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SUMMARY

Extreme (still) sea levels and the possibly associated coastal floods, are generally linked
to (high) tides and storm surges. The risk of coastal floods will likely intensify in the fu-
ture. This is because, on the one hand, the population of coastal zones is expected to
continue to grow, and, on the other hand, climate change may lead to an increase in the
frequency and magnitude of extreme sea levels. Although observations suggest that on
the global scale, sea level rise is the primary driver behind the increase in extreme sea
levels, locally the increase in extreme sea levels may be amplified or even dominated by
changes in storm surges and tidal dynamics.

Previous studies that have demonstrated that tides and storm surges are subject to
temporal changes, predominantly relied on in-situ data from tide gauges. The latter are
scattered across the global coastlines, with the majority being located on the North-
American and European continents. Some areas hardly comprise any tide gauges, the
Arctic being a paramount example. While we know that this region is highly affected
by climate change, knowledge about the Arctic tidal and surge water levels is sparse. As
a consequence of the data gap over the global oceans and the Arctic in particular, the
large-scale (open ocean) temporal variability in storm surges and tidal water levels re-
mains uncertain. Obtaining the full-scale global picture would enable us to better un-
derstand the drivers behind the observed change which may ultimately contribute to
better projections and the identification of the consequences for coastal environments.

In an attempt to fill the identified data gap, this thesis exploits the wealth of satellite
radar altimetry data. While radar altimeter data have been occasionally used to study
temporal variations in tides and surge water levels, they have not been used to study
the seasonal or secular variability at a global scale. Although the relatively low resolu-
tion of the data may be problematic, the current length of the satellite altimeter records
(> 25 years) allows to obtain estimates of the temporal changes in tides and surges. On
the contrary, conventional low resolution radar altimetry (known as LRM altimetry) can-
not be used to retrieve water levels in the largely ice-covered Arctic Ocean. In this light,
the higher resolution Synthetic Aperture Radar altimetry has been proposed as a solu-
tion. However, as there is currently no cohesive data set of (reliable) instantaneous Arctic
water level available, an appropriate processing scheme must be implemented. In this
thesis the findings of four studies are presented, which all rely on satellite radar altimetry
to increase our understanding of the temporal variability in global tides and surge.

In Chapter 2, satellite radar altimetry from the TOPEX/Poseidon & Jason series has
been used to study worldwide linear trends in tidal harmonic constants of four major
tides (M2, S2, O1, and K1). This study demonstrates both the potential and challenges
of using satellite data for the quantification of such long-term changes. Two alterna-
tive methods were implemented. In the first method, tidal harmonic constants were
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estimated for consecutive four-year periods, through which a linear trend was then fit-
ted. In the second method, the estimation of linear trends in the tidal constants was
integrated in the harmonic analysis. The results show that the tides were subject to sig-
nificant changes, with both decreases and increases in tidal amplitude of the order of
several centimeters and phase changes of several degrees over the past decades. The
level of agreement between altimeter-derived trends and estimates from tide gauge data
has been found to differ per region and per tide.

In the third chapter, satellite altimetry data from multiple missions have been used
to study the time-averaged, seasonal, and interannual variability in global storm surge
water levels. For this purpose, a time-dependent extreme value distribution was fitted
to the monthly maximum detided water levels. To account for the limited temporal res-
olution of the satellite data, the data were first stacked on a 5◦×5◦ grid and additional
scaling was applied to the extreme value analysis. For the latter, the scaling factors were
determined by means of a synthetic experiment using model data. Significant seasonal
and secular variability in storm surge water levels was inferred across the global oceans.
Where possible, the results were compared to similar analysis using in-situ data. Ex-
cept for secular changes, the satellite-derived results were found to be comparable to
the information derived from tide gauges, although the latter show more local variabil-
ity. Where limited correlation was observed for the secular change, it was suggested that
the satellites may not be able to fully capture the temporal variability in the short-lived,
tropical storms, as opposed to extra-tropical storms.

The fourth chapter concerns the seasonal variability in the Arctic tide. Using water
levels derived from Synthetic Aperture Radar altimetry (CryoSat-2 and Sentinel-3), the
seasonal modulation of the M2 tide was derived. Results were compared to numerical
simulations that model the effect of two limiting cases of seasonal landfast ice cover on
the M2 tide. The largest seasonal modulation (up to 0.25 m) was observed along coast-
lines and in bays. Locally, the presence of landfast ice was found to decrease the tidal
amplitude, while in some cases, the opposite effect was observed further afield. In most
of the Arctic, winter months experienced a retarded arrival of the tide. While most of
the altimeter-derived seasonal modulation could be explained by the modeled impact
of landfast ice, discrepancies in several regions suggest that other seasonal processes are
also important. Finally, the results suggested that the consequences of variations in Arc-
tic landfast ice are not restricted to the Arctic but may affect tidal water levels on a global
scale.

Finally, the fifth chapter describes a thorough assessment of various surface type
classification methods that may be used for lead detection in the Arctic Ocean. With
the ultimate goal to improve water level retrieval, this study compared the more tradi-
tional thresholding method to nine supervised-, and two unsupervised machine learn-
ing methods. In analysis of the Sentinel-3 SAR altimeter data, the study relied on the
simultaneously sensed images from the Ocean and Land Color Instrument, onboard
Sentinel-3, for training and validation of the classifiers. Applied to data from winter
months, the supervised Adaptive Boosting, Artificial Neural Network, Naïve-Bayes, and
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Linear Discriminant classifiers showed robust results. On the other hand, the unsuper-
vised Kmedoids classifier produced excellent results and emerged as an attractive clas-
sifier when ground truth data are limited. All classifiers performed poorly on summer
data, rendering surface classifications that are solely based on altimetry data from sum-
mer months unsuitable. Finally, the Adaptive Boosting, Artificial Neural Network, and
Bootstrap Aggregation classifiers were found to perform best when the altimeter data
also include measurements from the open ocean.

The work presented in this thesis is anticipated to contribute to a better understand-
ing and ultimately, improved forecasting of future extreme sea levels. The findings aid in
the assessment of the impact of climate change on tides and surges and can be used to
improve the models that are used for forecasting extreme sea levels. In addition, progress
has been made in understanding the role of sea ice in the Arctic sea level variability and
tools have been provided for use in future studies on the Arctic.





SAMENVATTING

Extreme waterstanden en de mogelijke kustoverstromingen die daarmee gepaard gaan,
worden doorgaans in verband gebracht met hoogtij en stormvloeden. Het risico op over-
stromingen langs de kust zal in de toekomst waarschijnlijk toenemen, enerzijds door de
verwachtte bevolkingsgroei in de kustgebieden en anderzijds door een mogelijke toena-
men van de frequentie en omvang van extreme waterstanden als gevolg van klimaatver-
andering. Hoewel waarnemingen suggereren dat, op wereldschaal, de zeespiegelstijging
de belangrijkste oorzaak is van de stijging van de extreme zeespiegels, kan de toename in
extreme waterstanden lokaal worden versterkt of zelfs gedomineerd door veranderingen
in stormvloeden en getijdendynamiek.

Eerdere studies die hebben aangetoond dat getijden en stormvloeden onderhevig
zijn aan veranderingen door de tijd, zijn voornamelijk gebaseerd op in-situ gegevens
van getijmeters. Deze laatste bevinden zich langs de wereldwijde kustlijnen, maar met
name op het Noord-Amerikaanse en Europese continent. In sommige gebieden zijn er
nauwelijks getijmeters, waarvan de Arctische regio een belangrijk voorbeeld is. Hoe-
wel we weten dat deze regio sterk wordt getroffen door klimaatverandering, is er weinig
kennis over het Arctische getij en de hoge waterstanden. Als gevolg van de datakloof
over de mondiale oceanen en het Noordpoolgebied in het bijzonder, is de grootschalige
tijdsgebonden variabiliteit in stormvloeden en getijdenwaterstanden (op open oceaan)
onzeker. Het verkrijgen van het volledige mondiale beeld zou ons beter in staat stellen
om de drijvende krachten achter de waargenomen verandering beter te begrijpen, wat
uiteindelijk kan bijdragen aan betere projecties en de identificatie van de gevolgen voor
kustomgevingen.

In een poging de geïdentificeerde datakloven op te vullen, maakt dit proefschrift ge-
bruik van de rijkdom aan satellietradarhoogtemetingen. Hoewel deze laatste af en toe
zijn gebruikt om tijdsgebonden veranderingen in getijden en hoge waterstanden te be-
studeren, zijn ze niet gebruikt om de (mondiale) seizoensgebonden of seculiere variabi-
liteit te bestuderen. Hoewel de relatief lage resolutie van de gegevens de mogelijkheden
beperkt, zou de huidige lengte van de satelliethoogtemeterrecords (> 25 jaar) voldoende
moeten zijn om schattingen te krijgen van de veranderingen in de getijden en storm-
vloeden over de tijd. De conventionele radarhoogtemeting kunnen echter niet gebruikt
worden om de waterstanden in de grotendeels met ijs bedekte Noordelijke IJszee te ach-
terhalen. In dit licht is verwacht dat de hogere resolutie Synthetic Aperture Radar alti-
metrie de oplossing kan bieden. Aangezien er momenteel echter geen samenhangende
dataset van (betrouwbare) momentane Arctische waterstanden beschikbaar is, vereist
dit de implementatie van een geschikt verwerkingsmethodiek. In dit proefschrift wor-
den de bevindingen van vier afzonderlijke onderzoeken gepresenteerd, die allen, met
behulp van satellietradar-altimetrie, proberen ons begrip van temporele variabiliteit in

xv
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mondiale getijden en stormvloeden te vergroten.

In hoofdstuk 2 worden satellietradarhoogtemetingen van TOPEX/Poseidon & Jason-
serie gebruikt om wereldwijde lineaire trends in de amplitudes en fases van vier grote
getijdecomponenten te bestuderen (M2, S2 , O1 en K1). Deze studie toont zowel het po-
tentieel als de uitdagingen aan van het gebruik van satellietgegevens voor de kwantifi-
cering van dergelijke langetermijnveranderingen. Er werden twee alternatieve metho-
den geïmplementeerd. Bij de eerste methode werden harmonische getijdenconstanten
geschat voor opeenvolgende perioden van vier jaar, op basis waarvan de lineaire ver-
andering werd geschat. In de tweede methode werd de schatting van lineaire trends in
de getijconstanten van de vier getijden geïntegreerd in de harmonische analyse. Eerst
werden beide methoden beoordeeld door toepassing op synthetische data op basis van
getijdemetergegevens. Daarna werden de methoden toegepast op de echte satellietge-
gevens. De resultaten tonen aan dat de veranderingen in getijden significant zijn, met
zowel afnames als toenames van de getijamplitude in de orde van enkele centimeters en
faseveranderingen van enkele graden in de afgelopen decennia. De mate van overeen-
stemming tussen van hoogtemeters afgeleide trends en schattingen uit getijmetergege-
vens blijkt per regio en per getij te verschillen.

In het derde hoofdstuk zijn satellietaltimetriegegevens van meerdere missies gecom-
bineerd om zowel de tijdsgemiddelde als de seizoensgebonden en interjaarlijkse varia-
biliteit in wereldwijde stormvloedwaterstanden te bestuderen. Dit is gedaan door mid-
del van een tijdsafhankelijke extremewaardeanalyse die is toegepast op de maandelijkse
maximale waterstanden. Om rekening te houden met de beperkte temporele resolutie
van de satellietgegevens, werden de gegevens eerst gestapeld op een 5◦×5◦ raster. Bo-
vendien is extra schaling toegepast op de extremewaardeanalyse waarvoor de schalings-
factoren zijn bepaald met behulp van model data. Waar mogelijk werden de resultaten
vergeleken met vergelijkbare analyses van in-situ data. Met uitzondering van seculiere
veranderingen, zijn de satellietresultaten vergelijkbaar met de informatie die is afgeleid
van getijdenmeters (correlatie > 0,5), hoewel de getijdenmeters meer lokale variabiliteit
laten zien. Waar een beperkte correlatie werd waargenomen voor de seculaire veran-
dering, werd gesuggereerd dat de satellieten mogelijk niet in staat zijn om de temporele
variabiliteit in de kortdurende, tropische stormen volledig vast te leggen, in tegenstelling
tot extra-tropische stormen.

Seizoensmodulatie van het M2 getij is gekwantificeerd voor de gehele Noordelijke
IJszee, met behulp van getijdenharmonische analyse van waterstanden afgeleid van Syn-
thetic Aperture Radar-altimetrie (CryoSat-2 en Sentinel-3). De resultaten worden verge-
leken met numerieke simulaties die het effect van twee uiterste gevallen van seizoens-
gebonden landvaste ijsbedekking op het M2-getij modelleren. De grootste seizoensmo-
dulatie (tot 0,25 m) is waargenomen langs kusten en in baaien. Lokaal vermindert de
aanwezigheid van landijs de amplitude van het getij, maar in sommige gevallen werd
verderop het tegenovergestelde effect waargenomen. In het grootste deel van het noord-
poolgebied, behalve in de Hudsonbaai, is er in de wintermaanden sprake van een ver-
traagde aankomst van het getij. De waargenomen seizoensmodulatie kan grotendeels
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worden verklaard door de gemodelleerde impact van landvast ijs. Met name in de Huds-
onbaai suggereren verschillen tussen beide producten, dat andere seizoensprocessen
een rol spelen. Ten slotte laten de resultaten zien dat variaties in landvast Noordpoolzee-
ijs niet beperkt zijn tot het Noordpoolgebied, maar van invloed zijn op de wereldwijde
getijdewaterstanden.

Het afleiden van waterstanden in de Noordelijke IJszee vereist nauwkeurige detec-
tie van scheuren in het zee-ijs. Het vijfde hoofdstuk beschrijft een uitgebreide beoor-
deling van verschillende classificatiemethoden voor oppervlaktetypes, waaronder een
klassieke methode die gebruik maakt van drempelwaarden, negen gecontroleerde en
twee ongecontroleerde machinale leermethoden, toegepast op Sentinel-3 Synthetic Aper-
ture Radar Altimeter-data. Voor het eerst werden de gelijktijdig waargenomen beelden
van het Ocean en Land Color Instrument, aan boord van Sentinel-3, gebruikt voor trai-
ning en validatie van de classificatiemethoden. Wanneer toegepast op data van de win-
termaanden, lieten de gecontroleerde classificaties Adaptive Boosting, Artificial Neural
Network, Naïve-Bayes en Linear Discriminant robuuste resultaten zien. De ongecon-
troleerde Kmedoids-classificator produceerde ook uitstekende resultaten en is een aan-
trekkelijke classifier wanneer de controle data beperkt zijn. Waar alle classificaties slecht
presteren op hoogtegegevens van zomermaanden, wordt aanbevolen om aanvullend ge-
bruik te maken van metingen door andere sensoren. Ten slotte verkrijgen de classifica-
ties Adaptive Boosting, Artificial Neural Network en Bootstrap Aggregation de hoogste
nauwkeurigheid wanneer de hoogtemetingen ook metingen van de open oceaan om-
vatten.

Het werk gepresenteerd in dit proefschrift zal naar verwachting bijdragen aan een
beter begrip en uiteindelijk betere voorspelling van toekomstige extreme waterstanden.
De bevindingen helpen bij de beoordeling van de impact van klimaatverandering op het
getijde en stormvloeden en kunnen worden gebruikt om de modellen te verbeteren die
worden gebruikt voor het voorspellen van extreme waterstanden. Daarnaast is er voor-
uitgang geboekt in het verkrijgen van begrip over de rol van zee-ijs in de variabiliteit van
de Arctische zeespiegel en zijn er instrumenten aangereikt voor gebruik in toekomstige
studies.





1
INTRODUCTION

It storms outside. The wind blows with at least wind force 10 from the north-northwest.
The North Sea crashes on the coasts of Zeeland. It’s early in the morning when I wake up

from loud banging on the door and the neighbor who yells: "The dike has broken!"
Outside, land has turned to water. Father decides that we must flee. It is about to become

high tide so the water will rise even more. Meanwhile, the sea is already flooding the
country in high waves, destroying houses and killing people and animals.

Personal account of the North Sea flood of 1953 by Bart Bij de Vaate,
based on recordings by Inger Bij de Vaate (2003).

1.1. EXTREME SEA LEVELS AND COASTAL FLOODING
The North Sea flood of 1953 is an example of coastal flooding that truly wreaked havoc.
The flood caused the loss of over 2,000 lives and its great destruction of houses and land
forced over 100,000 people to evacuate (Hall, 2013). However, coastal floods have af-
fected mankind for centuries and still do. Recent examples are the flooding of New Or-
leans (2005: about 1,800 fatalities), of Myanmar (2008: over 138,000 fatalities), and of
the central Philippines (2013: over 6,000 fatalities) (Adeola, 2009; Kron, 2014). The large
death tolls underline the severity of the threat that coastal floods pose to densely pop-
ulated coastal areas. Already in 2007, over 600 million people lived in low lying coastal
zones that are affected by the risk of coastal flooding (McGranahan et al., 2007), a num-
ber that has been monotonically increasing over the course of time.

Like the North Sea flood of 1953, coastal floods are typically associated with storm
surges in combination with high tides (Muis et al., 2016). Tides - the rise and fall of the
sea level principally caused by the gravitational force from the Moon and Sun (Wahr,
1995) - are a continuous process and an important contributor to the dynamics of the
coastal zone. They affect the coastal morphology and marine life in coastal ecosystems
and are often used to our advantage in, for example, fisheries or marine navigation.

1
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Storm surges on the other hand, are an anomalous rise of the sea level due to low at-
mospheric pressure and strong winds, that are associated with (extra) tropical storms
(Resio and Westering, 2008). The combined effect of high tide and a storm surge can re-
sult in extreme sea levels (ESLs) that may have aforementioned devastating effects.

Figure 1.1: Windmill De Lelie in Ellemeet, Zeeland after the North Sea flood of 1953 at low (a) and high tide (b).
Picture courtesy of Bart Bij de Vaate.

The risk of coastal flooding is expected to increase in the future for two main reasons.
On the one hand, the world population has grown enormously over the past century and
although the growth has slowed down, the population is expected to increase at least till
the end of the century (Roser et al., 2013). Coastal areas experience a faster population
growth than the hinterland as their rich resources and logistical advantages make them
particularly attractive for habitation. In fact, most of the world’s largest cities (e.g., Tokyo,
Mumbai, New York City, Shanghai) are located in the coastal zone. The population of
coastal zones is expected to increase in the future. Although the estimates of population
growth vary depending on the input data and adopted methodologies (McMichael et
al., 2020), up to 1.4 billion people could inhabit the low-elevated coastal zones by 2060
(McGranahan et al., 2007; Neumann et al., 2015). On the other hand, the risk of coastal
flooding is expected to intensify under the influence of climate change. The rising sea
level in combination with atmospheric circulation changes under global warming will
most definitely increase the likelihood of ESLs (IPCC, 2021).

1.2. CHANGES IN EXTREME SEA LEVELS, TIDES AND SURGES
Observations show that ESL events have increased both in frequency and magnitude
over the past decades and projections indicate this trend will continue in the future (e.g.,
Oppenheimer et al., 2019; Wahl et al., 2017). While observations suggest that on the
global scale, sea level rise is the primary driver behind the increase in ESLs (e.g., Op-
penheimer et al., 2019; Wahl et al., 2017), locally the increase in ESLs may be amplified
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or even dominated by changes in tidal dynamics (e.g., Devlin et al., 2017) or changes in
storm surges (e.g., J. Feng et al., 2019; Haigh et al., 2014; Rashid and Wahl, 2020). Note
that in addition to the effect of the mean sea level variability, tides and surges, waves also
contribute to ESLs (IPCC, 2021). However, in this thesis, ESLs refers to the extreme still
water levels, thus excluding the very local effect of waves and wave set-up (Caires, 2011).

An increasing number of studies indicate that both tidal and storm surge water levels
are subject to considerable changes on seasonal to long time scales (e.g., tide: Mawdsley
et al., 2015; Müller et al., 2011; Müller et al., 2014; R. D. Ray, 2016; Woodworth, 2010 and
surge: Bromirski et al., 2003; X. Feng et al., 2018; Grinsted et al., 2012; Wahl and Cham-
bers, 2015; Zhang et al., 2000). However, in many cases, the identification of the drivers
behind the observed changes remains challenging (e.g., Haigh et al., 2020; Woodworth,
2010). For instance, changing tidal dynamics may be affected by local processes, such
as modifications of the shoreline or altered river flows, but they have also been linked to
climatic processes (Haigh et al., 2020). The latter include changes in ocean stratification
in response to ocean warming (e.g., Müller, 2012; Müller et al., 2014; Schindelegger et
al., 2022), in the radiational forcing (e.g., R. D. Ray and Egbert, 2004; Schindelegger et al.,
2016), and in the mean sea level (Devlin et al., 2017; Pickering et al., 2017; Schindelegger
et al., 2018). Changes in storm surges have been linked to dominant modes of climate
variability such as ENSO and NAO (e.g., Mawdsley and Haigh, 2016; Wahl and Chambers,
2016). In addition, several studies suggest that climate change affects the frequency and
severity of (extra)tropical storms, which may exacerbate the build up of storm surges in
the future (e.g., Calafat et al., 2022; Gori et al., 2022). However, in the latest IPCC report
(IPCC, 2021), long-term changes in storminess are considered of low confidence, which
is predominantly related to the rare and short-lived nature of the storm events and the
large local variability (IPCC, 2021).

Another important climatic process that affects the temporal variability in both tides
and surges, and hence ESLs, is fluctuations in the extent of sea ice cover. Where sea ice
exerts a frictional stress on the ocean surface, it influences the tidal variability. Model
studies showed that the presence of sea ice can cause tidal dampening, leading to tidal
amplitude decay and phase delay (e.g., Godin, 1986; Kowalik and Untersteiner, 1978;
Murty, 1985). At the same time, the presence of a sea ice cover shields the ocean surface
from the wind. Hence, a reduction in sea ice cover would result in a greater fetch and as
such allows higher storm surges to reach the shore (Kim et al., 2021; Lintern et al., 2013;
Vermaire et al., 2013). The impact of sea ice on temporal variability in water levels is
particularly important in the Arctic Ocean. While this region is largely covered by sea ice
during winter months (up to 15 million km2, average 2011-2020 (National Snow and Ice
Data Center, 2020)), it undergoes a significant loss of coverage during summer (5 million
km2). In addition, the Arctic Ocean is highly affected by global warming, experiencing
warming rates that are up to fourfold that of the global average (Kwok, 2018). As a re-
sult, the (perennial) Arctic sea ice cover has been subject to a dramatic decrease since
the 1970s, while this does not apply to the Antarctic sea ice (e.g., IPCC, 2021). So far,
the effect of variations in sea ice cover on tidal and surge water levels has mainly been
observed on seasonal timescales (e.g., Müller et al., 2014; St-Laurent et al., 2008) and the
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long-term effect of the Arctic sea ice decline is unsure. However, any changes in Arctic
tides and surges may not only pose higher risks to fragile Arctic ecosystems in low-lying
areas (e.g., Kokelj et al., 2012), but may also affect global water levels. Namely, it has been
indicated that local changes in tidal dynamics may have a remote effect on connected
basins (e.g., Arbic et al., 2007; Arbic et al., 2010; Harker et al., 2019) and storm surges
that develop in the Arctic could potentially travel to lower latitudes (e.g., Budikova, 2009;
Zhao et al., 2019).

1.2.1. OBSERVATIONAL EVIDENCE

Until now, the observational evidence that indicates that ESLs, tides and storm surges
are subject to temporal changes, predominantly consists of in-situ data from tide gauges
(e.g., Bromirski et al., 2003; X. Feng et al., 2018; Grinsted et al., 2012; Mawdsley et al.,
2015; Müller et al., 2011; R. D. Ray, 2016; Wahl and Chambers, 2015; Woodworth, 2010;
Zhang et al., 2000). Historically, these tide gauges were installed in ports, where their
measurements were of direct use for maritime navigation (Woodworth et al., 2011). To-
day, the majority of the tide gauges is still located at the coast or in shelf waters, with
uneven spatial distribution across the globe. Where water level variations recorded by
tide gauges are influenced by local processes, the large scale patterns in storm surge and
tidal water levels remain uncertain.

The Arctic Ocean is a key example of an area where in-situ recordings of the wa-
ter level are limited. The Arctic is a difficult environment for data acquisition. The re-
gion is isolated, sparsely populated and subject to severe weather, while the ocean itself
is greatly affected by the dynamic and seasonally variable sea ice cover. For example,
there are only twelve tide gauges located along the coastlines of the Arctic Ocean (over
45,000 km; Atland, 2013) of which recent data are publicly available (Figure 1.2). This
is a significant contrast to the 350 km of Dutch coastlines (Roeland and Piet, 1995) that
host 56 tide gauges. Consequently, there is only limited observational support for the
expected impact of climate change on Arctic tidal and surge water levels.

Obtaining the full-scale global picture of the temporal variability in tides and storm
surges would enable us to better understand the drivers behind the observed changes.
This will ultimately improve projections and the identification and prediction of any
consequences for coastal environments.

1.3. SPATIOTEMPORAL VARIABILITY IN TIDES AND SURGES FROM

SATELLITE RADAR ALTIMETRY
In addition to tide gauges, satellite radar altimeters have been measuring the quasi-
global water level since 1992. In the basic measurement principle of satellite altimetry,
a satellite orbits the Earth and continuously sends radar signals to the surface. Know-
ing the altitude of the satellite with respect to a specified reference ellipsoid, the timing
of the reflection of the radar signal can be used to compute the instantaneous height
of the sea surface (with respect to the same reference surface). TOPEX/Poseidon (in or-
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Figure 1.2: Map of Arctic Ocean according to the limits defined by International Hydrographic Organization
(1953), showing all tide gauges (black scatters) that have recent data (after 2000) publicly available.

bit from 1992-2002) was the first in a series of missions providing continuous measure-
ments of sea levels, followed by Jason-1 (2002-2008), Jason-2 (2008-2017), and Jason-3
(2016-present). All satellites of this series (further referred to as TPJ) orbit the Earth
with a 10-day revisit period, an along track resolution of about 6 km and global cover-
age up to 66◦ N/S. The data from the TPJ satellites have often been used for tidal anal-
yses (e.g., Cherniawsky et al., 2010; Müller et al., 2014; R. D. Ray, 2016). In addition to
TPJ, the ERS-1 (1991-1995), ERS-2 (1995-2003), Envisat (2002-2008) and SARAL (2013-
present) missions are also equipped with a radar altimeter with the primary purpose to
map the ocean, land, and sea ice topography (van’t Klooster, 2011). These missions fol-
low a higher-inclined orbit around the Earth, resulting in spatially denser data that also
include high latitudes (up to 82◦ N/S) yet at a lower temporal resolution (35-days re-
visit period). Although the low temporal resolution makes the data less suitable for tidal
analysis, they have been successfully used in combination with the TPJ-data to increase
spatial data density (e.g., Lyard et al., 2021).

Although satellite altimetry is widely used for tidal studies and estimation of sta-
tionary tidal properties, there have only been few efforts to derive temporal variability
in tides. The latter includes studies of the nodal cycle (e.g., Cherniawsky et al., 2010)
and local studies on the seasonal modulation of the major tide (e.g., Müller et al., 2014).
Up to now, radar altimetry has never been used to study long-term trends in tidal con-
stants. As the relatively low resolution of the data causes aliasing of high-frequency sig-
nals (higher than half the sampling frequency) on lower frequencies, several years of
data are required to be able to distinguish the major tides (Chen and Lin, 2000). Con-
sequently, studying seasonal or secular variability in the tidal signal cannot be done by
means of respectively monthly or yearly tidal analysis and subsequent curve fitting, as



1

6 1. INTRODUCTION

is commonly done with data from tide gauges. However, given the current length of the
satellite altimeter records (> 25 years), from a theoretical point of view it should be pos-
sible to obtain estimates of the secular changes in tides from these data.

Regarding storm surges, the situation is not much different. Up to now, there have
been few studies that focused on single storm surge events captured by satellite altime-
try (Han et al., 2012; Lin et al., 2013; Scharroo et al., 2005). In addition, only a number of
studies have attempted to use satellite altimetry to map storm surges over an extended
period (e.g., Andersen et al., 2015; Antony et al., 2014; Ji et al., 2019). The latter stud-
ies showed that with adequate data processing techniques it is possible to derive storm
surge properties (e.g., magnitude and spatial features) from the low resolution satellite
data comparable to those from high-frequency tide gauge data. However, as the afore-
mentioned studies considered only specific geographic regions and did not cover tem-
poral changes in storm surges, the large scale spatiotemporal variability remains uncer-
tain. Nevertheless, it should be possible to derive this information from the wealth of
multi-mission altimeter data that are currently available.

1.3.1. SAR ALTIMETRY IN THE ARCTIC REGION

In the Arctic Ocean, the applicability of radar altimetry is hampered by the presence
of the temporally dynamic (perennial) sea ice cover. The footprint of so-called low-
resolution-mode (LRM) altimeters (i.e., all aforementioned missions) is too big to distin-
guish between measurements from the sea ice pack and alternating sections of open wa-
ter (leads). However, in this respect, Synthetic Aperture Radar (SAR) altimetry provides
a solution. SAR altimeters apply coherent processing of groups of transmitted pulses,
using the Delay-Doppler effect (Raney, 1998). This results in a higher along-track res-
olution compared to conventional radar altimeters (Donlon et al., 2012), which allows
measuring the water level from leads. CryoSat-2 was the first satellite equipped with a
SAR altimeter. Since the launch of this satellite (2010-present), followed by Sentinel-3A
(2016-present) and Sentinel-3B (2018-present) - the SAR data availability in the Arctic
has strongly increased (Quartly et al., 2018). However, to use these data for derivation
of water levels from leads, careful discrimination between measurements from different
surface types is required.

For this purpose, various classification methods have been implemented that rely on
the fact that different surfaces result in characteristic radar return signals or so-called
waveforms (Figure 1.3). Empirical methods, that use certain thresholds for specific fea-
tures of the waveforms, have been widely used to classify radar returns (e.g., Laxon, 1994;
Peacock and Laxon, 2004; Poisson et al., 2018; Zakharova et al., 2015). More recently,
machine learning-based classification methods have gained popularity (e.g., Dettmer-
ing et al., 2018; Lee et al., 2016; Muller et al., 2017; Poisson et al., 2018). Studies suggest
that machine learning-based methods can produce higher accuracies, although perfor-
mances obtained by different studies cannot be directly compared due to e.g., differ-
ences in study area, satellite mission, or validation data. In addition, the validation in
previous studies was often limited because the ground truth data was based on manual
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interpretation of imagery data (Quartly et al., 2018). Moreover, some of the aforemen-
tioned studies make use of validation data that are not acquired simultaneously with the
SAR data, which may introduce additional uncertainties (Quartly et al., 2018). In this
respect, the use of measurements from the Sentinel-3 satellites is particularly interest-
ing as these missions are also equipped with an optical imaging instrument. So far, the
optical imagery from Sentinel-3 has not been applied in lead detection.

