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a b s t r a c t

The ever-increasing industry desire for improved performance makes linear controller
design run into fundamental limitations. Nonlinear control methods such as Reset
Control (RC) are needed to overcome these. RC is a promising candidate since, unlike
other nonlinear methods, it easily integrates into the industry-preferred PID design
framework. Thus far, RC has been analysed in the frequency domain either through
describing function analysis or by direct closed-loop numerical computation. The former
computes a simplified closed-loop RC response by assuming a sufficient low-pass
behaviour. In doing so it ignores all harmonics, which literature has found to cause
significant modelling prediction errors. The latter gives a precise solution, but by
its direct closed-loop computation does not clearly show how open-loop RC design
translates to closed-loop performance. The main contribution of this work is aimed at
overcoming these limitations by considering an alternative approach for modelling RC
using state-dependent impulse inputs. This permits accurately computing closed-loop RC
behaviour starting from the underlying linear system, improving system understanding.
A frequency-domain description for closed-loop RC is obtained, which is solved analyti-
cally by using several well-defined assumptions. This analytical solution is verified using
a simulated high-precision stage, critically examining sources of modelling errors. The
accuracy of the proposed method is further substantiated using controllers designed for
various specifications.
© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Industry is continuously pushing control limitations by increasing performance demands. This causes requirements on
andwidth, disturbance rejection, noise attenuation and reference tracking to become increasingly stringent. PID and other
inear controllers are standard to industry, also to high-tech applications. This status is expected to prevail [1], because
hese controllers permit the industry preferred loop-shaping design framework. Linear control is inherently subject to
undamental limitations, including the Bode gain-phase relationship [2]. This links bandwidth, disturbance rejection, noise
ttenuation and reference tracking. One cannot improve on some aspect without compromising on another. This design
rade-off hinders the industry push for better performance.

This trade-off can only be overcome through nonlinear control, such as Reset Control (RC). RC is a promising candidate
s various implementations embed nicely into PID and additionally the industry preferred loop-shaping framework. The
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first reset element was the Clegg Integrator (CI) [3], which is an integrator with its state value resetting to zero whenever
its input crosses zero. Through Describing Function (DF) analysis [4] it is shown that the CI inflicts 52◦ less phase lag than
he in gain similar linear integrator, thus overcoming the Bode gain-phase relationship.

Several authors made contributions towards generalizing the CI. The first extension was by resetting a first-order
ow-pass filter known as the First Order Reset Element (FORE) [5]. Further developments enhancing design flexibility
nclude second-order [6] and fractional-order [7] reset elements, as well as a second-order single-state reset element [8].
dditional tuning freedom was obtained by allowing states to be reset to non-zero values [9,10]. Recently, the Constant-
n-Gain Lead-in-phase (CgLp) RC implementation was proposed [11], designed to provide a broadband phase lead without
ffecting the gain. This property makes CgLp very suitable to be used in combination with any linear controller.
The reset law accompanying a reset element determines when a reset occurs. Traditionally, that is when the input

f the reset element crosses zero [3]. Extensions [12,13] and alternatives [14–19] are mentioned in literature, providing
variety of RC behaviours, tuning possibilities, stability results and performance analysis [20,21]. These options are not
onsidered here, as loop-shaping based RC tuning is developed for zero-crossing reset laws, where the zero-crossing is
ot restricted to the error signal.
Several works have demonstrated that RC can push performance beyond limits attainable through linear control [22–

5], for example by reducing overshoot [26] without affecting other specifications. RCs have been implemented in various
ontrol applications, including chemical processes [16], vibration isolation [27] and motion control systems [17,28–31].
A frequency-domain description of RC is imperative for design using the loop-shaping methodology preferred by

ndustry. Most commonly, DF analysis is utilized [10], which ignores all output harmonics. Despite this popularity, several
orks found DF to yield predictions in closed-loop that deviated widely from measurements [27,32,33]. Recently, an
pen-loop extension of DF analysis, incorporating harmonics termed higher-order sinusoidal input describing functions
HOSIDFs), was used together with various assumptions to compute a novel closed-loop frequency-domain description,
L-DF [34]. DF assumes the reset element to have a sinusoidal input, while CL-DF assumes that the higher harmonics
re small relative to the main harmonic, which at best holds approximately in closed-loop. Both methods also model
wo resets per input period only, known to not hold generally [28]. Another frequency-domain method was suggested
y [35], which computes the closed-loop directly by solving numerically. This yields a precise solution at the cost of
eing computationally intensive and not providing a link between open- and closed-loop. None of the available methods
ufficiently links open-loop RC design, especially considering the underlying linear system to closed-loop behaviour.
ithout such a link RC design is impaired, as it is not clear how certain tuning choices affect the closed-loop performance.
his work aims to bridge this gap.
Some authors have mentioned that RC can be modelled as a linear controller with a train of state-dependent weighted

mpulse inputs [22,36,37], but this idea is only developed for a CI [22] and for certain nonlinear systems [38], and not with
he objective to find a frequency-domain solution. This work takes the impulsive RC modelling and generalizes that to
btain a closed-loop frequency domain description of RC systems, exploiting the resulting linear controller model, enabling
ccurate computation of closed-loop solutions in a way compatible to the industry preferred loop-shaping methodology.
his accurately connects open-loop RC design to its closed-loop performance.
The remainder of this paper is structured as follows. First, preliminaries of RC, including reset elements, definitions

nd stability results are given in Section 2. Existing frequency domain analysis methods are presented and evaluated in
ection 3. Section 4 introduces the novel impulse formulation for a general RC in open-loop, irrespective of reset law,
ollowed by a closed-loop formulation. This generic modelling approach for closed-loop reset control systems is the first
ajor contribution of this paper.
All remaining sections of this paper focus on solving this impulsive closed-loop formulation analytically in the

requency domain and demonstrating the accuracy and limitations of this solution. The first step to this goal is taken
n Section 5 by rewriting the result into the frequency-domain which is essential for industry usage. Only systems
ith zero-crossing reset laws are considered from there on. This modelling is then simplified in Section 6 using clearly
tated assumptions to allow for an analytical solution. This novel analytical approximation is the second contribution of
his paper, providing insight in the closed-loop behaviour of reset control systems. Section 7 states the setup used to
xamine the obtained closed-loop description. The implications of the assumptions introduced in Section 6 are evaluated
n Section 8. Afterwards, the accuracy and limitations of the obtained analytical approximation are evaluated in Section 9
y using controllers tuned for various specifications. Last, Section 10 concludes this paper.

. Preliminaries on reset control

This section presents a generic reset control framework, along with relevant definitions and a stability theorem often
sed with reset control systems.

.1. Reset control

Consider the generic closed-loop setup given in Fig. 1, consisting of linear systems K and G surrounding the reset
element ◁◁�R, with input r⃗I (t) and output y⃗(t). Let y⃗(t), e⃗(t), r⃗I (t) ∈ Rmy , z⃗(t) ∈ Rmz and q⃗(t) ∈ Rmq , with my, mz, mq ∈ N.

Definition 1 defines ◁�R, Definition 2 the reset types under consideration and Definition 3 the closed-loop as given in Fig. 1.
◁

2
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⃗

Fig. 1. Block diagram of a RCS with input r⃗I and output y⃗, consisting of reset element ◁◁�R surrounded by linear systems K and G.

These definitions permit MIMO implementations. Hence, Fig. 1 is drawn from right to left, as conventional to MIMO
systems.

Definition 1.
Let a Reset Controller (RC) ◁◁�R : q⃗(t) ↦→ z⃗(t) be defined by dimension-compatible matrices AR, BR, CR, DR, states

x(t) ∈ Rnol , nol ∈ N and reset matrices Aρ,r . A reset occurs when t = tr,ol ∈ tR,ol, where tR,ol denotes the set of all reset
time instants, and tr,ol ∈ tR,ol representing any particular reset instant. Each Aρ,r corresponds to some subset of tR,ol . The

following equations describe ◁◁�R:

◁◁�R :

⎧⎨⎩
˙⃗x(t) = AR x⃗(t) + BR q⃗(t), t /∈ tR,ol
x⃗+(t) = Aρ,r x⃗(t), t ∈ tR,ol
z⃗(t) = CR x⃗(t) + DR q⃗(t)

(1)

After-reset states are denoted by x⃗+. Description (1) permits a MIMO RC and an arbitrary reset law.

Definition 2 (Reset Types). In literature, the reset matrix Aρ is generally diagonal and can also be non-constant. A fixed
matrix is considered in this work and the subscript r is removed: Aρ = diag

(
γ1, . . . , γnol

)
, with values γi ∈ [− 1, 1],

i ∈ {1, . . . , nol}. Define the following:

• Fully resetting RC: γi ∈ {0, 1} , ∀ i and ∃ i | γi = 0.
• Partially resetting RC: Aρ where ∃ i | γi /∈ {0, 1}.

Definition 3 (Reset Control System (RCS)). Let the closed-loop reset control system ◁◁�T : r⃗I (t) ↦→ y⃗(t) as in Fig. 1 be defined
by dimension-compatible matrices Acl, Bcl, Ccl, Dcl and Aρcl, with states x⃗cl ∈Rncl , ncl = (nol + nK + nG)∈N. A reset occurs

when t = tr ∈ tR, where tR denotes the set of all reset time instants and tr ∈ tR any particular reset instant. ◁◁�T is described
by:

◁◁�T :

⎧⎨⎩
˙⃗xcl(t) = Acl x⃗cl(t) + Bcl r⃗I (t), t /∈ tR
x⃗+

cl (t) = Aρcl x⃗cl(t), t ∈ tR
y⃗(t) = Ccl x⃗cl(t) + Dcl r⃗I (t)

(2)

RCs as in (1), (2) are SISO if my = 1, mz = 1 and my = 1. Note that henceforth RC refers to the open-loop nonlinear
controller and RCS refers to the closed-loop reset system.

