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A B S T R A C T

Operations of Automated Guided Vehicles (AGVs) are desired to be more energy-efficient while maintaining
high transport productivity, motivated by the green production requirements. This paper investigates a new
energy-efficient planning problem for determining conflict-free paths of the AGVs in its transport roadmap. In
this problem, the vehicle path and transport time in the roadmap are jointly optimized, based on a flexible
time–space network (FTSN). We provide the mathematical problem formulation of the energy-efficient path
planning problem. The resulting optimization problem is proved to be a non-convex mixed-integer nonlinear
programming which is computationally intractable. We further propose a hybrid metaheuristic that integrates
the genetic algorithm and estimation of the distribution algorithm to improve its computational efficiency.
Numerical results show the effectiveness of the developed algorithm based on the FTSN framework, compared
to the existing metaheuristics, the conventional path planning method, and a commercial solver. The proposed
method has a wide application in improving energy use of material handling, providing a guiding significance
on promoting cleaner production of flexible manufacturing systems.
1. Introduction

Automated Guided Vehicles (AGVs) are autonomous vehicles de-
signed for horizontal movement of materials. Due to the advantages of
productivity improvements, labor cost savings, and environmental ben-
efits, AGVs have been widely used in manufacturing (He et al., 2022;
Cai et al., 2022), warehouse (Hu et al., 2017), container terminals (Xin
et al., 2015b; Yue et al., 2021) and other applications. A market report
forecasts fast growth in the AGV market from 2018 to 2025 (Ryck et al.,
2020).

The efficiency of the AGVs systems is closely related to the per-
formance of the production and logistics systems. For the company
managers, the minimization of the completion time is the primary
objective. Producers aim to maximize the production rates to meet
the increasing requirements made by customers. High production rates
result from optimizing the completion time of the AGVs when finishing
the assigned tasks.

The energy-aware path planning for the operations of multiple AGVs
is motivated by green production requirements (Bechtsis et al., 2017;
van Duin et al., 2018; Rinaldi et al., 2020). However, there are several
challenges to be addressed for this energy-aware planning problem. The
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first challenge is that two objectives (time-related objective and energy-
related objective) must be considered at the same time. The transport
process involves both event-driven dynamics and time-driven dynamics
(so-called hybrid dynamical system) for minimizing the completion
time and the energy consumption (Xin et al., 2014). To search for
the energy-efficient paths of the AGVs, a mathematical model that is
capable to represent these two types of dynamics needs to be for-
mulated carefully, and then the AGV can be better coordinated by
accelerating and decelerating properly for energy saving. Furthermore,
the energy consumption representation in practice is nonlinear and
the resulting optimization problem is mixed-integer nonlinear pro-
gramming (MINLP), with consideration of the path sequencing in the
discretized AGV roadmap. The MINLP in general is more challenging to
be solved than mixed integer programming (MIP) as this is commonly
seen in path planning problems.

In this paper, we focus on improving the energy efficiency of the
AGV operations, i.e., using less energy to achieve the same level of service.
The energy saving objective is less important than the time saving
objective. The latter is the primary objective because the business per-
formance is essentially determined by productivity (Xin et al., 2014).
To maximize the profit, the producers tend to reduce AGV’s energy
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959-6526/© 2023 Elsevier Ltd. All rights reserved.
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consumption without deteriorating the service of high productivity.
Therefore, energy consumption is expected to be reduced without
deteriorating the time-related performance to further decrease the op-
erating costs. To improve the energy efficiency of the AGVs when
planning their paths for transporting materials, we propose a flexible
time–space network model that is formulated as a dedicated MINLP.

1.1. Related work

This section reviews the routing of multiple AGVs and the related
energy saving strategies. Then, the approaches based on the flexible
time–space network model are also reviewed.

1.1.1. Routing of multiple AGVs
For the AGVs, operational planning problems are further classified

into two directions: task allocation and path planning. The task al-
location problem seeks optimal assignments and sequences of tasks
that are carried out by AGVs while satisfying resource constraints (Zou
et al., 2020). When the task involves a time-related objective, the
task allocation problem is regarded as a scheduling problem. Energy-
efficient scheduling problems have been extensively investigated in the
manufacturing systems (Barak et al., 2020). For a path planning prob-
lem, feasible paths are determined to avoid collisions and deadlocks
due to safety and space constraints.

The scheduling problem and the path planning problem are closely
coupled, and some researchers investigate how to integrate these two
problems to improve the overall performance of multiple AGVs (Saidi-
Mehrabad et al., 2015; Xin et al., 2015a; Miyamoto and Inoue, 2016).
For instance, Miyamoto and Inoue (2016) consider dispatching and
routing decisions simultaneously by considering that each vehicle has a
finite capacity. However, driven by future requirements like flexibility,
robustness, and scalability, the current trend for planning the AGVs is
decentralization (Ryck et al., 2020). Decentralized methods decompose
the overall problem into smaller subproblems, in which scheduling and
routing decisions are formulated hierarchically (Demesure et al., 2018;
Fanti et al., 2018), where the scheduling problem is solved at a higher
level, while the path planning is formulated at a lower level. Here, we
focus on the path planning problem.

When using the AGV, the mesh routing environment is a com-
mon layout to configure the AGV path in production and logistics (Yi
et al., 2019; Nishi et al., 2020; Polten and Emde, 2021). The mesh
routing environment uses fixed path guided vehicles to simplify the
planning of multiple vehicles, and it is suitable for limited working ar-
eas (Miyamoto and Inoue, 2016). When the mesh routing is considered,
time–space network (TSN) models have been proposed for determining
feasible conflict-free vehicle paths by modeling time constraints and
space constraints (Miyamoto and Inoue, 2016; Nishi et al., 2020). In
these TSN-based path planning problems, a single objective problem
is typically considered to minimize some productivity indices (e.g., the
completion time). These TSN models take into account a fixed transport
time for two adjacent nodes, which may lose possible opportunities for
reducing energy consumption by changing these transport times. Each
AGV must wait at a certain node to avoid collisions with other AGVs
that may occupy its driving path, this collision avoidance strategy can
lead to an increase in the completion time of some tasks.

1.1.2. Energy saving when routing the AGVs
Compared to the extensive research that targets the completion time

minimization, little attention has been paid to the energy-aware path
planning for the operations of multiple AGVs (Adamo et al., 2018; Riazi
et al., 2020). Here, we review these works. In Adamo et al. (2018),
a conflict-free pick-up and delivery problem with time windows is
studied to optimize the path and speed of AGVs. A branch-and-bound
algorithm is developed to determine the path and the speed of AGVs
2

on each arc, by satisfying the time window and minimizing the total
energy consumption. However, a mathematical formulation for energy-
aware path planning of AGVs is still missing, and the relationship
between these two objectives is not investigated.

Riazi et al. studied the energy minimization problem for large-scale
AGV systems (Riazi et al., 2020). They identified that travel speed and
distance are the most important factors that affect the energy consump-
tion of the AGV system. In Riazi et al. (2020), energy minimization is
considered separately after determining the path of AGVs, and only the
effect of the maximum speed on the objectives is analyzed. Therefore,
it is still unclear how the AGV speed and the path should be optimized
jointly to improve the energy efficiency of its path planning.

1.1.3. Flexible time–space network model
TSN models have been widely used for modeling routing problems

in the transportation and logistics systems (Nishi et al., 2005; Miyamoto
and Inoue, 2016; Nishi et al., 2020). In such TSN models, a trans-
portation network (or roadmap) is considered to optimize the routes
of vehicles, and the transport time between every two adjacent nodes
is fixed.

In railway applications, a variant of the TSN model referred to as the
flexible time–space network (FTSN) model, has been studied (Meng and
Zhou, 2014; Zhang et al., 2019). In such an FTSN model, the transport
time between the nodes of the railway network becomes a decision
variable, allowing for jointly optimizing the routes and passing times at
each station of the selected route, to improve their punctuality. In Meng
and Zhou (2014), the FTSN model is built based on network cumulative
flow variables. The objective is to minimize the total deviation time of
all involved trains (without minimizing the energy consumption), and
an integer programming problem is solved by Lagrangian relaxation. A
systemic summary regarding these FTSN models is reported in Table 1
of Zhang et al. (2019).

It is observed that the existing FTSN models are specialized in
railway applications and the optimization objective is limited to pro-
ductivity metrics (such as total deviation time and the total journal
time). Because the operations of logistics systems, such as AGVs, are
considerably different from the railway applications, such a flexible
modeling framework is not implemented yet for the AGVs to save
energy. The energy-efficient path planning problem of AGVs using the
FTSN modeling framework remains to be investigated further.

1.1.4. Overall assessment of the literature
AGVs are a crucial part of the production systems, and AGVs pro-

vide a range of benefits across environmental and social sustainability
dimensions for reducing energy consumption and emissions (Bechtsis
et al., 2017; Barak et al., 2020). The operations of AGVs must be
energy-efficient to meet not only economic but also environmental
criteria.

At the operational level, energy-efficient path planning of AGVs
has not been sufficiently investigated in the literature. First of all, the
current works cannot provide a mathematical formulation to reduce en-
ergy consumption while maintaining a high transport productivity. This
type of mathematical formulation is needed to manage the relationship
between the energy consumption and the total transport time. Then,
the current FTSN models typically solve an MIP, while our FTSN model
requires solving an MINLP to jointly minimize energy consumption and
the sum of the completion times. Solving this challenging MINLP prob-
lem (resulting from the FTSN model) requires efficient and effective
algorithms to be developed when introducing energy-related objectives
and constraints.

1.2. Contributions of this paper

The contributions of this paper are given as follows:
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• We propose a flexible time–space network model (FTSN) for
energy-efficient and collision-free path planning of AGVs. The
proposed FTSN model differs from the conventional TSN model
that has fixed transport times, as proposed in Miyamoto and Inoue
(2016) and Nishi et al. (2020). We extend the work in Yin and Xin
(2019) that provides the basis to resolve collision conflicts and
further study energy-efficient path planning of AGVs in the mesh
roadmap environment.

• A mathematical representation is formulated to integrate the opti-
mization of the operational speed when planning the conflict-free
paths of AGVs. This optimization problem that uses the lexico-
graphic strategy is formulated as an MINLP and the resulting
MINLP is proved to be a non-convex formulation.

