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Best practices and methods 

Digitization of chemical process flow diagrams using deep convolutional 
neural networks 
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A B S T R A C T   

Advances in deep convolutional neural networks led to breakthroughs in many computer vision applications. In 
chemical engineering, a number of tools have been developed for the digitization of Process and Instrumentation 
Diagrams. However, there is no framework for the digitization of process flow diagrams (PFDs). PFDs are difficult 
to digitize because of the large variability in the data, e.g., there are multiple ways to depict unit operations in 
PFDs. We propose a two-step framework for digitizing PFDs: (i) unit operations are detected using a deep 
learning powered object detection model, (ii) the connectivities between unit operations are detected using a 
pixel-based search algorithm. To ensure robustness, we collect and label over 1000 PFDs from diversified sources 
including various scientific journals and books. To cope with the high intra-class variability in the data, we define 
47 distinct classes that account for different drawing styles of unit operations. Our algorithm delivers accurate 
and robust results on an independent test set. We report promising results for line and unit operation detection 
with an Average Precision at 50 percent (AP50) of 88% and an Average Precision (AP) of 68% for the detection of 
unit operations.   

1. Introduction 

Engineering diagrams (EDs) are very important documents in the 
chemical process industry. In particular, there exist a variety of different 
EDs used during all engineering stages from early-stage process devel-
opment to detailed engineering, construction, operation, and disas-
sembly. The most relevant EDs in the chemical industry are block flow 
diagrams (BFDs), process flow diagrams (PFDs) (e.g., shown in Fig. 1), 
and piping and instrumentation diagrams (P&IDs). These EDs represent 
essential information of chemical processes (Nasby, 2012), such as 
process topology, major unit operations, control equipment, and piping 
information. 

Despite the availability of advanced CAD software, EDs are still 
commonly stored and communicated as PDFs, image files, or printouts. 
Thus, the topological information of the ED can often not be directly 
read out from computer programs. Consequently, chemical companies 
have large amounts of legacy EDs which are not machine-readable. 
Likewise, there is a large number of BFDs, PFDs, and P&IDs depicted 
in figures in scientific literature and patents, which contradicts the FAIR 
(Findable, Accessible, Interoperable, Reusable) data principles. 

The analog storage and communication of ED files leads to a number 

of practical issues. First, modifying and updating EDs is expensive and 
time-intensive. Changing ED is often necessary to maintain them up to 
date for safety or regulatory reasons. Second, analog EDs are not inter-
operable with other software applications, for instance Internet of 
Things  (IoT) or digital twins. The lack of interoperability furthermore 
hinders the development of novel artificial intelligence (AI) applications 
in chemical engineering (Schweidtmann, 2022; Schweidtmann et al., 
2021a; Weber et al., 2021; Wiedau et al., 2021). For instance, we have 
shown that AI algorithms can learn from the structure of flowsheets to 
facilitate process engineering (Vogel et al., 2022a; Vogel et al., 2022b). 
Third, information in EDs is not findable. Since analog EDs are not 
machine-readable, they can also not be integrated into knowledge bases 
and thus information about the processes is not findable. To overcome 
these drawbacks, it is important to digitize EDs for the chemical 
industry. 

Digitization of EDs has been a prevalent research topic in the clas-
sical computer vision community for a long time (Moreno-García et al., 
2019). In the 1980s, the digitization of electric circuit diagrams (Bunke, 
1982; Fahn et al., 1988; Groen et al., 1985; Okazaki et al., 1988) and 
P&IDs (Furuta et al., 1984; Ishii et al., 1989) attracted attention. These 
early digitization strategies relied on classical computer vision 
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algorithms, i.e., they were mostly rule-based, and relied strongly on 
manually-engineered feature extraction and pattern recognition (Mani 
et al., 2020). Several works have presented a semi-automatic digitiza-
tion process where P&ID symbols were distinguished by template 
matching (Vanderbrug and Rosenfeld, 1977). Using template matching 
as well, Arroyo et al. (2016) derived plant simulations from P&ID dia-
grams. However, template-based detection approaches do not work well 
with heterogeneous data sources, where high intra-class variability oc-
curs. More recently, Gellaboina and Venkoparao (2009) used a Hopfield 
model to recognize common symbols in P&IDs by recognizing patterns 
based on a memory system. While decent results were reported, the 
Hopfield neural network model presented problems with large datasets 
and class imbalances (Gellaboina and Venkoparao, 2009). 