Figure 1.3: Typical SAR waveforms of radar return signals from open ocean (a), sea ice (b) and a lead (c). Note
that over sea-ice regions various complex waveform shapes can be observed that relate to different types/forms
of sea ice or signal contamination. The markings on (a) indicate how the waveform can be used to compute a
water level.

After classification, the radar signals are converted to water levels by finding the so-
called retracking point of the waveform and then use the timing of that point to com-
pute the instantaneous distance between the satellite and the surface (see Figure 1.3a
for an example). For open ocean returns there are many widely implemented methods
to obtain the retracking point. However, the specular waveform of reflections from leads
(Figure 1.3c) requires the implementation of another method. Recent studies have pro-
vided suitable retrackers for leads such as: ALES+ (Passaro et al., 2018) or the physical
retracker developed by Poisson et al. (2018). Both retrackers rely on an adapted version
of the Brown-Hayne model (Brown, 1977; Hayne, 1980) that allows specular curve fit-
ting. These retrackers have so far only been applied to LRM altimeter data (ENVISAT
and ERS-2) and can not be directly used for SAR data (Kurtz et al., 2014). On the other
hand, several studies have focused on retracking of lead waveforms from CryoSat-2. For
instance, Jain et al. (2014) obtained better performance over sea ice-affected regions by
adapting the traditional empirical retrackers, that are typically applied to ocean data, to
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solely focus on the primary peak of the waveform. In addition, Kurtz et al. (2014) de-
veloped a physical retracker specifically for CryoSat-2 data that also showed improved
performance compared to the more subjective empirical retrackers in use. However,
their CS2WfF-retracker has been predominantly validated for sea ice freeboard measure-
ments rather than leads and had a bias in the order of centimeters. An alternative was
introduced by Dinardo et al. (2018), whose retracker makes use of the SAMOSA-model
(C. Ray et al., 2015) that is commonly used for retracking of ocean returns, but fixes the
significant wave height (one of the model parameters to be fitted) to zero. This retracker
resulted in slightly more precise results than the primary peak retrackers.

Despite the efforts on retrieving Arctic water levels, general consensus on the best
classifier/retracker is lacking and there is as of yet no cohesive dataset of (reliable) in-
stantaneous Arctic water levels available. Although earlier work has used SAR-derived
water levels (CryoSat-2) to study the Arctic tide (Cancet et al., 2018; Cancet et al., 2015),
the data have not been used to study the temporal variability in the Arctic tide, nor (the
temporal variability of) surge characteristics.

1.4. RESEARCH OBJECTIVES
The main aim of this thesis is to assess the spatiotemporal variability of global tide and
storm surge characteristics over the last three decades, using satellite radar altimetry.
Hereby the thesis attempts to fill the gaps of earlier studies on the topic that predomi-
nantly relied on in-situ data. In addition, special attention is paid to the Arctic region.
In the previous discussion it has become apparent that the Arctic tides and surges are
expected to be greatly affected by climate-related processes, while still much progress
ought to be made in actually observing the Arctic tides and surge water levels. The ob-
jective of this thesis can be further detailed by means of the following research questions:

1. What is the radar altimetry-derived secular variability in global tides, and the re-
lated uncertainty, and how does this compare to the secular variability derived
from tide gauge data? To answer this question, 28 years of water level measure-
ments by the TPJ-satellites (1993-2020) were used to study secular (linear) trends
in the tidal amplitudes and phases of four major tides (M2, S2, K1, and O1). In addi-
tion, the uncertainty was assessed by means of repeated subsampling of reanalysis
data. The obtained results were compared to the secular variability derived from a
global set of tide gauge data (GESLA3; Haigh et al. (2022)).

2. What is the radar altimetry-derived spatiotemporal variability in global storm
surge characteristics, including their time-averaged magnitude and seasonal
and secular variability, and how does this compare to the analysis of tide gauge
data? Here, monthly maximum detided water levels, derived from the combina-
tion of eight satellite radar altimeters (TPJ-satellites, ERS-1, ERS-2, Envisat and
SARAL; 1993-2021), entered an extreme value analysis. In order to assess the sea-
sonal and secular variability in storm surge water levels, we estimated a time-
dependent generalized extreme value distribution. The results were compared to
results obtained for a global set of tide gauge data (GESLA3; Haigh et al. (2022)).
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3. What is the SAR altimetry-derived seasonal variability in the Arctic tide and to
what extent can this be linked to changes in the Arctic sea ice cover? In light of
this question, a threshold classification scheme and a physical retracker were im-
plemented to retrieve Arctic water levels from the SAR data provided by CryoSat-2
and Sentinel-3 (2010-2019). Subsequently, the seasonal modulation of the M2 tide
was derived and compared to numerical simulations that model the effect of two
limiting cases of seasonal landfast ice cover on the tides.

4. Can machine learning classification methods contribute to a better lead detec-
tion from SAR altimetry in the Arctic Ocean? Whilst in response to the previ-
ous question a traditional threshold classifier was implemented, the purpose of
this question is to assess the added value of machine learning-based classification
methods. Therefore, the performance of nine supervised- and two unsupervised
classifiers in lead detection from Sentinel-3 SAR altimetry, were compared to that
of the threshold classifier. Optical imagery obtained by the same satellite was used
to train and validate the classification and the classification performance was as-
sessed using pan-Arctic and full-year data.

1.4.1. OUTLINE OF THE THESIS
The content of this thesis is based on three published journal articles (Chapter 2, 4, and
5) and one submitted article (Chapter 3). Chapter 2 and 3 address respectively the first
and second research question. They present global temporal changes in the tide (Chap-
ter 2) and surge water levels (Chapter 3), based on LRM satellite altimetry-derived water
levels. Chapter 4 and 5 zoom in on the Arctic, where Chapter 4 considers the seasonal
modulation of the major Arctic tide under the influence of seasonal variations in the
Arctic sea ice extent. Chapter 5 addresses the fourth research question by providing a
thorough assessment of different classification techniques to distinguish between SAR
return signals from respectively leads, open ocean and sea ice. An overarching summary
with conclusions, recommendations and a reflection on the societal and scientific value
of this work, is given in Chapter 6.
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2
SECULAR TRENDS IN GLOBAL

TIDES

Previous studies have demonstrated that tides are subject to considerable changes on sec-
ular time scales. However, these studies rely on sea level observations from tide gauges that
are predominantly located in coastal and shelf regions and therefore, the large-scale pat-
terns remain uncertain. Now, for the first time, satellite radar altimetry (TOPEX/Poseidon
& Jason series) has been used to study worldwide linear trends in tidal harmonic constants
of four major tides (M2, S2, O1, and K1). This study demonstrates both the potential and
challenges of using satellite data for the quantification of such long-term changes. Two al-
ternative methods were implemented. In the first method, tidal harmonic constants were
estimated for consecutive four-year periods, from which the linear change was then es-
timated. In the second method, the estimation of linear trends in the tidal constants of
the four tides was integrated in the harmonic analysis. First, both methods were assessed
by application to tide gauge data that were sub-sampled to the sampling scheme of the
satellites. Thereafter the methods were applied to the real satellite data. Results show both
statistically significant decreases and increases in amplitude up to 1 mm/year and signif-
icant phase changes up to ∼ 0.1 ◦/year. The level of agreement between altimeter-derived
trends and estimates from tide gauge data differs per region and per tide.

This chapter has been published as Bij de Vaate, I., Slobbe, D. C., & Verlaan, M. (2022). Secular trends in global
tides derived from satellite radar altimetry. Journal of Geophysical Research: Oceans, 127(10), e2022JC018845.
https://doi.org/https://doi.org/10.1029/2022JC018845
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2.1. INTRODUCTION

Knowledge of tides is important for many practical (e.g., marine navigation, fishery,
coastal engineering) and scientific purposes. Although tide predictions often treat tidal
harmonic constants as stationary over time, considerable changes in tides have been
observed on seasonal (e.g, Bij de Vaate et al., 2021; Müller et al., 2014) to long-term
timescales (e.g., Müller et al., 2011; Ray, 2016). On the one hand, modifications of the
tides can be the result of local processes, such as changes in coastal morphology or al-
tered river flow (Haigh et al., 2020). On the other hand, observed variations in tides have
been linked to regional climatic conditions, e.g., the extent of sea ice coverage (e.g., Bij
de Vaate et al., 2021; Müller et al., 2014; St-Laurent et al., 2008), ocean stratification (e.g.,
Müller, 2012; Müller et al., 2014), and sea level rise (e.g., Devlin et al., 2017; Ross et al.,
2017). Modelling studies suggest that climate change will continue to affect tides for cen-
turies (Pickering et al., 2017; Schindelegger et al., 2018). Nevertheless, Haigh et al. (2020)
indicated the need for better understanding of individual contributions of small-scale
and large-scale processes.

An increasing number of studies are devoted to mapping and understanding secu-
lar changes in the tides. However, most of these studies rely on sea level observations
from tide gauges that are mainly restricted to coastal and shelf regions. Hence, observed
changes in tides could be dominated by local processes and the large-scale patterns re-
main unclear. Obtaining the global picture of long-term changes in tides would con-
tribute to a better understanding of the drivers behind secular changes in tides. Under-
standing secular changes in tides may result in better identification and prediction of
any consequences for coastal environments such as flooding (Li et al., 2021), salt intru-
sion (Hinton, 2000), or altered estuarine dynamics (Khojasteh et al., 2021).

To gain more insight in the large-scale secular changes in tides, we supplemented
the clustered and sparsely distributed tide gauge dataset with data from satellite radar
altimeters. Altimeter-derived water levels are being widely used to estimate tidal con-
stants, and have recently been used to study seasonal changes in tides (Bij de Vaate et
al., 2021; Müller et al., 2014). However, up to now, only Ray (2016) used altimeter data
from successive missions to compare the amplitude of the main semi-diurnal tide (M2)
near Churchill, Hudson Bay (Canada). Given the length of the current satellite altimeter
records (> 25 years), from a theoretical point of view it should be possible to obtain esti-
mates of the secular changes in tides from these data. For that reason, we have exploited
the provided opportunities and used data from TOPEX/Poseidon and the Jason satellites
to obtain a global estimate of the linear secular trends in the major tides. In this paper
we first describe the data, including satellite radar altimetry, high-frequency tide gauge
records and reanalysis data used for validation of the results. Then an outline is given of
two approaches to study secular changes in tides and an experiment to test these meth-
ods. Finally, the results are introduced and compared to observations at tide gauges and
documented changes in tides.
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2.2. DATA

2.2.1. SATELLITE RADAR ALTIMETRY

Data from the TOPEX/Poseidon and Jason satellite altimeters were combined (further
referred to as TPJ) resulting in 28 years of sea level data (1993-2020). Data from in-
terleaved orbits were not considered. The TPJ satellites have a ground coverage up to
66◦ N/S and an along-track resolution of about 5.8 km. Altimeter data were obtained
through the Radar Altimeter Data System (RADS, Naeije, 2022). The following geophys-
ical and range corrections were applied (Scharroo et al., 2016): ionosphere (NIC09 for
TOPEX/Poseidon, GIM for Jason), dry troposphere (ECMWF), wet troposphere (if avail-
able: radiometer, otherwise: ECMWF), solid tide (Cartwright and Edden, 1973; Cartwright
and Taylor, 1971), pole tide (Wahr, 1985), load tide (FES2014), mean sea surface (DTU18-
MSS), sea state bias (CLS), and dynamic atmosphere (DAC) (MOG2d (ERA Interim forc-
ing)). The center-of-gravity (CG) correction that RADS by default applies to TOPEX/Poseidon
ranges was removed to reduce intermission biases in the solar S2 tide (Beckley et al.,
2021; Zawadzki et al., 2018). In addition, to minimize aliasing of non-tidal sea level vari-
ability on tidal frequencies, an additional correction was applied. Following Ray and
Zaron (2016), the multi-mission, gridded sea level anomalies (SLA) from the Data Uni-
fication and Altimeter Combination System (DUACS) (Taburet et al., 2019) were sub-
tracted from the TPJ-water levels. This removes seasonal and interannual variability
from the obtained water levels and specifically reduces the noise in regions with high
mesoscale activity. In the remainder of the paper, this correction will be referred to as
the ‘mesoscale correction’. Finally, outliers in the time series were detected and removed
based on threefold the median absolute deviation.

In this paper, results are presented on global maps, supplemented by a zoom in on
the North West European Shelf. For the global analysis, data are treated as follows. First,
the locations where two tracks intersect (crossovers) were identified. For all of those
locations, the data of the two crossing tracks within a radius of 30 km were assigned
to the location of the respective crossover. 30 km equals half the distance between the
closest neighbouring crossovers. Note that the along-track distance between crossovers
depends on latitude: from ∼ 460 km at the equator to ∼ 60 km at 66◦ N/S. By stacking
the data at crossover locations, the temporal resolution is increased and tidal analysis
is deemed more reliable. For the zoom in on the North West European Shelf, data were
processed on a track-by-track basis. Data from different cycles were collocated following
Cherniawsky et al. (2010). The along-track analysis allows for a higher spatial resolution
and to get closer to the tide gauge locations, at the price of an increase in uncertainty
levels.

2.2.2. TIDE GAUGES

Alongside the altimeter data, data from a selection of tide gauges were processed to al-
low for a comparison of the derived trends. For this purpose, only tide gauge data from
the TPJ-period were considered (1993-2020). Data from the GESLA-3 dataset (Haigh
et al., 2021) were complemented with quality controlled water level records from tide
gauges on the North West European Shelf, provided by nine European organizations
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(see Acknowledgments). The latter comprise data from 1997 onward, and are manu-
ally inspected to exclude possible outliers. Records that span less than 19 years were
excluded. The temporal resolution of the tide gauge data varies from one minute to one
hour, mainly depending on the country where the stations are located and the time of
data acquisition. Tide gauge records were corrected for atmospheric loading using the
same product as was used for altimetry (DAC).

2.2.3. REANALYSIS DATA

Finally, reanalysis data were used to obtain uncertainty estimates of the estimated lin-
ear change in tidal constants. For this, the Global Tides and Surge Model (GTSM, Wang
et al., 2021) was used, forced by ERA5 reanalysis data. GTSM is a barotropic (2D) model
that makes use of an unstructured grid with a resolution that increases from 25 km at
open ocean to 2.5 km at the coast. Time series with a sampling rate of 10 minutes were
reconstructed for the full TPJ-period. This was done for over 600 locations covering the
global oceans and about 300 locations on the western North West European Shelf. Sub-
sequently, the time series were corrected for atmospheric loading (using the DAC), tem-
porarily detided and then subjected to a high-pass filter to remove any non-tidal sig-
nal with periods larger than 2 days. This was done to mimic the ‘mesoscale correction’
that was applied to the TPJ-data. Although the GTSM does not resolve ocean circula-
tion and associated mesoscale sea level variability, atmospheric forcing may induce sea-
sonal/interannual sea level variability (e.g., Dangendorf et al., 2014), which is to some
extent also contained in the ‘mesoscale correction’.

2.3. METHODS

Earlier studies on secular changes in tides typically relied on year-by-year harmonic
analyses of high-frequency data, followed by the fitting of a linear trend through the
yearly tidal harmonic constants (e.g., Müller et al., 2011; Ray, 2009; Zaron and Jay, 2014).
In this paper, a similar procedure was adopted to process the tide gauge data. However,
for satellite data, such a procedure is not possible due to the relatively low sampling rate
and consequent aliasing of high-frequency tidal signals onto lower frequencies. That is,
for the major tides, the TPJ-sampling interval of 9.9156 days results in alias periods of
62.1 (M2), 58.7 (S2), 173.2 (K1), and 45.7 days (O1) (Cherniawsky et al., 2010; Schrama
and Ray, 1994). By applying the Rayleigh criterion to these alias frequencies, we can find
the minimum record length that is required to separate the tides of interest from other
signals (Savcenko and Bosch, 2007). For M2, S2, and O1, records of three (2.97) years are
sufficient to separate them from other considered constituents, while at least 9.19 years
are required to separate K1 from Ssa (semi-annual tide). Hence, a year-by-year harmonic
analysis of TPJ-data is not possible. In this paper, two different methods were imple-
mented.

Both approaches make use of UTide (Codiga, 2020). This software executes a har-
monic analysis for a given set of frequencies similar as in TTide (Pawlowicz et al., 2002),
yet it is able to deal with irregular temporal sampling. The latter is a requirement for
processing stacked altimeter-derived water levels. For the analysis of tide gauge data, a
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large set of constituents (including shallow water constituents) was considered follow-
ing from the automated constituent selection method in UTide (Codiga, 2020; Foreman,
2004). For satellite data, a fixed set of constituents was considered, as explained below.

2.3.1. SEGMENTED HARMONIC ANALYSIS (SEGHA)
The first approach, referred to as the ‘segmented harmonic analysis’ (SegHA) approach
(inspired by Jin et al. (2018)), is a two-step procedure that is very similar to the conven-
tional analysis of secular changes using tide gauge data. This approach could be carried
out with standard tidal analysis tools, but comes at the price of a slight simplification in
error propagation.

STEP 1: ESTIMATION OF TIDAL HARMONIC CONSTANTS

Instead of processing the data year-by-year, time series were split in seven consecutive
periods of four years. Thereafter, tidal harmonic constants were calculated and referred
to the center date of the respective four-year period. The time span of four years was
chosen primarily because this allows the separation of M2, S2, and O1 from other signals
(this requires at least 3 years). On the other hand, there is in some instances (mainly
coastal) a discrepancy between the actual nodal modulation of lunar tides (18.6 year cy-
cle) and the theoretical value (Hagen et al., 2021). Hence, although amplitude/phase
estimates are corrected for the nodal modulation during tidal analysis, there may be
a residual modulation left. To separate the trend in tidal amplitude from this possible
residual nodal modulation, the difference between the respective center data of the first
and last period was required to be at least 18.6 years. This can be achieved by processing
segments of up to five years (segments are not allowed to overlap). Hence it is anyway
not possible to study the secular trend in K1 harmonic constants from the available data
using the SegHA approach. Given the minimum of three years and the maximum of five
years, a time span of four years was chosen since this allows making full use of the avail-
able data (28 years).

For each four-year period, tidal amplitudes and phases were estimated for 20 tidal
constituents, including: three long-period tides (Sa, Mm, and Msf), five diurnal tides (Q1,
O1, P1, S1, and K1), eight semi-diurnal tides (2N2, µ2, N2, ν2, M2, L2, T2, S2, and 2SM2),
and four shorter period tides (M3, MN4, M4, and MS4). This selection of constituents
eliminates possible conflicts between constituents pairs that cannot be separated from
four years of data (e.g., K1 and Ssa). In addition, from each four-year period the mean
sea level (Z0) and a possible trend in mean sea level were estimated to account for any
remaining interannual sea level variability.

95% confidence intervals for the estimated harmonic constants were computed with
UTide. This measure is derived from linearized error propagation of the total residual
power (using the detided signal) within the frequency band surrounding the frequency
in question (M2/S2 ±0.2 cycles/day and O1 ±0.1 cycles/day), obtained using the Lomb-
Scargle periodogram (Codiga, 2011; Pawlowicz et al., 2002). However, it is stated by
Codiga (2011) that certain assumptions underlying this procedure are strictly valid only
for uniformly sampled data. The resulting confidence intervals “should be considered
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potentially reasonable and approximate first estimates, but should be compared against
the results for uniform times whenever possible, and used with a measure of caution.”
(Codiga, 2011, p. 21). Indeed, it was found that both the frequency and timing of the sea
level measurements by the satellite influenced the accuracy of the resulting tidal esti-
mates (Guarneri et al., 2022). Moreover, UTide averages the spectral density distribution
of the residuals over nine frequency bands resulting in similar confidence intervals for
all diurnal tides, all semi-diurnal tides, and so on. In line with the advice from Codiga
(2011), but due to the lack of tide gauge data in the vicinity of the altimeter points, we
have therefore obtained an additional (alternative) uncertainty estimate using the re-
analysis data that were introduced in Section 2.2.3. These time series were reduced to
a four-year period (2015-2018) and interpolated to the TPJ-sampling interval of which
the start time was iteratively shifted by about 4.75 hours (TPJ-sampling period divided
by 50), resulting in 50 time-shifted time series. The median absolute deviation (MAD) of
the tidal harmonic constants estimated from these 50 time series, was scaled by 1.4826 to
obtain the standard error of the estimate (Rousseeuw and Croux, 1993). The final values
are location- and tide specific, but assumed to be independent of the four-year period.

STEP 2: LINEAR TREND ESTIMATION

The linear secular trends in harmonic constants were estimated by fitting the following
equations through the series of seven values, using weighted least squares. Here the
error propagation was simplified by ignoring the correlations between amplitudes and
phases estimates. For amplitudes follows:

Ãk (ti ) = a A
Nk

cos(2π
ti − tc

18.6
+Nc )︸ ︷︷ ︸

residual nodal modulation

+b A
k (ti − tc )︸ ︷︷ ︸

trend

. (2.1)

where, Ãk (ti ) is the residual amplitude for the ith four-year period of the tidal con-
stituent in question (k) (obtained by subtracting the time averaged amplitude), b A

k the
linear change in amplitude, ti the center time of the ith four-year periods, and tc the
center time of the full TPJ-period. In addition, the nodal modulation was included in
the problem formulation (see Section 2.3.1). Nc represents the nodal phase at the center
date. Both the magnitude of the residual nodal modulation (a A

Nk
), and the linear am-

plitude change (b A
k ) were estimated, resulting in a redundancy of five. For phases the

following equation was used:

φ̃k (ti ) = aφNk
cos(2π

ti − tc

18.6
+Nc )︸ ︷︷ ︸

residual nodal modulation

+bφk (ti − tc )︸ ︷︷ ︸
trend

. (2.2)

Where φ̃k (ti ) is the residual phase for the ith four-year period, aφNk
the magnitude of

the residual nodal phase modulation, and bφk the linear coefficient describing the change
in phase.

Both the standard errors of the harmonic constants derived from UTide and from
GTSM (Section 2.3.1) were used to assess the significance of the fitted trends. For the S2
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tide, the choice of ionospheric correction applied to the data may affect the estimated
tidal harmonic constants (Jee et al., 2010; Ray, 2020; Zawadzki et al., 2018). Therefore,
an additional error estimate was obtained (see Appendix A) and added to the estimates
obtained by UTide and GTSM respectively. Given the standard errors of the tidal har-
monic constants, the standard error of the trend was derived through error propagation.
Finally, confidence intervals were obtained by multiplying the standard error with the
appropriate z-score.

2.3.2. TREND-INTEGRATED HARMONIC ANALYSIS ( TINTHA)
In the second approach, the linear trends in the four tides of interest (M2, S2, O1, and
K1) were estimated jointly with the average tidal harmonic constants. This required an
extension of the available tidal analysis software but allowed for a full error propagation
(that is, including the co-variances between amplitude and phase estimates). Since we
are now using the full 28 years of data, this approach allows the analysis of changes in
the K1 tide. Moreover, the set of constituents included in the analysis was extended by
SSA, K2 and T2. In the SegHA approach, these had to be excluded due to aliasing issues.

The TintHA approach uses a different formulation of the tides. Within UTide, the
complex formulation is used in which the tidal water level for constituent k, i.e. ĥk (t ), is
written as the product of three terms:

ĥk (t ) =
(

Ak e iφk
)(

fk (t )e i uk (t )
)

e i vk (t ), (2.3)

where the term e i vk (t ) is the phase of the equilibrium tide,
(

fk (t )e i uk (t )
)

is the nodal cor-
rection, and the term

(
Ak e iφk

)
is the complex amplitude-phase pair that needs to be

estimated. To keep the equations linear, we consider the complex amplitude-phase pair
Âk = Ak e iφk :

Âk (t ) = F̂k +Ĝk
t − t0

T
, (2.4)

where the time period considered starts at t0 and ends at t0 +T , so that Âk (t0) = F̂k and
Âk (t0 +T ) = F̂k + Ĝk . The relative change over this time period is ∆̂= (F̂k + Ĝk )/F̂k . The
angle and absolute value of this complex number give the phase change and relative
amplitude change. A disadvantage of this linear model is that the rate of change of the
amplitude and phase is not constant over the time interval. For small changes, however,
the approximation error will be small. Note that in this method no empirically estimated
correction for any residual of the nodal modulation is determined as this, in combina-
tion with the trend estimation, would result in a non-linear estimation problem.

Similar to the first approach (SegHA), alternative error estimates were obtained by
means of the GTSM reanalysis data. For the latter, the full 28 year time series were inter-
polated to TPJ-sampling intervals while iteratively shifting the start time 50 times. From
these time series the linear change in tidal harmonic constants was computed and the
MAD of these values was again scaled by 1.4826 to obtain the standard error of the trend
estimates. For the S2 tide, the error estimates were supplemented by the possibly error
due to the ionospheric correction (as described in Appendix A). Finally, the confidence
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intervals were obtained by multiplying the error estimate by the appropriate z-score and
interpolating the GTSM-derived product to the TPJ-tracks.

2.3.3. VALIDATION

COMPARISON OF SEGHA AND TINTHA USING TIDE GAUGE DATA

Both methods (SegHA and TintHA) were assessed by application to tide gauge data that
were sub-sampled to TPJ-sampling intervals. This was done in a similar manner as the
GTSM reanalysis data were used to compute confidence intervals. Data were subsam-
pled both to an along-track sampling of 9.9156 days and a crossover sampling which
was determined based on the TPJ crossover sampling at the latitude of the respective
tide gauge. The start time of the subsampled time series was iteratively shifted, resulting
in 50 time series for each tide gauge. For the assessment, only tide gauges were consid-
ered that have full data coverage during the entire TPJ-period. In addition to DAC, the
‘mesoscale correction’ was applied to the data to resemble the processing of altimeter
data. As this altimetry-derived product is not available everywhere across the globe, only
the data from 109 tide gauges could be used. The secular change in tidal harmonic con-
stants derived from both methods was compared to the ‘true’ change that was obtained
by processing the original high-frequency data on a year-by-year basis. Assessment of
the different methods was done by comparing the median absolute error (MedAE) for
respectively each tide gauge, tidal constituent and sampling scheme.

COMPARISON OF CONFIDENCE INTERVALS USING TIDE GAUGE DATA

As discussed in Section 2.3.1, two alternative confidence intervals were obtained for the
trend estimates: one following from UTide, the other from processing of GTSM reanal-
ysis data. To validate both alternatives, an additional experiment was performed using
the results from the experiment with tide gauge data. This time, the scaled MAD of the
trend estimates from the TPJ-sampled tide gauge data was used to compute 95% con-
fidence intervals. These were then compared to the 95% confidence intervals obtained
from UTide (based on the TPJ-sampled tide gauge data) and those derived using GTSM
reanalysis data from the exact location as the tide gauges. This was done for both the
regular along-track, as well as the latitude dependent crossover sampling. Results were
analysed based on the correlation, the root-mean-square error (RMSE), and the median
underestimation of respectively the GTSM/UTide product.

VALIDATION OF ESTIMATED SECULAR CHANGE USING TIDE GAUGE DATA

In order to validate the secular changes derived from TPJ-data by means of another prod-
uct, ideally the data needs to be from the exact same location. Since these data is not
available, we need to consider the impact of the spatial separation on the consistency of
estimated secular change. As can be seen in Figure 2.1a, the distance between the tide
gauges and the nearest TPJ-crossover varies from approximately 50 km to over 400 km.
In addition, Figure 2.1b shows that the spatial error (MedAE) in estimated amplitude
change (comparing every individual tide gauge to other tide gauges within a certain ra-
dius) increases with distance. Based on this figure, it was decided to only use tide gauges
that are closer than 75 km to one or more TPJ-crossovers (indicated by the thicker out-
lines in Figures 2.7 and 2.8) for the assessment of agreement between tide gauges and
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TPJ-data. From the 176 remaining tide gauge-crossover combinations, the absolute dif-
ferences in estimated trend were computed. The differences were then classified as be-
ing insignificant for combinations where the confidence interval of the trend estimate at
the crossover (as derived from GTSM, see Figure 2.6b) exceeded the difference.

Figure 2.1: Distance between each tide gauge and the nearest TPJ-crossover (a). Spatial error (MedAE) in esti-
mated secular trends in tidal amplitude as a function of distance, derived from the tide gauge data (b).

2.3.4. POST-PROCESSING
Estimated trends were omitted for locations where at least one of the following criteria
was not met. If not mentioned otherwise, these criteria were applied in the analysis of
the crossovers, individual tracks, and tide gauges:

• The root-mean-square (RMS) of the residual signal should be below 0.15 m. Glob-
ally, this removes ∼ 8% of the data.

• There should be consistent data coverage throughout the year. A location was not
considered when there were more than ten sequential day numbers without data.
Globally, this removes ∼ 20% of the data.

• The estimated linear coefficient should be larger than its confidence interval. Which
confidence intervals were used is mentioned in figure captions.

• Only applied in along-track analysis: crossovers where there is no overlap between
the estimated linear trends of the two crossing tracks (interpolated to the location
of the crossover) ± the local confidence interval, were flagged. In such a case, all
derived trends of the two crossing tracks within half the distance between neigh-
bouring crossovers were omitted.

2.4. RESULTS

2.4.1. VALIDATION

COMPARISON OF SEGHA AND TINTHA USING TIDE GAUGE DATA

Comparison of both methods applied to tide gauge data shows little difference between
the SegHA and TintHA methods (Figure 2.2). Regardless of the method that was used,
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Figure 2.2: Median absolute error (MedAE) between the ‘true’ linear change in amplitudes (a, c) and phases
(b, d) derived from high-frequency tide gauge records and the product derived from the SegHA and TintHA
approaches applied to the data sub-sampled at TPJ along-track sampling intervals (a, b) and TPJ crossover
sampling (c, d). Colours indicate which method was used and the marker style depicts the different tidal con-
stituents that were studied. For visualisation purposes the errors are averaged for intervals of 0.025 m and
0.05 m for the RMS (detided signal) and local amplitude respectively.

sub-sampling the data to TPJ-sampling interval reduces the accuracy of the derived changes
in tidal amplitude and phase. In the case of amplitude, the observed error between the
‘true’ and derived change increases with larger non-tidal water level variation (higher
RMS; Figure 2.2a). On the other hand, the accuracy of the derived phase change pre-
dominantly depends on the local amplitude of the tide in question (Figure 2.2b). In par-
ticular for amplitudes below ∼ 15 cm, the derived phase change appears unreliable. Only
in terms of amplitude change, the TintHA method performs more consistent than the
SegHA method, with an average MedAE of 0.24 mm/year compared to 0.29 mm/year and
fewer outliers. Overall, the crossover sampling improves the accuracy of both methods
for both amplitudes (MedAE reduces from 0.25 mm/year to 0.18 mm/year) and phases
(0.18 ◦/year to 0.13 ◦/year) for all tides (Figure 2.2c, d).
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COMPARISON OF CONFIDENCE INTERVALS USING TIDE GAUGE DATA

The UTide-, GTSM- and tide gauge derived confidence intervals for the change in M2

amplitude (a) and phase (b) are shown in Figure 2.3, following from the TintHA ap-
proach. From the figure, it appears that both the UTide and the GTSM-product subceed
the confidence intervals derived from the tide gauges (i.e. more scatter points are located
in the bottom right). However, statistical analysis of the results (all tides combined) show
that the tide gauge derived confidence intervals correlate better with the GTSM product
(correlation of 0.62 for amplitude, 0.67 for phase) than with the UTide product (ampli-
tude: 0.53, phase: 0.55). In addition, the RMSE is lower for GTSM (0.37 mm/year and
0.05 ◦/year) than for UTide (0.46 mm/year and 0.08 ◦/year). In terms of underestima-
tion of the confidence intervals for amplitude change, the GTSM product again performs
better than UTide (0.15 mm/year versus 0.26 mm/year). Concerning the phase changes,
the GTSM product performs slightly better (0.02 ◦/year versus 0.03 ◦/year). However,
note that the phase results for O1 and K1 are based on only 11/12 tide gauges (com-
pared to 61 and 53 for M2 and S2 respectively). Tide gauges where the tidal amplitude
was below 15 cm were excluded, because a low tidal amplitude increases the uncertainty
of phase change estimates to such an extent that any differences between the different
confidence interval products become irrelevant (also shown by Figures 2.2b and 2.2d).
However as these differences were typically large, they would dominate the statistics and
overshadow the results that do matter.

