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SUMMARY

Minimum-phase properties are well-understood for scalar functions where they can be

used as physical constraint for phase reconstruction. Existing scalar applications of the

latter in geophysics include e.g. the reconstruction of transmission from acoustic re-

flection data, or multiple elimination via the augmented acoustic Marchenko method.

We review scalar minimum-phase reconstruction via the conventional Kolmogorov rela-

tion, as well as a less-known factorization method. Motivated to solve practice-relevant

problems beyond the scalar case, we investigate (1) the properties and (2) the recon-

struction of minimum-phase matrix functions. We consider a simple but non-trivial case

of 2× 2 matrix response functions associated with elastodynamic wavefields. Compared

to the scalar acoustic case, matrix functions possess additional freedoms. Nonetheless,

the minimum-phase property is still defined via a scalar function, i.e. a matrix possesses

a minimum-phase property if its determinant does. We review and modify a matrix

factorization method such that it can accurately reconstruct a 2 × 2 minimum-phase

matrix function related to the elastodynamic Marchenko method. However, the recon-

struction is limited to cases with sufficiently small differences between P- and S-wave

travel times, which we illustrate with a synthetic example. Moreover, we show that the
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2 Reinicke, Dukalski & Wapenaar

minimum-phase reconstruction method by factorization shares similarities with the Mar-

chenko method in terms of the algorithm and its limitations. Our results reveal so-far

unexplored matrix properties of geophysical responses that open the door towards novel

data processing tools. Last but not least, it appears that minimum-phase matrix func-

tions possess additional, still-hidden properties that remain to be exploited e.g. for phase

reconstruction.

Key words: Fourier analysis – Numerical solutions – Time-series analysis – Inverse

theory – Wave propagation – Wave scattering and diffraction

1 INTRODUCTION

Phase reconstruction can be found in various fields of science and engineering (Shechtman

et al. 2015). It is the process of finding a function given its Fourier amplitude spectrum or

some multidimensional generalization thereof. The result is not unique but can be better

constrained given some a priori knowledge of the function. The focus of this work lies on a

special class called minimum-phase reconstruction. It pertains to invertible functions where

the function and its inverse are characterized by energy concentrated close to the temporal

origin.

In geophysics, minimum-phase is often thought to be a property of the seismic wavelet in

marine acquisition (Yilmaz 2001), aside from complications resulting from band-limitation

(Lamoureux & Margrave 2007). However, minimum-phase is a more general property which

can be a characteristic of response functions that relate wavefields measured at different spa-

tial locations. For example, Sherwood & Trorey (1965) as well as Claerbout (1968) demon-

strate that full-bandwidth 1D acoustic transmission responses and their inverses form pairs

of minimum-phase signals when measured from the onset of the signal. The aforementioned

work distinguishes transmission from reflection responses. This is often reasonable in ex-

ploration geophysics when considering a section of the subsurface embedded between top

and bottom boundaries. For simplicity, we assume these boundaries are perfectly absorbing.

Contrary to transmissions, reflection responses are generally not minimum-phase.
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Minimum-phase beyond scalar functions 3

To date, the properties and the reconstruction of multi-dimensional minimum-phase

signals remain poorly understood. Here, multi-dimensional signals refer to response functions

that are associated with 1.5D elastodynamic or 2D/3D acoustic wavefields as opposed to

scalar functions associated with 1.5D acoustic wavefields. This topic remains a relevant

geophysics problem which has been studied by only few authors (Claerbout 1998; Fomel

et al. 2003). As a result, multi-dimensional minimum-phase signal reconstruction remains a

barrier for numerous applications such as retrieving transmission from reflection responses

(Wapenaar et al. 2003), or internal multiple elimination using the augmented Marchenko

method (e.g. Dukalski et al. 2019). The research of this paper has been motivated by the

augmented Marchenko method and its generalization to elastodynamic waves (this method

is not discussed here, but details can be found in Reinicke et al. 2020).

In this work, we study the minimum-phase properties and reconstruction of 2×2 matrix

response functions. In Section 2, we review existing theory of minimum-phase properties and

two reconstruction algorithms for the scalar case. Moreover, we discuss geophysical response

functions and show an example of minimum-phase reconstruction for the acoustic derever-

beration operator of the Marchenko method. In Section 3, we discuss why elastodynamic

response functions are matrices instead of scalars, and analyze the minimum-phase property

as well as its reconstruction for the matrix case. In Section 4, we present two numerical

examples of minimum-phase matrix reconstruction based on the factorization algorithm by

Wilson (1972) with a modification inspired by the Marchenko method. The two examples

include a case with an accurate solution as well as another case with artifacts to highlight

remaining limitations. Finally, we discuss our insights in Section 5 and highlight similarities

between minimum-phase reconstruction and the Marchenko method.

2 MINIMUM-PHASE PROPERTY AND RECONSTRUCTION: SCALAR

CASE

In this section, we review existing work to prepare the discussion of the main result of this

paper. In particular, we,
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4 Reinicke, Dukalski & Wapenaar

(2.1) review the scalar minimum-phase property and how it can be used for phase recon-

struction via the Kolmogorov relation,

(2.2) show a factorization method for scalar phase-reconstruction under a minimum-phase

condition,

(2.3) introduce our notation and geophysical responses.

In part (2.3), we focus on a minimum-phase function that is relevant for the Marchenko

method. However, the analysis does not require in depth knowledge of the Marchenko

method.

2.1 Minimum-phase in a nutshell

We start by discussing linear time-invariant (LTI) systems. Given an arbitrary input, one can

obtain the output of an LTI system via temporal convolution with its impulse response. For

example, seismic reflection data can be represented as a temporal convolution of the source

signature with the impulse response of the subsurface. This representation assumes that the

subsurface remains unchanged during the experiment. For convenience, convolutions in the

time (τ) domain are often formulated as multiplications in the frequency (ω) domain, e.g.,

output(ω) = g(ω) input(ω), (1)

where g(ω) denotes an impulse response. In the following, we imply that all operations, such

as products or divisions, are performed per frequency component unless explicitly mentioned.

Moreover, we refer to impulse responses as responses or functions, while they may also be

known as transfer functions.

The minimum-phase property is a mathematical characteristic associated with a special

class of functions. Using a qualitative definition, a function possesses a minimum-phase

property if the following conditions are satisfied (Bode et al. 1945; Sherwood & Trorey 1965;

Berkhout 1973; Skingle et al. 1977).

(i) The sum of all absolute time components is finite (stability).

(ii) The function vanishes for negative times (causality).
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Minimum-phase beyond scalar functions 5

(iii) The inverse exists and satisfies (i) and (ii).

An important consequence is that the product of minimum-phase functions produces a result

with a minimum-phase property. The term “minimum-phase” suggests that some attribute

is minimized, which is true for special cases, where the group delay is minimized. However,

this definition is not used in our analysis.

We illustrate the minimum-phase property using an example. Consider the causal func-

tions (i.e. τ1 > 0),

A(ω) =1 + αe−iωτ1 , (2)

B(ω) =α + e−iωτ1 = (A(ω))∗ e−iωτ1 , (3)

where α is a constant smaller than one. The variable i and the superscript “∗” denote the

imaginary unit and complex-conjugation, respectively. Hence, the functions have identical

amplitude spectra, C(ω) = |A(ω)| = |B(ω)|. Moreover, we use several common operators,

which are defined in the appendix (see Table A1). The analysis of causality depends on the

definition of the Fourier transform (sign choice of the exponent) which we define according

to Eqs. A.1 and A.2. The phase of the functions can be visualized as an angle in the complex

plane spanned between a complex number and the real axis (see Figure 1a, where α = −0.6

and τ = 0.04 s), or as a function of frequency (see Figure 1b). It can be easily seen that the

functions A(ω) and B(ω) satisfy conditions (i) and (ii) (see Figure 1c). Their inverses exist

and can be found using the geometric series and Eq. 3,

(A(ω))−1 =
∞∑

k=0

(−α)ke−iωτ1k, (4)

(B(ω))−1 =
(
(A(ω))−1)∗ eiωτ1 =

∞∑

k=0

(−α)keiωτ1(k+1). (5)

Moreover, the inverses are stable due to convergence of the geometric series in Eqs. 4 and 5.

However, only the inverse (A(ω))−1 is causal whereas the inverse (B(ω))−1 is acausal (see

Figure 1c). Hence, the function A(ω) satisfies conditions (i)-(iii) and possesses a minimum-

phase property, but the function B(ω) does not. The amplitude spectrum C(ω) has a smaller

phase (zero-phase) than the function A(ω) but it violates the causality condition (ii), and
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6 Reinicke, Dukalski & Wapenaar

hence is not minimum-phase (see Figure 1c). In the following, we omit the dependency on

frequencies except for newly introduced functions.

Minimum-phase reconstruction is the retrieval of a minimum-phase function from its

amplitude, or power, spectrum. In general, phase reconstruction carries a degree of freedom

eiΦ(ω),

(
AeiΦ(ω)

)∗
AeiΦ(ω) = A∗A = |A|2. (6)

However, it can be shown that the aforementioned freedom vanishes under the minimum-

phase conditions (i)-(iii). Thus, minimum-phase functions possess a unique amplitude-phase

relationship, which can be formulated e.g. via the Kolmogorov relation (e.g. Skingle et al.

1977),

log (A) =log (|A|) +iArg [A]

=log (|A|)−iH [log (|A|)] . (7)

Here, we denote the phase by Arg [A], the natural logarithm by log (·), and the Hilbert

transform by H [·].

2.2 Minimum-phase reconstruction by factorization

Wilson (1969) formulates minimum-phase reconstruction as a recursive factorization prob-

lem, which we call the Wilson algorithm. This method will be important when generalizing

the minimum-phase property and reconstruction from scalars to matrices in Section 3.2.

Since the Wilson method might be less-known than the Kolmogorov in Eq. 7, we summarize

its scalar formulation in more detail.

Consider an arbitrary minimum-phase function A(ω). The starting point is a relation

between the amplitude spectrum |A|, an estimate after n iterations An, and its update An+1

(see Eq. 6 in Wilson 1969),

AnA
∗
n+1 + An+1A

∗
n = AnA

∗
n + AA∗. (8)
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Minimum-phase beyond scalar functions 7
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Figure 1. Illustration of the functions A, B, C (left column) and their inverses (right column)

defined in Eqs. 2 - 5 using α = −0.6 and τ1 = 0.04 s. The panels show (a) Argand diagrams, (b)

phase spectra and (c) time domain representations. The axes of the Argand diagram correspond

to the real (<) and imaginary (=) part of the functions in the frequency domain. The phase of

a complex number is illustrated in the top right panel. Moreover, there is one legend per column

and we denote f = ω
2π . The minimum-phase function A and its inverse follow trajectories in the

complex plane that have winding numbers around the origin equal to zero. However, the trajectory

of the function B and its inverse wind five times around the origin of the complex plane (deduced

from the phase spectra π×10
2π = 5, or ωmaxτ1

2π = 125 Hz× 0.04 s = 5).

Multiplication by (An)−1 and (A∗n)−1 leads to,

A∗n+1 (A∗n)−1 + (An)−1 An+1 = 1 + (An)−1AA∗ (A∗n)−1 . (9)

It follows from the minimum-phase-property of the desired solution A that Eq. 9 contains

a superposition of a strictly causal term, (An)−1 An+1, with its time-reverse. The acausal
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8 Reinicke, Dukalski & Wapenaar

term,
[
(An)−1 An+1

]∗
, can be removed by applying a temporal mute Θ [·]. Next, the result

is rearranged to obtain a recursive algorithm,

An+1 = AnΘ
[
1 + (An)−1 |A|2 (A∗n)−1] . (10)

Here, the mute represents multiplication by the Heaviside function H(τ) in the time domain,

H(τ) =





1, τ > 0,

1
2
, τ = 0,

0, τ < 0.

(11)

Since most operations in this work are formulated in the frequency domain, the mute oper-

tator Θ [·] includes Fourier transforms between the frequency and time domains. In Section

3, the mute operator will be generalized from a Heaviside function to a more general step

function. Wilson (1969) shows that the recursive algorithm in Eq. 10 converges to the de-

sired solution A using the simplest minimum-phase function as initial estimate, A0 = 1 (in

the frequency domain). The scaling by 1
2

at time zero (see Eq. 11) handles the overlap of

the causal and acausal terms in Eq. 9. It can also be seen as a termination condition that

ensures convergence, i.e. the solution is not updated for An = A,

An+1 = AnΘ
[
1 + (An)−1 |A|2 (A∗n)−1]

= AnΘ [1 + 1] = An. (12)

2.3 Geophysical scalar functions and minimum-phase

We briefly introduce our notation, define the dereverberation operator and show a numerical

example of the Wilson algorithm.

In geophysics, transfer functions are often used to relate wavefields at different locations.

For simplicity, we consider horizontally-layered media in the x-z space, where wavefields

decouple per horizontal ray-parameter, px = sin(α)
c

(see Eq. A.3 for definition of the domain

transformation). Here, the angle α is formed by the wave front and the x-axis, and c denotes

Page 8 of 73Geophysical Journal International

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Minimum-phase beyond scalar functions 9

the local propagation velocity of a given wave type (P, or S which will be relevant in the

elastic case).

The term response refers to a Green’s function associated with a plane-wave dipole source

and a monopole receiver. Hence, a response is a function that relates the wavefields at the

source and receiver locations via a product per frequency. We consider an acoustic medium

that is homogeneous except for a section between the depth levels z on top, and z′ at the

bottom. Moreover, the medium is source-free below the upper boundary at depth z. In

this configuration, one can relate the wavefields on the boundaries z and z′ using a scalar

response D(px, z
′, z, ω) (as opposed to a matrix response) according to,

q(px, z
′, ω) = D(px, z

′, z, ω)q(px, z, ω). (13)

Here, the quantity q(px, z, ω) denotes an acoustic pressure wavefield. We assume all co-

ordinates are fixed except for the frequency and use a detail-hiding notation that omits

coordinates, e.g. qbelow = Dqabove (similar to Berkhout 1982; Wapenaar 1989).

For all numerical examples in this paper, we consider the four layer model in Figure 2

and a single ray-parameter px = 2 × 10−4 s m−1. We use three models that are identical

except for the S-wave velocity cS including an acoustic model (cS = 0) and two elastic ones

(cS 6= 0).

Next, we introduce a specific transfer function namely the dereverberation operator which

is the desired solution of the Marchenko equation. It can be used to remove internal multiples

from seismic reflection data (e.g. van der Neut & Wapenaar 2016; Dukalski & de Vos 2022),

however, multiple elimination is not relevant for our analysis. The dereverberation operator

is defined via the transmission response T ↓ that relates the wavefields above and below a

scattering medium (qbelow = T ↓qabove). In the acoustic case, it can be written as,

V + = T ↓−1T ↓dir = 1 + V +
coda. (14)

Here, the transmission T ↓ is split in its direct and coda parts indicated by the subscripts
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10 Reinicke, Dukalski & Wapenaar

1 3 5
0

0.5

1

ρ (kg dm−3)

D
ep
th

(k
m
)

0 1 2

c (km s−1)

cP
cS Acoustic

cS Elastic #1

cS Elastic #2

Figure 2. Parameters of the three models used in this work. The density ρ and the P-wave velocity

cP are identical for all models. An acoustic case is defined by setting the S-wave velocity to zero

cS = 0. The Elastic #1 case is defined with a non-zero S-wave velocity cS 6= 0. The Elastic #2 case

is defined by reducing the S-wave velocity in one of the layers. The one-way travel times within each

layer are integer-multiples of the time sampling interval (∆τ = 4 ms) for all models and for P-/S-

waves associated with px = 2×10−4 s m−1. This choice simplifies the interpretation of the medium

responses in the time domain because all events perfectly coincide with a time sample, i.e. it avoids

smearing of individual events across several time samples. In this setting, we can accurately apply

temporal mutes which allows us to verify the accuracy of the discussed algorithms up to numerical

noise (in the order of 1× 10−15 for double-precision).

“dir” and “coda”, respectively,

T ↓ = T ↓dir + T ↓coda, (15)

and the inverse transmission T ↓−1 is often referred to as a focusing function f+ (Wapenaar

et al. 2014). Transmissions and their inverses are minimum-phase functions, except for a

positive and negative time shift, respectively (Claerbout 1968). These time shifts mutually

cancel when evaluating the product in Eq. 14. Hence, the dereverberation operator possesses

a minimum-phase property. For example, the function A in Eq. 2 is a dereverberation op-

erator of an acoustic medium with two reflectors that are separated by the travel time 1
2
τ1,

and the factor α represents the product of the reflection coefficients of the two interfaces.
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Minimum-phase beyond scalar functions 11

We illustrate the scalar Wilson algorithm with an example considering the acoustic model

shown in Figure 2. The power spectrum of the dereverberation operator |V +|2 (see Figure

3a) is modeled analytically (Dukalski et al. 2022) and used to evaluate Eq. 10 with A = V +.

Figures 3b-f show the solution V +
n and its error, V +

n − V +, as a function of iterations (n).

The convergence in Figure 4 reveals that the Wilson algorithm finds the true solution up to

numerical accuracy within seven iterations.

3 MINIMUM-PHASE PROPERTY AND RECONSTRUCTION: MATRIX

CASE

In this section, we,

(3.1) introduce matrix functions and their link to elastodynamic wavefields,

(3.2) analyze the minimum-phase property of matrices,

(3.3) review normal products and explore how minimum-phase matrices can be recon-

structed from their normal products by factorization. For the reconstruction step, we

focus on the special case of the elastodynamic dereverberation operator.

3.1 Geophysical matrix functions

We briefly introduce matrix functions. The literature distinguishes between transfer func-

tions with (1) a single input and a single output (SISO) corresponding to the scalar case

discussed above, as well as (2) multi inputs and multi outputs (MIMO) (Johansson 1997).

The latter can be represented by frequency-dependent matrices, where the number of rows

and columns corresponds to the number of output and input variables, respectively. Hence,

they are referred to as matrix functions. Compared to the scalar case, mathematical opera-

tions are generalized which can lead to previously unexplored challenges, e.g. scalar products

and divisions become matrix multiplications and matrix inverses, respectively.

Elastodynamic responses can be represented by 2×2 matrix functions. Here, we consider

the configuration discussed in Section 2.3 but generalize acoustic to elastic media. One can

Page 11 of 73 Geophysical Journal International

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



12 Reinicke, Dukalski & Wapenaar

formulate the elastic extension of the wavefield-response relation in Eq. 13 as follows,

q(px, z
′, ω) = D(px, z

′, z, ω)q(px, z, ω), (16)

with,

D =



DP,P DP,S

DS,P DS,S


 , and, q =



qP

qS


 . (17)

The subscripts denote P-/S-waves and we use bold font to distinguish vectors and matrices

from scalars. In this context, the matrix function D is an elastodynamic response defined

in the P-S space. The first and second subscripts of its matrix elements denote the wave

type at the receiver- and source-side, respectively. For example, the element DP,S relates

S-waves at the source location to P-waves at the receiver location. Next, we generalize the

temporal mutes to matrices such that they operate, and can differ per matrix element in the

P-S space,

Θ [D] =




ΘP,P [DP,P ] ΘP,S [DP,S]

ΘS,P [DS,P ] ΘS,S [DS,S]


 . (18)

Next, we will investigate how to define and reconstruct the minimum-phase property for

matrices, e.g. per matrix element or per matrix. Moreover, we will analyze the mathemati-

cal behavior of minimum-phase matrices, e.g. whether their property is preserved by matrix

products or changes of basis. Despite focusing on 2 × 2 matrices, we do not exclude gener-

alizations to larger ones.

3.2 Minimum-phase matrix property

The concept of minimum-phase is significantly more difficult beyond scalar functions where

several assumptions break. In the following, we discuss the minimum-phase property of

matrices by reviewing findings from other areas (e.g. control theory).

Diagonal matrices are a trivial extension from scalars to matrices. Consider the scalar

minimum-phase functions, A± = 1 ± αe−iωτ1 , with |α| < 1 and τ1 > 0. By arranging

them in a diagonal matrix denoted by diag(·) we obtain the minimum-phase matrix, Λ =

Page 12 of 73Geophysical Journal International

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Minimum-phase beyond scalar functions 13

diag(A−, A+). In contrast to this intuitive example, we will show less obvious cases of

minimum-phase matrices further onwards.

