫
m(t − τ0)m

∗(t − τ )e− j2π(β(τ−τ0)− fD )t dt

= α0

∫
m

(
t ′)m∗(t ′ − �τ

)
e− j2π(β�τ− fD )t ′

dt ′

= α0χm(�τ ,−(β�τ − fD)) (9)

where t ′ = t − τ0, �τ = τ − τ0 and χm(τ, fD) defines
the ambiguity function of the waveform m(t); the constant
phase term e− j2π(β�τ− fD )τ0 was substituted into α with no loss
of generality. It implies that the range response of the proposed
processing is determined by the diagonal cut of the ambiguity
function χm(τ, fD). This can be alternatively interpreted as a
shear of the ambiguity function of the waveform m(t) being
modulated by a chirp [21]. Another consequence of (9) is
that the (phase) modulation schemes, optimized for low-range
sidelobes, e.g., Barker, Frank, or Zadoff-Chu phase codes [21],
would not preserve this property if they are used to modulate
a chirp (1). The design of optimal modulation schemes to be
applied to the proposed receiver structure is the subject of
ongoing research.

III. FRACTIONAL CORRELATION RECEIVER

In conventional radar signal processing, the time delay
(range) and signal frequency shift (Doppler) are typically
estimated separately and independent of each other: range
via the correlation of the received signal with the replica
and Doppler frequency via Fourier transform over slow
time—both with a computational complexity of FFT. The
former exploits the fact that correlation in time transforms
into a simple multiplication operation in the frequency
domain [22]

s(t) � m∗(t − τ ) =
∫

s(t)m∗(t − τ )dt

= F− π
2
{

S( f )M∗( f )
}

(10)

where � denotes correlation, F−(π/2){·} is the inverse Fourier
transform (the reason for this superscript will be explained
shortly); S( f ) and M( f ) are the Fourier transforms of s(t)
and m(t), respectively.

Therefore, the objective is to develop an efficient algorithm
to calculate the cross correlation along the diagonal line in
the time delay/Doppler frequency shift domain (5) with the
computational complexity of FFT. This can be done using the
theory of FrFT and fractional correlation [23], [24]. Recently
FrFT has been widely used in numerous signal processing

Fig. 1. Time–frequency representation of the received signal and its relation
to the FrFT angle ϕ: (a) before FrFT and (b) after FrFT.

Fig. 2. FRFT receiver structure for modulated FMCW waveforms.

applications [17], [25], including radar, where it has been
applied to focus (inverse) synthetic aperture radar [(I)SAR]
images [18], passive radar signal processing [25], coherent
integration of moving target over long time intervals [26] and
waveform design [27].

With the use of FrFT, the definition (10) can be extended
to calculate the cross correlation along any line in the
Doppler-delay plane [24]

y(τ ) = s(t) �ϕ m∗(t − τ )

= F− π
2

{
S

π
2 +ϕ(ρ)

(
M

π
2 +ϕ(ρ)

)∗}
(11)

where the operators �ϕ and Fϕ{·} denotes fractional cor-
relation and the FrFT associated with angle ϕ, measured
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Fig. 3. (a) GMSK modulation signal (real part) �{m(t)}. (b) Received signal (real part) �{s(t)}. (c) FrFT of the modulation signal M(π/2)+φ (ρ). (d) FrFT
of the received signal S

π
2 +φ(ρ). (e) Product of FrFTs S(π/2)+ϕ(ρ)(M(π/2)+ϕ (ρ))∗. (f) Range profile as the result of fractional correlation (11).

anti-clockwise from the time axis, such that F (π/2){·} and
F−(π/2){·} correspond to the Fourier transform and inverse
Fourier transform, respectively. Moreover, we denote by
Sϕ(ρ) = Fϕ{s(t)} and Mϕ(ρ) = Fϕ{m(t)} the ϕth FrFT
(FrFT) of s(t) and m(t) [17], [18], [23] and ρ is the argument
in this FrFT domain.