Moreover, it was found that while the tide gauge and GTSM-derived confidence inter-
vals are significantly lower for the crossover sampling than for the along-track sampling
(respectively 25% and 27% for amplitude, 27% and 17% for phase), the UTide confidence
intervals were less affected (4% for amplitude 6% for phase).

Figure 2.3: 95% confidence intervals derived from UTide, GTSM reanalysis data and the tide gauges as de-
scribed in Section 2.3.3 for the change in M2 amplitude (a) and phase (b), following from the TintHA approach
and along-track sampling.
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2.4.2. GLOBAL ANALYSIS
The estimated trends in amplitude at the TPJ-crossovers following from the TintHA ap-
proach, are displayed in Figures 2.4 and 2.5. The results produced by the SegHA method
are very similar and incorporated shown by Figure C.5. Clearly, regions that are covered
by sea ice during part of the year (above 55◦ N/S), have insufficient data availability for
this analysis and are excluded. The distribution of locations where the estimated trend
coefficients are significant, varies per tidal constituent, which is closely related to the
confidence intervals (Figures 2.6, C.1 and C.2). In most cases, the GTSM-derived confi-
dence intervals (e.g., Figure 2.6b) exceed the intervals derived by UTide (Figure 2.6a).

Figure 2.4: Linear change in M2 (a) and S2 amplitude (b) per year (1993-2020) following the TintHA approach.
Locations where the post-processing criteria were not met are excluded from the figure. The smaller scatters
indicate data that exceeds both the UTide and GTSM 90% confidence intervals, while the larger scatters indi-
cate significant data at the 95% confidence level. Lines in the background depict tidal phases at 45◦ intervals.

As can be seen in Figure 2.4 and 2.5, all tides are subject to yearly changes of up to
±1 mm/year. The magnitude and sign of the yearly change vary largely across the globe,
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Figure 2.5: Linear change in O1 (a) and K1 amplitude (b) per year (1993-2020) following the TintHA approach.
Locations where the post-processing criteria were not met are excluded from the figure. The smaller scatters
indicate data that exceeds both the UTide and GTSM 90% confidence intervals, while the larger scatters indi-
cate significant data at the 95% confidence level. Lines in the background depict tidal phases at 45◦ intervals.

while the spatial correlations of the signal vary per tide. For M2, the change in ampli-
tude is predominantly negative. The most obvious regions of positive change are in the
south, near Antarctica and east of Iceland (Figure 2.4a). Although the overall change is
rather heterogeneous, spatial correlation of the signal is stronger near the poles than at
the lower latitudes. On the contrary, the change in S2 amplitude shows more distinct
regions of either positive or negative change across the globe (Figure 2.4b). Predom-
inantly positive changes in amplitudes are observed around the equator and near the
poles, while negative changes are more restricted to mid-latitudes. Differences in sign of
the amplitude change appear closely related to the location of amphidromic points and
co-phase lines. The change in O1 amplitude is more similar to that of M2, concerning
the level of heterogeneity (Figure 2.5a). However, overall, the change in O1 amplitude
is a lot smaller than that of M2 and only in a few locations, the confidence intervals are
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exceeded. For K1, predominant negative changes are observed across the globe, except
for the north Atlantic and the Indian Ocean (Figure 2.5b).

Figure 2.6: 95% confidence intervals for trend estimates derived from confidence intervals computed by UTide
(a) and from standard errors derived from GTSM (b) for M2 amplitude.

Trend estimates derived from the global tide gauge dataset are shown in Figures 2.7
and 2.8. For M2, 41% of the differences in trend estimates from tide gauges and TPJ-
crossovers were statistically insignificant considering the 95% confidence intervals de-
rived from GTSM. For S2 this value was 59%, for O1 64% and for K1 59%. However, note
that in Figure 2.1b we observed a significant decrease in consistency among tide-gauge
derived estimates with increased distances among the tide gauges. Given the fact that
the distance between TPJ-crossovers and most tide gauges is at least 50 km, this explains
part of the inconsistency between the altimeter- and tide gauge derived estimates. This
in particular applies to M2.
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Figure 2.7: Secular trends in M2 (a) and S2 (b) amplitudes, derived from tide gauge records from the TPJ-period
(1993-2020) (from GESLA-3; Haigh et al. (2021)). Black-outlined tide gauge locations are within 75 km of a TPJ-
crossover and are used for the similarity measure as explained in Appendix B.

2.4.3. NORTH WEST EUROPEAN SHELF

A selection of results from the along-track analysis of the North West European Shelf re-
gion is displayed in Figure 2.9. Because of their relatively low amplitudes in the region
(< 0.15 m), O1 and K1 are not included here.

The M2 amplitude change derived from altimetry is predominantly negative across
the domain, except for the central North Sea and the Skagerrak (Figure 2.9a). The largest
change is observed towards the eastern coasts of the North Sea. Unfortunately most
of the tide gauges are located along the coastline while RADS does not include coastal
altimeter data. Nevertheless, the observed amplitude change at the tide gauges in the
Netherlands, Germany, Denmark (and to a smaller extent the United Kingdom and Nor-
way), is similar to that at nearby tracks. Limited similarity is observed for the tide gauges
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Figure 2.8: Secular trends in O1 (a) and K1 (b) amplitudes, derived from tide gauge records from the TPJ-period
(1993-2020) (from GESLA-3; Haigh et al. (2021)). Black-outlined tide gauge locations are within 75 km of a TPJ-
crossover and are used for the similarity measure as explained in Appendix B.

in the English Channel, the Irish Sea and on the west coast of Norway. The altimetry-
derived change in M2 phase is largest near the amphidromic points in the North Sea and
in the northwest corner of the region (Figure 2.9c). Overall, both the sign of the phase
change as derived from altimetry as well as from tide gauges, is highly variable within
the domain. In addition, the availability of significant altimetry-derived phase changes
near tide gauges is even more limited than was the case for the amplitude, making a
comparison difficult.

The observed trends in S2 amplitude are smaller than those in M2 amplitude (Fig-
ure 2.9b), while the change in phase is larger (Figure 2.9d). These differences in mag-
nitude are also observed at the tide gauges. However, tide-gauge and altimeter-derived
estimates for S2 agree in only few locations, predominantly along the Dutch coastline.
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Figure 2.9: Linear change in M2 amplitude (a), S2 amplitude (b), M2 phase (c) and S2 phase (d) per year de-
rived with the TintHA approach. The smaller solid scatters indicate significant trends given the UTide-derived
95% confidence intervals, the hollow outline indicates significance according to the GTSM-derived 95% con-
fidence intervals (see Section 2.3). Co-tidal maps are shown in the background where the solid line indicates
the phase at 45◦ intervals, the dashed lines show the amplitudes at 0.25 m intervals.

Both the GTSM and UTide-derived confidence intervals increase towards the coast
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for the amplitude change (Figure 2.10a, 2.10b, 2.11a and 2.11b) and towards amphidromic
points for the phase change (Figure 2.10c, 2.10d, 2.11c and 2.11d). In all cases, the GTSM-
derived confidence intervals exceed the ones computed by UTide. This is most notice-
able for the S2 amplitude change. Both GTSM- and UTide-derived confidence intervals
for S2 phase change are significantly larger than for M2.

Figure 2.10: 95% confidence intervals for trend estimates derived from confidence intervals computed by
UTide (a, c) and from standard errors derived from GTSM (b, d) for M2 amplitudes (a, b) and M2 phases (c,
d).
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Figure 2.11: 95% confidence intervals for trend estimates derived from confidence intervals computed by
UTide (a, c) and from standard errors derived from GTSM (b, d) for S2 amplitudes (a, b) and S2 phases (c,
d).

2.5. DISCUSSION AND CONCLUSIONS

Using the full record of sea level measurements by the TOPEX/Poseidon and Jason satel-
lites (1993–2020), a global estimate of the secular trends in M2, S2, O1, and K1 tidal har-
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monic constants was obtained. While satellite altimetry is routinely used for tidal anal-
yses, this is the first time it was used to study secular trends on a global scale. With this,
the presented study attempts to fill in the gaps left by earlier studies on secular changes
in tides, that were predominantly based on data from tide gauges. However, compared
to tide gauges, the temporal resolution of the satellite data is limited. Consequently, sev-
eral years of data were required to prevent aliasing and obtain reliable tidal estimates.
Therefore, the method that is typically used to study secular changes in tides from tide
gauge data, by means of yearly harmonic analysis, could not be applied. In this paper
two alternative approaches were implemented. The first method (SegHA) is very similar
to the yearly analysis except now the time series were divided into periods of four years.
Compared to the yearly analysis, this reduces the number of consecutive independent
tidal estimates and hence the redundancy in trend fitting and the significance of the
estimated trends. Moreover, with this approach uncertainty estimates were obtained
through a simplified error propagation whereby any correlation between the amplitude
and phase estimates was ignored. However, this approach can be carried out with the
standard available tidal software and allows a straightforward implementation of non-
linear changes. Then, in the second approach (TintHA), the linear change in tidal con-
stants was estimated during the harmonic analysis. This way, the entire time series could
be analysed at once, which reduced the issue of aliasing. In the TintHA approach, no em-
pirical correction for a possible residual nodal modulation was derived. However, results
from the SegHA approach suggest this residual to be not significant on global scale (not
shown here). Moreover, both methods produced very similar results, both when applied
to the sub-sampled tide gauge data (Figure 2.2) and to the actual satellite radar altimeter
data. Due to the rather low magnitudes of secular trends in tides (Figure 2.4, 2.5 and 2.9,
C.5 and C.6), in many regions the estimated trends just exceed the confidence levels (see
Figures 2.6, 2.10, 2.11, C.1 and C.2).

2.5.1. SATELLITE-DERIVED SECULAR CHANGE IN TIDES

The main findings presented in this paper are as follows. The amplitudes of the consid-
ered tides have changed by up to 1 mm/year over the past ∼ 3 decades. This implies a
change of up to 10 cm per century. The change in total tidal range remains unsure be-
cause many tidal constituents are not resolvable with the available data. Whether the
amplitudes were subject to an increase or a decline varies on a regional (mainly applies
to S2 and K1) to even local basis (M2, O1). On the North West European Shelf, relatively
large phase changes are observed close to amphidromic points (Figure 2.9c, d) which
may suggest a displacement of these points. This could also be a (partial) explanation
for observed variability in changes in amplitude (Figure 2.9a, b), as a displacement of an
amphidromic point would reduce the tidal amplitude in the direction of the displace-
ment and increase the amplitude in the opposite direction. This may also explain the
differences in the sign of the observed changes on relatively small spatial scales. How-
ever, note that from the experiment with tide gauge data it followed that the accuracy of
derived phase changes reduces strongly when tidal amplitudes are low (Figure 2.2b, d),
which is the case near amphidromic points.
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Results have also been compared to trend estimates from tide gauges. However, cau-
tion is required. The distance between tide gauges and the nearest TPJ-data exceeds
∼ 50 km in most cases and processes that affect tides near the coast may be very differ-
ent from those at open sea. Moreover, the estimated trends at crossovers are spatial av-
erages, that may not correspond to the signal that is observed at tide gauges (being point
estimates). For M2, similar secular changes were derived from altimetry and nearby tide
gauges along the coast of the Netherlands, France, Denmark and the south of Norway
(Figure 2.9a, 2.9c). Discrepancies were observed along the west coast of Norway and in
shallow waters around the United Kingdom (UK). The former may be related to the Nor-
wegian coastal current and associated mesoscale activity. While the application of the
‘mesoscale correction’ significantly improved the consistency in trend estimates from
crossing tracks, still more inconsistencies are observed in regions where mesoscale vari-
ability is also large. In addition, the capricious nature of the coastline (both Norway
and UK) may have affected estimates from the altimeter data and/or explain differences
between coastal (tide gauge) and shelf estimates (altimeter). Fewer similarities were ob-
served for the S2 tide. These were predominantly restricted to the Dutch coast. On the
global scale, reasonable similarities between secular change derived from tide gauges
and altimeter data were observed for S2 (59%), O12 (64%) and K1 (63%) while for M2,
this was only the case for 41% of the tide gauge-crossover combinations. However, such
comparisons may be deceptive given the distance between crossovers and the nearest
tide gauge (Figure 2.1a) and significant spatial variability in amplitude change (for M2

in particular) observed at this distance (Figure 2.1b). Strictly speaking, the comparison
between tide gauge- and TPJ-derived estimates is therefore not a validation, because the
estimates refer to different locations.

2.5.2. UTIDE- VERSUS GTSM-DERIVED CONFIDENCE INTERVALS

The presented study considers both uncertainties estimates derived from UTide and
computed with GTSM reanalysis data. From a comparison of both products (e.g. Fig-
ure 2.10 and 2.11) it appears that the uncertainties are most likely underestimated by
UTide. In particular on shelf regions, one would expect larger uncertainties due to larger
non-tidal residuals and unresolved shallow water tides, while the UTide-derived uncer-
tainties are equally low and homogeneous in shelf regions as on the open ocean. Likely,
the application of the ‘mesoscale correction’ in shallow water removes some tidal sig-
nal that is aliased in the SLA product that was used for this correction (Zaron and Ray,
2018). This would reduce the residuals and hence it may have caused too optimistic
uncertainty estimates by UTide. Moreover, from the analysis described in Section 2.3.3,
it follows that the confidence intervals estimated by UTide are relatively unaffected by
changes in data availability. This also followed from an additional experiment using ran-
dom subsets of the TPJ-data at crossovers (Appendix B). Comparing Figures 2.6a and
B.1b, it appears that the UTide-derived uncertainties are of similar magnitude for the full
crossover time series as for half the amount of data, while dividing the data in half may
actually cause significant differences in trend estimate (Figure B.1a). This finding puts
to question the reliability of the UTide-derived confidence intervals. On the other hand,
the impact of data availability on the uncertainty is reflected by the GTSM uncertainties
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(e.g., see Figures 2.6b and B.1c), indicating the added value of this product. Neverthe-
less, the GTSM-derived uncertainties could for instance not explain all ambiguities at
crossing tracks (Figure 2.9a-d). In addition, from the comparison of the confidence in-
tervals using tide gauge data (Section 2.3), both the UTide- and GTSM-derived products
appear to underestimate the uncertainties to some extent. However, one should keep
in mind that these coastal results cannot directly be transferred to open ocean. For in-
stance, GTSM does not include all physical processes that affect the water level near the
coast (e.g. river outflows) and the relation between the spectrum of non-tidal water lev-
els at the coast and on open ocean is unknown. For future studies, we recommend the
use of a full 3D model that allows for direct comparison of the observed and reanalysis
data. Such a model would include the mesoscale variability that is also present in the
satellite radar altimeter data and allow for the same corrections to be applied to both the
satellite data and reanalysis data. Moreover, from Figure 2.3b and Appendix B it follows
that concerning the phase changes, the UTide- and GTSM-derived confidence intervals
are more similar and both appear to underestimate the actual uncertainty. The analy-
sis of phase changes on the North West European Shelf suggests that the GTSM-derived
confidence intervals in the vicinity of amphidromic points may be too optimistic. This
can be explained by the fact that the locations used for the GTSM confidence intervals
do not coincide with the TPJ-tracks and/or location of amphidromic points. Ideally, the
model-based confidence intervals should be derived at the exact location of the satellite
data but this kind of data was not available. Finally, the uncertainty may be reduced by
the inclusion of data from other satellite missions. However, given the low magnitude
of the observed secular trends, even small intermission biases in the range corrections
could be easily mistaken for changes in the actual tides and should thus be taken appro-
priate care of.

2.5.3. POTENTIAL SECULAR CHANGES INTRODUCED BY SATELLITE DATA

PROCESSING

The magnitude and strong regional variability of the secular change in M2 amplitudes
corresponds to findings by other studies based on tide gauge data (e.g., Müller et al.,
2011; Schindelegger et al., 2018; Woodworth, 2010). However, the altimeter-derived
change in the S2 tide differs from some documented findings (e.g., Ray, 2009; Wood-
worth, 2010). For instance, they found the S2 amplitudes to have increased along the
Gulf of Alaska. This contrasts both to what is derived from altimeter data at open ocean
and our analysis of GESLA-3 tide gauge records (Figure 2.4b, 2.7b). This suggests that the
difference may be related to the differences in considered periods. On the other hand,
the inconsistencies may be associated with the atmospheric loading correction (DAC).
This correction was applied to TPJ-water levels to reduce the impact of aliasing of non-
tidal water level variation on the estimation of tidal harmonic constants. For the sake of
consistency, the same correction was applied to the tide gauge data, which is typically
not done in earlier studies on tide gauge data. Therefore, a possible S2-like signal in DAC
(for instance related to the six-hour resolution of the product) may have affected the re-
sults.
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More general, it is possible that any systematic error or secular change in the atmo-
spheric propagation (wet/dry troposphere and ionosphere) or reference frame correc-
tions could have affected the trend estimates derived from the water levels. According
to Zawadzki et al. (2018), estimation of the S2 tide is particular sensitive to (errors in) the
geophysical/range corrections. Additional trend analysis of the individual corrections
suggest limited influence on M2 and O1 (Figures C.7, C.10). Only the wet troposphere
correction shows secular change in the amplitudes of up to 0.15 mm/year. The mag-
nitude of these changes is low compared to the trend in the water level (∼ 1 mm/year)
and the computed correlation is insignificant. Larger signals are observed for S2 (Figure
C.8; up to 0.25 mm/year). However, none of these signals show significant correlation
with the secular change derived from the water levels. In addition, a possible effect from
errors in the (model-derived) ionospheric correction on the S2 tide was already incorpo-
rated in the confidence intervals for this tide (Appendix A). Some K1 signal is observed in
the wet troposphere and altimeter derived ionosphere correction. However, again, the
correlation with water level-derived change is low (< 0.1) and positive. Since the correc-
tions are subtracted from the range to obtain the water level, only a negative correlation
would explain the secular change derived from the water levels. Finally, there may be in-
termission biases in range corrections that could be partly responsible for the observed
trend in S2 amplitudes, such as the CG-correction that was applied to TOPEX/Poseidon
data (Beckley et al., 2021; Zawadzki et al., 2018). All in all, the analysis of the S2 remains
tricky and a more thorough analysis is deemed necessary.

2.5.4. EXPLAINING THE OBSERVED SECULAR CHANGES BY MEANS OF PHYS-
ICAL PROCESSES

The results presented in this paper merely allow speculation about the drivers behind
the observed trends. The strong local variability in some areas suggests that local pro-
cesses may dominate there or that the observed change is in fact related to internal tide
variability. For instance, Zhao (2016) showed that in several regions, the propagation
of the internal tidal wave is subject to interannual or decadal variability. This causes
temporal differences in the phase of the internal tide that increase as the internal tide
propagates. Since the tidal amplitude that is observed at the surface is a combination
of the barotropic and internal tide, its value depends on the phase difference between
the two. As mentioned, the interannual change in these phase differences can vary as
the internal tide travels further from its origin, which may cause an apparent increase in
observed tidal amplitude at one crossover, but a decrease at the next. Regions where sig-
nificant small-scale variability in trend estimates is observed (e.g., 30◦ S, 160◦ W; 20◦ N,
30◦ W; 15◦ S, 50◦ E), correspond to locations where the amplitude of the internal M2 am-
plitude is rather high (Zhao, 2016). On the other hand, regions where the internal M2

amplitude is low (i.e. equatorial Pacific) correspond to regions where spatial variability
in yearly change in M2 amplitude is also low.

On the other hand, part of the observed signal could be related to sea ice decline
(e.g., Haigh et al., 2020). Namely, the observed changes in M2 amplitude around Iceland
(Figure 2.4a) are of opposite sign compared to the March-September amplitude differ-
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ences documented by Bij de Vaate et al. (2021). This indicates that over time the annual
average tide becomes closer to the September case, which is in line with interannual sea
ice decline. This may also explain the increased spatial correlation in observed trends
in M2 amplitudes near the poles. Furthermore, changes in tides have been linked to sea
level rise. For instance, the modelled effect of SLR on M2 amplitudes was found to be
∼ 10 cm/m SLR (e.g., Pickering et al., 2017; Schindelegger et al., 2018). This, given a SLR
of ∼ 3 mm/year since 1990, is of comparable magnitude to the TPJ-derived amplitude
changes in most regions (∼ 0.3 mm/year). However, the modelled M2 amplitude change
under the influence of SLR does not exhibit the large regional variability that was seen in
the altimetry-derived trends, although a number of similarities can be observed on for
instance the North West European Shelf. On another note, the zonal pattern in the S2

amplitude change is striking and not as strong for the other (lunar) tides. If the observed
change is in fact related to the tide and not to other non-tidal processes, this suggests
the causes may be related to radiational forcing. About 15% of the S2 tide is driven by
pressure loading of the ocean (Haigh et al., 2020) and interannual variability in atmo-
spheric pressure could translate into variable S2 amplitudes. Given that atmospheric
pressure fluctuates continuously (Lu and Tu, 2021), it may be that the secular change in
S2 amplitude cannot be accurately described by a linear trend. Finally, although we can
at this stage not draw conclusions on the drivers behind the observed changes in tides,
our findings could be useful for future (modelling) studies on this phenomenon.
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3
SPATIOTEMPORAL VARIABILITY IN

GLOBAL STORM SURGE WATER

LEVELS

Multi-mission satellite radar altimeter data have been used to study the spatial and tem-
poral variability in global storm surge water levels. This was done by means of a time-
dependent extreme value analysis applied to the monthly maximum detided water lev-
els. To account for the limited temporal resolution of the satellite data, the data were
first stacked on a 5◦ × 5◦ grid. Moreover, additional scaling was applied to the extreme
value analysis for which the scaling factors were determined by means of a resampling
method using reanalysis data. In addition to the conventional analysis using data from
tide gauges, this study provides an insight in the ocean wide storm surge properties. Nonethe-
less, where possible, results were compared to similar information derived from tide gauge
data. Except for secular changes, the satellite-derived results are comparable to the infor-
mation derived from tide gauges (correlation > 0.5), although the tide gauges show more
local variability. Where limited correlation was observed for the secular change, it was
suggested that the satellites may not be able to fully capture the temporal variability in the
short-lived, tropical storms, as opposed to extra-tropical storms.

This chapter has been submitted as Bij de Vaate, I., Slobbe, D. C., & Verlaan, M. (2023). Mapping the spa-
tiotemporal variability in global storm surge water levels using satellite radar altimetry. Under review at Ocean
Dynamics
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3.1. INTRODUCTION
Coastal zones are densely populated and subject to higher rates of population growth
than other regions (McGranahan et al., 2007). At the same time, these regions are ex-
tremely vulnerable to many impacts of climate change, one of which is coastal flooding
(IPCC, 2021). The latter is closely linked to the occurrence of extreme sea level events
(ESLs) and observations indicate that such events have increased both in frequency and
magnitude (e.g., Oppenheimer et al., 2019; Wahl et al., 2017). Projections suggest this
trend to continue in the future (e.g., Oppenheimer et al., 2019). While observations in-
dicate that on the global scale, sea level rise is the primary driver behind the increase in
ESLs (e.g., Oppenheimer et al., 2019; Wahl et al., 2017), locally the increase in ESLs may
be amplified or even dominated by climate change induced changes in storminess (e.g.,
Feng et al., 2019; Haigh et al., 2014; Rashid and Wahl, 2020).

The strong winds and low atmospheric pressure associated with (extra)tropical storms
cause a rise in the water level, a so called storm surge (Resio and Westering, 2008). Sev-
eral studies suggest that climate change affects the frequency and severity of (extra)tropical
storms, which may exacerbate the build up of storm surges in the future (e.g., Calafat et
al., 2022; Gori et al., 2022). However, as is stated in the latest IPCC report (IPCC, 2021),
there is overall low confidence in any observed changes in the frequency or magnitude
of storm events and their contribution to ESLs. This is mainly related to the rare and
short-lived nature of the storm events and the large local variability (IPCC, 2021). The
local variability in storm events is particularly important to acknowledge, given that the
observational evidence on storm surges predominantly includes in-situ data from tide
gauges (e.g., Muis et al., 2016). Hence, the information on storm surge water levels is re-
stricted to coastal regions with an uneven distribution across the globe. Consequently, it
is uncertain how storm surges develop on the open ocean or to what extent they are sub-
ject to temporal variability on the global scale. This also affects the validation of global
surge models and any predictions that are made using such models.

In this respect, the use of satellite data may provide a significant contribution to our
understanding. Over the past decades, measurements of the sea surface height (SSH)
have been collected by a series of satellite radar altimeters, providing a record of instan-
taneous SSH with quasi-global coverage (Adebisi et al., 2021). Although the temporal
resolution of satellite altimeters is relatively limited (typical revisit period is 9.9156 days
(Beckley et al., 2021)), previous studies have shown that consequent issues may be over-
come by combining data from multiple missions and applying data stacking (e.g., Bij de
Vaate et al., 2021; Cancet et al., 2015). Up to now, only few studies have been devoted to
mapping storm surges using satellite altimetry over an extended period of time (e.g., An-
dersen et al., 2015; Antony et al., 2014; Ji et al., 2019). These studies have shown that with
adequate data processing it is possible to derive comparable storm surge properties from
satellite data as from nearby tide gauges. However, in these studies the analyses were fo-
cused on specific geographic regions, and it remains uncertain if and how the ability to
derive storm surges from satellite data varies with respect to, for instance, regional dif-
ferences in the nature of storms (e.g., tropical versus extra-tropical) or spatial differences
in data availability from satellite data. Moreover, the aforementioned examples have not



3.2. DATA

3

47

studied temporal changes in storm surges.

In this paper, we present a full ocean-wide mapping of quasi-global storm surge wa-
ter levels and their time-variability. We focus both on seasonal variations and secular
changes in the magnitude of storm surge water levels. In addition, results are com-
pared to similar information derived from a global tide gauge data set. In the following
sections, we first give an outline of the data used in this study, before introducing the
methodology and discussing the results.

3.2. DATA

3.2.1. SATELLITE RADAR ALTIMETRY

This study exploited SSH measurements from eight satellite radar altimeters, that are:
TOPEX/Poseidon and Jason 1-3 (further refered to as TPJ), ERS-1 and ERS-2, Envisat-
1 and SARAL. The data were combined for the full span of the TPJ-satellites, resulting
in 29 years of sea level data (1993-2021). All altimeter data were obtained through the
Radar Altimeter Data System (RADS; Naeije, 2022). The following geophysical and range
corrections were applied (Scharroo et al., 2016): ionosphere (NIC09 for TOPEX/Poseidon
and ERS-1, GIM for others), dry troposphere (ECMWF), wet troposphere (if available: ra-
diometer, otherwise: ECMWF), solid tide (Cartwright and Edden, 1973; Cartwright and
Taylor, 1971), pole tide (Wahr, 1985), ocean tide and load tide (FES2014), mean sea sur-
face (DTU15-MSS), the sea state bias (BM3 for ERS-1 and ERS-2, Tran et al. (2018) for
SARAL/AltiKa and CLS for all others) and the reference frame offset. Data from all satel-
lites were stacked on a rectangular lat/lon grid with variable dimensions (see Section
3.3.2). Subsequently, the dynamic atmosphere correction (DAC) (MOG2d (ERA Interim
forcing)) was used to detect and remove outliers in the time series. Here, data were clas-
sified as outliers when their absolute deviation from the median exceeds three times the
5-day moving maximum of the DAC. Finally, to be able to isolate the effect of variability
in storminess on the ESLs, the yearly mean sea level was removed from the time series by
subtracting their 365-day moving mean. Note that the remaining water level may still re-
flect other processes (e.g., mesoscale variability or non-linear interactions between tides
and surges), but these were assumed to be negligible compared to the actual surge vari-
ability.

3.2.2. TIDE GAUGES

Alongside the altimeter data, data from a selection of tide gauges (obtained from the
GESLA-3 dataset (Haigh et al., 2022)) were processed to allow for a comparison of the
derived surge properties. For this purpose, we only considered tide gauge data from the
period for which satellite altimeter data are available (1993-2021). The temporal reso-
lution of the tide gauge data varies from one minute to one hour, mainly depending on
the country where the stations are located and the time of data acquisition. In contrast
to the altimeter data, the tide gauge data were detided using tidal constants obtained
by means of a harmonic analysis using the UTide-software (Codiga, 2020) instead of us-
ing FES. This was done to remove as much of the tidal signal as possible, thus including
(shallow water) tides not contained in FES, but possibly present at the location of most
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tide gauges. Finally, the time series were referenced to the annual mean sea level by
subtracting the 365-day moving mean from the time series.

3.2.3. REANALYSIS DATA

Reanalysis data were used to compute scaling factors to account for the limited temporal
resolution of the satellite-derived water levels (as described in Section 3.3.2). These data
were obtained from the Global Tides and Surge Model (GTSM; Muis et al., 2016; Wang
et al., 2021), forced by ERA5 reanalysis data. GTSM is a barotropic (2D) model that runs
on an unstructured grid with a resolution that increases from 25 km on the open oceans
to 2.5 km at the coast. GTSM has previously been used for a global reanalysis of storm
surge water levels, where validation using observed time series at tide gauges resulted
in an average RMSE of only 0.11 m (Muis et al., 2016). In this study, time series with a
sampling rate of 10 minutes were reconstructed for the full TPJ-period. This was done
for over 600 locations covering the global oceans. Subsequently, the time series were
detided and referenced to the annual mean sea level in a similar way as was done with
the tide gauge data.

