

Delft University of Technology

Digitization of chemical process flow diagrams using deep convolutional neural networks

Theisen, Maximilian F.; Flores, Kenji Nishizaki; Schulze Balhorn, Lukas; Schweidtmann, Artur M.

DOI
10.1016/j.dche.2022.100072
Publication date
2023
Document Version
Final published version
Published in
Digital Chemical Engineering

Citation (APA)
Theisen, M. F., Flores, K. N., Schulze Balhorn, L., & Schweidtmann, A. M. (2023). Digitization of chemical
process flow diagrams using deep convolutional neural networks. Digital Chemical Engineering, 6, 11.
Article 100072. https://doi.org/10.1016/j.dche.2022.100072

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.dche.2022.100072
https://doi.org/10.1016/j.dche.2022.100072

Digital Chemical Engineering 6 (2023) 100072

Available online 8 December 2022
2772-5081/© 2022 The Author(s). Published by Elsevier Ltd on behalf of Institution of Chemical Engineers (IChemE). This is an open access article under the CC
BY license (http://creativecommons.org/licenses/by/4.0/).

Best practices and methods

Digitization of chemical process flow diagrams using deep convolutional
neural networks

Maximilian F. Theisen, Kenji Nishizaki Flores, Lukas Schulze Balhorn, Artur M. Schweidtmann *

Delft University of Technology, Department of Chemical Engineering, Van der Maasweg 9, Delft, 2629 HZ, Netherlands

A R T I C L E I N F O

Keywords:
Process flow diagrams (PFD)
Flowsheet digitization
Object detection
Digitalization
Machine learning
Deep convolutional neural network

A B S T R A C T

Advances in deep convolutional neural networks led to breakthroughs in many computer vision applications. In
chemical engineering, a number of tools have been developed for the digitization of Process and Instrumentation
Diagrams. However, there is no framework for the digitization of process flow diagrams (PFDs). PFDs are difficult
to digitize because of the large variability in the data, e.g., there are multiple ways to depict unit operations in
PFDs. We propose a two-step framework for digitizing PFDs: (i) unit operations are detected using a deep
learning powered object detection model, (ii) the connectivities between unit operations are detected using a
pixel-based search algorithm. To ensure robustness, we collect and label over 1000 PFDs from diversified sources
including various scientific journals and books. To cope with the high intra-class variability in the data, we define
47 distinct classes that account for different drawing styles of unit operations. Our algorithm delivers accurate
and robust results on an independent test set. We report promising results for line and unit operation detection
with an Average Precision at 50 percent (AP50) of 88% and an Average Precision (AP) of 68% for the detection of
unit operations.

1. Introduction

Engineering diagrams (EDs) are very important documents in the
chemical process industry. In particular, there exist a variety of different
EDs used during all engineering stages from early-stage process devel-
opment to detailed engineering, construction, operation, and disas-
sembly. The most relevant EDs in the chemical industry are block flow
diagrams (BFDs), process flow diagrams (PFDs) (e.g., shown in Fig. 1),
and piping and instrumentation diagrams (P&IDs). These EDs represent
essential information of chemical processes (Nasby, 2012), such as
process topology, major unit operations, control equipment, and piping
information.

Despite the availability of advanced CAD software, EDs are still
commonly stored and communicated as PDFs, image files, or printouts.
Thus, the topological information of the ED can often not be directly
read out from computer programs. Consequently, chemical companies
have large amounts of legacy EDs which are not machine-readable.
Likewise, there is a large number of BFDs, PFDs, and P&IDs depicted
in figures in scientific literature and patents, which contradicts the FAIR
(Findable, Accessible, Interoperable, Reusable) data principles.

The analog storage and communication of ED files leads to a number

of practical issues. First, modifying and updating EDs is expensive and
time-intensive. Changing ED is often necessary to maintain them up to
date for safety or regulatory reasons. Second, analog EDs are not inter-
operable with other software applications, for instance Internet of
Things (IoT) or digital twins. The lack of interoperability furthermore
hinders the development of novel artificial intelligence (AI) applications
in chemical engineering (Schweidtmann, 2022; Schweidtmann et al.,
2021a; Weber et al., 2021; Wiedau et al., 2021). For instance, we have
shown that AI algorithms can learn from the structure of flowsheets to
facilitate process engineering (Vogel et al., 2022a; Vogel et al., 2022b).
Third, information in EDs is not findable. Since analog EDs are not
machine-readable, they can also not be integrated into knowledge bases
and thus information about the processes is not findable. To overcome
these drawbacks, it is important to digitize EDs for the chemical
industry.

Digitization of EDs has been a prevalent research topic in the clas-
sical computer vision community for a long time (Moreno-García et al.,
2019). In the 1980s, the digitization of electric circuit diagrams (Bunke,
1982; Fahn et al., 1988; Groen et al., 1985; Okazaki et al., 1988) and
P&IDs (Furuta et al., 1984; Ishii et al., 1989) attracted attention. These
early digitization strategies relied on classical computer vision

* Corresponding author.
E-mail address: a.schweidtmann@tudelft.nl (A.M. Schweidtmann).

Contents lists available at ScienceDirect

Digital Chemical Engineering

journal homepage: www.elsevier.com/locate/dche

https://doi.org/10.1016/j.dche.2022.100072
Received 17 October 2022; Received in revised form 29 November 2022; Accepted 1 December 2022

mailto:a.schweidtmann@tudelft.nl
www.sciencedirect.com/science/journal/27725081
https://www.elsevier.com/locate/dche
https://doi.org/10.1016/j.dche.2022.100072
https://doi.org/10.1016/j.dche.2022.100072
https://doi.org/10.1016/j.dche.2022.100072
http://crossmark.crossref.org/dialog/?doi=10.1016/j.dche.2022.100072&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Digital Chemical Engineering 6 (2023) 100072

2

algorithms, i.e., they were mostly rule-based, and relied strongly on
manually-engineered feature extraction and pattern recognition (Mani
et al., 2020). Several works have presented a semi-automatic digitiza-
tion process where P&ID symbols were distinguished by template
matching (Vanderbrug and Rosenfeld, 1977). Using template matching
as well, Arroyo et al. (2016) derived plant simulations from P&ID dia-
grams. However, template-based detection approaches do not work well
with heterogeneous data sources, where high intra-class variability oc-
curs. More recently, Gellaboina and Venkoparao (2009) used a Hopfield
model to recognize common symbols in P&IDs by recognizing patterns
based on a memory system. While decent results were reported, the
Hopfield neural network model presented problems with large datasets
and class imbalances (Gellaboina and Venkoparao, 2009).

With recent advances in deep learning, digitization strategies for EDs
in the process industry have improved significantly. Deep learning
techniques and convolutional neural networks (CNNs) have significantly
outperformed classical computer vision methods on a large variety of
tasks. Flowsheets show a large diversity in styles and sizes of objects.
This makes classical methods such as template matching difficult to
apply. Also, CNNs can improve over time when more data is added. This
has motivated several works to apply deep learning to flowsheet dig-
ization. Mani et al. (2020) trained a three-layer convolutional neural
network to recognize symbols in P&IDs based on a dataset of 18 P&IDs.
Similarly, Rohit et al. (2019) trained a CNN-based object detection
model (Long et al., 2015) on 4 large industrial P&IDs which were
sub-divided into 672 images. In 2021, Paliwal et al. (2021) improved
upon that by training a two-stage detector, with a fully convolutional
network (Long et al., 2015) for region proposals combined with a
fine-grained image classification network (Zhang et al., 2021). For
training, they used a dataset of 500 P&IDs, which was randomly
generated using a CAD software. Jamieson et al. (2020) applied a
state-of-the-art text detection model (Zhou et al., 2017) with an optical
character recognition algorithm to detect and digitize text from 172
P&IDs from one source in the oil and gas industry. Yun et al. (2020)
applied a R-CNN framework (Girshick, 2015) to symbol detection in
P&IDs, training their model on 7 diagrams from an industry collabora-
tion. They further introduced negative samples in training to increase
model performance through clustering. With a custom CNN model
inspired by AlexNet (Krizhevsky et al., 2012; Yu et al., 2019)
approached the problem of symbol detection with a sliding window
approach. Their dataset consisted of 68 P&IDs, provided by a Korean
engineering company. To tackle the problem of tiny symbols in dia-
grams, Kim et al. (2021) trained two separated generalized focal loss (Li
et al., 2020) networks for detection of small and large symbols on 82
P&IDs provided by an engineering company. Taking a few hundred
P&IDs from Design Control Documents submitted to the US NRC, Gao