With recent advances in deep learning, digitization strategies for EDs 
in the process industry have improved significantly. Deep learning 
techniques and convolutional neural networks (CNNs) have significantly 
outperformed classical computer vision methods on a large variety of 
tasks. Flowsheets show a large diversity in styles and sizes of objects. 
This makes classical methods such as template matching difficult to 
apply. Also, CNNs can improve over time when more data is added. This 
has motivated several works to apply deep learning to flowsheet dig-
ization. Mani et al. (2020) trained a three-layer convolutional neural 
network to recognize symbols in P&IDs based on a dataset of 18 P&IDs. 
Similarly, Rohit et al. (2019) trained a CNN-based object detection 
model (Long et al., 2015) on 4 large industrial P&IDs which were 
sub-divided into 672 images. In 2021, Paliwal et al. (2021) improved 
upon that by training a two-stage detector, with a fully convolutional 
network (Long et al., 2015) for region proposals combined with a 
fine-grained image classification network (Zhang et al., 2021). For 
training, they used a dataset of 500 P&IDs, which was randomly 
generated using a CAD software.  Jamieson et al. (2020) applied a 
state-of-the-art text detection model (Zhou et al., 2017) with an optical 
character recognition algorithm to detect and digitize text from 172 
P&IDs from one source in the oil and gas industry. Yun et al. (2020) 
applied a R-CNN framework (Girshick, 2015) to symbol detection in 
P&IDs, training their model on 7 diagrams from an industry collabora-
tion. They further introduced negative samples in training to increase 
model performance through clustering. With a custom CNN model 
inspired by AlexNet (Krizhevsky et al., 2012; Yu et al., 2019) 
approached the problem of symbol detection with a sliding window 
approach. Their dataset consisted of 68 P&IDs, provided by a Korean 
engineering company. To tackle the problem of tiny symbols in dia-
grams, Kim et al. (2021) trained two separated generalized focal loss (Li 
et al., 2020) networks for detection of small and large symbols on 82 
P&IDs provided by an engineering company. Taking a few hundred 
P&IDs from Design Control Documents submitted to the US NRC, Gao 

et al. (2020) demonstrated the applicability of the Faster R-CNN 
framework (Ren et al., 2015) to symbol detection in P&IDs. Elyan et al. 
(2020) applied YOLOv3 (Redmon and Farhadi (2018) for symbol 
detection in P&IDs. Their dataset consisted of 172 P&IDs provided by an 
engineering company. To further extend the dataset, they applied 
generative adversarial networks. Concentrating on the detection of lines 
in P&IDs, Yoochan et al. (2021) introduced a framework to digitize 
flows. They detected line segments using Hough transformations and 
flow related symbols using deep learning based object detection. To test 
their framework, they applied it to 9 P&IDs provided by an engineering 
company. Very recently, Kim et al. (2022) presented a framework for 
P&ID digitization combining elements of previous work (Kim et al., 
2021; Yoochan et al., 2021) to an end-to-end approach. They trained 
two GFL (Li et al. (2020)) models and a RetinaNet (Zlocha et al., 2019) to 
detect symbols, text and flows respectively on a dataset of 82 synthetic 
P&IDs. The training corpus consisted of 76 labels, of which 25 were 
related to unit operations, 33 to piping, and 18 to instruments. They 
further tested the trained model on 5 real P&IDs provided by a local 
engineering company. 

Although promising results have been reported from previous 
studies, we identify four major limitations in previous literature ap-
proaches. First, while there has been a considerable effort towards 
digitizing P&IDs, to the best of our knowledge deep learning powered 
digitization approaches have not been applied to PFDs. PFDs have spe-
cific symbol illustrations and different flow depictions, mandating 
tailored approaches. Second, all ML models in the literature are trained 
on datasets from a single source or on a synthesized datasets based on 
one CAD software. Thus, the data has a lack of variety. Unsurprisingly, 
the accuracies of such models are often near perfection, as the data 
exhibits little variation. It needs to be acknowledged that retrieving 
P&IDs is not trivial, as companies rarely publish these highly confi-
dential information. It is however doubtful if such models would 
generalize well to other data distributions, for instance diagrams 
generated with other CAD software or diagrams that use different styles 
to depict unit operations (Willemink et al., 2020). Third, as denoted 
previously by Kim et al. (2021), most symbol datasets only consist of a 
few categories. As a consequence, these categorizations do not apply to 
other PFDs or P&IDs as they are incomplete. Fourth, the datasets used 
for training are oftentimes very small. Deep learning models rely on 
large datasets in order to make generalizable predictions (i.e., big in 
volume) (LeCun et al., 2015). Thus, limited data can lead to poor 
generalization. 