• A customized hybrid metaheuristic is developed to solve the
studied MINLP problem. A new encoding scheme and customized
algorithm procedures are proposed, taking into account the fea-
ture of the considered path planning problem. The developed
metaheuristic provides higher quality solutions for solving the
MINLP compared to the existing metaheuristics, such as Ge-
netic Algorithm (GA) and Population-Based Incremental Learning
(PBIL) (Tang et al., 2021; Wu and Wang, 2018).

The remainder of this paper is organized as follows: Section 2
ntroduces the FTSN model for describing the transport process of
he AGVs. In Section 3, a customized hybrid metaheuristic is further
roposed to determine energy-efficient paths of vehicles. Section 4
onducts case studies and analyzes the numerical results. Section 5
oncludes this paper and provides future research directions.

. Modeling framework

This section defines the research problem for planning paths of
GVs in the mesh routing environment. The FTSN model and frame-
ork are then introduced to determine energy-efficient and collision-

ree paths of AGVs.

.1. Problem description

In manufacturing or warehouse systems, AGVs are used to transport
aterials between their origins and destinations in a mesh routing

nvironment.
In the mesh routing environment (Ryck et al., 2020), nodes repre-

ent loading and unloading locations and intersections of the roadmap,
ach edge is a connected path between two adjacent nodes. Every task
s defined for moving the material by a particular vehicle from their
pecific origin to destination.

Regarding this process, the following important assumptions are
ade:

• The size of each AGV is sufficiently small compared with the unit
path length, regarding an AGV as a point.

• The number of vehicles is known and every transportation task is
assigned to one AGV already.

• A pickup node (start node) and a delivery node (end node) of each
task are given in advance. There are no duplicated nodes among
the assigned tasks.

• Each AGV can transport a single load at any time.
• Each AGV can only stop at a network node and no more than one

AGV can occupy a node at the same time.
• The turning time is included in the transport time.
• Each arc of the network can be occupied by one AGV at any time.
3

2.2. FTSN representation

This part gives the modeling framework based on the FTSN repre-
sentation, which is used for planning the collision-free paths of AGVs
in an energy-efficient way.

As mentioned in Section 1.1, the FTSN representation allows to
optimize the transport time and the route jointly in a transportation
network. For planning the path of the AGVs, this representation is
different from the existing TSN modeling frameworks, which have fixed
transport times in their roadmap network (Nishi et al., 2005; Miyamoto
and Inoue, 2016). Because flexible transport times are considered in the
FTSN representation, the operation speed of each AGV can be optimized
with the route jointly to reduce the energy consumption of the AGVs.
Here, we provide the mathematical formulation of the FTSN model
based on the framework proposed in Meng and Zhou (2014).

In the FTSN representation, we consider a directed graph 𝐺 = (𝑉 ,𝐸)
(𝑘 ∈ {1, 2,… , 𝑁}) for 𝑁 AGVs. 𝑉 is the collection of nodes, while
𝐸 = {(𝑖, 𝑗)|𝑖 ∈ 𝑉 , 𝑗 ∈ 𝑉 𝑖 ≠ 𝑗} is the collection of arcs. Arc (𝑖, 𝑗) maps the
path from node 𝑖 to 𝑗 for two adjacent nodes. Each vehicle can change
the path at node 𝑖 if multiple nodes are connected to node 𝑖.

We consider a planning horizon 𝑇 × 𝛥𝑡 that is discretized equally
into a set of time slots, denoted by {𝛥𝑡, 2𝛥𝑡,… , 𝑇 × 𝛥𝑡}. 𝛥𝑡 is a time
slot and 𝑇 is the total number of time slots. As a result, the time–space
network decomposes the overall routing process of multiple robots into
several time slots. For each time instant 𝑡 ∈ {1, 2,… , 𝑇 }, each AGV can
either stays at a node or move within the arc between two adjacent
nodes. During each time interval, the detailed path will be considered
to avoid collisions among these AGVs.

Before detailing the proposed FTSN model, the defined parameters
and variables are introduced in Table 1. The FTSN model includes space
constraints, time constraints, and time–space constraints; these three
parts are next given.

Part 1: space constraints
∑

𝑗∈𝑁𝑜𝑘

𝑥(𝑜𝑘, 𝑗, 𝑘) = 1, ∀𝑘 ∈ 𝜓 (1)

∑

𝑖∈𝑁𝑗

𝑥(𝑖, 𝑗, 𝑘) =
∑

𝑛∈𝑁𝑗

𝑥(𝑗, 𝑛, 𝑘),∀𝑘 ∈ 𝜓, 𝑗 ∈ 𝑉 , 𝑗 ≠ 𝑜𝑘, 𝑗 ≠ 𝑠𝑘 (2)

∑

𝑖∈𝑁𝑠𝑘

𝑥(𝑖, 𝑠𝑘, 𝑘) = 1, ∀𝑘 ∈ 𝜓 (3)

Part 2: time–space constraints

𝑑(𝑖, 𝑗, 𝑘, 𝑡) ≤ 𝑎(𝑖, 𝑗, 𝑘, 𝑡), ∀𝑘 ∈ 𝜓, (𝑖, 𝑗) ∈ 𝐸, 𝑡 ∈ 𝛷 (4)
∑

𝑖∈𝑁𝑗

𝑑(𝑖, 𝑗, 𝑘, 𝑡) =
∑

𝑛∈𝑁𝑗

𝑎(𝑗, 𝑛, 𝑘, 𝑡),∀𝑘 ∈ 𝜓, 𝑗 ∈ 𝑉 , 𝑗 ≠ 𝑜𝑘, 𝑗 ≠ 𝑠𝑘, 𝑡 ∈ 𝛷 (5)

𝑥(𝑖, 𝑗, 𝑘) = 𝑎(𝑖, 𝑗, 𝑘, 𝑇 ), ∀𝑘 ∈ 𝜓, (𝑖, 𝑗) ∈ 𝐸 (6)

𝑦(𝑖, 𝑗, 𝑘, 𝑡) = 𝑎(𝑖, 𝑗, 𝑘, 𝑡) − 𝑑(𝑖, 𝑗, 𝑘, 𝑡),∀𝑘 ∈ 𝜓, (𝑖, 𝑗) ∈ 𝐸, 𝑡 ∈ 𝛷 (7)

∑

𝑘
𝑦(𝑖, 𝑗, 𝑘, 𝑡) +

∑

𝑘
𝑦(𝑗, 𝑖, 𝑘, 𝑡) ≤ 1, ∀(𝑖, 𝑗) ∈ 𝐸, 𝑡 ∈ 𝛷 (8)

Part 3: time constraints

𝑇𝑇 (𝑖, 𝑗, 𝑘) =
∑

𝑡
𝑡 × ((𝑑(𝑖, 𝑗, 𝑘, 𝑡) − 𝑑(𝑖, 𝑗, 𝑘, 𝑡 − 1))

− (𝑎(𝑖, 𝑗, 𝑘, 𝑡) − 𝑎(𝑖, 𝑗, 𝑘, 𝑡 − 1))), ∀𝑘 ∈ 𝜓, (𝑖, 𝑗) ∈ 𝐸 (9)

𝑇𝑇 (𝑖, 𝑗, 𝑘) ≥ 𝑇min(𝑖, 𝑗) × 𝑥(𝑖, 𝑗, 𝑘), ∀𝑘 ∈ 𝜓, (𝑖, 𝑗) ∈ 𝐸 (10)
∑

𝑘
𝑑(𝑖, 𝑗, 𝑘, 𝑡) −

∑

𝑘
𝑑(𝑖, 𝑗, 𝑘, 𝑡 − 1) ≤ 1, ∀(𝑖, 𝑗) ∈ 𝐸, 𝑡 ∈ 𝛷 (11)

𝑑(𝑖, 𝑗, 𝑘, 𝑡) ≥ 𝑑(𝑖, 𝑗, 𝑘, 𝑡 − 1), ∀𝑘 ∈ 𝜓, (𝑖, 𝑗) ∈ 𝐸 (12)

𝑎(𝑖, 𝑗, 𝑘, 𝑡) ≥ 𝑎(𝑖, 𝑗, 𝑘, 𝑡 − 1), ∀𝑘 ∈ 𝜓, (𝑖, 𝑗) ∈ 𝐸 (13)

Eqs. (1)–(3) correspond to the space constraints on the start node,
the intermediate node and the destination node of each AGV in the
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Table 1
Defined parameters and decision variables in the FTSN model.
Parameter Description

𝑉 Set of all nodes, {1, 2,… , 𝑁}
𝛷 Set of time indices, {1, 2,… , 𝑇 }
𝜓 Set of vehicle indices, {1, 2,… , 𝐾}
𝑖, 𝑗, 𝑛 Node index 𝑖, 𝑗, 𝑛 ∈ 𝑉
𝑘 Vehicle index, 𝑘 ∈ 𝜓
𝑡 Time index, 𝑡 ∈ 𝛷
𝐸 Set of all arcs (𝑖, 𝑗)
𝑂 Set of start nodes of AGVs, {𝑜1 ,… , 𝑜𝑘 ,… , 𝑜𝑁}
𝑆 Set of destination nodes of AGVs, {𝑠1 ,… , 𝑠𝑘 ,… , 𝑠𝑁}
𝑁𝑖 Set of neighbor nodes of node 𝑖
𝐸𝑠(𝑖) Set of arcs ending at node 𝑖
𝑇start,𝑘 Start time for vehicle 𝑘
𝑇min(𝑖, 𝑗) Minimal time between nodes 𝑖 and 𝑗

Variables Description

𝑥(𝑖, 𝑗, 𝑘) Binary, 𝑥(𝑖, 𝑗, 𝑘) = 1 if arc (𝑖, 𝑗) is selected by vehicle 𝑘, otherwise 𝑥(𝑖, 𝑗, 𝑘) = 0
𝑦(𝑖, 𝑗, 𝑘, 𝑡) Binary, 𝑦(𝑖, 𝑗, 𝑘, 𝑡) = 1 if vehicle 𝑘 occupies arc (𝑖, 𝑗) at time 𝑡, otherwise 𝑦(𝑖, 𝑗, 𝑘, 𝑡) = 0
𝑎(𝑖, 𝑗, 𝑘, 𝑡) Binary, 𝑎(𝑖, 𝑗, 𝑘, 𝑡) = 1 if vehicle 𝑘 has arrived at arc (𝑖, 𝑗) by time 𝑡, otherwise 0
𝑑(𝑖, 𝑗, 𝑘, 𝑡) Binary, 𝑑(𝑖, 𝑗, 𝑘, 𝑡) = 1 if vehicle 𝑘 has left arc (𝑖, 𝑗) by time 𝑡, otherwise 0
𝑇𝑇 (𝑖, 𝑗, 𝑘) Integer, transport time for arc (𝑖, 𝑗) of vehicle 𝑘
f
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roadmap, respectively. Eq. (1) ensures that only one adjacent node of
the start node 𝑜𝑘 for AGV 𝑘 is selected. Eq. (2) guarantees the route
continuity for AGV 𝑘. Eq. (3) makes sure that only one adjacent node
for the end node 𝑠𝑘 of AGV 𝑘 is selected.