et al. (2020) demonstrated the applicability of the Faster R-CNN
framework (Ren et al., 2015) to symbol detection in P&IDs. Elyan et al.
(2020) applied YOLOv3 (Redmon and Farhadi (2018) for symbol
detection in P&IDs. Their dataset consisted of 172 P&IDs provided by an
engineering company. To further extend the dataset, they applied
generative adversarial networks. Concentrating on the detection of lines
in P&IDs, Yoochan et al. (2021) introduced a framework to digitize
flows. They detected line segments using Hough transformations and
flow related symbols using deep learning based object detection. To test
their framework, they applied it to 9 P&IDs provided by an engineering
company. Very recently, Kim et al. (2022) presented a framework for
P&ID digitization combining elements of previous work (Kim et al.,
2021; Yoochan et al., 2021) to an end-to-end approach. They trained
two GFL (Li et al. (2020)) models and a RetinaNet (Zlocha et al., 2019) to
detect symbols, text and flows respectively on a dataset of 82 synthetic
P&IDs. The training corpus consisted of 76 labels, of which 25 were
related to unit operations, 33 to piping, and 18 to instruments. They
further tested the trained model on 5 real P&IDs provided by a local
engineering company.

Although promising results have been reported from previous
studies, we identify four major limitations in previous literature ap-
proaches. First, while there has been a considerable effort towards
digitizing P&IDs, to the best of our knowledge deep learning powered
digitization approaches have not been applied to PFDs. PFDs have spe-
cific symbol illustrations and different flow depictions, mandating
tailored approaches. Second, all ML models in the literature are trained
on datasets from a single source or on a synthesized datasets based on
one CAD software. Thus, the data has a lack of variety. Unsurprisingly,
the accuracies of such models are often near perfection, as the data
exhibits little variation. It needs to be acknowledged that retrieving
P&IDs is not trivial, as companies rarely publish these highly confi-
dential information. It is however doubtful if such models would
generalize well to other data distributions, for instance diagrams
generated with other CAD software or diagrams that use different styles
to depict unit operations (Willemink et al., 2020). Third, as denoted
previously by Kim et al. (2021), most symbol datasets only consist of a
few categories. As a consequence, these categorizations do not apply to
other PFDs or P&IDs as they are incomplete. Fourth, the datasets used
for training are oftentimes very small. Deep learning models rely on
large datasets in order to make generalizable predictions (i.e., big in
volume) (LeCun et al., 2015). Thus, limited data can lead to poor
generalization.

The main contribution of this manuscript is a novel flowsheet digi-
tization framework that overcomes the four previously mentioned lim-
itations. Following the first observation, we implement a framework for
the digitization of PFDs. Second, we address the lack of diversity in data

Fig. 1. Example flowsheet of a proposed Cumene production plant recreated from Norouzi et al. (2014). The illustration was slightly altered to introduce more
optical variability. The flow structure however is kept.

M.F. Theisen et al.

Digital Chemical Engineering 6 (2023) 100072

3

by collecting process flow diagrams from various sources including
scientific literature, internet sources, and books. Third, in order to
address the lack of complete data categorization commonly encoun-
tered, our data categorization is extensive with 47 categories. Fourth, we
mine and label over 1000 flowsheets for training, which is significantly
larger than previous work.

Our proposed digitization approach contains three main steps: (1) it
recognizes objects in flowsheet images using computer vision, specif-
ically deep learning-driven object detection, (2) it determines connec-
tivities among unit operations using a pixel-based search algorithm, and
(3) it converts the obtained information into a network graph repre-
sentation of the flowsheet.

The remaining manuscript is structured as follows. Section 2 de-
scribes our training data, unit operation categorization, and data
annotation procedure. Section 3 presents our approach for process flow
diagram digitization. Section 4 presents the results of the object and
stream detection algorithm. Finally, we draw conclusions from our work
in Section 5.

2. Data

The development of deep learning algorithms through supervised
learning methods usually requires large amounts of diverse data also
referred to as big data (LeCun et al., 2015). In Section 2.1, we will
discuss the sources of our data that we used for this study. In Section 2.2,
we propose a unit operation symbol categorization for PFDs that is based
on the topology of symbols and functionality in applications. In Section
2.3, we describe our data annotation process briefly before discussing
challenges of the dataset in Section 2.4.

2.1. Flowsheet mining

There is currently no public dataset for chemical flowsheets. In our
recent perspective paper, we describe the vision of mining flowsheets
from scientific literature and patents in order to create a FAIR database
of all chemical processes that have ever been published (Schweidtmann,
2022). Herein, we implement the first few steps towards our vision.

PFDs are retrieved using our recently developed flowsheet recogni-
tion algorithm (Balhorn et al., 2022). The algorithm downloads all full
text papers from a given journal and extracts all images in said papers.
Then, a CNN classifier detects if a figure is a flowsheet or not. The
retrieved flowsheets are stored as images before being applied to our
framework. We applied the algorithm to seven chemical engineering
journals (i.e., Computers and Chemical Engineering, Korean Journal of
Chemical Engineering, Brazilian Journal of Chemical Engineering, In-
ternational Journal of Industrial Chemistry, Petroleum Science and

Process Integration and Optimization for Sustainability). Next to journal
publications, we also retrieve PFDs from the process engineering ency-
clopedia Ullmann’s Encyclopedia of Industrial Chemistry (Ullmann,
2004). As an additional source we extracted images from Google and
Bing search results based on related keywords such as ”flowsheet” and
”PFD”. Overall, we mined 1005 PFDs using this approach. Using more
journals, it would have been possible to retrieve more flowsheets. We
however stopped at 1005 due to the time intensive annotation process.
In accordance with the high accuracy reported by Balhorn et al. (2022),
the overwhelming majority of extracted figures were correctly classified
by the flowsheet image recognition algorithm.

Our mined PFD dataset is diverse because of two main reasons. First,
different authors of scientific publications often use different styles to
illustrate unit operations and connectivities in PFDs. This reflects the
diversity in personal preferences, backgrounds, demographics, and
(inter-)national standards of the chemical engineering community.
Second, we include many different sources, to avoid bias towards jour-
nal- or community-specific flowsheet conventions. The diversity of our
data sources is imperative, as ML models regularly fail to extrapolate
outside their trained data distribution (Schweidtmann et al., 2021b; Xu
and Mannor, 2012). While our mined flowsheets are from international
sources, their text labels are in always English.

2.2. Unit operation categorization

In order to train object detection algorithms, object classes need to be
defined. These classes are used during data labeling and training. In the
previous literature, common unit operations are usually defined as
classes for object detection. For instance, Zhang et al. (2019) defined 12
common unit operations as classes in their object detection algorithm.
However, this approach can lead to a large variety of different symbols
for the same class. We refer to this as intra-class variations. For instance,
Fig. 2 shows a number of different symbols for heat exchangers that are
commonly used in PFDs. Such intra-class variations often result from
different CAD software, personal preferences, or distinctions of different
technical solutions. In the case of heat exchangers, there exist different
symbols for heat exchanger furnaces, shell-tube heat exchangers, and
plate heat exchangers. High intra-class variability can complicate the
learning process as different drawing styles for the same class object
could be considered as outliers in the dataset. This can lead to poor
model performance in the light of limited data (Frid-Adar et al., 2017).

Class decomposition describes the method of splitting classes into
different, more homogeneous sub-classes (Elyan and Gaber, 2016). In
the context of PFD digitization, class decomposition has two main ad-
vantages. First, the decomposed classes exhibit more similar patterns
within themselves and are more distinguishable from other classes.

Fig. 2. There exist a large variety of symbols for the same unit operation. The figure shows 23 different representations of heat exchangers which are commonly
found in PFDs. The variety also includes differences in technical solutions (e.g., heat exchanger furnace vs. plate heat exchanger), shapes, colors and shades (e.g.,
drop shadow used giving the impression that the object is raised above the objects behind it).

M.F. Theisen et al.