3.3. METHODS

3.3.1. EXTREME VALUE ANALYSIS

Earlier studies that used satellite radar altimetry to observe storm surges typically used a
so-called peak-over-threshold (POT) approach to identify single surge events that exceed
a given magnitude (Andersen et al., 2015; Antony et al., 2014; Ji et al., 2019). While this
is a common approach in extreme value analysis, its use in the presented study would
have one important drawback. Namely, the POT approach relies on a threshold that is
defined a priori, thus prohibiting its use for studying temporal and spatial variability in
surge water levels (as this would require setting separate thresholds for different loca-
tions and periods (Butler et al., 2007)). Another approach that has been used in storm
surge analyses is the so-called block-maxima approach (e.g., Butler et al., 2007; Muis
et al., 2016). Such an approach relies on a relative definition of an extreme value (with
respect to other water levels in the specified block) and can thus be unambiguously ap-
plied to records with varying magnitudes of variability (Butler et al., 2007). Similar to
studies by Méndez et al. (2007), Menéndez and Woodworth (2010), and Lobeto et al.
(2018) on ESLs, we opted for the use of monthly maxima surge water levels (MM) to be
able to study seasonal differences. Then, as was also done in the aforementioned stud-
ies, a time-dependent Generalized Extreme Value Distribution (GEVD) was fitted to the
series of MM . The GEVD (Equation 3.1) is a three-parameter distribution where µ is the
location parameter,σ the scale parameter, and ξ the shape parameter. Depending on the
shape parameter, the GEVD can belong to the Weibull, Gumbel or Fréchet family (Lobeto
et al., 2018). In addition, inspired by Izaguirre et al. (2011), two scaling factors (k1 for the
location parameter and k2 for the shape parameter) were included in the distribution to
account for the reduced and globally variable temporal sampling by the satellites. This
resulted in the following GEVD:
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F (MM) =
{

exp(−[1+ξ( MM−k1µ(t )
k2σ(t ) )]−

1
ξ ) ξ ̸= 0

exp(−exp[−( MM−k1µ(t )
k2σ(t ) )]) ξ= 0

(3.1)

Here the temporal variability was included in µ(t ) and σ(t ) as follows, where ω =
2π year-1 and t is given in years with respect to the center time of the considered data.
α[0,1,2,3] and β[0,1,2,3] were estimated:

µ(t ) =α0 +α1t +α2 cos(ωt )+α3 sin(ωt )
σ(t ) =β0 +β1t +β2 cos(ωt )+β3 sin(ωt )

(3.2)

The model parameters were estimated by means of the maximum likelihood method
as described in Méndez et al. (2007). The scaling factors (k1 and k2) were determined a
priori based on experiments with the reanalysis data (see Section 3.3.2). In addition to
satellite data, high-frequency data from tide gauges were processed in a similar manner
as the satellite data, except the scaling factors which now were excluded from the GEVD.

3.3.2. DATA AVAILABILITY AND SCALING FACTORS
Although we have used satellite data from multiple missions and stacked the data over
larger areas, it is likely that not all storm surges were captured in full magnitude. To ac-
count for this, two scaling factors were introduced in the GEVD. Since we considered
that the predominantly coastal tide gauge data would not be representative for ocean-
wide surge variability, the values of these scaling factors were determined by means of
global reanalysis data. For this purpose, the model-derived time series, introduced in
Section 3.2.3, were sub-sampled to satellite sampling while the start time of the sub-
sampling was incrementally shifted 25 times. Subsequently, for each iteration, the MM
were computed and the GEVD was fitted to the data, including the scaling factors k1

and k2. The optimal scaling factors were determined by minimizing the root-mean-
square-error (RMSE) between the GEVD based on the original high-frequency data and
the GEVD based on the sub-sampled data. Finally, the optimal, location-specific scaling
factors were computed as the median of the values resulting from the 25 iterations. At
the same time, the standard error (SE) of each scaling factor was computed as 1.4826
times the median absolute deviation of the 25 values. This experiment was done for two
different grid sizes (2◦×2◦ and 5◦×5◦) to gain insight in the impact of the size of the area
over which satellite data are stacked, on the ability to accurately capture storm surge dy-
namics. Note that the precise satellite sampling and data availability also varies across
the globe as the satellite tracks converge towards the poles, while on the other hand, the
metric distance between meridians reduces towards the poles and the (seasonal) pres-
ence of sea-ice may hamper measurements of the sea level.

To assess the use of reanalysis data for the computation of the scaling factors on the
open ocean, the same procedure was carried out using a selection of tide gauges that
were located at least 100 km from the continental coastlines. Only tide gauges were used
that have at least multiple years of gapless data. To prevent the validation being affected
by temporal differences in storm surge magnitude, the reanalysis time series were first
trimmed to the exact time span of the tide gauge time series. However, note that the time
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spans of the available data varies per tide gauge, hence truncating the time series may
introduce additional spatial variation in obtained scaling factors.

3.3.3. STORM SURGE CHARACTERISTICS

From the estimated location, shape and tail parameters, the storm surge water levels for
certain return periods of interest were calculated by means of the inverse of Equation
3.1, excluding the scaling factors:

MMT =
{
µ− (σξ [1− (− ln[1− 1

T∗12 ])]−ξ) ξ ̸= 0

µ−σ ln(− ln[1− 1
T∗12 ]) ξ= 0

, (3.3)

where T is the return period in years. In this paper, the surge MM water levels are
shown for a return period of 1

6 years (this approximates the average MM) and for 10 years;
they will be referred to as MM 1

6
and MM10, respectively (where the subscript denotes the

return period). Since we considered a time-dependent GEVD, the value for µ and σ was
first computed based on the fitted α- and β-parameters and t . This allowed for a recon-
struction of a time-varying series of MMT -values from which the surge characteristics
of interest were derived. In this paper, the following characteristics are studied: time-
averaged MMT , seasonal range (difference between maximum and minimum MMT in
the year, excluding the secular change), seasonal phase (month with highest MMT ) and
the secular change (linear trend in MMT ).

3.4. RESULTS

3.4.1. DATA AVAILABILITY AND SCALING FACTORS

The number of data from satellite altimeters that were available per grid cell roughly
equalled 2.5×105 from 40◦ S to 40◦ N, but increased to 3×105 at 60◦ N/S, for the coarse
(5◦ × 5◦) grid. Using the fine (2◦ × 2◦) grid, reduced the data availability by about 83%.
In addition, as mentioned before, the sea ice-affected regions experience seasonal dif-
ferences in data availability. This likely affected the derived storm surge properties. For
this reason, all figures showing satellite data-based results will also show the maximum
sea ice extent during the TPJ-period (derived from NSIDC (2022)), as a reminder to treat
these specific results with caution.

The obtained optimal scaling factors for the coarse grid (5◦×5◦) are shown in Figures
3.1a and 3.1d. Overall, the location parameter (µ) required more scaling in the tropics
(i.e., scaling factor k1 deviates more from 1), compared to higher latitudes. This rela-
tion is less obvious for scaling factor k2. Moreover, the average SE for k1 and the average
RMSE of the obtained GEVD showed a clear latitudinal dependency, with larger errors at
higher latitudes. In addition, as a result of the lower data availability, the analysis on the
fine grid required more scaling compared to the coarse grid (Figure 3.1b, e). Nonethe-
less, the analysis on the fine grid resulted in significantly larger errors than the analysis
on the coarse grid (Figure 3.1c). Based on these results, it was decided to use the coarse
grid for the remainder of the study.
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Figure 3.1: Global estimates of the scaling factors k1 (a) and k2 (d) for the analysis on the coarse grid (5◦×5◦).
Note the difference in color scales used for the two subfigures. The average scaling factors k1 (b) and k2 (e)
including their standard error (patched area) are shown as a function of absolute latitude (linear fit), as well as
the RMSE between the GEVD based on the original high-frequency and satellite-sampled data (c), for both the
fine (2◦×2◦) and coarse grid.

The main findings from the comparison with scaling factors computed from tide
gauge data are presented in Figure 3.2. For the majority of the locations, the differences
between the obtained scaling factors were within the 95%-confidence intervals of these
differences and were thus considered to be insignificant (particularly applied to k2, Fig-
ure 3.2d). For k1, the significant differences mainly concerned higher scaling factors
derived from the tide gauges compared those derived from GTSM, except for some lo-
cations in the Pacific Ocean (Figure 3.2a, c). This implies that the derived surge water
levels would be scaled up more when considering the GTSM-based product (as a lower
scaling factor corresponds to increased scaling). However, for k2, all significant differ-
ences concerned lower scaling factors derived from the tide gauges compared to GTSM
(Figure 3.2d, f). For the majority of the locations, better scaling results were obtained in
the analysis of reanalysis data: that is, the RMSE between the GEVD based on the origi-
nal high-frequency and satellite-sampled data was lower. This particularly applies to the
locations where the tide gauge-derived k1 exceeded the GTSM-derived k1 (Figure 3.2b).

Figure 3.3 visualizes the consequences of using the coarse grid as opposed to the fine
grid by comparing the obtained time-averaged MM 1

6
and MM10 to information derived

from tide gauges. The message is two-fold: 1) using the coarse grid resulted in more
spatial data gaps when a significant portion of a grid cell covered land and was omitted,
and 2) using the coarse grids resulted in more averaging of the surge water levels. This
generally resulted in lower values compared to tide gauges as the ESLs tended to increase
towards the coast. The latter can be clearly seen in the North Sea. However, the opposite
effect was observed in the Skagerrak (the water between Norway and Denmark) where
the fine grid resulted in lower values than the coarse grid.
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Figure 3.2: Difference between the scaling factors k1 (a) and k2 (d) obtained from tide gauge (TG) and reanal-
ysis (GTSM) data for the secular analysis on the coarse grid (5◦ × 5◦). Positive values (red) indicate the tide
gauge-derived factor is larger. Insignificant differences (i.e. that do not exceed the 95% confidence interval of
the difference) have been coloured white. Difference between the scaling factors k1 (b) and k2 (e) as a function
of the RMSE between the GEVD based on the original high-frequency and satellite-sampled data. Absolute
values for the scaling factor k1 (c) and k2 (f) derived from tide gauge and reanalysis data (GTSM). Filled scat-
ters indicate significant differences between the two scaling factors.

Figure 3.3: Time-averaged MM 1
6

(a, b, c) and MM10 (d, e, f) inferred from tide gauge data (a, d), the satellite

data stacked on the fine grid (2◦×2◦ ; b, e) and the satellite data stacked on the coarse grid (5◦×5◦ ; c, f).
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Figure 3.4: Time-averaged MM 1
6

(a) and MM10 (b) inferred from the satellite data (background) and tide gauge

data (scatters). The hatched regions indicate the maximum sea ice extent during the TPJ-period.

3.4.2. TIME-AVERAGED SURGE WATER LEVELS
The time-averaged MM 1

6
and MM10 are visualized in Figure 3.4a and 3.4b, respectively.

Both quantities showed a strong zonal dependency with lower values in the tropics (about
0.25 m for both return periods) and larger values at mid and high latitudes (about 0.6 and
1.2 m, respectively). This pattern was observed in both the satellite-derived and the tide
gauge-derived product. More enhanced surge water levels compared to their surround-
ings were observed in the northwest Atlantic Ocean, the northwest Pacific Ocean, and
the Southern Ocean. In several instances, the surge water level at one tide gauge ex-
ceeded that of surrounding tide gauges and the nearby satellite-derived product (e.g.,
in the Gulf of Mexico and the North Sea). In addition, higher surge water levels were
observed in the sea-ice affected regions, particularly in the Southern Ocean. The corre-
lation between the tide gauge-derived product and the satellite-derived product (inter-
polated to the locations of the tide gauges) was computed as 0.63 for MM 1

6
, and 0.67 for

MM10.

3.4.3. SEASONALITY SURGE WATER LEVELS
As shown in Figures 3.5a and 3.5b, storm surges water levels on the northern hemisphere
were subject to significant seasonal variation (up to 0.4 m for MM 1

6
and 0.75 m for MM10),
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Figure 3.5: Range of seasonal variation in MM 1
6

(a) and MM10 (b) inferred from the satellite data (background)

and tide gauge data (scatters). The hatched regions indicate the maximum sea ice extent during the TPJ-
period.

while this was much less for the storm surges on the southern hemisphere (up to 0.2 m
for MM 1

6
and 0.4 m for MM10). Here, the sea-ice affected region in the Southern Ocean

appeared to be a clear outlier, with a seasonal range in both MM 1
6

and MM10 of 0.75 m
or more.

Overall, the seasonal phase (the month in which the storm surge was the highest)
was found to correspond to the local winter (Figures 3.6). Exceptions were predomi-
nantly observed in the tropical zone, e.g., the Japanese and Philippine Seas (August) and
the Arabic Sea (July). Another striking region was the zonal band in the Pacific Ocean
around 15◦ N where the MM 1

6
was largest in March/April. Moreover, while the overall

pattern in seasonal phase is comparable for MM 1
6

and MM10, that of MM10 showed more

variability in the tropics. Finally, the seasonal phase of the MM in the sea-ice affected
regions corresponds to the month of maximum sea ice extent (March for the northern
hemisphere and September for the southern hemisphere).

The computed correlation coefficient between the satellite-derived product and that
from tide gauges was 0.57 (0.73) for the seasonal range of MM 1

6
(MM10) and 0.53 (0.50) for
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Figure 3.6: Phase (month of maximum) of seasonal variation in MM 1
6

(a) and MM10 (b) inferred from the

satellite data (background) and tide gauge data (scatters). Locations with insignificant seasonality have been
left white. The hatched regions indicate the maximum sea ice extent during the TPJ-period.

the seasonal phases. Differences were predominantly observed along the west coast of
the USA (seasonal range of MM10), in the Arabic Sea (seasonal phase) and Gulf of Mexico
(all variables).

3.4.4. SECULAR CHANGE SURGE WATER LEVELS

Global changes in the MM 1
6

of ∼ 0.25 cm/year were derived across the globe (Figure 3.7).

The trend was predominantly negative, while several mid latitude regions showed an
increase instead. In contrast to the variables addressed above, there was a poor agree-
ment between tide gauge- and satellite-derived yearly trends: the computed correlation
coefficient was only 0.11. An example of a region where there is a consistent mismatch
between the tide gauge- and satellite-derived change in MM 1

6
is the east coast of the

USA. As this region frequently experiences tropical storms (see Figure 3.8), the correla-
tion coefficient was again computed considering only the tide gauges in areas that are
not affected by tropical storms. This resulted in a higher correlation of 0.28. The mis-
match appeared to be partly related to the high local variability in the tide gauge-derived
change or isolated tide gauges (e.g., the tide gauges in the western Pacific that show pos-
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Figure 3.7: Yearly trend in MM 1
6

inferred from the satellite data (background) and tide gauge data (scatters).

Only satellite-derived trends that exceed the 95% confidence interval have been dotted. Tide gauge-derived
trends that were insignificant at the 95% confidence level were excluded from the plot. The hatched regions
indicate the maximum sea ice extent during the TPJ-period.

Figure 3.8: Number of years with data for tide gauges used in the study. The hatched regions indicate the areas
that are affected by tropical storms with wind speeds exceeding 100 knots (derived from Knapp et al. (2022)).

itive trends). In fact, filtering out spatial outliers from the trends derived at tide gauges 1,
increased the correlation up to 0.35 for a radius of 200−220 km. The correlation reduced
again for larger distances. This relation was also observed for the time-averaged MMT

and seasonality variables, albeit with some differences in the optimal distance. Finally,
large negative trends (exceeding 0.5 cm/year) were observed in the sea-ice affected re-
gions.

3.5. DISCUSSION
For the first time, the vast amount of data available from satellite radar altimeters has
been used to map the temporal variability in global storm surge water levels. This has
been done by fitting a time-dependent generalized extreme value distribution (GEVD)
to the monthly maximum (MM) surge water levels. However, in contrast to the in-situ
data that have been widely used to study storm surges, the data from satellite altimeters

1defined as locations where the trend deviates more than two times the MAD from the median trend computed
over all tide gauges within a certain distance
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have a rather coarse temporal resolution. To ensure sufficient coverage of storm events,
the measurements from eight different missions were combined and stacked over areas
of 5◦×5◦. In addition, an experiment based on reanalysis data was performed to obtain
location specific scaling factors that correct for possible bias in storm surge water levels
obtained by the satellites. Subsequently, the time-average storm surge water levels and
their seasonal variation and secular change were derived and compared to the same in-
formation derived from high-frequency tide gauge data.

The main findings presented in this paper are as follows. The time-average MM 1
6

and

MM10 showed a clear zonal pattern, with higher water levels observed at mid and high
latitudes compared to the equatorial region. The largest storm surge water levels were
observed in the northwest Atlantic Ocean, northwest Pacific Ocean, Southern Ocean and
North Sea. These regions correspond to regions with significant mean sea level variabil-
ity (e.g., Dangendorf et al., 2014; Rhines, 2001). As the short-term sea level variability has
not been removed from the ‘surge’ water levels, it is unknown to what extent this affects
the larger magnitude in aforementioned regions. However, these regions do not stand
out when considering the temporal variability in storm surge water levels. The seasonal
variation in the storm surge water levels was particularly large at mid to high latitudes
in the northern hemisphere. The largest seasonality was observed in the sea-ice affected
regions, although there are reasons to question that finding (more will follow). While
the month in which the highest surge water levels were observed generally corresponds
to the local winter, in particular in the tropics, there were some exceptions. Most likely,
this is related to the nature of the storms that are captured. Where extra-tropical storms
typically occur in winter, tropical storms (i.e., hurricanes, cyclones and typhoons) have
a different seasonality (e.g., peak activity in September for the North Atlantic, in August
for Japan (Camp et al., 2015)). Lastly, a predominant negative trend in storm surge water
levels was observed across the domain, except for certain regions at mid latitudes.

The results derived from the satellite data have been compared to a similar product
derived from tide gauges. This comparison can be used to assess the efficacy of satellite
data for storm surge analysis. However, it should be kept in mind that one cannot ex-
pect a perfect agreement between the products derived from both data sources. Firstly,
the tide gauge data are point estimates, while the satellite product is a spatial average.
As was seen in Figure 3.3, the obtained quantities closely depend on the size of the area
that was used for stacking of the satellite data. In addition, not all tide gauge data cover
the full TPJ-period, nor are they gapless. Consequently, given the high interannual vari-
ability in storminess (IPCC, 2021; Weisse et al., 2014), the secular changes derived from
the tide gauges may not be representative for the full TPJ-period.

Nevertheless, reasonable agreement between the tide gauge and satellite-derived
product was observed for the time-average and seasonal properties. However, larger dis-
parities were observed for the secular change. As mentioned, this may be related to the
data availability at the tide gauges, although this mainly affects the tide gauges in south
east Asia and the Gulf of Mexico (Figure 3.8), while discrepancies were also observed
elsewhere. Hence, two alternative reasons are suggested. Firstly, the secular results ap-
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peared to be more dominated by local variability and it is plausible that the change in
storminess at the coast of one island in e.g., the Pacific Ocean, is not representative for
the 5◦×5◦ area that this island is located in. This is supported by the fact that excluding
spatial outliers from the trends derived at tide gauges resulted in a better correlation. On
the other hand, a positive trend in MM 1

6
was observed at a number of tide gauges along

the east coast of the USA, yet not captured by the satellite-derived product. This leads
to the second hypothesis concerning the difference between tropical and extra-tropical
storms. Tropical storms are typically shorter and smaller than extra-tropical storms (Von
Storch and Woth, 2008) and therefore more likely to be missed by the satellite data. This
is supported by the fact that the seasonal phase of the MM 1

6
and MM10 did not every-

where correspond to the local season of tropical storms (Camp et al., 2015), even though
tropical storms surges typically have a larger amplitude than extra-tropical storms (Von
Storch and Woth, 2008). The discrepancies in observed trends along the east coast of the
USA suggest the positive trend may reflect changes in the tropical storms as opposed to
a background negative trend in extra-tropical storms. However, the regional increases in
storm surge water levels around 45◦ N/S are consistent with the observed poleward shift
in tropical storms (IPCC, 2021).

Another apparent limitation of the satellite data is related to the sea ice-affected re-
gions. All studied storm surge properties show rather extreme and unrealistic values in
the regions that are temporally covered by sea ice. In particular, the derived seasonal
phase and secular change suggest that the results in these regions are affected by con-
tamination from reflections of the sea ice rather than the actual water level. Namely,
the seasonal phase corresponds to the period of maximal sea ice extent (September for
the Antarctic and March for the Arctic (NSIDC, 2022)) and in this season one would not
expect significant surge as the water surface can only to a limited extent be disturbed
by the wind. If, however, the data is dominated by reflections from the sea ice, a higher
“water” level is indeed expected during months with maximal sea ice extent. In addition,
the negative trend in surge water levels in the regions suggests contamination by sea ice
reflections. As the sea ice extent reduces over time, the contamination also reduces, re-
sulting in a reduction in extreme “sea” level measurements. In fact, the sea-ice affected
regions would be an interesting study area, precisely because of the significant changes
to the sea ice extent. However, for such a study, a more explicit selection of the radar
returns is required.

Furthermore, the method of obtaining scaling factors using reanalysis data has been
assessed by comparison to a similar analysis using data from a selected set of tide gauges
(Figure 3.2). Overall, a larger spread was observed in the scaling factors derived from tide
gauge data compared to the reanalysis data. In most locations, the differences between
the factors derived from the reanalysis and the tide gauge data appeared insignificant.
For k2, only few significant differences were found, predominantly in regions that are
affected by tropical storms (see Figure 3.8). In all of these cases, the factors derived
from the reanalysis data exceed those derived from the tide gauge data. This suggests
that the obtained surge water levels may be scaled too little. On the other hand, in sev-
eral instances, significantly lower values (thus more scaling) were computed from the
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reanalysis data for scaling factor k1. Although, as this predominantly concerns locations
where the scaling is significantly less successful in the experiment with tide gauge data
compared to that with reanalysis data (higher RMSE, Figure 3.2b), this questions the re-
liability of the tide gauge-derived scaling factors.

Finally, a comparison of the results presented here to findings by earlier studies is un-
fortunately not straightforward, for various reasons. First of all, many studies on changes
in extreme sea level events (ESLs) do not exclude the impact of variability in the mean sea
level (MSL) (e.g., Wahl et al., 2017; Weisse et al., 2014). On the other hand, the study by
Menéndez and Woodworth (2010) (and a follow-up by Marcos and Woodworth (2018))
specifically attempted to distinguish the impact of the MSL on the temporal variability
in ESLs derived from tide gauge records. While by including the MSL an overall increase
in ESLs was observed across the globe, the observed change was predominantly nega-
tive when the MSL was excluded. Although this corresponds to findings presented in
our study, some contradictions were observed for individual tide gauges. Consequently,
a second issue that complicates intercomparisons of results was identified: the times-
pan of the involved datasets. Since the study by Menéndez and Woodworth (2010) was
mainly based on tide gauge data from 1970 up to 2010, it is unknown to what extent any
differences in results are related to the highly variable character of storm surges on in-
terannual time scales. On another note, the seasonal pattern found in their study, did
largely correspond to what was presented in this paper. Finally, while the presented
analysis provides a range of information on storm surge water levels and their tempo-
ral variability, it does not directly allow for any conclusions on changes in the frequency
of storm surges. In that sense it may be of interest to extend the analysis by a type of
peak-over-threshold analysis (as was done in Andersen et al. (2015), Antony et al. (2014),
and Ji et al. (2019)).

3.6. CONCLUSIONS

The data from eight satellite radar altimeters (1993-2021) have been used to study the
temporal and spatial variability in global storm surge water levels. The time-averaged
surge water levels were dominated by a zonal pattern, with higher water levels at mid
and high latitudes compared to the equatorial region. The highest water levels were
observed in the Southern Ocean, northwest Pacific Ocean, northwest Atlantic Ocean
and North Sea. If was found that the surge water levels on the northern hemisphere
were subject to significant seasonal variability. Overall, the maximum storm surge water
levels mainly occurred in the local winter months, that is, except for the tropics where
the seasonal phase showed more local variability. Finally, moderate secular changes of
∼ 0.25 cm/year were derived for the MM 1

6
. The derived changes were predominantly

negative, except for a few mid latitude regions with positive change.

Except for the secular changes, the satellite-derived results were comparable to the
information derived from tide gauges, although the tide gauges showed more local vari-
ability. The poor correlation for the secular change may be related to the change in water
levels being dominated by either changes to tropical or extra-tropical surges. It has been
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suggested that the satellites may not be able to fully capture the temporal variability in
the short-lived tropical storms.

Nevertheless, the results provide valuable information on the spatial and temporal
variability in storm surge water levels, thereby bridging the distance between the many,
yet clustered tide gauges.
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4
SEA ICE AND THE SEASONAL

MODULATION OF THE ARCTIC TIDE

Seasonal modulation of the M2 tide has been quantified for the entire Arctic Ocean and
connected regional seas, using tidal harmonic analysis of water levels derived from Syn-
thetic Aperture Radar (SAR) altimetry. Results are compared to numerical simulations
that model the effect of two limiting cases of seasonal landfast ice cover on the M2 tide.
The largest seasonal modulation (up to 0.25 m) is observed along coastlines and in bays.
Locally, the presence of landfast ice decreases amplitudes, but in some cases, the oppo-
site effect was observed further afield. In most of the Arctic, winter months experience a
later arrival of the tide, except for Hudson Bay where phase advance is observed. Most
of the altimeter-derived seasonal modulation could be explained by the modeled impact
of landfast ice. However, particularly in the Hudson Bay system there is a discrepancy
between model- and altimeter-derived seasonal modulation. This suggests that other sea-
sonal processes are important. Finally, results suggest that the consequences of variations
in Arctic landfast ice are not restricted to the Arctic, but affect tidal water levels on a global
scale.

This chapter has been published as Bij de Vaate, I., Vasulkar, A. N., Slobbe, D. C., & Verlaan, M. (2021). The In-
fluence of Arctic Landfast Ice on Seasonal Modulation of the M2 Tide. Journal of Geophysical Research: Oceans,
126(5), e2020JC016630. https://doi.org/https://doi.org/10.1029/2020JC016630
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4.1. INTRODUCTION
Arctic sea ice is subject to large seasonal variations in extent, thickness, and mobility.
Most of the Arctic region is covered by sea ice in winter months, with a total area of ∼15
million km2; however, this area declines by a factor of three, to ∼4.5 million km2, by
summer (average 2011-2019; (National Snow and Ice Data Center, 2020)). Moreover, in
winter there is about 1.65 million km2 of landfast sea ice, that reduces to near zero in
summer (Li et al., 2020). The presence of landfast ice can significantly affect local hy-
drodynamics as it prevents interaction between the atmosphere and underlying ocean
(Mahoney et al., 2014).

While an ice cover shields the ocean from atmospheric forcing, it also exerts addi-
tional frictional stress on the surface. Early studies demonstrate that drag between wa-
ter and ice results in tidal dampening, especially in coastal zones where ice is relatively
immobile (Godin, 1986; Kowalik, 1981). Kowalik (1981) showed that the presence of sea
ice can lead to tidal amplitude decay and phase delay. More recent studies have looked
specifically into the modulation of tides in the Arctic region in response to a seasonally
varying ice cover and suggest the effect to be substantial; in some regions changing the
amplitude by up to 0.15 m (Kagan and Sofina, 2010; St-Laurent et al., 2008). This implies
that it is insufficient to regard tides as constant throughout the year and ignore the influ-
ence of sea ice, which is done in most operational tide models. For accurate prediction of
Arctic tidal water levels, quantification of seasonal modulation is necessary. In addition,
studies have shown that Arctic tides directly affect North Atlantic tides (Arbic et al., 2004;
Arbic et al., 2007), implying that the influence of Arctic sea ice on tides extends beyond
the Arctic.

Müller et al. (2014) modeled seasonal variations in the M2 tide on a global scale,
forced by annual differences in stratification and sea ice cover. While they incorporated
altimeter-derived sea level data in their study, only in situ data were considered for the
high latitudes. Other numerical studies that focused on the Arctic were often restricted
to a certain region, e.g., the Central Arctic and Russian shelf (Kagan and Sofina, 2010) and
the Hudson Bay system (Kleptsova and Pietrzak, 2018; St-Laurent et al., 2008). In addi-
tion, tide monitoring in the area is limited. Hence, models that link seasonal variations
in sea ice to modification of Arctic tides can only be validated locally and the large-scale
signals remain uncertain.

For the first time, in this paper, the seasonal modulation of the largest tidal con-
stituent M2 is quantified for the entire Arctic. To achieve this, we supplement data from
the sparse set of Arctic tide gauges with data from Synthetic Aperture Radar (SAR) altime-
ters. The latter provide water level information up to 88◦N, including predominantly ice-
covered areas. We then model the effect of landfast ice on the Arctic M2 tide for summer
and winter landfast ice configurations, providing insight in the extent to which landfast
ice is responsible for the Arctic tidal modification. Finally, we use the model to simulate
the global effect of variations in Arctic landfast ice cover, which we then relate to ob-
served seasonal modulation at tide gauges across the globe.
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4.2.1. EVALUATING SEASONAL MODULATION FROM ALTIMETRY
There are very few tide gauges in the Arctic and only some of them have data pub-
licly available. Furthermore, the usage of altimetry to derive tidal measurements is lim-
ited at high latitudes, because this area is not covered by the radar altimeter satellites
that are typically used for this purpose (e.g., TOPEX/Poseidon and Jason (Müller et al.,
2014)). Added to this, the low along-track resolution of conventional low-resolution
mode (LRM) altimeters does not allow for distinguishing between measurements from
the sea ice pack and alternating narrow sections of open water. Therefore, this study
made use of data from two high-inclination satellite altimeter missions: CryoSat-2 (CS2;
Wingham et al., 2006) and Sentinel-3 (S3; Donlon et al., 2012). CS2, launched in April
2010, has a ground coverage up to 88◦N/S, and S3, launched in February 2016, reaches
latitudes up to 81.5◦N/S. The typical cross-track spacing of both satellites is ∼ 50 km at
60◦N and ∼ 18 km at 80◦N. Both missions are equipped with a Synthetic Aperture Radar
(SAR) altimeter that is active over Arctic waters, resulting in a high along-track resolution
(∼ 300 m). The latter is a significant advantage, as it enables obtaining water levels from
leads; i.e., open-water fractures in the sea ice pack (e.g., Schulz and Naeije, 2018; Wer-
necke and Kaleschke, 2015). This allows for more complete and year-round information
on the sea surface height, even in areas that are usually covered by sea ice. Year-round
data are necessary for proper derivation of seasonal variations in tides. Data were col-
lected for the region north of 60◦N, extended by the Hudson Bay area; 50-60◦N, 100-45◦W
(see Figure 4.1). Acquisition times of the used data range from June 2010 to August 2019
(CS2) and from December 2016 to December 2019 (S3).