Eq. (4) is the time constraint of AGV 𝑘 for its arrival time and its
departure time at arc (𝑖, 𝑗). 𝑎(𝑖, 𝑗, 𝑘, 𝑡) and 𝑑(𝑖, 𝑗, 𝑘, 𝑡) are cumulative flow
variables to denote if AGV 𝑘 has reached or left arc (𝑖, 𝑗) by time 𝑡.
Since AGV 𝑘 leaves after its arrival for arc (𝑖, 𝑗), Eq. (4) holds. Eq. (5)
is arc-to-arc transition constraint, aiming to guarantee 𝑑(𝑖, 𝑗, 𝑘, 𝑡) =
𝑎(𝑗, 𝑛, 𝑘, 𝑡) if the adjacent arcs (𝑖, 𝑗) and (𝑗, 𝑘) are both used for AGV
𝑘. Eq. (6) maps the cumulative flow variable 𝑎(𝑖, 𝑗, 𝑘, 𝑡) in the time–
space network to the graph variable 𝑥(𝑖, 𝑗, 𝑘) in the physical network,
if arc (𝑖, 𝑗) is selected by AGV 𝑘 to traverse the roadmap from its
origin to destination. Eq. (7) describes the relationship of the variable
𝑦(𝑖, 𝑗, 𝑘, 𝑡) and the cumulative flow variables (𝑎(𝑖, 𝑗, 𝑘, 𝑡) and 𝑑(𝑖, 𝑗, 𝑘, 𝑡)).
The variable 𝑦(𝑖, 𝑗, 𝑘, 𝑡) represents whether arc (𝑖, 𝑗) is occupied by AGV
𝑘 at time 𝑡, and this occupancy is expressed by the difference between
𝑎(𝑖, 𝑗, 𝑘, 𝑡) and 𝑑(𝑖, 𝑗, 𝑘, 𝑡). Equality (8) guarantees that each arc can be
occupied by at most one AGV at any time 𝑡.

Eq. (9) constraints on transport time 𝑇𝑇 (𝑖, 𝑗, 𝑘) on arc (𝑖, 𝑗) by AGV 𝑘,
which is computed by the difference between the departure and arrival
times of AGV 𝑘 when occupying arc (𝑖, 𝑗). For the sake of compactness,
these arrival and departure times (defined as 𝐴(𝑖, 𝑗, 𝑘) and 𝐷(𝑖, 𝑗, 𝑘)) can
be calculated by 𝑎(𝑖, 𝑗, 𝑘, 𝑡) and 𝑑(𝑖, 𝑗, 𝑘, 𝑡), as follows:

𝐴(𝑖, 𝑗, 𝑘) =
∑

𝑡
(𝑡 × (𝑎(𝑖, 𝑗, 𝑘, 𝑡) − 𝑎(𝑖, 𝑗, 𝑘, 𝑡 − 1))) ,∀𝑘 ∈ 𝜓, (𝑖, 𝑗) ∈ 𝐸 (14)

𝐷(𝑖, 𝑗, 𝑘) =
∑

𝑡
(𝑡 × (𝑑(𝑖, 𝑗, 𝑘, 𝑡) − 𝑑(𝑖, 𝑗, 𝑘, 𝑡 − 1))) ,∀𝑘 ∈ 𝜓, (𝑖, 𝑗) ∈ 𝐸 (15)

Eq. (10) gives the minimum transport time on arc (𝑖, 𝑗) by AGV 𝑘.
Constraint (11) represents that for each arc at most one AGV can leave
at any time. Constraints (12) and (13) provide time connectivity by us-
ing the cumulative flow variables (𝑎(𝑖, 𝑗, 𝑘, 𝑡) and 𝑑(𝑖, 𝑗, 𝑘, 𝑡)), indicating
that 𝑎(𝑖, 𝑗, 𝑘, 𝑡) or 𝑑(𝑖, 𝑗, 𝑘, 𝑡) has to be 1 for all later moments if AGV 𝑘
has reached or departed from arc (𝑖, 𝑗) at time 𝑡.

Here, we use Fig. 1 to better understand the occupancy of arc (𝑖, 𝑗)
by AGV 𝑘 via the cumulative flow variable (𝑎(𝑖, 𝑗, 𝑘, 𝑡), 𝑑(𝑖, 𝑗, 𝑘, 𝑡)) in the
considered flexible time-space network.

Fig. 1 shows that 𝑎(𝑖, 𝑗, 𝑘, 𝑡) = 1 for 𝑡 ≥ 6 and 𝑑(𝑖, 𝑗, 𝑘, 𝑡) = 1 for 𝑡 ≥ 8.
This indicates that AGV 𝑘 reaches and leaves arc (i,j) at 𝑡 = 6 and 𝑡 = 8,
due to the definitions of 𝑎(𝑖, 𝑗, 𝑘, 𝑡) and 𝑑(𝑖, 𝑗, 𝑘, 𝑡) in Table 1. Meanwhile,
it is observed that the arc (𝑖, 𝑗) is occupied by AGV 𝑘 at 𝑡 = 6 and 𝑡 = 7,
using Eq. (7). It is noted that 𝑎(𝑖, 𝑗, 𝑘, 𝑡) − 𝑎(𝑖, 𝑗, 𝑘, 𝑡 − 1) = 1 only when
𝑡 = 6 for the arrival, while 𝑑(𝑖, 𝑗, 𝑘, 𝑡) − 𝑑(𝑖, 𝑗, 𝑘, 𝑡 − 1) = 1 only when
𝑡 = 8 for the departure. In this case, 𝐴(𝑖, 𝑗, 𝑘) = 6 and 𝐷(𝑖, 𝑗, 𝑘) = 8, as
computed by Eqs. (14)–(15).
4

c

Fig. 1. Illustrative example of occupancy of arc (𝑖, 𝑗) by AGV 𝑘 via the cumulative
low variables.

.3. The planning architecture

This part proposes a hierarchical architecture for energy-efficient
ath planning of AGVs based on the FTSN model, illustrated in Fig. 2.
ierarchical planning decomposes a complex decision problem into

maller subproblems and solve the overall problem effectively, the
lanning procedures are given as follows:

1. The time controller of AGV 𝑘 computes the minimal transport
time 𝑇min(𝑖, 𝑗, 𝑘) on the arcs of the roadmap;

2. The supervisory controller receives these minimal transport
times from each AGV time controller;

3. The supervisory controller determines the optimal transport time
𝑇𝑇 (𝑖, 𝑗, 𝑘) and the schedule information 𝐴(𝑖, 𝑗, 𝑘) and 𝐷(𝑖, 𝑗, 𝑘).
The obtained schedule are then sent to the time controller of
each AGV;

4. The time controller of each AGV sends the transport times on the
visited arcs to its speed controller. The speed controller of AGV
𝑘 designs a control algorithm to track speed 𝑣(𝑘, 𝑡) regarding the
schedule information.

n the following sections, we focus on solving the optimization problem
ecided by the supervisory controller.

.4. Energy-efficient planner

This section proposes an energy-efficient planner based on the FTSN
odel presented in Section 2.2. We introduce the two types of objec-

ive functions and give an overall formulation of the energy-efficient
ptimization problem when introducing energy-related objectives and
onstraints.
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Fig. 2. The hierarchical control architecture for the multiple AGVs.

2.4.1. Time-related objective
For a logistics system (e.g. warehouse or manufacturing), the pri-

mary objective is to minimize the completion time of all the tasks.
As suggested in Murakami (2020), the objective defined as 𝐽1 is to

inimize the sum of the completion time of all given tasks. Compared
o the makespan (the maximum of all completion times), this objective
s more strict. For AGV k, the task completion time is expressed as
(𝑖,𝑠𝑘)∈𝐸𝑠(𝑠𝑘)𝐷(𝑖, 𝑠𝑘, 𝑘), so 𝐽1 is represented as follows:

1 =
∑

𝑘

∑

(𝑖,𝑠𝑘)∈𝐸𝑠(𝑠𝑘)
𝐷(𝑖, 𝑠𝑘, 𝑘). (16)

If 𝐽1 is considered, the corresponding optimization problem, which
s defined as 𝑃1, is given as follows:

𝑃1) min 𝐽1
s.t. (1) − (13).

his optimization is Mixed Integer Programming (MIP), which can
e handled by commercial solvers, like Gurobi (Edward, 2014). The
inimum value of 𝐽1 solved by the problem 𝑃1 is denoted as 𝐽1,min.

.4.2. Energy-related objective
The energy consumption, defined as 𝐽2, consists of the following

arts (Young et al., 2013):

2 = 𝐽a + 𝐽r , (17)

here 𝐽a is the part resulting from the vehicle acceleration, while 𝐽r
s the part generated by the rolling resistance. As the vehicle speed
s relatively low, the energy consumption coming from air drag is
eglected.