Definition 4 (Base-Linear System (BLS)). The base-linear system of Fig. 1 is obtained by removing all resets from the RCS,
rendering it linear. Let RL denote ◁◁�R without reset action:

RL(s) ≜ CR (sI − AR)−1 BR + DR (3)

The BLS sensitivity function SL(s) and complementary sensitivity function TL(s) are given by:

SL(s) ≜ (I + G(s) RL(s) K (s))−1 (4)

TL(s) ≜ G(s) RL(s) K (s) (I + G(s) RL(s) K (s))−1 (5)

Definition 5 (Time Regularization). Time regularization removes any reset instance tr from tR if tr < tp + τ , with τ > 0
a tunable parameter and tp the last occurred reset time instant in tR [14]. Thus, if τ > 0, all time instances tr ∈ tR are
distinct.

Definition 6 (Zero-Crossing Law). A SISO RCS with zero-crossing law resets when tR =
{
t ∈ R | q⃗(t) = 0

}
.

RC systems can be prone to deadlock, beating and Zeno behaviour [28], causing solutions to be ill-defined. This
behaviour can be avoided by using time regularization, by setting τ>0 [14,39]. Any practical discrete-time implementation
inherently features time regularization, having τ equal to the sampling time [40]. In this work a practical setup is
considered. Therefore, it is chosen to disregard deadlock, beating and Zenoness in this paper, as τ > 0 automatically
holds for often-used digitized implementations. As such, solutions to (2) are assumed to be well-defined.
3
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Fig. 2. Bode Plot with the linear, RL (dashed line), and first harmonic, RDF (solid line), responses for a CI, FORE and CgLp reset element. The harmonic
responses, computed through DF analysis (10), use full reset (γ = 0).

2.2. Reset elements

Various reset elements are presented in literature. A few relevant ones are given below, all of them most commonly
using zero-crossing reset laws. Fig. 2 gives the Bode plots for these, depicting their base-linear and nonlinear first harmonic
responses.

2.2.1. Generalized Clegg Integrator (GCI)
The Clegg Integrator [3] is a resetting integrator, which can be generalized by allowing partial resets through γ . The

GCI is defined with:

AR = 0, BR = 1 CR = 1, DR = 0, Aρ = γ (6)

2.2.2. Generalized First Order Reset Element (GFORE)
FORE is based on a first order low-pass filter. It was first given by [5] and later generalized by permitting partial

resets [17]. A GFORE with corner frequency ωr is given with:

AR = −ωr , BR = ωr , CR = 1, DR = 0, Aρ = γ (7)

2.2.3. Constant in gain, Lead in phase (CgLp)
CgLp is a novel RC element providing broadband phase lead while maintaining unit gain [32]. This characteristic enables

CgLp to be combined with any linear controller, increasing phase without inflicting gain alterations. This is achieved by
merging a GFORE, having pole ωrα , with a lead–lag filter, having pole ωf and zero ωr = ωrα α. Parameter α corrects for the
GFORE pole shift induced by reset nonlinearity [32], ensuring that the GFORE pole remains coincident with the lead–lag
zero. [

AR BR
CR DR

]
=

[
− ωrα 0 ωrα

ωf − ωf 0
ωf / ωr 1 − ωf / ωr 0

]
(8)

Aρ = diag [γ , 1]

2.3. Stability

Consider a SISO RCS where the matrices Acl, Ccl, Aρcl and Aρ can be structured as below. This factorization is always
possible if G(s) has no direct feed-through.

Acl =

[
• •

• AR

]
Ccl =

[
CG 0

]
Aρcl =

[
Incl−nol 0

0 Aρ

]
Aρ =

[
Iρ̄ 0
0 A∗

ρ

]
where • denotes any matrix. A∗

ρ ∈Rnρ×nρ , nρ ∈N0 is a matrix corresponding to the nρ resetting states. It follows that the
number of non-reset states is n = n − n .
ρ̄ ol ρ

4
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Table 1
Overview of assumptions existing methods for computing frequency-domain closed-loop
RC behaviour use. Empty fields indicate that there are no assumptions.

DF CL-DF CL-FR

Modelled resets per period: 2 2
Signals assumed sinusoidal: q⃗(t) r⃗I (t) r⃗I (t)
Resets assumed at: q⃗DF ,1 = 0
Neglects harmonics: Yes

Definition 7 (Hβ - Condition [9]).
A SISO RCS (2) with zero-crossing reset law, having all inputs r⃗I equal to 0, satisfies the Hβ condition if ∃ β ∈ Rnρ ,

Pρ ∈ Rnρ × nρ > 0, such that

Hβ ≜
[
β CG 0nρ × nρ̄

Pρ

]
(sI − Acl)

−1

⎡⎣ 0
0nρ̄ × nρ

Inρ × nρ

⎤⎦
is strictly positive real, Aρcl is non-zero and [41]:

A⋆
ρ
TPρ A⋆

ρ − Pρ ≤ 0

Theorem 1 (Hβ - Stability [9,35]).
A SISO RCS (2) with a zero-crossing reset law is quadratically stable if and only if it satisfies Hβ condition. Uniform

exponential convergence and input-to-state convergence also hold if (2) satisfies Hβ .

3. Frequency-domain describing methods

The available frequency-domain methods for describing RCs are given in this section. These methods are applicable to
zero-crossing resets only. Table 1 provides an overview of the various assumptions used by methods describing RCSs. The
analytical approximation to RCSs developed in this paper will be juxtaposed against these existing methods in Section 9.

3.1. DF and HOSIDF analysis

Analysing SISO RCs in the frequency domain is typically performed using DF analysis, which computes the first
harmonic in the Fourier series expansion of z⃗(t). This requires (1) to have a globally asymptotically stable 2π /ω - periodic
output z⃗(t), for a sinusoidal input q⃗(t) with frequency ω > 0. This happens if and only if [10]:⏐⏐λ (

Aρ eAR δ
)⏐⏐ < 1, ∀ δ ∈ R+ (9)

DF analysis is extended to Higher Order Sinusoidal Input Describing Function (HOSIDF) analysis by also considering the
harmonics in the Fourier series expansion of z⃗(t). [34].

Theorem 2 (DF [10], HOSIDF [42]). The nth order HOSIDF for an open-loop SISO RC (1) satisfying (9) with zero-crossing resets
and a sinusoidal input with frequency ω > 0 is computed by:

RDF ,n(ω) ≜ CR(jωn I − AR)−1

×

⎧⎨⎩
(I + jθD(ω)) BR + DR, n = 1
jθD(ω) BR, odd n > 1
0, even n > 1

(10)

where: θD(ω) ≜ −
2ω2

π
∆(ω)

[
ΓR(ω) − Λ−1(ω)

]
ΓR(ω) ≜ ∆−1

R (ω) Aρ ∆(ω)Λ−1(ω)

Λ(ω) ≜ ω2 I + A2
R

∆(ω) ≜ I + e
π
ω AR

∆R(ω) ≜ I + Aρ e
π
ω AR

DF analysis equals (10) taking only n = 1. The corresponding DF-approximated sensitivity function for (2) is:

SDF (ω) =
(
I + G(ω) RDF ,1(ω) K (ω)

)−1 (11)

This approximation assumes (i) that all harmonics are negligible in closed-loop, (ii) q⃗(t) to be sinusoidal, which (iii) implicitly
ssumes the RCS to have two resets per input period.
5
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T
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a
Q

T

Fig. 3. HOSIDF representation of ◁◁�R for a sinusoidal input q⃗(t), using a virtual harmonics generator.
Source: Adapted from [43].

HOSIDF analysis models the RC response in open-loop for input q⃗(t) = q⃗0 sin(ωt), as shown in Fig. 3 as:

Z(nω) = RDF ,n(ω)Q (ω) (12)
∞∑
n=1

RDF ,n(ω)Q (ω) ⇔ ◁◁�R(s)Q (s) (13)

z⃗(t) =

∞∑
n=1

⏐⏐RDF ,n q⃗0
⏐⏐ sin(nωt + ̸ RDF ,n) (14)

he assumptions for SDF do not hold. Reset induces harmonics, which through feedback prevent q⃗(t) from being fully
inusoidal. RCSs often have more than two resets per period [28].

.2. Closed-loop HOSIDF analysis

Recently a method was presented that extends HOSIDF to RCS [34]. Starting from open-loop HOSIDF, this method
ssumes (i) that there are exactly two resets per input period, spaced π /ω apart, and (ii) that solely the first harmonic,
(ω)= K (ω) SDF ,1(ω), causes and affects resets.

heorem 3 (Closed-Loop HOSIDF (CL-DF) [34]). The nth order CL-DF for an RCS with an input-to-state convergent SISO RC (1)
satisfying (9), having zero-crossing resets and a sinusoidal input with frequency ω > 0, is defined by:

SDFCL,n(ω)≜
{
Sl1(ω), n= 1
− Slbls(nω) Ln(ω) Sl1,n(ω), n> 1

(15)

where: Ln(ω) ≜ G(nω) RDF ,n(ω) K (ω)

Sln(ω) ≜ (I + Ln(ω))−1

Lbls(ω) ≜ G(ω) RL(ω) K (ω)

Slbls(ω) ≜ (I + Lbls(ω))−1

Sl1,n(ω) ≜ |Sl1(ω)| ejn̸ Sl1(ω)

CL-DF uses assumptions to close the loop, and hence introduces errors in modelling and prediction, yet improves upon
SDF as it includes harmonics. However, by considering all harmonics including the first together, it does not provide any
link between the base-linear system and the RCS.

3.3. Closed-loop frequency response (CL-FR)

CL-FR is different from the other approaches mentioned, as it analyses a stable SISO RCS with zero-crossing resets and
a sinusoidal input directly through numerical evaluation [35]. This direct closed-loop computation yields accurate results
at the cost of not providing insight in how open-loop RC design translates to RCS performance.