Digital Chemical Engineering 6 (2023) 100072

4

Thus, decomposition can improve classification accuracy. Second, the
distinct class definitions allow to extract more detailed information
about the unit operations. Taking again the example of heat exchangers,
there exist many different types of heat exchangers with different
functionalities, thus sub-classes contain more information about used
equipment types.

We extended the original 12 categories from Zhang et al. (2019) to
incorporate a larger variety of symbols and equipment types using class
decomposition. Our final categorization consists of 47 classes that are
illustrated in Table 1.

We arrived at the final classes from the original 12 classes based on
three rules. First, we split classes that contain specific equipment sub-
types. For instance, we split the original valve class into eight sub-
classes. Each subclass represents a different specific valve type, e.g.,
needle valves or globe valves. Second, we split classes based on different
drawing styles for the same category. This class decomposition can help
increase model performance. For instance, we split the tank category
into five subcategories including four different drawing styles (tank1,
tank2, tank3, tank4). Third, we add other flowsheet-specific symbols as
additional classes (e.g., In/Out tags (IO), arrows, text, or stream tags).

2.3. Active learning for data annotation

Data annotation is a time-intensive and costly task. In order to
accelerate the annotation process, we employed an active learning
approach (Settles, 2012). First, all unit operations within a small batch
of PFD were annotated manually. Then, a preliminary object detection
model was trained and used for interference on a second batch of raw
data (i.e., PFD images) to predict annotations for these. Then, the
interfered annotations were manually corrected and used to retrain the
model. This active learning loop was repeated multiple times. We found
that this approach greatly accelerates the annotation, as the model
quickly learns to detect the most common unit operations and human
correction is only necessary for a small number of errors.

The mined flowsheets were labeled using domain expertise and
contextual information. The open-source graphical annotation tool
LabelImg (Tzutalin, 2015) was utilized. The quality of data annotation
directly impacts the predicting performance of the object detection
model (Su et al., 2012). Thus, correct and consistent annotation of ob-
jects in the data is essential. Using the active learning approach, we
manually annotated 1005 flowsheets including 17,411 unit operations

Table 1
Examples of unit operations among the 47 categories with short acronyms used in this work.

M.F. Theisen et al.

Digital Chemical Engineering 6 (2023) 100072

5

in total.

2.4. Data challenges

The final dataset exhibits several challenges for deep learning. First,
the sizes of unit operations vary greatly. This occurs commonly in PFDs
reflecting the physical size of the unit operations, e.g., valve symbols are
smaller than symbols for distillation columns. This can be a challenge for
object detection algorithms, which are known to struggle with very
small objects (Li et al., 2017). Second, the dataset size is small. Our PFD
dataset size is already significantly larger than the one of previous
works. However, common object detection datasets that are used for
benchmarking are often much larger. For instance, the COCO dataset
includes 220,000 images which is significantly larger than our dataset.
As the performance of deep learning models typically scales with dataset
size, the limited dataset size is still a potential challenge. Third, our
dataset is imbalanced. In particular, the number of examples per class
varies greatly. This imbalance arises naturally since some unit opera-
tions are used more frequently than others. For instance, in the entire
dataset there are 35 instances of the class blower (blwr), while there are
2617 heat exchangers (hex). Such class imbalance can lead to poor
model performance on underrepresented classes (Oksuz et al., 2021).

3. Methodology

In this section, we explain the three key steps of our proposed PFD
digitization algorithm as illustrated in Fig. 3: First, object detection
models detect and classify unit operations, text, and arrowheads (Sec-
tion 3.1). Second, the connectivities between unit operations are iden-
tified using a pixel-based search and the process graph is generated
based on the identified information (Section 3.2).

3.1. Unit operation detection

The object detection identifies a variety of objects that are commonly
found on PFDs. This includes unit operations, arrowheads, and text (e.g.,
tags).

Object detection nowadays is mostly based on deep learning archi-
tectures. There exist two types of object detection algorithms, i.e., one-
stage (Lin et al., 2017b; Liu et al., 2016; Redmon et al., 2016; Redmon
and Farhadi, 2017; Redmon and Farhadi, 2018) and two-stage (Ren
et al., 2015; Zou et al., 2019) algorithms. Both architectures first use
fully connected convoluted networks for feature extraction, commonly
referred to as backbone. Then, two-stage detection algorithms use two
stages, i.e., a region proposal stage and a classification stage. Herein, the
region proposal stage predicts possible bounding boxes while the clas-
sification stage predicts the object class labels. One-stage models on the
other hand omit the region proposal stage and combine the two tasks.

Single detectors exhibit high detection speeds (Zou et al., 2019),
which makes them a natural choice in time-critical tasks or

high-throughput tasks such as object detection in videos. However,
one-stage detectors have been reported to struggle more detecting small
objects in images (Liu et al., 2021; Redmon and Farhadi, 2017).
Two-stage detectors on the other hand regularly report higher accu-
racies on benchmark datasets such as COCO (Lin et al., 2014).

We use the state-of-the-art two-stage network called Faster R-CNN
for object detection for three main reasons: (i) PDFs exhibit often small
objects like valves, (ii) the digitization is not a computationally
demanding high-throughput task (compared to object detection in
videos), and (iii) we prefer a high prediction accuracy over prediction
speed.

We chose a ResNet-50 as our backbone model. The choice of a
backbone model is hereby one of the most crucial decisions for perfor-
mance. ResNet has been reported to be especially suitable for the
detection of small objects, which are one of the challenges of this
dataset. In preliminary trials, deeper ResNet (Xie et al., 2017) archi-
tectures showed no further improvement.

We further employed Feature Pyramid Networks (FPNs) in our
backbone model. FPNs are a set of deep CNNs which construct features
at different scales while keeping computation feasible (Lin et al., 2017a).
The main objective of feature pyramids in a model is to allow a neural
network to learn high to low-level features and independently make
predictions at each level. In contrast to vanilla predictors, FPNs do not
rely on the highest level features only. This allows to consider a broader
spectrum of features that are otherwise lost during up-sampling. For
more details, we refer to Lin et al. (2017a). Feature pyramids are an
important component in detection systems that facilitate the recognition
of objects at different scales (Lin et al., 2017a). This makes them suitable
to overcome the present size differences of objects in our dataset. PFDs
come in various sizes. Faster R-CNN can in principle handle any image
size. For practical reasons however, images are resized to be between
800 and 1333 pixels during preprocessing. This is the default setting in
Detectron2.

We use transfer learning to improve model performance. Transfer
learning refers to the improvement of model learning in one task by
transferring knowledge from a related, previously learned task (Torrey
and Shavlik, 2010). With transfer learning, a model can initiate the
training process on new data distributions with pre-trained weights,
shortening training time and possibly leading to superior performance.
We considered this to be advantageous in the light of limited training
data. In our algorithm, the Faster R-CNN model had been pretrained on
the COCO dataset 2017 (Lin et al., 2014).

We mitigate the issue of our imbalanced dataset using two tech-
niques. First, we apply repeat factor sampling (Wu et al., 2019). Repeat
factor sampling allows training images with underrepresented cate-
gories more often to account for slower learning effects. Repeat factor
training is especially important for our dataset as some unit operations
are seldom found in PFDs. Second, we trained two individual object
detection models for different tasks: (1) detection of unit operations and
unknown units, and (2) detection of arrowheads and text. This is

Fig. 3. The trained unit operation detection model is applied to the flowsheet (a). The object detection algorithm predicts bounding boxes and object classes (b).
Then, skeletization is applied and streams connecting unit operations are identified (c). Finally, a graph representation is obtained (d).

M.F. Theisen et al.

Digital Chemical Engineering 6 (2023) 100072

6

advantageous because arrowheads and text are much more frequent in
PFDs than unit operations. Next to these techniques, several other
techniques have been described in literature to mitigate class imbalance.
For example, different weights can be assigned to individual categories
in the loss function during training (Oksuz et al., 2021). After unit op-
erations are successfully detected, their bounding boxes are
post-processed. Bounding boxes with significant overlap, measured as
their intersection over union (IoU) (Rezatofighi et al., 2019), are
compared and the ones with the lower confidence score are removed.
This is necessary as Faster R-CNN has a tendency to detect the same
objects several times (Rothe et al., 2015). Afterward, unit operations
with low confidence scores are predicted as the unknown, i.e., category
”X”.