The energy consumption resulting from vehicle acceleration 𝐽a is
iven as follows:

a = 0.5𝑀
∑

𝑘

∑

𝑡
𝑧(𝑘, 𝑡) × [𝑣2(𝑘, 𝑡) − 𝑣2(𝑘, 𝑡 − 1)], (18)

here 𝑀 is the AGV weight, 𝑣(𝑘, 𝑡) is the speed from 𝑡 − 1 to 𝑡 and
(𝑘, 𝑡) ∈ [0, 𝑣max] (𝑣max is the maximal speed). We define the variable
(𝑘, 𝑡) as follows:

(𝑘, 𝑡) ≜

{

1 𝑣(𝑘, 𝑡) ≥ 𝑣(𝑘, 𝑡 − 1)
0 𝑣(𝑘, 𝑡) < 𝑣(𝑘, 𝑡 − 1)

(19)

Regarding 𝐽r , the traction force 𝑓 (𝑖, 𝑗, 𝑘) of AGV 𝑘 on arc (𝑖, 𝑗) is
epresented as follows:

(𝑖, 𝑗, 𝑘) =𝑀𝑔𝐶r , (20)

here 𝐶r is the coefficient of rolling resistance. Since energy is the
roduct of force and distance, 𝐽r can be described as follows:

r =
∑∑

𝑀𝑔𝐶r ⋅ 𝑆(𝑖, 𝑗) ⋅ 𝑥(𝑖, 𝑗, 𝑘), (21)
5

𝑘 (𝑖,𝑗)
here 𝑆(𝑖, 𝑗) is the distance for arc (𝑖, 𝑗).
To obtain energy-efficient paths for AGVs, we give the direct op-

imization problem (defined as 𝑃2) in a lexicographic-form (Pérez-
añedo and Concepción-Morales, 2020), which is represented as fol-

ows:

𝑃2) min 𝐽2
s.t. 𝐽1 ≤ 𝐽1,min,

(1) − (13).

However, the problem 𝑃2 cannot be solved as a standard optimiza-
ion formulation because 𝐽2 depends on the condition 𝑧(𝑘, 𝑡) = 1. We
ext rewrite the problem 𝑃2 as a describable standard optimization
roblem to be solved.

heorem 1. The problem 𝑃2 can be formulated as a describable mixed-
nteger programming problem to be solved.

roof. In 𝐽a, there are two variables, 𝑣(𝑘, 𝑡) and 𝑧(𝑘, 𝑡). 𝑣(𝑘, 𝑡) can be
epresented by (22) directly. But not every arc (𝑖, 𝑗) is visited for the
GV 𝑘, the decision variable 𝑇𝑇 (𝑖, 𝑗, 𝑘) may be zero that Eq. (22) is not

easible.

(𝑘, 𝑡) =
∑

(𝑖,𝑗)
𝑦(𝑖, 𝑗, 𝑘, 𝑡) ⋅ 𝑆(𝑖, 𝑗)∕𝑇𝑇 (𝑖, 𝑗, 𝑘) (22)

It is noted that, due to the condition constraint in (19) of 𝑧(𝑘, 𝑡),
e cannot optimize 𝐽2 in 𝑃2 directly. We introduce new variables and

onstraints to deal with the two kinds of circumstances.
For 𝑣(𝑘, 𝑡), we introduce a discretized integer number 𝜇 (𝜇 ∈

1, 2,… , ℎ}, ℎ is set as the maximum number of time slots the AGV
oves on the arc) for 𝑇𝑇 (𝑖, 𝑗, 𝑘) as follows:

𝑇 (𝑖, 𝑗, 𝑘) = 𝜇 ×
∑

𝜇
𝐿(𝑖, 𝑗, 𝑘, 𝜇), ∀𝑘 ∈ 𝜓, (𝑖, 𝑗) ∈ 𝐸, (23)

here 𝐿(𝑖, 𝑗, 𝑘, 𝜇) is a binary decision variable to select an element 𝜇.
ith this, 𝑣(𝑘, 𝑡) can be further described as follows:

(𝑘, 𝑡) =
∑

(𝑖,𝑗)
𝑦(𝑖, 𝑗, 𝑘, 𝑡)

𝑆(𝑖, 𝑗)
𝜇 ×

∑

𝜇 𝐿(𝑖, 𝑗, 𝑘, 𝜇)

=
∑

(𝑖,𝑗)
𝑦(𝑖, 𝑗, 𝑘, 𝑡)

∑

𝜇

𝐿(𝑖, 𝑗, 𝑘, 𝜇)𝑆(𝑖, 𝑗)
𝜇

,∀𝑘 ∈ 𝜓, 𝑡 ∈ 𝛷.
(24)

For formula (19), −𝑣max ≤ 𝑣(𝑘, 𝑡) − 𝑣(𝑘, 𝑡 − 1) ≤ 𝑣max. Based on the
method in Bemporad and Morari (1999), formula (19) is equivalent to
the following inequalities:

𝑣(𝑘, 𝑡 − 1) − 𝑣(𝑘, 𝑡) ≤ 𝑣max(1 − 𝑧(𝑘, 𝑡)), (25)

𝑣(𝑘, 𝑡 − 1) − 𝑣(𝑘, 𝑡) ≥ 𝜖 − 𝑧(𝑘, 𝑡)(𝑣max + 𝜖), (26)

where 𝜖 is a small tolerance (typically the machine precision).
By substituting 𝑣(𝑘, 𝑡) via Eq. (24) into (18), and we can have a

nonlinear objective function subject to linear constraints.
Ultimately, we reformulate the problem 𝑃2 as an MINLP as follows:

(𝑃3) min 𝐽2
s.t. 𝐽1 ≤ 𝐽1,min,

(1) − (13), (23) − (26). □

For our path planning problem, the first goal is the shortest com-
pletion time of each task, which has an important impact on the
production efficiency of the system. On this basis, the energy consump-
tion target is further considered. The energy consumption of the AGVs
is composed of the energy consumption generated by rolling resistance
and the energy consumption generated by vehicle acceleration. Among
them, the energy consumption generated by rolling resistance is de-
termined by variable 𝑥(𝑖, 𝑗, 𝑘), which is related to the path length of
AGVs; the energy consumption generated by vehicle acceleration is
determined by the variables 𝑧(𝑘, 𝑡) and 𝑣(𝑘, 𝑡), which are related to the
vehicle speed change during the AGV driving.
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Property 1. The optimization problem 𝑃3 is a non-convex MINLP.

roof. For the nonlinear objective function, the Hessian matrix of
(𝑘, 𝑡)𝑦(𝑖, 𝑗, 𝑘, 𝑡)2𝐿(𝑖, 𝑗, 𝑘, 𝜇)2 is not positive definite, and the problem 𝑃3
s a non-convex MINLP. □

The problem 𝑃3 is proved as a non-convex MINLP, and non-convex
INLPs are regarded as difficult optimization problems and usually turn

ut to be NP-hard (Burer and Letchford, 2012). The resulting problem
s not computationally efficient when solved by the existing commercial
INLP solver Baron, as shown in the results section. The following

ection proposes an efficient meta-heuristic algorithm for providing
igh-quality solutions in a reasonable computation time.

. Solution approach

This section proposes a new algorithm to efficiently solve the for-
ulated non-convex MINLP problem (𝑃3). The proposed algorithm uses
hybrid metaheuristic, integrating the genetic algorithm (GA) and

he estimation of distribution algorithm (EDA). For solving the MINLP
roblems, GA has shown its capability (Young et al., 2007; Tang et al.,
021). However, our MINLP includes two aspects of decision variables:
ath and motion time. When the motion time of the AGV is incor-
orated into the decision variables, the decision dimension becomes
ignificantly higher than the optimization problem without optimizing
he motion time. GA may thus have slow convergence rate, due to
nsufficient local search ability and easy falling into local optimal. To
ddress this drawback, GA is integrated with other metaheuristics to
mprove its search ability (Lee et al., 2019).

In the proposed hybrid metaheuristics, we integrate GA with EDA
o determine the paths and motion times of the AGVs, respectively.
he EDA is capable to deal with high-dimension complex decision
roblems (Hauschild and Pelikan, 2011). However, the paths need to
atisfy the continuity constraints and the path probability model of
DA cannot be directly established. Considering the efficiency of GA
o obtain a feasible path (Farooq et al., 2021), we use GA to search
or the paths of AGVs. Regarding the motion times, the motion time is
ecided within a continuous range, and the probability model of EDA
an be easily obtained.

.1. Encoding

When designing the metaheuristics, the encoding scheme is crucial
or the solution quality (Tang et al., 2021: ?). For solving the considered
INLP problem, a key step is to design a suitable encoding scheme,
hich fits the FTSN framework.

To match the FTSN framework, a two-dimension encoding scheme is
esigned for each individual 𝑋. Each chromosome contains two types
f information in two dimensions individually. Dimension 1 includes
he path node sequence 𝑋r,𝑘 of the AGVs by following constraints (1)–
3), while Dimension 2 gives the transport time 𝑋t of the AGVs, as
llustrated in Fig. 3(a). 𝑋r,𝑘 =

[

𝑋r,𝑘
1 ,… , 𝑋r,𝑘

𝑙 ,… , 𝑋r,𝑘
𝑁

]

, while 𝑋t,𝑘 =

𝑋t,𝑘
1 ,… , 𝑋t,𝑘

𝑙 ,… , 𝑋t,𝑘
𝑁

]

, 𝑙 ∈ {1, 2,… , 𝑁}. 𝑋r,𝑘
𝑙 represents the node

ocated at the 𝑙th position of 𝑋r,𝑘, and 𝑋t,𝑘
𝑙 denotes the transport time

ocated at the 𝑙th position of 𝑋t,𝑘. The encoding length used here is
×𝐾.
For Dimension 1, origin node 𝑂𝑘 for AGV 𝑘 corresponds to 𝑥r,𝑘1 ,

hile its destination node 𝑆𝑘 corresponds to one of the path nodes
n 𝑋r,𝑘

𝑙 . For Dimension 2, the value of 𝑋𝑡,𝑘
1 is zero, because 𝑥𝑣,𝑘1 is

he origin node. 𝑋r,𝑘
𝑙 (1 < 𝑙 ≤ 𝑁) corresponds to the transport time

𝑇 (𝑋r,𝑘
𝑙−1, 𝑋

r,𝑘
𝑙 , 𝑘) spent on arc (𝑋r,𝑘

𝑙−1, 𝑋
r,𝑘
𝑙 ) by AGV 𝑘. Note that the

ocation of 𝑆𝑘 is the node between 𝑋r,𝑘
𝑙 and 𝑋r,𝑘

𝑇 . Under this condition,
he nodes after 𝑆𝑘 become meaningless and the related transport time
ecomes zero.