The FrFT of s(t) is defined for angle ϕ as [24, eq. (9)]

Sϕ(ρ) = √
1 − j cot ϕe jπρ2 cot ϕ

·
∫

s(t)e jπ t2 cot ϕ− j2π tρ csc ϕdt . (12)

The time–frequency representation of the modulation signal
m(t) and that of the received signal (4) are presented in Fig. 1
before (a) and after (b) applying FrFT to them. It can be
seen that the target range information is fully described by
the radial displacement ρ at the angle ϕ. It was shown in [24,
eq. (21)] that the displacement of the signal time–frequency
representation by ρ, ϕ in polar coordinated corresponds
to

Sϕ(ρ − ρ0) = Fϕ{α̃s(t − ρ0 cos ϕ)e j2π tρ0 sin ϕ} (13)

where we used the notation α̃ = e− j2π(ρ2
0/2) cos ϕ sin ϕ , as for

the FrFT of s(t) [and of m(t)] it can be substituted into
the constant term of the received signal α0 with no loss of
generality. Given the property (13) of FrFT and comparing it
to (4), the relation of the FrFT parameters to the waveform
and radar parameters can be found by⎧⎪⎨

⎪⎩
ρ0 cos ϕ = τ0

Tγr

ρ0 sin ϕ = βτ0

fs

(14)

where γr is the oversampling factor for range processing.
It should also be noted that depending on the sign of the
analytical signal in (1) and also on the choice of up/down
chirp, the beat frequency can have a negative sign. That should
be taken into account at the output of in-phase and quadrature

(IQ) demodulation. Furthermore, the angle of FrFT is fully
determined by the parameters of the radar according to the
ratio of scales in relative frequency shift (βτ0/ fs) to a relative
time delay of the signal (τ0/T ) and thus

ϕ = arctan

(
Bγr

fs

)
. (15)

The target range depends linearly on the parameter ρ0

ρ0 = τ0

Tγr cos(arctan ϕ)
=

√
ϕ2 + 1

Tγr
τ0 (16)

and can be directly scaled to the range axis.
The structure of the FrFT receiver is presented in Fig. 2.

The key component of the receiver is the fractional correlation
block, which is reflected in (11).

It is assumed that the fractional correlation block oper-
ates with the sampled signals. The discrete version of FrFT
(12) can be derived from the discrete Fourier transform by
eigenvalue decomposition of the transformation matrix [17],
[28] and maintain most of the properties of continuous FrFT.
It approximates well the continuous FrFT for a large num-
ber of samples. Ozaktas et al. [19] proposed a faster way
to compute an approximation of the continuous fractional
Fourier. It exploits the fact that FrFT can be rewritten via a
convolution in between two chirp multiplications, which need
to be sampled at twice the original sampling rate. The compu-
tational complexity of such implementation is O(N log2 N),
being determined by the realization of the convolution via
FFT [19], [28]. The low computational load and high accu-
racy made this algorithm a common tool in digital signal
processing [17].

It should be noted that the digital calculation of FrFT
assumed that the signal is approximately confined to the
interval [−T/2, T/2] in time and to the interval [− fs/2, fs/2]
in frequency. Although the former is easy to satisfy by shifting
the time axes of the Rx signal s(t) and the replica m(t) by
−T/2, breaking the latter assumption results in folding the
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Fig. 4. Estimated range profile of a point-like target with three receiver
structures considered: (a) narrowband modulation, Bm/ fs = 1/64 and
(b) wide-band modulation, Bm/ fs = 1/4.

signal in FrFT domain for fb > fs/2. To avoid frequency
folding, we propose to transmit the modulated signal m(t)
with a frequency offset � f = − fs/2 + Bm/2, where Bm is
the bandwidth of modulation sequence, which ensures that the
sampled received signal is a time–frequency shifted version of
the reference one for ranges

r ∈
[

0,
( fs − Bm)T

�r

]
(17)

where �r = c/(2B). This criteria for the maximum range is
defined assuming that for proper correlation the spectrum of
the modulation signal defined by Bm should fall below the
cut-off frequency of the low-pass filter (LPF) before ADC.
Targets at longer ranges can still be observed, but they will
have a larger SNR loss and a significant distortion of the
range profile. Modulation of FMCW, therefore, leads to the
degradation of the maximum detectable range by the factor
( fs − Bm)/ fs . Note that the discussion above assumes the IQ
receiver structure; if sampling only the I channel, both signals
should belong to the interval [0, fs/2], and thus the frequency
offset should be set to � f = Bm/2.

IV. SIMULATIONS

Consider the waveform with chirp bandwidth B =
200 MHz, chirp duration T = 12.8 μs operating at carrier
fc = 77 GHz, and the sampling frequency of the beat signal
is fs = 20 MHz. With this setup, the maximum range of
FMCW is Rmax = 192 m. The signal m(t) is the Gaussian

Fig. 5. Processing loss versus the normalized bandwidth of the modulation
signal m(t).