Existing literature defines matrices as minimum-phase if their determinants are minimum-

phase (Wiener 1955; Rosenbrock 1969; Horowitz et al. 1986). Hence, the determinant of a

minimum-phase matrix satisfies the Kolmogorov relation (analogously to Eq. 7). This defi-

nition is consistent with the special case of scalar functions which are 1 × 1 matrices. It is

also consistent with the simple matrix example above, Λ, where the determinant is equal

to the product of the minimum-phase diagonal elements, det(Λ) = A−A+, producing by

definition a minimum-phase result.

In a general case, defining minimum-phase matrices via their determinant has several

consequences:

(1) Matrix multiplications and matrix inverses preserve the minimum-phase property. This

can be seen by considering the determinants of arbitrary minimum-phase matrix func-

tions A and B,

det (AB) = det (A) det (B) , (19)

det
(
A−1

)
= (det (A))−1 . (20)

The determinants, det (A) and det (B), are minimum-phase scalar functions. Hence, the

right-hand sides of Eqs. 19 and 20 show that the matrix product AB and the inverse

matrix A−1 possess a minimum-phase property.

(2) The minimum-phase property is basis-independent,

det (D) = det
(
QDQ−1

)
, (21)

where Q is an arbitrary invertible matrix of the same size as D. Hence, minimum-phase

is a physical property that is independent of the coordinate system or domain.

(3) Minimum-phase matrices are not fully consistent with the qualitative conditions (i)-

(iii) in Section 2.1. The invertibility criterion (iii) is satisfied because minimum-phase

determinants are non-zero. However, it is less clear how to interpret causality and sta-
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14 Reinicke, Dukalski & Wapenaar

bility for a matrix (criteria (i) and (ii)). In particular, minimum-phase determinants do

not guarantee causality of individual matrix elements. For example, suppose the matrix,

Q =




1− 2αe−iωτ1 1

1 + αeiωτ1 1 + αeiωτ1


 , (22)

is used to apply a frequency-dependent basis transformation to the minimum-phase

matrix, Λ = diag(A−, A+). The resulting matrix,

QΛQ−1 =




2− αe−iωτ1 −1−2αe−iωτ1

1+αeiωτ1

1 + αeiωτ1 αe−iωτ1


 , (23)

is still minimum-phase but its matrix elements are not such as the acausal element

1 + αeiωτ1 .

(4) Minimum-phase matrices do not necessarily posses minimum-phase eigenvalues. A

minimum-phase determinant constrains the phase spectra of the eigenvalues up to a

frequency-dependent freedom, η = η(ω),

Arg [λ1] = −H [log (|λ1|)] + η, (24)

Arg [λ2] = −H [log (|λ2|)]− η. (25)

There are special cases where all eigenvalues observe a minimum-phase property (i.e.

η = 0), e.g. the aforementioned matrix Λ, or transmission-like responses of 2D laterally-

invariant acoustic media (see examples by Wapenaar et al. 2003; Elison et al. 2020).

This work focuses on more general minimum-phase matrices, where scalar solutions per

eigenvalue no longer suffice.

3.3 Minimum-phase reconstruction by normal-product factorization: Matrix

case

In this section, we extend minimum-phase reconstruction from scalars to matrices. Firstly,

we define normal products as generalized power spectra, and we demonstrate why unique

minimum-phase matrix reconstruction is significantly more challenging than its scalar ver-

sion. Secondly, we modify the minimum-phase matrix reconstruction method by Wilson

(1972) considering the special case of the elastodynamic dereverberation operator V+.
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Minimum-phase beyond scalar functions 15

Thirdly, we discuss similarities of this reconstruction method to the Marchenko method.

We will illustrate our analysis numerically in Section 4.

3.3.1 Normal products: Generalized power spectra

The normal product is defined as the product of a quantity, with its complex-conjugate

transpose, e.g. |D|2 for scalars, or DD† for matrices (e.g. Dukalski 2020). Scalar normal

products may be better known as auto-correlations in the time domain and are often in-

terpreted physically as power spectra in the frequency domain because their phase vanishes

Arg [|D|2] = 0. Following this physical interpretation, retrieving the scalar solution D from

its normal product |D|2 is often described as a phase reconstruction, while mathematically,

it is a factorization problem. In Section 2, we showed that this generally non-unique factor-

ization can be constrained for minimum-phase scalar functions (see Eqs. 6 and 7). However,

the matrix case is more complicated.

There are several differences between scalar power spectra and matrix normal products.

For example, consider,

DD† =



DP,P DP,S

DS,P DS,S






D∗P,P D∗S,P

D∗P,S D∗S,S


 =



δ ε∗

ε ζ


 , (26)

with δ = |DP,P |2 + |DP,S|2, ε = D∗P,PDS,P + D∗P,SDS,S, and ζ = |DS,P |2 + |DS,S|2. The

off-diagonal elements of the normal product are identical except for a sign-inverted phase

that is not necessarily zero Arg [ε] = −Arg [ε∗]. Nonetheless, we keep the physical interpre-

tation from the scalar case, i.e. “power spectra” and ”phase reconstruction” refer to normal

products and the retrieval of the solution D from its normal product, respectively. Since

matrix multiplications do not commute, there are two normal products, which are generally

not equal DD† 6= D†D. Counting matrix elements as equations, the two normal products

provide individually up to three (see Eq. 26), and together up to six independent equations

(for 2× 2 matrices). Hence, if both normal products are known, there are more equations to

constrain the reconstruction of the matrix D. However, we assume only one normal product
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16 Reinicke, Dukalski & Wapenaar

is available which describes a challenge of the elastodynamic augmented Marchenko method

(details are not needed here but can be found in Reinicke et al. 2020).

Compared to the scalar case, the factorization of a (single) normal product has additional

degrees of freedom. The normal product of the matrix D is preserved upon multiplication

by an arbitrary unitary 2× 2 matrix U2,

DU2 (DU2)† = DD†, (27)

due to the unitary property U2 [U2]† = I (here I denotes an identity matrix). The U2

element can be represented as follows (the term “element” is commonly used in the relevant

literature, e.g. Cornwell 1997),

U2 =




e−i γ+α
2 cos

[
β
2

]
−ei γ−α

2 sin
[
β
2

]

e−i γ−α
2 sin

[
β
2

]
ei γ+α

2 cos
[
β
2

]


 eiΦ, (28)

where α, β and γ are Euler angles (Hamada 2015). The freedom eiΦ can be constrained via

the minimum-phase property of the determinant det(D) (shown in chapter 5 of Reinicke

2020),

Φ = −1

4
H
[
log
(
|det(DD†)|

)]
. (29)

Unfortunately, the minimum-phase determinant only constrains Φ, i.e. one out of four free

parameters. Due to this limitation, we seek for an alternative method, which is discussed

next.

3.3.2 Minimum-phase matrix reconstruction by factorization

In the following, we review a minimum-phase matrix reconstruction method, introduce the

elastodynamic dereverberation operator and eventually modify the reconstruction method

for the dereverberation operator.

The scalar Wilson algorithm can be generalized to matrices. Wilson (1972) proposes a

matrix extension of the recursive scalar algorithm which can be written as,

Dn+1 = DnΘ
[
I + (Dn)−1 DD†

(
D†n
)−1
]
, (30)
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Minimum-phase beyond scalar functions 17

with D0 = I. The function Θ element-wise mutes acausal events and scales the time zero

components of the diagonal elements by 1
2
. Although the dereverberation operator V+ has

a minimum-phase determinant (shown in the next section), it is not reconstructed correctly

by the algorithm in Eq. 30 with D = V+. We will show that this limitation is due to the

mute Θ [·] and can be overcome using a modified mute.

For better illustration, we briefly define the elastodynamic dereverberation operator. One

can generalize the acoustic definition in Eqs. 14 and 15 to the elastic case by replacing scalar

with matrix responses in the P-S space (Reinicke et al. 2020),

V+ = T↓−1T↓dir = I + V+
coda. (31)

The acoustic direct transmission T ↓dir generalizes to a forward-scattered transmission T↓dir

that includes all non-reflected events such as transmitted mode-converted waves (Wapenaar

2014). Assuming that many readers are unfamiliar with the dereverberation operator, we

explain its properties that are important for our analysis. Firstly, the dereverberation op-

erator has a finite number of events limited by the number of layers. This follows from the

finite number of events of the inverse and forward-scattered transmissions (Dukalski et al.

2022). Secondly, all events of the dereverberation operator arrive within a well-defined time

window that only depends on the one-way travel times of P- and S-waves within each layer

(Reinicke et al. 2020). Lastly, and most importantly, the onset of its matrix elements in the

time domain is not always at time zero. In particular, its off-diagonal elements typically

have non-zero onset times that can be acausal (shown by Reinicke et al. 2020).

Given these properties, we modify the mute of the matrix Wilson algorithm to reconstruct

the dereverberation operator from its normal product. We propose modifying the operator

Θ [·] to mute all events in the time domain prior to the onset of the dereverberation operator

per matrix component. This differs from the original matrix Wilson algorithm which instead

removes acausal events for all matrix elements. Using the modified mute Θ [·] in Eq. 30, it

appears that the matrix Wilson algorithm can accurately factorize the normal product of

the dereverberation operator (results will be shown in Section 4).
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18 Reinicke, Dukalski & Wapenaar

4 NUMERICAL EXAMPLE

In this section, we show two examples of the matrix Wilson method and analyze determinants

and eigenvalues numerically. These examples are associated with the models Elastic #1 and

Elastic #2, which are identical except for the S-wave velocity in the second layer from the

top (see Figure 2). They are designed such that the Wilson method succeeds (Elastic #1 )

and fails (Elastic #2 ) to reconstruct the respective dereverberation operator correctly. In

both cases, we model the dereverberation operator analytically (Dukalski et al. 2022) to

calculate the normal product, and to provide a reference for the retrieved solution. For the

matrix Wilson method, we define the diagonal elements of the mute (ΘPP [·] and ΘSS [·])

via the Heaviside function in Eq. 11. The off-diagonal elements ΘPS [·] and ΘSP [·] mute all

events in the time domain prior to the onset of the components V +
PS and V +

SP , respectively.

Firstly, we consider the successful case Elastic #1. We use the normal product V+V+†

shown in Figures 5a-d to evaluate eight iterations of the matrix Wilson algorithm, resulting

in the solution V+
n=8 in Figures 5e-h. The algorithm monotonically converges to the true

solution V+ up to numerical noise (see Figure 4), hence, we do not show the difference

plot. Figures 5e-h illustrate that the dereverberation operator has a finite number of events

in the time domain that arrive within a well-defined time window as discussed in Section

3.3.2. Here, the responses are zero outside the displayed time window, i.e. all events are

shown. Figures 5e-h also show the identity term of the dereverberation operator (see Eq.

31). Moreover, the onset of the off-diagonal elements in the time domain deviates from time

zero and is even acausal for the SP element (see Figure 5g).

Secondly, we modify the model until the proposed method for normal-product factoriza-

tion becomes inaccurate (case Elastic #2 ). Compared to the previous example, the travel-

time difference between P- and S-waves increased, leading to acausal events in the diagonal

elements V +
PP and V +

SS. As a result, it is no longer clear how to define the diagonal elements

of the mute ΘPP [·] and ΘSS [·], which also need to scale the time zero element by 1
2

to ensure

convergence (see Eq. 12). Here, we only adjust the off-diagonal elements of the mute, ΘPS [·]

and ΘSP [·], to account for the changed onset of the dereverberation operator in the time
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Minimum-phase beyond scalar functions 19

domain. Then we repeat the previous experiment using the normal product of the derever-

beration operator shown in Figures 6a-d. Figures 6e-h show the retrieved dereverberation

operator after evaluating eight iterations of Eq. 30 V+
n=8, and the difference with respect to

the modeled reference V+. The convergence (see Figure 4) indicates that the relative error

of the retrieved solution is in the order of 10 %.

Lastly, we analyze the determinants and eigenvalues of the dereverberation operators.

We verify that the determinants of the modeled dereverberation operators det (V+) satisfy

the Kolmogorov relation up to numerical noise (relative error in the order of 1× 10−14 ) for

both cases, Elastic #1 and Elastic #2. Next, we inspect the determinants of the retrieved

dereverberation operators after eight iterations det
(
V+
n=8

)
(see Figure 7). We observe that

it satisfies the minimum-phase conditions in the case Elastic #1 but it violates them in the

case Elastic #2. This violation can be easily verified by the acausal events of the determinant

(see close-up in Figure 7c). The phase error of the determinant can be corrected using Eq.

7. However, the retrieved response V+
n=8 carries an additional error represented by the Euler

angles (see Eq. 28) that cannot be removed. The eigenvalues of the dereverberation operators

do not satisfy the Kolmogorov relation for any of the tested cases. Even in the successful

case (Elastic #1 ), the phase spectra of the eigenvalues differ severely from their minimum-

phase spectra defined via the Kolmogorov relation in Eq. 7. This can be illustrated via the

phase-freedom η defined in Eqs. 24 and 25, which is far from trivial (see Figure 8).

5 DISCUSSION

Our analysis has shown that the causality condition of minimum-phase functions can be less

intuitive for matrix functions. The minimum-phase property does not necessarily hold for

individual matrix elements but it does for the determinant. Hence, minimum-phase matrix

functions can contain acausal matrix elements. Our numerical examples indicate that the

matrix Wilson algorithm can accurately handle acausal off-diagonal elements, while acausal

diagonal elements appear to be an obstacle. This limitation is not obvious from the algorithm

in Eq. 30. In the presented examples, the temporal mute suppresses acausal events on the
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20 Reinicke, Dukalski & Wapenaar

diagonal, but not on the off-diagonal, elements. Hence, the subsequent matrix multiplication

by Dn could still introduce acausal events on the diagonals (see Eq. 30). It remains undeter-

mined whether normal-product factorization of minimum-phase matrices is limited to cases

with strictly causal diagonal elements, or, whether a more general algorithm remains to be

discovered.

Our interest in minimum-phase matrices is motivated by the Marchenko method. The

latter formulates internal multiple elimination for seismic reflection data as an inverse prob-

lem. It aims to retrieve the dereverberation operator and it is often underconstrained in

practice. Existing work demonstrates for the scalar case how two additional constraints can

be used to accurately reconstruct the dereverberation operator. Firstly, the normal product

of the dereverberation operator is retrieved via energy conservation. Secondly, the derever-

beration operator is reconstructed from its normal product by exploiting its minimum-phase

property (Dukalski et al. 2019; Elison et al. 2020; Peng et al. 2022). In previous work, we

tried to generalize this strategy to the elastic case where the dereverberation operator is no

longer a scalar but a 2× 2 matrix, and identified two challenges (Reinicke et al. 2020):

(1) Once the normal product of the elastodynamic dereverberation operator is retrieved,

it remains unclear how to reconstruct the operator uniquely from its normal product

using its minimum-phase property.

(2) Energy conservation provides the normal product of the inverse transmission. The de-

reverberation operator V+ is minimum-phase but the inverse transmission T↓−1 (also

known as F+) is not. This is not an issue for scalars, because the scalar normal-products

of the inverse transmission and the dereverberation operator are identical up to a

frequency-independent constant. This holds because the acoustic direct transmission

is a single pulse, T ↓dir = αe−iωτdir , with travel time τdir,

V +V +∗ = T ↓−1T ↓dirT
↓−1∗T ↓∗dir = T ↓−1T ↓−1∗|α|2. (32)

However, this relation is more complicated for the elastic case where the direct trans-

mission generalizes to a forward-scattered transmission including mode conversions T↓dir.
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Minimum-phase beyond scalar functions 21

Moreover, Eq. 32 cannot be extended from the scalar to the matrix case because matrix

multiplications do not commute.

In this paper, we focused on the first challenge. Addressing the second one is beyond the

scope of this work.

We notice similarities between the Marchenko method and the here-discussed matrix

Wilson method. Both methods use the same ingredients including temporal convolutions and

correlations as well as temporal mutes. The modified mute of the matrix Wilson method Θ [·]

is inspired by, and is nearly identical to, one of the two mutes of the Marchenko method PB[·]

(see Eq. 16 in Reinicke et al. 2020). The two mutes only differ at time zero of the diagonal

elements, where the Wilson mute scales its argument by 1
2

instead of 1 to ensure convergence.

Moreover, both methods face limitations related to the mutes. It has been shown that the

Marchenko method fails to reconstruct the desired solution in the presence of fast-multiples.

The latter are multiples that have shorter travel times than some of the converted but non-

reflected arrivals. As a result, fast-multiples introduce temporal overlaps between signals

that the Marchenko method ought to separate with the mute. These temporal overlaps

are due to acausal events in the diagonal elements of the dereverberation operator V +
PP

and V +
SS. This limitation of the Marchenko method coincides with the cases where the

matrix Wilson method fails to retrieve the correct solution. The question is whether fast

multiples pose a fundamental limitation, or whether there is another, more robust solution

strategy for the Marchenko and matrix Wilson methods. Despite the remaining challenges,

the matrix Wilson algorithm could potentially help to retrieve a better estimate of the

desired dereverberation operator. For example, Peng et al. (2022) show that the 2D acoustic

augmented Marchenko method can reconstruct the correct dereverberation operator, even

though they apply a scalar, instead of a matrix minimum-phase reconstruction. They propose

a recursive application of the 2D Marchenko method and a scalar minimum-phase correction.

Similarly, one could attempt to recursively apply the elastodynamic Marchenko method and

the matrix Wilson algorithm ignoring the challenge of fast multiples.

Minimum-phase matrices and normal-product factorization provide physical relation-
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22 Reinicke, Dukalski & Wapenaar

ships that remain mostly unexplored, especially in geophysics. For example, the results of

this work could bring new momentum to the research on reconstructing transmission from

reflection data in the multi-dimensional acoustic or elastic case (i.e. beyond the work of

Wapenaar et al. 2003). Moreover, we illustrated that normal-product factorization has four

(real-valued) unknown parameters (for 2×2 matrices) but the determinant provides a single

phase. Despite the mismatch in number of unknowns and equations, we demonstrated that

the modified matrix Wilson algorithm can reconstruct a special class of minimum-phase ma-

trices. This raises the question whether there are additional, so-far unexplored fundamental

properties of minimum-phase matrices. If so, the follow up question is whether these proper-

ties allow for a unique factorization of normal products in more general cases, e.g. including

fast-multiples. Answering these questions is beyond the scope of this paper but it is a matter

of ongoing research. Last but not least, we investigated the simplest non-trivial matrix case,

i.e. 2× 2 matrices, but generalizations are not excluded. It would be particularly interesting

to analyze multi-dimensional acoustic cases which will be subject of future work.
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Figure 3. All responses are shown in the time domain. (a) Autocorrelation of the dereverberation

operator associated with the acoustic model shown in Figure 2. Negative times are not shown

because (scalar) autocorrelations are symmetric in time, (|V +|2)∗ = |V +|2. Panels (b)-(f) show the

dereverberation operator as it is recursively reconstructed via the Wilson algorithm in Eq. 10 (V +
n

in black) and its error (V +
n − V + in red). The initial estimate (n = 0) is an identity, i.e. a single

spike at time zero. After seven iterations the true solution is retrieved up to numerical noise (see

Figure 4). For better illustration, strong events are clipped and their amplitudes are indicated with

labels.
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Figure 4. Convergence of the scalar and matrix Wilson algorithms in Eqs. 10 and 30 associated

with the dereverberation operators (V + and V+) of the acoustic and elastic models in Figure 2,

respectively. The convergence is defined as the relative error with respect to the true solution as

indicated by the legend. For the acoustic and the Elastic #1 case, the Wilson algorithm converges

up to numerical noise within seven iterations. For the Elastic #2 case, the relative error converges

to approximately 10 %.