4. Impulse reset modelling

Literature has shown that some RCs can be modelled as linear systems with a state-dependent timed impulse train
input, a description first mentioned by [22]. Theorem 4 extends this result and proves that any general open-loop RC as
in (1) can be equivalently modelled as a linear system with impulse inputs. This result is further developed in this section
to acquire the RCS description, which is the first main result of this paper.
6
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Theorem 4 (Impulse-Based RC Modelling). The states ˙⃗x(t) of any open-loop RC as in (1) are computed as:

˙⃗x(t) = AR x⃗(t) + BR q⃗(t) +

∑
tr∈tR

(Aρ − I) x⃗(tr ) δ(t − tr ) (16)

Proof. Consider an open-loop RC (1). The after-reset states x⃗+(t) ∈ Rnol at t = tr ∈ tR are given by:

x⃗+(t) = Aρ x⃗(t) = I x⃗(t) + (Aρ − I) x⃗(tr ), t = tr ∈ tR

The term (Aρ − I) x⃗(tr ) is added at the reset instant, t = tr . This can be modelled as a Heaviside step function,
H(t − tr ) ∈ R1, weighted by (Aρ − I) x⃗(tr ). In [44], it is shown that, for functions f (t) with piecewise discontinuities
modelled by H(t − tr ) ∈ R1, the generalized derivative ḟ (t) equals the classical derivative for all t ̸= tr , and a weighted
Dirac delta function for all t = tr . Per definition, Ḣ(t − tr ) = δ(t − tr ), with δ(t) the Dirac delta function. Note that x⃗(tr )
is sampled at t = tr and therefore is a constant, ˙⃗x(tr ) = 0. Inserting the Heaviside step function and differentiating gives:

x⃗+(t) = x⃗(t) + (Aρ − I) x⃗(tr )H(t − tr ), t = tr ∈ tR
˙⃗x+(t) = ˙⃗x(t) + (Aρ − I) x⃗(tr ) δ(t − tr ), t = tr ∈ tR

= ARx⃗(t) + BR q⃗(t) + (Aρ − I) x⃗(tr ) δ(t − tr ), t = tr ∈ tR

When t /∈ tR, no reset action occurs. The state flow is then governed by RL (3):

˙⃗x(t) =

{
ARx⃗(t) + BR q⃗(t) + (Aρ − I) x⃗(t) δ(t − tr ), t = tr ∈ tR
ARx⃗(t) + BR q⃗(t), t /∈ tR

This behaviour can be written in a more compact manner by summing (Aρ − I) x⃗(t)δ(t − tr ) over all resets tr ∈ tR,
completing this proof. □

Remark 4.1 (Initial States). Initial states are assumed to be zero throughout this section. It should be noted that reset
times tR often depend on the system state and thus on the initial conditions, e.g. in the case of zero-crossing reset laws,
Definition 6. In Theorem 5 and Remark 5.1 the requirements for RCSs are stated by which this assumption is valid.

Corollary 4.1 (RC Laplace Formulation). Let the transfer function Rδ(s) be defined by Rδ(s) ≜ CR (sI−AR)−1 (Aρ −I), the transfer
between Q (s) and X(s) by RX

L (s) ≜ (sI −AR)−1 BR and the reset response to X(s) as RX
δ (s) ≜ (sI −AR)−1 (Aρ − I). The output and

states of (1) are given in the Laplace domain by:

Z(s) = RL(s)Q (s) + Rδ(s)
∑
tr∈tR

x⃗(tr ) e− tr s (17)

X(s) = RX
L (s)Q (s) + RX

δ (s)
∑
tr∈tR

x⃗(tr ) e− tr s (18)

Proof. Start by writing (16) in the Laplace domain:

sX(s) = AR X(s) + BR Q (s)+
∑
tr∈tR

(
Aρ,k − I

)
x⃗(tr ) e− tr s

Vector x⃗(tr ) is evaluated at a specific time instant and can therefore be treated as a constant. Rewriting for X(s) and
substitution of RX

L (s) and RX
δ,k(s) gives (18). Solving for X(s), using (1) to write Z(s) = CR X(s) + DR Q (s) and afterwards

inserting (18), RL(s) and Rδ(s) yields (17). □

The following corollaries state the first main contribution of this paper, by proving that any RCS can be described by
the BLS summed with impulse responses.

Corollary 4.2 (Closed-Loop E(s)). The RCS error response E(s) is computed to be the BLS summed by impulse responses:

E(s) = SL(s) RI (s) − SL(s)G(s)Rδ(s)
∑
tr∈tR

x⃗(tr ) e− tr s (19)

he second term is denoted as Eδ(s, tr ) to simplify notation, giving

E(s) = SL(s) RI (s) +

∑
tr∈tR

Eδ(s, tr )

roof. From Fig. 1 it follows that Q (s) = K (s) E(s). Together with (17) this gives:

Z(s) = RL(s) K (s) E(s) + Rδ(s)
∑

x⃗(tr ) e− tr s
tr∈tR

7
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Fig. 4. Detail on a series of resets around a zero-crossing for a FORE closed-loop reset system as given by Example 4.1, using r⃗I = sin (t / 2π). The
components of (19), their sum and the simulated response are shown.

In Fig. 1 it is seen that E(s) = RI (s) − G(s) Z(s):

E(s) = RI (s) − G(s) RL(s) K (s) E(s) − G(s)Rδ(s)
∑
tr∈tR

x⃗(tr ) e− tr s

The result follows by solving for E(s) and inserting (4). □

Corollary 4.3 (Closed-Loop X(s)). The closed-loop states of ◁◁�R(s) are computed to be:

X(s) = RX
L (s) K (s) SL(s) RI (s)

− RX
L (s) K (s) SL(s)G(s)Rδ(s)

∑
tr∈tR

x⃗(tr ) e− tr s + RX
δ (s)

∑
tr∈tR

x⃗(tr ) e− tr s (20)

Proof. Take (18) and substitute Q (s) with K (s)E(s), using the RCS error E(s) as defined by (19). □

Remark 4.2. All results based on Theorem 4 require uniqueness and existence of a solution to (1) only. No requirements
on input types, system dimensions, stability or reset types are needed to compute the response. The RCS behaviour can
thus be computed exactly, given that reset times tR and corresponding states x⃗(tr ) are known.

Remark 4.3. These results accept MIMO systems. However, MIMO reset control implementations often use multiple reset
conditions [45,46]. The obtained results permit a straightforward extension to an arbitrary number of reset conditions,
where each of these corresponds to some reset matrix Aρ,r and resets at some subset of reset times tR. It follows that
these results can describe closed-loop MIMO RC behaviour.

Example 4.1. Consider a SISO FORE in closed-loop with a zero-crossing reset law, using K (s) = 100, G(s) = 1, ωr = 25
and γ = 0. Fig. 4 illustrates in time-domain how the linear response SL(s) RI (s) and impulse responses Eδ(s, tr ) are summed
to create (19), which equals the simulated response.

Remark 4.4. Result (19) adds insight into RCS performance by linking how the base-linear system designed in open-loop
and the introduction of reset in the form of impulses affects closed-loop performance. In closed-loop the RC behaves as
the BLS, but having impulse responses with tunable weighting I − Aρ added to it. Thus, the closed-loop can be estimated
by considering the BLS and weighted impulse response based on the open-loop design. This analysis allows to explain
in a different way why RCs are found to have a lower sensitivity peak than their corresponding BLSs [11]. From (19) it
follows that this must occur because impulse responses partially cancel out the BLS error.

5. Periodic results

Eq. (19) provides the first main contribution of this paper, by proving that any RCS equals a linear system summed by
impulse responses. A precise RCS solution to this equation is obtained if the values tR and x⃗(tr ) as in (19) are computed.
It might be possible to obtain these in a numerical manner to yield a precise and generic solution, without needing
further assumptions or setup requirements. However, such a solution does not generally permit a frequency-domain
8
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Fig. 5. Time response of a FORE RCS system satisfying Theorem 5 with indicated time intervals between resets, for r⃗I = sin (t / 2π).

escription, which is imperative for loop-shaping as desired by industry. The subsequent sections therefore aim to derive
n analytical approximation to (19) in frequency-domain terms. This section first states conditions for RCS periodicity.
ext, a modified HOSIDF framework is provided. This periodicity is then used alongside the modified HOSIDF to rewrite
19) in frequency-domain terms. Section 6 will further develop this result and acquire the analytical approximation in
he frequency domain.

.1. Periodicity of RCS

To write (19) in frequency-domain terms it is necessary that periodicity of (19) is established.

heorem 5 (Periodic RCS [35]). If a SISO RCS (2) with zero-crossing law (a) satisfies Hβ , and (b) has a purely sinusoidal r⃗I (t)
ith frequency ω, then, in steady-state, the RCS has (i) a unique periodic solution x⃗cl(t), y⃗(t) with period 2π / ω, (ii) all even
armonics equal to zero, and (iii) a periodic pattern of reset instants with period π / ω.

emark 5.1. The steady state SISO RCS response requires that the initial state response has converged and is negligible.
his is valid for any RCS satisfying Theorem 5, as uniform exponential stability holds as stated in Theorem 1. Effects caused
y initial states will thus converge to zero. Therefore, all subsequent derivations contain solely the input responses of (2),
gnoring initial state responses which Theorem 5 has proven to decay.

emark 5.2 ([35]). Theorem 5 also holds if, instead of (2) satisfying Hβ , it is Uniformly Bounded Steady-State.

xample 5.1. Fig. 5 gives the steady-state time response of the RCS given by Example 4.1 to a 1 Hz sinusoidal reference.
his setup meets the requirements of Theorem 5, which therefore predicts that reset instants have a π /ω periodic pattern,
nd that the RCS has a unique periodic solution with period 2π /ω. Fig. 5 illustrates this by showing the π /ω time period
etween all pairs of equal-sized, sign-reversed reset impulses.