We use the simple example shown in Fig. 3(b) to illustrate the
6

esigned encoding scheme (𝐾 = 2, 𝑁 = 5). The path sequences are w
s follows: AGV 1: 1
2

⟶ 3, AGV 2: 4
1

⟶ 3
1

⟶ 5. The nodes 1 and 4
re the origin and destination nodes of AGV 1, while the nodes 4 and 5
re the origin and destination nodes of AGV 1. For the transport time,
𝑇 (1, 3, 1) = 2 for AGV 1, while 𝑇𝑇 (4, 3, 2) = 1 and 𝑇𝑇 (3, 5, 2) = 1 for
GV 2. The path sequences in Dimension 1 will be updated by GA while

he transport times in Dimension 2 will be improved by EDA, using our
roposed hybrid metaheuristic.

.2. Algorithm

In the proposed hybrid metaheuristic, we integrate GA and EDA to
etermine the paths and the motion times of the considered AGVs.

Fig. 4 gives the flowchart of the proposed hybrid metaheuristics.
ased on GA and EDA, our algorithm is a population-based meta-
euristic. The entire population (defined as 𝑃 ) consists of three sub-
opulations 𝑃t , 𝑃e and 𝑃l, to maintain the diversity of updating trans-
ort time 𝑇𝑇 (𝑖, 𝑗, 𝑘). 𝑃e represents the sub-population with the feature
f the shortest transport time, 𝑃e represents the sub-population with
he feature of the energy-saving transport time, and 𝑃l represents the
ub-population with the learning feature of the transport time. The ratio
f these three sub-populations is set to 1:1:2, as suggested in Wu and
ang (2018).
In each sub-population, the elite strategy is considered to select a

ertain ratio of best solutions after evaluating the population fitness.
or generating new solution candidates, Dimension 1 of solution 𝑋
s updated by the mutation strategy using the GA, while Dimension

of the solution 𝑋 is updated by the population-based incremental
earning (PBIL) to construct the probability distribution model. After
enerating the new solutions, the infeasible solutions will be repaired.
he algorithm continues until the maximum iteration is reached.

As for the GA used in the hybrid metaheuristic, the mutation
trategy is used to customize the GA and efficiently construct path se-
uences. The crossover strategy is not suggested because it is observed
hat the crossover could result in longer computation times and deteri-
rate the solution quality when solving the routing problem (Halim and
smail, 2019). For the EDA, PBIL is employed to update the probability
atrix for generating the transport times, because the transport times of

wo successive arcs are independent and PBIL has an effective learning
trategy (Meng et al., 2016).

.2.1. Solution generation
The generated solutions are based on the selected elite solutions.

egarding the selection, the top-ranking method is employed.
Regarding Dimension 1 of the new solutions, three mutation oper-

tors (flip, swap, and slide) of the GA are used to update the path of
GVs. The flip mutation works by randomly choosing two positions

n the chromosome and reversing the order in which the values appear
etween those positions. The swap operator randomly swaps the values
f two positions in the solution chromosome. For the slide operator, two
ositions in the chromosome are randomly selected, and the contents
etween these two positions move one position to the left. The details
f these operations are given in Halim and Ismail (2019).

For Dimension 2, the PBIL algorithm is adapted to construct the
robability distribution model. The time probability matrix, defined as
𝑘(𝑖𝑡𝑒𝑟), is to compute the transport time 𝑥𝑡,𝑘𝑙 for AGV 𝑘 at iteration 𝑖𝑡𝑒𝑟.
he composition of 𝐶𝑘(𝑖𝑡𝑒𝑟) is given as follows:

𝑘(𝑖𝑡𝑒𝑟) =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝜌𝑘11(𝑖𝑡𝑒𝑟) ⋯ 𝜌𝑘1ℎ(𝑖𝑡𝑒𝑟)
⋮ ⋮

𝜌𝑘𝑙1(𝑖𝑡𝑒𝑟) ⋯ 𝜌𝑘𝑙ℎ(𝑖𝑡𝑒𝑟)
⋮ ⋱ ⋮

𝜌𝑘𝑁1(𝑖𝑡𝑒𝑟) ⋯ 𝜌𝑘𝑁ℎ(𝑖𝑡𝑒𝑟)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(27)

𝑘 𝑡,𝑘
here 𝜌𝑙𝜇(𝑖𝑡𝑒𝑟) represents the probability 𝑝𝑖𝑡𝑒𝑟(𝑥𝑙 = 𝜇).
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Fig. 3. Illustration of the designed encoding that fits the FTSN framework.
Fig. 4. Flowchart of the proposed hybrid metaheuristic.

In the PBIL algorithm, 𝐶𝑘(𝑖𝑡𝑒𝑟) is adjusted to make the populations
evolve towards the excellent individuals, element 𝜌𝑙𝜇(𝑖𝑡𝑒𝑟 + 1) of this
matrix is updated according to the elite populations, as follows:

𝜌𝑘𝑙𝜇(𝑖𝑡𝑒𝑟 + 1) = (1 − 𝛼)𝜌𝑘𝑙𝜇(𝑖𝑡𝑒𝑟) + 𝛼
1
𝐸

𝐸
∑

𝑠=1
𝐼𝑘,𝑠𝑙𝜇 (𝑖𝑡𝑒𝑟) (28)

𝐼𝑘,𝑠𝑙𝜇 (𝑖𝑡𝑒𝑟) =

{

1, if 𝑋𝑡,𝑘
𝑙 = 𝜇 in the 𝑠th elite solution

0, else,
(29)

where 𝛼 ∈ (0, 1) is the learning rate and 𝐼𝑘,𝑠𝑙𝜇 (𝑖𝑡𝑒𝑟) is the indication
function corresponding to the 𝑠th solution of the elite population by
AGV 𝑘 at iteration 𝑖𝑡𝑒𝑟. 𝐸 is the number of the elite populations. After
updating the probability matrix, the second chromosome needs to be
sampled by them respectively, such that the population 𝑃 (𝑖𝑡𝑒𝑟 + 1) are
generated for the next iteration.

Note that 𝐶𝑘(𝑖𝑡𝑒𝑟) is updated in three sub-populations 𝑃t , 𝑃e and
𝑃l, corresponding to three notations defined as 𝐶𝑘t (𝑖𝑡𝑒𝑟), 𝐶𝑘e (𝑖𝑡𝑒𝑟) and
𝐶𝑘l (𝑖𝑡𝑒𝑟). The updates of 𝐶𝑘t (𝑖𝑡𝑒𝑟), 𝐶𝑘e (𝑖𝑡𝑒𝑟) and 𝐶𝑘l (𝑖𝑡𝑒𝑟) are the same as
presented in Eqs. (27), (28), and (29). The initializations of 𝐶𝑘t (𝑖𝑡𝑒𝑟),
𝐶𝑘e (𝑖𝑡𝑒𝑟), and 𝐶𝑘l (𝑖𝑡𝑒𝑟) are provided in Appendix.

3.2.2. Fitness function
𝐹 (𝑋) is the fitness function of solution 𝑋 that consists of two parts:

the objective function 𝐽 (𝑋) = 𝐽 and the penalty function 𝑝(𝑋). The
7

2

aim is to obtain the solution with the lowest energy consumption for
the shortest total completion time.

The penalty function 𝑝(𝑋) avoids searching in infeasible parts of the
solution space at iteration 𝑖𝑡𝑒𝑟, as shown in Eqs. (30)–(32).

𝑝(𝑋) = 𝑝1(𝑋) + 𝑝2(𝑋) (30)

𝑝1(𝑋) = (𝑇𝑒𝑛𝑑 (𝑋) − 𝑇 1
𝑒𝑛𝑑 ) × 𝑅1 (31)

𝑝2(𝑋) =

{

𝑅2 Eq. (8) does not hold for 𝑋
0 else,

(32)

where 𝑇 1
𝑒𝑛𝑑 is the shortest completion time computed by using the

conventional TSN model, and 𝑅1 and 𝑅2 are relatively large constants.
𝑝1(𝑥) guarantees that the solutions with the shortest completion time
have a better fitness, and 𝑝2(𝑥) ensures that the fitness values of
infeasible solutions are very poor.

3.2.3. Repairing operations
To ensure the feasibility of solution 𝑋, individuals in population

𝑃 may need to be repaired. In principle, Dijkstra algorithm is used to
repair the unconnected paths in Dimension 1. The specific repairing
operations are as follows:

𝑋r,𝑘(𝑙1 ∶ 𝑙1 + 1) = 𝐷[𝑥r,𝑘𝑙1 , 𝑥
r,𝑘
𝑙1+1

], 𝑖𝑓 𝑥r,𝑘𝑙1 ∉ 𝐸𝑠(𝑥r,𝑘𝑙1+1) (33)

𝑋r,𝑘(𝑙2 ∶ 𝑙3) = [𝑋r,𝑘
𝑙2

], 𝑖𝑓 𝑋r,𝑘
𝑙2

= 𝑋r,𝑘
𝑙3

(34)

where, 𝑙1, 𝑙2 and 𝑙3 are the gene locations; 𝑋r,𝑘(𝑙1 ∶ 𝑙1 + 1) represents
the sequence fragment from the 𝑙1st position to the 𝑙1 + 1st position of
the path sequence; 𝐷[𝑥r,𝑘𝑙1 , 𝑥

r,𝑘
𝑙1+1

] represents a path sequence with 𝑥r,𝑘𝑙1 as
the start point and 𝑥r,𝑘𝑙1+1 as the end point obtained by using the Dijkstra
algorithm.

For Eq. (33), if the path sequence fragment from the 𝑙1st position
to the 𝑙1 + 1st position is unconnected, Dijkstra algorithm is used
to generate a connected path to replace it. The repairing operation
may cause the path sequence to contain repeating paths, the further
operation of the repeating sequence segment as shown in Eq. (34). If
the value of the path sequence at the 𝑙2st position coincides with the 𝑙3st
position, the unnecessary intermediate path sequence will be deleted.

