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Chemical characterisation of bitumen type and ageing state
based on FTIR spectroscopy and discriminant analysis integrated
with variable selection methods

Lili Ma, Aikaterini Varveri , Ruxin Jing and Sandra Erkens

Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft, Netherlands

ABSTRACT
The chemical characterization of bitumen type and ageing state are fun-
damental in determining structural and mechanical properties of bitumen.
This work aims to classify various bitumen types at different ageing states
and to identify the primary chemical differences relevant to the classifica-
tion. Fourier transform infrared (FTIR) spectral data of eight bitumen types
at five ageing states were analyzed using a chemometric procedure that
incorporates principal component analysis (PCA), linear discriminant analy-
sis (LDA)models, variable selectionmethods. Themodels presented results
of high accuracy in differentiating bitumen type and ageing state. The
results show that the spectral regions that describe the aliphatic and aro-
matic bonds are critical to the identification of bitumen types. The chemical
changes due to bitumen ageing aremainly revealed at the region of 1800 –
900 cm-1. This chemometric method is instructive for the characterization
of chemical bitumen properties.
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1. Introduction

Bitumen is a byproduct of crude oil distillation, composed of complex hydrocarbons which can be
classified into saturates, aromatics, resins and asphaltenes, typically known as SARA fractions (Sakib
& Bhasin, 2019). The chemical composition of bitumen governs the structural and mechanical prop-
erties, such as strength, stiffness, and colloidal structure (Dehouche et al., 2012; Sakib et al., 2020).
Bituminous binders with various crude oil sources, penetration grades, polymer modifiers, and addi-
tives are used for paving asphalt pavements. Understanding the complex chemical components in
bitumen is therefore important for characterising the mechanical properties of bitumen and paving
mixtures.

Chemical composition of bitumen depends on its crude source and varies with its ageing state
(Mirwald et al., 2020a; Petersen, 2000). Bitumen from different crude oil sources, even with the same
specifications such as penetration grade, can have widely different SARA fractions and exhibit diverse
ageing kinetics. Mechanisms of bitumen ageing include oxidation, evaporation of light components,
and physical (steric) hardening (Tauste et al., 2018), among which oxidation is reported as the pri-
mary factor. Bitumen oxidation is an oxygen diffusion-driven process, which can be accelerated by UV
radiation (Polo-Mendoza et al., 2022). The chemical procedure of bitumen oxidation normally consists
of the dehydrogenation, the production of new functional groups, and the increase in aromaticity
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(aromatic condensation) (Nivitha et al., 2016; Polo-Mendoza et al., 2022; Tauste et al., 2018). Age-
ing causes a significant reduction of the aromatic fraction and growth in the content of resins and
asphaltenes, which results in an increase in the polarity, acidity, viscosity, and stiffness of bitumen
(Mirwald et al., 2020b). This ultimately leads to bitumen embrittlement (Lukas et al., 2015), and can
cause ravelling and cracking of pavements (López-Montero & Miró, 2016).

Fourier transform infrared (FTIR) spectroscopy is a quick and powerful technique in characterising
the chemical composition of bitumen and its SARA fractions (Mirwald et al., 2020a; Pipintakos et al.,
2021). To evaluate the chemical changes in bitumen samples at different ageing states, characteristic
peaks and regions of FTIR spectra such as sulfoxides, carbonyls, aliphaticity, and aromaticity are usually
determined (Hofko et al., 2017). Among them, the sulfoxide (1030 cm−1) and carbonyl (1700 cm−1)
peaks have been successfully used to describe the degree of ageing and are linked to the physical
and rheological properties of bitumen (Herrington, 2012; Pipintakos et al., 2022). Other functional
groups with lower intensities in FTIR spectra are attracting more and more attention. For example, a
change from 2-quinoloes (1655 cm−1) and carboxylic acids (1730 cm−1) towards ketones (1700 cm−1)
is reported (Mirwald et al., 2020a), which describes the chemical process of the formation of ketones.
The overlap of spectral regions indicating different functional groups (Asemani & Rabbani, 2020) and
the shift of the fingerprint area caused by increased polarity (Mirwald et al., 2020a) make it rather dif-
ficult to monitor the change of functional groups during the ageing process. Moreover, the change
in aliphaticity and aromaticity with bitumen source and ageing state is also inconclusive (Feng et al.,
2015). The evolution of aromatic bands (1600 cm−1)with ageing is not evident and thus less used as an
ageing index even though the increase in aromaticity is well-known (Pipintakos et al., 2021; Redelius
& Soenen, 2015).