Fig. 6. Processing loss as a function of the target range: (a) narrowband
modulation, Bm/ fs = 1/16; (b) wide-band modulation, Bm/ fs = 1/4; and
(c) Bm/ fs = 1/2.

minimum shift keying (GMSK) modulated waveform with
the time-bandwidth product of GMSK equal to 0.3 [29] and
N = 64 chips, which corresponds to the modulation signal

Authorized licensed use limited to: TU Delft Library. Downloaded on March 07,2023 at 13:44:34 UTC from IEEE Xplore.  Restrictions apply. 
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Fig. 7. Range-Doppler processing: (a) FRFT receiver, (b) matched filter bank, and (c) group delay receiver.

bandwidth of Bm = fs/4 = 5 MHz. For range processing,
we consider range oversampling γr = 2, which according
to (15) gives ϕ = arctan(20) ≈ 1.52. To demonstrate the
principle of the FrFT receiver, we assume a noise-free
scenario with a single stationary point-like target at the range
r0 = 60 m from the radar.

A. Principles of FRFT Receiver

The signal representations at all the stages of the fractional
correlation (11) are plotted in Fig. 3. Here, we did not apply
the frequency shift of the modulation signal, described at
the end of the previous section, for better visibility (there
is no difference in applying this shift or not for a target
at r0 ≤ Rmax/2). It can be seen that despite the time and
frequency shift between the received s(t) and the reference
m(t) signals [see Fig. 3(a) and (b)], it vanishes in their FrFT
representations [see Fig. 3(c) and (d)]. As a result, their
product has a wide and uniform spectrum [see Fig. 3(e)],
which leads to a narrow peak in the reconstructed range
profile [see Fig. 3(f)].

We further compare the performance of the FrFT receiver
to that of the filter bank approach, described in Section II-B
(or compensated stretch processing [5], [6]) and to that of
the group delay receiver [7], [9] (see Fig. 4). Simulation
results demonstrate that all three receivers have comparable
range response for small bandwidth of modulation signal
Bm/ fs = 1/64 [see Fig. 4(a)], but for larger bandwidth
of m(t) the performance of group delay receiver degrades
significantly compared to that of the filter bank and FrFT
approaches (see Fig. 4(b) shows the result for Bm/ fs = 1/4).
The performance of FrFT receiver is similar to that of the
filter bank, being different only in the implementation and
related to its computational complexity, as we mentioned
above.

B. Processing Loss

To better demonstrate the limit of applicability of the group
delay receiver, we compare in Fig. 5 the processing loss as
the function of the code bandwidth Bm/ fs normalized by fs .
Similar to the above, we considered a noise-free scenario with

Fig. 8. Computational complexity of three considered receiver structures.

a single target present in the scene in the range r0 = 60+wr m,
where wr ∈ [−2.5�r, 2.5�r ], models an offset from the
defined range grid with a step 0.125�r . The plots in Fig. 5
show the average (solid line), the best-case and the worst case
(dashed lines) processing loss for three considered receivers.
It comprises the attenuation of the signal by the LPF prior
to ADC and straddle loss: the mean value indicates the loss
due to filtering of the received signal band by LPF prior
to ADC sampling in the stretch processing architecture. The
gap between lower and upper limits shows the bounds of
the straddle loss, that can occur due to off-grid sampling.
It can be seen that all three receivers behave similarly for
a small code bandwidth: the straddle loss is about 1 dB [30].
For large code bandwidth Bm/ fs ≥ 1/8, the degradation
of the matched filter and the FrFT receiver is dominated
by the straddle loss, while the group delay filter leads to a
significant (over 10 dB) processing loss, which is also seen via
defocusing of the main lobe of the range response in Fig. 4(b).
This performance degradation of the group delay receiver for
large bandwidth of the modulation signal m(t), previously
mentioned in [9], imposes an additional constraint on the
choice of the modulation sequence m(t). Finally, it should
be noticed that for Bm/ fs = 1 all the receivers have degraded
performance for observing the target at r0 ≈ 60, because a
part of the modulated signal spectrum is being rejected by the
LPF of the receiver.
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Fig. 9. Measured range profile of a chimney at r ≈ 1185 m, illuminated by a BPSK modulated chirp.

The bandwidth of the modulation signal has an impact
on the maximum detectable target range. We investigate this
behavior via simulations in Fig. 6 for three values of the nor-
malized bandwidth of the modulation signal: Bm/ fs = 1/16
[see Fig. 6(a)], Bm/ fs = 1/4 [see Fig. 6(b)] and Bm/ fs = 1/2
[see Fig. 6(c)]. The range axes in Fig. 6 are similar to that in
Fig. 4, up to the normalization by a scalar Rmax. It can be seen,
that a small bandwidth of the modulation Bm [see Fig. 6(a)]
has almost no impact on the maximum detectable range of the
target, while in the case of a significant modulation bandwidth
Bm , processing loss rapidly increases for r ≥ 0.8 Rmax when
Bm/ fs = 1/4 and for r ≥ 0.6 Rmax when Bm/ fs = 1/2.
These values slightly exceed the criteria defined in (17), while
the latter still gives a reasonable estimation of the maximum
range for applying dechirping receiver with a modulated LFM
waveform.