Then, if 𝑋t does not satisfy the time constraints of the FTSN model,
𝑇𝑇 (𝑖, 𝑗, 𝑘) in Dimension 2 will be adjusted. The specific repairing oper-
ation is as follows:

𝑥t,𝑘1𝑙1
= 𝑥t,𝑘1𝑙1

+ 1, 𝑖𝑓 𝑥t,𝑘1𝑙1
= 𝑥t,𝑘2𝑙2

,
𝑙1
∑

𝑙=1
𝑥t,𝑘1𝑙 =

𝑙2
∑

𝑙=1
𝑥t,𝑘2𝑙 (35)

where, 𝑙1 and 𝑙2 are the gene locations. Eq. (35) means that if any
two AGVs are in the same position at the same time, one AGV will
be selected, and its encoding time value at that position will add 1 to
avoid collisions between AGVs.
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Algorithm 1 The designed HGE based on the FTSN model.
Input: Task assignments for all the AGVs
Output: The best individual 𝑋best
1: 𝑖𝑡𝑒𝑟 = 0, 𝐹min = 𝐼𝑛𝑓
2: initialize 𝑃 (𝑖𝑡𝑒𝑟)
3: while 𝑖𝑡𝑒𝑟 ≤ 𝑖𝑡𝑒𝑟𝑚𝑎𝑥 do
4: for each sub-population 𝑃t , 𝑃e and 𝑃l do
5: evaluate fitness 𝐹 (𝑋) = 𝐽𝑎 + 𝐽𝑟 + 𝑝(𝑋)
6: if 𝐹 (𝑋) ≤ 𝐹min then
7: record 𝑋 as the best individual 𝑋best
8: record 𝐹min = 𝐹 (𝑋)
9: end if

10: select the elite of the sub-population
11: flip, swap or slide 𝑋r in the elite to construct 𝑃 r (𝑖𝑡𝑒𝑟 + 1)
12: update the probability matrix 𝐶𝑘(𝑖𝑡𝑒𝑟) (𝐶𝑘t (𝑖𝑡𝑒𝑟) for 𝑃t ,

𝐶𝑘e (𝑖𝑡𝑒𝑟) for 𝑃e, and 𝐶𝑘l (𝑖𝑡𝑒𝑟) for 𝑃l )
13: for 𝑋r ∈ 𝑃 r (𝑖𝑡𝑒𝑟 + 1) do
14: sample 𝑋t according to 𝐶𝑘t (𝑖𝑡𝑒𝑟), 𝐶𝑘e (𝑖𝑡𝑒𝑟) and 𝐶𝑘l (𝑖𝑡𝑒𝑟)

respectively, to construct 𝑃 t (𝑖𝑡𝑒𝑟 + 1)
15: end for
16: end for
17: for 𝑠 = 1 to 𝑁p do
18: if 𝑋r,𝑘

𝑠 does not correspond to a connected path then
19: repair 𝑋r,𝑘

𝑠 by Equations (33) and (34)
20: end if
21: if 𝑋𝑠 does not satisfy time constraints then
22: adjust 𝑋t,𝑘

𝑠 by Equation (35)
23: end if
24: end for
25: 𝑖𝑡𝑒𝑟 = 𝑖𝑡𝑒𝑟 + 1
26: end while

3.2.4. Pseudocode of the algorithm
This part gives the pseudocode of the developed hybrid meta-

heuristics for the considered MINLP. This pseudocode is described in
Algorithm 1, detailing the flowchart of Fig. 4.

As discussed earlier, the entire population 𝑃 is divided into three
sub-populations 𝑃t , 𝑃e, and 𝑃l. For each iteration indexed by 𝑖𝑡𝑒𝑟, a
certain ratio (marked by 𝜂%) for each sub-population is selected as the
elite, marked as 𝑃 ′

t (𝑖𝑡𝑒𝑟), 𝑃 ′
e (𝑖𝑡𝑒𝑟), and 𝑃 ′

l (𝑖𝑡𝑒𝑟). Then, three mutation
operations are performed for the path sequence (𝑋r) in the elite, to
generate new solutions of Dimension 1 and construct 𝑃 r (𝑖𝑡𝑒𝑟 + 1),
which contains Dimension 1 of all solutions in the next iteration. After-
wards, for each newly generated solution, update the probability matrix
𝐶𝑘(𝑖𝑡𝑒𝑟) and sample the transport time represented in 𝑋t to construct
𝑃 r (𝑖𝑡𝑒𝑟 + 1), which corresponds to Dimension 2 for every solution in
population 𝑃 . When the new population 𝑃 (𝑖𝑡𝑒𝑟+ 1) is generated by GA
and EDA, perform the repair operations (detailed in Section 3.2.3) to
adjust the unfeasible solutions.

4. Case studies

This section presents the numerical experiment results of the de-
veloped hybrid algorithm GA-EDA (HGE) to solve the MINLP by using
the FTSN model. The first part introduces the benchmark of a material
transport system and experiment settings. The second part discusses
how the key parameters of HGE are selected. Then, the proposed HGE
algorithm (using the FTSN representation), is compared to the existing
methods for addressing the same path planning problem. We then use
an example to show how the energy efficiency is improved by analyzing
the determined paths.
8

Fig. 5. Example of a roadmap in the industrial application (Scenario I).

4.1. Setting of the AGV transport system

4.1.1. Benchmark
To evaluate the performance of the proposed FTSN model, we con-

sider a material handling benchmark system used in the manufacturing
or warehouse environment. The roadmap is 𝑛 × 𝑛 squared graph with
different connection conditions. An example of the roadmap is shown
in Fig. 5, adapted from the layout in Nishi et al. (2020).

This benchmark takes into account the physical features of AGVs,
including the dynamical behavior parameters (such as vehicle speed
and weight). The key parameters of the AGV system are listed as
follows:

• The total weight of AGV: 𝑀 = 320 kg.
• Gravitational constant: 𝑔 = 9.81 m∕s2.
• Maximal speed: 𝑣𝑚𝑎𝑥 = 1 m∕s.
• Rolling resistance coefficient: 𝐶𝑟 = 0.01.

4.1.2. Experiment setting
This part sets up case studies to evaluate the proposed methodology

in different layout topologies similar to Fig. 5 with different numbers
of AGVs. For the conducted experiments, two types of scenarios (small-
scale and large-scale) are considered. The small-scale scenarios use a
small 𝑛 × 𝑛 (𝑛 = 3, 4, 5) roadmap to show that the proposed HGE can
find the optimal solution. The large-scale scenarios consider a large 𝑛×𝑛
(𝑛 = 10) roadmap with 5 different connection conditions to show the
advantage of the proposed HGE.

For each case, 20 experiments are tested for comparison in general.
In each experiment, the pickup point and the delivery point of a partic-
ular task are given randomly in advance. The maximum computation
time is set to be 1 h. The settings of these case studies are given as
follows:

• The pickup point is considered as the initial position of each AGV.
• The material weight to be transported for each task is assumed to

be the same.
• All the materials are assumed to be ready at each pickup point.
• The service times of each AGV at the pickup node and the delivery

node are ignored.
• The distance 𝑆(𝑖, 𝑗) is set to be 10 m for an indoor inventory

system, as suggested by Adamo et al. (2018). The unit time 𝛥𝑇
is considered to be 10 s.
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Table 2
Factor levels of four key parameters of the proposed GEDA.
Parameter 1 2 3 4

𝑃 _size 50 100 150 200
𝜂(%) 10 20 30 40
𝛼 0.1 0.2 0.3 0.4
𝛽 0.5 0.6 0.7 0.8

Three key performance indicators (KPIs) are considered to evaluate
he benchmark system: (1) Completion time: the sum of completion times

of the transport tasks; (2) Energy consumption: the sum of the kinetic
energy of the AGVs for completing these tasks; (3) Computation time:
he time to compute the solution for each planning problem.

The results of the developed FTSN-HGE method are compared with
he TSN model, the MINLP solver Baron, and three standard commonly-
sed metaheuristics (GA, Particle Swarm Optimization (PSO), and
BIL). The comparison methods are briefly described as follows:

• The TSN model is a state-of-the-art representation for the conflict-
free path planning of multiple AGVs (Nishi et al., 2005; Mu-
rakami, 2020). In the TSN model, the transport time between
every two successive nodes in the roadmap is fixed. Therefore,
using the TSN model, a single-objective optimization, which min-
imizes the completion time only, is considered. The resulting
optimization problem is an MIP solved by Gurobi.

• Baron is regarded as an efficient commercial solver for solving
MINLPs. Baron implements a branch and bound algorithm that
utilizes linear programming for the bounding step to solve MINLP
problems.

• GA is an efficient metaheuristic for solving MINLPs (Tang et al.,
2021). In our MINLP, the standardized GA is used to generate the
path sequence and transport time jointly (Farooq et al., 2021).

• PSO is a typical swarm optimization algorithm for solving the
routing problem (Wang et al., 2003). The PSO is used to deter-
mine both the path sequence and transport time.

• PBIL is an efficient EDA for solving the MINLPs (Meng et al.,
2016; Wu and Wang, 2018). The standard PBIL is used to update
the path sequence and transport time jointly. Both GA, PSO, and
EDA are designed based on the FTSN framework.

The hardware for all these experiments is an Intel i7-9700 proces-
or (3.0 GHz) with 8 GB of memory. The optimization problems are
odeled and solved in Python. The fitness evaluation times of the four
etaheuristics (HGE, GA, PSO, and PBIL) are set to 10,000.

.2. Parameters selection

There are four key parameters in the designed HGE: 𝑃 _size, 𝜂, 𝛼
nd 𝛽. We determine these parameters by the Taguchi method for
he design-of-experiment (DOE) (Farooq et al., 2021). A large-scale
nstance (𝐾 = 8) is considered, and the layout is shown in Fig. 5. For
ach parameter, four-factor levels are selected as shown in Table 2.

Based on these settings, the orthogonal array 𝐿16(44) is selected, and
0 experiments are carried out for each combination of the parameters
n 𝐿16(44) In these experiments, the number of evaluations is set as
0,000, 𝑅1 = 1000, 𝑅2 = 10000. The average proportion of energy
onsumption reduction is taken as the response variable (RV) value
or each combination of these parameters. Table 3 lists the orthogonal
rray and RV values.