Page 24 of 73Geophysical Journal International

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Minimum-phase beyond scalar functions 25

0 0.5 1 1.5

−0.2

0

0.2

2
.2
9

−
0
.7
1

−
0
.6
6

−
0
.5
8

0
.4
1

τ (s)

(a)

(V+V+†)PP

0 0.5 1 1.5

−
0
.3
7

−
0
.4
7

−
0
.7
2

0
.3
7

0
.4
1

(b)

(V+V+†)PS

−0.2

0

0.2

−
0
.4
7

−
0
.3
7

0
.5
5

(c)

(V+V+†)SP

2
.0
6

−
0
.7
5

−
0
.4
1 −
0
.5
3

0
.4
1

(d)

(V+V+†)SS

−0.2

0

0.2

1
.0
0

−
0
.4
8

−
0
.4
1

0
.4
1

(e)

(V+
n=8)PP −

0
.5
0

(f)

(V+
n=8)PS

−0.2

0

0.2

(g)

(V+
n=8)SP

1
.0
0

−
0
.4
8

0
.4
1

(h)

(V+
n=8)SS

Figure 5. (a)-(d) Normal product V+V+† of the dereverberation operator associated with the

model Elastic #1 (see Figure 2). The panels show the four elastic components analogously to the

2× 2 matrix in Eq. 17. (e)-(h) Retrieved dereverberation operator after eight iterations. The grey

areas indicate the time samples that are muted by the modified operator Θ [·] in Eq. 30. We do not

show a difference or reference plot because the retrieved and modeled dereverberation operators

are identical up to numerical noise (see convergence in Figure 4). All panels show responses in the

time domain to facilitate the interpretation.
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Figure 6. Idem as Figure 5 but associated with the model Elastic #2 (see Figure 2). In this case,

the dereverberation operator has acausal events on the diagonals (PP and SS components). The

acausal events on the diagonals appear to be an issue for the Wilson algorithm. The dereverberation

operator is reconstructed only up to a relative error in the order of 10 % (see Figure 4), instead of

numerical noise as in the previous example in Figure 5.
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Figure 7. Determinants of the retrieved dereverberation operators (black) and the difference

with respect to the modeled solutions (red). The panels are associated with the (a) Acoustic, (b)

Elastic #1, and (c) Elastic #2, cases shown in Figures 3, 5 and 6, respectively. In the Acoustic

case, the dereverberation operator is a scalar function, and hence, identical to its determinant.

Nonetheless, it is shown for completeness. For the Elastic #2 case, the determinant of the retrieved

dereverberation operator is not minimum-phase, which can be easily seen via the acausal events

shown in the magnified box in blue. The difference plot indicates that acausal events are absent in

the determinant of the true solution, which possesses a minimum-phase property.
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Figure 8. Phase-freedom η of the eigenvalues of the dereverberation operator shown in Figures

5e-h, which is associated with the model Elastic #1 (also see Eq. 24). The horizontal axis denotes

the temporal frequency f = ω
2π .
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6 CONCLUSION

Minimum-phase properties become significantly more complicated when stepping from scalar

to matrix functions. Since the minimum-phase property of a matrix only imposes conditions

on its determinant, there are no constraints on individual matrix elements, e.g. they can be

acausal.

Our analysis has been motivated by challenges of the Marchenko method. Hence, we

focused on the minimum-phase properties of the elastodynamic dereverberation operator,

which is a solution of the Marchenko method. We showed that this 2 × 2 minimum-phase

matrix function can be uniquely reconstructed from its normal product using a modified

version of the matrix Wilson algorithm. Compared to the original Wilson method, we mod-

ified the temporal mute that curiously is identical to one of the two mute operators of the

Marchenko method, except for the time zero element.

However, the proposed solution appears to be limited to dereverberation operators with

causal diagonal elements. Thus, the method excludes cases with fast-multiples that can

occur in the presence of large P- and S-wave velocity differences. Moreover, the dereverbe-

ration operator can be seen as a special class of minimum-phase matrices, i.e. the proposed

factorization method does not necessarily generalize for other minimum-phase matrices.

The presented results suggest that the minimum-phase property of matrices could play

an important role in physics-driven data processing. This work scratches the surface of

minimum-phase matrices in the context of geophysics and indicates interesting directions

for future research.
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APPENDIX A: NOTATION

We use the following Fourier transforms (per ray-parameter) where the real-part is denoted

by <,

q(px, z, ω) =

∫ ∞

−∞
q(px, z, τ)e−iωτdτ, (A.1)

q(px, z, τ) =
1

π
<
[∫ ∞

0

q(px, z, ω)eiωτdω

]
. (A.2)

In this work, all equations are formulated for plane waves, i.e. per the ray-parameter px.

We define the transformation from the offset-time domain q(x, z, t) to the ray-parameter

intercept-time domain q(px, z, τ) as,

q(px, z, τ) =

∫ ∞

−∞
q(x, z, τ + pxx)dx. (A.3)
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Table A1. Definition of additional operators used in this paper. All operators are applied per ray-

parameter, px, and per frequency, ω, except for the Hilbert transform and the L2 norm which take

into account all frequencies. When applied to matrices, the operators act in the P-S space, except

for the operations marked with “�” which act per matrix element. The L2 norm is calculated using

all frequencies and all wavefield components, i.e. a single and four components for acoustic and

elastodynamic waves, respectively.

Symbol Operation

Superscript “∗” Complex-conjugate

Superscript “†” Complex-conjugate transpose

Superscript “−1” Inverse

log (·) Natural logarithm

det(·) Determinant

‖ · ‖2 L2 norm

| · | � Absolute value

e[·]/cos[·]/sin[·] � Exponential/cosine/sine function

H [·] � Hilbert transform

Arg [·] � Phase spectrum
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SUMMARY

Minimum-phase properties are well-understood for scalar functions where they can be

used as a physical constraint
::::::::
physical

:::::::::::
constraint

:::
for

::::::
phase

::::::::::::::::
reconstruction. Existing scalar

minimum-phase applications
::::::::::::
applications

:::
of

:::::
the

::::::
latter

::::
in

:::::::::::
geophysics

::
include e.g. the

reconstruction of transmission from
::::::::
acoustic

:
reflection data, or multiple elimination

via the so-called augmented
:::::::::::
augmented

:::::::::
acoustic

:
Marchenko method.

::::
We

:::::::
review

:::::::
scalar

::::::::::::::::
minimum-phase

::::::::::::::::
reconstruction

::::
via

:::::
the

::::::::::::::
conventional

:::::::::::::
Kolmogorov

::::::::::
relation,

:::
as

::::::
well

:::
as

:
a
::::::::::::
less-known

::::::::::::::
factorization

::::::::::
method.

:
Motivated to solve practice-relevant problems be-

yond the scalar case, we investigate
:::
(1)

:
the properties and

:::
(2)

:
the reconstruction of

minimum-phase matrices. For simplicity, we
:::::::
matrix

::::::::::
functions.

::::
We

:
consider a simple but

non-trivial case of 2× 2 matrices representing elastic wavefields. Our analysis addresses

:::::::
matrix

::::::::::
response

::::::::::
functions

:::::::::::
associated

::::::
with

:::::::::::::::
elastodynamic

::::::::::::
wavefields.

::::::::::::
Compared

:::
to

::::
the

::::::
scalar

:::::::::
acoustic

:::::::
case,

::::::::
matrix

::::::::::
functions

:::::::::
possess

:::::::::::
additional

:::::::::::
freedoms.

::::::::::::::
Nonetheless,

:::::
the

minimum-phase reconstruction via the more conventional Kolmogorov relation, as well

as a less-known factorization method. After a modification, the latter
:::::::::
property

::
is

:::::
still
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2 Reinicke, Dukalski & Wapenaar

:::::::
defined

::::
via

:::
a

::::::
scalar

:::::::::::
function,

::::
i.e.

::
a

::::::::
matrix

::::::::::
possesses

::
a
:::::::::::::::::
minimum-phase

::::::::::
property

:::
if

:::
its

::::::::::::
determinant

::::::
does.

::::
We

::::::::
review

::::
and

::::::::
modify

::
a

:::::::
matrix

::::::::::::::
factorization

::::::::
method

::::::
such

:::::
that

::
it can

accurately reconstruct the
:
a
:
2×2 minimum-phase matrix operator

:::::::::
function related to the

elastic
:::::::::::::::
elastodynamic Marchenko method. However, the reconstruction is limited to cases

with sufficiently small differences between P- and S-wave travel times, which we illustrate

with a synthetic example. Moreover, we show that the minimum-phase reconstruction

method by factorization shares similarities with the Marchenko method in terms of the

algorithm and its limitations. Our results reveal so-far unexplored matrix properties of

geophysical responses that open the door towards novel data processing tools. Last but

not least, it appears that minimum-phase matrices
:::::::
matrix

::::::::::
functions

:
possess additional,

still-hidden properties that remain to be exploited e.g. for phase reconstruction.

Key words:
:::::::
Fourier

:::::::::
analysis

::
–
::::::::::::
Numerical

::::::::::
solutions

::
–

:::::::::::::
Time-series

:::::::::
analysis

::
–

::::::::
Inverse

:::::::
theory

::
–

::::::
Wave

:::::::::::::
propagation

::
–

::::::
Wave

:::::::::::
scattering

:::::
and

:::::::::::
diffraction

:

1 INTRODUCTION

Phase reconstruction can be found in various fields of science and engineering (Shechtman

et al. 2015). It is the process of finding a function given its Fourier amplitude spectrum or

some multidimensional generalization thereof. The result is not unique but can be better

constrained given some a priori knowledge of the function. The focus of this work lies on a

special class called minimum-phase reconstruction. It pertains to invertible functions where

the function and its inverse are characterized by energy concentrated close to the temporal

origin.

In geophysics, minimum-phase is often thought to be a property of the seismic wavelet in

marine acquisition (Yilmaz 2001), aside from complications resulting from band-limitation

(Lamoureux & Margrave 2007). More importantly,
::::::::::
However,

:::::::::::::::::
minimum-phase

:::
is

::
a
:::::::

more

:::::::
general

::::::::::
property

:::::::
which

::::
can

::::
be

::
a

::::::::::::::
characteristic

:::
of

:::::::::
response

:::::::::::
functions

:::::
that

:::::::
relate

:::::::::::
wavefields

::::::::::
measured

:::
at

:::::::::
different

::::::::
spatial

::::::::::
locations.

::::
For

::::::::::
example,

:
Sherwood & Trorey (1965) as well as

Claerbout (1968) demonstrate that full-bandwidth 1D acoustic transmission responses and
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Minimum-phase beyond scalar functions 3

their inverses form pairs of minimum-phase signals when measured from the onset of signal.

To date, the properties and reconstruction of multi-dimensional (e. g. 1.5D elastodynamic, or

2D/3D acoustic wavefields)
:::
the

:::::::
signal.

:::::
The

::::::::::::::::
aforementioned

::::::
work

::::::::::::::
distinguishes

::::::::::::::
transmission

:::::
from

::::::::::
reflection

:::::::::::
responses.

:::::
This

::
is

::::::
often

:::::::::::
reasonable

::
in

::::::::::::
exploration

::::::::::::
geophysics

::::::
when

::::::::::::
considering

:
a
::::::::
section

:::
of

::::
the

::::::::::::
subsurface

:::::::::::
embedded

:::::::::
between

::::
top

:::::
and

::::::::
bottom

:::::::::::::
boundaries.

::::
For

::::::::::::
simplicity,

:::
we

::::::::
assume

::::::
these

::::::::::::
boundaries

::::
are

::::::::::
perfectly

::::::::::::
absorbing.

::::::::::
Contrary

:::
to

:::::::::::::::
transmissions,

:::::::::::
reflection

::::::::::
responses

::::
are

:::::::::
generally

:::::
not minimum-phasesignals remain poorly understood in geophysics.

This is an important problem, since next to the work by Claerbout (1998) and Fomel et al. (2003),

this topic has seen a revival in the context of internal multiple elimination using the so-called

Marchenko method (e.g. Dukalski et al. 2019).

The Marchenko method predicts internal multiples accurately in terms of not only kinematics but also amplitudes.

It does so by reconstructing the so-called dereverberation operator, which is an extrapolated

inverse transmission response of the overburden (Broggini & Snieder 2012; van der Neut & Wapenaar 2016; Staring et al. 2020; Reinicke & Dukalski 2020; Wapenaar et al. 2021).

To date, the most convincing examples apply the acoustic Marchenko method to synthetic

or field data (e.g. see Ravasi et al. 2016; Staring et al. 2020; Zhang & Slob 2020). For field

data, the aforementioned approach ignores elastodynamic effects, which causes artifacts

(da Costa Filho et al. 2016; Reinicke et al. 2021). The elastodynamic generalization of the

theory still hinges on challenges resulting from the differences in propagation velocities of the

compressional and shear components (Reinicke et al. 2020). Recently, van der Neut et al. (2022) suggested

an alternative solution that tackles these challenges using two-sided illumination, which is

less common for geophysical applications. The aforementioned problems most likely extend

to the elastodynamic formulation of the conventional predict-and-subtract demultiple methods

(Weglein et al. 1997; Jakubowicz 1998; van Borselen 2002; Ikelle 2006; Sun & Innanen 2019) because

they are the leading order of the Neumann series expansion of the Marchenko equation

(Zhang et al. 2019; Dukalski & de Vos 2022).

Recent developments combine Marchenko multiple removal with minimum-phase properties, referred to as the augmented Marchenko method.

This strategy addresses practical cases where the desired solution, i.e. the dereverberation

operator, is not fully constrained by the Marchenko equation e.g. due to band-limitation
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4 Reinicke, Dukalski & Wapenaar

(Slob et al. 2014). The augmented Marchenko method constrains those freedoms by enforcing

two physical properties of the dereverberation operator, energy conservation to obtain the

so-called normal product of the dereverberation operator, and,
::
To

:::::::
date,

::::
the

::::::::::::
properties

::::
and

::::
the

::::::::::::::::
reconstruction

:::
of

:::::::::::::::::::
multi-dimensional

:
minimum-phase behavior to reconstruct the

dereverberation operator from its normal product. The energy conservation constraint (step

1) has already been demonstrated for both scalar and matrix (i.e.
:::::::
signals

::::::::
remain

::::::::
poorly

::::::::::::
understood.

::::::
Here,

:
multi-dimensional ) functions such as

::::::
signals

::::::
refer

:::
to

:::::::::
response

:::::::::::
functions

::::
that

::::
are

::::::::::::
associated

:::::
with

:
1.5D

::::::::::::::
elastodynamic

:
or 2Dacoustic, or

::::
/3D

:::::::::
acoustic

::::::::::::
wavefields

:::
as

::::::::
opposed

:::
to

::::::
scalar

::::::::::
functions

:::::::::::
associated

:::::
with

:
1.5D elastodynamic wavefields (e.g. see Elison et al. 2020; Reinicke et al. 2020).

However, minimum-phase reconstruction (step 2) is poorly understood beyond scalar functions.

Therefore, the augmented Marchenko method remains limited to scalar cases. These include

1D and 1.5D acoustic solutions (Dukalski et al. 2019; Elison et al. 2020), as well as 2D acoustic

cases where a
:::::::::::
wavefields.

:::::
This

::::::
topic

:::::::::
remains

::
a

::::::::
relevant

::::::::::::
geophysics

:::::::::
problem

:::::::
which

::::
has

::::::
been

:::::::
studied

:::
by

:::::
only

::::
few

:::::::::
authors

:::::::::::::::::::::::::::::::::::::
(Claerbout 1998; Fomel et al. 2003).

::::
As

:
a
:::::::
result,

:::::::::::::::::::
multi-dimensional

minimum-phase reconstruction under a 1.5D assumption has been shown to often provide a

very good approximation (Peng et al. 2021). There are initial attempts of generalizing
::::::
signal

:::::::::::::::
reconstruction

::::::::
remains

:::
a

:::::::
barrier

::::
for

:::::::::::
numerous

:::::::::::::
applications

:::::
such

:::
as

:::::::::::
retrieving

::::::::::::::
transmission

:::::
from

::::::::::
reflection

::::::::::
responses

:::::::::::::::::::::::::
(Wapenaar et al. 2003),

:::
or

:::::::::
internal

:::::::::
multiple

::::::::::::
elimination

:::::::
using the

augmented Marchenko method to the elastic case (Reinicke et al. 2020). However, they still

depend on the understanding of, and the ability to reconstruct, matricial minimum-phase

functions.

In this work, we study the minimum-phase properties and reconstruction of the dereverberation operator in 1.5D elastic media.

The presented research
::::::::::::::::::::::::::::
(e.g. Dukalski et al. 2019).

::::
The

:::::::::
research

:::
of

:::::
this

::::::
paper

:
has been mo-

tivated by , but does not discuss details of, the augmented Marchenko method . Firstly, we

define our notation. Secondly, we
::::
and

:::
its

:::::::::::::::
generalization

:::
to

:::::::::::::::
elastodynamic

::::::
waves

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(this method is not discussed here, but details can be found in Reinicke et al. 2020).

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
In this work, we study the minimum-phase properties and reconstruction of 2× 2 matrix response functions.

::
In

:::::::::::
Section 2,

::::
we

:
review existing theory of minimum-phase properties and two reconstruc-
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Minimum-phase beyond scalar functions 5

tion methods
:::::::::::
algorithms

:
for the scalar case, including an example related to .

:::::::::::
Moreover,

::::
we

:::::::
discuss

::::::::::::
geophysical

:::::::::
response

::::::::::
functions

:::::
and

:::::
show

:::
an

:::::::::
example

:::
of

::::::::::::::::
minimum-phase

::::::::::::::::
reconstruction

:::
for

:
the acoustic dereverberation operator . Thirdly, we explain how

::
of

::::
the

:::::::::::::
Marchenko

::::::::
method.

:::
In

:::::::::::
Section 3,

:::
we

::::::::
discuss

:::::
why

:::::::::::::::
elastodynamic

::::::::::
response

::::::::::
functions

:::
are

::::::::::
matrices

::::::::
instead

::
of

::::::::
scalars,

:::::
and

::::::::
analyze

::::
the

:
minimum-phase properties are considerably more complex when

stepping from scalar to matrix functions
:::::::::
property

:::
as

:::::
well

::
as

:::
its

::::::::::::::::
reconstruction

:::
for

::::
the

::::::::
matrix

:::::
case.

:::
In

::::::::::
Section 4, and how this makes minimum-phase reconstruction more challenging.

Fourthly, we present two numerical examples of matricial minimum-phase reconstruction

using a modified version of the factorization method by Wilson (1972)
::::::
matrix

::::::::::::::::
reconstruction

::::::
based

:::
on

::::
the

::::::::::::::
factorization

:::::::::::
algorithm

:::
by

:::::::::::::::::::::
Wilson (1972) with

::
a

:::::::::::::
modification

:::::::::
inspired

:::
by

:::::
the

:::::::::::
Marchenko

:::::::::
method. The two examples of matricial minimum-phase reconstruction show

:::::::
include

:
a case with an accurate solution as well as another case with artifacts to highlight

remaining limitations. Finally, we discuss our insights with a focus on similarities with
::
in

:::::::::
Section 5

:::::
and

::::::::::
highlight

::::::::::::
similarities

::::::::::
between

:::::::::::::::::
minimum-phase

::::::::::::::::
reconstruction

::::
and

:
the Mar-

chenko methodin terms of (1) the mechanism of the algorithm as well as (2) theoretical

limitations, and we present an outlook.

2 NOTATION
::::::::::::::::::::::::
MINIMUM-PHASE

::::::::::::::::
PROPERTY

:::::::
AND

:::::::::::::::::::::::::::
RECONSTRUCTION:

::::::::::::
SCALAR

::::::::
CASE

For all numerical examples in this paper, we consider the four layer model in Figure 2 and a

single ray-parameter px = 2× 10−4 s m−1. We use three models that are identical except for

the S-wave velocity, cS, including an acoustic model (cS = 0) and two elastic ones (cS 6= 0).