3.2. Connectivity recognition

Connectivity recognition is the second step of the framework. Con-
nectivity recognition deals with finding connections between unit op-
erations in the flowsheets. Connections in PFDs usually describe mass
streams and are directed connections. Thus, the challenges of connec-
tivity recognition are to first find connections among unit operations and
second assign directions to the connections.

We employ a pixel search algorithm to identify the connectivity
between unit operations. In order to explore connectives on a pixel level,
the widths of all objects in the PFD are reduced into one-dimensional
lines. Therefore, the flowsheet image is binarized and skeletonization
is applied. Skeletonization produces a compact representation of objects
in images by reducing them to their medial axis, effectively transforming
shapes to curves of a 1-pixel thickness (Saha et al., 2016) while pre-
serving their connectivities. Fig. 4 presents an example of distillation
column skeletonization.

After skeletonization, a tailored connectivity search algorithm is
applied. The connectivity search starts from the bounding box of a unit
operation. For each white pixel neighboring the bounding box, the

algorithm traverses along the path from the white pixel to the neigh-
boring white pixel and so on. A graphical representation of this pro-
cedure is shown in Fig. 5. A connection between two unit operations is
established when the algorithm reaches a pixel belonging to a new unit
operation. If the exploration reaches a dead end, it creates an “In/Out”
stream object, indicating an incoming or outgoing stream of the process.
Once all the outgoing paths from a unit operation are explored, the al-
gorithm moves to the next unit and repeats the search, storing infor-
mation about all detected connections. A simplified pseudocode
illustration can be found in Algorithm 1. Directions to paths are assigned
according to detected arrowheads. After the paths are found, it is
checked for each path if a arrowhead is on the path. The direction of the
paths are then adjusted accordingly.

Finally, a graph representation of the flowsheet is constructed using
the NetworkX open-source Python package (Hagberg, Aric et al., 2022).
A graph is created where each unit operation, raw material, and product
is represented as an individual node and the streams connecting them
are represented as directed edges. Each edge and node in the graph also
has attributes, such as unit operation type.

4. Results and discussion

In this section, we present the results of our flowsheet digitization
framework on a comprehensive dataset. We first describe the training
setup of the object detection algorithm as well as results of hyper-
parameter tuning (Section 4.1). Then, we show and discuss the results of
training before showing the performance of the path exploration algo-
rithm on an exemplary flowsheet (Section 4.2).

4.1. Training and hyperparameter optimization

The object detection model was trained on a NVIDIA GeForce RTX
3090. The training set includes 705 flowsheets, the validation set in-
cludes 150 flowsheets, and the independent test set includes 150
flowsheets.

The key hyperparameters of the model were optimized using
Bayesian optimization. We investigated the influence of five hyper-
parameters on the prediction performance: the learning rate, the norm
type for training ResNet, the momentum for ADAM optimization, the
repeat threshold, and the freezing point for the pretrained backbone
model. The hyperparameter optimization took approximately 3 days
and involved 100 trials. The range of values considered as well as the
best value found are shown in Table 2. These values are in alignment
with the default values used in the Detectron2 for Faster R-CNN. This
indicates robustness of the pretrained model hyperparameter towards
our datasets.

In Fig. 6, the training loss curves of the model with the best
hyperparameter configuration is depicted. The loss shown is the default
loss as defined in the original Faster R-CNN work (Ren et al. (2015)). We
trained the model for 20 epochs to determine the necessary number of
training epochs. To train for 20 epochs took approximately three hours

Fig. 4. Example of skeletonization applied to a common unit operation illustration (a). The image is thresholded and binarized (b). The skeletonization algorithm is
applied, leaving a one-pixel thick representation of objects (c).

Fig. 5. Pixel-level representation of the connectivity search method.

M.F. Theisen et al.

Digital Chemical Engineering 6 (2023) 100072

7

on our computer. As it can be seen in Fig. 6, the model learns very
quickly. This shows that the chosen architecture is well suited for unit
operation detection. After 10 epochs the validation loss begins to flatten.
Hence, we used the model after 10 epochs as our final model (i.e.,

following an early-stopping approach).

4.2. Object detection performance

The goal of object detection is to localize and classify objects within
images. To evaluate the performance of object detection algorithms the
placement of the bounding boxes around objects and the class pre-
dictions need to be measured.

A common performance evaluation metric for object detection is the
Average Precision (AP) which considers correct, missed, and false pre-
dictions (Ren et al., 2015). The IoU is used to evaluate the correct
bounding box placement. In particular, a minimal IoU threshold is
chosen that corresponds to a correct placement. It is controversial what
threshold value is considered correct (Everingham et al., 2010; Lin et al.,
2014). For instance, the Pascal VOC AP metric, also known as AP50, is
the AP calculated at an IoU threshold of 0.5. Another popular method is
to take an average over an array of thresholds [0.5:0.05:0.95]. This

Algorithm 1. Pseudocode of pixel search algorithm.

Table 2
Overview of hyperparameter studies with respective search space and best-
found values. The norms investigated were Batchnorm (BN), frozen Batch-
norm (FrozenBN), Synchronous Batchnorm (SyncBN) and Group norm (GN)
(Ioffe and Szegedy, 2015; Wu and He, 2018).

Hyperparameter Search space Best found value

Freezing layer backbone model [0;5] 1
Repeat factor [0.05;0.5] 0.35
Norm [BN; SyncBN; FrozenBN; GN] FrozenBN
Momentum [0.5; 0.99] 0.83
Base Learning rate [0.0005; 0.05] 0.0083

M.F. Theisen et al.

Digital Chemical Engineering 6 (2023) 100072

8

method is called AP and it is the primary metric for the well-known
COCO challenge. Comparing the AP50 to the AP provides valuable in-
sights into the performances of the classification and bounding box
placement tasks. For example, a high AP50 and a low AP indicate that
objects are correctly classified but the bounding box placement is
imprecise. Moreover, additional metrics exist such as AP75 for an IoU of
0.75 and AP calculated separately for different object sizes.

The overall performance of the model on the test set is summarized in
Table 3. The very high AP50 of 88.43% indicates that the model clas-
sifies most objects correctly when a small IoU of 0.5 is sufficient. At an
IoU of 0.75, the model still shows a very high AP75 of 81.85%. The
averaged AP is 68.27%. This is considerably lower than the AP50.
Overall, the results indicate that the model classifies most unit opera-
tions correctly but fails to accurately localize some unit operations at a
high IoU.

A comparison to state-of-the-art models on the COCO dataset as a
large, real-world benchmark dataset provides further insights. The
current best models on the COCO dataset achieve an averaged AP of
64.2% (Wei et al., 2022) and AP50 of 79.5% (Li et al., 2022). These
performances are in line with Faster R-CNN performance on our dataset.
This shows that the performance of our PFD digitization is comparable
to the current state-of-the-art in computer vision and deep learning.

Table 3 also shows individual model performances for objects that
have different sizes, i.e., large- (APl) medium- (APm), and small-sized
(APs) objects. The results show that the model performs significantly
better for large- and medium-sized objects than for small-sized objects.
This is expected because the detection of small objects is challenging for
two main reasons. First, object detection models often struggle to detect
very small objects (Li et al., 2017). Second, annotation errors are more
common for small objects as the correct positioning of small bounding
boxes is challenging. Moreover, small absolute bounding box posi-
tioning errors can lead to large relative errors when considering small
objects like arrows.

In Table 4 the AP is further broken down into the 47 individual unit
operation classes. The results show that most unit operations are
detected very accurately. Unit operations detected with high accuracy
are either frequently in the dataset or show little intra-class variability
due to class decomposition. Examples of classes with high occurrence
are furnace heat exchanger (hex_fur), columns (col), and mixers (mix).
These classes can vary in color, shape, and size and are still detected
accurately. Examples of classes with very consistent illustrations are
aspen columns (col_asp), gas tanks (tank_gas), and blowers (blwr). While
these classes are not commonly found, their illustrations are homoge-
neous due to the applied class decomposition.

The results further show that a few unit operations have a relatively
low AP. In particular, the model struggles with three types of classes.
First, classes with small symbols are an obstacle to object detection al-
gorithms. Examples of this phenomenon are valves, certain mixers
(mix2), and stream tags (strm4, strm3, strm). Second, classes with a low
frequency of occurrence and inconsistent illustrations are challenging to
correctly classify. Examples of such classes are tanks (tank, tank3) and
In/Out tags (IO). Repeat factor sampling was hereby not sufficient to

Fig. 6. Training curve of loss and AP metric for the model with the selected hyperparameter configuration. The loss curve for the validation set is smooth compared
to the other documented metrics. This is because the validation set was not tested at every epoch. This leads to a smoother appearance of the validation loss.