The main contribution of this manuscript is a novel flowsheet digi-
tization framework that overcomes the four previously mentioned lim-
itations. Following the first observation, we implement a framework for 
the digitization of PFDs. Second, we address the lack of diversity in data 

Fig. 1. Example flowsheet of a proposed Cumene production plant recreated from Norouzi et al. (2014). The illustration was slightly altered to introduce more 
optical variability. The flow structure however is kept. 
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by collecting process flow diagrams from various sources including 
scientific literature, internet sources, and books. Third, in order to 
address the lack of complete data categorization commonly encoun-
tered, our data categorization is extensive with 47 categories. Fourth, we 
mine and label over 1000 flowsheets for training, which is significantly 
larger than previous work. 

Our proposed digitization approach contains three main steps: (1) it 
recognizes objects in flowsheet images using computer vision, specif-
ically deep learning-driven object detection, (2) it determines connec-
tivities among unit operations using a pixel-based search algorithm, and 
(3) it converts the obtained information into a network graph repre-
sentation of the flowsheet. 

The remaining manuscript is structured as follows. Section 2 de-
scribes our training data, unit operation categorization, and data 
annotation procedure. Section 3 presents our approach for process flow 
diagram digitization. Section 4 presents the results of the object and 
stream detection algorithm. Finally, we draw conclusions from our work 
in Section 5. 

2. Data 

The development of deep learning algorithms through supervised 
learning methods usually requires large amounts of diverse data also 
referred to as big data (LeCun et al., 2015). In Section 2.1, we will 
discuss the sources of our data that we used for this study. In Section 2.2, 
we propose a unit operation symbol categorization for PFDs that is based 
on the topology of symbols and functionality in applications. In Section 
2.3, we describe our data annotation process briefly before discussing 
challenges of the dataset in Section 2.4. 

2.1. Flowsheet mining 

There is currently no public dataset for chemical flowsheets. In our 
recent perspective paper, we describe the vision of mining flowsheets 
from scientific literature and patents in order to create a FAIR database 
of all chemical processes that have ever been published (Schweidtmann, 
2022). Herein, we implement the first few steps towards our vision. 

PFDs are retrieved using our recently developed flowsheet recogni-
tion algorithm (Balhorn et al., 2022). The algorithm downloads all full 
text papers from a given journal and extracts all images in said papers. 
Then, a CNN classifier detects if a figure is a flowsheet or not. The 
retrieved flowsheets are stored as images before being applied to our 
framework. We applied the algorithm to seven chemical engineering 
journals (i.e., Computers and Chemical Engineering, Korean Journal of 
Chemical Engineering, Brazilian Journal of Chemical Engineering, In-
ternational Journal of Industrial Chemistry, Petroleum Science and 

Process Integration and Optimization for Sustainability). Next to journal 
publications, we also retrieve PFDs from the process engineering ency-
clopedia Ullmann’s Encyclopedia of Industrial Chemistry (Ullmann, 
2004). As an additional source we extracted images from Google and 
Bing search results based on related keywords such as ”flowsheet” and 
”PFD”. Overall, we mined 1005 PFDs using this approach. Using more 
journals, it would have been possible to retrieve more flowsheets. We 
however stopped at 1005 due to the time intensive annotation process. 
In accordance with the high accuracy reported by Balhorn et al. (2022), 
the overwhelming majority of extracted figures were correctly classified 
by the flowsheet image recognition algorithm. 

Our mined PFD dataset is diverse because of two main reasons. First, 
different authors of scientific publications often use different styles to 
illustrate unit operations and connectivities in PFDs. This reflects the 
diversity in personal preferences, backgrounds, demographics, and 
(inter-)national standards of the chemical engineering community. 
Second, we include many different sources, to avoid bias towards jour-
nal- or community-specific flowsheet conventions. The diversity of our 
data sources is imperative, as ML models regularly fail to extrapolate 
outside their trained data distribution (Schweidtmann et al., 2021b; Xu 
and Mannor, 2012). While our mined flowsheets are from international 
sources, their text labels are in always English. 

2.2. Unit operation categorization 

In order to train object detection algorithms, object classes need to be 
defined. These classes are used during data labeling and training. In the 
previous literature, common unit operations are usually defined as 
classes for object detection. For instance, Zhang et al. (2019) defined 12 
common unit operations as classes in their object detection algorithm. 
However, this approach can lead to a large variety of different symbols 
for the same class. We refer to this as intra-class variations. For instance, 
Fig. 2 shows a number of different symbols for heat exchangers that are 
commonly used in PFDs. Such intra-class variations often result from 
different CAD software, personal preferences, or distinctions of different 
technical solutions. In the case of heat exchangers, there exist different 
symbols for heat exchanger furnaces, shell-tube heat exchangers, and 
plate heat exchangers. High intra-class variability can complicate the 
learning process as different drawing styles for the same class object 
could be considered as outliers in the dataset. This can lead to poor 
model performance in the light of limited data (Frid-Adar et al., 2017). 