Corollary 5.1 utilizes the periodicity established by Theorem 5. A mathematical expression is obtained that will be
eeded to derive Theorem 7.

orollary 5.1 (Periodic Impulse Response). Define a new set of reset times, t = tr ∈ tρ with tρ = {t ∈ tR | t ∈ [0, π / ω⟩}. If
heorem 5 is satisfied the following simplification holds:

Rδ(s)
∑
tr∈tR

x⃗(tr ) e− tr s =

∑
tr∈tρ

ξ
(
s, tr , x⃗(tr )

)
(21)

he term ξ
(
s, tr , x⃗(tr )

)
is by definition 2π / ω periodic:

ξ
(
s, tr , x⃗(tr )

)
≜ Rδ(s)

∑
p ∈ 2Z

(
x⃗(tr ) e− (tr+p π

ω ) s
− x⃗(tr ) e− (tr+(p+1) π

ω ) s
)

Proof. If Theorem 5 is satisfied, the reset instants are π /ω periodic. As such, tρ can be used to represent all resets,
p{tρ + pπ / ω} = tR, p ∈ Z. These are thus equal:∑

x⃗(tr ) e− tr s =

∑ ∑
x⃗(tr + pπ / ω) e− (tr+p π

ω ) s
tr∈tR tr∈tρ p∈Z

9
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Using Theorem 5, x⃗(tr + pπ / ω) can be expressed in x⃗(tr ).∑
tr∈tR

x⃗(tr ) e− tr s =

∑
tr∈tρ

∑
p ∈ 2Z

(
x⃗(tr ) e− (tr+p π

ω ) s
− x⃗(tr ) e− (tr+(p+1) π

ω ) s
)

re-multiplication with Rδ(s) and inserting ξ
(
s, tr , x⃗(tr )

)
as defined above completes the proof. □

.2. Impulse HOSIDF analysis

HOSIDF describes the RC response, as given by (16), thus modelling both the periodic impulse responses and the
ase-linear response to the input. As proven by Corollary 4.2, any closed-loop response equals the BLS summed by
everal impulse responses. Therefore, it is convenient to split the BLS and the various impulses in further derivations.
o this end, Impulse HOSIDF is introduced in Definition 8. Impulse HOSIDF is identical to conventional HOSIDF in terms
f higher harmonics. Solely the first harmonic is modified, by removing the base-linear response. As such, Impulse HOSIDF
nly captures the impulse responses. Definition 8 defines Impulse HOSIDF and provides its mathematical relation to the
onventional HOSIDF [42].

efinition 8 (Impulse HOSIDF). The nth order impulse HOSIDF analysis for a SISO RC (1) satisfying (9) with zero-crossing
esets, given a sinusoidal input with frequency ω > 0, is defined as a function of input matrix B⋆:

R⋆
DF ,n(ω, B⋆) ≜ CR (jω n I − AR)−1

×

{
jθD(ω)B⋆, odd n > 0
0, even n > 1

(22)

f B⋆
= BR, HOSIDF and Impulse HOSIDF relate according to:

RDF ,n(ω)=
{
R⋆
DF ,1(ω, BR) + RL(ω), n= 1

R⋆
DF ,n>1(ω, BR), n> 1

(23)

5.3. Closed-loop frequency-domain description

This section shows that open-loop Impulse HOSIDF can be used to exactly model RCSs (2) through the computation of
a virtual input Q ⋆ and input matrix B⋆. The open-loop states are first established for Impulse HOSIDF.

Lemma 5.1. The following is used to simplify results:

Re
{
(jω I − AR)−1j

}
≡

(
ω2 I + A2

R

)−1
ω I (24)

Re
{
(jω I − AR)−1}

≡ −
(
ω2 I2 + A2

R

)−1
AR (25)

heorem 6 (Open-Loop States x⃗(tr )). Consider an open-loop SISO RC (1) using zero-crossing resets with a sinusoidal input q⃗(t)
aving amplitude q⃗0 ∈ R and frequency ω. Define reset sets based on the derivative ˙⃗q(t):

t↓r ∈ t↓R = {t ∈ tR : ˙⃗q(t) < 0}

t↑r ∈ t↑R = {t ∈ tR : ˙⃗q(t) > 0}

o that t↓R ∪ t↑R = tR. The states x⃗(t↓r ) obey:

x⃗(t↓r ) =

(
I + eAR

π
ω Aρ

)−1 (
I + eAR

π
ω

) (
ω2 I + A2

R

)−1
ω I BR q⃗0 (26)

here (I+eAR
π
ω Aρ) is required to be invertible. This requirement is, for any RCS (1) with Aρ diagonal as is conventional, always

atisfied if the HOSIDF (10) exists, which needs ∆R(ω) = I +
(
AρeAR

π
ω

)
to be invertible.

Proof. Split the open-loop states (18) in two parts, so that X(s) = XL(s) + Xδ(s):

XL(s) = RX
L (s)Q (s)

Xδ(s) = RX
δ (s)

∑
tr∈tR

x⃗(tr ) e− tr s

First consider the linear term, XL(s). States x⃗L(t) can be obtained by taking the real part of XL(s) = XL(jω) evaluated at some
time instance. This is possible because of linearity combined with having a sinusoidal input. Rewriting the sinusoidal input
q⃗(t) gives:

q⃗(t) = q⃗ sin(ωt) = Im{q⃗ ejωt
} = Re{q⃗ ej(ωt− π

2 )
}
0 0 0

10
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This is used to write XL(jω) in time domain:

XL(jω) = (jωI − AR)−1BR Q (jω)

x⃗L(t) = Re{(jωI − AR)−1BR q⃗0 ej(ωt− π
2 )

}

The zero-crossing reset law is used to determine x⃗L(t
↓

r ), which requires finding q⃗(t↓r ). A zero-crossing of q⃗(t) implies
e{q⃗(tr )} = 0 ⇔ q⃗0 ej(ωt− π

2 )
= ± jq⃗0. As ω > 0, function q⃗0 ej(ωt− π

2 ) propagates counter-clockwise, implying that solution
jq⃗0 occurs when sinusoid q⃗(t) crosses 0 from above ( ˙⃗q(t) < 0). Applying this and using (24) to simplify gives:

x⃗L(t↓r ) = Re
{
(jω I − AR)−1BR j q⃗0

}
x⃗L(t↓r ) =

(
ω2 I + A2

R

)−1
ω I BR q⃗0

The impulsive part is considered next. Write in time domain:

x⃗δ(t) =

∑
tr∈tR≤t

eAR(t−tr )(Aρ − I) x⃗(tr )

From q⃗(t) it follows that resets are spaced π /ω apart. Thus,
∀ t↓r ∈ t↓R , ∃ t̃↑r ∈ t↑R | t↓r − t̃↑r = π /ω. Evaluating at t↓r and expressing in terms of the states at the previous reset, x⃗δ(t̃

↑

r ):

x⃗δ(t↓r ) = eAR(t
↓
r −t̃↑r )(Aρ − I) x⃗(t̃↑r ) + eAR(t

↓
r −t̃↑r )

∑
tr∈tR

<t̃↑r

eAR(t̃
↑
r −tr )(Aρ − I) x⃗(tr )

he last term is per definition equal to x⃗δ(t̃
↑

r ). Therefore,

x⃗δ(t↓r ) = eAR(t
↓
r −t̃↑r )(Aρ − I) x⃗(t̃↑r ) + eAR(t

↓
r −t̃↑r ) x⃗δ(t̃↑r )

x⃗δ(t↓r ) = eAR
π
ω

(
(Aρ − I) x⃗(t̃↑r ) + x⃗δ(t̃↑r )

)
If (9) is satisfied, as required for HOSIDF analysis, x⃗(t)= − x⃗(t+π /ω) [10]. Inserting t↓r , t̃

↑

r gives x⃗(t↓r )= − x⃗(t̃↑r ). Expanding
(t) shows that
x⃗(t↓r ) = x⃗L(t

↓

r )+ x⃗δ(t
↓

r ) = −x⃗L(t̃
↑

r )− x⃗δ(t̃
↑

r ). From x⃗L(tr ) having ± jq⃗0 solutions on alternating reset times x⃗L(t̃
↓

r ) = − x⃗L(t
↑

r )
ollows. Thus, x⃗δ(t

↓

r ) = − x⃗δ(t
↑

r ). Inserting this and writing for x⃗(t↓r ) gives:

x⃗δ(t↓r ) = eAR
π
ω

(
(I − Aρ) x⃗L(t↓r ) − Aρ x⃗δ(t↓r )

)
Solving for x⃗δ(t

↓

r ) in terms of x⃗L(t
↓

r ) and inserting that in x⃗(t↓r ) = x⃗L(t
↓

r ) + x⃗δ(t
↓

r ) yields the desired solution. □

emark 6.1. These states x⃗δ(t
↓

r ) equal those of the Impulse HOSIDF case, given that BR = B⋆ and Q (ω) = Q ⋆(ω).

Next, the virtual input Q ⋆(ω) to the Impulse HOSIDF and corresponding input matrix B⋆ are computed as a function of
(t↓r ). These are then used to find the closed-loop formulation.

orollary 6.1 (Impulse HOSIDF Can Model Any x⃗(t↓r )). Impulse HOSIDF (22) can model any periodic impulse response with
tates x⃗(t↓r ) by choosing the virtual input magnitude q⃗⋆

0(ω, x⃗(t↓r )) = 1 and the input matrix B⋆(ω, x⃗(t↓r )) as:

B⋆(ω, x⃗(t↓r )) = ζ (ω) x⃗(t↓r ) (27)

ith ζ (ω) defined as:

ζ (ω) = ω−1 (
ω2 I + A2

R

) (
I + eAR

π
ω

)−1 (
I + eAR

π
ω Aρ

)
Proof. Substitution of B⋆(ω, x⃗(t↓r )) for BR in (26) while using virtual input Q ⋆(ω, x⃗(t↓r )) with magnitude q⃗⋆

0(ω, x⃗(t↓r )) = 1
nstead of Q (ω), and rewriting for B⋆(ω, x⃗(t↓r )) afterwards, yields the result. This shows that by computing B⋆(ω, x⃗(t↓r )) any
eriodic reset state can be created, and hence that Impulse HOSIDF can model any periodic impulse response.
B⋆(ω, x⃗(t↓r )) makes magnitude q⃗⋆

0(ω, x⃗(t↓r )) obsolete, which is why
q⋆
0(ω, x⃗(t↓r )) = 1 is chosen. The phase of Q ⋆(ω) determines reset times, which is covered in a later section. □

heorem 7 (Impulse HOSIDF Analysis in Closed-Loop). A summation of Impulse HOSIDF responses on top of the BLS can
ccurately describe e(t) for any system satisfying Theorem 5, given continuity of e⃗(t) (e⃗(t) ∈ C0):

E(ω) = SL(ω) RI (ω) − SL(ω)G(ω)
∑

R⋆
DF ,1(ω, B⋆(ω, x⃗(t↓r )))Q

⋆(ω, x⃗(t↓r )) (28)

tρ

11
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Fig. 6. Block diagram representing (28). The dashed area must be summed over all tr ∈ tρ . Arguments of R⋆
DF ,n(ω, B⋆(ω, x⃗(t↓r ))) are dropped.