Table 3
AP on the independent test set as calculated by COCO evaluation convention.

AP(%) AP50 (%) AP75 (%) APs (%) APm (%) APl (%)

68.27 88.43 81.85 62.84 74.55 76.44

Table 4
Overview of AP per unit operation in ascending order for all 47 classes divided in
below and above AP as indicated with red dashed line.

Unit operation AP (%) Unit operation AP (%) Unit operation AP (%)

col_aspen 90.00 reb 75.35 v_glob 63.50
tank_gas 89.06 comp2 75.00 hex_st 62.07
blwr 87.62 fil 74.72 hex_fan 61.91
dist_aspen 87.62 ves 74.26 strm 60.11
tank1 85.55 r 72.56 tank3 60.00
hex_fur 85.08 pp 71.74 v_std 56.32
sep_2 85.05 ctrl 71.24 v_ndl 54.88
tank2 84.48 comp 71.10 v_man 52.68
col 81.43 pp3 70.74 X 46.24
sep 80.38 pp2 70.00 v_ball 45.35
mix 80.10 ms 69.63 IO 44.14
hex_cool 80.00 v_chck 66.80 strm3 40.97
splt 80.00 dist 65.52 tank 37.43
r_cstr 79.85 v_ctrl 65.19 strm4 35.69
strm2 77.89 hex_int 65.04 mix2 34.25
hex 75.46 v3_way 64.65

M.F. Theisen et al.

Digital Chemical Engineering 6 (2023) 100072

9

overcome the frequency imbalance. Third, the class of unknown unit
operations (X) has a low AP of 46%. This is to be expected because the X
class combines a large variety of uncommon unit operations. Thus, the
class X has a particularly high intra-class variability.

4.3. Connectivity recognition

The quantitative evaluation of the connectivity recognition algo-
rithm is challenging because it would require the manual labeling of all
connections in the dataset. Moreover, the labeling of such graphs is
uncommon and standard image annotation tools do not support the
annotation of connectives in a graph format. Thus, we qualitatively
assess the performance of the connectivity recognition algorithm on the
illustrative example flowsheet shown in Fig. 1. The flowsheet was first
processed by the object detection model to identify unit operations.
Then, the connectivity recognition algorithm was applied to the image.
The results of the unit operation detection and connectivity recognition
are depicted in Fig. 7. The figure shows that all unit operations are
classified correctly in the example. Moreover, all connectives between
unit operations are identified correctly in the example. While all con-
nections are correctly identified, wrong directions are assigned to some
of the connections. Notably, the presented algorithm relies on arrow-
head detection to determine the direction of streams. As pointed out
before, object detection models can struggle to detect these very small
objects, making identification of flow directions challenging. In future
works, rule-based reasoning could potentially improve the automatic
detection of flow directions based on the process context information.
For example, we know the directions of the top and bottom outlet
streams of distillation columns during normal operation.

Finally, it is worth mentioning that the connectivity recognition al-
gorithm introduces new nodes for inlet and outlet streams. In addition,
the algorithm adds new nodes for splitters and mixers such as the
splitting of the Benezene overhead into a transalklynation and an
alkylation recycle stream.

5. Conclusions

We proposed a two-step approach for the digitization of PFDs. Our
proposed approach includes a unit operation detection with a Faster R-
CNN and a pixel-based search algorithm for connectivity detection. The
models are trained on a large dataset of over 1000 PFDs which are mined
from scientific literature, books, and the internet. Our results show that
the approach can robustly digitize PFD from these diverse sources. In the
future, we envision to extend our approach and use it for the digitization
of all PFDs that have ever been published in the scientific literature and
patents. Also, data augmentation could help to improve object detection
model performance in light of limited data. In addition, the identified

text boxes on the PFDs could be processed by optical character recog-
nition and could improve the digitization algorithm. Moreover, we see a
great potential for the digitization of industrial PFDs. Ultimately, a
database of PFDs is a potential enabler for future AI applications in the
chemical engineering domain (Hirtreiter et al., 2022; Schweidtmann,
2022; Schweidtmann et al., 2021a; Vogel et al., 2022a; Vogel et al.,
2022b; Weber et al., 2021; Wiedau et al., 2021).

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

References

Arroyo, E., Hoernicke, M., Rodríguez, P., Fay, A., 2016. Automatic derivation of
qualitative plant simulation models from legacy piping and instrumentation
diagrams. Comput. Chem. Eng. 92, 112–132. https://doi.org/10.1016/j.
compchemeng.2016.04.040.

Balhorn, L.S., Gao, Q., Goldstein, D., Schweidtmann, A.M., 2022. Flowsheet recognition
using deep convolutional neural networks. Proceedings of the 14th International
Symposium on Process Systems Engineering. Elsevier B. V., Kyoto, Japan.

Bunke, H., 1982. Automatic interpretation of lines and text in circuit diagrams. Pattern
Recognition Theory and Applications. Springer, pp. 297–310.

Elyan, E., Gaber, M.M., 2016. A fine-grained random forests using class decomposition:
an application to medical diagnosis. Neural Comput. Appl. 27 (8), 2279–2288.

Elyan, E., Jamieson, L., Ali-Gombe, A., 2020. Deep learning for symbols detection and
classification in engineering drawings. Neural Netw. 129, 91–102. https://doi.org/
10.1016/j.neunet.2020.05.025.

Everingham, M., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A., 2010. The pascal
visual object classes (VOC) challenge. Int. J. Comput. Vis. 88 (2), 303–338.

Fahn, C.-S., Wang, J.-F., Lee, J.-Y., 1988. A topology-based component extractor for
understanding electronic circuit diagrams. Comput. Vis. Graph. Image Process. 44
(2), 119–138.

Frid-Adar, M., Diamant, I., Klang, E., Amitai, M., Goldberger, J., Greenspan, H., 2017.
Modeling the intra-class variability for liver lesion detection using a multi-class
patch-based CNN. In: Wu, G., Munsell, B.C., Zhan, Y., Bai, W., Sanroma, G., Coupé, P.
(Eds.), Patch-Based Techniques in Medical Imaging. Springer International
Publishing, Cham, pp. 129–137. https://doi.org/10.1007/978-3-319-67434-6_15.

Furuta, M., Kase, N., Emori, S., 1984. Segmentation and recognition of symbols for
handwritten piping and instrument diagram. Proceedings of the 7th IAPR
International Conference on Pattern Recognition (ICPR), pp. 626–629.

Gao, W., Zhao, Y., Smidts, C., 2020. Component detection in piping and instrumentation
diagrams of nuclear power plants based on neural networks. Prog. Nucl. Energy 128,
103491. https://doi.org/10.1016/j.pnucene.2020.103491.

Gellaboina, M.K., Venkoparao, V.G., 2009. Graphic symbol recognition using auto
associative neural network model. 2009 Seventh International Conference on
Advances in Pattern Recognition. IEEE, pp. 297–301.

Girshick, R., 2015. Fast R-CNN. 2015 IEEE International Conference on Computer Vision
(ICCV). IEEE, Santiago, Chile, pp. 1440–1448. https://doi.org/10.1109/
ICCV.2015.169.

Groen, F.C., Sanderson, A.C., Schlag, J.F., 1985. Symbol recognition in electrical
diagrams using probabilistic graph matching. Pattern Recognit. Lett. 3 (5), 343–350.

Hagberg, A., Chult, D. S., Swart, P., 2022. NetworkX. https://github.com/networkx/
networkx.

Fig. 7. Obtained graph from connectivity recognition laid over original flowsheet.