Class decomposition describes the method of splitting classes into 
different, more homogeneous sub-classes (Elyan and Gaber, 2016). In 
the context of PFD digitization, class decomposition has two main ad-
vantages. First, the decomposed classes exhibit more similar patterns 
within themselves and are more distinguishable from other classes. 

Fig. 2. There exist a large variety of symbols for the same unit operation. The figure shows 23 different representations of heat exchangers which are commonly 
found in PFDs. The variety also includes differences in technical solutions (e.g., heat exchanger furnace vs. plate heat exchanger), shapes, colors and shades (e.g., 
drop shadow used giving the impression that the object is raised above the objects behind it). 
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Thus, decomposition can improve classification accuracy. Second, the 
distinct class definitions allow to extract more detailed information 
about the unit operations. Taking again the example of heat exchangers, 
there exist many different types of heat exchangers with different 
functionalities, thus sub-classes contain more information about used 
equipment types. 

We extended the original 12 categories from Zhang et al. (2019) to 
incorporate a larger variety of symbols and equipment types using class 
decomposition. Our final categorization consists of 47 classes that are 
illustrated in Table 1. 

We arrived at the final classes from the original 12 classes based on 
three rules. First, we split classes that contain specific equipment sub- 
types. For instance, we split the original valve class into eight sub-
classes. Each subclass represents a different specific valve type, e.g., 
needle valves or globe valves. Second, we split classes based on different 
drawing styles for the same category. This class decomposition can help 
increase model performance. For instance, we split the tank category 
into five subcategories including four different drawing styles (tank1, 
tank2, tank3, tank4). Third, we add other flowsheet-specific symbols as 
additional classes (e.g., In/Out tags (IO), arrows, text, or stream tags). 

2.3. Active learning for data annotation 

Data annotation is a time-intensive and costly task. In order to 
accelerate the annotation process, we employed an active learning 
approach (Settles, 2012). First, all unit operations within a small batch 
of PFD were annotated manually. Then, a preliminary object detection 
model was trained and used for interference on a second batch of raw 
data (i.e., PFD images) to predict annotations for these. Then, the 
interfered annotations were manually corrected and used to retrain the 
model. This active learning loop was repeated multiple times. We found 
that this approach greatly accelerates the annotation, as the model 
quickly learns to detect the most common unit operations and human 
correction is only necessary for a small number of errors. 

The mined flowsheets were labeled using domain expertise and 
contextual information. The open-source graphical annotation tool 
LabelImg (Tzutalin, 2015) was utilized. The quality of data annotation 
directly impacts the predicting performance of the object detection 
model (Su et al., 2012). Thus, correct and consistent annotation of ob-
jects in the data is essential. Using the active learning approach, we 
manually annotated 1005 flowsheets including 17,411 unit operations 

Table 1 
Examples of unit operations among the 47 categories with short acronyms used in this work.  
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in total. 

2.4. Data challenges 

The final dataset exhibits several challenges for deep learning. First, 
the sizes of unit operations vary greatly. This occurs commonly in PFDs 
reflecting the physical size of the unit operations, e.g., valve symbols are 
smaller than symbols for distillation columns. This can be a challenge for 
object detection algorithms, which are known to struggle with very 
small objects (Li et al., 2017). Second, the dataset size is small. Our PFD 
dataset size is already significantly larger than the one of previous 
works. However, common object detection datasets that are used for 
benchmarking are often much larger. For instance, the COCO dataset 
includes 220,000 images which is significantly larger than our dataset. 
As the performance of deep learning models typically scales with dataset 
size, the limited dataset size is still a potential challenge. Third, our 
dataset is imbalanced. In particular, the number of examples per class 
varies greatly. This imbalance arises naturally since some unit opera-
tions are used more frequently than others. For instance, in the entire 
dataset there are 35 instances of the class blower (blwr), while there are 
2617 heat exchangers (hex). Such class imbalance can lead to poor 
model performance on underrepresented classes (Oksuz et al., 2021). 

3. Methodology 

In this section, we explain the three key steps of our proposed PFD 
digitization algorithm as illustrated in Fig. 3: First, object detection 
models detect and classify unit operations, text, and arrowheads (Sec-
tion 3.1). Second, the connectivities between unit operations are iden-
tified using a pixel-based search and the process graph is generated 
based on the identified information (Section 3.2). 