SAR returns from sea ice, leads, and open water were classified according to a multi-
criteria classification scheme inspired by Poisson et al. (2018) and Schulz and Naeije
(2018) and Wernecke and Kaleschke (2015). The used criteria are specified in Table
4.1. After classification, we retracked the signals of water classes by fitting the SAMOSA
model (Dinardo et al., 2018; Ray et al., 2015). In contrast to conventional open water
retracking, we distinguished two cases. In case of open ocean returns, the epoch t0, sig-
nificant wave height (SWH) and signal amplitude Pu were estimated, while ν (inverse of
the mean-square slope of the sea surface) was set to 0 and not estimated (in line with
Dinardo et al., 2018). However, for leads the sea surface is relatively smooth and we fixed
SWH to 0, while ν was estimated and allowed to be infinitely large.

Compared to satellites that are conventionally used for measuring tides (e.g., TOPEX/Poseidon
and Jason), CS2 and S3 have a long revisit time: CS2 has a 369 day repeat cycle (with a 30-
day sub-cycle) and S3 has a repeat cycle of 27 days. This results in alias periods of 112.1
days (CS2) and 157.5 days (S3) for M2 and does not allow for along-track tidal analysis.
To overcome the low temporal resolution, we stacked the data using a 3◦×1◦ grid (∼ 100
km), following Cancet et al. (2018). Subsequently, the data for each grid cell were com-
bined into one timeseries assigned to the data centroid of the cell. Data were omitted
when less than 1000 observations were available in a cell or when more than 30 sequen-
tial days in the year do not have data in the cell.
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Table 4.1: Multi-criteria classification scheme for SAR return signals, where: sigma0 is a measure for the mag-
nitude of the return signal, PP (Pulse Peakiness) and PPloc describe the normalized power of the peak with
respect to respectively the total reflected power (after Laxon, 1994) and the 10 bins surrounding the peak, Ptail
describes the normalized power in the tail of the return signal and ratioIP the ratio between the power in the
leading edge and the tail. Kurtosis is only considered if a signal fulfills all criteria for a class except the number
of peaks.

Open ocean Leads Sea ice
Sigma0 0 - 10 dB > 25 dB -
PP < 0.065 > 0.25 < 0.15
PPloc < 0.3 - -
Ptail 20 - 45 < 0.5 -
RatioIP - < 0.65 -
No. of peaks 1 1 > 1

or: or:
Kurtosis 5 - 15 - > 12

From the full timeseries (2010-2019) of each grid cell, tidal amplitudes and phases
were estimated using UTide (Codiga, 2020). UTide executes harmonic analysis for a
given set of frequencies similar as in T_TIDE (Pawlowicz et al., 2002), yet it is able to deal
with irregular temporal sampling. The latter is a requirement for processing altimeter-
derived water levels. Tidal constants were estimated for major tides; K1, O1, Q1, P1, N2,
M2, S2 and K2, and the two satellite constituents of M2; H1 and H2. The latter describe
the annual modulation of the M2 tide (Zijl et al., 2016). Thereafter, a yearly signal was
reconstructed based on only M2, H1 and H2. At this stage, the 18.61 year nodal modu-
lations were omitted to eliminate interference with the seasonal amplitude modulation.
From the reconstructed signal, yearly and monthly average amplitudes/phases and the
magnitude of annual variations were computed. Monthly average values were obtained
for March and September for comparisons with model simulations.

4.2.2. EVALUATING SEASONAL MODULATION FROM MODEL

MODEL DESCRIPTION

To obtain the seasonal modulation of M2 under the influence of a seasonally varying
landfast ice extent, we used the operational Global Tides and Surge Model (GTSM) (Ver-
laan et al., 2015). This depth-averaged barotropic model is forced by a full tidal poten-
tial and developed in Delft3D Flexible Mesh on an unstructured grid with 25 km (open
ocean) to 2.5 km (coast) resolution. To prevent a singularity at the North pole (caused
by the regular grid) and an unnecessary refinement near the poles, an unstructured grid
was used with the North Pole being a node in itself and the grid spanning out from there
(see Verlaan et al., 2015). The model uses the GEBCO2019 gridded bathymetry dataset,
which involves IBCAOv3 for the Arctic bathymetry (GEBCO Compilation Group, 2019).
This bathymetry is continually developing, hence, to account for any uncertainties in
the bathymetry an estimation procedure is employed (Wang et al., 2021) which uses a
data assimilation framework with observations for the deep ocean tides obtained from
FES2014 global tide model. The global tide model performance of GTSM was evaluated
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in Wang et al. (2021), and an additional analysis with specific focus on the Arctic is avail-
able in the Supporting Information (Text S1). Atmospheric forcing was not considered
during the simulations.

The effect of sea ice was not included in the version of GTSM described by Wang et al.
(2021). However, a sea ice cover may have a strong influence on the tidal dissipation rate
(Kagan et al., 2007). This dissipation results from the friction between the sea ice and the
underlying ocean and thus depends on the mobility of the sea ice. We have incorporated
this dissipation in the model as an additional frictional shear stress, parameterized with
a quadratic drag law in line with Kagan and Sofina (2010), Müller et al. (2014) and St-
Laurent et al. (2008). The formulation used for ice-ocean shear stress (τi ) is:

τi = ρwCdi ||ui −u||(ui −u), (4.1)

where u is the tidal velocity vector, ui the ice drift velocity vector, ρw the density of sea
water (1024 kg/m3). Cdi is the ice-water drag coefficient whose magnitude varies from
1.32-26.8×10−3 (Langleben, 1982; Madsen and Bruno, 1987; Pease et al., 1983; St-Laurent
et al., 2008). In our study, it was assumed to be 5.5× 10−3 in accordance with McPhee
(1980) and Hibler (1979).

Since GTSM is not coupled to an ice model, it is not possible to obtain ice velocities
at every time step. This limited our capability to compute the shear stress (Equation 4.1)
for non-zero ice drift velocity. However, the state of the sea ice has two bounds: ice-free
surface and fixed ice (landfast ice) (Kagan and Sofina, 2010). In the latter case, the drift
velocity is equal to zero (ui = 0) which makes it possible to evaluate Equation 4.1.

The ice-water frictional stress was introduced only for the regions of landfast ice
cover in the domain. The remaining domain was considered to have no frictional dis-
sipation due to this stress. The regions of landfast ice cover were modeled by means of
polygons outlining their extent (Cancet et al., 2018). These polygons were created using
an updated version of gridded U.S. National Ice Center sea ice charts, at 10 km resolution
(U.S. National Ice Center, 2009).

QUANTIFYING SEASONAL MODULATION

We estimated the effect of landfast ice on seasonal modulation of tides by comparing M2

amplitudes and phases from two model simulations with seasonal limiting cases of fast
ice cover. We followed the approach of St-Laurent et al. (2008) and used the landfast ice
covers of March and September, corresponding to the annual maximum and minimum
landfast ice cover respectively (U.S. National Ice Center, 2009). Here we assumed the
landfast ice induced tidal modification to be strongest in case of maximum landfast ice
cover, and the change in tidal constants between the two limiting cases to be monotonic.
This assumption was supported by a series of simulations based on monthly landfast ice
covers of 2013 (see Supporting Information: Text S2).

To assess the impact of inter-annual variations in landfast ice cover, simulations were
done for 2013 and 2017. These years respectively had, respectively, the maximum and
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minimum fast ice cover within the time span of the considered SAR data (2010-2019) (Li
et al., 2020). In both years there was only a negligible amount of landfast ice cover in
September. Therefore, we considered no fast ice in the September simulations, leading
to the first limiting case of ice-free surface. The March landfast ice-extents are shown in
Figure 4.1.

Figure 4.1: Arctic landfast ice extent for 11 March 2013 (light and dark blue) and 9 March 2017 (dark blue),
obtained from updated datase of U.S. National Ice Center (2009). Note that the ice cover of 2017 completely
overlaps that of 2013. The green outline indicates the domain of our study.

Simulations were done for 29.5 days, preceded by a 7-day spin up time. This period of
29.5 days corresponds to two spring-neap cycles and is sufficiently long for disentangling
M2 from the other tidal constituents involved in the analysis. Note that this period does
not allow accurate separation of S2 and K2, and K1 and P1, as this requires a timespan of
182.6 days (Foreman and Henry, 1989). Although this may have a minor effect on the es-
timation of M2, it will not impact our analysis since we compare amplitudes/phases be-
tween March and September. These months are half a year apart and therefore in phase
with the semi-annual cycle resulting from the superposition of these constituent pairs.
Hourly water levels were saved for the locations of the stacked SAR data (see 4.2.1). Sub-
sequently, tidal constants were estimated using UTide (Codiga, 2020) for the same set of
major constituents as described in section 4.2.1, but excluding H1 and H2. Nodal cor-
rections were applied to eliminate amplitude differences caused by the 18.6 year nodal
cycle. This allows direct comparison between estimated M2 phases and amplitudes from
the different simulations.

To compare model- and altimeter-derived seasonal modulation, root mean square
errors (RMSE) and normalized root mean square errors (nRMSEs) were calculated as fol-
lows, where y represents the considered variable either derived from observations (yobs )
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or from the model (ymodel ) and n the number of observations:

RMSE =
√

1

n
Σn

i=1

(
yobs − ymodel

)2
, (4.2)
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n
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(
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)2
, (4.3)

GLOBAL EFFECT

Finally, to study the impact of seasonal variations in Arctic landfast ice on global tides,
we additionally stored modeled water levels on a 1◦x1◦ global grid (in addition to the lo-
cations of the SAR data). This was done for all simulations mentioned in the previous
section; i.e. March and September, 2013 and 2017. M2 amplitudes were estimated as
described in 4.2.2.

Estimated amplitudes were then compared to March and September M2 amplitudes
derived from a global set of tide gauge records for corresponding years, obtained from
the University of Hawaii Sea Level Center (Caldwell et al., 2015). Monthly amplitudes
were estimated from the tide gauge records using UTide and following the same ap-
proach as was adopted for altimeter data (see 4.2.1). Tide gauge stations with large inter-
annual variation in March-September amplitude differences (standard deviation (std) >
average amplitude difference, based on 2000-2019) and those where the value of the year
in question was an outlier (value > average amplitude difference ±2∗std), were excluded
from the analysis.

4.3. RESULTS

4.3.1. ALTIMETER-DERIVED SEASONAL MODULATION IN THE ARCTIC
Altimeter-derived yearly average M2 amplitudes range from near zero in the Central Arc-
tic to over 1.5 m in Hudson Strait (Figure 4.2a). All tides in the study domain travel anti-
clockwise (Figure 4.2b, see Figure 4.4a for location of amphidromic points).

The total annual seasonal modulation of M2 amplitudes ranges up to ∼ 0.25 m (Fig-
ure 4.2c) with the largest ranges in Hudson Bay, Hudson Strait, Foxe Basin and along the
Russian coastline (see Figure 4.1 for locations). In the Central Arctic, large annual phase
modulations (up to 180◦) were observed, which may be an artifact of very low ampli-
tudes (< 0.05 m, see Figure 4.2a) combined with low data availability during winter (see
Figure S3), disabling proper estimation of phase variations. These data will therefore not
be considered in further analysis (hatched region in Figure 4.2d; 4.5b). The largest vari-
ations in M2 phase occur near the coasts of Russia and Canada (up to 45◦).

The relative magnitude of seasonal modulation, i.e., the total annual modulation
divided by the yearly average M2 amplitude (Figure 4.3b), is largest in the Canadian
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Figure 4.2: Altimeter-derived yearly average M2 amplitude (a) and phase (b) and magnitude total annual mod-
ulation of M2 amplitude (c) and phase (d). Hatched region indicates unreliable phase data that are not further
considered. Data have been interpolated to a stereographic grid for plotting.

archipelago and Bering Sea where amplitudes are relatively low, and smallest in the Euro-
pean seas. The timing of seasonal modulation varies widely across the different regions.
Most of the Canadian archipelago and Russian shelf experience highest M2 amplitudes
in summer months, while in Baffin Bay and the European seas, maximum M2 ampli-
tudes are predominantly observed in winter/spring (Figure 4.3c). In Hudson Bay, there
is a near equal division between regions that experience maximum M2 amplitudes in
winter and in summer. In the Central Arctic and Bering Sea, largest amplitudes are ob-
served in early summer.

In addition, March and September M2 amplitudes are compared directly (Figure
4.3d, 4.5a). Amplitudes are often lower in March than September in the Canadian archipelago
and on the Russian shelf (except for Laptev Sea, see Figure 4.1), while in Hudson Bay and
the Bering Sea there is larger variability. In the Baffin Bay region, amplitude differences
are predominantly positive, except for the Greenland fjords that are covered by land-
fast ice during March (Figure 4.1). Comparing Figure 4.5a with Figure 4.2c shows that
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Figure 4.3: Overview of altimeter-derived seasonal modulation of M2 for different subregions (indicated on the
left). Landfsat ice cover (a) is calculated as the number of data points covered by landfast ice divided by the
total number of data points in each region. Relative seasonal modulation (b) is calculated by dividing the total
annual modulation (Figure 4.2c) by the M2 amplitude (Figure 4.2a). The seasonal distribution of maximum
(c) shows for each month the percentage of data points within the subregion that experience maximum M2
amplitudes during that month. Here, Arctic summer months are displayed in blue and winter months in red,
as they respectively relate to a negative (blue) or positive (red) March-September difference in amplitude (d).
March-September differences (d,e) show the median, 10th and 90th percentiles of all values in the region.

in most of the Arctic the absolute March-September amplitude difference and the max-
imum seasonal modulation correspond closely. However, in Hudson Strait, Foxe Basin,
southern Hudson Bay and the Ob estuary (Russia, see Figure 4.1), there are larger differ-
ences between the two measures (Figure 4.2c, 4.5a). This is in line with Figure 4.3c, where
we showed that in several regions maximum amplitudes are observed in early summer
rather than either March or September.

Figure 4.4: Location of amphidromic points in September and March derived from altimetry (a) and GTSM (b).
Distance between each pair is indicated in gray (km). Hatched region indicates unreliable phase data that is
not considered in further analysis.
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In most of the Central Arctic, the Canadian archipelago and Baffin Bay phase differ-
ences are positive, indicating later arrival of the tide (phase delay) in March (Figure 4.3e,
4.5b). This is in contrast to Hudson Bay, where the phase is predominantly advanced
(negative). Moreover, there are amphidromic points that shift up to 100 km between
March and September: in Hudson Bay to the northeast, and on the Russian shelf to the
west (Figure 4.4a).

4.3.2. MODELED SEASONAL MODULATION IN THE ARCTIC
Modeled seasonal modulation for 2013 (Figure 4.5c, d) compared with altimeter-derived
modulation (Figure 4.6) shows that, although there is larger variability in altimeter-derived
modulation, the predominant observed signal corresponds to the model-derived mod-
ulation in several regions. Altimeter-derived and model-derived differences in M2 am-
plitude between March and September are negative in the Canadian archipelago and on
the Russian shelf, positive in Baffin Bay and close to zero in the Arctic Ocean and Eu-
ropean seas (Figure 4.5c, 4.6a). However, in Hudson Bay - and to a smaller extent, the
Canadian archipelago and Bering Sea - positive differences are not captured well by the
model. This results in large deviation with respect to altimeter-derived values and a large
RMSE (0.21 m) and nRMSE (1.29; Figure 4.6c). While nRMSE values are large for all of the
regions, this can in part be attributed to the larger variability in altimeter-derived mod-
ulation (Figure 4.6a). In addition, model-derived differences in amplitude are in most
cases lower than those derived from observations, by up to 0.1 m (Figure 4.5a, c, Figure
4.6).

Model-derived phase differences correspond relatively well for Hudson Bay (pre-
dominantly negative) and the Canadian archipelago (predominantly positive) (Figure
4.5b, d, Figure 4.6d). In Baffin Bay and the European seas, both model and observations
produce low phase differences, resulting in a small RMSE (≤ 15◦). For the Russian shelf,
Central Arctic and Bering Sea, modeled phase differences have a significantly smaller
spread compared to altimeter-derived differences (up to 20◦). In addition, the extent of
the observed shifts in amphidromic points is not well captured by the model. In fact, in
Hudson Bay the model-derived shift is in the opposite direction compared to what was
observed (Figure 4.4b).
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Figure 4.5: Altimeter-derived differences between March and September M2 amplitudes (a) and phases (b) and
model-derived differences in amplitude (c) and phase (d) for 2013. Bottom figures display the model-derived
difference in amplitude (e) and phase (f) between March 2017 and March 2013 (2017 - 2013; different color
scale). Hatched region indicates unreliable phase data that is not considered in further analysis. Data have
been interpolated to a stereographic grid for plotting.



4

76 4. SEA ICE AND THE SEASONAL MODULATION OF THE ARCTIC TIDE

Figure 4.6: Overview of model performance with respect to altimeter-derived seasonal modulation for the
subregions as in Figure 4.3. March-September differences (a,d) show first the model-derived differences for
each region (2013) followed by altimeter-derived differences as in Figure 4.3. Deviation (b,e) shows the median,
10th and 90th percentiles of modelled March-September differences minus altimeter-derived values. RMSE
and nRMSE (c,f) are calculated according to Equation 4.2 and Equation 4.3 respectively.

The model-derived amplitude and phase differences caused by the smaller landfast
ice cover of 2017 (not shown here) display a similar pattern as in the case of 2013. In most
of the domain, there is little difference between the March amplitudes of both years.
However,the differences are significant in Hudson Bay and nearby regions; up to 0.05 m
(∼20%) (Figure 4.5e). In general, this results in reduced differences between March and
September amplitudes in 2017. Negative differences in amplitude are reduced by up to
0.05 m in Hudson Bay and positive differences in Hudson Bay (east) and Baffin Bay are
reduced by about 0.02 m. Seasonal modulation is larger in 2017 (up to 0.02 m) than in
2013 in the east of the Canadian Archipelago and in Labrador Sea. The east of the Cana-
dian Archipelago is not covered by landfast ice in 2017, while it was in 2013, and has a
lower M2 amplitude in March 2017 than in 2013. This results in a larger amplitude dif-
ference in March with respect to September. In the Labrador Sea, the March amplitude
of 2017 is more positive than that of 2013. In March 2017, Hudson Bay experiences less
phase advance than in March 2013. In the Central Arctic, the Canadian archipelago, Baf-
fin Bay and on the Russian shelf, phase delay is reduced as well. Nevertheless, the effect
of interannual variations in landfast ice cover on model-derived seasonal modulation is
smaller than the differences with respect to altimeter-derived modulation.

4.3.3. GLOBAL EFFECT OF ARCTIC LANDFAST ICE

The modeled effect of seasonal change in landfast ice extent on the seasonal modula-
tion of tides is not restricted to the Arctic (Figure 4.7). Different March and September
M2 amplitudes are derived across the globe, although the values are significantly smaller
south of ∼ 50◦N (up to 0.05 m) than in the Arctic. Overall, the magnitude of amplitude
differences is related to the yearly average amplitude (see Figure 4.8a). However, no sea-
sonal modulation was modeled for the Bay of Bengal (east of India, amplitudes up to 1
m) and some parts of open ocean where amplitudes are relatively large; e.g. the Indian
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Figure 4.7: Difference between March and September M2 amplitude as derived from tide gauge records (cir-
cles) and as modelled under the influence of Arctic landfast ice cover (background map) for 2013 (a) and 2017
(b).

and Pacific Oceans. In contrast, amplitude differences are observed in some regions
with relatively small amplitudes. In these cases the amplitude differences are predom-
inantly negative; e.g., west of northern Africa, southwest of Australia, west of Chile and
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east of Japan (Figure 4.7). There are small differences between the model-derived sea-
sonal modulation for 2013 and 2017. In several regions with a positive March-September
amplitude difference in 2013 (e.g., Gulf of Alaska, Gulf of Biscay and the area north of
Brazil), these differences are up to 0.02 m larger in 2017. In contrast, the positive ampli-
tude difference near Madagascar and west of India is reduced in 2017 by a similar extent.
In other regions where there was a negative March-September amplitude difference in
2013 (e.g., along the coasts of Chile and Antarctica), these differences are reduced by
∼ 0.02 m in 2017.

Figure 4.8: Overview of model performance with respect to tide gauge-derived seasonal modulation globally
for 2013 and 2017 for regions defined in a. The background of a shows the yearly average modeled M2 am-
plitude. No. TG (b, f) depicts the number of tide gauges included in each comparison (outliers excluded).
March-September differences (c, g) show first the model-derived differences for each region followed by tide
gauge-derived differences. Deviation (d, h) shows the median, 10th and 90th percentiles of modeled March-
September differences minus tide gauge-derived values. RMSE and nRMSE (e, i) are calculated according to
Equation 4.2 and Equation 4.3 respectively.

The degree of correspondence between model-derived seasonal modulation and mod-
ulation derived from tide gauge records, varies regionally (Figure 4.7) . Around Europe,
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New Zealand, the Arabian Sea, northern gulf of Alaska (2013), the Antarctic Peninsula
(2013) and along the coast of Chile, the model-derived and observed differences in am-
plitude are of similar sign and magnitude. However, inconsistency is observed in other
regions. For instance, the local variability as observed in the seasonal modulation de-
rived from tide gauges in the waters around east Asia and along the east coast of North-
America, is not present in the modeled signal. Regional examination (Figure 4.8) shows
best agreement between modeled and tide gauge-derived seasonal modulation in Eu-
rope, N-America east, the Indian Ocean and Antarctica (2013). Overall, the agreement is
slightly better in 2013 than in 2017. Nonetheless, this direct comparison highlights ar-
eas where the model largely deviates from observations and the RMSEs and nRMSEs are
large (Figure 4.8e, i). Most noticeable examples are N-America west, the Gulf of Mexico,
South America and East Asia. Model-derived differences between 2013 and 2017 corre-
spond to observed differences for the tide gauges along the coast of Chile, but not for all
tide gauges in the Gulf of Alaska. For the other regions we cannot compare tide gauge
data of 2013 and 2017, since there was no data for either one of the two years.

We studied the seasonal modulation of the Arctic M2 tide based on SAR altimetry-
derived water levels, then linked these to seasonal variations in ice cover using the GTSM.
This resulted in the first observation-based quantification of the seasonal modulation of
the M2 tide for the entire Arctic. Here, we combined data from two high-inclination
satellite missions (CryoSat-2 and Sentinel-3) to ensure full (year) coverage of the Arctic
waters. We stacked data from multiple tracks on a grid basis (following Cancet et al.,
2018) to account for the low temporal resolution and irregular availability of the data.
This approach minimized issues related to inseparable constituent pairs and aliasing,
which would arise in conventional along-track tidal analysis (Cancet et al., 2018; Sav-
cenko and Bosch, 2007).

Altimeter-derived seasonal modulation was compared to earlier studies that com-
puted seasonal variations in M2 amplitudes based on water level records from tide gauges
or temporary pressure sensors. Comparable seasonal changes in amplitude and phase
(magnitude and timing) were observed along the Russian coast (Kulikov et al., 2018);
in most of Hudson Bay (Kleptsova and Pietrzak, 2018; St-Laurent et al., 2008) and in
the Labrador Sea and Canadian archipelago (Kleptsova and Pietrzak, 2018). In northern
Hudson Bay, altimeter-derived differences between March and September amplitudes
were more positive than those derived from in situ data (St-Laurent et al., 2008). This
difference may be caused by interannual variability; where our study is based on altime-
ter data from 2010-2019, St-Laurent et al. (2008) studied sea level data from August 2003
to August 2006.

There have been several attempts to quantify the seasonal modulation of the Arc-
tic M2 tide using tide models, although most of them were focused on the Hudson Bay
area. These studies suggested various magnitudes of seasonal modulation. For instance,
Müller et al. (2014) used a global ocean circulation and tide model (STORMTIDE) with an
embedded sea-ice model and studied the effect of both ice cover variations and changes
in stratification. They suggested a seasonal amplitude change up to 0.15 m (yearly max-
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min) in Hudson Bay. In contrast, Kleptsova and Pietrzak (2018) indicated that variations
in the (total) sea ice cover alone cause a seasonal modulation that is up to tenfold larger.
This is high compared to our altimetry-derived seasonal modulation in the area (0 to
0.25 m; Figure 4.2c). Kleptsova and Pietrzak (2018) attributed the deviation between
their model output and in situ observations to the use of constant boundary conditions
at the eastern entrance of Hudson Strait. St-Laurent et al. (2008) specifically compared
M2 March and September amplitudes (consistent with our approach), obtained from a
3D ocean model coupled to a sea-ice and snow model. According to their simulations,
amplitudes differed up to 0.15 m. This is similar to the values we obtained (Figure 4.5a).
However, they computed a negative amplitude difference in the western part of Hudson
Bay and in Ungava Bay which contradicts the altimeter-derived values. Their outcome
does largely correspond to our model-derived differences in amplitude (Figure 4.5c),
even though our approach was more simplified. In addition, Kagan and Sofina (2010)
modeled seasonal modulation of the M2 tide on the Russian shelf and Central Arctic us-
ing a 3D model with an ice drift module included. Their results are comparable to our
altimeter- and model-derived values for amplitude and our model-derived modulation
of the phase, in terms of magnitude and sign.

In agreement with previous observations and model simulations, the results pre-
sented in this paper show that a landfast ice cover in one location typically leads to local
amplitude decrease (Prinsenberg and Freeman, 1986; Sverdrup, 1927). Moreover, ob-
served and modeled phase advance in Hudson Bay and phase delay in other regions
are in line with earlier theoretical considerations (Prinsenberg and Freeman, 1986). Ac-
cording to the latter, increased friction results in reduced phase velocities and thus a
larger phase lag. However, in Hudson Bay, the interaction between the incoming and
reflected wave causes a change in phase/amplitude patterns, and the net phase is ad-
vanced (Prinsenberg and Freeman, 1986). Amplitude decrease is clearly visible in the
Canadian archipelago and on the Russian shelf where the landfast ice cover is large.
However, in Hudson Bay, Ungava Bay, Labrador Sea and part of Bering Sea, the oppo-
site effect is observed. Here, areas that are not covered by landfast ice show an increase
in amplitude during March, suggesting a complex relation between ice in one location
and a far-field effect on tides in another. This was previously shown by Kagan and Roma-
nenkov (2007), whose modelling study indicated that the ice-covered White Sea caused
an amplitude increase in the ice-free Barents Sea. In Hudson Bay, the observed increase
in amplitude at the western coast and, to a smaller extent in the southern part can be
related to the observed shift of amphidromic points away from these areas. The latter
was not captured by the model and contradicts earlier studies (Kleptsova and Pietrzak,
2018; Prinsenberg and Freeman, 1986). This suggests that the shift might be caused by
other seasonal processes besides variations in landfast ice cover. Moreover, the observed
tidal amplification in Labrador Sea is in line with Arbic et al. (2004), who linked this to
ice cover presence in Ungava Bay/Hudson Strait. In addition, Arbic et al. (2010) showed
that increased friction in Hudson Strait results in increased amplitudes along the North
Atlantic coast. This is consistent with our simulated seasonal modulation and the mod-
ulation derived from tide gauges (Figure 4.7). Figure 4.7 even suggests such effects to
be noticeable on a global scale. However, note that we observed significant differences



4.3. RESULTS

4

81

between model- and tide gauge-derived seasonal modulation (Figure 4.8) in specific re-
gions and that the seasonal modulation derived from tide gauge records is likely the re-
sult of multiple (regional) processes. Regardless, it has been shown that the sensitivity
of the model to landfast ice reaches well beyond the Arctic. We expect that similar (yet
out of phase) responses will be present due to variations in extent of landfast ice around
Antarctica.

Although many of the observed differences in amplitude and phase are to a certain
extent captured by our model, there is no complete agreement. In particular the pos-
itive differences in amplitude (larger amplitudes in March than in September in Hud-
son Bay, Hudson Strait, Bering Sea, Laptev Sea) are not captured by the model. How-
ever, the model only considers the effect of seasonal variations in landfast ice on the
tide and other effects were deliberately ignored. For example, including drifting sea ice
(with strong internal stresses) in the model, may lead to enhanced seasonal modulation.
However, this is not likely to explain the positive amplitude differences in Hudson Strait
as this was also not obtained by St-Laurent et al. (2008), who did consider drifting ice.
In addition to this, for such drifting sea ice the imposition of wind forcing could result
in a different frictional stress at the ice-ocean interface as opposed to the case of drift-
ing ice without winds (Hibler et al., 2006). This might further affect tidal amplitudes
and phases. Wind variations have also been connected to seasonal modulation of tides
on the northwest European shelf (Zijl et al., 2016), but were not included in our model
setup. Finally, as GTSM is a 2D model with assumed uniform density, the effect of spatial
density differences and stratification was not considered. Spatial differences in density
(i.e., baroclinic pressure gradients) influence the movement of water and therefore the
mean water level (Zijl et al., 2013). Especially in the Hudson Bay system, adjustments of
the mean sea level affect local tides (Pickering et al., 2017). Stratification impacts the sta-
bility of a water column and thus the amount of energy lost into turbulent processes. On
the one hand, a stratified water column is more stable, which could result in more pro-
nounced tidal transport and surface tides, compared to well-mixed conditions (Müller,
2012; Müller et al., 2014). On the other hand, stratified conditions have been associated
with the generation of internal tides, which can cause local dissipation of barotropic en-
ergy (Müller, 2012; Müller et al., 2012). Considering these (local) processes could explain
the larger variability in altimeter-derived results. Moreover, the fact that peak ampli-
tudes are more often observed in July/August instead of in September (Figure 4.3c) is
likely related to water properties. While the (landfast) ice cover reaches its minimum in
September, average water temperature is highest and salinity is lowest in August (Steele
et al., 2001).

Differences between altimeter- and model-derived seasonal modulation could also
indicate shortcomings of the study/model. Firstly, model simulations are based on land-
fast ice cover variations of two distinct years, while the altimeter-derived seasonal mod-
ulation is calculated based on the entire water level dataset (2010-2019). This means
that in the altimeter-derived seasonal modulation, interannual variation is averaged out.
However, since model simulations are based on two years representing the maximum
and minimum landfast ice cover within the time span of the data, the altimeter-derived
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seasonal modulation is expected to fall within the range of simulated modulation. Nev-
ertheless, judging by the differences between the simulations for 2013 and 2017 (Figure
4.5e, f), the effect of interannual variations in landfast ice cover is small in most of the
domain. In regions where the effect of interannual variation is significant (e.g., Hudson
Bay), this does not explain the deviation with respect to altimeter-derived modulation.
Secondly, in many Arctic regions, the bathymetry is still largely uncertain, while in some
regions the bathymetry has a large impact on tide modelling. This might be of particular
importance in Hudson Bay and Hudson Strait which display near-resonant properties
(Arbic et al., 2007).