M.F. Theisen et al.

https://doi.org/10.1016/j.compchemeng.2016.04.040
https://doi.org/10.1016/j.compchemeng.2016.04.040
http://refhub.elsevier.com/S2772-5081(22)00063-1/sbref0002
http://refhub.elsevier.com/S2772-5081(22)00063-1/sbref0002
http://refhub.elsevier.com/S2772-5081(22)00063-1/sbref0002
http://refhub.elsevier.com/S2772-5081(22)00063-1/sbref0003
http://refhub.elsevier.com/S2772-5081(22)00063-1/sbref0003
http://refhub.elsevier.com/S2772-5081(22)00063-1/sbref0004
http://refhub.elsevier.com/S2772-5081(22)00063-1/sbref0004
https://doi.org/10.1016/j.neunet.2020.05.025
https://doi.org/10.1016/j.neunet.2020.05.025
http://refhub.elsevier.com/S2772-5081(22)00063-1/sbref0006
http://refhub.elsevier.com/S2772-5081(22)00063-1/sbref0006
http://refhub.elsevier.com/S2772-5081(22)00063-1/sbref0007
http://refhub.elsevier.com/S2772-5081(22)00063-1/sbref0007
http://refhub.elsevier.com/S2772-5081(22)00063-1/sbref0007
https://doi.org/10.1007/978-3-319-67434-6_15
http://refhub.elsevier.com/S2772-5081(22)00063-1/sbref0009
http://refhub.elsevier.com/S2772-5081(22)00063-1/sbref0009
http://refhub.elsevier.com/S2772-5081(22)00063-1/sbref0009
https://doi.org/10.1016/j.pnucene.2020.103491
http://refhub.elsevier.com/S2772-5081(22)00063-1/sbref0011
http://refhub.elsevier.com/S2772-5081(22)00063-1/sbref0011
http://refhub.elsevier.com/S2772-5081(22)00063-1/sbref0011
https://doi.org/10.1109/ICCV.2015.169
https://doi.org/10.1109/ICCV.2015.169
http://refhub.elsevier.com/S2772-5081(22)00063-1/sbref0013
http://refhub.elsevier.com/S2772-5081(22)00063-1/sbref0013
https://github.com/networkx/networkx
https://github.com/networkx/networkx

Digital Chemical Engineering 6 (2023) 100072

10

Hirtreiter, E., Balhorn, L. S., Schweidtmann, A. M., 2022. Towards automatic generation
of piping and instrumentation diagrams (P&IDs) with artificial intelligence. arXiv
preprint arXiv:2211.05583.

Ioffe, S., Szegedy, C., 2015. Batch normalization: accelerating deep network training by
reducing internal covariate shift. Proceedings of the 32nd International Conference
on International Conference on Machine Learning, Vol. 37. JMLR.org, Lille, France,
pp. 448–456.

Ishii, M., Ito, Y., Yamamoto, M., Harada, H., Iwasaki, M., 1989. An automatic recognition
system for piping and instrument diagrams. Syst. Comput. Jpn. 20 (3), 32–46.

Jamieson, L., Moreno-Garcia, C.F., Elyan, E., 2020. Deep learning for text detection and
recognition in complex engineering diagrams. 2020 International Joint Conference
on Neural Networks (IJCNN). IEEE, pp. 1–7.

Kim, B.C., Kim, H., Moon, Y., Lee, G., Mun, D., 2022. End-to-end digitization of image
format piping and instrumentation diagrams at an industrially applicable level.
J. Comput. Des. Eng. 9 (4), 1298–1326. https://doi.org/10.1093/jcde/qwac056.

Kim, H., Lee, W., Kim, M., Moon, Y., Lee, T., Cho, M., Mun, D., 2021. Deep-learning-
based recognition of symbols and texts at an industrially applicable level from
images of high-density piping and instrumentation diagrams. Expert Syst. Appl. 183,
115337. https://doi.org/10.1016/j.eswa.2021.115337.

Krizhevsky, A., Sutskever, I., Hinton, G.E., 2012. ImageNet classification with deep
convolutional neural networks. Adv. Neural Inf. Process. Syst. 25.

LeCun, Y., Bengio, Y., Hinton, G., 2015. Deep learning. Nature 521 (7553), 436–444.
Li, J., Liang, X., Wei, Y., Xu, T., Feng, J., Yan, S., 2017. Perceptual generative adversarial

networks for small object detection. Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR).

Li, L. H., Zhang, P., Zhang, H., Yang, J., Li, C., Zhong, Y., Wang, L., Yuan, L., Zhang, L.,
Hwang, J.-N., Chang, K.-W., Gao, J., 2022. Grounded language-image pre-training.
ArXiv:2112.03857 [cs] version: 2. 10.48550/arXiv:2112.03857.

Li, X., Wang, W., Wu, L., Chen, S., Hu, X., Li, J., Tang, J., Yang, J., 2020. Generalized
focal loss: learning qualified and distributed bounding boxes for dense object
detection. NeurIPS.

Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S., 2017. Feature
pyramid networks for object detection. Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 2117–2125.

Lin, T.-Y., Goyal, P., Girshick, R., He, K., Dollár, P., 2017. Focal loss for dense object
detection. Proceedings of the IEEE International Conference on Computer Vision,
pp. 2980–2988.

Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P.,
Zitnick, C.L., 2014. Microsoft COCO: common objects in context. European
Conference on Computer Vision. Springer, pp. 740–755.

Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., Berg, A.C., 2016. SSD:
single shot multibox detector. European Conference on Computer Vision. Springer,
pp. 21–37.

Liu, Y., Sun, P., Wergeles, N., Shang, Y., 2021. A survey and performance evaluation of
deep learning methods for small object detection. Expert Syst. Appl. 172, 114602.
https://doi.org/10.1016/j.eswa.2021.114602.

Long, J., Shelhamer, E., Darrell, T., 2015. Fully convolutional networks for semantic
segmentation. Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 3431–3440.

Mani, S., Haddad, M.A., Constantini, D., Douhard, W., Li, Q., Poirier, L., 2020. Automatic
digitization of engineering diagrams using deep learning and graph search.
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops, pp. 176–177.

Moreno-García, C.F., Elyan, E., Jayne, C., 2019. New trends on digitisation of complex
engineering drawings. Neural Comput. Appl. 31 (6), 1695–1712.

Nasby, G., 2012. Using process flowsheets as communication tools. Chem. Eng. Prog. 108
(10), 36–44.

Norouzi, H.R., Hasani, M.A., Haddadi-Sisakht, B., Mostoufi, N., 2014. Economic design
and optimization of zeolite-based cumene production plant. Chem. Eng. Commun.
201 (10), 1270–1293. https://doi.org/10.1080/00986445.2013.806312.

Okazaki, A., Kondo, T., Mori, K., Tsunekawa, S., Kawamoto, E., 1988. An automatic
circuit diagram reader with loop-structure-based symbol recognition. IEEE Trans.
Pattern Anal. Mach. Intell. 10 (3), 331–341.

Oksuz, K., Cam, B.C., Kalkan, S., Akbas, E., 2021. Imbalance problems in object
detection: areview. IEEE Trans. Pattern Anal. Mach. Intell. 43 (10), 3388–3415.
https://doi.org/10.1109/TPAMI.2020.2981890.Publisher: IEEE Computer Society

Paliwal, S., Jain, A., Sharma, M., Vig, L., 2021. Digitize-PID: automatic digitization of
piping and instrumentation diagrams. Trends and Applications in Knowledge
Discovery and Data Mining: PAKDD 2021 Workshops, WSPA, MLMEIN, SDPRA,
DARAI, and AI4EPT, Delhi, India, May 11, 2021 Proceedings 25. Springer,
pp. 168–180.

Redmon, J., Divvala, S., Girshick, R., Farhadi, A., 2016. You only look once: unified, real-
time object detection. Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 779–788.

Redmon, J., Farhadi, A., 2017. Yolo9000: better, faster, stronger. Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 7263–7271.

Redmon, J., Farhadi, A., 2018. Yolov3: an incremental improvement. arXiv preprint
arXiv:1804.02767.

Ren, S., He, K., Girshick, R., Sun, J., 2015. Faster R-CNN: towards real-time object
detection with region proposal networks. Adv. Neural Inf. Process. Syst. 28, 91–99.

Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S., 2019.
Generalized intersection over union: a metric and a loss for bounding box regression.
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR).

Rohit, R., Shubham, P., Monika, S., Lovekesh, V., 2019. Automatic information
extraction from piping and instrumentation diagrams, 163–172. doi:10.522
0/0007376401630172.