3.1. Unit operation detection 

The object detection identifies a variety of objects that are commonly 
found on PFDs. This includes unit operations, arrowheads, and text (e.g., 
tags). 

Object detection nowadays is mostly based on deep learning archi-
tectures. There exist two types of object detection algorithms, i.e., one- 
stage (Lin et al., 2017b; Liu et al., 2016; Redmon et al., 2016; Redmon 
and Farhadi, 2017; Redmon and Farhadi, 2018) and two-stage (Ren 
et al., 2015; Zou et al., 2019) algorithms. Both architectures first use 
fully connected convoluted networks for feature extraction, commonly 
referred to as backbone. Then, two-stage detection algorithms use two 
stages, i.e., a region proposal stage and a classification stage. Herein, the 
region proposal stage predicts possible bounding boxes while the clas-
sification stage predicts the object class labels. One-stage models on the 
other hand omit the region proposal stage and combine the two tasks. 

Single detectors exhibit high detection speeds (Zou et al., 2019), 
which makes them a natural choice in time-critical tasks or 

high-throughput tasks such as object detection in videos. However, 
one-stage detectors have been reported to struggle more detecting small 
objects in images (Liu et al., 2021; Redmon and Farhadi, 2017). 
Two-stage detectors on the other hand regularly report higher accu-
racies on benchmark datasets such as COCO (Lin et al., 2014). 

We use the state-of-the-art two-stage network called Faster R-CNN 
for object detection for three main reasons: (i) PDFs exhibit often small 
objects like valves, (ii) the digitization is not a computationally 
demanding high-throughput task (compared to object detection in 
videos), and (iii) we prefer a high prediction accuracy over prediction 
speed. 

We chose a ResNet-50 as our backbone model. The choice of a 
backbone model is hereby one of the most crucial decisions for perfor-
mance. ResNet has been reported to be especially suitable for the 
detection of small objects, which are one of the challenges of this 
dataset. In preliminary trials, deeper ResNet (Xie et al., 2017) archi-
tectures showed no further improvement. 

We further employed Feature Pyramid Networks (FPNs) in our 
backbone model. FPNs are a set of deep CNNs which construct features 
at different scales while keeping computation feasible (Lin et al., 2017a). 
The main objective of feature pyramids in a model is to allow a neural 
network to learn high to low-level features and independently make 
predictions at each level. In contrast to vanilla predictors, FPNs do not 
rely on the highest level features only. This allows to consider a broader 
spectrum of features that are otherwise lost during up-sampling. For 
more details, we refer to Lin et al. (2017a). Feature pyramids are an 
important component in detection systems that facilitate the recognition 
of objects at different scales (Lin et al., 2017a). This makes them suitable 
to overcome the present size differences of objects in our dataset. PFDs 
come in various sizes. Faster R-CNN can in principle handle any image 
size. For practical reasons however, images are resized to be between 
800 and 1333 pixels during preprocessing. This is the default setting in 
Detectron2. 

We use transfer learning to improve model performance. Transfer 
learning refers to the improvement of model learning in one task by 
transferring knowledge from a related, previously learned task (Torrey 
and Shavlik, 2010). With transfer learning, a model can initiate the 
training process on new data distributions with pre-trained weights, 
shortening training time and possibly leading to superior performance. 
We considered this to be advantageous in the light of limited training 
data. In our algorithm, the Faster R-CNN model had been pretrained on 
the COCO dataset 2017 (Lin et al., 2014). 

We mitigate the issue of our imbalanced dataset using two tech-
niques. First, we apply repeat factor sampling (Wu et al., 2019). Repeat 
factor sampling allows training images with underrepresented cate-
gories more often to account for slower learning effects. Repeat factor 
training is especially important for our dataset as some unit operations 
are seldom found in PFDs. Second, we trained two individual object 
detection models for different tasks: (1) detection of unit operations and 
unknown units, and (2) detection of arrowheads and text. This is 

Fig. 3. The trained unit operation detection model is applied to the flowsheet (a). The object detection algorithm predicts bounding boxes and object classes (b). 
Then, skeletization is applied and streams connecting unit operations are identified (c). Finally, a graph representation is obtained (d). 
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advantageous because arrowheads and text are much more frequent in 
PFDs than unit operations. Next to these techniques, several other 
techniques have been described in literature to mitigate class imbalance. 
For example, different weights can be assigned to individual categories 
in the loss function during training (Oksuz et al., 2021). After unit op-
erations are successfully detected, their bounding boxes are 
post-processed. Bounding boxes with significant overlap, measured as 
their intersection over union (IoU) (Rezatofighi et al., 2019), are 
compared and the ones with the lower confidence score are removed. 
This is necessary as Faster R-CNN has a tendency to detect the same 
objects several times (Rothe et al., 2015). Afterward, unit operations 
with low confidence scores are predicted as the unknown, i.e., category 
”X”. 