3 MINIMUM-PHASE PROPERTY AND RECONSTRUCTION

In this section, we,
::
In

::::::::::::
particular,

::::
we,

(2.1) summarize the qualitative definition of the
::::::
review

::::
the

::::::
scalar

:
minimum-phase property
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6 Reinicke, Dukalski & Wapenaar

and normal products,
:::::::::
property

:::::
and

:::::
how

::
it
:::::
can

:::
be

::::::
used

:::
for

:::::::
phase

::::::::::::::::
reconstruction

::::
via

:::
the

:::::::::::::
Kolmogorov

::::::::::
relation,

:

(2.2) show two existing methods for scalar
:::::
show

::
a
::::::::::::::
factorization

:::::::::
method

:::
for

:::::::
scalar

:
phase-

reconstruction under a minimum-phase condition,

(2.3) analyze the
:::::::::
introduce

::::
our

::::::::::
notation

::::
and

:::::::::::::
geophysical

:::::::::::
responses.

:

::
In

:::::
part

:::::::
(2.3),

:::
we

::::::
focus

:::
on

::
a
:
minimum-phase property for matrices, and we explore to what

extent this property can be exploited for matrix reconstruction from a normal product. Parts

(3.1)-(3.2) cover existing work to prepare the discussion of the main result of this work in

part (3.3).
:::::::::
function

:::::
that

::
is

:::::::::
relevant

::::
for

::::
the

::::::::::::
Marchenko

:::::::::
method.

::::::::::
However,

::::
the

:::::::::
analysis

::::::
does

:::
not

::::::::
require

:::
in

:::::::
depth

:::::::::::
knowledge

:::
of

::::
the

::::::::::::
Marchenko

:::::::::
method.

:

2.1 Qualitative overview

Minimum-phase is a mathematical property associated with a special class of transfer functions.

In general, the literature distinguishes between transfer functionswith (1) a single-input

single-output (SISO), and (2) multi-inputs multi-outputs (MIMO) (Johansson 1997). An

example for a SISO system in geophysics is a plane-wave response function of a layered

acoustic medium. For elastic or more general acoustic media, response functions depend on

multiple input and multiple output variables e.g. P- and S-wave modes (see Eq. 17), i.e.

these are MIMO systems.

2.1
:::::::::::::::::::
Minimum-phase

:::
in

:::
a

::::::::::
nutshell

:::
We

::::::
start

:::
by

:::::::::::
discussing

::::::
linear

:::::::::::::::
time-invariant

::::::
(LTI)

:::::::::
systems.

:::::::
Given

:::
an

::::::::::
arbitrary

::::::
input,

::::
one

:::::
can

:::::::
obtain

:::
the

::::::::
output

:::
of

:::
an

::::
LTI

::::::::
system

::::
via

::::::::::
temporal

::::::::::::
convolution

::::::
with

:::
its

::::::::
impulse

::::::::::
response.

:::::
For

:::::::::
example,

::::::::
seismic

::::::::::
reflection

::::::
data

::::
can

:::
be

::::::::::::
represented

:::
as

::
a
::::::::::
temporal

:::::::::::::
convolution

::
of

::::
the

::::::::
source

:::::::::
signature

::::::
with

::::
the

::::::::
impulse

::::::::::
response

::
of

::::
the

::::::::::::
subsurface.

:::::
This

::::::::::::::::
representation

:::::::::
assumes

:::::
that

::::
the

:::::::::::
subsurface

::::::::
remains

::::::::::::
unchanged

::::::::
during

::::
the

:::::::::::::
experiment.

::::
For

:::::::::::::
convenience,

::::::::::::::
convolutions

:::
in

::::
the
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Minimum-phase beyond scalar functions 7

:::::
time

:::
(τ)

:::::::::
domain

::::
are

::::::
often

:::::::::::
formulated

:::
as

::::::::::::::::
multiplications

:::
in

::::
the

:::::::::::
frequency

::::
(ω)

:::::::::
domain,

:::::
e.g.,

:

output(ω) = g(ω) input(ω),
::::::::::::::::::::::::::::

(1)

::::::
where

:::::
g(ω)

:::::::::
denotes

:::
an

::::::::
impulse

::::::::::
response.

:::
In

::::
the

:::::::::::
following,

:::
we

::::::
imply

:::::
that

:::
all

::::::::::::
operations,

::::::
such

::
as

::::::::::
products

::
or

::::::::::
divisions,

::::
are

:::::::::::
performed

::::
per

::::::::::
frequency

::::::::::::
component

:::::::
unless

::::::::::
explicitly

::::::::::::
mentioned.

::::::::::
Moreover,

::::
we

:::::
refer

:::
to

:::::::::
impulse

::::::::::
responses

:::
as

:::::::::::
responses

:::
or

:::::::::::
functions,

::::::
while

:::::
they

::::::
may

::::
also

::::
be

:::::::
known

:::
as

::::::::
transfer

:::::::::::
functions.

:

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
The minimum-phase property is a mathematical characteristic associated with a special class of functions.

Using a qualitative definition, SISO or MIMO systems posses a
:
a
::::::::::

function
::::::::::
possesses

:::
a

minimum-phase property if all of the following three
:::
the

::::::::::
following

:
conditions are satisfied

(Bode et al. 1945; Sherwood & Trorey 1965; Skingle et al. 1977).
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Bode et al. 1945; Sherwood & Trorey 1965; Berkhout 1973; Skingle et al. 1977).

(i) Stability: The sum of all absolute time-components is finite
:::::
time

:::::::::::::
components

::
is

::::::
finite

::::::::::
(stability).

(ii) Causality: The transfer
::::
The

:
function vanishes for negative times (τ < 0

:::::::::
causality).

(iii) Invertibility: The inverse exists and satisfies (i) and (ii).

An important consequence of the conditions (i)-(iii) is that the product of minimum-phase

functions produces a result with a minimum-phase property. In the following sections, we

will quantify the above-listed qualitative definitions for scalar functions. Moreover, we will

show that the generalization to matrix functions bears challenges, especially the definition of

causality for matrices
::::
The

:::::
term

:::::::::::::::::::
“minimum-phase”

:::::::::
suggests

:::::
that

::::::
some

::::::::::
attribute

::
is

::::::::::::
minimized,

::::::
which

::
is

:::::
true

::::
for

:::::::
special

:::::::
cases,

:::::::
where

::::
the

::::::
group

::::::
delay

:::
is

::::::::::::
minimized.

::::::::::
However,

::::
this

:::::::::::
definition

::
is

::::
not

:::::
used

:::
in

::::
our

:::::::::
analysis.

Before going into further detail, we briefly discuss normal products. In this work, we aim

to reconstruct a desired solution, D, with a
::::
We

::::::::::
illustrate

::::
the

:
minimum-phase property

from its normal product. The latter is defined as the product of a scalar, or a matrix,

with its complex-conjugate transpose, e. g. |D|2 or DD†. Scalar normal products may be

better known as auto-correlations in the time domain and are often interpreted physically
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8 Reinicke, Dukalski & Wapenaar

as amplitude spectra because their phase vanishes, Arg [|D|2] = 0. Following this physical

interpretation, retrieving the scalar solution, D, from its normal product, |D|2, is often

described as a phase reconstruction, while mathematically, it is a factorization problem. This

generally non-unique factorization can be constrained for minimum-phase scalar functions

which obey a unique phase-amplitude relationship (Smith 2007). However, the matrix case is

more complicated. Matricial normal products are not necessarily phase-free on the off-diagonal

elements, which are identical except for a sign-inverted phase (for 2× 2 matrices). For

convenience, we keep the physical interpretation from the scalar case, i. e. “amplitude

spectra
::::::
using

:::
an

::::::::::
example.

::::::::::
Consider

::::
the

:::::::
causal

::::::::::
functions

:::::
(i.e.

::::::::
τ1 > 0),

::
2

A(ω)
:::::

=
:

1 + αe−iωτ1 ,
:::::::::::

(2)

B(ω)
:::::

=
:
α + e−iωτ1 = (A(ω))∗ e−iωτ1 ,
::::::::::::::::::::::::::::

(3)

::::::
where

::
α
:::
is

::
a

:::::::::
constant

::::::::
smaller

::::::
than

:::::
one.

:::::
The

:::::::::
variable

:
i
:::::
and

::::
the

::::::::::::
superscript

:::
“∗” and “phase

reconstruction” refer to normal products and the retrieval of the solution, D, from its

normal product, respectively. As we will discuss in Section 3.2, it is significantly more

challenging to define the minimum-phase property for matrices, and to exploit it for unique

normal-product factorization. Moreover, matrices can generate two normal products, which

are generally not equal, DD† 6= D†D. One can easily verify that the two normal products

provide individually up to three, and together up to six independent equations (for 2× 2

matrices) .
:::::::
denote

::::
the

::::::::::::
imaginary

:::::
unit

:::::
and

:::::::::::::::::::::::
complex-conjugation,

::::::::::::::
respectively.

:
Hence, if

both normal products are known, there are more equations to constrain the reconstruction

of the matrix, D
:::
the

::::::::::
functions

::::::
have

::::::::::
identical

:::::::::::
amplitude

:::::::::
spectra,

:::::::::::::::::::::::::::
C(ω) = |A(ω)| = |B(ω)|.

::::::::::
Moreover,

:::
we

::::
use

::::::::
several

:::::::::
common

:::::::::::
operators,

::::::
which

::::
are

::::::::
defined

::
in

::::
the

::::::::::
appendix

::::
(see

::::::::::::
Table A1).

::::
The

:::::::::
analysis

:::
of

:::::::::
causality

::::::::::
depends

:::
on

::::
the

::::::::::
definition

:::
of

::::
the

::::::::
Fourier

:::::::::::
transform

::::::
(sign

:::::::
choice

:::
of

:::
the

:::::::::::
exponent)

:::::::
which

::::
we

:::::::
define

::::::::::
according

:::
to

::::::::::::::::::::
Eqs. A.1 and A.2.

:::::
The

::::::
phase

:::
of

::::
the

:::::::::::
functions

::::
can

:::
be

::::::::::
visualized

:::
as

:::
an

::::::
angle

:::
in

::::
the

:::::::::
complex

::::::
plane

::::::::::
spanned

:::::::::
between

:
a
::::::::::
complex

::::::::
number

:::::
and

:::
the

:::::
real

:::::
axis

::::
(see

::::::::::::
Figure 1a,

:::::::
where

::::::::::
α = −0.6

::::
and

:::::::::::::
τ = 0.04 s),

:::
or

:::
as

::
a

:::::::::
function

:::
of

:::::::::::
frequency

::::
(see

::::::::::::
Figure 1b).

:::
It

::::
can

::::
be

::::::
easily

:::::
seen

:::::
that

:::::
the

::::::::::
functions

::::::
A(ω)

:::::
and

::::::
B(ω)

:::::::
satisfy

::::::::::::
conditions
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Minimum-phase beyond scalar functions 9

::
(i)

:::::
and

::::
(ii)

:::::
(see

::::::::::::
Figure 1c).

::::::
Their

:::::::::
inverses

:::::
exist

:::::
and

::::
can

:::
be

:::::::
found

::::::
using

::::
the

::::::::::
geometric

:::::::
series

::::
and

:::::::
Eq. 3,

::
1

(A(ω))−1

:::::::::
=
∞∑

k=0

(−α)ke−iωτ1k,

:::::::::::::::::::

(4)

(B(ω))−1

:::::::::
=
(
(A(ω))−1)∗ eiωτ1 =

∞∑

k=0

(−α)keiωτ1(k+1).

::::::::::::::::::::::::::::::::::::::::::

(5)

::::::::::
Moreover,

::::
the

:::::::::
inverses

::::
are

::::::
stable

:::::
due

::
to

:::::::::::::
convergence

:::
of

::::
the

::::::::::
geometric

:::::::
series

::
in

::::::::::::::
Eqs. 4 and 5.

However, we restrict our analysis to the situation that is relevant for the elastodynamic

augmented Marchenko method where only one of the two normal products is known (this is a result from Reinicke et al. 2020) and

the solution is minimum-phase as we will show in Section 3.2.

2.2 Minimum-phase reconstruction of scalar normal products

In the following, we review the well-understood scalar case of phase reconstruction based on a normal product and a minimum-phase condition.

Firstly, we review the definition of the dereverberation operator and its minimum-phase

property. Secondly, we will summarize two existing but very different methods for minimum-phase

reconstruction.

The Marchenko method can be seen as an inversion for an operator that is minimum-phase.

The literature refers to this solution as dereverberation operator,

V + = T ↓−1T ↓dir= 1 +
(
T ↓−1

)
coda

T ↓dir.

Here, the transmission T ↓ is split in its direct and coda parts indicated by the subscripts

dir and coda, respectively,

T ↓ = T ↓dir + T ↓coda,

and the inverse transmission T ↓−1 is often referred to as a so-called focusing function f+

(Wapenaar et al. 2014). Since (inverse)transmissions are (advanced) delayed minimum-phase

functions (Claerbout 1968),
::::
only

:
the dereverberation operator V +

:::::::
inverse

:::::::::
(A(ω))−1

:::
is

:::::::
causal

::::::::
whereas

::::
the

::::::::
inverse

::::::::::
(B(ω))−1

:::
is

::::::::
acausal

:::::
(see

::::::::::::
Figure 1c).

:::::::
Hence,

:::::
the

:::::::::
function

::::::
A(ω)

:::::::::
satisfies

::::::::::
conditions

::::::::
(i)-(iii)

:::::
and

:
possesses a minimum-phase property by definition. The augmented
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10 Reinicke, Dukalski & Wapenaar

Marchenko method exploits this property to reconstruct the dereverberation operator, V +,

from its normal product, V +V +∗, which is obtained from energy conservation.
:::::::::
property,

:::::
but

:::
the

:::::::::
function

::::::
B(ω)

::::::
does

::::
not.

:::::
The

:::::::::::
amplitude

::::::::::
spectrum

::::::
C(ω)

::::
has

::
a
::::::::
smaller

::::::
phase

::::::::::::::
(zero-phase)

:::::
than

:::
the

:::::::::
function

::::::
A(ω)

::::
but

::
it

:::::::::
violates

:::
the

::::::::::
causality

::::::::::
condition

::::
(ii),

:::::
and

::::::
hence

::
is

::::
not

:::::::::::::::::
minimum-phase

::::
(see

::::::::::::
Figure 1c).

:::
In

::::
the

:::::::::::
following,

:::
we

::::::
omit

::::
the

:::::::::::::
dependency

:::
on

:::::::::::::
frequencies

:::::::
except

::::
for

:::::::
newly

:::::::::::
introduced

:::::::::::
functions.

:

In general, the reconstruction of a function from its normal product is non-unique. Scalar

functions can be multiplied by an arbitrary, U(1) = eiΦ(ω), element (Cornwell 1997) without

changing their normal product, e.g.,
::::::::::::::::
Minimum-phase

::::::::::::::::
reconstruction

::
is
:::::

the
:::::::::
retrieval

:::
of

:::
a

::::::::::::::::
minimum-phase

:::::::::
function

:::::
from

::::
its

:::::::::::
amplitude,

:::
or

:::::::
power,

:::::::::::
spectrum.

::
In

:::::::::
general,

::::::
phase

:::::::::::::::
reconstruction

:::::::
carries

::
a

:::::::
degree

:::
of

:::::::::
freedom

::::::
eiΦ(ω),

:

(
V +U(1)AeiΦ(ω)

:::::::

)∗
V +U(1)AeiΦ(ω)

:::::::
= V +V +A

:

∗A =
::::
|A
:
|2. (6)

Next, we show two methods that constrain this freedom by exploiting
:::::::::
However,

:::
it

::::
can

::::
be

::::::
shown

:::::
that

::::
the

:::::::::::::::::
aforementioned

:::::::::
freedom

:::::::::
vanishes

:::::::
under

:
the minimum-phase property.

2.1.1 Kolmogorov relation

The Kolmogorov method is a well-known phase reconstruction method. It enforces the minimum-phase

conditions (i)-(iii)(e.g. Skingle et al. 1977) and can be written
:
.
::::::
Thus,

:::::::::::::::::
minimum-phase

::::::::::
functions

:::::::
possess

::
a
:::::::
unique

::::::::::::::::::
amplitude-phase

:::::::::::::
relationship,

::::::
which

::::
can

:::
be

::::::::::::
formulated

:
e.g. for the dereverberation

operator as follows,

log
(
V +
)

=log
(
|V +|

)
+ iArg

[
V +
]

=log
(
|V +|

)
− iH

[
log
(
|V +|

)]
.

:::
via

::::
the

:::::::::::::
Kolmogorov

:::::::::
relation

::::::::::::::::::::::::::
(e.g. Skingle et al. 1977),

::
2

log (A) =
:::::::::

log (|A|) +
::::::::::

iArg [A]
::::::::

=
:

log (|A|)−
::::::::::

iH [log (|A|)] .
:::::::::::::

(7)

This equation illustrates the unique relation between phase and amplitude spectra of minimum-phase
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Minimum-phase beyond scalar functions 11

functions
::::::
Here,

:::
we

::::::::
denote

:::::
the

::::::
phase

::::
by

:::::::::
Arg [A],

::::
the

:::::::::
natural

::::::::::
logarithm

::::
by

::::::::
log (·),

::::
and

:::::
the

:::::::
Hilbert

:::::::::::
transform

:::
by

::::::
H [·].

2.1.1 1D Minimum-phase factorization: Wilson algorithm

2.2
:::::::::::::::::::
Minimum-phase

::::::::::::::::::
reconstruction

::::
by

:::::::::::::::
factorization

Wilson (1969) formulates the retrieval of a minimum-phase function from its normal product

:::::::::::::::
reconstruction as a recursive factorization problem,

:::::::
which

::::
we

::::
call

::::
the

::::::::
Wilson

::::::::::
algorithm. In

the following, we refer to this method as the Wilson algorithm and illustrate it using the

dereverberation operator, V +. The Wilson algorithm is derived from
:::::
This

:::::::::
method

::::
will

::::
be

::::::::::
important

::::::
when

:::::::::::::
generalizing

::::
the

::::::::::::::::
minimum-phase

::::::::::
property

::::
and

:::::::::::::::
reconstruction

::::::
from

:::::::
scalars

:::
to

:::::::::
matrices

::
in

:::::::::::::
Section 3.2.

::::::
Since

::::
the

::::::::
Wilson

::::::::
method

:::::::
might

:::
be

:::::::::::
less-known

::::::
than

::::
the

:::::::::::::
Kolmogorov

::
in

:::::::
Eq. 7,

:::
we

::::::::::::
summarize

:::
its

:::::::
scalar

:::::::::::::
formulation

::
in

::::::
more

:::::::
detail.

:

:::::::::
Consider

:::
an

::::::::::
arbitrary

::::::::::::::::::
minimum-phase

:::::::::
function

:::::::
A(ω).

:::::
The

:::::::::
starting

::::::
point

:::
is

:
a relation

between the normal product |V +|2
::::::::::
amplitude

::::::::::
spectrum

::::
|A|, an estimate after n iterations ,

V +
n ,

:::
An,

:
and its update , V +

n+1 :::::
An+1 :

(see Eq. 6 in Wilson 1969),

V +
n V

+∗
n+1AnA

∗
n+1

:::::::

+ V +
n+1V

+∗
n An+1A

∗
n

:::::::
= V +

n V
+∗
n AnA

∗
n

:::::
+ V +2AA∗

::::
. (8)

Multiplication by (V +
n )
−1

and (V +∗
n )

−1
:::::::::::::::
Multiplication

:::
by

::::::::
(An)−1

:::::
and

:::::::
(A∗n)−1

:
leads to,

A∗n+1
:::::

(
V +
n A

∗
n

::

)−1

V +
n+1
∗ +

(
V +
n An::

)−1

V +
n+1An+1

:::::
= 1 +

(
V +
n An::

)−1

V +2AA∗
::::

(
V +∗
n A∗n

::

)−1

,.

(9)

It follows from the minimum-phase-property of the dereverberation operator
:::::::
desired

:::::::::
solution

::
A

:
that Eq. 9 contains a superposition of a strictly causal term, (V +

n )
−1
V +
n+1:::::::::::::

(An)−1 An+1,

with its time-reverse. The acausal term,
[
(V +

n )
−1
V +
n+1

]∗
::::::::::::::::

[
(An)−1An+1

]∗
, can be removed by

applying a mute,
:::::::::
temporal

:::::::
mute

:
Θ [·], that

:
.
:::::::
Next,

::::
the

:::::::
result

::
is
::::::::::::

rearranged
::::

to
:::::::
obtain

:::
a

:::::::::
recursive

:::::::::::
algorithm,

:

An+1 = AnΘ
[
1 + (An)−1 |A|2 (A∗n)−1] .