Rothe, R., Guillaumin, M., Van Gool, L., 2015. Non-maximum suppression for object
detection by passing messages between windows. In: Cremers, D., Reid, I., Saito, H.,
Yang, M.-H. (Eds.), Computer Vision – ACCV 2014. Springer International
Publishing, Cham, pp. 290–306. https://doi.org/10.1007/978-3-319-16865-4_19.

Saha, P.K., Borgefors, G., di Baja, G.S., 2016. A survey on skeletonization algorithms and
their applications. Pattern Recognit. Lett. 76, 3–12.

Schweidtmann, A. M., 2022. Flowsheet mining. In preparation.
Schweidtmann, A.M., Esche, E., Fischer, A., Kloft, M., Repke, J.-U., Sager, S., Mitsos, A.,

2021. Machine learning in chemical engineering: aperspective. Chem. Ing. Tech.
https://doi.org/10.1002/cite.202100083.

Schweidtmann, A.M., Weber, J.M., Wende, C., Netze, L., Mitsos, A., 2021. Obey validity
limits of data-driven models through topological data analysis and one-class
classification. Optim. Eng. https://doi.org/10.1007/s11081-021-09608-0.

Settles, B., 2012. Active learning. Synth. Lect. Artif. Intell. Mach. Learn. 6 (1), 1–114.
https://doi.org/10.2200/S00429ED1V01Y201207AIM018.Publisher: Morgan &
Claypool Publishers

Su, H., Deng, J., Fei-Fei, L., 2012. Crowdsourcing annotations for visual object detection.
Workshops at the Twenty-Sixth AAAI Conference on Artificial Intelligence.

Torrey, L., Shavlik, J., 2010. Transfer learning. Handbook of Research on Machine
Learning Applications and Trends: Algorithms, Methods, and Techniques. IGI global,
pp. 242–264.

Tzutalin, 2015. Labelimg. https://github.com/tzutalin/labelImg.
Ullmann, F., 2004. Ullmann’s Processes and Process Engineering. Wiley-VCH, Weinheim.
Vanderbrug, G.J., Rosenfeld, A., 1977. Two-stage template matching. IEEE Trans.

Comput. 26 (04), 384–393.
Vogel, G., Balhorn, L. S., Hirtreiter, E., Schweidtmann, A. M., 2022a. SFILES 2.0: an

extended text-based flowsheet representation. arXiv preprint arXiv:2208.00778.
Vogel, G., Balhorn, L. S., Schweidtmann, A. M., 2022b. Learning from flowsheets: a

generative transformer model for autocompletion of flowsheets. arXiv preprint
arXiv:2208.00859.

Weber, J.M., Guo, Z., Zhang, C., Schweidtmann, A.M., Lapkin, A.A., 2021. Chemical data
intelligence for sustainable chemistry. Chem. Soc. Rev.

Wei, Y., Hu, H., Xie, Z., Zhang, Z., Cao, Y., Bao, J., Chen, D., Guo, B., 2022. Contrastive
learning rivals masked image modeling in fine-tuning via feature distillation. ArXiv:
2205.14141 [cs] version: 3. 10.48550/arXiv.2205.14141.

Wiedau, M., Tolksdorf, G., Oeing, J., Kockmann, N., 2021. Towards a systematic data
harmonization to enable ai application in the process industry. Chem. Ing. Tech. 93
(12), 2105–2115.

Willemink, M.J., Koszek, W.A., Hardell, C., Wu, J., Fleischmann, D., Harvey, H., Folio, L.
R., Summers, R.M., Rubin, D.L., Lungren, M.P., 2020. Preparing medical imaging
data for machine learning. Radiology 295 (1), 4–15.

Wu, Y., He, K., 2018. Group normalization. ArXiv:1803.08494 [cs]. 10.48550/arXiv.1
803.08494.

Wu, Y., Kirillov, A., Massa, F., Lo, W.-Y., Girshick, R., 2019. Detectron2. https://github.
com/facebookresearch/detectron2.

Xie, S., Girshick, R., Dollár, P., Tu, Z., He, K., 2017. Aggregated residual transformations
for deep neural networks. Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 1492–1500.

Xu, H., Mannor, S., 2012. Robustness and generalization. Mach. Learn. 86 (3), 391–423.
https://doi.org/10.1007/s10994-011-5268-1.

Yoochan, M., Lee, J., Mun, D., Lim, S., 2021. Deep learning-based method to recognize
line objects and flow arrows from image-format piping and instrumentation
diagrams for digitization. Appl. Sci. 11, 10054. https://doi.org/10.3390/
app112110054.

Yu, Cha, Lee, Kim, Mun, 2019. Features recognition from piping and instrumentation
diagrams in image format using a deep learning network. Energies 12 (23), 4425.
https://doi.org/10.3390/en12234425.

Yun, D.-Y., Seo, S.-K., Zahid, U., Lee, C.-J., 2020. Deep neural network for automatic
image recognition of engineering diagrams. Appl. Sci. 10 (11), 4005. https://doi.
org/10.3390/app10114005.Number: 11 Publisher: Multidisciplinary Digital
Publishing Institute

Zhang, F., Li, M., Zhai, G., Liu, Y., 2021. Multi-branch and multi-scale attention learning
for fine-grained visual categorization. International Conference on Multimedia
Modeling. Springer, pp. 136–147.

Zhang, T., Sahinidis, N.V., Siirola, J.J., 2019. Pattern recognition in chemical process
flowsheets. AlChE J. 65 (2), 592–603. https://doi.org/10.1002/aic.16443.

Zhou, X., Yao, C., Wen, H., Wang, Y., Zhou, S., He, W., Liang, J., 2017. East: an efficient
and accurate scene text detector. Proceedings of the IEEE conference on Computer
Vision and Pattern Recognition, pp. 5551–5560.

Zlocha, M., Dou, Q., Glocker, B., 2019. Improving RetinaNet for CT lesion detection with
dense masks from weak RECIST labels. In: Shen, D., Liu, T., Peters, T.M., Staib, L.H.,
Essert, C., Zhou, S., Yap, P.-T., Khan, A. (Eds.), Medical Image Computing and
Computer Assisted Intervention – MICCAI 2019. Springer International Publishing,
Cham, pp. 402–410. https://doi.org/10.1007/978-3-030-32226-7_45.

Zou, Z., Shi, Z., Guo, Y., Ye, J., 2019. Object detection in 20 years: a survey. arXiv
preprint arXiv:1905.05055.

M.F. Theisen et al.