E(nω) = − SL(nω)G(nω)
∑
tρ

R⋆
DF ,n(ω, B⋆(ω, x⃗(t↓r )))Q

⋆(ω, x⃗(t↓r )) (29)

ith Q ⋆(ω, x⃗(t↓r )) having magnitude 1 and phase to ensure the correct reset times. Fig. 6 represents (28) and (29) graphically.

Proof. Take (12) and insert (23), with a designable input matrix
BR = B⋆(ω, x⃗(t↓r )) and sinusoidal input Q ⋆(ω, x⃗(t↓r )) with amplitude 1. Arguments of B⋆ and Q ⋆ are dropped.

Z(ω) = RL(ω)Q ⋆
+ R⋆

DF ,1(ω, B⋆)Q ⋆

Z(nω) = R⋆
DF ,n(ω, B⋆)Q ⋆

Inserting the open-loop Z(ω) (17), using B⋆ and Q ⋆ computed according to the actual states x⃗(t↓r ), and rewriting gives:
∞∑
n=1

R⋆
DF ,n(ω, B⋆)Q ⋆

= Rδ(ω)
∑
tr∈tR

x⃗(tr ) e− tr jω

The reset times t = tr ∈ tR = ∪p{tr + pπ / ω}, p = Z follow from zero-input resets. Using these yields:
∞∑
n=1

R⋆
DF ,n(ω, B⋆)Q ⋆

= Rδ(ω)
∑
p ∈ Z

x⃗(tr + pπ / ω) e− (tr+pπ / ω)jω

The correct HOSIDF response for resets at tρ with weight x⃗(tr ) is ensured if B⋆ and Q ⋆ are computed according to
Corollary 6.1. HOSIDF has odd harmonics only, thus x⃗(tr ) = − x⃗(tr + π / ω). Simplifying using periodicity and inserting
the definition of ξ

(
s, tr , x⃗(tr )

)
from Corollary 5.1 gives:

∞∑
n=1

R⋆
DF ,n(ω, B⋆)Q ⋆

=Rδ(ω)
∑

p ∈ 2Z

(
x⃗(tr ) e− (tr+p π

ω ) jω
− x⃗(tr ) e− (tr+(p+1) π

ω ) jω
)

∞∑
n=1

R⋆
DF ,n(ω, B⋆)Q ⋆

= ξ
(
ω, tr , x⃗(tr )

)
hus far, this holds for open-loop Impulse HOSIDF. Conveniently,

ξ
(
s, tr , x⃗(tr )

)
as in (21) is obtained, which can be substituted in the closed-loop response (19), which requires inserting

he closed-loop values for tr and x⃗(tr ). □

emark 7.1. Theorem 7 proves that any SISO RC (2) with (i) zero-crossing resets (ii) satisfying the Hβ condition and (iii)
having e⃗(t) ∈ C0 can be described without error by a summation of Impulse HOSIDF responses, if the set tρ and states
(tr ) are known ∀ tr ∈ tρ .

emark 7.2. Theorem 7 also holds if e⃗(t) /∈ C0, except for prediction errors caused by the Gibbs phenomenon in the
icinity of discontinuities.

With (28) an accurate description is provided that can model the same RCSs in frequency-domain as CL-FR can, given
hat tρ and x⃗(tr ) are known, without needing further conditions.

. Analytical solution

To solve (28), time instants tr and states x⃗(tr ) must be computed ∀ tr ∈ tρ . This can be done numerically or analytically.
or the sake of simplifying analysis and staying close to what is familiar to the linear control loop-shaping based
12
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methodology, it is chosen to pursue an analytical solution. This choice comes at the cost of requiring assumptions,
impacting precision. The effects of these assumptions are evaluated in Section 8. This section will introduce these
assumptions and utilize these to obtain an analytical solution to (28), and thus approximate (19) analytically in the
frequency domain for steady-state solutions.

Assumption 1 (Two Resets Per Period). Assume that sufficient accuracy is achieved by modelling a RCS (2) satisfying
heorem 7 with exactly two resets per period, taking tρ ∈ R. Accurate modelling of the two modelled resets requires that

any unmodelled reset does not significantly influence their position nor states. This holds if the impulse responses are
sufficiently convergent relative to the frequency of the reference sinusoid.

Assumption 2 (Zero-Crossing Direction). It is assumed that at any reset the direction of q⃗(t) crossing zero is equal to that
redicted by the nearby BLS zero-crossing: sign( ˙⃗q(t)) = sign( ˙⃗qL(t)), ∀ t | q⃗(t) = 0. This holds for most RCSs given that
hey are sufficiently convergent, such that ˙⃗q(t) ≈ ˙⃗qL(t), ∀ t ∈ tR.

ssumption 3 (Existence Of a Reset Instant). Assume that, at any reset instant, the absolute combined magnitude of all
rior resets-induced impulse responses is less than the absolute peak value of the BLS response. This must hold in any
eal system satisfying Theorem 5. Otherwise, there cannot be a reset at π / ω distance from the previous reset, which
ontradicts Theorem 5. However, this assumption may be violated in cases where other assumptions affect solutions.

emma 7.1 (Convergence). The series
∑

p∈N eAp, where A is square, is convergent if all λ (A) < 0.

roof. Start by rewriting the problem into a Neumann series:∑
p∈N

eA p
=

∑
p∈N

(
eA

)p
his series converges if the spectral radius satisfies ρ (eA) < 1, thus if the eigenvalues λ⋆ corresponding to eA satisfy
ax |λ⋆| < 1. Because λ⋆

= eλ, where λ denotes the eigenvalues of A, series convergence follows if ∄ λ(A) ≥ 0. □

emma 7.2 (Closed-Loop Reset Instant). A RCS reset instant at a descending zero-crossing, t↓ρ , can, for any RC satisfying
heorem 7, be computed using Assumptions 1 to 3:

ω t↓ρ + ̸ (K (jω) SL(jω) RI (jω)) + Φ(ω, x⃗(t↓r )) = π (30)

his t↓ρ corresponds to the zero crossings of Q ⋆ with:

̸ Q ⋆(ω) = ̸ (K (jω) SL(jω) RI (jω)) + Φ(ω, x⃗(t↓r )) (31)

If Φ(ω, x⃗(t↓r )) = 0, (30) computes the descending zero crossings of the BLS. Phase shift Φ(ω, x⃗(t↓r )) is defined as:

Φ(ω, x⃗(t↓r )) ≜ sin−1

⎛⎝CQ

∑
p ∈ 2N

(
eAQ

pπ
ω − eAQ

(p−1)π
ω

)

× BQ x⃗(tρ) (|K (jω) SL(jω) RI (jω)|)−1

⎞⎠ (32)

here AQ , BQ , CQ and DQ denoting state-space matrices of
Qδ(s) = K (s) SL(s)G(s) Rδ(s). Lemma 7.1 states series convergence, which requires asymptotic stability of Qδ . Set N is taken

to exclude zero throughout this work.

Proof. Take (19) for a SISO RC and pre-multiply by K (s) to acquire the closed-loop description of Q (s):

Q (s) = K (s) SL(s) RI (s) − K (s)SL(s)G(s) Rδ(s)
∑
tr∈tR

x⃗(tr ) e− tr s

Combining Assumption 1 with Theorem 5 shows that tR = tρ + pπ /ω, p∈ Z, where tρ has one entry. Inserting this and
substituting Qδ(s) as defined above gives:

Q (s) = K (s) SL(s) RI (s) − Qδ(s)
∑

x⃗(tρ +
pπ

ω
) e− (tρ +

pπ
ω ) s
p ∈ Z

13
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Reset instant periodicity causes all resets instants prior to tr to be at times tr −
pπ

ω
, p ∈ N. The time-domain solution for

q⃗(t) is obtained for a sinusoidal rI with frequency ω:

q⃗(tr ) = |K (jω) SL(jω) RI (jω)| × sin (ωt + ̸ (K (jω) SL(jω) RI (jω)))

−

∑
p ∈ N

(
CQ eAQ

pπ
ω BQ + DQ

)
x⃗(tρ +

pπ

ω
)

where the impulse response is expressed in state-space terms. Corollary 4.1 shows that Rδ(s) has no direct feed-through,
which by definition of Qδ(s) implies that DQ = 0.

The following expression is obtained by utilizing the periodicity of x⃗(t) proven by Theorem 5:

q⃗(tr ) = |K (jω) SL(jω) RI (jω)| × sin (ωtr + ̸ (K (jω) SL(jω) RI (jω)))

+CQ

⎛⎝ ∑
p ∈ 2N

eAQ
pπ
ω − eAQ

(p−1)π
ω

⎞⎠ BQ x⃗(tr )

Per definition of a zero-crossing reset law q⃗(tr ) = 0. Inserting this and taking the inverse sine gives, for m ∈ Z:

mπ = ω tr + ̸ (K (jω) SL(jω) RI (jω))
+ sin−1

[
CQ

∑
p ∈ 2N

(
eAQ

pπ
ω − eAQ

(p−1)π
ω

)
× BQ x⃗(tr ) (|K (jω) SL(jω) RI (jω)|)−1

]
The inverse sine exists if Assumption 3 holds. A descending zero-crossing occurs if the sinusoid argument is mπ , with
odd m. These cases correspond to t = t↓r . The zero-crossing direction is assumed to be unaffected by prior resets by
Assumption 2. The solution m = 1 is chosen. Inserting that while substituting Φ(ω, x⃗(t↓r )) yields (30). Zero-crossings of a
inusoidal Q ⋆ with phase (31) gives resets t↓ρ + pπ /ω. □

ssumption 4 (Small Effect of Resets on Reset Times). Assume that Φ(ω, x⃗(tρ)) (32) satisfies Φ(ω, x⃗(tρ)) ≪ π, ∀ ω. This
olds if reset times are close to the BLS zero crossings of q⃗(t).

emma 7.3 (States x⃗(t↓ρ )). States x⃗(t↓ρ ) are, given Assumptions 1 to 4, for a system satisfying Theorem 5, computed by:

x⃗(t↓ρ ) =

[
I +

(
ω2 I2 + A2

R

)−1
AR BR CQ

∑
k ∈ 2N

(
eAQ

kπ
ω − eAQ

(k−1)π
ω

)
BQ

− 0.5 CH

∑
k ∈ 2N

(
eAH

kπ
ω − eAH

(k−1)π
ω

)
BH

]−1

×
(
ω2 I + A2

R

)−1
ω BR |K (jω) SL(jω) RI (jω)| (33)

Which requires the inverted terms to be invertible. State-space matrices AH , BH , CH and DH correspond to H(s):

H(s) = RX
δ (s) − RX

L (s) K (s) SL(s)G(s) Rδ(s)

The two series converge if AQ and AH satisfy Lemma 7.1, thus if Q and H are asymptotically stable.