:::::::::::::::::::::::::::::::::::::::

(10)
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12 Reinicke, Dukalski & Wapenaar
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Figure 1. Parameters
:::::::::::
Illustration

:
of the three models used in this work. The density

:::::::::
functions

::
A,

ρ
::
B,

::
C

:::::
(left

::::::::
column)

:
and the P-wave velocity, cP , are identical for all models. An acoustic case is

:::::
their

::::::::
inverses

::::::
(right

:::::::::
column)

:
defined by setting the S-wave velocity to zero, cS = 0

::
in

::::::::::
Eqs. 2 - 5

:::::
using

::::::::::
α = −0.6

:::::
and

:::::::::::
τ1 = 0.04 s. The Elastic #1 case is defined with

:::::
panels

::::::
show

::
(anon-zero

S-wave velocity
:
)

:::::::
Argand

::::::::::
diagrams, cS 6= 0

:::
(b)

::::::
phase

::::::::
spectra

::::
and

::::
(c)

:::::
time

::::::::
domain

:::::::::::::::
representations.

The Elastic #2 case is defined by reducing the S-wave velocity in one
::::
axes

:
of the layers. The

one-way travel times within each layer are integer-multiples of
:::::::
Argand

:::::::::
diagram

:::::::::::
correspond

:::
to

:
the

time sampling interval, ∆τ = 4 ms, for all models
:::
real

::::
(<)

:
and for P-/S-waves associated with,

px = 2× 10−4 s m−1. This choice simplifies the interpretation
::::::::::
imaginary

::::
(=)

:::::
part of the medium

responses
::::::::
functions

:
in the time

::::::::::
frequency domainbecause all events perfectly coincide with a time

sample, i. e. it avoids smearing
::::
The

::::::
phase

:
of individual events across several time samples

:
a
:::::::::
complex

:::::::
number

::
is
:::::::::::
illustrated

::
in

::::
the

:::
top

::::::
right

:::::
panel. In this setting

:::::::::
Moreover,

:::::
there

::
is

::::
one

::::::
legend

::::
per

::::::::
column

::::
and we can accurately apply temporal mutes which allows us

::::::
denote

::::::::
f = ω

2π .
:::::
The

::::::::::::::::
minimum-phase

::::::::
function

::
A
:::::

and
:::
its

::::::::
inverse

::::::
follow

::::::::::::
trajectories

:::
in

::::
the

:::::::::
complex

::::::
plane

:::::
that

:::::
have

:::::::::
winding

:::::::::
numbers

:::::::
around

:::
the

::::::
origin

::::::
equal

:
to verify

:::::
zero.

:::::::::
However, the accuracy

::::::::::
trajectory of the discussed algorithms

up to numerical noise (in
::::::::
function

::
B

:::::
and

:::
its

:::::::
inverse

::::::
wind

::::
five

::::::
times

::::::::
around

:
the order

::::::
origin

:
of

:::
the

:::::::::
complex

::::::
plane

:::::::::
(deduced

::::::
from

::::
the

::::::
phase

::::::::
spectra

:::::::::

π×10
2π = 5, 1× 10−15 , for double-precision

::
or

:::::::::::::::::::::::::::

ωmaxτ1
2π = 125 Hz× 0.04 s = 5).
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Minimum-phase beyond scalar functions 13

:::::
Here,

:::::
the

::::::
mute

:
represents multiplication by the Heaviside function , H(τ) , in the time

domain,

H(τ) =





1, τ > 0,

1
2
, τ = 0,

0, τ < 0.

(11)

By rearranging the result a recursive algorithm is obtained,

V +
n+1 = V +

n Θ
[
1 +

(
V +
n

)−1 |V +|2
(
V +∗
n

)−1
]
.

:::::
Since

:::::::
most

:::::::::::
operations

::::
in

:::::
this

::::::
work

::::
are

:::::::::::::
formulated

:::
in

::::
the

:::::::::::
frequency

::::::::::
domain,

::::
the

:::::::
mute

::::::::::
opertator

:::::
Θ [·]

:::::::::
includes

:::::::::
Fourier

::::::::::::
transforms

:::::::::
between

:::::
the

:::::::::::
frequency

::::
and

::::::
time

::::::::::
domains.

::::
In

::::::::::
Section 3,

::::
the

::::::
mute

:::::::::
operator

::::
will

::::
be

::::::::::::
generalized

:::::
from

::
a

::::::::::
Heaviside

:::::::::
function

:::
to

::
a

::::::
more

::::::::
general

::::
step

::::::::::
function. Wilson (1969) shows that the desired solution, V +, is found

:::::::::
recursive

:::::::::::
algorithm

::
in

:::::::
Eq. 10

:::::::::::
converges

::
to

::::
the

::::::::
desired

:::::::::
solution

:::
A using the simplest minimum-phase function as

initial estimate, V +
0 = 1.

:::::::
A0 = 1

:::
(in

::::
the

:::::::::::
frequency

:::::::::
domain).

:
The scaling by , 1

2
, at time-zero

::
at

::::::
time

:::::
zero

:
(see Eq. 11) handles the overlap of the causal and acausal terms in Eq. 9. It

can also be seen as a termination condition that ensures convergence, i.e. for, V +
n = V +, the

solution is not updated ,
:::
for

:::::::::
An = A,

:

V +
n+1An+1

:::::
= V +

n An::
Θ
[
1 + (An)−1 |A|2 (A∗n)−1]

= V +
n An::

Θ [1 + 1] = V +
n An::

. (12)

We illustrate the 1D Wilson algorithm with an example considering the acoustic model shown in Figure 2.

The normal product of the

2.3
::::::::::::::
Geophysical

::::::::
scalar

::::::::::::
functions

:::::
and

:::::::::::::::::::
minimum-phase

:::
We

:::::::
briefly

:::::::::::
introduce

::::
our

::::::::::
notation,

::::::
define

::::
the

:::::::::::::::::
dereverberation

:::::::::
operator

::::
and

::::::
show

::
a
:::::::::::
numerical

::::::::
example

:::
of

::::
the

::::::::
Wilson

:::::::::::
algorithm.

:

::
In

::::::::::::
geophysics,

::::::::
transfer

::::::::::
functions

::::
are

::::::
often

:::::
used

:::
to

::::::
relate

:::::::::::
wavefields

:::
at

:::::::::
different

:::::::::::
locations.

:::
For

::::::::::::
simplicity,

::::
we

:::::::::
consider

:::::::::::::::::::::
horizontally-layered

:::::::
media

:::
in

:::::
the

::::
x-z

:::::::
space,

:::::::
where

::::::::::::
wavefields
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14 Reinicke, Dukalski & Wapenaar

:::::::::
decouple

::::
per

:::::::::::
horizontal

::::::::::::::::
ray-parameter,

:::::::::::
px = sin(α)

c :::::
(see

:::::::::
Eq. A.3

:::
for

:::::::::::
definition

::
of

::::
the

:::::::::
domain

:::::::::::::::::
transformation).

::::::
Here,

::::
the

::::::
angle

::
α

::
is

::::::::
formed

:::
by

::::
the

::::::
wave

:::::
front

:::::
and

::::
the

:::::::
x-axis,

:::::
and

:
c
:::::::::
denotes

:::
the

::::::
local

:::::::::::::
propagation

:::::::::
velocity

:::
of

::
a

::::::
given

::::::
wave

::::::
type

:::
(P,

:::
or

:::
S

:::::::
which

::::
will

:::
be

::::::::::
relevant

::
in

:::::
the

::::::
elastic

:::::::
case).

:

::::
The

:::::
term

:::::::::
response

::::::
refers

:::
to

::
a

::::::::
Green’s

:::::::::
function

:::::::::::
associated

:::::
with

::
a
::::::::::::
plane-wave

:::::::
dipole

:::::::
source

::::
and

::
a

::::::::::
monopole

::::::::::
receiver.

::::::::
Hence,

::
a

:::::::::
response

::
is
:::

a
:::::::::
function

:::::
that

:::::::
relates

:::::
the

:::::::::::
wavefields

::
at

:::::
the

::::::
source

:::::
and

:::::::::
receiver

:::::::::
locations

::::
via

::
a
:::::::::
product

::::
per

:::::::::::
frequency.

::::
We

:::::::::
consider

::::
an

:::::::::
acoustic

:::::::::
medium

::::
that

:::
is

::::::::::::::
homogeneous

::::::::
except

:::
for

::
a
::::::::

section
::::::::::
between

::::
the

::::::
depth

:::::::
levels

::
z

:::
on

:::::
top,

:::::
and

::
z′

:::
at

:::::
the

::::::::
bottom.

:::::::::::
Moreover,

:::::
the

:::::::::
medium

:::
is

::::::::::::
source-free

:::::::
below

::::
the

:::::::
upper

:::::::::::
boundary

:::
at

:::::::
depth

:::
z.

::::
In

::::
this

:::::::::::::::
configuration,

::::
one

:::::
can

::::::
relate

::::
the

:::::::::::
wavefields

::::
on

::::
the

::::::::::::
boundaries

::
z
:::::
and

:::
z′

::::::
using

::
a

:::::::
scalar

:::::::::
response

::::::::::::::
D(px, z

′, z, ω)
::::
(as

:::::::::
opposed

:::
to

::
a
::::::::
matrix

::::::::::
response)

:::::::::::
according

:::
to,

:

q(px, z
′, ω) = D(px, z

′, z, ω)q(px, z, ω).
::::::::::::::::::::::::::::::::::::::

(13)

:::::
Here,

::::
the

:::::::::
quantity

:::::::::::
q(px, z, ω)

::::::::
denotes

:::
an

:::::::::
acoustic

:::::::::
pressure

::::::::::
wavefield.

::::
We

::::::::
assume

:::
all

::::::::::::
coordinates

:::
are

::::::
fixed

:::::::
except

::::
for

::::
the

:::::::::::
frequency

::::
and

:::::
use

::
a

:::::::::::::
detail-hiding

::::::::::
notation

:::::
that

::::::
omits

::::::::::::::
coordinates,

::::
e.g.

::::::::::::::::
qbelow = Dqabove:::::::::::::::::::::::::::::::::::::::::::::::

(similar to Berkhout 1982; Wapenaar 1989).
:

:::
For

:::
all

:::::::::::
numerical

:::::::::::
examples

::
in

:::::
this

:::::::
paper,

::::
we

:::::::::
consider

::::
the

:::::
four

::::::
layer

:::::::
model

:::
in

::::::::::
Figure 2

::::
and

::
a
:::::::
single

::::::::::::::::
ray-parameter

::::::::::::::::::::::
px = 2× 10−4 s m−1.

::::
We

:::::
use

::::::
three

::::::::
models

::::::
that

::::
are

::::::::::
identical

:::::::
except

:::
for

::::
the

::::::::
S-wave

:::::::::
velocity

:::
cS ::::::::::

including
:::
an

:::::::::
acoustic

:::::::
model

:::::::::
(cS = 0)

:::::
and

::::
two

:::::::
elastic

::::::
ones

:::::::::
(cS 6= 0).

:

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
Next, we introduce a specific transfer function namely the dereverberation operator which is the desired solution of the Marchenko equation.

::
It

::::
can

:::
be

:::::
used

::
to

::::::::
remove

:::::::::
internal

::::::::::
multiples

:::::
from

::::::::
seismic

:::::::::
reflection

::::::
data

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g. van der Neut & Wapenaar 2016; Dukalski & de Vos 2022),

:::::::::
however,

:::::::::
multiple

::::::::::::
elimination

:::
is

::::
not

:::::::::
relevant

:::
for

::::
our

::::::::::
analysis.

::::
The

:::::::::::::::::
dereverberation

::::::::::
operator

::
is

::::::::
defined

::::
via

::::
the

::::::::::::::
transmission

:::::::::
response

::::
T ↓

:::::
that

::::::::
relates

::::
the

:::::::::::
wavefields

:::::::
above

:::::
and

::::::
below

:::
a

::::::::::
scattering

:::::::::
medium

::::::::::::::::::::
(qbelow = T ↓qabove). :::

In
::::
the

:::::::::
acoustic

:::::
case,

:::
it

::::
can

:::
be

::::::::
written

::::
as,

:

V + = T ↓−1T ↓dir
:::::::::::::::

= 1 + V +
coda.

::::::::::::
(14)
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Minimum-phase beyond scalar functions 15

:::::
Here,

:::::
the

:::::::::::::
transmission

::::
T ↓

::
is
::::::

split
:::
in

:::
its

:::::::
direct

:::::
and

:::::
coda

:::::::
parts

::::::::::
indicated

:::
by

::::
the

::::::::::::
subscripts

:::::
“dir”

:::::
and

::::::::
“coda”,

::::::::::::::
respectively,

T ↓ = T ↓dir + T ↓coda,
:::::::::::::::::

(15)

::::
and

::::
the

:::::::
inverse

:::::::::::::
transmission

::::::
T ↓−1

::
is

::::::
often

::::::::
referred

:::
to

::
as

::
a

:::::::::
focusing

:::::::::
function

:::
f+

:::::::::::::::::::::::::
(Wapenaar et al. 2014).

::::::::::::::
Transmissions

:::::
and

::::::
their

:::::::::
inverses

::::
are

:::::::::::::::::
minimum-phase

:::::::::::
functions,

::::::::
except

::::
for

::
a

:::::::::
positive

:::::
and

::::::::
negative

::::::
time

::::::
shift,

:::::::::::::
respectively

:::::::::::::::::::
(Claerbout 1968).

:::::::
These

:::::
time

::::::
shifts

::::::::::
mutually

:::::::
cancel

:::::::
when

:::::::::::
evaluating

:::
the

:::::::::
product

::
in

::::::::
Eq. 14.

::::::::
Hence,

:::
the

:::::::::::::::::
dereverberation

:::::::::
operator

::::::::::
possesses

:
a
:::::::::::::::::
minimum-phase

:::::::::
property.

::::
For

::::::::::
example,

::::
the

::::::::::
function

::
A

:::
in

::::::
Eq. 2

::
is
::
a
:::::::::::::::::
dereverberation

::::::::::
operator

::
of

::::
an

:::::::::
acoustic

::::::::
medium

::::::
with

:::::
two

::::::::::
reflectors

:::::
that

:::::
are

::::::::::
separated

::::
by

::::
the

:::::::
travel

::::::
time

:::::

1
2
τ1,

:::::
and

::::
the

:::::::
factor

:::
α

::::::::::
represents

::::
the

:::::::::
product

:::
of

::::
the

::::::::::
reflection

::::::::::::
coefficients

:::
of

::::
the

::::
two

:::::::::::
interfaces.

:

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
We illustrate the scalar Wilson algorithm with an example considering the acoustic model shown in Figure 2.

::::
The

:::::::
power

::::::::::
spectrum

:::
of

::::
the

:
dereverberation operator |V +|2 (see Figure 3a) is modeled ana-

lytically (Dukalski et al. 2022) and used to evaluate Eq. 10
::::
with

:::::::::
A = V +. Figures 3b-f show

the solution V +
n and its error, V +

n − V +, as a function of iterations
:
(n). The convergence in

Figure 4 reveals that the Wilson algorithm finds the true solution up to numerical accuracy

within seven iterations.

2.4 Minimum-phase property and reconstruction by normal-product

factorization: Matrix case

3
::::::::::::::::::::::::
MINIMUM-PHASE

::::::::::::::::
PROPERTY

:::::::
AND

::::::::::::::::::::::::::::
RECONSTRUCTION:

::::::::::::
MATRIX

:::::::
CASE

The concept of minimum-phase is significantly more difficult beyond scalar functions where

several assumptions break.
::
In

::::
this

::::::::
section,

::::
we,

:
In this section, firstly, we review the definition

(3.1)
::::::::::
introduce

:::::::
matrix

:::::::::::
functions

::::
and

::::::
their

::::
link

:::
to

::::::::::::::::
elastodynamic

:::::::::::
wavefields,

:

(3.2)
::::::::
analyze

::::
the

:::::::::::::::::
minimum-phase

::::::::::
property

::
of

::::::::::
matrices,

:
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16 Reinicke, Dukalski & Wapenaar
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Figure 2.
:::::::::::
Parameters

:::
of

:::
the

::::::
three

:::::::
models

:::::
used

::
in

::::
this

::::::
work.

::::
The

::::::::
density

:
ρ
:::::
and

:::
the

::::::::
P-wave

::::::::
velocity

::
cP::::

are
:::::::::
identical

:::
for

::::
all

::::::::
models.

:::
An

:::::::::
acoustic

::::
case

::
is

:::::::
defined

:::
by

::::::::
setting

::::
the

:::::::
S-wave

::::::::
velocity

:::
to

:::::
zero

:::::::
cS = 0.

::::
The

::::::::
Elastic

::::
#1

::::
case

::
is

::::::::
defined

:::::
with

::
a
:::::::::
non-zero

::::::::
S-wave

::::::::
velocity

::::::::
cS 6= 0.

::::
The

::::::::
Elastic

::::
#2

::::
case

::
is
::::::::

defined
:::
by

::::::::::
reducing

::::
the

:::::::
S-wave

:::::::::
velocity

::
in

:::::
one

::
of

:::::
the

:::::::
layers.

::::
The

:::::::::
one-way

::::::
travel

:::::::
times

::::::
within

:::::
each

::::::
layer

:::
are

:::::::::::::::::
integer-multiples

:::
of

::::
the

:::::
time

:::::::::
sampling

::::::::
interval

:::::::::::::
(∆τ = 4 ms)

::::
for

:::
all

::::::::
models

::::
and

:::
for

:::::::::::
P-/S-waves

:::::::::::
associated

:::::
with

:::::::::::::::::::::
px = 2× 10−4 s m−1.

:::::
This

::::::
choice

::::::::::
simplifies

::::
the

::::::::::::::
interpretation

::
of

::::
the

::::::::
medium

::::::::::
responses

:::
in

::::
the

:::::
time

:::::::::
domain

::::::::
because

:::
all

:::::::
events

:::::::::
perfectly

:::::::::
coincide

:::::
with

::
a
::::::

time

:::::::
sample,

::::
i.e.

::
it
:::::::

avoids
::::::::::
smearing

::
of

:::::::::::
individual

:::::::
events

::::::
across

::::::::
several

:::::
time

:::::::::
samples.

:::
In

:::::
this

::::::::
setting,

::
we

:::::
can

::::::::::
accurately

::::::
apply

::::::::::
temporal

::::::
mutes

:::::::
which

::::::
allows

:::
us

:::
to

::::::
verify

::::
the

:::::::::
accuracy

:::
of

::::
the

::::::::::
discussed

::::::::::
algorithms

:::
up

:::
to

::::::::::
numerical

:::::
noise

::::
(in

::::
the

:::::
order

:::
of

::::::::::
1× 10−15

::::
for

:::::::::::::::::
double-precision).

:

(3.3)
:::::::
review

:::::::
normal

::::::::::
products

::::
and

::::::::
explore

:::::
how

:::::::::::::::::
minimum-phase

:::::::::
matrices

::::
can

:::
be

::::::::::::::
reconstructed

:::::
from

::::::
their

::::::::
normal

::::::::::
products

:::
by

:::::::::::::::
factorization.

:::::
For

::::
the

::::::::::::::::
reconstruction

::::::
step,

:::
we

:::::::
focus

::
on

:::::
the

::::::::
special

:::::
case

:
of the elastodynamic dereverberation operator, V+, which is a

minimum-phase matrix . Secondly, we discuss minimum-phase properties for matrices.

Thirdly, we analyze the additional degrees of freedom of normal-product factorization,

that arise when increasing the dimensionality from scalars to matrices.Finally, we

present a modified version of the matricial minimum-phase normal-product factorization

method by Wilson (1972). We will illustrate our analysis numerically in Section 4.

We start by briefly introducing the elastodynamic dereverberation operator V+. One can
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Minimum-phase beyond scalar functions 17

generalize the definition of the acoustic dereverberation operator in Eqs. 14 and 15 to the

elastic case by replacing scalar with matrix fields

3.1
::::::::::::::
Geophysical

:::::::::
matrix

::::::::::::
functions

:::
We

:::::::
briefly

::::::::::
introduce

::::::::
matrix

::::::::::
functions.