3.2. Connectivity recognition 

Connectivity recognition is the second step of the framework. Con-
nectivity recognition deals with finding connections between unit op-
erations in the flowsheets. Connections in PFDs usually describe mass 
streams and are directed connections. Thus, the challenges of connec-
tivity recognition are to first find connections among unit operations and 
second assign directions to the connections. 

We employ a pixel search algorithm to identify the connectivity 
between unit operations. In order to explore connectives on a pixel level, 
the widths of all objects in the PFD are reduced into one-dimensional 
lines. Therefore, the flowsheet image is binarized and skeletonization 
is applied. Skeletonization produces a compact representation of objects 
in images by reducing them to their medial axis, effectively transforming 
shapes to curves of a 1-pixel thickness (Saha et al., 2016) while pre-
serving their connectivities. Fig. 4 presents an example of distillation 
column skeletonization. 

After skeletonization, a tailored connectivity search algorithm is 
applied. The connectivity search starts from the bounding box of a unit 
operation. For each white pixel neighboring the bounding box, the 

algorithm traverses along the path from the white pixel to the neigh-
boring white pixel and so on. A graphical representation of this pro-
cedure is shown in Fig. 5. A connection between two unit operations is 
established when the algorithm reaches a pixel belonging to a new unit 
operation. If the exploration reaches a dead end, it creates an “In/Out” 
stream object, indicating an incoming or outgoing stream of the process. 
Once all the outgoing paths from a unit operation are explored, the al-
gorithm moves to the next unit and repeats the search, storing infor-
mation about all detected connections. A simplified pseudocode 
illustration can be found in Algorithm 1. Directions to paths are assigned 
according to detected arrowheads. After the paths are found, it is 
checked for each path if a arrowhead is on the path. The direction of the 
paths are then adjusted accordingly. 

Finally, a graph representation of the flowsheet is constructed using 
the NetworkX open-source Python package (Hagberg, Aric et al., 2022). 
A graph is created where each unit operation, raw material, and product 
is represented as an individual node and the streams connecting them 
are represented as directed edges. Each edge and node in the graph also 
has attributes, such as unit operation type. 

4. Results and discussion 

In this section, we present the results of our flowsheet digitization 
framework on a comprehensive dataset. We first describe the training 
setup of the object detection algorithm as well as results of hyper-
parameter tuning (Section 4.1). Then, we show and discuss the results of 
training before showing the performance of the path exploration algo-
rithm on an exemplary flowsheet (Section 4.2). 

4.1. Training and hyperparameter optimization 

The object detection model was trained on a NVIDIA GeForce RTX 
3090. The training set includes 705 flowsheets, the validation set in-
cludes 150 flowsheets, and the independent test set includes 150 
flowsheets. 

The key hyperparameters of the model were optimized using 
Bayesian optimization. We investigated the influence of five hyper-
parameters on the prediction performance: the learning rate, the norm 
type for training ResNet, the momentum for ADAM optimization, the 
repeat threshold, and the freezing point for the pretrained backbone 
model. The hyperparameter optimization took approximately 3 days 
and involved 100 trials. The range of values considered as well as the 
best value found are shown in Table 2. These values are in alignment 
with the default values used in the Detectron2 for Faster R-CNN. This 
indicates robustness of the pretrained model hyperparameter towards 
our datasets. 

In  Fig. 6, the training loss curves of the model with the best 
hyperparameter configuration is depicted. The loss shown is the default 
loss as defined in the original Faster R-CNN work (Ren et al. (2015)). We 
trained the model for 20 epochs to determine the necessary number of 
training epochs. To train for 20 epochs took approximately three hours 

Fig. 4. Example of skeletonization applied to a common unit operation illustration (a). The image is thresholded and binarized (b). The skeletonization algorithm is 
applied, leaving a one-pixel thick representation of objects (c). 

Fig. 5. Pixel-level representation of the connectivity search method.  
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on our computer. As it can be seen in Fig. 6, the model learns very 
quickly. This shows that the chosen architecture is well suited for unit 
operation detection. After 10 epochs the validation loss begins to flatten. 
Hence, we used the model after 10 epochs as our final model (i.e., 

following an early-stopping approach). 