http://arXiv:2211.05583
http://refhub.elsevier.com/S2772-5081(22)00063-1/sbref0014
http://refhub.elsevier.com/S2772-5081(22)00063-1/sbref0014
http://refhub.elsevier.com/S2772-5081(22)00063-1/sbref0014
http://refhub.elsevier.com/S2772-5081(22)00063-1/sbref0014
http://refhub.elsevier.com/S2772-5081(22)00063-1/sbref0015
http://refhub.elsevier.com/S2772-5081(22)00063-1/sbref0015
http://refhub.elsevier.com/S2772-5081(22)00063-1/sbref0016
http://refhub.elsevier.com/S2772-5081(22)00063-1/sbref0016
http://refhub.elsevier.com/S2772-5081(22)00063-1/sbref0016
https://doi.org/10.1093/jcde/qwac056
https://doi.org/10.1016/j.eswa.2021.115337
http://refhub.elsevier.com/S2772-5081(22)00063-1/sbref0019
http://refhub.elsevier.com/S2772-5081(22)00063-1/sbref0019
http://refhub.elsevier.com/S2772-5081(22)00063-1/sbref0020
http://refhub.elsevier.com/S2772-5081(22)00063-1/sbref0021
http://refhub.elsevier.com/S2772-5081(22)00063-1/sbref0021
http://refhub.elsevier.com/S2772-5081(22)00063-1/sbref0021
http://arXiv:2112.03857
http://refhub.elsevier.com/S2772-5081(22)00063-1/sbref0022
http://refhub.elsevier.com/S2772-5081(22)00063-1/sbref0022
http://refhub.elsevier.com/S2772-5081(22)00063-1/sbref0022
http://refhub.elsevier.com/S2772-5081(22)00063-1/sbref0023
http://refhub.elsevier.com/S2772-5081(22)00063-1/sbref0023
http://refhub.elsevier.com/S2772-5081(22)00063-1/sbref0023
http://refhub.elsevier.com/S2772-5081(22)00063-1/sbref0024
http://refhub.elsevier.com/S2772-5081(22)00063-1/sbref0024
http://refhub.elsevier.com/S2772-5081(22)00063-1/sbref0024
http://refhub.elsevier.com/S2772-5081(22)00063-1/sbref0025
http://refhub.elsevier.com/S2772-5081(22)00063-1/sbref0025
http://refhub.elsevier.com/S2772-5081(22)00063-1/sbref0025
http://refhub.elsevier.com/S2772-5081(22)00063-1/sbref0026
http://refhub.elsevier.com/S2772-5081(22)00063-1/sbref0026
http://refhub.elsevier.com/S2772-5081(22)00063-1/sbref0026
https://doi.org/10.1016/j.eswa.2021.114602
http://refhub.elsevier.com/S2772-5081(22)00063-1/sbref0028
http://refhub.elsevier.com/S2772-5081(22)00063-1/sbref0028
http://refhub.elsevier.com/S2772-5081(22)00063-1/sbref0028
http://refhub.elsevier.com/S2772-5081(22)00063-1/sbref0029
http://refhub.elsevier.com/S2772-5081(22)00063-1/sbref0029
http://refhub.elsevier.com/S2772-5081(22)00063-1/sbref0029
http://refhub.elsevier.com/S2772-5081(22)00063-1/sbref0029
http://refhub.elsevier.com/S2772-5081(22)00063-1/sbref0030
http://refhub.elsevier.com/S2772-5081(22)00063-1/sbref0030
http://refhub.elsevier.com/S2772-5081(22)00063-1/sbref0031
http://refhub.elsevier.com/S2772-5081(22)00063-1/sbref0031
https://doi.org/10.1080/00986445.2013.806312
http://refhub.elsevier.com/S2772-5081(22)00063-1/sbref0033
http://refhub.elsevier.com/S2772-5081(22)00063-1/sbref0033
http://refhub.elsevier.com/S2772-5081(22)00063-1/sbref0033
https://doi.org/10.1109/TPAMI.2020.2981890
http://refhub.elsevier.com/S2772-5081(22)00063-1/sbref0035
http://refhub.elsevier.com/S2772-5081(22)00063-1/sbref0035
http://refhub.elsevier.com/S2772-5081(22)00063-1/sbref0035
http://refhub.elsevier.com/S2772-5081(22)00063-1/sbref0035
http://refhub.elsevier.com/S2772-5081(22)00063-1/sbref0035
http://refhub.elsevier.com/S2772-5081(22)00063-1/sbref0036
http://refhub.elsevier.com/S2772-5081(22)00063-1/sbref0036
http://refhub.elsevier.com/S2772-5081(22)00063-1/sbref0036
http://refhub.elsevier.com/S2772-5081(22)00063-1/sbref0037
http://refhub.elsevier.com/S2772-5081(22)00063-1/sbref0037
http://arXiv:1804.02767
http://refhub.elsevier.com/S2772-5081(22)00063-1/sbref0038
http://refhub.elsevier.com/S2772-5081(22)00063-1/sbref0038
http://refhub.elsevier.com/S2772-5081(22)00063-1/sbref0039
http://refhub.elsevier.com/S2772-5081(22)00063-1/sbref0039
http://refhub.elsevier.com/S2772-5081(22)00063-1/sbref0039
http://refhub.elsevier.com/S2772-5081(22)00063-1/sbref0039
https://doi.org/10.5220/0007376401630172
https://doi.org/10.5220/0007376401630172
https://doi.org/10.1007/978-3-319-16865-4_19
http://refhub.elsevier.com/S2772-5081(22)00063-1/sbref0041
http://refhub.elsevier.com/S2772-5081(22)00063-1/sbref0041
https://doi.org/10.1002/cite.202100083
https://doi.org/10.1007/s11081-021-09608-0
https://doi.org/10.2200/S00429ED1V01Y201207AIM018
http://refhub.elsevier.com/S2772-5081(22)00063-1/sbref0045
http://refhub.elsevier.com/S2772-5081(22)00063-1/sbref0045
http://refhub.elsevier.com/S2772-5081(22)00063-1/sbref0046
http://refhub.elsevier.com/S2772-5081(22)00063-1/sbref0046
http://refhub.elsevier.com/S2772-5081(22)00063-1/sbref0046
https://github.com/tzutalin/labelImg
http://refhub.elsevier.com/S2772-5081(22)00063-1/sbref0047
http://refhub.elsevier.com/S2772-5081(22)00063-1/sbref0048
http://refhub.elsevier.com/S2772-5081(22)00063-1/sbref0048
http://arXiv:2208.00778
http://arXiv:2208.00859
http://refhub.elsevier.com/S2772-5081(22)00063-1/sbref0049
http://refhub.elsevier.com/S2772-5081(22)00063-1/sbref0049
http://arXiv.2205.14141
http://refhub.elsevier.com/S2772-5081(22)00063-1/sbref0050
http://refhub.elsevier.com/S2772-5081(22)00063-1/sbref0050
http://refhub.elsevier.com/S2772-5081(22)00063-1/sbref0050
http://refhub.elsevier.com/S2772-5081(22)00063-1/sbref0051
http://refhub.elsevier.com/S2772-5081(22)00063-1/sbref0051
http://refhub.elsevier.com/S2772-5081(22)00063-1/sbref0051
http://arXiv.1803.08494
http://arXiv.1803.08494
https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2
http://refhub.elsevier.com/S2772-5081(22)00063-1/sbref0052
http://refhub.elsevier.com/S2772-5081(22)00063-1/sbref0052
http://refhub.elsevier.com/S2772-5081(22)00063-1/sbref0052
https://doi.org/10.1007/s10994-011-5268-1
https://doi.org/10.3390/app112110054
https://doi.org/10.3390/app112110054
https://doi.org/10.3390/en12234425
https://doi.org/10.3390/app10114005
https://doi.org/10.3390/app10114005
http://refhub.elsevier.com/S2772-5081(22)00063-1/sbref0057
http://refhub.elsevier.com/S2772-5081(22)00063-1/sbref0057
http://refhub.elsevier.com/S2772-5081(22)00063-1/sbref0057
https://doi.org/10.1002/aic.16443
http://refhub.elsevier.com/S2772-5081(22)00063-1/sbref0059
http://refhub.elsevier.com/S2772-5081(22)00063-1/sbref0059
http://refhub.elsevier.com/S2772-5081(22)00063-1/sbref0059
https://doi.org/10.1007/978-3-030-32226-7_45
http://arXiv:1905.05055

Digital Chemical Engineering 6 (2023) 100072

11

Maximilian F. Theisen is a graduate student at Delft Technical
University who is expected to graduate in 2023. He received his
Bachelor of Science from RWTH Aachen University in 2021.
During his studies, he spent the academic year 2019/2020 at
University of California, Davis.

Kenji Nishizaki Flores is a chemical engineer who graduated
from Delft Technical University in 2022. He received his
Bachelor of Science from Texas Tech University in 2019.

Lukas Schulze Balhorn is a PhD student in the Department of
Chemical Engineering at Delft Technical University since 2021.
He received his Bachelor of Science from RWTH Aachen Uni-
versity in 2020 and his Master of Science from RWTH Uni-
versity in 2021. During his studies, he spent the academic year
2018/2019 at University of California, Davis.

Artur M. Schweidtmann is an assistant professor for chemical
engineering at Delft Technical University and director of the
Process Intelligence Research Lab. He received his Master of
Science from RWTH Aachen University in 2017 and defended
his PhD from RWTH in 2021, both in Chemical Engineering.
During his studies, he spent the academic year 2013/2014 at
Carnegie Mellon University as a visiting student via DAAD ISAP
program. He performed his Master thesis at the University of
Cambridge. His research focuses on the combination of artifi-
cial intelligence and chemical engineering.

M.F. Theisen et al.

	Digitization of chemical process flow diagrams using deep convolutional neural networks
	1 Introduction
	2 Data
	2.1 Flowsheet mining
	2.2 Unit operation categorization
	2.3 Active learning for data annotation
	2.4 Data challenges

	3 Methodology
	3.1 Unit operation detection
	3.2 Connectivity recognition

	4 Results and discussion
	4.1 Training and hyperparameter optimization
	4.2 Object detection performance
	4.3 Connectivity recognition

	5 Conclusions
	Declaration of Competing Interest
	References