Proof. Consider (20) for a SISO RC and separate it into XL(s) and Xδ(s) such that X(s) = XL(s) + Xδ(s):

XL(s) = RX
L (s) K (s) SL(s) RI (s)

Xδ(s) =
(
RX

δ (s) − RX
L (s) K (s) SL(s)G(s) Rδ(s)

)
×

∑
tr∈tR

x⃗(tr ∈ tr ) e− tr, s

Writing the linear term x⃗L(t) in time domain for a sinusoidal input, while using that x⃗L(t) is real, gives the following:

x⃗L(t) = Re
{
RX
L (jω) |K (jω) SL(jω) RI (jω)| ejω(t− π

2 )+j̸ (K (jω) SL(jω) RI (jω))
}

valuating at t↓ρ by rewriting and inserting (30) shows:

x⃗L(t↓ρ ) = Re
{
RX
L (jω) |K (jω) SL(jω) RI (jω)| ej

(
π
2 − Φ(ω,x⃗(t

ρ↓ ))
)}

ake Φ(ω, x⃗(t↓ρ )) from (32) and apply Assumption 4, such that Φ(ω, x⃗(t↓ρ )) = sin−1 (•) ≈ (•), where • denotes the terms
ithin Φ . Then, the last term of x⃗ (t↓) becomes ej(

π
2 −•). Given Assumption 4, the first Taylor expansion can be used,
L ρ

14
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giving the simplification ej(
π
2 −•) ≈ j + (•). Inserting this and expanding Φ(ω, x⃗(t↓ρ )) gives:

x⃗L(t↓ρ ) = Re
{
RX
L (jω) |K (jω) SL(jω) RI (jω)|

×

⎡⎣j + CQ

∑
p ∈ 2N

(
eAQ

pπ
ω − eAQ

(p−1)π
ω

)
× BQ x⃗(t↓ρ ) (|K (jω) SL(jω) RI (jω)|)−1

]}
or a SISO RC this can be simplified to:

x⃗L(t↓ρ ) = Re
{
RX
L (jω) |K (jω) SL(jω) RI (jω)| j

+ RX
L (jω) CQ

∑
p ∈ 2N

(
eAQ

pπ
ω − eAQ

(p−1)π
ω

)
BQ x⃗(t↓ρ )

}
onsider Xδ(s). Insert H(s) and write in time domain. As Rδ(s) has no direct feed-through DH must equal zero.

x⃗δ(t) =

∑
tr∈tR≤t

(
CH eAH (t−tr ) BH

)
x⃗(tr )

onsidering Assumption 1 with Theorem 5, such that all resets are spaced π /ω apart, and evaluating at t↓ρ gives:

x⃗δ(t↓ρ ) = CH

∑
p ∈ 2N

(
eAH ( pπω )

− eAH ( (p−1)π
ω )

)
BH x⃗(t↓ρ )

Inserting these results into x⃗(t↓ρ ) = x⃗L(t↓ρ ) + x⃗δ(t↓ρ ), solving for x⃗(t↓ρ ) and inserting (24), (25) gives the stated result. □

Theorem 8 states the main contribution of this paper, providing an analytical approximation for steady-state RCS
behaviour in frequency-domain terms. This is an alternative to the description methods stated in Section 3. The corollaries
stated afterwards provide several sensitivity functions.

Theorem 8 (Analytical Solution for E(ω) (δ-CL)). The error response of a RCS (2) satisfying Theorem 5, given Assumptions 1 to 4,
s stated below. Arguments of B⋆(ω, x⃗(t↓r )) are dropped.

Eδ−CL,n(ω) = SL(ωn)

×

{
RI (ω) − G(ω) R⋆

DF ,1(ω, B⋆)Ψ (ω, 1), n = 1
− G(ωn)R⋆

DF ,n(ω, B⋆)Ψ (ω, n), n > 1
(34)

where: (35)

Ψ (ω, n) =

(
|K (ω) SL(ω) RI (ω)| × enj̸ K (ω) SL(ω) RI (ω)+njΦ(ω,x⃗(t↓r ))

)
efinition 8 defines R⋆

DF ,n. Parameters x⃗(t↓r ), Φ(ω, x⃗(t↓r )) and B⋆(ω, x⃗(t↓r )) are given by (33), (27) and (32), respectively.

roof. Insert (33) into (27) to solve (28). Virtual input Q ⋆ has magnitude 1, see Corollary 6.1, and phase (31). From
ssumption 1 it follows that a summation over tρ is obsolete, as this set has one entry only. Rewriting gives the result.
These equations combine harmonic and reference frequencies. Multiplying the phase by n accounts for this. □

orollary 8.1 (Analytical solution for S(ω)). Sensitivity is defined as
S(ω) = E(ω) RI (ω)−1. Applying this to (34) while correcting the phase for harmonics gives:

Sδ−CL,n(ω) = Eδ−CL,n(ω)
(
|RI (ω)| enj̸ RI (ω)

)−1
(36)

orollary 8.2 (Complementary Sensitivity). The complementary sensitivity T (ω) is defined as I − S(ω):

Tδ−CL,n(ω) = I − Eδ−CL,n(ω)
(
|RI (ω)| enj̸ RI (ω)

)
(37)

orollary 8.3 (Control Sensitivity). Split the linear system G(s) in plant P(s) and controller C(s), G(s) = P(S) C(S). Control input
(s) enters P(s): Y (s) = P(s)U(s). The control input
CS(ω) : r⃗I (t) ↦→ u⃗(t) ≜ CS(ω) = P−1(ω) T (ω):

CS (ω) = P−1(jnω) T (ω) (38)
δ−CL,n δ−CL,n

15
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Fig. 7. 1 Degree-of-Freedom precision positioning stage that moves cart (C) using Lorentz actuator (A). This cart is attached to the frame by means
f two leaf flexures, which constrain all movements but one translation. This translation is measured using laser encoder (S), which measures its
istance relative to cart-fixed mirror (M).

The presented results can be transformed into time-domain signals using the following equations:

y⃗(t) ≈

∞∑
n=1

⏐⏐TDF ,n(ω)
⏐⏐ sin(nωt + ̸ TDF ,n(ω)) (39)

e⃗(t) ≈

∞∑
n=1

⏐⏐EDF ,n(ω)
⏐⏐ sin(nωt + ̸ EDF ,n(ω)) (40)

u⃗(t) ≈

∞∑
n=1

⏐⏐CSDF ,n(ω)
⏐⏐ sin(nωt + ̸ CSDF ,n(ω)) (41)

Thus far, frequency-domain descriptions are provided for pure sinusoidal inputs only. The following assumption extends
the results by stating a condition that permits approximating RCSs with multi-sine inputs and disturbances.

Assumption 5 (Superposition for Multi-Sine Inputs). Consider a closed-loop RC (2) with multiple sinusoidal references
superimposed, having magnitudes RI1 to RIk̄ , k̄∈N. Define the corresponding BLS magnitudes for q⃗(t) as |q⃗I1 | to |q⃗Ik̄ |,
ndividually computed for each reference.

If ∃p : |q⃗Ik |≫ |q⃗Ij |, ∀ j∈
{
1, . . . , k̄

}
, j ̸= k, assume that solely reference RIk determines reset times and weights. If so, all

ther references are handled by the BLS and can be merged with the nonlinear RC response for RIk through superposition.
his allows modelling of multi-sine Refs. [34].
This framework extends to permitting disturbances, as any sinusoidal disturbance d⃗ after the nonlinear reset element

gives, for a linear plant, some sinusoidal signal q⃗d. This can be handled analogous to q⃗Ij as described above.

. Setup

The implications of the various assumptions are investigated in this section, evaluating where they cause δ-CL to not
redict e⃗(t) correctly. First, a precision positioning system will be introduced in this section. Afterwards, performance
etrics are defined. For analysis n = 1000 harmonics are used. Series over impulse responses as in (32), (33) are evaluated
ith sufficient terms to ensure convergence.

.1. Precision positioning stage

The 1 Degree-of-Freedom precision positioning stage depicted in Fig. 7 is used to validate the derived method. This
ISO stage is a classic mass–spring–damper system. The transfer function of this stage is identified to be:

P(s) =
3.038 × 104

s2 + 0.7413 s + 243.3
(42)

he corresponding Bode Plot is given in Fig. 8. For the sake of analysis consider the simple case where (i) there is no noise,
ii) there are no disturbances, (iii) no quantization effects are present and (iv) a continuous-time controller is used.

.2. Controllers

A linear PID controller C(s) is added between the reset element and the plant, such that G(s) = P(s) C(s). Parameter β

s introduced, placing zero ωd and pole ωt symmetrically around bandwidth, defined as crossover frequency ωc .

C(s) = kp

(
s + ωi

)(
s + ωc / β

)
, β =

ωc
=

ωt (43)

s s + ωc β ωd ωc

16
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Fig. 8. Bode Plot corresponding to the system (42) shown in Fig. 7.

Table 2
Parameters for various CgLp and PID controller designs. For all R⋆ controllers ωi = 10 Hz,
ωc = 100 Hz and ωf = 500 Hz. Gain kp is adjusted to achieve bandwidth ωc .