C. Range-Doppler Processing

We further demonstrate the performance of the proposed
receiver by comparing range-Doppler images of three receiver
structures, presented above. For this simulation, we assume
the radar transmits M = 128 chirps with the parameters,
mentioned above and pulse repetition interval (PRI) Tr = T .
Each chirp is modulated with a different random GMSK
modulation with Bm = fs/4 = 5 MHz. Two targets resulting
in equal Rx power are present in the scene: r0 = 60 m and
Doppler frequency fD,0 = 5 kHz; r1 = 75 m fD,1 = −20 kHz.
The proposed processing is applied per chirp, followed by
a Doppler FFT with Hamming window to reduce Doppler
sidelobes. Range-Doppler maps of the FRFT receiver, the
matched filter bank and the group delay receiver are demon-
strated in Fig. 7(a)–(c), respectively. The FRFT receiver and
the matched filter bank indicate the responses of both targets
at their correct positions and provide about 50 dB dynamic
range [21 dB slow-time gain and about 30 dB per chirp, see

Fig. 4(b)], which significantly outperforms the group delay
receiver.

D. Computational Complexity

Further, we compared the average over 100 trials execution
time of each of the three receivers (for a single chirp) as
the function of fast-time samples per chirp (see Fig. 8).
In this simulation, we used two different implementations of
FrFT: fracF–the direct implementation of algorithm [19] in
MATLAB by Ozaktas et al. and fracFT–the implementation
of FrFT [19] by O’Neill [31]. The difference between these
implementations is discussed in detail in [28].

The results in Fig. 8 show that the slope of the FrFT and
group delay receivers follows the trend O(N log2(N)) and
the complexity of the matched filter increases according to
O(N2). Two implementations of FrFT have slightly different
execution time: the one by O’Neill [31] being more efficient.
For a moderate to a large number of samples per chirp, the
FrFR receiver has a gain of more than one order of magnitude
in computational time. The group delay receiver reduces the
execution time even more, but its performance for long code
sequences is unsatisfactory, as explained above.

V. EXPERIMENTAL VALIDATION

The experimental validation of the proposed processing
technique was performed with polarimetric agile radar in S
band (PARSAX) radar [32], installed on the rooftop of 100 m
high electrical engineering, mathematics, and computer sci-
ence (EEMCS) building of the Delft University of Technology.
The radar was pointing to the top of an industrial chimney,
located about 1185 m away from the radar. A single (HH)
polarimetric channel was used for the measurements. The
waveforms settings are: fc = 3.315 GHz, B = 40 MHz,
Tr ≈ 1 ms; m(t) is a binary phase shift keying (BPSK)
sequence with Bm ≈ 1 MHz. The raw data was collected
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at the intermediate frequency fIF = 125 MHz, followed by
the downconversion to the baseband, deramping (this and the
following steps are not applied for the full band matched filter
processing, considered below), downsampling to fs ≈ 4.2
MHz (corresponding to 4096 range cells), and applying one
of the considered range processing techniques. Chebyshev
windowing with 80 dB sidelobe level and range oversampling
with γr = 4 are applied for all the techniques [for the
IFFT in (11)]. The results demonstrated in Fig. 9 compare
the performance of the fractional correlator (11), matched
filter bank after deramping (8), group delay receiver [9] and
the matched filtering in the full band. The results demon-
strate that the group delay filter performs poorly with the
selected bandwidth of the code, while the other techniques
demonstrate similar performance. This comes with the high
sampling rate requirements of the full-band matched filtering
and low computational efficiency of the matched filter bank
after deramping (8). The proposed fractional correlator obtains
the same result with low ADC sampling and computational
complexity requirements.

VI. CONCLUSION

In this article, we proposed the new receiver structure for
the modulated LFM waveform, which can be realized in
simple hardware and requires computational resources similar
to FFT. We demonstrated that matched filter processing of
this waveform corresponds to calculating the cross correla-
tion along a diagonal line in the delay-Doppler plane-called
Fractional correlation, which can be efficiently implemented
via the FrFT. The receiver, based on the proposed principle,
offers a significant improvement over the state-of-the-art
techniques for moderate-to-large bandwidths of modulation
signals, as demonstrated via numerical simulations and exper-
imental processing from waveform-agile radar PARSAX.
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