:::::
The

::::::::::
literature

::::::::::::::
distinguishes

::::::::
between

:::::::::
transfer

::::::::::
functions

:::::
with

:::
(1)

::
a
::::::
single

:::::::
input

::::
and

::
a

::::::
single

::::::::
output

::::::::
(SISO)

:::::::::::::::
corresponding

::
to

::::
the

:::::::
scalar

:::::
case

::::::::::
discussed

:::::::
above,

::
as

:::::
well

:::
as

::::
(2)

::::::
multi

:::::::
inputs

:::::
and

::::::
multi

:::::::::
outputs

:::::::::
(MIMO)

:::::::::::::::::::
(Johansson 1997).

:::::
The

:::::::
latter

::::
can

:::
be

::::::::::::
represented

:::
by

::::::::::::::::::::::
frequency-dependent

::::::::::
matrices,

::::::
where

::::
the

::::::::
number

:::
of

:::::
rows

:::::
and

:::::::::
columns

::::::::::::
corresponds

:::
to

:::::
the

:::::::::
number

:::
of

::::::::
output

:::::
and

::::::
input

:::::::::::
variables,

::::::::::::::
respectively.

::::::::
Hence,

:::::
they

:::::
are

::::::::
referred

:::
to

:::
as

::::::::
matrix

::::::::::
functions.

::::::::::::
Compared

:::
to

::::
the

:::::::
scalar

:::::
case,

:::::::::::::::
mathematical

::::::::::::
operations

::::
are

:::::::::::
generalized

:::::::
which

:::::
can

:::::
lead

:::
to

::::::::::::
previously

::::::::::::
unexplored

::::::::::::
challenges,

:::::
e.g.

:::::::
scalar

::::::::::
products

:::::
and

:::::::::
divisions

::::::::
become

::::::::
matrix

::::::::::::::::
multiplications

::::
and

::::::::
matrix

:::::::::
inverses,

::::::::::::::
respectively.

:

:::::::::::::::
Elastodynamic

::::::::::
responses

::::
can

:::
be

::::::::::::
represented

:::
by

::::::
2× 2

::::::::
matrix

::::::::::
functions.

::::::
Here,

::::
we

:::::::::
consider

:::
the

::::::::::::::
configuration

:::::::::::
discussed

::
in

::::::::::::
Section 2.3

:::::
but

:::::::::::
generalize

:::::::::
acoustic

:::
to

:::::::
elastic

:::::::
media.

:::::
One

:::::
can

::::::::::
formulate

::::
the

:::::::
elastic

::::::::::
extension

:::
of

::::
the

::::::::::::::::::::
wavefield-response

::::::::
relation

:::
in

:::::::
Eq. 13

:::
as

:::::::::
follows,

q(px, z
′, ω) = D(px, z

′, z, ω)q(px, z, ω),
:::::::::::::::::::::::::::::::::::::::

(16)

:::::
with,

:

D =



DP,P DP,S

DS,P DS,S


 , and, q =



qP

qS


 .

::::::::::::::::::::::::::::::::::::::::

(17)

::::
The

:::::::::::
subscripts

::::::::
denote

::::::::::::
P-/S-waves

::::
and

::::
we

::::
use

:::::
bold

:::::
font

:::
to

::::::::::::
distinguish

::::::::
vectors

::::
and

::::::::::
matrices

:::::
from

::::::::
scalars.

:::
In

::::
this

:::::::::
context,

::::
the

::::::::
matrix

:::::::::
function

:::
D

::
is

:::
an

:::::::::::::::
elastodynamic

::::::::::
response

::::::::
defined

:
in

the P-S space(Reinicke et al. 2020),

V+ = T↓−1T↓dir= I +
(
T↓−1

)
coda

T↓dir.

:
.
::::
The

:::::
first

:::::
and

:::::::
second

:::::::::::
subscripts

::
of

::::
its

:::::::
matrix

::::::::::
elements

:::::::
denote

::::
the

::::::
wave

:::::
type

::
at

::::
the

::::::::::
receiver-

::::
and

::::::::::::
source-side,

::::::::::::::
respectively.

::::
For

::::::::::
example,

::::
the

:::::::::
element

::::::
DP,S :::::::

relates
:::::::::
S-waves

:::
at

::::
the

::::::::
source

::::::::
location

:::
to

::::::::::
P-waves

:::
at

::::
the

:::::::::
receiver

::::::::::
location.

:::::::
Next,

:::
we

::::::::::::
generalize

::::
the

::::::::::
temporal

:::::::
mutes

::::
to
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18 Reinicke, Dukalski & Wapenaar

:::::::::
matrices

:::::
such

:::::
that

:::::
they

:::::::::
operate,

:::::
and

::::
can

::::::
differ

::::
per

::::::::
matrix

:::::::::
element

:::
in

::::
the

::::
P-S

:::::::
space,

:

Θ [D] =




ΘP,P [DP,P ] ΘP,S [DP,S]

ΘS,P [DS,P ] ΘS,S [DS,S]


 .

:::::::::::::::::::::::::::::::::::::::

(18)

The acoustic direct transmission, T ↓dir, generalizes to a so-called forward-scattered transmission,

T↓dir, that includes all non-reflected events such as transmitted mode-converted waves (Wapenaar 2014).

Analogously, the scalar identity, 1, becomes an identity matrix , I.
:::::
Next,

::::
we

::::
will

::::::::::::
investigate

::::
how

:::
to

:::::::
define

:::::
and

::::::::::::
reconstruct

:::::
the

:::::::::::::::::
minimum-phase

::::::::::
property

::::
for

::::::::::
matrices,

::::
e.g.

:::::
per

::::::::
matrix

::::::::
element

:::
or

:::
per

::::::::
matrix.

:::::::::::
Moreover,

:::
we

::::
will

:::::::::
analyze

:::
the

:::::::::::::::
mathematical

:::::::::
behavior

:::
of

::::::::::::::::
minimum-phase

:::::::::
matrices,

:::::
e.g.

:::::::::
whether

::::::
their

:::::::::
property

:::
is

::::::::::
preserved

::::
by

::::::::
matrix

:::::::::
products

:::
or

:::::::::
changes

:::
of

:::::::
basis.

::::::::
Despite

:::::::::
focusing

:::
on

::::::
2× 2

::::::::::
matrices,

::::
we

:::
do

::::
not

:::::::::
exclude

:::::::::::::::
generalizations

:::
to

:::::::
larger

::::::
ones.

:

The dereverberation operator has several properties that are important for this work on minimum-phase and normal-product factorization.

Firstly, all events of the dereverberation operator arrive within a well-defined time window

that only depends on the one-way travel times of P- and S-waves within each layer (Reinicke et al. 2020).Secondly,

3.2
:::::::::::::::::::
Minimum-phase

:::::::::
matrix

:::::::::::
property

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
The concept of minimum-phase is significantly more difficult beyond scalar functions where several assumptions break.

::
In

:::::
the

::::::::::
following,

::::
we

:::::::::
discuss

:
the dereverberation operator has a finite number of events

limited by the number of layers. This follows from the finite number of events of the

inverse and forward-scattered transmissions (Dukalski et al. 2022). In contrast to scalars,

minimum-phase matrix functions can contain individual acausal elements as we will discuss

next.
:::::::::
property

:::
of

:::::::::
matrices

:::
by

:::::::::::
reviewing

:::::::::
findings

:::::
from

::::::
other

::::::
areas

::::::
(e.g.

:::::::
control

:::::::::
theory).

:

3.2.1 Matricial minimum-phase property

In the following, we discuss findings from other fields (e.g. control theory) on minimum-phase matrix properties in the context of geophysics, particularly transmission-like fields such as the dereverberation operator.

Diagonal matrices are a trivial extension from scalars to matrices. Consider the scalar
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Minimum-phase beyond scalar functions 19

minimum-phase functions, g± = 1± αe−iωτ1 , with ,
::::::::::::::::::
A± = 1± αe−iωτ1 ,

:::::
with

:
|α| < 1 , and ,

::::
and τ1 > 0. By arranging them in a diagonal matrix (denoted by diag(·) ), we obtain a trivial

example of a
:::
we

:::::::
obtain

::::
the

:
minimum-phase matrix, Λ = diag(g−, g+)

:::::::::::::::::::
Λ = diag(A−, A+). In

contrast to this intuitive example, we will show less obvious cases of minimum-phase matrices

further onwards.

Existing literature defines matrices as minimum-phase if their determinants are minimum-

phase (Wiener 1955; Rosenbrock 1969; Horowitz et al. 1986). Hence, the determinant of a

minimum-phase matrix satisfies the Kolmogorov relation (analogously to Eq. 7). This def-

inition is consistent with the special case of scalar functions which are 1 × 1 matrices.

It is also consistent with the simple matrix example above, Λ, where the determinant is

equal to the product of the minimum-phase diagonal elements, det(Λ) = g−g+, producing

:::::::::::::::::
det(Λ) = A−A+,

:::::::::::
producing

:::
by

:::::::::::
definition

:
a minimum-phase resultby definition.

In a general case, defining minimum-phase matrices via their determinant has several

consequences:

(1)
:::::::
Matrix

::::::::::::::::
multiplications

::::
and

::::::::
matrix

:::::::::
inverses

:::::::::
preserve

:::
the

:::::::::::::::::
minimum-phase

::::::::::
property.

:::::
This

::::
can

::
be

:::::
seen

:::
by

::::::::::::
considering

::::
the

::::::::::::::
determinants

::
of

::::::::::
arbitrary

:::::::::::::::::
minimum-phase

:::::::
matrix

::::::::::
functions

::
A

:::::
and

:::
B,

:

det (AB) = det (A) det (B) ,
:::::::::::::::::::::::::::::

(19)

det
(
A−1

)
= (det (A))−1 .

::::::::::::::::::::::::::

(20)

::::
The

:::::::::::::::
determinants,

::::::::
det (A)

::::
and

:::::::::
det (B),

::::
are

:::::::::::::::::
minimum-phase

::::::
scalar

:::::::::::
functions.

::::::::
Hence,

:::
the

:::::::::::
right-hand

::::::
sides

::
of

:::::::::::::::::
Eqs. 19 and 20

::::::
show

:::::
that

::::
the

::::::::
matrix

:::::::::
product

:::::
AB

::::
and

::::
the

::::::::
inverse

:::::::
matrix

:::::
A−1

::::::::
possess

::
a
:::::::::::::::::
minimum-phase

::::::::::
property.

:

(2) The minimum-phase property is basis-independent,

det (D) = det
(
QDQ−1

)
, (21)

where Q is an arbitrary invertible matrix of the same size as D.
::::::
Hence,

:::::::::::::::::
minimum-phase

::
is

::
a

:::::::::
physical

:::::::::
property

:::::
that

:::
is

:::::::::::::
independent

:::
of

::::
the

:::::::::::
coordinate

::::::::
system

:::
or

:::::::::
domain.

:
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20 Reinicke, Dukalski & Wapenaar

(3) Minimum-phase matrices are not fully consistent with the aforementioned qualita-

tive conditions (i)-(iii)
:
in

::::::::::::
Section 2.1. The invertibility criterion (iii) is satisfied because

minimum-phase determinants are non-zero. However, it is less clear how to interpret

causality and stability for a matrix (criteria (i) and (ii)). In particular, minimum-phase

determinants do not guarantee causality of individual matrix elements. For example,

suppose the matrix,

Q =




1− 2αe−iωτ1 1

1 + αeiωτ1 1 + αeiωτ1


 , (22)

is used to apply a frequency-dependent basis transformation to the above-mentioned

minimum-phase matrix, Λ = diag(g−, g+)
::::::::::::::::::
Λ = diag(A−, A+). The resulting matrix,

QΛQ−1 =




2− αe−iωτ1 −1−2αe−iωτ1

1+αeiωτ1

1 + αeiωτ1 αe−iωτ1


 , (23)

is still minimum-phase but its matrix elements are not (e.g. see acausal element ,
::::
such

::
as

::::
the

::::::::
acausal

:::::::::
element

:
1 + αeiωτ1).

(4) Minimum-phase matrices do not necessarily posses minimum-phase eigenvalues. A

minimum-phase determinant defines
::::::::::
constrains

:
the phase spectra of the eigenvalues up

to a frequency-dependent freedom, ζ = ζ(ω),
:::::::::
η = η(ω),

:

Arg [λ1] = −H [log (|λ1|)] + ζη
:
, (24)

Arg [λ2] = −H [log (|λ2|)]− ζη
:
. (25)

There are special cases where all eigenvalues observe a minimum-phase property (i.e.

ζ = 0
:::::
η = 0), e.g.

::::
the

::::::::::::::::
aforementioned

::::::::
matrix

::::
Λ,

:::
or

:
transmission-like responses of 2D

laterally-invariant acoustic media (see examples by Wapenaar et al. 2003; Elison et al.

2020). This work focuses on matricial
:::::
more

:::::::::
general

:
minimum-phase normal-product

factorization, and hence, goes beyond these special cases where a scalar solution per

eigenvalue often suffices
:::::::::
matrices,

:::::::
where

:::::::
scalar

:::::::::
solutions

:::::
per

:::::::::::
eigenvalue

:::
no

:::::::
longer

:::::::
suffice.
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Minimum-phase beyond scalar functions 21

3.2.1 Normal-product factorization: Degrees of freedom

3.3
:::::::::::::::::::
Minimum-phase

::::::::::::::::::
reconstruction

::::
by

:::::::::::::::::::
normal-product

::::::::::::::::
factorization:

::::::::::
Matrix

:::::
case

Compared to the scalar case, the factorization of normal products has additional degrees of freedom.

Upon multiplying the matrix, D, by an arbitrary unitary 2× 2 matrix , U(2),
::
In

::::
this

:::::::::
section,

:::
we

:::::::
extend

:::::::::::::::::
minimum-phase

:::::::::::::::
reconstruction

::::::
from

:::::::
scalars

:::
to

::::::::::
matrices.

::::::::
Firstly,

:::
we

:::::::
define

::::::::
normal

:::::::::
products

:::
as

:::::::::::::
generalized

:::::::
power

:::::::::
spectra,

:::::
and

:::
we

::::::::::::::
demonstrate

:::::
why

::::::::
unique

::::::::::::::::::
minimum-phase

:::::::
matrix

::::::::::::::::
reconstruction

::
is

::::::::::::::
significantly

::::::
more

:::::::::::::
challenging

:::::
than

::::
its

:::::::
scalar

:::::::::
version.

:::::::::::
Secondly,

:::
we

::::::::
modify

::::
the

:::::::::::::::::
minimum-phase

:::::::
matrix

:::::::::::::::
reconstruction

:::::::::
method

:::
by

::::::::::::::::::::::::::::
Wilson (1972) considering

:::
the

::::::::
special

::::::
case

:::
of

::::
the

::::::::::::::::
elastodynamic

:::::::::::::::::
dereverberation

::::::::::
operator

:::::
V+.

::::::::::
Thirdly,

:::
we

:::::::::
discuss

:::::::::::
similarities

:::
of

::::
this

::::::::::::::::
reconstruction

:::::::::
method

::
to

:::::
the

::::::::::::
Marchenko

:::::::::
method.

::::
We

::::
will

::::::::::
illustrate

:::::
our

::::::::
analysis

:::::::::::::
numerically

::
in

:::::::::::
Section 4.

:

3.3.1
::::::::
Normal

::::::::::
products:

:::::::::::::
Generalized

::::::
power

::::::::
spectra

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
The normal product is defined as the product of a quantity, with its complex-conjugate transpose, e.g. |D|2 for scalars, or DD† for matrices (e.g. Dukalski 2020).

::::::
Scalar

::::::::
normal

::::::::::
products

:::::
may

::::
be

:::::::
better

:::::::
known

:::
as

::::::::::::::::::
auto-correlations

:::
in

::::
the

::::::
time

::::::::
domain

:::::
and

:::
are

::::::
often

:::::::::::::
interpreted

:::::::::::
physically

:::
as

:::::::
power

:::::::::
spectra

:::
in

::::
the

:::::::::::
frequency

:::::::::
domain

:::::::::
because

::::::
their

::::::
phase

:::::::::
vanishes

::::::::::::::::
Arg [|D|2] = 0.

:::::::::::
Following

:::::
this

:::::::::
physical

::::::::::::::::
interpretation,

::::::::::
retrieving

:::::
the

:::::::
scalar

::::::::
solution

:::
D

:::::
from

:
its normal product is preserved,

DU(2) (DU(2))† = DD†,

::::
|D|2

:::
is

::::::
often

::::::::::
described

:::
as

::
a

::::::
phase

::::::::::::::::
reconstruction,

::::::
while

:::::::::::::::::
mathematically,

:::
it

::
is

::
a
::::::::::::::
factorization

:::::::::
problem.

:::
In

::::::::::
Section 2,

:::
we

::::::::
showed

:::::
that

::::
this

::::::::::
generally

::::::::::::
non-unique

::::::::::::::
factorization

::::
can

::
be

:::::::::::::
constrained

:::
for

:::::::::::::::::
minimum-phase

:::::::
scalar

::::::::::
functions

:::::
(see

::::::::::::::::
Eqs. 6 and 7).

::::::::::
However,

::::
the

::::::::
matrix

:::::
case

:::
is

::::::
more

:::::::::::::
complicated.

:

::::::
There

:::
are

::::::::
several

::::::::::::
differences

:::::::::
between

::::::
scalar

:::::::
power

::::::::
spectra

:::::
and

:::::::
matrix

::::::::
normal

:::::::::::
products.
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22 Reinicke, Dukalski & Wapenaar

:::
For

::::::::::
example,

::::::::::
consider,

:

DD† =



DP,P DP,S

DS,P DS,S






D∗P,P D∗S,P

D∗P,S D∗S,S


 =



δ ε∗

ε ζ


 ,

:::::::::::::::::::::::::::::::::::::::::::::::::::::

(26)

because, U(2) [U(2)]† = I. An arbitrary U(2) element can be represented as a product of

a matrix
:::::
with

:::::::::::::::::::::::
δ = |DP,P |2 + |DP,S|2,

::::::::::::::::::::::::::::
ε = D∗P,PDS,P +D∗P,SDS,S,

:::::
and

:::::::::::::::::::::::
ζ = |DS,P |2 + |DS,S|2.

::::
The

:::::::::::::
off-diagonal

::::::::::
elements

:::
of

::::
the

:::::::::
normal

:::::::::
product

::::
are

::::::::::
identical

:::::::
except

::::
for

::
a
:::::::::::::::

sign-inverted

::::::
phase

:::::
that

:::
is

::::
not

::::::::::::
necessarily

::::::
zero

:::::::::::::::::::::
Arg [ε] = −Arg [ε∗].

:::::::::::::
Nonetheless,

::::
we

::::::
keep

::::
the

::::::::::
physical

::::::::::::::
interpretation

::::::
from

:::
the

:::::::
scalar

:::::
case,

::::
i.e.

::::::::
“power

:::::::::
spectra”

:
and a U(1) element (Cornwell 1997),

:::::::
”phase

::::::::::::::::
reconstruction”

::::::
refer

:::
to

:::::::
normal

::::::::::
products

:::::
and

::::
the

:::::::::
retrieval

::
of

::::
the

:::::::::
solution

:::
D

:::::
from

::::
its

:::::::
normal

::::::::::
product,

:::::::::::::
respectively.

::::::
Since

::::::::
matrix

::::::::::::::::
multiplications

::::
do

::::
not

:::::::::::
commute,

::::::
there

::::
are

:::::
two

:::::::
normal

:::::::::::
products,

:::::::
which

::::
are

::::::::::
generally

:::::
not

::::::
equal

:::::::::::::::
DD† 6= D†D.

:::::::::::
Counting

::::::::
matrix

::::::::::
elements

::
as

:::::::::::
equations,

:::::
the

::::
two

::::::::
normal

::::::::::
products

:::::::::
provide

:::::::::::::
individually

::::
up

:::
to

::::::
three

:::::
(see

:::::::::
Eq. 26),

:::::
and

::::::::
together

::::
up

::
to

::::
six

:::::::::::::
independent

::::::::::
equations

::::
(for

::::::
2× 2

:::::::::::
matrices).