The results presented in this paper indicate the seasonal modulation of the Arctic
M2 tide can be significant (∼20% of amplitude), in particular on shelves and in bays. Our
work suggests that, to a large extent, this modification of the tide can be attributed to
variations in landfast ice cover. The part that cannot be explained by landfast ice cover
variations alone, suggests more research is needed into the impact of other seasonal pro-
cesses. This entails extending the model approach by including drifting sea ice and up-
dating the bathymetry after the newest GEBCO release, that includes the most recent
IBCAO v4 dataset on the Arctic (GEBCO Compilation Group, 2020). Finally, while the
Arctic sea ice cover varies seasonally, it is also subject to significant interannual variabil-
ity and a declining trend (e.g., Kwok, 2018; Perovich and Richter-Menge, 2009; Serreze
and Stroeve, 2015). In our study, the effect of landfast ice on tides was simulated for two
years with maximum and minimum cover since 2011. Although differences in ice cover
between these years are largest in the Canadian archipelago and on the Russian shelf,
the difference in landfast ice cover also alters seasonal modulation of M2 amplitudes in
Hudson and Baffin Bay by up to 0.05 m. This, and the magnitude of the observed re-
lation between seasonal variation in ice extent and tide modification, raises questions
concerning the impact of a continuous Arctic sea ice decline. In particular since we
showed that the effects of sea ice on tides are not restricted to the Arctic, this calls for
further research involving extended use of altimetry data.

4.4. SUMMARY AND CONCLUSION
The seasonal modulation of the M2 amplitude and phase, averaged over the period 2010-
2019, was obtained for most of the Arctic based on SAR derived water levels from two
high-inclination satellite missions, CryoSat-2 and Sentinel-3. Results show significant
variations in tidal amplitude (up to 0.25 m) along the Russian coastline, in the Hudson
Bay system, the Canadian archipelago and Bering Sea. Phase differences of ∼10◦ are ob-
served throughout the domain, with largest differences along the Russian and Canadian
coast (up to 45◦).

In addition, the M2 amplitudes and phases were reproduced for March and Septem-
ber, months with, respectively, the maximum and minimum extent of Arctic landfast
ice. Although an amplitude decrease was observed at most locations where landfast ice
is present in March (e.g. the Russian coastline, Canadian archipelago, south of Hud-
son Bay), in other regions (Hudson Strait and Baffin Bay) the amplitude increased. This
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indicates that landfast ice not only causes local tidal dampening but has an additional
far-field effect on tides. These results were subsequently compared to model simulations
run for two limiting cases of Arctic landfast ice cover: 1) annually maximum landfast ice
cover (March) and 2) no landfast ice cover (September). In many regions model-derived
amplitude and phase differences correspond well to the values that were obtained from
altimetry. However, in certain regions the positive differences in amplitude (larger in
March than in September) are not well captured by the model and simulated phase dif-
ferences are smaller than observed. Further research is required to fully explain the ob-
served seasonal modulation of the M2 tide, where other potential drivers besides varia-
tions in Arctic landfast ice should be considered.

Finally, the impact of variations in Arctic landfast ice on global tides was assessed
by comparing simulated March and September amplitudes to amplitudes derived from
tide gauge records. Modeled amplitude differences are considerable (up to 0.05 m) and
correspond to the observed signal in several regions, but deviate in other regions. This
preliminary analysis emphasizes the importance of further research in the relation be-
tween seasonal variations in sea ice and (global) modification of tides.
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5
CLASSIFICATION METHODS FOR

WATER LEVEL RETRIEVAL IN THE

ARCTIC OCEAN

In the Arctic Ocean, obtaining water levels from satellite altimetry is hampered by the pres-
ence of sea ice. Hence, water level retrieval requires accurate detection of fractures in the
sea ice (leads). This paper describes a thorough assessment of various surface type classi-
fication methods, including a thresholding method, nine supervised-, and two unsuper-
vised machine learning methods, applied to Sentinel-3 Synthetic Aperture Radar Altimeter
data. For the first time, the simultaneously sensed images from the Ocean and Land Color
Instrument, onboard Sentinel-3, were used for training and validation of the classifiers.
This product allows to identify leads that are at least 300 meters wide. Applied to data
from winter months, the supervised Adaptive Boosting, Artificial Neural Network, Naïve-
Bayes, and Linear Discriminant classifiers showed robust results with overall accuracies
of up to 92%. The unsupervised Kmedoids classifier produced excellent results with accu-
racies up to 92.74% and is an attractive classifier when ground truth data is limited. All
classifiers perform poorly on summer data, rendering surface classifications that are solely
based on altimetry data from summer months unsuitable. Finally, the Adaptive Boosting,
Artificial Neural Network, and Bootstrap Aggregation classifiers obtain the highest accu-
racies when the altimetry observations include measurements from the open ocean.

This chapter has been published as Bij de Vaate, I., Martin, E., Slobbe, D. C., Naeije, M., & Verlaan, M. (2022).
Lead Detection in the Arctic Ocean from Sentinel-3 Satellite Data: A Comprehensive Assessment of Thresh-
olding and Machine Learning Classification Methods. Marine Geodesy, 45(5), 462–495. https://doi.org/https:
//doi.org/10.1080/01490419.2022.2089412
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5.1. INTRODUCTION
The Arctic Ocean is highly affected by global warming. The region is subject to temper-
ature changes of about three times the global average (IPCC, 2021), of which the Arctic
sea ice decline is a major consequence. In only two decades, the perennial sea ice cover
has decreased by 50%, and the remainder will likely be lost by 2050 (Kwok, 2018). Since
changes in the Arctic Ocean have a global impact, the region is of great scientific interest.
However, due to the remote location of the Arctic and its relatively harsh environmental
conditions, the availability of observational input is limited. For instance, information
on the Arctic Ocean sea surface height (SSH) is needed for many purposes; from studying
the influence of Arctic glacier melt on the regional sea level (e.g., Cazenave et al., 2019;
Rose, 2013) to monitoring sea ice thickness (e.g., S. W. Laxon et al., 2013; Wernecke and
Kaleschke, 2015). Unfortunately, in situ data are limited to a few tide gauges at the coast
and the presence of sea ice hampers measurements by satellite altimeters. In this re-
spect, Synthetic Aperture Radar (SAR) altimetry provides a solution. SAR altimeters have
a higher along-track resolution compared to conventional radar altimeters (Donlon et
al., 2012), which allows measuring the SSH through fractures in the sea ice, so-called
leads. However, this requires careful discrimination between measurements from sea
ice and leads.

Fortunately, because of differences in the surface characteristics of sea ice and leads,
these surfaces typically cause distinct SAR returns. Consequently, various classification
methods have been developed that use waveform features, which describe the unique
features of the SAR return signal. Empirical methods, reliant on setting thresholds for
these waveform features, have been widely used to classify radar returns (e.g., S. Laxon,
1994; Peacock and Laxon, 2004; Poisson et al., 2018; Zakharova et al., 2015). More re-
cently, machine learning-based classification methods have gained popularity (e.g., Dettmer-
ing et al., 2018; Lee et al., 2016; Muller et al., 2017; Poisson et al., 2018). Machine learning-
based methods can produce higher accuracies as they can overcome shortcomings as-
sociated with the simple thresholding methods, such as failing to deal with waveform
features that contain aliasing between leads and sea ice (Lee et al., 2016).

Despite the promising implementations of machine learning classifiers presented in
earlier studies, some uncertainties remain. Firstly, the aforementioned classifiers and
their performances cannot be directly compared as these studies involve different study
areas, sensors, and validation data. For instance, it is still unknown whether unsuper-
vised machine learning classifiers can outperform supervised learning classifiers. Sec-
ondly, the validation in previous studies was often limited, e.g., to small areas (Dettmer-
ing et al., 2018: the Greenland Sea for unsupervised classification) or few SAR data (Lee
et al., 2016: 239 waveforms). The most important restriction on the extent of validation
is the need to generate ground truth data, which is often done through visual inspection
(Lee et al., 2016; Quartly et al., 2018). As a result, it remains unknown whether the classi-
fier performance is location-dependent. This may, for instance, be due to regional varia-
tions in the prevailing sea ice type (e.g., first-year ice or multi-year ice). Thirdly, seasonal
differences in classification performance are poorly understood, as lead detection meth-
ods are typically only tested on data from winter months. Shu et al. (2020) tested their
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classifier on data from spring (up to May) and showed reduced performance for May
compared to earlier months. In contrast, Dawson et al. (2022) recently obtained compa-
rable performances for the classification of data from winter and summer months.

The main objective of this paper is to provide a comprehensive assessment of lead
detection methods, applied to SAR altimetry. Therefore, supervised- and unsupervised
machine learning methods and a thresholding method are applied to a wide range of
study areas in the Arctic Ocean, to identify the most suited classifier to be applied for
SSH estimation. A key opportunity is recognized in using data from the Sentinel-3 satel-
lites (operated by ESA and EUMETSAT), as these satellites are equipped with a Synthetic
Aperture Radar Altimeter (SRAL) and the Ocean and Land Color Instrument (OLCI). There-
fore, classification methods applied to data acquired by SRAL can be validated using
simultaneously acquired OLCI images. This combination of temporally aligned data
sources is extremely beneficial to the research as it eliminates the need to employ ice
drift models to correct for the relocation of the ice in-between the measurements (Quar-
tly et al., 2018). Although an operator-controlled selection of cloud-free images is re-
quired, most of the validation data generation process is successfully automated. In this
way, a larger study area can be included in the validation. The classifiers are additionally
applied to data from different years and summer months to gain insight into temporal
effects. Finally, as part of the Arctic Ocean is completely ice-free during summer months,
the classifiers are also tested with consideration of data from the open ocean.

In the following sections, we first expand on the Sentinel-3 satellite data that were
used, the procedures that were adopted for generating the ground truth data, the spe-
cific classifiers that were implemented, and the measures that were used to assess the
classifier performance. Thereafter, the different test cases are introduced, followed by
the results and a discussion of the main findings.

5.2. DATA

5.2.1. SYNTHETIC APERTURE RADAR ALTIMETER (SRAL)

This study uses SAR altimetry level 1B data (non-time critical), retrieved by the Synthetic
Aperture Radar Altimeter (SRAL) instrument of the Sentinel-3A and Sentinel-3B satellites
(Donlon et al., 2012). In contrast to conventional altimeters, SAR altimeters obtain a rel-
atively high along-track resolution by applying coherent processing of groups of trans-
mitted pulses, exploiting the Delay-Doppler effect (Raney, 1998). The along-track res-
olution is ∼ 300 m (Donlon et al., 2012). The shape of the returned signal relates to the
roughness and orientation of the surface from which the signal is reflected. For instance,
smooth surfaces such as leads cause specular returns, while rougher surfaces like sea ice
and open ocean result in diffuse reflections (S. W. Laxon et al., 2013; Poisson et al., 2018).
In this paper, the full waveforms (128 data points) were reduced to twelve waveform fea-
tures (see Figure 5.1 and Table 5.1), which were then used as input for the classifiers.
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Table 5.1: Description and equation of the waveform features considered in this study. Here n is the number of
bins that make up the waveform, P the power of an individual bin, the P̄ average power, Pmax the maximum
power, and the standard deviation of the distribution.

Waveform pa-
rameter (Abbre-
viation)

Description Equation

Maximum Power
(MAX)

The maximum power value of the waveform
in counts

-

Kurtosis (kurt) A measure of peakiness of the power distri-
bution (Lee et al. 2016). Kurtosis is a fourth
standardized moment.

kur t = 1
n

∑n
i=1(Pi−P̄ 4

) σ4

Skewness (skew) A measure of how slanted the power distri-
bution is. Skewness is a third standardized
moment.

skew = 1
n

∑n
i=1(Pi−P̄ 3

) σ3

Pulse Peakiness A measure of the peakiness of the waveform.
It is found by dividing the maximum power
by the total accumulated power of the wave-
form (Wernecke and Kaleschke, 2015).

PP = Pmax∑n
i=1 Pi

Waveform width
(ww)

The number of bins surrounding the peak
with a power of at least 1% of the maximum
power (Dettmering et al., 2018) (see Figure
5.1).

-

Leading edge
Width (LeW)

The number of bins before the peak that has
1% to 99% of the maximum power value (see
Figure 5.1).

-

Trailing edge
Width (TeW)

The number of bins after the peak that has
99% to 1% of the maximum power value (see
Figure 5.1).

-

Backscatter Coef-
ficient (sigma0)

The radar backscatter coefficient describes
the surface properties, radar frequency, po-
larization, and incident angle (Wingham et
al., 2006). Sigma0 values are computed as in
Satellites (2011), using the maximum power
from the original waveform.

-

Pulse Peakiness
Left (PPL)

Modified PP, only considering the three bins
on the left of the bin belonging to the maxi-
mum (Ricker et al., 2014).

PPL = Pmax∑imax−1
i=imax−3 Pi

Pulse Peakiness
Left (PPR)

Modified PP, only considering the three bins
on the right of the bin belonging to the max-
imum (Ricker et al., 2014).

PPR = Pmax∑imax+3
i=imax+1 Pi

Pulse Peakiness
Left (PPloc)

Modified PP, only considering the three bins
on the left and three bins on the right of the
bin with maximum power.

PPL = Pmax∑imax−3
i=imax+3 Pi

Number of Peaks
(NrPeaks)

Number of peaks with a peak prominence
greater than 5% and a minimum separation
distance of five bins

-
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Figure 5.1: An example of Sentinel-3 SRAL level 1B waveform return from sea ice. The waveform features
maximum power (MAX), leading edge width (LeW), trailing-edge width (TeW), and the waveform width (ww)
are presented in the figure.

5.2.2. OCEAN AND LAND COLOR INSTRUMENT (OLCI)
Optical images taken by the Ocean and Land Color Instrument (OLCI) onboard the Sentinel-
3 satellites were used to create ground truth data for the training and validation of the
SAR altimetry-based classification. OLCI is a push-broom imaging spectrometer that
contains 21 spectral bands (Oa1–Oa21) ranging from 400 nm to 1020 nm (Donlon et al.,
2012). This study used the level 1B product, which consists of top of atmosphere radi-
ances, calibrated to geophysical units (Wm-2 sr-1mm-1), georeferenced onto the Earth’s
surface, and spatially resampled onto an evenly spaced grid (Donlon et al., 2012). Pseudo-
color images were constructed using three spectral bands from the OLCI data, which
are; Oa3 (442.5 nm), Oa5 (510 nm), and Oa8 (665 nm). In these images, water surfaces
(leads/open ocean) can be identified as darker areas (lower radiance value) compared
to the brighter ice sheets. The images have a spatial resolution of 300× 300 m (Don-
lon et al., 2012), which thus limits lead detection to leads that are at least 300 m wide.
Nevertheless, the use of these images provides a common ground to compare different
classification schemes.

5.2.3. STUDY AREAS AND DATES
The selection of SRAL tracks was based on the different experiments (see section Experi-
mental Set-up) and the availability of cloud-free OLCI images (manually selected). In to-
tal, 35 OLCI images and 18,242 SAR waveforms were collected (see Figure 5.2). The polar
nights and reduced lighting conditions experienced in most winter months restricted the
use of OLCI data to images from March, April, and summer months. For the experiments
with the extra open ocean class, an additional track was used that crosses the Atlantic
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Ocean from 50◦ S to 50◦ N (sensed on August 19, 2021). It was assured that the ocean
dataset covers various significant wave heights (SWH; Timmermans et al. (2020)) as the
SWH determines the curvature of the leading edge of the SAR waveforms and thereby
directly affects some of the waveform features (Fenoglio-Marc et al., 2015). Moreover, it
was checked that the data were not corrupted by sea ice or land reflections and there-
fore, no optical data was required for creating the ground truth data. In total, 10,862
open ocean waveforms were included.

Figure 5.2: The Sentinel-3A/3B SRAL tracks from March 2017 to July 2020 that are used in this paper. Source:
Authors.

5.3. METHODS

5.3.1. GENERATION OF GROUND TRUTH DATA
Before testing the classifiers, the SRAL data needed to be labeled according to the ground
truth. This procedure relied on a two-step processing of the OLCI product. Firstly, the
pseudo-color images were converted to binary images, where each pixel was defined as
either lead or sea ice. The following procedure was adopted, inspired by Hamada et al.
(2019):

1. The study areas were cropped to smaller sections surrounding the SRAL tracks
spanning about 0.60◦ longitude. This was mainly done to reduce the impact of
clouds in unused sections of the images on the image segmentation and instead
focus on local along-track radiation differences.
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2. The images were segmented using Kmeans clustering, considering two clusters
(K = 2). This algorithm assigns each pixel to the nearest cluster using the radi-
ance values, while minimizing the total distance to the mean of the clusters. This
resulted in binary images.

3. Each point of the SRAL track was assigned a class based on the majority vote of the
three closest pixels on the binary images. Three pixels were used to determine the
class label because the SRAL data may reflect the surface properties of a combina-
tion of pixels, especially when the SRAL data point is located on the edge of a pixel.
SRAL data points at the edges of the cropped images were omitted.

Because this approach to image segmentation relies only on local radiance differ-
ences, this method allows for an efficient and flexible application to different study ar-
eas. It is not necessary to adjust the approach to correct for e.g., differences in lighting
conditions. In Figure 5.3, two examples of a segmented binary image (b, d) are shown
next to their original images (a, c). In some instances, small-scale irregularities in radi-
ance intensity (e.g., due to the presence of small clouds) caused the image segmentation
to incorrectly label some pixels. Therefore, a second step was implemented that labels
pixels based on relative along-track changes in radiance, as follows:

Figure 5.3: Examples of OLCI images (a, c) and their binary images after the image segmentation scheme (b,
d). The red line shows the Sentinel-3 ground track. The optical images were taken on 15/04/2018 (a) and
13/04/2019 (c). For both examples, the radiance along the ground track for OLCI band Oa3 is shown below (e,
f). The colored parts of the line indicate possible leads.
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1. The OLCI radiances were interpolated to each SRAL data point.

2. Maximum and minimum peaks in the radiance series were identified as data sam-
ples that are, respectively, higher or lower than both neighboring samples.

3. Minimum peaks whose value does not exceed 2% (empirically determined) of the
value of the preceding maximum peak were considered to be leads (see Figure 5.3e,
f).

This second step helped to properly label points close to the edge of the leads. SRAL
data were only labeled as leads in the ground truth data when this followed from both
steps of the procedure. This resulted in a total of 11,762 sea ice and 2,961 lead data
points. 3,519 waveforms were rejected.

5.3.2. CLASSIFIER CONFIGURATION AND PERFORMANCE ASSESSMENT
A total of twelve classifiers were assessed in this study, including nine supervised ma-
chine learning classifiers, two unsupervised machine learning classifiers, and one thresh-
olding classifier (listed in the next section).

WAVEFORM CLASSIFIERS

The following classifiers were implemented in MATLAB®, using functions from the Statis-
tics and Machine Learning toolbox and the Classification Learner application.

Supervised Machine Learning Classifiers
Supervised machine learning classifiers infer a model from labeled training data, con-
sisting of waveform features (cohesively referred to as the feature space) and the corre-
sponding classes. Subsequently, the model is used to predict the classes of a new set of
waveform features. The following nine supervised learning classifiers were tested in this
study:

• Decision tree-based classification: various tree-based models have been applied
to the classification problems and have shown promising results in many remote
sensing applications (Shu et al., 2020; Xu et al., 2014), including lead detection
(Lee et al., 2016). One can distinguish between single decision tree classifiers and
tree-based ensemble classifiers that combine many classification trees for better
and more robust predictions (Hastie et al., 2009). Ensemble tree classifiers are
built with many decision trees in parallel (bagging) or sequence (boosting). For
this paper, we implemented four types of tree-based classifiers with varying model
complexities:

– The decision tree (DT) consists of a recursive partition of the input data in
a single tree-like structure. At each split, a decision is made based on the
input features and the new branches represent the possible outcomes, ulti-
mately leading to the final class labels. DT algorithms develop conditions at
each split such that the error of class labels is minimized and a meaningful
relationship between a class and the values of its features can be captured
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(Quinlan, 1986). The tuning parameters of this classifier include the maxi-
mum number of splits and the type of split criterion that is used to evaluate
the effectiveness of a split (Tangirala, 2020).

– Bootstrap Aggregation (Bagged) relies on building many decision trees based
on random subsets of the training data (bootstrapping). The final classifi-
cation is then determined using the average of all predictions from different
trees. This reduces the sensitivity to the training data, and reduces variance
and over-fitting compared to DT and boosting ensembles (Breiman, 1996).
The tuning parameters include the maximum number of splits, number of
trees, and learning rate.

– The Adaptive Boosting (AdaBoost) is an ensemble classifier that attempts to
improve the model by iteratively combining DTs (Freund and Shapire, 1999).
With each iteration, AdaBoost assigns higher weights to misclassifications. In
contrast to the Bagged classifier, the boosting method increases the complex-
ity of the model to primarily reduce the bias and reduce any under-fitting of
the training data (Breiman, 1996). The tuning parameters include the maxi-
mum number of splits and the number of trees.

– RUSBoost is another boosting method that applies random undersampling
(RUS) of the data. Samples from the larger class are randomly removed to
ensure a given ratio between the amount of data per class. This improves
classification performance, especially for data sets with uneven class sizes
(Seiffert et al., 2008). This method can be promising due to the smaller num-
ber of leads compared to sea ice data points in the dataset. Tuning parame-
ters include the maximum number of splits, number of trees, learning rate,
and class ratio.

• Artificial Neural Network (ANN): ANN is one of the most popular machine learn-
ing methods and has been earlier applied to waveform classification (e.g., Pois-
son et al., 2018; Shen et al., 2017). In this paper, a simple feedforward network
was used that consists of an input layer (observations), a few hidden layers, and
an output layer (assigned classes). Each layer consists of several so-called neurons
that are connected with neurons from adjacent layers (Grossi and Buscema, 2007).
The tuning parameters include the number of layers, layer size, and the activation
function (e.g., ReLu, tanh, or sigmoid (Zhang et al., 2018)).

• Naive Bayes Classifier (NB): Bayesian classifiers determine the probability of the
occurrence of a class based on a particular set of waveform features (Friedman et
al., 1997). The NB classifier is a simple form of a Bayesian classifier that assumes
all waveform features to be conditionally independent of each other. This assump-
tion is untrue in many real-life problems (amongst which the problem at hand:
see Appendix J), yet the NB classifier has performed excellently in many applica-
tions, including waveform classification (e.g., Shen et al., 2017; Zygmuntowska et
al., 2013). The tuning parameters include the predictor distribution.

• Linear Discriminant (LD): In LD Analysis, the set of features that are used as input
for the classifier (e.g., waveform features as in Table 5.1) is dimensionally reduced,
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such that variability between the classes is maximized, while variability within the
classes is reduced (Qin et al., 2005). Subsequently, classes are assigned based on
linear boundaries drawn within the new feature space. The tuning parameters
include the type of covariance matrix (full or diagonal) that is estimated from the
features.

• Support Vector Machine (SVM): in SVMs, the original feature space is non-linearly
transformed into a higher dimensional feature space. Then, an optimal hyper-
plane that separates the data from different classes is found (Xu et al., 2014). Tun-
ing parameters include the kernel function that is used to transform the data (i.e.
linear, polynomial, or Gaussian (Savas and Dovis, 2019)), kernel scale (scaling pa-
rameter for the input data), and box constrained level (penalty factor for misclas-
sification).

• Nearest Neighbors (KNN): KNN finds the k number of data points of which the fea-
tures are closest to the point to be classified. Then, this point is given the majority
class of the k closest points (Shen et al., 2017). This classifier is widely used because
of its simplicity. Tuning parameters include the number of neighbors (k) and the
distance metric that is used to determine the distance between data points.

Unsupervised Machine Learning Classifiers
Unsupervised machine learning algorithms do not require the input data to be labeled
but cluster the dataset based on similarities in waveform features. This is particularly
beneficial in case the generation of ground truth data is relatively time-consuming or
restricted by data availability, such as in the problem at hand. However, unsupervised
classification requires the user to manually assign a class to each cluster (Dettmering et
al., 2018). For this study, the following unsupervised learning classifiers are adopted:

• Kmedoids: This type of clustering has been successfully applied to lead detection
from SAR altimetry by earlier studies (e.g., Dettmering et al., 2018; Muller et al.,
2017). This classifier essentially breaks up the data in K clusters while minimiz-
ing the distance of all data points to the center of the cluster (called the medoid)
(Kaufman and Rousseeuw, 1987). Kmedoids clustering assumes that for each clus-
ter, the distribution of the data in the feature space is spherical (i.e. the variance
of different features is of similar magnitude) and cannot handle otherwise shaped
clusters (Bindra and Mishra, 2017). The number of clusters (K) is the only tuning
parameter for this classifier.

• Agglomerative Hierarchical Clustering (HC): This clustering technique initially con-
siders all individual samples as a cluster and iteratively merges the two closest
clusters. The linkage function describes the distance between the clusters. This
can for instance be the smallest/furthest distance between individual elements
or the group average distance between the two clusters (Murtagh and Contreras,
2012). The tuning parameters include the final number of clusters (K) and the
linkage function. This type of clustering can better handle non-spherical data but
is typically more time-consuming and more difficult to optimize than Kmedoids
(Bindra and Mishra, 2017).
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Thresholding Classification
A thresholding method uses threshold values for each waveform feature (see Table 5.1)
to classify the samples. This method has been widely used for lead detection in the past
(S. W. Laxon et al., 2013; Peacock and Laxon, 2004; Rose, 2013; Schulz and Naeije, 2018).
The thresholding values are typically selected empirically or determined by solving an
optimization problem to maximize the accuracy (Wernecke and Kaleschke, 2015). The
latter approach was adopted in this study (see Appendix G for more details).

CLASSIFIER CONFIGURATION

Before assessing classification performance, the classifiers were configured by finding
the optimal set of waveform features (Table 5.1) and classifier tuning parameters (see
section Waveform Classifiers) using an iterative procedure. First, the classifiers were op-
timized individually by using all waveform features and adjusting the tuning parameters
to maximize overall classification performance (see also section Classifier Performance
Assessment). Then, using these optimized classifiers, the set of waveform features with
the best predictive capacity was selected by running the classifiers with different com-
binations of features and again assessing the classification performance. Once the final
waveform features were selected, the classifier settings were again tuned to maximize
their performances. The final input settings (both waveform features, and classifier tun-
ing parameters) were kept constant throughout the study. After this configuration phase,
a preliminary comparison of the classifiers was conducted to limit the number of classi-
fiers to be compared. Classifiers that performed significantly worse than the others were
omitted at this stage.

CLASSIFIER PERFORMANCE ASSESSMENT

During subsequent phases of the experiment, classifier assessment consists of a train-
ing and testing phase. For the assessment of supervised classifiers (SUP), the total con-
sidered dataset is split into training data (typically 80% of the dataset) and testing data
(20%). During the training phase, the total misclassification cost was minimized, where
equal weights were assigned to the misclassification of all considered classes. A five-
fold cross-validation technique was used to quantify the training performance (Xu et
al., 2014). With this technique, the training dataset was randomly divided into five sub-
sets, of which four were combined and acted as the training set while the remaining one
acted as the testing set. This was repeated five times and the final performance score
was determined by averaging the classification accuracy of the five iterations (Xu et al.,
2014). The training phase for the unsupervised machine learning algorithms consisted
of applying the algorithm to the training dataset. The classifier subsequently found the
clusters and assigned a class to each cluster based on user input.

During the testing phase of the supervised classifiers, the trained models were ap-
plied to the testing data set. For the unsupervised classifiers, the KNN algorithm was
applied to the testing dataset such that to each sample, the class of the closest cluster
of the training dataset was assigned. For the threshold classifier, there was no training
phase as the data were directly classified on the basis of the optimized thresholds (Ap-
pendix G).
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The performance of both the supervised, unsupervised, and threshold classifiers was
assessed according to the following measures:

1. The overall accuracy is defined as the total number of correct classifications as a
percentage of the total number of samples.

2. The true positive rate, or sensitivity, measures the proportion of positives that are
correctly classified (Flach 2016). In this study, the True Lead Rate (TLR) is used,
which takes leads as the positive class. The True water Rate (TwR) is also used,
which takes all water surfaces (leads and open ocean) as the positive class. Ideally,
the TLR and TwR should be as high as possible.

3. The false positive rate measures the number of samples that are incorrectly clas-
sified as positive over the total number of positive data points according to the
ground truth data (Flach, 2016). In this study, the False Lead Rate (FLR) and the
False water Rate (FwR) were used. To reduce SSH errors due to misclassification of
water surfaces, minimal FLR and FwR are pursued.

4. Receiver Operating Characteristic (ROC) graphs show a trade-off between the true
positive rate and the false positive rate. The area under the curve (AUC) provides
an overall performance measure. An AUC value of 1.0 suggests a perfect classifier,
whereas an AUC value of 0.5 indicates the classification is equivalent to random
guessing (Flach, 2016). For supervised learning classifiers, ROC graphs show the
classification results as a function of the decision threshold that is used when as-
signing data to different classes based on the probability that the sample belongs
to that class (Flach, 2016). ROC graphs for unsupervised learning and thresholding
classifiers were generated by adjusting the tuning parameters (see section Classi-
fier Configuration) (e.g., Dettmering et al., 2018; Muller et al., 2017).

5.3.3. EXPERIMENTAL SET-UP

To assess the performance of the different classifiers under varying circumstances, the
tuned classifiers were applied to different data. The specific division of the data is sum-
marized in Table 5.2. Note that the division depends on the algorithms that are used. The
general performance during the winter (MAR/APR) was analyzed using the D-01 data
set. Datasets D-02 and D-03 were used to assess the impact of using training data from,
respectively, a different year or different areas on the classifier performance. This has
practical relevance for the supervised machine learning algorithms because the avail-
ability of ground truth data is typically limited. Summer performances were studied with
the D-04 data set that includes only data from summer months (MAY/JUN/JUL). Finally,
the influence of the inclusion of observations from the open ocean was studied with the
D-05 data set. If not otherwise specified, the training and testing data were created by
randomly selecting 80% and 20% of the original data set. As unsupervised learning and
thresholding classifiers do not require any labeled data, these algorithms were directly
applied to the testing data, such that their performances could be compared to super-
vised learning classifiers.
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Table 5.2: Description of data divisions for different test cases.

Name Purpose Description
D-01 Assess the general perfor-

mance of classifiers
Randomly takes 80% data for training and 20%
data for testing from all data. Excludes 2020 –
MAY/JUN/JUL (see Figure 5.2) and the Atlantic
Ocean track.

D-02 Analyze possible temporal
biasing (interannual)

Supervised: uses 2017 – MAR and 2017 – APR as
training data to test the rest of the data. Excludes
2020 – MAY/JUN/JUL and the Atlantic Ocean track.
Unsup./Threshold: Apply the algorithm to the test
data set.