PMBLS φRC γ ωr [Hz] α β

R⋆
0 30◦ 20◦ 0 98.38 1.07 2.67

R⋆
1 30◦ 20◦ 0.5 23.08 1.04 2.57

R⋆
2 20◦ 20◦ 0.5 23.08 1.04 2.03

Bandwidth ωc defined as the gain cross-over frequency is set to 100 Hz. Gain kp is adjusted to achieve this bandwidth,
ased on DF analysis. For all implementations, ωi = 10 Hz is chosen.
Various CgLp-PID controller combinations tuned for different specifications are used for validation. Table 2 provides

he corresponding tuning parameters. PMBLS denotes the BLS phase margin. Let PMDF be the phase margin as predicted
y DF analysis. Then, the phase added through RC is given by φRC = PMDF − PMBLS .

.3. Performance metrics

The signal e⃗(t) as predicted by (34) is compared to the corresponding simulated signal. A metric often used in literature
or capturing the time-domain prediction accuracy is Integral Square Error (ISE). A normalized version is given by:

ISE(ω) ≜

∫
e⃗ω(t) − ˆ⃗eω(t)2 dt∫

ˆ⃗e2ω(t) dt
(44)

here simulation data is denoted by e⃗ and prediction data by ˆ⃗e. A time vector with parameter ω, such as e⃗ω(t), denotes the
time response for a reference with frequency ω. In the high-tech industry peak error values indicate precision, described
by the L∞ norm, which is normalized:

L∞(ω) ≜
|maxt |e⃗ω(t)| − maxt |ˆ⃗eω(t)||

maxt |ˆ⃗eω(t)|
(45)

. Validation

Table 3 provides an overview of the various assumptions used by the three analytical RCS describing methods. CL-DF
nd δ-CL use similar assumptions, except for using different reset positions. This section will elaborate on the advantages
f this modelling difference. Assumptions 2 and 3 of δ-CL are not mentioned in this section, because no results in this
aper found Assumption 2 to not hold, whilst Assumption 3 is violated only for a few frequencies in one result, shown
n Fig. 16. Assumption 5 is used to alleviate the constraint on having a sinusoidal r⃗I (t). This case will be demonstrated,
fter the effects of other assumptions on sensitivity prediction errors are verified using a sinusoidal input.

.1. Effects of Assumption 1

Assumption 1 simplifies analysis by modelling two resets per period only, an assumption used by all analytical methods
nder consideration. However, this is known to invoke errors. A time domain example is provided to illustrate the types
f errors inflicted. Then, it is shown how time regularization can decouple this error source from other sources.
17
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Table 3
Overview of assumptions analytical methods for computing frequency-domain closed-
loop RC behaviour use. Empty fields indicate that there are no assumptions. Note that
assumptions on r⃗I do not have to cause errors, as r⃗I is designable.

DF CL-DF δ-CL

Modelled resets per period: 2 2 2
Signals assumed sinusoidal: q⃗(t) r⃗I (t) r⃗I (t)
Resets assumed at: q⃗DF ,1 = 0 q⃗BLS ≈ 0
Neglects harmonics: Yes

Fig. 9. Simulated and δ-CL predicted error response for a 20 Hz reference signal on controller R⋆
1 and plant (42), thus using γ = 0.5. Points (A),

B) and (C) indicate reset instants. (B) is an undesired consecutive reset to (A), (C) is an additional reset.

Fig. 9 shows the simulated and δ-CL modelled error signals for a RCS generating three resets per half period, marked
s (A), (B) and (C). Reset (A) is the one modelled by δ-CL, whereas (B) and (C) are not modelled, causing errors.

.1.1. Consecutive resets
A pair of resets is said to be consecutive if they occur close together temporally, relative to period π /ω. Reset (B) in

ig. 9 is therefore consecutive to (A). Let the corresponding reset times be tA and tB, tB > tA. An ODE solution is used to
xpress x⃗(tB) in terms of x⃗(t+A ):

x⃗(tB) = eAR(tB−tA)x+(tA) +

∫ tB

tA

eAR(t−τ )BR u(τ ) dτ

onsider the limit case for consecutive resets, tB → tA. Insert (1) to obtain x⃗(t+B ) as a function of x⃗(tA):

lim
tB→tA

x⃗(tB) = x⃗+(tA) = Aρ x⃗(tA)

lim
tB→tA

x⃗+(tB) = Aρ x⃗+(tA) = A2
ρ x⃗(tA)

hen comparing to (1) it follows that, for tr,B → tr,A, the response becomes equivalent to that obtained by having one
eset with reset matrix A2

ρ . As all analytical methods model only one reset with reset matrix Aρ , errors occur if Aρ ̸= A2
ρ .

or diagonal Aρ parametrized by γ , such as in (8), modelling errors thus occur if γ ̸= γ 2
⇔ γ /∈ {0, 1}. Full reset therefore

does not invoke errors here. Fig. 9 uses γ = 0.5, meaning that the actual response to resets (A), (B) is almost equivalent
to having one reset with γ = 0.52

= 0.25. This increases the reset-induced impulse weight (20), explaining the higher
than modelled reset spike after (B).

8.1.2. Additional resets
Reset (C) in Fig. 9 is relatively far away from (A) in temporal sense. As such, tC → tA cannot be used here, implying that

ull reset is not exempt from errors caused by not modelling (C). Fig. 9 shows how (C) causes the error peak prediction
o be wrong, inflicting L∞ errors.

Fig. 10 gives ISE results for all three methods, plotted for a range of reference frequencies. Controllers R⋆
0 (γ = 0) and

⋆
1 (γ = 0.5) are used to control (42). Controller R⋆

0 has, unlike R⋆
1, negligible effects caused by consecutive resets because

t is fully resetting. Both are affected by additional resets. Modelling errors of R⋆
1 are, for all methods, at most frequencies,

everal factors above those of R⋆
0, illustrating the considerable effects of consecutive resets on modelling accuracy. δ-CL

s seen to invoke comparatively small prediction errors when consecutive resets do not affect the response (γ = 0).
18
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Fig. 10. Normalized ISE values for the three analytical modelling methods. No time regularization is used. Results are provided for controllers R⋆
0

γ = 0) and R⋆
1 (γ = 0.5), both controlling plant (42).

.1.3. Time regularization
Time regularization allows to remove consecutive or even additional resets, eliminating errors caused by Assumption 1.

he following options are used:

• No time regularization: τ = 0, such that all errors caused by consecutive and additional resets remain visible.
• Optimal time regularization: τ = 2π / (10ωc), ωc in rad/s, suggested to be optimal when handling quantization [47].

This generally removes consecutive reset effects.
• Full time regularization: τ = π /ω, enforcing two resets per period, removing all errors caused by Assumption 1.

Full time regularization does not necessarily improve RC system performance. However, it decouples modelling error
sources for δ-CL, as all remaining errors are caused by Assumption 4. This is employed to simplify analysis.

All three time regularization methods are applied to partially resetting controller R⋆
1. Corresponding ISE results are

given in Fig. 11. The DF and CL-DF descriptions show some improvement for more aggressive time regularization, but
results are not consistent over all frequencies. δ-CL shows a significant performance improvement for more aggressive
time regularization. In case of full time regularization, ISE values for δ-CL drop below 1.5%, errors that are thus solely
caused by Assumption 4. ISE values for CL-DF with full time regularization are caused by the assumed reset positions and
sinusoidal q⃗(t), see Table 3. These two assumptions thus inflict considerably larger errors than Assumption 4 of δ-CL.

Example 8.1 (CI Modelling). Potential errors caused by Assumption 1 are illustrated by means of a RCS with CI controller.
Poor prediction performance is expected, as a CI often yields responses with many additional resets. Consider (42) with
a fully resetting CI (γ = 0) in series with the following PD2 controller:

CCI (s) = kp

(
s + ωc / β

s + ωc β

)2

, β = 3.73

where kp is adjusted to ensure ωc = 100 Hz. This system has PMBLS = 30◦, with φRC = 51.9◦ added through CI [3]. The
Bode plot is given in Fig. 12. As full reset is used, consecutive resets have negligible effects.

The ISE and L∞ metrics are given for all three description methods by Fig. 13. ISE values in particular are found to
be excessive, exceeding 100% for many frequencies, for all methods. This is explained by the time response for a 20 Hz
reference, provided by Fig. 14. Without time regularization the simulated response is seen to have numerous resets per
period, even affecting the weight of the modelled one.

For full time regularization the simulated response visually coincides with the δ-CL prediction. The marginal errors
eft must be caused by Assumption 4. The CL-DF erroneously predicts its reset time. This prediction is consistent with its
⃗DF ,1 = 0 assumed reset time (see Table 3), but deviates considerably from the simulated signal.

.2. Effects of Assumption 4

The effects of Assumption 4 can be isolated by applying full time regularization. Φ ≪ 180◦ is assumed. Φ is expected
o be small if the combined effects of all prior resets have dampened out at a reset instant. It follows that:

• More errors are expected at high frequencies, since there is less time between resets, thus less time for reset-induced
impulses to dampen out.

• Higher errors are expected for a lower PM , as a lower PM generally increases settling times.
BLS
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Fig. 11. Normalized ISE values for the three prediction methods, using controller R⋆
1 on (42). Three different time regularization settings τ are used.

The bottom figure provides a detail view on lower ISE values.

Fig. 12. Bode plot of (42) controlled by a CI and a linear controller CCI . The BLS and first harmonic values as computed using DF analysis are given.

Fig. 13. ISE and L∞ performance indicators for (42) controlled using a CI and CCI . Results are shown for the three analytical describing methods.
20
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Fig. 14. Error time responses for (42) controlled using a CI and a linear controller CCI with a 20 Hz unit magnitude reference. Simulated responses
are given with either no (τ = 0) or full (τ = π /ω) time regularization, in addition to modelled responses using the three analytical RC descriptions.

Fig. 15. Performance metrics plotted against PMBLS , where the worst performing frequency between 10 and 100 Hz is used, per value of PMBLS . The
range of PMBLS is obtained by sweeping β from 4.5 to 1.37, while otherwise using R⋆

1 on (42). Full time regularization is used. The percentage of
frequencies between 10 and 100 Hz violating Assumption 3 is given.