4.2. Object detection performance 

The goal of object detection is to localize and classify objects within 
images. To evaluate the performance of object detection algorithms the 
placement of the bounding boxes around objects and the class pre-
dictions need to be measured. 

A common performance evaluation metric for object detection is the 
Average Precision (AP) which considers correct, missed, and false pre-
dictions (Ren et al., 2015). The IoU is used to evaluate the correct 
bounding box placement. In particular, a minimal IoU threshold is 
chosen that corresponds to a correct placement. It is controversial what 
threshold value is considered correct (Everingham et al., 2010; Lin et al., 
2014). For instance, the Pascal VOC AP metric, also known as AP50, is 
the AP calculated at an IoU threshold of 0.5. Another popular method is 
to take an average over an array of thresholds [0.5:0.05:0.95]. This 

Algorithm 1. Pseudocode of pixel search algorithm.  

Table 2 
Overview of hyperparameter studies with respective search space and best- 
found values. The norms investigated were Batchnorm (BN), frozen Batch-
norm (FrozenBN), Synchronous Batchnorm (SyncBN) and Group norm (GN) 
(Ioffe and Szegedy, 2015; Wu and He, 2018).  

Hyperparameter Search space Best found value 

Freezing layer backbone model [0;5] 1 
Repeat factor [0.05;0.5] 0.35 
Norm [BN; SyncBN; FrozenBN; GN] FrozenBN 
Momentum [0.5; 0.99] 0.83 
Base Learning rate [0.0005; 0.05] 0.0083  
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method is called AP and it is the primary metric for the well-known 
COCO challenge. Comparing the AP50 to the AP provides valuable in-
sights into the performances of the classification and bounding box 
placement tasks. For example, a high AP50 and a low AP indicate that 
objects are correctly classified but the bounding box placement is 
imprecise. Moreover, additional metrics exist such as AP75 for an IoU of 
0.75 and AP calculated separately for different object sizes. 

The overall performance of the model on the test set is summarized in 
Table 3. The very high AP50 of 88.43% indicates that the model clas-
sifies most objects correctly when a small IoU of 0.5 is sufficient. At an 
IoU of 0.75, the model still shows a very high AP75 of 81.85%. The 
averaged AP is 68.27%. This is considerably lower than the AP50. 
Overall, the results indicate that the model classifies most unit opera-
tions correctly but fails to accurately localize some unit operations at a 
high IoU. 

A comparison to state-of-the-art models on the COCO dataset as a 
large, real-world benchmark dataset provides further insights. The 
current best models on the COCO dataset achieve an averaged AP of 
64.2% (Wei et al., 2022) and AP50 of 79.5% (Li et al., 2022). These 
performances are in line with Faster R-CNN performance on our dataset. 
This shows that the performance of our PFD digitization is comparable 
to the current state-of-the-art in computer vision and deep learning. 

Table 3 also shows individual model performances for objects that 
have different sizes, i.e., large- (APl) medium- (APm), and small-sized 
(APs) objects. The results show that the model performs significantly 
better for large- and medium-sized objects than for small-sized objects. 
This is expected because the detection of small objects is challenging for 
two main reasons. First, object detection models often struggle to detect 
very small objects (Li et al., 2017). Second, annotation errors are more 
common for small objects as the correct positioning of small bounding 
boxes is challenging. Moreover, small absolute bounding box posi-
tioning errors can lead to large relative errors when considering small 
objects like arrows. 

In Table 4 the AP is further broken down into the 47 individual unit 
operation classes. The results show that most unit operations are 
detected very accurately. Unit operations detected with high accuracy 
are either frequently in the dataset or show little intra-class variability 
due to class decomposition. Examples of classes with high occurrence 
are furnace heat exchanger (hex_fur), columns (col), and mixers (mix). 
These classes can vary in color, shape, and size and are still detected 
accurately. Examples of classes with very consistent illustrations are 
aspen columns (col_asp), gas tanks (tank_gas), and blowers (blwr). While 
these classes are not commonly found, their illustrations are homoge-
neous due to the applied class decomposition. 

The results further show that a few unit operations have a relatively 
low AP. In particular, the model struggles with three types of classes. 
First, classes with small symbols are an obstacle to object detection al-
gorithms. Examples of this phenomenon are valves, certain mixers 
(mix2), and stream tags (strm4, strm3, strm). Second, classes with a low 
frequency of occurrence and inconsistent illustrations are challenging to 
correctly classify. Examples of such classes are tanks (tank, tank3) and 
In/Out tags (IO). Repeat factor sampling was hereby not sufficient to 

Fig. 6. Training curve of loss and AP metric for the model with the selected hyperparameter configuration. The loss curve for the validation set is smooth compared 
to the other documented metrics. This is because the validation set was not tested at every epoch. This leads to a smoother appearance of the validation loss. 