D-03 Analyze possible regional
biasing

Supervised: Uses data from below 80°N and between
150◦ E - 240◦ E as training to test data lying above
80°N and between 120◦ E - 150◦ E. Excludes 2020
- MAY/JUN/JUL and the Atlantic Ocean track. Un-
sup./Threshold: Apply the algorithm to the test data
set

D-04 Analyze possible temporal
biasing (seasonal)

Randomly takes 80% data for training and 20% data
for testing from 2020 – MAY/JUN/JUL

D-05 Analyze the impact of ad-
ditional open ocean class

Randomly takes 80% data for training and 20%
data for testing from all data. Excludes 2020 –
MAY/JUN/JUL but includes the Atlantic Ocean track.
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5.4. RESULTS

5.4.1. CLASSIFIER CONFIGURATION
Following the optimization procedure described in section Classifier Configuration ap-
plied to all winter data (i.e., D-01, Table 5.2), the following waveform features were se-
lected to be used in the remainder of the analysis: MAX, skew, ww, PP, and PPloc. Con-
sidering each of these features individually produced consistently high accuracies for all
classifiers (see Appendix H). The combination of the five features further improved the
performance, yet the addition of more features had little effect (Figure H.1).

Figure 5.4: ROC graphs of supervised (a) and unsupervised (b) classifiers during the training phase of the D-01
data division. The ROC graphs of supervised classifiers are obtained by varying the discrimination threshold
(see section Classifier Performance Assessment). The ROC graphs of the unsupervised classifiers are obtained
by adjusting the number of clusters (K) as shown in the legend (b). Note the different limits on the axes.

With this set of five waveform features, the optimal settings for each classifier were
determined (as described in section Classifier Configuration). The optimal number of
clusters (K) for the unsupervised classifiers was determined based on the ROC graphs as
depicted in Figure 5.4b. This figure shows that a small number of clusters (K = 5) relates
to a high FLR and low TLR, while for a higher number of clusters (K > 5), there is no clear
correlation between cluster size and classifier performance. The HC classifier produces
the same results for some of the clustering sizes (e.g., K = 5,10 or K = 15,20,25,30), indi-
cating this classifier is inflexible. The selected settings for all classifiers are displayed in
Table 5.3.

Based on the ROC graphs obtained during classifier configuration (Figure 5.4), the
DT and SVM classifiers were excluded from the analysis since they produced lower AUC
values (0.88 for SVM and 0.91 for DT) than the other supervised classifiers (all 0.94). Re-
garding the unsupervised classifiers, the Kmedoids classifier shows the best results as it
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Table 5.3: Classifier settings, where n is the size of the training dataset and f the number of predictors.

Classifier Settings
DT Maximum number of splits = 100, Split criterion = Gini index
Bagged Maximum number of splits = n −1, Number of trees = 30
AdaBoost Maximum number of splits = 100, Number of trees = 30, Learning rate

= 0.1
RUSBoost Maximum number of splits = 20, Number of trees = 30, Learning rate =

0.1, Class ratio = 1:1(:1)
ANN Fully connected layers = 1, Layer size = 10, Activation = ReLU, No regu-

larization
NB Predictor distribution = Gaussian
LD Covariance structure = Full
SVM Kernel function = Gaussian, Kernel scale = 1

4

√
f , Box constrained level

= 1
KNN Number of neighbors k = 100, Distance metric = Euclidean
Kmedoids Number of clusters K = 15
HC Number of clusters K = 40, Linkage = farthest distance
Threshold Classify as leads if MAX > 3000 counts, PPloc > 0.55, ww < 45 bins,

PP > 0.24, and skew > 7. Classify as ocean if: MAX: 500-1500 counts,
PPloc: 0.2-0.35, ww: 85-110 bins, PP < 0.1, and skew: 1.5-3.5. Else: sea
ice (see Table 5.1 for abbreviations).

consistently obtains higher TLR values than the HC classifier (Figure 5.4b). Therefore,
the HC classifier was also excluded from further analyses.

5.4.2. CLASSIFICATION PERFORMANCES FOR WINTER DATA (D-01 - D-03)
Classification performances obtained from the test cases with data from winter months
are shown in Figures 5.5a and c. In Figure 5.5a, the best performances are connected to
create an optimal front. Classifiers on this front obtain the highest TLRs for a given range
of FLRs and are therefore perceived to outperform classifiers that are located away from
the front. The best choice out of all classifiers that are located on the front depends on
user preferences regarding the FLR. KNN, AdaBoost, and LD show the best results from
the general performance test (D-01) as they are all located on the optimal front. However,
there is little difference between these three and most other classifiers. The Threshold
and Bagged classifiers are located away from the optimal front, indicating that they per-
form worse than the others. While RUSBoost is located on the optimal front with the
highest TLR, it also achieved the highest FLR, which explains the lower overall accuracy
(Figure 5.5c).

Most of the supervised learning classifiers do not suffer significantly when they are
trained with data set from another year (D-02). Most classifiers are still part of the op-
timal front or very close to it. However, the Bagged and KNN classifiers perform poorly
when trained with data set from another year. Lastly, the test concerning possible re-
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Figure 5.5: ROC graph showing classification performances for D-01, D-02, D-03 (a), and D-04 (b) (see descrip-
tion of test cases in Table 5.2). The marker style depicts the classifier, and the colors are used to differentiate
between different study cases. The grey line in (a) shows the optimal front, while the grey line in (b) simply
connects FLR=TLR = 0 and FLR=TLR = 100. Note the different limits on the axes. Overall classification accura-
cies [%] are shown in (c).

gional biasing (D-03) resulted in improved overall accuracy for most of the classifiers
(up to 1.2%, Figure 5.5c). However, the performance of the supervised classifiers was re-
duced in terms of lead detection (Figure 5.5a). This indicates that these classifiers may
perform slightly worse when they are trained with data sets from different study areas.

5.4.3. CLASSIFICATION PERFORMANCES FOR SUMMER DATA (D-04)

All classifiers perform relatively poorly when applied to summer data (Figures 5.5b and
c). Classifiers in the lower FLR range (<20%) produce very low TLRs (under detection):
AdaBoost, Bagged, ANN, KNN, NB, and LD, while classifiers with a higher TLR also pro-
duce high FLRs (>40%; overdetection): RUSBoost, Kmedoids, and Threshold. All classi-
fier performances are very close to the diagonal line in Figure 5.5b, indicating that the
classifiers are not much better than random guessing. Especially, the Kmedoids and
Threshold classifiers produce extremely low overall accuracies (Figure 5.5c).
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5.4.4. CLASSIFICATION PERFORMANCES WITH ADDITIONAL OPEN OCEAN

CLASS (D-05)
Finally, to allow for increased reliability of SSH estimation by the inclusion of open water
samples, the classifiers were additionally assessed with consideration of this third class.
When overall accuracy is considered, most classifiers do not suffer from the addition of
the open ocean class (Figure 5.6a). Only the LD and Kmedoids classifiers perform signifi-
cantly worse in the D-05 test case. However, regarding the distinction between leads and
sea ice waveforms, all classifiers perform slightly worse (higher FLRs; Figure 5.6b). This
effect is most pronounced for LD, NB, RUSBoost, and especially Kmedoid. The TwRs are
relatively high for most classifiers except for LD and Kmedoids, which also produce very
high FwRs. In all cases, the real FLRs, which compares both sea ice and ocean wave-
forms against leads (Figure 5.6b: dashed line+dot), are lower than when ocean data are
excluded from this measure. This indicates that a negligible number of ocean waveforms
are misclassified as leads.

Figure 5.6: Overall classification accuracies [%] for D-01 and D-05 (a), complemented by ROC graphs show-
ing classification performances (b). The D-05 results are plotted in three ways: using the TLR and FLR that
compare lead classifications to sea ice classifications (black) to allow direct comparison with the D-01 results,
the actual TLR and FLR that compare lead classifications to sea ice and ocean classifications (dashed line+dot)
and the TwR and FwR (red) that compare lead and ocean classifications to sea ice classifications. Note that the
FwRs of LD and Kmedoids are outside plot limits.

5.5. DISCUSSION
A wide range of classification methods was assessed for lead detection in the Arctic Ocean
from Sentinel-3 satellite data. The classifiers were applied to SRAL data, while simulta-
neously sensed OLCI images were used for creating the ground truth data. For the latter,
an automatic validation process was implemented that uses Kmeans image segmenta-
tion and along-track changes in radiance. This novel approach of using OLCI imagery
was particularly useful because of the perfect temporal alignment between the two in-
volved datasets. Disadvantages of using OLCI images are the dependency on illuminated



5

106 5. CLASSIFICATION METHODS FOR WATER LEVEL RETRIEVAL IN THE ARCTIC OCEAN

and cloud-free conditions and the relatively low spatial resolution (compared to e.g., Op-
eration Ice Bridge imagery (Dettmering et al., 2018). Even though the spatial resolution
of OLCI imagery equals the along-track resolution of SRAL data, a narrow lead may cause
a specular SRAL waveform, while it would not be visible on the OLCI image. This would
result in (seemingly) overdetection of leads, i.e., higher FLRs.

In total, nine supervising machine learning algorithms, two unsupervised machine
learning algorithms, and a threshold classifier were applied to various test cases. This
provides a comprehensive understanding of the performance of different classifiers and
their applications. In this study, where the goal of lead detection is to improve the Arctic
Ocean SSH estimation, a low FLR is treated as the most important classifier criterion.
Misclassifications may result in large errors in the SSH estimation (see Appendix J, for an
example). While the RUSBoost classifier produced results close to the optimal front for
each winter test case (D-01-D-03; Figure 5.5a), its FLR values are very high compared to
other classifiers. The RUSBoost classifier obtains such high FLR and TLR values because
this algorithm opts to increase the correct classifications for the minor class (Seiffert et
al., 2008), leading to overdetection of leads. The latter makes the classifier less suitable
for SSH estimation. The Kmedoids classifier performed consistently well for the winter
data (D-01-D-03). Because this is an unsupervised classifier, it can be directly applied
to the data of interest, regardless of the available ground truth data. Hence, any con-
sequences from temporal differences between training and testing data for the perfor-
mance of supervised classifiers, do not apply to unsupervised classifiers. Therefore, if
the ground truth data are unavailable for the testing area, using the Kmedoids classifier
may be preferred. However, this classifier requires the user to manually assign waveform
clusters to surface types, which is a disadvantage when a priori knowledge of the differ-
ent waveform types belonging to certain classes is lacking. If sufficient ground truth is
available, the supervised learning classifiers AdaBoost, LD, or ANN are preferred over
the Kmedoids classifier, as their general performances were slightly better (up to 0.31%),
and the classification does not require manual class assignment. Additionally, when
large amounts of data are considered, the time complexity of the different classifiers fa-
vors the use of supervised classification. In the case of unsupervised classification, the
time complexity is typically quadratically (Kmedoid) or cubically (HC) dependent on the
number of observations (Bindra and Mishra, 2017; Whittingham and Ashenden, 2021),
compared to a predominantly linear dependency for the supervised classifiers (e.g., Cai
et al., 2008; Deng et al., 2016; Fleizach and Fukushima, 1998; Sani et al., 2018). Finally,
while the KNN classifier produced one of the best results in the general test case (D-01)
and was only marginally affected by a regional bias (D-02), its performance worsened
significantly when applied to data from another period (Figure 5.5c). This indicates that
the KNN classifier could be very sensitive to a change in the dataset, making the classifier
unpredictable. Almost all classifiers performed slightly worse when applied to data from
another period than the training data, which argues for the consideration of a training
data set that spans the full period of interest. Finally, it was shown that the Bagged clas-
sifier did not produce high enough TLRs in any of the winter test cases.

From the fourth test case (D-04) it appears that all classifiers perform poorly when
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applied to data from summer months (Figure 5.5b). This is likely related to the physical
transformation of the sea ice during this period. Most of the altimetry return signals are
specular, even when ground truth data suggest that they originate from sea ice (see Fig-
ure 5.7e). The presence of melt ponds on the surface of the sea ice may be the cause of
this increase in specular returns during summer months. Unevenness in the color of the
sea ice on the OLCI images (Figure 5.7d) may indicate melt ponds. This must however be
confirmed with images from sensors with higher resolution. Additionally, more diffuse
signals are returned from what appear to be leads based on the ground truth data (Figure
5.7f). This may be related to the presence of waves on widening leads, or the presence
of separated ice floes smaller than the resolution of the OLCI images. The sole use of
SAR waveform features for lead detection in summer months is deemed unsuitable and
auxiliary information is required. For instance, in the study by Dawson et al. (2022) local
variations in elevation were successfully used in addition to waveform features, to dis-
tinguish between SAR returns from leads and melt ponds. However, this does require
preliminary retracking of the data before the classification and constrains the variety
of leads that can be detected (Dawson et al., 2022). On another note, further research
should show to what extent, reduced classifier performance impacts the uncertainty as-
sociated with SSH estimates from summer data. In this respect, it should be noted that
the occurrence of sea ice, and thus leads, is significantly reduced in summer, resulting in
more possibilities regarding SSH estimation from open water and reducing the need for
accurate lead detection.

Figure 5.7: Example OLCI images with two typical SAR waveforms for a winter date (a–c) and a summer date
(d–f). In both examples, the first waveform (b, e) belongs to sea ice and the second (c, f) to a lead according to
the OLCI image, while in the summer case (d–f), the SAR waveforms were incorrectly classified as the opposite
class by all classifiers.

Finally, to improve SSH estimation by reliable detection of open water areas, the ad-
dition of a third class is required. The addition of the open ocean class had little impact
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on the overall accuracy of most classifiers, except for LD and Kmedoids (Figure 5.6a).
However, the performance of all classifiers decreased slightly in terms of lead detection
(Figure 5.6b; TLR and FLR), while the impact on the Threshold and Bagged classifiers
was the smallest. If one is purely interested in obtaining as many good water level mea-
sures as possible (considering TwR and FwR), the AdaBoost, Bagged and ANN classifiers
perform best. The reduced performance of the Kmedoids classifier was associated with
the fast increase in data, which cluttered the clusters and complicated manual class as-
signment. Moreover, the Threshold classifier performs poorly when TwR and FwR are
concerned.

The results produced by this study were compared to results from other studies that
tested different classification methods for lead detection from altimetry (Figure 5.8).
However, caution is advised when comparing the classifier performances found in dif-
ferent studies. Differences in input data (e.g., SAR or conventional radar, different study
dates or study areas), different settings for the classifiers, or different methods for ground
truth data generation, impact the obtained classifier performances. For instance, Lee et
al. (2016) applied two tree-based supervised machine learning classifiers to SAR altime-
try data from CryoSat-2: DT and Random Forest (RF). The obtained classification results
show extremely high accuracies and high TLR values compared to the results obtained
in this paper. However, they tested their classifiers using only 239 waveforms, hence the
classifiers may have been overfitted to this small dataset. Their findings show that the
ensemble tree classifier (RF in their case) outperforms the DT classifier, which agrees
with the findings presented here. Moreover, Dettmering et al. (2018) applied the unsu-
pervised Kmedoids classifier to Cryo Sat-2 SAR altimetry data and used images from the
NASA Operation Ice Bridge mission for validation. They obtained TLRs that were signif-
icantly lower than those produced by the Kmedoids classifier in this study. This may be
because the resolution of the images from Operation Ice Bridge is 1m (Dettmering et al.,
2018), compared to the 300 m along-track resolution of CryoSat-2. This difference most
likely resulted in the underdetection of leads from the altimeter data. Furthermore, Wer-
necke and Kaleschke (2015) classified CryoSat-2 data with threshold optimization, using
MODIS images for validation. Their TLRs and FLRs are comparable to the results from
this study, however, they only validated the classification with data from the Beaufort
Sea.

Where the comparison of classifier performances presented by prior studies may be
misleading, this study provides a comprehensive assessment of the relative classifier per-
formances. Nevertheless, there are more classifiers that could be applied to lead detec-
tion in the Arctic. For instance, the results from Lee et al. (2016) suggest that the RF classi-
fier performs well, which has not been tested in this study. Furthermore, the use of OLCI
images for validation appeared very useful because of their perfect temporal alignment
with the SRAL data. However, while the generation of ground truth data has been largely
automated in this study, a manual check was required to reject images that were deteri-
orated by small clouds. This process is time-consuming and future studies may benefit
from an improved algorithm for cloud rejection that would also detect small and thin
clouds, allowing more ground truth data to be generated. A solution may be the com-
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Figure 5.8: ROC graphs showing classification results from previous studies and general performance (D-01)
results obtained in this study.

bination of OLCI images and Sea and Land Surface Temperature Radiometer (SLSTR)
data, which have recently been used for cloud detection (Fernandez-Moran et al., 2021).
This synergy could also be exploited to better distinguish between leads and melt ponds.
Likewise, for specific test cases or when additional (sub)classes are considered, the clas-
sification may benefit from a different/extended set of waveform features. For instance,
it was found that sea ice waveforms sometimes resemble open ocean waveforms (see
Appendix I), which would cause large errors in the SSH estimation. For most of the data,
a clear regional separation between sea ice and the open ocean can be assumed. There-
fore, the initial set of waveform features may be extended by a certain along-track his-
tory parameter. For instance, the addition of the moving standard deviation of the pulse
peakiness (see Table 5.1) appeared to significantly improve the three-class classification
performances (Appendix I). Finally, it should be acknowledged that the predictors used
in this study are to some degree correlated with each other (see Appendix J). While this
is something that should generally be avoided in any statistical model (including clas-
sifiers) (Blalock, 1963), Figure J.1 shows that the correlation within the set of predictors
is largely consistent across different data divisions and is therefore expected to have a
limited effect on the quality of the classifiers.

5.6. CONCLUSIONS

This paper provides a thorough assessment of twelve different waveform classification
methods, applied to Sentinel-3 SRAL data. Here, the perfect temporal alignment be-
tween SRAL and OLCI data was successfully exploited for generating the ground truth
data. In addition to assessing the general classifier performance, the classifiers were ap-
plied to different test cases to analyze the impact of possible regional or temporal biasing
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and the impact of additional classes.

It was shown that all classifiers performed relatively well on data from March and
April (2017–2020). Overall, the AdaBoost and ANN classifiers showed the most robust
results throughout the analysis. However, supervised learning requires labeled training
data, and thus ground truth data must be available. This study showed that the usage
of training data from another study area or a different year slightly worsens the perfor-
mance of some classifiers, hence the use of a comprehensive training dataset is recom-
mended. Alternatively, the unsupervised machine learning Kmedoids classifier does not
require the ground truth data and consistently showed excellent results but performed
poorly when tracks that (partly) cover open ocean were considered. Additionally, the
interpretation of classifications by Kmedoids is sensitive to differences in user knowl-
edge. Moreover, if large amounts of data are considered, the supervised classifiers may
be preferred over unsupervised classifiers as they typically have lower time complexi-
ties. Finally, the thresholding method performs worse than the machine learning-based
methods yet may still be preferred due to its simplicity in application.
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6
CONCLUSIONS AND

RECOMMENDATIONS

6.1. CONCLUSIONS
The main goal of this thesis was to assess the spatiotemporal variability of global tide
and storm surge characteristics by exploiting the wealth of water level data from satellite
radar altimeters. In this chapter, the findings will be recapitulated by (1) addressing the
research questions that were posed in Chapter 1 and (2) providing a final reflection on
the main research objective.

RQ 1: What is the radar altimetry-derived secular variability in global tides, and the re-
lated uncertainty, and how does this compare to the secular variability derived from
tide gauge data?

While tide gauges typically measure the sea surface (sub)hourly, the revisit period of
satellite radar altimeters varies from 9.9156 (TPJ series) to 369 days (CS2). The relatively
low temporal resolution of the data affects the possibilities in using altimeter-derived
water levels for tidal analysis. Namely, any signal with a frequency of half the sampling
frequency or higher is aliased onto a lower frequency. Hence, tidal analysis of radar al-
timeter data is essentially always based on an analysis at the alias frequencies. To sepa-
rate between these frequencies, long data records are required. Consequently, studying
secular variability in the tidal signal cannot be done by means of yearly tidal analysis and
subsequent curve fitting, as is commonly done with data from tide gauges.

In the study presented in Chapter 2, two alternative methods were implemented to
obtain secular trends in four major tides from LRM satellite radar altimeter data (TPJ).
The first method (referred to as SegHA) was based on the yearly analysis but treats the
time series in blocks of four years instead. In the second method (TintHA), estimation
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of the linear change in tidal constants was integrated in the tidal harmonic analysis.
The first method was relatively easy to implement using the available standard software
and allowed for a straightforward implementation of non-linear changes. However, this
came at the price of a simplified propagation of the uncertainty. In addition, by process-
ing the data in blocks of four years, the trend fitting was done based on only seven sam-
ples, which resulted in reduced significance of estimated trends. Moreover, the aliased
signal of one of the major tides (K1) could not be separated from other tidal signals us-
ing only four years of data. The second method, however, allowed processing of the full
time series at once and hence was able to estimated trends for all tides of interest. Al-
though both methods obtained very similar results when applied to synthetic and actual
satellite altimeter data, the TintHA method resulted in lower uncertainties and, there-
fore, was favoured over the SegHA method. In addition, the uncertainties were further
reduced by combining the data from two crossing tracks (crossovers). The presented
study considered both the uncertainties obtained from the tidal software and an alter-
native computed by means of subsampling model timeseries. From a comparison of
both products it appeared that the uncertainties derived from the tidal software were
relatively unaffected by changes in data availability and likely underestimated the actual
uncertainty.

The analysis of almost 30 years of satellite radar altimetry showed that the amplitudes
of the major tides were subject to changes of up to 1 mm/year. In many regions, the esti-
mated trends just exceeded the (model-derived) confidence levels. Whether the secular
change concerned an increase or decline varied on a regional to even local basis. The
magnitude of changes in the phases varied largely across the domain, with the largest
changes observed in the vicinity of amphidromic points. The observed changes were
most significant for the M2 tide, and these generally corresponded to trends observed at
nearby tide gauges. However, caution is advised when comparing between trends de-
rived from altimetry and from tide gauges. That is, where changes in tidal dynamics are
often the result of local processes (Haigh et al., 2020), we cannot necessarily expect the
tidal trends at tide gauges to correspond to those about 50 km offshore, at the location
of a satellite crossover. In an attempt to bridge the gap between the two data sources,
satellite data were additionally processed along-track for a case study on the northwest
European Shelf. Again, similar changes were observed for M2 for the majority of the do-
main, while discrepancies were observed near the coasts of Norway and the UK. Fewer
similarities were observed for the S2 tide.

While the comparison of tidal trends from tide gauges and satellite altimetry can-
not be stringent, it does provide insights in the added value of using satellite data to
study secular changes in global tides. Clearly, in regions where data from tide gauges
are limited or lacking (e.g., on the open ocean), the results may contribute to our under-
standing of the drivers behind the observed changes. For instance, from the altimetry-
derived trends it appeared that observed changes in amplitudes may be related to dis-
placement of amphidromic points, a finding impossible to infer from tide gauge records
alone. However, the study also showed the weak spots in using satellite data. In partic-
ular the low temporal resolution of the data introduced several issues that significantly
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affected the uncertainty of the estimated trends. Although the issue of aliasing was dealt
with by processing sufficiently long periods of data, it followed that the uncertainty of
obtained tidal constants related closely to the magnitude of non-tidal water level vari-
ability. Therefore, this variability was removed as much as possible by applying the dy-
namic atmospheric correction (DAC) and mesoscale correction. Nevertheless, it is likely
that this did not remove all of the signal and results were deteriorated in regions with sig-
nificant non-tidal activity (e.g., coastal areas or at the location of strong ocean currents).
This was particularly evident in the along-track analysis and comparison to trends de-
rived from nearby tide gauges (e.g., along the coast of UK and Norway). Finally, in the
discussion of Chapter 2, it was suggested that the tidal trends derived from satellite data
may to some extent be introduced by systematic errors in the processing of the data. For
instance, any (erroneous or real) change in the range corrections may translate to the
retrieved water levels and be interpreted as changes in the tides. While the range correc-
tions are an important and acknowledged potential error source in water level retrieval
from satellite altimetry, no correlation was found between tidal signals in respectively
the corrections and the retrieved water level.

RQ2: What is the radar altimetry-derived spatiotemporal variability in global storm
surge characteristics, including their time-averaged magnitude and seasonal and sec-
ular variability, and how does this compare to the analysis of tide gauge data?

Storm surge analysis from satellite radar altimetry is hampered by the low tempo-
ral resolution of the data. With a revisit period of at least 9.9156 days, entire storms
may not be captured by the satellite. Therefore, as presented in Chapter 3, the data
from eight satellite radar altimeters were stacked on a 5◦ × 5◦ grid (up to ∼ 66◦ N/S).
Then, a time-dependent generalized extreme value distribution (GEVD) was fitted to the
monthly maximum (detided) water levels (that were referenced to the yearly mean sea
level). This allowed to study both the spatial variability in time-averaged storm surge
water levels, their seasonal cycle, and secular change. Additional scaling was applied to
the GEVD to account for the limited (and spatially variable) temporal resolution of the
data. This was done using scaling factors that were obtained with a synthetic experiment
using reanalysis data. The same analysis was applied to tide gauge data (excluding the
stacking and scaling) to allow for a comparison of the results.

The time-averaged surge water levels showed a clear zonal dependency, with higher
water levels at higher latitudes. The observed seasonal variability was particular strong
on the northern hemisphere but overall, higher surge water levels were observed in the
local winter. However, in the tropics, more (local) variability in the seasonal phase was
found. This likely reflects the difference between tropical and extra-tropical storms. Fi-
nally, we derived moderate secular changes in the average monthly maximum surge wa-
ter levels (< 1 cm) across the globe. The derived changes were predominantly negative,
except for few mid-latitude regions with positive change.

Except for the secular changes, the satellite-derived results showed a good correla-
tion to the information derived from tide gauges (correlation > 0.5), although the tide
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gauges showed more local variability. The poor correlation for the secular change may
be related to the change in water levels being dominated by either changes to tropical
or extra-tropical surges. The lower correlation may be an unavoidable consequence of
stacking the satellite data over a large area, as it was found that the satellite-derived re-
sults correlated better when spatial outliers were removed from the tide gauge-product.
In addition, it has been suggested that the satellites may not be able to fully capture the
temporal variability in the short-lived tropical storms. Nevertheless, the use of satellite
data for storm surge analysis could certainly be a valuable contributor to increasing our
understanding of the spatial and temporal variability in storm surge water levels. This
in particular applies to the large-scale patterns and dynamics on the open ocean, where
tide gauge data are simply not available.

RQ3: What is the SAR altimetry-derived seasonal variability in the Arctic tide and to
what extent can this be linked to changes in the Arctic sea ice cover?

The analysis presented in Chapter 1 did not include the Arctic, for the reason that
the SAR altimetry-derived record of Arctic water levels was not long enough (about 12
years) to study secular changes in the tides. Instead, Chapter 4 presented a study on the
seasonal modulation of the major Arctic tide (M2) using data from the CryoSat-2 and
Sentinel-3 missions. This study combined SAR altimetry-derived water levels from leads
and open ocean, that were obtained using a threshold classifier and a surface specific
implementation of the SAMOSA retracker. The data were stacked on a 1◦×3◦ grid to com-
pensate for the poor temporal resolution of the satellites. Thereafter, the seasonal modu-
lation of the tide was derived by processing the full record of data and including satellite
constituents of M2 in the tidal analysis, rather than processing the data on a monthly ba-
sis. Together with M2, the satellite constituents configure into a seasonally modulating
M2 signal. The results showed large variations in tidal amplitude, approaching 0.25 m
in certain areas, and phase, up to 45◦. The observed change was largely comparable to
in-situ observations, although these are particularly limited in the Arctic region (both in
spatial and temporal sense), rendering a conclusive comparison almost impossible. This
also clearly demonstrates the added value of using satellite data for studying temporal
variability in Arctic tides.

The observed seasonal modulation in the M2-tide were linked to seasonal variation
in the Arctic sea ice cover. This was done by means of model simulations whereby the
Global Tides and Surge Model (GTSM) was forced by respectively two limiting cases
of sea ice. These two cases were the (March) maximum landfast sea ice cover and the
(September) absence of landfast sea ice. Subsequently, monthly average M2 amplitudes
and phases were obtained. In addition the average March and September amplitudes/phases
were computed from the altimeter-derived modulating M2-signal. A comparison of the
altimetry-derived amplitudes showed that the presence of landfast sea ice generally caused
a local amplitude decay but off-site amplitude amplification. In many regions, this cor-
responded to the modelled effect of the sea ice on tides. However, in certain regions, the
positive differences in amplitude (larger in March than in September) were not captured
by the model and the modelled phase differences were smaller than observed. This may
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suggest that although the seasonal variation in the Arctic sea ice is an important con-
tributor to the seasonal modulation of the Arctic tide, other processes play a role too.
However, this cannot be stated with certainty as these processes were not included in
the study.

Moreover, the study presented in Chapter 4 assessed the impact of variations in the
Arctic sea ice on global tides by comparing simulated March and September amplitudes
to monthly amplitudes derived from tide gauge records. In several regions, the modelled
amplitude differences were of considerable magnitude (up to 0.05 m) and in line with
the seasonality observed at tide gauges.

RQ4: Can machine learning classification methods contribute to better lead detection
from SAR altimetry in the Arctic Ocean?

A key component of the processing applied to obtain the Arctic water level dataset
used in Chapter 4 is a classification of the waveforms. This classification aimed to re-
move any SAR returns from surfaces other than leads or open ocean. In the study pre-
sented in Chapter 4, a traditional threshold classifier was used. Recent studies, how-
ever, suggested that machine learning-based methods may result in higher accuracies,
although a comprehensive comparison of different classifiers was lacking. Therefore,
in Chapter 5, twelve different threshold and machine learning-based classifiers were as-
sessed based on their general performance and in terms of regional and temporal unifor-
mity in application. This study made use of SAR data provided by Sentinel-3 and simul-
taneously sensed optical images for the generation of ground truth data. In total, one
optimized threshold classifier, nine supervised and two unsupervised machine learning
classifiers were assessed. In addition, the classification performance using twelve differ-
ent waveform features was compared.

It was shown that all classifiers performed relatively well on winter data but poor on
summer data. Overall, the AdaBoost and ANN (supervised machine learning) classifiers
showed the most robust results. However, these supervised classifiers require labeled
training data and thus the availability of ground-truth data. It was shown that using
training data from another region or period slightly reduced the performance of the clas-
sifier. Hence it is recommended to use a training dataset that includes all years of interest
and covers a variety of study areas. On the other hand, the unsupervised machine learn-
ing Kmedoids classifier does not require ground truth data and also performed well on
the classification of sea ice and lead SAR returns, but to a lesser extent on the classifi-
cation of open ocean returns. Although all classifiers performed poor on lead detection
from summer data, it remains unclear to what extent the reduced classifier performance
impacts the uncertainty associated with water level estimates from summer data. As the
occurrence of sea ice, and thus leads, is significantly reduced in summer, we can derive
more water levels directly from open water, which reduces the need for accurate lead de-
tection. In the case of winter data, using one of the better performing machine learning-
based classifiers (i.e., AdaBoost or ANN) instead of the traditional threshold classifier
would increase the data availability over leads, while the number of false lead detections
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remains comparable.

6.1.1. REFLECTION ON MAIN RESEARCH OBJECTIVE

Based on the analyses presented in this thesis, it follows that the use of satellite radar
altimetry provides a significant contribution in mapping the spatiotemporal variability
in global storm surge and tide characteristics.