The influence trend curves of parameters are shown in Fig. 6.
he number of populations 𝑃 _size has the most significant effect on
erformance, as 𝑃 _size affects the search depth. For the elite population
atio, a small 𝜂 may get insufficient information, while a large 𝜂 may
ead to wrong information in the probability matrix. The learning rate

affects the algorithm convergence, and the mutation operator 𝛽 can
elp to improve the population diversity. Here, we select 𝑃 _size = 150,
9

= 20, 𝛼 = 0.2, 𝛽 = 0.6 for the following experiments.
Table 3
Orthogonal array and RV values.
Number 𝑃 _size 𝜂 𝛼 𝛽 RV

1 1 1 1 1 0.104
2 1 2 2 2 0.118
3 1 3 3 3 0.112
4 1 4 4 4 0.096
5 2 1 2 3 0.126
6 2 2 1 4 0.129
7 2 3 4 1 0.129
8 2 4 3 2 0.125
9 3 1 3 4 0.129
10 3 2 4 3 0.125
11 3 3 1 2 0.129
12 3 4 2 1 0.129
13 4 1 4 2 0.125
14 4 2 3 1 0.125
15 4 3 2 4 0.125
16 4 4 1 3 0.121

4.3. Results and discussion

4.3.1. Results on small-scale cases
In this subsection, the experimental results on the small-scale sce-

narios with 2 AGVs are presented by using the six different methods.
The compared results with respect to the given KPIs (completion time,
energy consumption, and computation time) are reported in Table 4.
The proposed HGE algorithm is compared to the TSN method, the
MINLP solver Baron, GA, PSO, and PBIL. The proposed HGE, Baron,
GA, PSO, and PBIL are based on the FTSN model. Three small-scale
scenarios are tested by using the 𝑛 × 𝑛 roadmap layout (𝑛 = 3, 4, 5).

e note that for these small-scale scenarios, the MINLP solver Baron
eturns the optimal solution for all these scenarios, and the optimality
f each solution is thus guaranteed by the Gurobi solver.

Table 4 shows that the FTSN model achieves the same completion
ime as the one computed by the TSN method, which minimizes the
ompletion time only. This means that the proposed HGE algorithm
btains the minimum completion time. Regarding the energy consump-
ion, the FTSN model uses less energy consumption than the TSN
ethod for the scenarios (𝑛 = 4, 5); the proposed HGE algorithm com-
utes the same value when compared to the other four methods (Baron,
A, PSO, and PBIL). For the small-scale scenarios, we conclude that the
roposed HGE algorithm uses the minimum energy consumption for the
inimum completion time.

It is shown in Table 4 that the computation time of these methods
s quite different. Since the computational complexity of the MINLP is
igher than the one of MIP provided by the TSN model, the computa-
ion time of the Baron solver is greatly larger than the one of the TSN
ethod. The four metaheuristics (HGE, GA, PSO, and PBIL) compute

heir solutions within a considerable shorter computation time than the
INLP solver Baron.

.3.2. Results on large-scale cases
This subsection compares the performance on large-scale scenarios

egarding the six methods based on the TSN model and the proposed
TSN model. The computational results are given in Tables 5, 6, and
. The five roman letters represent the five 10 × 10 squared roadmaps
ith different connection conditions.

Table 5 reports the average completion time for the large-scale
cenarios. When compared to the other methods, the proposed HGE
nd PBIL have the shortest completion time for each scenario. The
ompletion times determined by HGE and PBIL are slightly shorter
han those determined by TSN. In certain scenario settings, FTSN may
chieve a shorter completion time than TSN because FTSN uses flexible
ransport time rather than fixed transport time. Due to the lack of
earch capability when solving the non-convex MINLP, GA and PSO
ave slower completion times than TSN. Due to the computational
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Fig. 6. Evaluation of key parameters of the proposed HGE on the RV value.
Table 4
Averaged results the small-scale scenarios (𝐾 = 2).

Completion time (Unit: seconds)

Scale TSN FTSN

Baron GA PSO PBIL HGE

𝑛 = 3 35.00 35.00 35.00 35.00 35.00 35.00
𝑛 = 4 55.00 55.00 55.00 55.00 55.00 55.00
𝑛 = 5 58.00 58.00 58.00 58.00 58.00 58.00

Energy consumption (Unit: Joule)

Scale TSN FTSN

Baron GA PSO PBIL HGE

𝑛 = 3 321.10 321.10 321.10 321.10 321.10 321.10
𝑛 = 4 361.86 341.73 341.73 341.73 341.73 341.73
𝑛 = 5 375.37 345.89 345.89 345.89 345.89 345.89

Computation time (Unit: seconds)

Scale TSN FTSN

Baron GA PSO PBIL HGE

𝑛 = 3 1.18 34.05 6.83 5.13 1.65 2.61
𝑛 = 4 1.92 245.52 9.35 4.98 3.36 3.52
𝑛 = 5 2.73 484.93 16.21 15.23 8.75 4.96

complexity of the studied MINLP, the MINLP solver Baron cannot
obtain a solution within the maximum computation time, as shown in
Table 5 .

The energy consumption, which is our research focus, is shown in
Table 6. The four metaheuristics (HGE, GA, PSO, and PBIL) reduce the
energy consumption compared to the TSN method, which minimizes
the completion time only. The proposed HGE obtains the lowest energy
consumption for each scenario, when compared to GA, PSO, and PBIL.
On average, the proposed HGE reduces the energy consumption by
11%, which is more than GA (6.23%), PSO (7.07%), and PBIL (8.00%).
Analyzing the results in Table 6, the energy-saving effect for 𝐾 = 10
may be worse than for 𝐾 = 8 and 𝐾 = 9. The reason could be that
the running paths of AGVs are more complex when more AGVs are
considered for the same roadmap.

Table 7 gives the computation times for the six methods in the
large-scale scenarios. The TSN method solves the MIP, while the FTSN
methods (Baron, GA, PSO, PBIL, and the proposed HGE) solve a more
complicated MINLP, including nonlinear constrains and more decision
variables than the MIP. This explains why the TSN uses much less
computation time than the FTSN methods. As for the FTNS methods,
the proposed HGE is the most computational-efficient metaheuristic,
since HGE makes full use of GA to search the best path sequences, while
PBIL is adopted to search the best transport time. GA, PSO, and PBIL
take longer computational times than the proposed HGE, and this may
be due to the required repair operations in case of a large number of
infeasible solutions.
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Table 5
Average completion times for large-scale scenarios by using the five methods. (unit:
seconds).

Settings TSN FTSN

Baron GA PSO PBIL HGE

I
𝐾 = 8 662.50 – 662.50 662.50 662.50 662.50
𝐾 = 9 660.50 – 660.50 660.50 660.50 660.50
𝐾 = 10 735.00 – 740.00 741.00 735.00 735.00

II
𝐾 = 8 629.50 – 629.50 629.50 629.00 629.00
𝐾 = 9 660.00 – 661.50 661.50 660.00 660.00
𝐾 = 10 746.00 – 747.00 746.50 746.00 746.00

III
𝐾 = 8 657.50 – 657.50 657.50 657.50 657.50
𝐾 = 9 751.00 – 751.00 751.00 750.50 750.50
𝐾 = 10 754.00 – 754.00 754.00 754.00 754.00

IV
𝐾 = 8 637.00 – 636.50 636.50 636.50 636.50
𝐾 = 9 707.00 – 710.00 708.00 707.00 707.00
𝐾 = 10 820.00 – 820.00 820.00 820.00 820.00

V
𝐾 = 8 583.00 – 583.00 583.00 583.00 583.00
𝐾 = 9 682.50 – 682.50 682.50 682.50 682.50
𝐾 = 10 774.00 – 774.00 774.00 774.00 774.00

Average 697.30 – 697.97 697.87 697.20 697.20

Fig. 7 gives the fitness curves for the three metaheuristics (GA,
PSO, PBIL, and our HGE) based on the FTSN modeling framework for
Scenario I (𝐾 = 8), to show the computation efficiency of the proposed
HGE. Fig. 7 shows that the proposed HGE converges faster than GA,
PSO, and PBIL, i.e., HGE explores the solution space more efficiently
for the considered MINLP. Fig. 7 also shows that HGE achieves the best
convergence accuracy, because the converged fitness of HGE is lower
than GA, PSO, and PBIL.

From the above results of the small-scale and large-scale scenarios,
the proposed HGE shows the positive potential to minimize the energy
consumption for the minimal completion time. The studied MINLP
problem, which is based on the FTSN model, is difficult to be solved
for the large-scale scenarios in practice.

The proposed HGE shows its advantage over the existing meta-
heuristics (GA, PSO, and PBIL) to solve the MINLP. HGE achieves the
same minimal completion time as the one obtained by the TSN method,
both for the small-scale and large-scale scenarios. For the small-scale
scenarios, HGE computes the same minimal energy consumption as
the one computed by the MINLP solver Baron. For the large-scale
scenarios, HGE is the most energy efficient (minimum completion time
and minimal energy consumption), compared to GA, PSO, and PBIL.