:::::::
Hence,

::
if

:::::
both

::::::::
normal

::::::::::
products

:::
are

:::::::::
known,

::::::
there

::::
are

:::::::
more

:::::::::::
equations

:::
to

:::::::::::
constrain

::::
the

::::::::::::::::
reconstruction

:::
of

:::::
the

::::::::
matrix

::::
D.

:::::::::
However,

::::
we

::::::::
assume

:::::
only

::::
one

::::::::
normal

:::::::::
product

::
is

::::::::::
available

::::::
which

::::::::::
describes

::
a
::::::::::
challenge

:::
of

::::
the

:::::::::::::::
elastodynamic

:::::::::::
augmented

::::::::::::
Marchenko

::::::::
method

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(details are not needed here but can be found in Reinicke et al. 2020).

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
Compared to the scalar case, the factorization of a (single) normal product has additional degrees of freedom.

::::
The

::::::::
normal

::::::::
product

:::
of

::::
the

:::::::
matrix

:::
D

::
is

::::::::::
preserved

::::::
upon

:::::::::::::::
multiplication

:::
by

:::
an

::::::::::
arbitrary

::::::::
unitary

:::::
2× 2

::::::::
matrix

::::
U2,

:

DU2 (DU2)† = DD†,
::::::::::::::::::::::

(27)

::::
due

::
to

::::
the

::::::::
unitary

::::::::::
property

:::::::::::::
U2 [U2]† = I

::::::
(here

:
I
::::::::
denotes

::::
an

::::::::
identity

:::::::::
matrix).

:::::
The

:::
U2:::::::::

element

::::
can

::
be

:::::::::::::
represented

::
as

::::::::
follows

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(the term “element” is commonly used in the relevant literature, e.g. Cornwell 1997),

U(2)U2
:::

=




e−i γ+α
2 cos

[
β
2

]
−ei γ−α

2 sin
[
β
2

]

e−i γ−α
2 sin

[
β
2

]
ei γ+α

2 cos
[
β
2

]


 eiΦ, (28)

where α, β and γ are Euler angles (Hamada 2015). The U(1) freedom
::::::::
freedom

::::
eiΦ

:
can be
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Minimum-phase beyond scalar functions 23

constrained via the minimum-phase property of the desired solution
::::::::::::
determinant

:::::::::
det(D)

(shown in chapter 5 of Reinicke 2020),

Φ = −1

4
H
[
log
(
|det(DD†)|

)]
. (29)

Unfortunately, the above strategy is insufficient to fully constrain the normal-product factorization.

The minimum-phase constraint of the determinant provides only one equation, namely the

Kolmogorov relation.Hence, it is not surprising that only
:::::::::::::::
Unfortunately,

::::
the

:::::::::::::::::
minimum-phase

::::::::::::
determinant

::::::
only

:::::::::::
constrains

:::
Φ,

::::
i.e.

:
one out of four free parameterscan be determined. Due

to this limitation, we seek for an alternative method, which is discussed next.

3.3.2 2D Minimum-phase
::::::
matrix

:::::::::::::::
reconstruction

::::
by factorization: Wilson algorithm

::
In

::::
the

:::::::::::
following,

:::
we

::::::::
review

::
a

:::::::::::::::::
minimum-phase

:::::::
matrix

::::::::::::::::
reconstruction

:::::::::
method,

:::::::::::
introduce

::::
the

:::::::::::::::
elastodynamic

:::::::::::::::::
dereverberation

:::::::::
operator

:::::
and

:::::::::::
eventually

::::::::
modify

::::
the

::::::::::::::::
reconstruction

:::::::::
method

:::
for

::::
the

:::::::::::::::::
dereverberation

::::::::::
operator.

:

The 1D
::::::
scalar

:
Wilson algorithm can be generalized to matrices. Wilson (1972) proposes

a matrix extension of the recursive scalar algorithm which can be written as,

Dn+1 = DnΘ
[
I + (Dn)−1 DD†

(
D†n
)−1
]
, (30)

with D0 = I. The function , Θ , element-wise mutes acausal events and scales the time-zero

:::::
time

::::
zero

:
components of the diagonal elements by , 1

2
(the mute, .

::::::::::
Although

::::
the

:::::::::::::::::
dereverberation

:::::::::
operator

::::
V+

:::::
has

::
a
::::::::::::::::::

minimum-phase
::::::::::::::
determinant

::::::::
(shown

:::
in

:::::
the

::::::
next

:::::::::
section),

:::
it

:::
is

:::::
not

::::::::::::::
reconstructed

::::::::::
correctly

:::
by

::::
the

:::::::::::
algorithm

:::
in

::::::::
Eq. 30

:::::
with

:::::::::::
D = V+.

::::
We

:::::
will

::::::
show

:::::
that

:::::
this

::::::::::
limitation

::
is

:::::
due

::
to

::::
the

::::::
mute

:
Θ [·] , involves Fourier transforms as described in Section 2.3).

::::
and

::::
can

:::
be

:::::::::::
overcome

::::::
using

::
a

:::::::::
modified

:::::::
mute.

:

Next, we modify the mute of the 2D Wilson algorithm to reconstruct the dereverberation operator from its normal product.

Although
::::
For

::::::
better

:::::::::::::
illustration,

:::
we

:::::::
briefly

::::::
define

::::
the

:::::::::::::::
elastodynamic

:::::::::::::::::
dereverberation

::::::::::
operator.

::::
One

::::
can

:::::::::::
generalize

::::
the

:::::::::
acoustic

:::::::::::
definition

::
in

::::::::::::::::
Eqs. 14 and 15

:::
to

::::
the

:::::::
elastic

:::::
case

::::
by

::::::::::
replacing
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24 Reinicke, Dukalski & Wapenaar

::::::
scalar

:::::
with

::::::::
matrix

::::::::::
responses

:::
in

::::
the

:::::
P-S

::::::
space

:::::::::::::::::::::::
(Reinicke et al. 2020),

:

V+ = T↓−1T↓dir
:::::::::::::::

= I + V+
coda.

::::::::::::
(31)

::::
The

:::::::::
acoustic

:::::::
direct

::::::::::::::
transmission

:::::
T ↓dir ::::::::::::

generalizes
:::
to

::
a

:::::::::::::::::::
forward-scattered

:::::::::::::
transmission

::::::
T↓dir

::::
that

:::::::::
includes

:::
all

::::::::::::::
non-reflected

:::::::
events

:::::
such

::
as

:::::::::::::
transmitted

:::::::::::::::::
mode-converted

::::::
waves

:::::::::::::::::::
(Wapenaar 2014).

::::::::::
Assuming

:::::
that

:::::::
many

:::::::::
readers

::::
are

:::::::::::
unfamiliar

::::::
with

:
the dereverberation operator, V+, has

a minimum-phase determinant, the
:::
we

::::::::
explain

::::
its

:::::::::::
properties

::::::
that

::::
are

:::::::::::
important

::::
for

:::::
our

:::::::::
analysis.

::::::::
Firstly,

:::::
the

:::::::::::::::::
dereverberation

::::::::::
operator

::::
has

:::
a

::::::
finite

:::::::::
number

:::
of

::::::::
events

::::::::
limited

::::
by

:::
the

:::::::::
number

:::
of

::::::::
layers.

::::::
This

::::::::
follows

::::::
from

::::
the

::::::
finite

:::::::::
number

:::
of

::::::::
events

:::
of

::::
the

:::::::::
inverse

:::::
and

::::::::::::::::::
forward-scattered

::::::::::::::
transmissions

::::::::::::::::::::::::
(Dukalski et al. 2022).

::::::::::
Secondly,

:::
all

::::::
events

:::
of

::::
the

::::::::::::::::
dereverberation

:::::::::
operator

::::::
arrive

::::::::
within

::
a

::::::::::::
well-defined

::::::
time

::::::::
window

:::::
that

::::::
only

:::::::::
depends

:::
on

::::
the

:::::::::
one-way

:::::::
travel

:::::
times

:::
of

:::
P-

::::
and

:::::::::
S-waves

:::::::
within

:::::
each

:::::
layer

:::::::::::::::::::::::
(Reinicke et al. 2020).

::::::::
Lastly,

::::
and

:::::
most

::::::::::::::
importantly,

:::
the

:
onset of its matrix elements in the time domain is not always at time-zero

:::::
time

:::::
zero. In

particular, its off-diagonal elements typically have non-zero onset times that can be acausal

(Reinicke et al. 2020). Hence, we
:::::::::::::::::::::::::::::::::
(shown by Reinicke et al. 2020).

:

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
Given these properties, we modify the mute of the matrix Wilson algorithm to reconstruct the dereverberation operator from its normal product.

:::
We

:
propose modifying the operator , Θ [·] , to mute all events in the time domain prior to

the onset of
::::
the dereverberation operator per elastic

::::::
matrix

:
component. This differs from

the original 2D
:::::::
matrix Wilson algorithm which instead removes acausal events for all matrix

elements. Using the modified mute , Θ [·] , in Eq. 30, it appears that the 2D
:::::::
matrix

:
Wil-

son algorithm can accurately factorize the normal product of the dereverberation operator

(results will be shown in Section 4).

However, we also observe special cases where the modified 2D Wilson algorithm fails to recover the correct dereverberation operator.

This coincides with the appearance of the so-called fast-multiples, which are multiples that

have shorter travel times than some of the converted but non-reflected arrivals (Reinicke et al. 2020).

In the presence of these fast-multiples, the diagonal elements of the dereverberation operator,

V +
PP and V +

SS, contain acausal events that precede the spikes at time-zero associated with the

identity (see Eq. 31). As a result, it is no longer clear how to define the diagonal elements of
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Minimum-phase beyond scalar functions 25

the mute, Θ [·], which also need to scale the time-zero element by, 1
2
, to ensure convergence

(see Eq. 12). So far, we have not been able to handle these acausal diagonal elements with

another modified mute. Hence, it remains undetermined whether minimum-phase normal-product

factorization of the dereverberation operator is limited to cases without fast-multiples, or

whether a more general algorithm remains to be discovered. We are actively conducting

further research on this topic, which may lead to follow-up publications.

4 NUMERICAL EXAMPLE

In this section, we show two examples of the 2D
:::::::
matrix

:
Wilson method and illustrate

the analysis of Section 3.2
::::::::
analyze

::::::::::::::
determinants

:::::
and

:::::::::::::
eigenvalues

:
numerically. These ex-

amples are associated with the models Elastic #1 and Elastic #2, which are identical

except for the S-wave velocity in the second layer from the top (see Figure 2). They are

designed such that they generate dereverberation operators without
:::
the

:::::::::
Wilson

:::::::::
method

:::::::::
succeeds (Elastic #1 ) and with

:::::
fails (Elastic #2 ) fast-multiples

::
to

::::::::::::
reconstruct

::::
the

:::::::::::
respective

::::::::::::::::
dereverberation

:::::::::
operator

::::::::::
correctly. In both cases, we model the dereverberation operator an-

alytically (Dukalski et al. 2022) to calculate the normal product, and to provide a reference

for the retrieved solution. For the 2D
:::::::
matrix

:
Wilson method,

::
we

:::::::
define

:
the diagonal ele-

ments of the mute (ΘPP [·] and ΘSS [·]) are defined via the Heaviside function in Eq. 11. The

off-diagonal elements , ΘPS [·] , and ,
:::
and

:
ΘSP [·] , mute all events in the time domain prior

to the onset of the components , V +
PS , and ,

::::
and

:
V +
SP , respectively.

Firstly, we consider the case Elastic #1, which is free of fast-multiples.
:::::::
Firstly,

:::
we

:::::::::
consider

:::
the

:::::::::::
successful

:::::
case

:::::::
Elastic

::::
#1

:
.
:
We use the normal product , V+V+† , shown in Figures 5a-d

to evaluate eight iterations of the 2D
:::::::
matrix

:
Wilson algorithm, resulting in the solution ,

V+
n=8 , in Figures 5e-h. The algorithm monotonically converges to the true dereverberation

operator
::::::::
solution

::::
V+

:
up to numerical noise (see Figure 4), hence, we do not show the dif-

ference plot. Figures 5e-h illustrate that the dereverberation operator has a finite number

of events in the time domain that arrive within a well-defined time window as discussed

in Section 3.2
:::::::::::::
Section 3.3.2. Here, the dereverberation operator is

::::::::::
responses

::::
are zero outside
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26 Reinicke, Dukalski & Wapenaar

the displayed time window, i.e. all events are shown. Figures 5e-h also show the identity

term of the dereverberation operator (see Eq. 31). Moreover, the onset of the off-diagonal

elements in the time domain deviates from time-zero
::::
time

:::::
zero

:
and is even acausal for the

SP element (see Figure 5g).

Secondly, we modified the model till fast-multiples emerged (Elastic #2 case), at which point the proposed method for normal-product factorization becomes inaccurate.

::::::::::
Secondly,

:::
we

::::::::
modify

::::
the

:::::::
model

:::::
until

::::
the

::::::::::
proposed

:::::::::
method

:::
for

:::::::::::::::::
normal-product

::::::::::::::
factorization

:::::::::
becomes

:::::::::::
inaccurate

::::::
(case

::::::::
Elastic

::::
#2

:
).
:

Compared to the previous example, the travel-time

difference between P- and S-waves increased, leading to fast-multiples, and hence, acausal

events in the diagonal elements , V +
PP , and ,

::::
and

:
V +
SS. We repeat the previous experiment

using the normal product of the dereverberation operator shown in Figures 6a-d. Moreover,

we
:::
As

::
a
:::::::
result,

:::
it

::
is

:::
no

:::::::
longer

::::::
clear

:::::
how

:::
to

::::::
define

::::
the

::::::::::
diagonal

:::::::::
elements

:::
of

::::
the

::::::
mute

::::::::
ΘPP [·]

::::
and

::::::::
ΘSS [·],

:::::::
which

:::::
also

::::::
need

:::
to

::::::
scale

::::
the

::::::
time

:::::
zero

:::::::::
element

::::
by

::

1
2::::

to
:::::::
ensure

::::::::::::::
convergence

::::
(see

:::::::::
Eq. 12).

::::::
Here,

:::
we

::::::
only adjust the off-diagonal elements of the mute, ΘPS [·] , and ,

::::
and

ΘSP [·], to account for the changed onset of the dereverberation operator in the time domain.

:::::
Then

::::
we

:::::::
repeat

::::
the

::::::::::
previous

::::::::::::
experiment

:::::::
using

::::
the

::::::::
normal

:::::::::
product

:::
of

::::
the

:::::::::::::::::
dereverberation

:::::::::
operator

:::::::
shown

:::
in

::::::::::::::
Figures 6a-d.

:
Figures 6e-h show the retrieved dereverberation operator

after evaluating eight iterations of Eq. 30 , V+
n=8, and the difference with respect to the

modeled reference , V+. The convergence (see Figure 4) indicates that the relative error of

the retrieved solution is in the order of 10 %.

Lastly, we analyze the determinants and eigenvalues of the dereverberation operator
:::::::::
operators.

We verified for both, the Elastic #1 and the Elastic #2, cases that the determinant
::::::
verify

::::
that

::::
the

:::::::::::::::
determinants of the modeled dereverberation operator satisfies

::::::::::
operators

::::::::::
det (V+)

:::::::
satisfy

:
the Kolmogorov relation up to numerical noise (relative error in the order of ,

1 × 10−14 ) . Figure 7 shows
::
for

::::::
both

:::::::
cases,

::::::::
Elastic

::::
#1

::::
and

:::::::
Elastic

:::::
#2.

:::::::
Next,

:::
we

:::::::::
inspect

the determinants of the retrieved dereverberation operators . In the Elastic #1 case, the

retrieved solution, V+
n=8, has a

:::::
after

::::::
eight

::::::::::
iterations

::::::::::::
det
(
V+
n=8

)
:::::
(see

:::::::::::
Figure 7).

::::
We

:::::::::
observe

::::
that

:::
it

::::::::
satisfies

::::
the

:
minimum-phase determinant. However, in the presence of fast-multiples

(
::::::::::
conditions

:::
in

::::
the

::::
case

::::::::
Elastic

::::
#1

::::
but

::
it

::::::::
violates

::::::
them

::
in

::::
the

:::::
case Elastic #2 ), the determinant
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Minimum-phase beyond scalar functions 27

of the retrieved solution, det
(
V+
n=8

)
, contains acausal events .

::::::
This

:::::::::
violation

:::::
can

:::
be

:::::::
easily

:::::::
verified

::::
by

::::
the

::::::::
acausal

:::::::
events

:::
of

::::
the

:::::::::::::
determinant

:
(see close-up in Figure 7c), and therefore,

does not satisfy the Kolmogorov relation and is not minimum-phase. Even after enforcing

the minimum-phase property
:
.
:::::
The

::::::
phase

::::::
error

:
of the determinant

::::
can

:::
be

::::::::::
corrected

:::::::
using

::::::
Eq. 7.

::::::::::
However, the retrieved solution differs from the true one

:::::::::
response

::::::
V+
n=8::::::::

carries
::::
an

::::::::::
additional

::::::
error

:::::::::::::
represented

:::
by

::::
the

::::::
Euler

:::::::
angles

:::::
(see

:::::::::
Eq. 28)

:::::
that

:::::::
cannot

::::
be

:::::::::
removed. The

eigenvalues of the dereverberation operators do not satisfy the Kolmogorov relation for any

of the tested cases. Even in the absence of fast-multiples
::::::::::
successful

:::::
case

:
(Elastic #1 ), the

phase spectra of the eigenvalues differ severely from their minimum-phase spectra
::::::::
defined

:::
via

::::
the

:::::::::::::
Kolmogorov

:::::::::
relation

:::
in

::::::
Eq. 7. This can be illustrated via the phase-freedom , ζ,

::
η

defined in Eqs. 24 and 25, which is far from trivial (see Figure 8).

5 DISCUSSION

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
Our analysis has shown that the causality condition of minimum-phase functions can be less intuitive for matrix functions.

::::
The

:::::::::::::::::
minimum-phase

::::::::::
property

:::::
does

::::
not

::::::::::::
necessarily

:::::
hold

::::
for

:::::::::::
individual

::::::::
matrix

:::::::::
elements

:::::
but

::
it

:::::
does

::::
for

::::
the

::::::::::::::
determinant.

::::::::
Hence,

:::::::::::::::::
minimum-phase

::::::::
matrix

::::::::::
functions

:::::
can

::::::::
contain

:::::::::
acausal

:::::::
matrix

::::::::::
elements.

:::::
Our

:::::::::::
numerical

:::::::::::
examples

:::::::::
indicate

:::::
that

::::
the

::::::::
matrix

::::::::
Wilson

:::::::::::
algorithm

:::::
can

:::::::::::
accurately

:::::::
handle

:::::::::
acausal

:::::::::::::
off-diagonal

:::::::::::
elements,

::::::
while

:::::::::
acausal

::::::::::
diagonal

:::::::::
elements

:::::::::
appear

::
to

::::
be

:::
an

::::::::::
obstacle.

::::::
This

:::::::::::
limitation

:::
is

:::::
not

:::::::::
obvious

::::::
from

::::
the

:::::::::::
algorithm

:::
in

:::::::::
Eq. 30.

:::
In

:::::
the

::::::::::
presented

:::::::::::
examples,

::::
the

::::::::::
temporal

::::::
mute

:::::::::::
suppresses

::::::::
acausal

::::::::
events

:::
on

::::
the

::::::::::
diagonal,

::::
but

:::::
not

::
on

::::
the

::::::::::::::
off-diagonal,

::::::::::
elements.

:::::::
Hence,

::::
the

::::::::::::
subsequent

::::::::
matrix

:::::::::::::::
multiplication

:::
by

::::
Dn::::::

could
:::::
still

::::::::::
introduce

::::::::
acausal

:::::::
events

::::
on

::::
the

:::::::::::
diagonals

::::
(see

::::::::::
Eq. 30).