One the one hand, the wealth of global (LRM) altimeter data has been exploited, for
the first time, to study the ocean-wide temporal variability in tidal and storm surge wa-
ter levels. This has provided additional benefits compared to the analysis of observations
from the sparsely distributed tide gauges. Firstly, the use of satellite data filled up data
gaps in regions where in-situ data are limited (e.g., along the African coastlines). Sec-
ondly, as the satellite data have regular (quasi-)global coverage, it enabled to observe the
large scale patterns. This information is valuable in gaining better understanding of the
relation between observed changes and climatic processes rather than local factors.

However, it was also shown that in particular the analysis of long-term changes in
tides and surges was affected by the low temporal resolution and limited record length
of the satellite data. Consequently, the secular analysis was associated with significant
uncertainties that in several regions render the satellite data useless. This predominantly
affected the tidal analysis in regions with large non-tidal water level variability (e.g., in
shallow water or in regions with strong mesoscale variability). As regards storm surges,
it was suggested that the satellites may not be able to fully capture the magnitude and
temporal dynamics of the short-lived and small-scale tropical storms.

Another recurring issue with the use of satellite altimetry in this thesis concerns the
validation of the results. While the novel use of the data in question naturally calls for
a validation, there is simply no comparable product available. In this thesis, derived
tide/surge characteristics have been compared to observations at tide gauges. How-
ever, the distance between a tide gauge and a satellite track (that is, the section of the
track where the retrieved water levels were deemed reliable) was often at least 30 km.
Where in some instances, an apparent disagreement is observed between, for example,
the satellite- and tide gauge-derived secular change, it is uncertain whether this reflects
a real spatial difference in secular variability or an issue with the data processing.

On the other hand, the use of SAR altimetry has filled a significant data gap in the Arc-
tic region. Although the record of SAR altimetry (2010-2022) is currently not long enough
to study secular variability in tidal or surge water levels, it has been used successfully in
the study of the seasonal variability in the Arctic tide. In combination with model simu-
lations, this study has provided an important contribution towards better understanding
of the relation between sea ice and tides.

However, the study on the Arctic region, only considered the M2 tide. Because CryoSat-
2 and Sentinel-3 are in sun-synchronous orbits, their data cannot be used to derive in-
formation about the solar tides (e.g., S2). Finally, where we did not achieve to study the
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(seasonal variability in) Arctic storm surges, it remains uncertain whether the current
record of SAR altimeter-derived water levels can be used for this purpose.

6.2. RECOMMENDATIONS
While the work presented in this thesis has made a significant contribution to gaining
more insight in the temporal variability in global storm surge and tidal water levels, more
is still to gain. The most important recommendations are listed below:

1. Firstly, it is worthwhile to further improve the processing of altimeter-derived wa-
ter levels, and possibly reduce the uncertainties associated with the derived secu-
lar trends, by means of improved removal of non-tidal water level variability. Al-
ternatives for the surge correction and mesoscale correction (introduced in Chap-
ter 2) should be explored. For instance, in coastal waters, it is recommended to
use high resolution hydrodynamic models to correct for surge variability instead
of the DAC that was applied in this thesis.

2. The study of secular changes in tides may also benefit from the inclusion of data
from other satellite missions (e.g., ERS-1, ERS-2, Envisat and SARAL). The result-
ing increase in data availability would likely reduce the associated uncertainties.
However, given the low magnitude of the observed secular trends, even small in-
termission biases in the range corrections could be easily mistaken for changes in
the actual tides and should thus be appropriately accounted for.

3. In addition, it may be of interest to derive temporal changes in tides and surges
from coastal altimeter data products (such as X-TRACK;Birol et al., 2017 or X-
TRACK/ALES; Birol et al., 2021). In contrast to the conventionally processed al-
timeter data, these products include data up to 5–10 km from the shoreline. Con-
sidering these data would thus allow for a better validation of satellite-derived tide
and surge characteristics by means observations from tide gauges.

4. As shown in Chapter 5, the variety of classifiers used for lead detection performed
poorly on data from summer months, in terms of the distinction between SAR re-
turn signals from leads versus sea ice. Although a vast extent of the Arctic sea ice
disappears in summer and hence the majority of the data actually originates from
open ocean, it is still recommended to improve the lead detection from summer
data. This may for instance be done by including a secondary data source (such
as the Sentinel-3 SLSTR data). In addition, it is recommended to implement one
of the better performing machine-learning based classifiers that followed from
Chapter 5 (e.g., AdaBoost or ANN) to further increase the number of Arctic water
level estimates.

5. Furthermore, a pivotal assumption in the presented study on secular changes in
tides (Chapter 2) is that long-term changes are linear. However, this does not need
to be the case, depending on the driving processes. For example, it was suggested
that the long-term change in S2 may be related to periodic meteorological forc-
ing and hence contains significant non-linear variability on different time scales.
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Therefore, we propose to conduct a tidal analysis including a time-varying trend in
the harmonic constants, e.g., using the state space method framework (e.g., Har-
vey, 1990).

6. Only a first step has been made in attributing the observed temporal changes in
global tides to physical processes (that is, variations in the Arctic sea ice extent,
Chapter 4). It is therefore of interest to extend this analysis and assess the impact
of sea ice decline, sea level rise and other physical processes on temporal changes
in global tides. Including these processes in a hydrodynamic model may allow
for better interpretation of the observed temporal changes. In a similar sense, the
impact of temporal changes in Arctic tides and surges on global (coastal) water
levels may be assessed by for instance including them as boundary conditions in
hydrodynamic models. Such a set-up can also ultimately be used to make long-
term predictions on the impact of Arctic sea ice decline on tidal and surge water
levels.

7. On another note, a topic that has not been covered by this thesis is the Arctic surge.
From Chapter 3, it became clear that the data from RADS cannot be used to study
surge water levels in sea ice-affected regions. However, SAR altimetry-derived wa-
ter levels (Chapter 4) could possibly be used for this purpose. Although the SAR
data record is likely too short for an analysis of the secular changes, the analysis
could still provide insight in the seasonal variation in Arctic surge water levels and
its relation to the sea ice cover. In addition, obtaining more information on the
(time-independent) surge water levels would be useful for the validation of hydro-
dynamic models used for storm surge forecasting.

8. In addition, where this thesis considered the extreme still water levels, the contri-
bution of waves was disregarded. Wave activity has strong spatial and temporal
variability and is also affected by climate change, typically through processes that
are also associated with changes in storm surge water levels; e.g., changes in the
atmospheric circulation and increased fetch in the absence of sea ice (Dodet et
al., 2019). Where changes in the mean wave height of about 5-10% are projected
across the globe (Morim et al., 2019), it is recommended to include this effect in
ESL projections. Recently, there have been successful efforts in deriving waves
from satellite altimetry (e.g., Passaro et al., 2021), thereby overcoming the need for
in-situ data.

9. Finally, where Chapter 4 assessed the effect of changes in the Arctic sea ice cover
on tides, the impact of Antarctic sea ice variability is as of yet unknown. While the
focus was on the Arctic Ocean because of its pronounced susceptibility to global
warming and poor availability of in-situ data, the potential impact of Antarctic
sea ice variability on tidal and storm surge water levels should not be disregarded.
Furthermore, it is unknown whether the findings from Chapter 4 can be applied
to the Antarctic sea ice as the latter differs in many aspects from that of the Arctic
(e.g., thickness, mobility and orientation with respect to coastlines).
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6.3. SCIENTIFIC AND SOCIETAL VALUE
Extreme sea levels pose a direct threat to the population in coastal areas that is nowa-
days mitigated by the use of water level forecasting models and coastal engineering. The
occurrence and magnitude of extreme water levels are subject to change under the in-
fluence of climate change and this should be taken into account during the design of
coastal defenses and risk management strategies. However, the specifics, such as the
extent of change, spatial patterns, and driving mechanisms, are encompassed by un-
certainty. In particular, the contribution of changes in tides and surges is not well un-
derstood on a global scale. In that light, the work presented in this thesis is anticipated
to form a significant contribution to better understanding and forecasting of, and ulti-
mately, protection to future ESLs. The following key contributions were identified.

The research that is presented in Chapters 2, 3, and 4 contributes to the assessment
of the impact of climate change on ESLs. In Chapter 4, seasonal variation in the Arctic
tide was related to differences in sea ice extent. These findings can be used to assess
the impact of Arctic sea ice decline on future tides. Chapter 2 and 3 showed, for the first
time, the secular changes in tidal and surge water levels with full ocean coverage. Where
these full-scale products provide us with a better overview of the dynamics, one could
now attempt to link the observed changes to physical processes by means of model sim-
ulations.

In addition, the findings from Chapters 2, 3, and 4 can be used to improve the mod-
els that are used for forecasting ESLs (such as the GTSM). Where these models typically
assume tidal constants to be stationary in time, Chapters 2 and 4 have demonstrated
that this is not sufficient. Significant seasonal differences in the amplitude of the M2 tide
were observed in the Arctic (up to 0.25 m) and it has been suggested that the seasonal
variation in the Arctic sea ice extent alone could cause amplitude changes up to several
centimeters on the global scale. Moreover, significant secular changes in tides were ob-
served across the globe, which add up to several centimeters per tidal constituent over
the past three decades. Furthermore, the findings from Chapter 3 could be used to val-
idate surge models on the open ocean, which is currently lacking. This may contribute
to improved model performance.

Finally, the assessment in Chapter 5 can be used to improve radar altimeter-derived
Arctic sea level variability or estimates of the sea ice thickness (relying on freeboard
height). In addition, where there was prior to this work no cohesive dataset of instan-
taneous Arctic water levels available, the data processed for the study of Chapter 4 is
publicly available and can potentially be applied in future studies on the Arctic.





A
SENSITIVITY ANALYSIS OF

ESTIMATED CHANGE IN S2 TIDAL

HARMONIC CONSTANTS TO THE

IONOSPHERIC ALTIMETER

CORRECTION

One of the geophysical corrections that is applied to the TPJ altimetry data is the iono-
spheric correction. This can be either an altimeter-derived correction or a modeled cor-
rection (NIC09 for TOPEX/Poseidon and GIM for Jason1-3) (Scharroo et al., 2016). As
demonstrated by Zawadzki et al. (2018), any error in these corrections would cause a
signal at the alias frequency of S2. In addition, they showed that replacing the altimeter-
derived correction with the modeled correction alters the amplitude of the S2 signal by
up to 3 mm.

To assess the sensitivity of the analysis described in the paper to the choice of iono-
spheric correction, an additional experiment was carried out. For this purpose, the TPJ
data of ∼ 500 random crossovers across the globe were corrected by the model-derived
ionospheric correction and the radar-derived correction respectively. Consequently, the
data were processed and analyzed as described in the paper (following both the SegHA
and TintHA approach). The resulting linear change in S2 amplitudes was compared by
computing the median absolute deviation (MAD). Note that crossovers close to land or
sea ice were ignored because the radar-derived ionospheric correction is likely deterio-
rated there (Fernandes et al., 2014).

It was found that the impact of the ionospheric correction was largest near the equa-
tor (MAD of up to 0.08 mm/year) and reduced at higher latitudes (< 0.02 mm/year). This
is in line with Figure 7 from Zawadzki et al. (2018). The differences were subsequently
interpolated to all crossover locations, multiplied by 1.48 to obtain the standard error,
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and then combined with the standard errors of the S2 amplitudes that were computed
by UTide (Figure C.1a) and the model-based alternative (Figure C.2a), before multiply-
ing them by the z-score to obtain the final confidence intervals. To get an idea of the
impact of the contribution of the ionospheric correction to the uncertainty, one could
compare Figures C.1a and 2.6a). As the initial confidence intervals outputted by UTide
are the same for all semi-diurnal tides (e.g., S2 and M2), the difference between Figure
C.1a and 2.6a is solely due to the ionospheric error.



B
ASSESSMENT OF CONFIDENCE

INTERVALS USING RANDOM

SUBSETS OF TPJ-DATA

To compare the respective performances of the confidence intervals obtained from UTide
and those obtained by GTSM, the following experiment was performed. Firstly, the TPJ-
data at 500 random crossovers across the globe were processed. Then, these crossover
time series were randomly divided into two time series with half the number of mea-
surements. Subsequently, the linear change in tidal constants was estimated from both
time series and the absolute difference was computed. This was done 50 times, resulting
in 50 differences for each crossover, tidal constituent, and tidal constant. These differ-
ences were then compared to the 95% confidence intervals for the differences, following
from error propagation of the 95% confidence intervals for the trend estimates. This was
done for respectively the product that was computed by UTide (following from this ex-
periment) and the confidence intervals obtained from GTSM. In the case of the latter,
the time series were sampled in a similar way as the TPJ-data in this experiment.

An example of the outcome of this experiment is shown in Figure B.1 (for the M2 am-
plitude change). As can be seen in Figures B.1b and B.1c, the confidence intervals ob-
tained by GTSM are at least twice as large as those that followed from UTide. For the M2

amplitude change, on average 60% of the differences in trend estimates are significant
using the UTide confidence intervals, while this is only 6% when the GTSM confidence
intervals are applied (see Figures B.1d and B.1e for global variability). Similar percent-
ages were obtained for S2: 60% for UTide and 4% for GTSM. For the diurnal tides, the
UTide confidence intervals turned out slightly more appropriate (46%), while the GTSM
product was consistently accurate (6%).

Concerning the phase change, both confidence intervals perform mediocrely: 54%
of the differences are significant following the UTide product, while this is 53% for GTSM
(all tides combined). As was also hypothesized in the paper, the fact that the locations
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of the GTSM reanalysis data are not aligned with the TPJ-data and the location of am-
phidromic points may affect the quality of the computed confidence intervals, in partic-
ular for phase change.

Figure B.1: 95th percentile of the differences between M2 amplitude change estimated from the 50 data di-
vision pairs (a). 95% confidence intervals for these differences, as obtained from UTide (b) and GTSM (c).
Percentage of the differences that are significant following the UTide (d) and GTSM confidence intervals (e).



C
SUPPORTING FIGURES FOR

CHAPTER 2

129



C

130 C. SUPPORTING FIGURES FOR CHAPTER 2

Figure C.1: 95% confidence intervals for trend estimates derived from amplitude standard errors computed by
UTide following the TintHA approach, for S2 (a), O1 (b) and K1 (c). The intervals for S2 include the sensitivity
to the ionospheric correction as explained in Appendix A.
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Figure C.2: 95% confidence intervals for trend estimates derived from amplitude standard errors derived from
model approach described in paper following the TintHA approach, for S2 (a), O1 (b) and K1 (c). The intervals
for S2 include the sensitivity to the ionospheric correction as explained in Appendix A.
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Figure C.3: Cotidal phase lines at 10-degree intervals, for 1993 in black and for 2020 in green: M2 (a), S2 (b),
derived by TintHA approach.
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Figure C.4: Cotidal phase lines at 10-degree intervals, for 1993 in black and for 2020 in green: O1 (a), K1 (b),
derived by TintHA approach.
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Figure C.5: Linear change in M2 (a), S2 (b), and O1 amplitude per year (1993-2020) following the SegHA ap-
proach. The smaller scatters indicate data that exceeds both the UTide and GTSM 90% confidence intervals,
while the larger scatters indicate significant data at the 95% confidence level. Lines in the background depict
tidal phases at 45◦ intervals.
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Figure C.6: Linear change in M2 amplitude (a), S2 amplitude (b), M2 phase (c) and S2 phase (d) per year
derived by the SegHA approach. The smaller solid scatters indicate significant trends given the UTide 95%
confidence intervals, the hollow outline indicates significance according to the GTSM 95% confidence intervals
as described in the paper. Co-tidal maps are shown in the background where the solid line indicates the phase
at 45◦ intervals, the dashed lines show the amplitudes at 0.25 m intervals.
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Figure C.7: Linear change in M2 amplitude in the atmospheric propagation corrections (a, b, c, d, f) and refer-
ence frame offset correction (e) that were applied to the TPJ data. Data has been interpolated for visualization
purposes. The value on top of Russia depicts the correlation coefficient between the change depicted in the
figure and the change in M2 amplitude as presented in the paper (Figure 2.4a). Following from the TintHA
approach.
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Figure C.8: Same as Figure C.7 but for S2.
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Figure C.9: Same as Figure C.7 but for O1.
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Figure C.10: Same as Figure C.7 but for K1.





D
TIDE VALIDATION GLOBAL TIDES

AND SURGE MODEL

The accuracy of the latest version of the Global Tides and Surge Model (GTSM) has been
assessed with respect to FES2014 by Wang et al. (2021); there referred to as GTSM with
fine grid, Approach 2. Where their study included few locations in the Arctic, we per-
formed a similar analysis with specific focus on this region.

For this purpose, GTSM was run for the period from July 1, 2014 to July 31, 2014 with a
spin-up time of 1 week, forced by tides only (no ice). For 459 locations that are evenly dis-
tributed over the area north of 50◦ N, sea level timeseries were created with a time-step
of 10 minutes. In addition, the same timeseries were computed from FES2014. FES2014
was produced by Noveltis, Legos and CLS and distributed by Aviso+, with support from
CNES (https://www.aviso.altimetry.fr/). Subsequently, the two signals were compared
and the RMSE was calculated for each location respectively (Figure D.1). With the RMSE
varying from 0 to 25 cm across the domain, an average RMSE of 7.16 cm was computed.
This is larger than the RMSE of 4.48 cm computed by Wang et al. (2021), which is a nat-
ural consequence of the larger number of data points, particularly in shallow seas and
bays. In fact, our analysis resulted in an average RMSE of 4.01 cm for the deep ocean (>
1000 m deep) and 10.55 cm for the shelves (< 1000 m deep).

Based on a global set of 1973 locations, Wang et al. (2021) computed an average RMSE
of 3.67 cm for the same period and version of the model. A related assessment was done
by Stammer et al. (2014) for other purely hydrodynamic global models. The performance
of these models was analyzed by comparing the simulated M2 elevations to TPX08. This
resulted in RMSEs ranging from 4.41 to 7.76 cm for the deep ocean and from 17.4 to
27.9 cm for shelf seas. Keeping in mind the different methods of both analyses, the per-
formance of GTSM appears comparable to these other hydrodynamic models.

In addition, RMSEs between simulated tidal amplitudes (derived from GTSM for
July-September 2014, no ice) are compared to tide gauge constants for 208 tide gauge
stations. The tide gauge constants of four major Arctic tides (M2, S2, K1 and O2) were
obtained from Kowalik and Proshutinsky (1994). For each tide gauge, the difference be-
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Figure D.1: RMSE [m] between the reconstructed tidal signal from FES2014 and simulated tidal signal by GTSM
from July 1 to July 31, 2014.

tween the simulated M2-amplitude and that from Kowalik and Proshutinsky (1994) is
displayed in Figure D.2. As can be seen in this figure, the modelled M2 amplitudes ex-
ceed the tide gauge constants in Baffin Bay and the Canadian Archipelago, while the
opposite is the case along the coast of Scandinavia and Russia. On average a RMSE of
20.38 cm was computed for M2, while the RMSEs for S2, K1 and O1 are 7.47, 6.38 and
3.20 cm respectively. These values are significantly larger (2- to 4-fold) than those pre-
sented by Stammer et al. (2014) based on a similar analysis only involving data assim-
ilating models. The latter models assimilated satellite altimeter data and are therefore
expected to produce tidal constants that are much closer to reality than purely hydro-
dynamic models. However, for a sensitivity study like we present in the accompanying
paper, the usage of a hydrodynamical model is required. In addition, the difference be-
tween tide gauge constants and those derived from GTSM emphasizes the relevance of
improving hydrodynamic models by incorporating seasonal effects.
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Figure D.2: Differences in M2-amplitudes derived from simulations (GTSM, from 1 July to 30 September 2014)
and tide gauge constants from Kowalik and Proshutinsky (1994). Positive values indicate simulated amplitudes
exceed tide gauge-derived amplitudes.





E
FAST ICE INDUCED MONTHLY

CHANGE IN M2 AMPLITUDE

An additional experiment was performed where the effect of monthly change in fast ice
cover on the Arctic M2 amplitude was studied. This experiment was done with the same
model settings as described in the main text, using fast ice covers for March 11, April
8, May 6, June 17, July 15 and August 12, 2013 obtained from U.S. National Ice Center
(2009) (Figure E.1). In Figure E.2, the resulting monthly M2 amplitudes with respect to
the September amplitude are shown.

This experiment supports the assumptions mentioned in Section 4.2.1. Fast ice in-
duced modification of the M2 amplitude is largest in case of the maximum fast ice cover
(March here). Additionally, in most of the domain the magnitude of the relative am-
plitude monotonically reduces to zero. This applies to the Hudson Bay area, where the
relative amplitude gradually reduces from April onwards until it reaches 0 in July. It also
applies to the Canadian Archipelago and Russian coast, where the loss of fast ice during
July and August (Figure E.1) directly translates to an amplitude increase (Figure E.2e,f).
Only in Ungava Bay the amplitude difference changed sign for one month (positive in
June). However, based on altimeter-derived seasonal modulation (Figure 4.2) this posi-
tive effect was expected in March already. As could be seen in Figure D.1, GTSM performs
less well in the area surrounding Ungava Bay/Hudson Strait and possibly the late emer-
gence of the positive effect in Ungava Bay is an artifact of this.
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Figure E.1: Fast ice cover extents of March (a), April (b), May (c), June (d), July (e) and August (f), 2013. Data
obtained from updated dataset of U.S. National Ice Center (2009).
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Figure E.2: Model-derived differences between monthly M2 amplitude of respectively: March (a), April (b),
May (c), June (d), July (e), August (f) and September. Where the model is forced by monthly average fast ice
covers (Figure E.1) and the amplitude differences are calculated by subtracting the September amplitudes from
that of the other months.





F
SUPPORTING FIGURES FOR

CHAPTER 4

Figure F.1: Number of SAR measurements for March (a) and September (b) from June 2010 till December 2019.
Data availability largely depends on the SAR coverage of both Sentinel-3 and CryoSat-2 (the latter varies per
month) and the sea ice coverage.
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Figure F.2: Magnitude of seasonal modulation in the Arctic derived from altimetry (as in Figure 4.2c) over the
period 2011-2019 (background) and the average magnitude of seasonal modulation derived from tide gauges
over the same period (squares). Seasonal modulation was calculated following the approach specified in the
main text (Section 4.2.1). Tide gauge data were obtained from the University of Hawaii Sea Level Center (Cald-
well et al., 2015). The RMSE between the two measures is 0.099 m.



F

151

Figure F.3: Difference between March and September M2 amplitude in the Arctic derived from altimetry (as in
Figure 4.5a) over the period 2011-2019 (background) and the average March-September amplitude difference
derived from tide gauges over the same period (squares). Seasonal modulation was calculated following the
approach specified in the main text (Section 4.2.1). Tide gauge data were obtained from the University of
Hawaii Sea Level Center (Caldwell et al., 2015). The RMSE between the two measures is 0.080 m.





G
DEFINITION OF THE THRESHOLD

CLASSIFIER

For the Threshold classifier, the threshold values were determined by solving an opti-
mization problem. For this, the distribution of the waveform features was studied on a
class-by-class basis. For each feature, a range of thresholds was empirically deter-mined
that would separate most leads from sea ice waveforms. This resulted in the follow-
ing ranges; MAX: 3000-7000, skew: 7-8, PP: 0.15-0.35, PPloc: 0.5-0.7, and ww: 25-50.
Note that this only involves the five features with the best predictive capacity as was de-
termined in Appendix H. Subsequently, 200 random combinations of thresholds within
these ranges were created and applied to the data (Wernecke and Kaleschke, 2015). The
result of this random search is analyzed based on the produced TLR and FLR (Figure
G.1). The final set of thresholds was chosen such that the total number of misclassifica-
tions was minimized. Waveforms are classified as leads when: MAX > 3000 counts, PPloc
> 0.55, ww < 45 bins, PP > 0.24, and skew > 7. For the D-05 experiment, the thresholds
for ocean classes were determined as fol-lows: 500 > MAX > 1500 counts, 0.2 > PPloc
> 0.35, 85 > ww > 110 bins, PP < 0.1, and 1.5 > skew > 3.5. The remaining data were
classified as sea ice.
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Figure G.1: ROC graph showing the results of the random search of thresholding values for lead classification.
The orange point depicts the final choice of the thresholding values used in the paper.



H
TUNING OF CLASSIFIERS

As described in Section 5.3.2, the classification potential of individual waveform features
was studied. For each considered classifier, the resulting accuracies are given in Table
H.1. The produced accuracies are generally high, with most of the waveform features
producing more than 80% accuracy for most of the classifiers. However, the unsuper-
vised learning classifiers (Kmedoids and HC) achieved substantially lower accuracies
when using LeW, PPL, PPR, and NrPeaks. The HC classifier also did not perform well
when using kurtosis. It was found that using WW, PP, PPloc, skewness, and MAX, pro-
duces high accuracy for all classifiers. Though TeW has achieved a high average accuracy,
it has not been selected due to the relatively low accuracy produced by the Kmedoids
classifier. Additionally, most of the supervised learning classifiers produced very similar
results when using NrPeaks (79.8%). However, all classifiers that produced this accuracy
predicted all of the wave-forms to be sea ice, i.e. obtained a TLR of 0%. Because NrPeaks
can only have discrete integer values, it is not a suitable feature for machine learning al-
gorithms. Previous studies which used NrPeaks as a predictor, were thresholding-based
classifications (e.g., Bij de Vaate et al., 2021; Schulz and Naeije, 2018).

The sensitivity to the addition of more predictors to the initial set of five (MAX, skew,
PP, ww, PPloc) was assessed by a comparison of the produced ROC graphs (Figure ??).
Six possible combinations of the features were tested (Table H.2). Here the NrPeaks was
excluded completely.

From Figure H.1, it appears that for most classifiers, the addition of predictors does
not have a significant effect on classifier performance. The largest effects are observed
for DT and SVM (Figure H.1a/i), but this concerns reduced performance when more pre-
dictors are included. Adaboost and Bagged (Figure H.1b/c) may benefit to some extent
from the larger set of predictors, although this is mostly restricted to the far low FLR
range (< 4%). In addition, both unsupervised classifiers appear to benefit from the addi-
tion of kurt, TeW and or PPR, although the effect is small.
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Table H.2: Combinations of waveform features which were used in this analysis.

Combination Waveform Features
Combination 1 MAX, skew, PP, ww, and PPloc
Combination 2 MAX, skew, PP, ww, PPloc, and kurt
Combination 3 MAX, skew, PP, ww, PPloc, and TeW
Combination 4 MAX, skew, PP, ww, PPloc, and PPR
Combination 5 MAX, skew, PP, ww, PPloc, kurt, TeW, and PPR
Combination 6 MAX, skew, PP, ww, PPloc, kurt, TeW, PPR, LeW,

sigma0, and PPL
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Figure H.1: ROC graphs of supervised learning algorithms for different waveform feature combinations (see
Table A2.2): DT (a), AdaBoost (b), Bagged (c), RUSBoost (d), ANN (e), KNN (f), LD (g), NB (h) and SVM (i),
Kmedoids (j) and HC (k).
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Figure H.1: Continued





I
IMPROVING THE ADDITIONAL

OPEN OCEAN CLASSIFICATION

Since the main goal of this paper is to improve the detection of leads, classifier settings
and selection of waveform features have been optimized with the focus on the distinc-
tion between leads and sea ice. However, when one is interested in processing satellite
tracks that may include SAR returns from the open ocean, the classification may be fur-
ther optimized. As can be seen in Figure I.1a, the misclassification of sea ice returns as
open ocean (isolated black dots between 70− 77◦ N) can result in large SSH errors. To
prevent these misclassifications, one could opt for the addition of a certain along-track
history parameter that combines values from neighboring samples (referred to as test
case D-05h).

Here, this history parameter was defined as the moving standard deviation of the PP
over 25 neighboring samples (see Figure I.1b). In the Threshold classifier, the following
condition was added for the ocean class: movstd(PP, 25) < 0.01.

The addition of the history feature significantly improved the classification of both
ocean and lead waveforms (Figure I.2). All performance measures improved, but the
effect on the TwR and FwR was the strongest, in particular for the Threshold and Kme-
doids classifier. Note that in this study, the ocean data was added as a single separate
track. The addition of a history feature would likely not improve the classification of
consecutive ocean and sea ice data points. However, most ocean and sea ice data are
well separated.
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Figure I.1: An example of an along-track SSH series referenced to DTU18-MSS (Sentinel-3B track from Novem-
ber 5, 2021) obtained by the AdaBoost classifier and retracked by fitting the SAMOSA model (Dinardo et al.,
2018; Ray et al., 2015) (a). Along-track PP and moving standard deviation of the along-track PP (b).

Figure I.2: Overall classification accuracies [%] for D-05 and D-05h (a), comple-mented by ROC graphs showing
classification performances (b). The D-05(h) results are plotted in two ways: the actual TLR/FLR where lead
classes are compared to ocean and ice combined (black/grey) and the TwR/FwR (red/orange) that combines
the water classes (ocean and leads). Note that the red/orange markers for AdaBoost and ANN overlap.
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PREDICTOR CORRELATION

A common issue to occur in multivariate analyses is multicollinearity. This phenomenon
– where one or more predictors are linearly related - can lead to biased estimation and
may cause the trained model to be unstable (Yoo et al., 2014. Ideally, the predictor vari-
ables would be chosen in such a way that the correlation between predictors (waveform
features) is minimized, yet the correlation with the response variable (class in this case)
is large. To test the impact of multicollinearity in the study case described in this paper,
Pearson correlation coefficients are calculated for each predictor pair and Kendall corre-
lation coefficients for each predictor-response pair. This is done for all data divisions as
described in the paper (Figure J.1).

Four of five predictors used in the study are highly correlated: skew, PP, ww, and
PPloc (Figure J.1a). However, these features are all directly dependent on the shape of
the waveform and therefore the correlation is in this case deemed inevitable. Neverthe-
less, if the correlation among predictor variables is consistent across the data divisions
that the trained model is applied to, multicollinearity does not necessarily degrade clas-
sifier performance (Kutner et al., 2005. This mainly concerns the D-02 and D-03 test
cases (Table 5.2). From Figure J.1b/c and d/e, it appears that the correla-tion between
the considered predictors remains consistent, regardless of differences in the study area
or sensing period. This does not apply to all predictors (e.g., sigma0). The distinct dif-
ference between Figure J.1f and other subfigures suggests that a classifier trained with
winter data should not be applied to classify summer data. In addition, the low correla-
tion between all predictors and the response variable (Figure J.1f) emphasizes the poor
potential in summer surface classifications based solely on altimetry data.
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Figure J.1: Absolute correlation coefficients of all predictor pairs and the correlation coefficient between each
predictor and the response variable (Class): for the D-01 dataset (a), the D-02 training (b) and testing dataset
(c), the D-03 training (d) and testing dataset (e), the D-04 summer data (f) and the D-05 set including ocean
data (g). The dots indicate the features that were used in this study.
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