Table 3 
AP on the independent test set as calculated by COCO evaluation convention.  

AP(%) AP50 (%) AP75 (%) APs (%) APm (%) APl (%) 

68.27 88.43 81.85 62.84 74.55 76.44  

Table 4 
Overview of AP per unit operation in ascending order for all 47 classes divided in 
below and above AP as indicated with red dashed line.  

Unit operation AP (%) Unit operation AP (%) Unit operation AP (%) 

col_aspen 90.00 reb 75.35 v_glob 63.50 
tank_gas 89.06 comp2 75.00 hex_st 62.07 
blwr 87.62 fil 74.72 hex_fan 61.91 
dist_aspen 87.62 ves 74.26 strm 60.11 
tank1 85.55 r 72.56 tank3 60.00 
hex_fur 85.08 pp 71.74 v_std 56.32 
sep_2 85.05 ctrl 71.24 v_ndl 54.88 
tank2 84.48 comp 71.10 v_man 52.68 
col 81.43 pp3 70.74 X 46.24 
sep 80.38 pp2 70.00 v_ball 45.35 
mix 80.10 ms 69.63 IO 44.14 
hex_cool 80.00 v_chck 66.80 strm3 40.97 
splt 80.00 dist 65.52 tank 37.43 
r_cstr 79.85 v_ctrl 65.19 strm4 35.69 
strm2 77.89 hex_int 65.04 mix2 34.25 
hex 75.46 v3_way 64.65    
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overcome the frequency imbalance. Third, the class of unknown unit 
operations (X) has a low AP of 46%. This is to be expected because the X 
class combines a large variety of uncommon unit operations. Thus, the 
class X has a particularly high intra-class variability. 

4.3. Connectivity recognition 

The quantitative evaluation of the connectivity recognition algo-
rithm is challenging because it would require the manual labeling of all 
connections in the dataset. Moreover, the labeling of such graphs is 
uncommon and standard image annotation tools do not support the 
annotation of connectives in a graph format. Thus, we qualitatively 
assess the performance of the connectivity recognition algorithm on the 
illustrative example flowsheet shown in Fig. 1. The flowsheet was first 
processed by the object detection model to identify unit operations. 
Then, the connectivity recognition algorithm was applied to the image. 
The results of the unit operation detection and connectivity recognition 
are depicted in Fig. 7. The figure shows that all unit operations are 
classified correctly in the example. Moreover, all connectives between 
unit operations are identified correctly in the example. While all con-
nections are correctly identified, wrong directions are assigned to some 
of the connections. Notably, the presented algorithm relies on arrow-
head detection to determine the direction of streams. As pointed out 
before, object detection models can struggle to detect these very small 
objects, making identification of flow directions challenging. In future 
works, rule-based reasoning could potentially improve the automatic 
detection of flow directions based on the process context information. 
For example, we know the directions of the top and bottom outlet 
streams of distillation columns during normal operation. 

Finally, it is worth mentioning that the connectivity recognition al-
gorithm introduces new nodes for inlet and outlet streams. In addition, 
the algorithm adds new nodes for splitters and mixers such as the 
splitting of the Benezene overhead into a transalklynation and an 
alkylation recycle stream. 

5. Conclusions 

We proposed a two-step approach for the digitization of PFDs. Our 
proposed approach includes a unit operation detection with a Faster R- 
CNN and a pixel-based search algorithm for connectivity detection. The 
models are trained on a large dataset of over 1000 PFDs which are mined 
from scientific literature, books, and the internet. Our results show that 
the approach can robustly digitize PFD from these diverse sources. In the 
future, we envision to extend our approach and use it for the digitization 
of all PFDs that have ever been published in the scientific literature and 
patents. Also, data augmentation could help to improve object detection 
model performance in light of limited data. In addition, the identified 

text boxes on the PFDs could be processed by optical character recog-
nition and could improve the digitization algorithm. Moreover, we see a 
great potential for the digitization of industrial PFDs. Ultimately, a 
database of PFDs is a potential enabler for future AI applications in the 
chemical engineering domain (Hirtreiter et al., 2022; Schweidtmann, 
2022; Schweidtmann et al., 2021a; Vogel et al., 2022a; Vogel et al., 
2022b; Weber et al., 2021; Wiedau et al., 2021). 
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