4.4. Example of planned paths

This part demonstrates the planned energy-efficient paths deter-

mined when using the proposed HGE using the FTSN model. A simple
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Table 6
Average energy consumption for large-scale scenarios by using the five methods. (unit: Joule).
Settings TSN FTSN

Baron GA Gap(%) PSO Gap(%) PBIL Gap(%) HGE Gap(%)

𝐾 = 8 1500.17 – 1385.96 7.61 1381.51 7.91 1367.28 8.86 1311.29 9.98
I 𝐾 = 9 1638.04 – 1502.65 8.27 1486.72 9.24 1509.40 7.85 1480.23 9.63

𝐾 = 10 1782.67 – 1692.16 5.08 1713.55 3.88 1676.46 5.98 1610.67 9.99

𝐾 = 8 1475.34 – 1370.68 7.09 1342.09 9.03 1330.45 9.82 1311.31 11.12
II 𝐾 = 9 1652.20 – 1497.24 9.38 1481.30 10.34 1508.20 8.72 1477.09 10.60

𝐾 = 10 1866.02 – 1775.12 4.82 1756.98 5.84 1732.96 6.27 1674.02 10.29

𝐾 = 8 1500.15 – 1395.10 7.00 1399.10 6.74 1366.15 8.93 1330.15 11.33
III 𝐾 = 9 1663.12 – 1592.85 4.23 1575.11 5.29 1530.20 7.99 1487.12 10.58

𝐾 = 10 1815.23 – 1705.23 6.06 1688.93 6.96 1722.05 7.61 1635.45 9.92

𝐾 = 8 1539.35 – 1418.62 7.84 1396.25 9.30 1371.35 10.91 1347.35 12.47
IV 𝐾 = 9 1701.58 – 1587.12 6.73 1549.26 8.95 1504.69 11.57 1479.58 13.05

𝐾 = 10 1833.18 – 1741.60 5.00 1763.27 3.81 1742.15 5.83 1661.10 9.38

𝐾 = 8 1481.80 – 1374.31 7.25 1348.48 9.00 1356.71 9.98 1303.80 12.01
V 𝐾 = 9 1692.84 – 1624.28 4.05 1617.55 4.64 1557.96 7.97 1466.81 13.35

𝐾 = 10 1831.76 – 1753.44 4.28 1738.69 5.08 1719.26 6.93 1647.70 10.05

Average 1664.90 – 1561.09 6.23 1561.09 7.07 1553.02 8.00 1481.58 11.01
Table 7
Average computation time for large-scale scenarios by using the five methods. (unit:
seconds).

Settings TSN FTSN

Baron GA PSO PBIL HGE

I
𝐾 = 8 3.07 3600 101.76 89.45 70.50 36.96
𝐾 = 9 3.96 3600 117.33 120.42 75.83 28.91
𝐾 = 10 4.36 3600 129.49 127.56 83.32 28.91

II
𝐾 = 8 4.10 3600 101.92 69.68 67.33 40.52
𝐾 = 9 4.68 3600 117.39 112.14 78.89 38.48
𝐾 = 10 5.58 3600 132.27 145.36 94.41 46.17

III
𝐾 = 8 3.80 3600 96.45 103.55 68.63 35.73
𝐾 = 9 4.98 3600 118.44 121.66 87.76 38.29
𝐾 = 10 4.14 3600 116.00 126.50 88.75 36.75

IV
𝐾 = 8 4.79 3600 92.37 73.28 65.95 34.98
𝐾 = 9 4.98 3600 116.20 105.67 83.56 37.77
𝐾 = 10 5.33 3600 125.46 119.13 93.94 40.56

V
𝐾 = 8 3.94 3600 95.79 89.32 63.55 35.52
𝐾 = 9 4.38 3600 123.47 130.65 83.21 38.78
𝐾 = 10 4.41 3600 128.22 132.71 90.06 42.36

Average 4.43 3600 114.17 111.13 79.71 39.38

Fig. 7. Fitness curves by using different metaheuristics for Scenario I (𝐾 = 8).

warehouse layout with five AGVs (𝐾 = 5) is provided. The mesh
topological roadmap for this case is shown in Fig. 8.
11
Fig. 8. Roadmap for one example with 𝐾 = 5.

For the roadmap in Fig. 8, the setting of this roadmap is same as
Section 4.1.2. In Fig. 8, five AGVs start their tasks simultaneously at
time 0. The AGV tasks have been assigned in advance: 𝑂 = {1, 2, 3, 5, 7},
𝑆 = {2, 14, 9, 8, 13}. The detailed results are obtained by Gurobi by using
the TSN model and the proposed HGE obtained by the FTSN model, as
shown in Fig. 9.

Fig. 9(a) presents the planned paths of the AGVs by using the TSN
model. Fig. 9(a) shows that the five AGVs successfully move from their
pickup points to delivery points. The sum of the completion times is
22. The conflicts between these AGVs are avoided because every node
and every arc are not occupied by more than one AGV at any time.
The TSN model considers a fixed transport time between every two
connected nodes and each AGV has to wait at a certain node to avoid
the collision. It can be seen that AGV 1 and AGV 4 stop at Node 1
and Node 5, respectively, within the first time slot, while AGV 5 stops
at Node 15 within the fourth time slot, to avoid collision with other
AGVs. AGV 2 and AGV 4 move through Node 6 at 𝑡 = 1 and 𝑡 = 2,
respectively, since Node 6 is crowded. Furthermore, to avoid conflict
with AGV 1 and AGV 3, AGV 5 moves via the path 7-8-11-15-14-13
to shorten its completion time, instead of the shortest path 7-6-10-13
without considering conflicts.

Fig. 9(b) gives the planned paths of the proposed FTSN-HGE. The
sum of the completion time of the FTSN-HGE method is 20, which is
shorter than the one using the TSN model. As the proposed FTSN model
allows AGVs to move at a flexible speed (which can be lower than
the maximum speed), AGVs no longer wait at the nodes unnecessarily
to avoid conflict. AGV 5 can choose its shortest path, and the rolling
resistance energy 𝐽𝑟 can be saved for the shortest path that lowers
energy consumption. The energy reduction strategy also applies to the
other AGVs, as AGV 4 moves at one-third of the maximum speed from
Node 5 to Node 6.
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Fig. 10. Planned speeds of one example of the case 𝐾 = 5.

Fig. 10 shows the detailed planned speeds of the AGVs when using
he TSN and FTSN models. For the TSN model, AGV5 stops between
= 3 to 𝑡 = 4. Therefore, AGV 5 needs to fully accelerate to its max-

mum speed twice. When the FTSN model is considered, AGV 5 only
ccelerates once by regulating the speed, and the energy consumption
s thus considerably saved (by reducing the number of accelerations
nd decelerations).

. Conclusions and future research

This paper investigates a new energy-efficient path planning prob-
em of multiple AGVs, which plays a crucial role for material handling
n the modern production and logistics systems. In this research, the
onflict-free path and the vehicle speed are optimized jointly, using a
o-called FTSN modeling framework, in order to save kinetic energy
onsumption without decreasing the quality of the transport productiv-
ty. Due to the nonlinearity resulting from modeling the energy-related
bjective and constraints, the corresponding problem is a non-convex
ixed-integer nonlinear programming. To address its computational

ssue, we develop a dedicated hybrid metaheuristic HGE, in which
ew encoding schemes and algorithm procedures considers the char-
cteristics of the planning problem. Numerical experiments have been
onducted on industrial scenarios. Experiment results indicate that
bout 10% of the kinetic energy is reduced by using the proposed
ethod against the conventional TSN model, without deteriorating

he completion time. Experimental results show the advantage of the
12
proposed hybrid metaheuristic compared to the genetic algorithm,
the population-based incremental learning, and a commercial MINLP
solver.

The proposed FTSN-HGE method shows its potential to reduce the
energy use of material handling without decreasing productivity by
the lexicographic strategy, which optimizes the path sequence and the
vehicle speed jointly. The unnecessary vehicle waiting times resulting
from preventing conflicts can be used for regulating vehicle speed. The
number of accelerations and decelerations can be reduced for saving
the energy consumption of material transport. The proposed planning
method is environmentally friendly, and this method provides a guiding
significance for promoting cleaner production of flexible manufacturing
systems and smart logistics systems. The producers will save the oper-
ations costs resulting from the reduced energy consumption, without
deteriorating the service of high productivity.

The energy consumption reduction requires more detailed coor-
dination of the AGVs to regulate the speed and the path jointly in
the production environment, taking into account the vehicle accel-
erations/decelerations and rolling resistances. To implement such an
energy-efficient planner for AGV-based manufacturing systems, a de-
signed speed controller is needed for each AGV to track the speed
changes during the transport process.

Future research will investigate an extended path planning problem
in which multiple tasks are considered for each AGV. In this case, it
is interesting to study whether task assignment influences saving the
energy consumption, and new optimization algorithms are needed to
be developed to solve this extended problem.

CRediT authorship contribution statement

Jianbin Xin: Conceptualization, Methodology, Writing – original
raft, Writing – review & editing, Funding acquisition. Liuqian Wei:
odeling, Algorithm design, Data analysis. Andrea D’Ariano: Super-

ision, Writing – original draft, Writing – review & editing. Fangfang
hang: Model analysis, Writing – review & editing. Rudy Negenborn:
upervision.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.

ata availability
Data will be made available on request.



Journal of Cleaner Production 398 (2023) 136472J. Xin et al.
Acknowledgments

This research is supported in part by the National Natural Science
Foundation of China under Grant 62173311, 61703372 and 61603345,
in part by the College Youth Backbone Teacher Project of Henan
Province, China under Grant 2021GGJS001, in part by Henan Scientific
and Technological Research Project, China under Grant 222102220123,
and in part by the Training Project of Zhengzhou University, China
under Grant JC21640030.

Appendix. Solution initialization

The probability matrices 𝐶t , 𝐶e and 𝐶l are initialized as follows:

𝐶𝑘t (1) =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1 0 ⋯ 0
⋮ ⋮ ⋮
1 0 ⋯ 0
⋮ ⋮ ⋮
1 0 ⋯ 0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(A.1)

𝐶𝑘e (1) =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0 1 ⋯ 0
⋮ ⋮ ⋮
0 1 ⋯ 0
⋮ ⋮ ⋮
0 1 ⋯ 0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(A.2)

𝐶𝑘l (1) =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1∕ℎ 1∕ℎ ⋯ 1∕ℎ
⋮ ⋮ ⋮

1∕ℎ 1∕ℎ ⋱ 1∕ℎ
⋮ ⋮ ⋮

1∕ℎ 1∕ℎ ⋯ 1∕ℎ

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(A.3)

For the sub-population 𝑃t , AGVs travel at the highest speed to
shorten the total completion time firstly, so the probability matrix
𝐶𝑘t is initialized as Eq. (A.1). While for the sub-population 𝑃e, AGVs
are operated at a lower speed to reduce energy consumption, then
the probability matrix 𝐶𝑘e is initialized as Eq. (A.2). The probability
matrix 𝐶𝑘l of the sub-population 𝑃l is initialized as Eq. (A.3), and the
probability values of each time slot are the same (1∕ℎ).
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