Fig. 15 gives the worst-case performance metrics when full time regularization is used, as a function of PMBLS . Assump-
tion 4 is found to be violated at very low values of PMBLS . δ-CL will thus give erroneous results there. For reasonable
PMBLS , Fig. 15 shows that prediction errors due to Assumption 4 shrink when PMBLS increases. At most PMBLS points δ-CL
greatly outperforms the DF and CL-DF descriptions, both in ISE and L∞ terms. Fig. 16 provides ISE and Φ results for two
controllers with different PMBLS as function of frequency, using full time regularization. As such, all modelling errors are
caused by Assumption 4, which means that the solutions should be exact if Φ = 0. This holds, as can be seen in Fig. 16.

8.3. Effects of Assumption 5

This assumption extends the generality of δ-CL by permitting multi-sine references and disturbances. One of the worst
cases for this assumption is if some other input has its peaks coinciding with the zero crossings of the base sinusoid, as
this causes it to have a considerable effect on the reset times. Consider disturbance d⃗, introduced between C(s) and P(s),
having a phase computed to meet this worst case scenario and magnitude parametrized by η = |d⃗| / |r⃗I |. Fig. 17 gives
sample predictions and simulations for various η.

The system without disturbance (η = 0) has a reset at (A), which is the one modelled by δ-CL. Assumption 5 considers
the corresponding reference to be the only one causing resets. Predictions with disturbance therefore also model their
resets at (A). However, the reset for η = 0.1 occurs at (B), causing a slight error in predicted peak position. The case for
η = 0.25 is far worse, as it generates an additional reset at (C), which is not captured at all yet inflicts the largest error
peak.

The effects of Assumption 5 depend on numerous parameters, including plant model, controller and input type. Its
validity should therefore be evaluated per individual system.
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Fig. 16. ISE and Φ values, for R⋆
1 and R⋆

2 acting on (42), visualizing the relations between Φ , PMBLS and ISE. Full time regularization is used.

Fig. 17. Time domain simulations and δ-CL predictions for a 20 Hz reference and a 100 Hz disturbance with magnitudes η relative to the reference,
using controller R⋆

0 on (42). No time regularization is used. A half period response is shown. The disturbance phase is chosen such that its peaks
coincide with zero-crossings of q⃗(t) when there would not be a disturbance.

8.4. Method validity

The various error sources are found to be well-defined, as they can be clearly linked to Assumptions 1 or 4. In case
both assumptions hold all modelling errors equal zero. As such the solution without assumptions, (28), is exact, which is
as expected based on the mathematical derivation.

δ-CL is an approximation, relying on Assumptions 1 and 4. The former rarely holds in practice, yet does not necessarily
inflict large errors, as additional resets are generally of lower magnitude than the modelled ones. Exceptions exist, as seen
in Fig. 14 for τ = 0. Increasing τ diminishes these errors.

Assumption 4 holds if PMBLS is sufficiently large, in which case it inflicts small errors relative to Assumption 1. Based
on Fig. 15, a PMBLS ⪆ 20◦ is advised for using δ-CL. These limits are system dependent.

9. Simulation results

The performance of δ-CL is further examined and compared to that of CL-DF and DF using various CgLp tunings,
provided by Table 4. Optimal time regularization is used. Table 5 tabulates the peak and log-space average ISE and L∞

metrics. From Table 5 it can be concluded that, in terms of ISE, δ-CL consistently outperforms CL-DF and DF. In terms of
L∞, differences between δ-CL and CL-DF are less pronounced, with either method yielding similar results, though both
performing significantly better than DF. As expected, prediction errors increase when PMBLS decreases. From comparing
mean and median values for optimal and full time regularization it is concluded that the main error source for δ-CL must
22
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Table 4
CgLp and PID controller details with φRC indicating the phase lead provided through reset
at bandwidth as computed using DF analysis. For all controllers ωi = 10 Hz, ωc = 100 Hz
and ωf = 500 Hz. Gain kp is adjusted to achieve bandwidth ωc .

PMBLS φRC γ ωr [Hz] α β

R0 20◦ 40◦ 0 34.41 1.24 2.17
R1 30◦ 30◦

− 0.2 83.46 1.18 2.87
R2 30◦ 30◦ 0 62.88 1.15 2.78
R3 30◦ 30◦ 0.2 37.55 1.12 2.68
R4 40◦ 20◦ 0 98.38 1.07 3.59
R5 40◦ 30◦ 0 62.88 1.15 3.79
R6 50◦ 30◦ 0 62.88 1.15 5.79
R7 50◦ 40◦ 0 34.41 1.24 5.81

Table 5
Analytic RCS description method performance using plant (42) with the controllers in Table 4. Optimal time regularization is used. The relative peak
and log-space average ISE and L∞ results are given, evaluated between 1 Hz and bandwidth. Mean and median values are given for both optimal
and full time regularization. All values provided are in percentage.

maxω ISE maxω L∞ avgω ISE avgω L∞

δ-CL CL-DF DF δ-CL CL-DF DF δ-CL CL-DF DF δ-CL CL-DF DF

Results for optimal time regularization:

R0 69.0 94.0 114 33.1 19.0 94.1 12.5 16.1 23.6 5.30 4.35 22.6
R1 1.33 7.82 12.9 8.71 15.2 29.1 0.113 1.37 3.03 0.719 1.90 6.61
R2 2.63 11.0 16.8 7.22 10.7 31.1 0.383 1.93 4.13 1.20 1.78 7.62
R3 11.1 25.5 31.4 15.7 9.83 40.9 2.56 4.72 8.03 2.91 1.53 10.6
R4 0.0072 1.21 3.26 0.262 4.07 14.0 0.0012 0.215 0.791 0.0412 0.551 2.87
R5 1.63 7.77 12.6 5.94 5.55 22.6 0.287 1.59 3.34 0.963 1.13 6.02
R6 1.17 6.45 10.0 4.89 4.25 17.0 0.238 1.46 2.83 0.814 0.610 4.96
R7 12.9 38.0 40.0 13.7 5.62 30.2 3.26 10.5 12.3 3.32 1.37 10.2

mean: 12.5 24.0 30.1 11.2 9.28 34.9 2.38 4.74 7.26 1.91 1.65 8.94
median: 2.13 9.43 14.9 7.96 7.72 29.7 0.335 1.76 3.73 1.08 1.45 7.12

Results for full time regularization:

mean: 2.65 48.7 42.0 2.62 20.4 47.8 0.181 7.28 8.63 0.220 3.12 10.6
median: 0.0358 13.6 17.0 0.620 14.6 36.8 0.00195 2.23 3.84 0.0438 2.34 7.30

Fig. 18. Bode Plot for plant (42) with controller R2 . The responses of the BLS and nonlinear RC modelled through DF analysis are shown.

be unmodelled resets, as prediction errors reduce significantly if full time regularization is applied. The same does not
hold for CL-DF nor DF, which retain similar ISE and L∞ values when removing additional resets.

9.1. Examining results for R2

Results for R2 are analysed in greater detail. This controller is selected because it roughly represents the median of all
controllers in terms of performance. Fig. 18 provides the Bode plot for this setup, showing that the PMBLS is 30◦ and that
reset adds φ = 30◦, as predicted through DF analysis.
RC
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Fig. 19. L∞ and ISE performance indicators for all three prediction methods over a range of frequencies, using plant (42) with controller R2 . Optimal
ime regularization (τ = 2π / (10ωc )) is used.

Fig. 20. Simulated and predicted error time responses for plant (42) with controller R2 , using a 20 Hz sinusoidal r⃗I (t) with unit magnitude. The
eset instants for a half period, (A) and (B), are indicated.

Fig. 19 shows the performance metrics for all three prediction methods. In terms of ISE, δ-CL outperforms CL-DF
nd DF. More subtle differences between δ-CL and CL-DF are found for the L∞ metric, with either method improving
pon the other in some frequency range. A time domain response is used for further analysis, given by Fig. 20 for a
= 20 Hz reference. At this frequency Fig. 19 indicates that, when considering L∞, CL-DF outperforms δ-CL. The time

omain responses show that δ-CL captures the effects of reset instant (A) accurately. Reset (B), considerably smaller in
agnitude, is not modelled, causing the found ISE and L∞ errors. Considering CL-DF, Fig. 20 shows that it models the

esponse to (A) with some offset. While this causes ISE errors, this erroneous placement works to its advantage here, as the
ncorrect positioning of (A) compensates for not modelling (B) in evaluating the peak error, L∞. As such, L∞ performance
f CL-DF is, in this case, better than that of δ-CL.
The erroneous impulse position prediction of CL-DF does not generally works to its advantage. Fig. 14 gives an example

here large ISE errors are inflicted by the CL-DF reset placement assumption. Evaluating (19) shows that the error signal
quals the BLS with added impulse responses. Thus, zero crossings occur near those of the BLS, provided that the impulse
esponses are sufficiently convergent. This supports that the reset placement assumption used by δ-CL is often more
ccurate than that of CL-DF.

0. Conclusion

Reset control can overcome fundamental limitations of linear control, whilst permitting design using the industry-
referred loop-shaping methodology. Even though accurate tuning through loop-shaping requires a thorough understand-
ng of closed-loop behaviour, no frequency-domain methods found in literature sufficiently describe the principles of
ow open-loop reset control design translates to closed-loop behaviour. Additionally, no methods linking the base-linear
ystem design to the closed-loop RCS performance is found.
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A rarely mentioned approach, which models open-loop reset control as a linear system with state-dependent impulse
rain inputs, is taken and generalized. It is shown that any generic closed-loop reset system behaves as the base-linear
ystem with added impulse responses. This describes, to the authors’ knowledge, for the first time the underlying
rinciples that link open-loop reset control design to its closed-loop performance, using frequency-domain terms as
equired for loop-shaping. This insight may be used to improve reset control design.

An analytical solution is obtained by inserting some well-defined assumptions. This description is critically examined
sing simulations and compared to existing methods. The novel description consistently provides a considerably more
ccurate time-domain prediction than the best performing analytical method found in literature, whilst having a similar
erformance in terms of predicted peak errors. It is shown how the various assumptions contribute to the prediction
rror, giving a good understanding of method limitations. High accuracy is attained if the base-linear system has
ufficient phase margin and if unmodelled resets have a comparatively low magnitude, conditions met by various practical
mplementations.

Concluding, it is found that the presented description provides additional insight and improves predictions for reset
ontrol analysis, which can be used to improve reset element design. Further research should be conducted on how these
esults can be applied to practical reset control tuning.
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