::
It

:::::::::
remains

:::::::::::::::
undetermined

::::::::::
whether

::::::::::::::::
normal-product

::::::::::::::
factorization

:::
of

:::::::::::::::::
minimum-phase

::::::::::
matrices

::
is

:::::::::
limited

:::
to

::::::
cases

:::::
with

:::::::::
strictly

::::::
causal

::::::::::
diagonal

::::::::::
elements,

:::
or,

:::::::::
whether

::
a
::::::
more

::::::::
general

:::::::::::
algorithm

:::::::::
remains

:::
to

:::
be

::::::::::::
discovered.

:

Our interest in minimum-phase matrices is motivated by the Marchenko method. The

latter formulates internal multiple elimination
:::
for

:::::::::
seismic

::::::::::
reflection

::::::
data

:
as an inverse

problemthat .
:::

It
::::::
aims

:::
to

:::::::::
retrieve

::::
the

:::::::::::::::::
dereverberation

::::::::::
operator

:::::
and

::
it
::

is often undercon-

strained in practice. Existing work demonstrates for the scalar case how two additional
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28 Reinicke, Dukalski & Wapenaar

constraints can be used to accurately reconstruct the desired solution, i.e. the derever-

beration operator. Firstly, the normal product (=amplitude spectrum) of the dereverbe-

ration operator is retrieved via energy conservation. Secondly, the dereverberation oper-

ator is reconstructed from its normal product by exploiting its minimum-phase property

(Dukalski et al. 2019; Elison et al. 2020; Peng et al. 2021)
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Dukalski et al. 2019; Elison et al. 2020; Peng et al. 2022).

In previous work, we tried to generalize this strategy to the elastic case where the derever-

beration operator is no longer a scalar but a 2 × 2 matrix, and identified two challenges

(Reinicke et al. 2020):

(1) Once the normal product of the elastodynamic dereverberation operator is retrieved,

it remains unclear how to reconstruct the operator uniquely from its normal product

using its minimum-phase property.

(2) Energy conservation provides the normal product of the inverse transmission. The

dereverberation operator , V+ , is minimum-phase but the inverse transmission , T↓−1

(also known as F+) , is not. This is not an issue for scalars, because the scalar normal-

products of the inverse transmission and the dereverberation operator are identical up to

a frequency-independent constant. This holds because the acoustic direct transmission

is a single pulse, T ↓dir = αe−iωτdir , with travel time , τdir,

V +V +∗ = T ↓−1T ↓dirT
↓−1∗T ↓∗dir = T ↓−1T ↓−1∗|α|2. (32)

However, this relation is more complicated for the elastic case because
::::::
where

:
the direct

transmission generalizes to a forward-scattered transmission including mode conversions

, T↓dir. Moreover, Eq. 32 cannot be extended from the scalar to the matrix case because

matrix multiplications do not commute.

In this paper, we focused on the first challenge. Addressing the second one is beyond the

scope of this work.

We notice similarities between the Marchenko method and the here-discussed 2D
:::::::
matrix

Wilson method. Both methods use the same ingredients including temporal convolutions and

correlations as well as temporal mutes. The modified mute of the 2D Wilson method ,
:::::::
matrix
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Minimum-phase beyond scalar functions 29

:::::::
Wilson

:::::::::
method Θ [·] ,

::
is

:::::::::
inspired

:::
by,

:::::
and

:
is nearly identical to

:
, one of the two mutes of the

Marchenko method , PB[·] (see Eq. 16 in Reinicke et al. 2020). The two mutes only differ at

time-zero
:::::
time

:::::
zero of the diagonal elements, where the Wilson mute scales its argument by ,

1
2

, instead of ,
:::::::
instead

:::
of

:
1 , to ensure convergence. Moreover, both methods face limitations

related to the mutes. Fast-multiples
:
It

::::
has

::::::
been

:::::::
shown

:::::
that

::::
the

::::::::::::
Marchenko

:::::::::
method

:::::
fails

:::
to

::::::::::::
reconstruct

::::
the

::::::::
desired

:::::::::
solution

:::
in

::::
the

:::::::::
presence

:::
of

::::::::::::::::
fast-multiples.

:::::
The

::::::
latter

::::
are

:::::::::::
multiples

::::
that

::::::
have

::::::::
shorter

:::::::
travel

::::::
times

::::::
than

::::::
some

::
of

:::::
the

::::::::::
converted

:::::
but

::::::::::::::
non-reflected

:::::::::
arrivals.

::::
As

::
a

::::::
result,

:::::::::::::::
fast-multiples

:
introduce temporal overlaps between signals that the mute operators

:::::::::::
Marchenko

:::::::::
method

:
ought to separate . As a result, the Wilson and

:::::
with

::::
the

:::::::
mute.

:::::::
These

:::::::::
temporal

:::::::::
overlaps

::::
are

:::::
due

::
to

:::::::::
acausal

:::::::
events

::
in

::::
the

::::::::::
diagonal

:::::::::
elements

:::
of

::::
the

:::::::::::::::::
dereverberation

:::::::::
operator

:::::
V +
PP :::::

and
:::::
V +
SS.

::::::
This

:::::::::::
limitation

:::
of

:
the Marchenko method fail to reconstruct the

desired solutionin the presence of fast-multiples
:::::::::
coincides

:::::
with

:::::
the

::::::
cases

:::::::
where

::::
the

::::::::
matrix

:::::::
Wilson

:::::::::
method

:::::
fails

:::
to

:::::::::
retrieve

::::
the

::::::::
correct

:::::::::
solution. The question is whether this is

::::
fast

:::::::::
multiples

::::::
pose a fundamental limitation, or whether there is another, more robust solution

strategy
:::
for

::::
the

::::::::::::
Marchenko

:::::
and

:::::::
matrix

::::::::
Wilson

::::::::::
methods. Despite the remaining challenges,

the 2D
:::::::
matrix

:
Wilson algorithm could potentially help to retrieve a better estimate of the

desired dereverberation operator. For example, Peng et al. (2021)
::::::::::::::::::::
Peng et al. (2022) show

that the 2D acoustic augmented Marchenko method can reconstruct the correct dereverbe-

ration operator, even though they apply a scalar, instead of a matricial,
:::::::
matrix

:
minimum-

phase reconstruction. They propose a recursive application of the 2D Marchenko method and

a scalar minimum-phase correction. Similarly, one could attempt to recursively apply the

elastodynamic Marchenko method and the 2D Wilson algorithm.
:::::::
matrix

::::::::
Wilson

:::::::::::
algorithm

::::::::
ignoring

::::
the

:::::::::::
challenge

::
of

:::::
fast

::::::::::
multiples.

:

Our analysis has shown that the causality condition of minimum-phase functions can be less intuitive for matrix functions.

The minimum-phase property holds not necessarily for individual matrix elements but for the

determinant. Hence, minimum-phase matrix functions can contain acausal matrix elements.

Our numerical examples indicate that the 2D Wilson algorithm can accurately handle

acausal off-diagonal elements, while acausal diagonal elements appear to be an obstacle.
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30 Reinicke, Dukalski & Wapenaar

This limitation is not obvious from the algorithm in Eq. 30. In the presented examples, the

temporal mute, Θ [·], suppresses acausal events on the diagonal, but not on the off-diagonal,

elements. Hence, the subsequent matrix multiplication by, Dn, could still introduce acausal

events on the diagonals.

Minimum-phase matrices and normal-product factorization provide physical relation-

ships that remain mostly unexplored, especially in geophysics. For example, the results of

this work could bring new momentum to the research on reconstructing transmission from

reflection data in the multi-dimensional acoustic or elastic case (i.e. beyond the work of

Wapenaar et al. 2003). Moreover, we illustrated that normal-product factorization has four

(real-valued) unknown parameters (for 2×2 matrices) but the determinant provides a single

, complex-valued equation
::::::
phase. Despite the mismatch in number of unknowns and equa-

tions, we demonstrated that the modified 2D
::::::
matrix

:
Wilson algorithm can reconstruct a

special class of minimum-phase matrices. This raises the question whether minimum-phase

matrices have
:::::
there

::::
are additional, so-far unexplored fundamental properties other than a

::
of

minimum-phase determinant
:::::::::
matrices. If so, the follow up question is whether these proper-

ties allow for a unique factorization of normal products in more general cases, e.g. including

fast-multiples. Answering these questions is beyond the scope of this paper but it is a matter

of ongoing research. Last but not least, we investigated the simplest non-trivial matrix case,

i.e. 2× 2 matrices, but generalizations are not excluded. It would be particularly interesting

to analyze multi-dimensional acoustic cases which will be subject of future work.
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Figure 3. All responses are shown in the time domain. (a) Normal product
:::::::::::::::
Autocorrelation

:
of

the dereverberation operator associated with the acoustic model shown in Figure 2. Negative

times are not shown because
:
(scalarnormal products

:
)
::::::::::::::::
autocorrelations

:
are symmetric in time,

(|V +|2)∗ = |V +|2. Panels (b)-(f) show the dereverberation operator as it is recursively reconstructed

via the Wilson algorithm in Eq. 10 (V +
n in black) and its error (V +

n − V + in red). The initial

estimate (n = 0) is an identity, i.e. a single spike at time-zero
::::
time

:::::
zero. After seven iterations the

true solution is retrieved up to numerical noise (see Figure 4). For better illustration, strong events

are clipped and their amplitudes are indicated with labels.
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32 Reinicke, Dukalski & Wapenaar
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−15
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Iteration n

log10
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‖V+

n−V+‖2
‖V+‖2

)Acoustic

Elastic # 1
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Figure 4. Convergence of the 1D
:::::
scalar

:
and 2D

::::::
matrix

:
Wilson algorithms in Eqs. 10 and 30

associated with the dereverberation operators (V + and V+) of the acoustic and elastic models

in Figure 2, respectively. The convergence is defined as the relative error with respect to the true

solution as indicated by the legend. For the acoustic and the Elastic #1 case, the Wilson algorithm

converges up to numerical noise within seven iterations. For the Elastic #2 case, the relative error

converges to approximately 10 %.

Page 64 of 73Geophysical Journal International

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Minimum-phase beyond scalar functions 33

0 0.5 1 1.5

−0.2

0

0.2

2
.2
9

−
0
.7
1

−
0
.6
6

−
0
.5
8

0
.4
1

τ (s)

(a)

(V+V+†)PP

0 0.5 1 1.5

−
0
.3
7

−
0
.4
7

−
0
.7
2

0
.3
7

0
.4
1

(b)

(V+V+†)PS

−0.2

0

0.2

−
0
.4
7

−
0
.3
7

0
.5
5

(c)

(V+V+†)SP

2
.0
6

−
0
.7
5

−
0
.4
1 −
0
.5
3

0
.4
1

(d)

(V+V+†)SS

−0.2

0

0.2

1
.0
0

−
0
.4
8

−
0
.4
1

0
.4
1

(e)

(V+
n=8)PP −

0
.5
0

(f)

(V+
n=8)PS

−0.2

0

0.2

(g)

(V+
n=8)SP

1
.0
0

−
0
.4
8

0
.4
1

(h)

(V+
n=8)SS

Figure 5. (a)-(d) Normal product , V+V+† , of the dereverberation operator associated with the

model Elastic #1 (see Figure 2). The panels show the four elastic components analogously to the

2× 2 matrix in Eq. 17. (e)-(h) Retrieved dereverberation operator after eight iterations. The grey

areas indicate the time samples that are muted by the modified operator , Θ [·] , in Eq. 30. We do

not show a difference or reference plot because the retrieved and modeled dereverberation operators

are identical up to numerical noise (see convergence in Figure 4). All panels show responses in the

time domain to facilitate the interpretation.
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Figure 6. Idem as Figure 5 but associated with the model Elastic #2

(see Figure 2). In this case, the dereverberation operator has acausal events

on the diagonals (PP and SS components)due to so-called fast-multiples

(these are multiples that share a temporal overlap with the forward-scattered events, for details see Reinicke et al. 2020).

The acausal events on the diagonals appear to be an issue for the Wilson algorithm. The derever-

beration operator is reconstructed only up to a relative error in the order of 10 % (see Figure 4),

instead of numerical noise as in the previous example in Figure 5.
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Figure 7. Determinants of the retrieved dereverberation operators (black) and the difference

with respect to the modeled solutions (red). The panels are associated with the (a) Acoustic, (b)

Elastic #1, and (c) Elastic #2, cases shown in Figures 3, 5 and 6, respectively. In the Acoustic

case, the dereverberation operator is a scalar function, and hence, identical to its determinant.

Nonetheless, it is shown for completeness. For the Elastic #2 case, the determinant of the retrieved

dereverberation operator is not minimum-phase, which can be easily seen via the acausal events

shown in the magnified box in blue. The difference plot indicates that acausal events are absent in

the determinant of the true solution, which possesses a minimum-phase property.
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Figure 8. Phase-freedom , ζ,
::
η of the eigenvalues of the dereverberation operator shown in Figures

5e-h, which is associated with the model Elastic #1 (also see Eq. 24). The horizontal axis denotes

the temporal frequency , f = ω
2π .

Page 67 of 73 Geophysical Journal International

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



36 Reinicke, Dukalski & Wapenaar

6 CONCLUSION

Minimum-phase properties become significantly more complicated when stepping from scalar

to matrix functions. Since
::::
the

:
minimum-phase matrices are defined via the determinant,

they can contain non-minimum-phase
:::::::::
property

:::
of

::
a

:::::::
matrix

::::::
only

:::::::::
imposes

:::::::::::
conditions

:::
on

::::
its

:::::::::::::
determinant,

::::::
there

::::
are

:::
no

::::::::::::
constraints

:::
on

:::::::::::
individual

:
matrix elements, e.g. acausal ones as we

demonstrated for the
:::::
they

::::
can

:::
be

:::::::::
acausal.

:

::::
Our

:::::::::
analysis

::::
has

::::::
been

:::::::::::
motivated

::::
by

:::::::::::
challenges

:::
of

::::
the

:::::::::::::
Marchenko

:::::::::
method.

::::::::
Hence,

::::
we

::::::::
focused

:::
on

::::
the

:::::::::::::::::
minimum-phase

:::::::::::
properties

:::
of

::::
the

:
elastodynamic dereverberation operatorof

the 1.5D
:
,
::::::
which

:::
is

:
a
:::::::::
solution

:::
of

:::
the

:
Marchenko method. We showed that this 2×2 minimum-

phase operator
:::::::
matrix

:::::::::
function can be uniquely reconstructed from its normal product using

a modified version of the 2D
:::::::
matrix

:
Wilson algorithm.

::::::::::
Compared

::::
to

::::
the

::::::::
original

:::::::::
Wilson

::::::::
method,

::::
we

::::::::::
modified

::::
the

::::::::::
temporal

::::::
mute

:::::
that

::::::::::
curiously

::
is
::::::::::
identical

:::
to

::::
one

:::
of

::::
the

:::::
two

::::::
mute

::::::::::
operators

::
of

::::
the

::::::::::::
Marchenko

::::::::::
method,

:::::::
except

::::
for

::::
the

:::::
time

:::::
zero

:::::::::
element.

:

However, the proposed solution is limited to cases without so-called
::::::::
appears

:::
to

:::
be

::::::::
limited

::
to

:::::::::::::::::
dereverberation

::::::::::
operators

:::::
with

:::::::
causal

:::::::::
diagonal

::::::::::
elements.

:::::::
Thus,

:::
the

:::::::::
method

:::::::::
excludes

::::::
cases

:::::
with

:
fast-multiples that can occur in the presence of large P- and S-wave velocity differ-

ences. Moreover, the dereverberation operator can be seen as a special class of minimum-

phase matrices, i.e. the proposed factorization method does not necessarily generalize for

other minimum-phase matrices. Our results are consistent with existing scalar solutions for

minimum-phase reconstruction. Compared to the original Wilson method, we modified the

mute operator that curiously is identical to one of the two mute operators of the Marchenko

method, except for the time-zero element.

The presented results suggest that matricial
:::
the

:
minimum-phase properties

:::::::::
property

::
of

:::::::::
matrices

:
could play an important role in physics-driven data processing. In particular,

the matricial minimum-phase normal-product factorization could be key in overcoming

theoretical challenges of the elastodynamic Marchenko method, which remains an underconstrained

problem. This work scratches the surface of minimum-phase matrices in the context of geo-

physics and indicates interesting directions for future research.
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7 DATA AVAILABILITY

::::::::
DATA

::::::::::::::::::::
AVAILABILITY

The data underlying this article cannot be shared publicly due to company regulations. The

data will be shared on reasonable request to the corresponding author.
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APPENDIX A:
::::::::::::::
NOTATION

:::
We

::::
use

::::
the

::::::::::
following

::::::::
Fourier

::::::::::::
transforms

:::::
(per

::::::::::::::::
ray-parameter)

:::::::
where

::::
the

:::::::::
real-part

:::
is

:::::::::
denoted

::
by

::::
<,

q(px, z, ω) =
::::::::::::

∫ ∞

−∞
q(px, z, τ)e−iωτdτ,

:::::::::::::::::::::::

(A.1)

q(px, z, τ) =
::::::::::::

1

π
<
[∫ ∞

0

q(px, z, ω)eiωτdω

]
.

:::::::::::::::::::::::::::::

(A.2)

::
In

:::::
this

:::::::
work,

:::
all

:::::::::::
equations

::::
are

::::::::::::
formulated

::::
for

::::::
plane

::::::::
waves,

::::
i.e.

::::
per

::::
the

::::::::::::::::
ray-parameter

::::
px.

:::
We

:::::::
define

:::::
the

::::::::::::::::
transformation

:::::
from

:::::
the

:::::::::::
offset-time

:::::::::
domain

::::::::::
q(x, z, t)

:::
to

::::
the

::::::::::::::::
ray-parameter
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Table A1.
:::::::::
Definition

:::
of

:::::::::::
additional

::::::::::
operators

:::::
used

:::
in

::::
this

:::::::
paper.

::::
All

::::::::::
operators

::::
are

::::::::
applied

::::
per

::::::::::::::
ray-parameter,

::::
px,

::::
and

::::
per

::::::::::
frequency,

:::
ω,

:::::::
except

:::
for

::::
the

:::::::
Hilbert

::::::::::
transform

:::::
and

:::
the

::::
L2 :::::

norm
:::::::
which

::::
take

:::::
into

::::::::
account

:::
all

::::::::::::
frequencies.

::::::
When

::::::::
applied

:::
to

::::::::::
matrices,

:::
the

::::::::::
operators

::::
act

:::
in

::::
the

::::
P-S

:::::::
space,

::::::
except

:::
for

::::
the

::::::::::
operations

::::::::
marked

:::::
with

::::
“�”

::::::
which

::::
act

:::
per

:::::::
matrix

:::::::::
element.

::::
The

:::
L2:::::

norm
::
is
:::::::::::
calculated

:::::
using

:::
all

:::::::::::
frequencies

:::::
and

:::
all

:::::::::
wavefield

:::::::::::::
components,

::::
i.e.

:
a
:::::::

single
::::
and

:::::
four

::::::::::::
components

:::
for

:::::::::
acoustic

::::
and

::::::::::::::
elastodynamic

:::::::
waves,

::::::::::::
respectively.

:

::::::::
Symbol

:::::::::::
Operation

:::::::::::
Superscript

::::
“∗”

: :::::::::::::::::::
Complex-conjugate

:::::::::::
Superscript

::::
“†”

: :::::::::::::::::::
Complex-conjugate

:::::::::
transpose

:

:::::::::::
Superscript

::::::
“−1”

: :::::::
Inverse

:

::::::
log (·)

::::::::
Natural

::::::::::
logarithm

::::::
det(·)

::::::::::::
Determinant

:

:::::
‖ · ‖2: :::

L2 :::::
norm

:

:::
| · |

: ::
�

:::::::::
Absolute

:::::
value

:

::::::::::::::
e[·]/cos[·]/sin[·]

: ::
�

:::::::::::::::::::::::
Exponential/cosine/sine

:::::::::
function

:

::::
H [·]

: ::
�

:::::::
Hilbert

::::::::::
transform

:

::::::
Arg [·]

: ::
�

::::::
Phase

:::::::::
spectrum

:

::::::::::::::
intercept-time

:::::::::
domain

:::::::::::
q(px, z, τ)

:::
as,

:

q(px, z, τ) =
::::::::::::

∫ ∞

−∞
q(x, z, τ + pxx)dx.

:::::::::::::::::::::::

(A.3)
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