For bitumen samples with varying sources or ageing states, the chemical differences are shown
in the whole absorption spectra, and the consideration of specific peaks may not be sufficient in
distinguishing their complex chemical composition. Alternatively, chemometric approaches using
multivariate discriminant methods, such as principal component analysis (PCA), Hierarchical cluster
analysis (HCA), linear discriminant analysis (LDA), andpartial least squares (PLS) analysis (Khanmoham-
madi et al., 2012), have been receiving increasing attention in extracting useful chemical information
fromtheFTIR spectra. Recent studieshaveusedFTIR spectra integratedwith chemometrics toprecisely
identify bitumen sources (Weigel & Stephan, 2018), determine bitumen SARA fractions (Meléndez
et al., 2012; Mohammadi et al., 2021; Ren et al., 2019), and predict the physical and mechanical prop-
erties of bitumen (Siroma et al., 2021; Sun et al., 2020). Wilt andWelch (1998) predicted the asphaltene
content in crude oil using a PLSmodel with an R2 value of 0.95. Aske et al. (2001) reported a high accu-
racy of PCAandPLS indeterminingbitumenSARA fractionsbasedonFTIR spectra.Weigel andStephan
(2018) differentiated bitumen types and ageing states using PCA and LDA models and predicted the
rheological properties based on PLS analysis.

Despite the good predictions of multivariate methods based on multiple variables, the latent vari-
ables derived from the features of full FTIR spectra are less interpretable compared to original variables
(Xiaobo et al., 2010). Furthermore, among the large number of spectral variables, irrelevant and noisy
variablesmay yield harmful variations in the prediction results. To this end, variable selection has been
used to identify and select a small number of variables from original variable sets for good interpre-
tation and prediction. Widely-used variable selection methods include the genetic algorithm (GA),
simulated annealing (SA), moving windows (MW), and competitive adaptive reweighted sampling
(CARS)methods. Li et al. (2019) discussed different variable selectionmethods from the perspective of
identifying the penetration grade of bitumen. It was found that the CARS coupling with Support Vec-
torMachine (SVM) showed the best performance. Mohammadi et al. (2021) applied a hybrid of GA and
SVM regression (GA-SVM-R) model to predict the SARA fractions of bitumen. Compared to GA-PLS-R,
the GA-SVM-R model exhibits better performance in the quantitative determination of the SARA frac-
tions. The variable selection methods can support an advanced analysis, however, to the best of our
knowledge, these methods have not yet been applied to study the chemical differences of various
bitumen types at different ageing states.
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This paper aims to investigate the chemical information from FTIR data that is relevant to the
identification and classification of bitumen types and ageing states. To this end, MW and SA variable
selection methods were used to identify important wavelength regions with respect to bitumen type
and ageing state, and then multivariate PCA, LDA, and PCA-LDA models were applied and compared
with regard to their prediction accuracy.

2. Materials andmethods

2.1. Materials

To study the chemical properties of bitumen from various crude oil sources, and with various pen-
etration grades, polymer modifiers (Styrene–butadiene–styrene (SBS)), and ageing states, 40 binder
samples of eight binder types at four ageing states were prepared, as described below:

• Bitumen obtained from source Q, with penetration grades 40/60, 70/100, and SBS modifier (with
70/100 as base bitumen), denoted as Q460, Q710, and QPMB, respectively;

• Bitumen obtained from source T, with penetration grades 70/100, 100/150, and 160/220, denoted
as T710, T1015, and T1622, respectively;

• Bitumen obtained from source V, with penetration grades 70/100 and SBSmodifier (with 70/100 as
base bitumen), denoted as V710 and VPMB, respectively.

For each bitumen type, a can of fresh binder was heated up to 140°C for 5min and poured into four
containers with a diameter of 140mm. Each container weighed 50.0± 0.5 g. These containers were
then placed in oven at 140°C for 5min to obtain a thin bitumen film of 3.2mm. Four containers were
aged at four states comprising one short-term ageing protocol and one long-term ageing protocol
with three different ageing times. Short-term ageing was simulated by the thin film oven test (TFOT)
at 163°C for five hours, which is referred to as Oven. Long-term aged samples were prepared using a
combination of the TFOT protocol followed by ageing in the Pressure Ageing Vessel (PAV) at 2.1MPa
and 100°C for 20 h (1P), 40 h (2P), and 80 h (4P).

2.2. Testmethods

FTIR spectroscopy was carried out using the Attenuated Total Reflection (ATR) mode. For each sam-
ple, three independent measurements were performed. A wavelength range of 4000–600 cm−1 with
a resolution of 1 cm−1 and 32 scans were applied. The spectral regions of 2400–1900 cm−1 and
4000–3700 cm−1 were manually removed and were not considered for further discriminant analysis
because of the poor quality of the chemical information in these ranges (Weigel & Stephan, 2017).

The chemical information of the FTIR spectra is shown in Figure 1. The mid-infrared FTIR spectral
region of 4000–600 cm−1 is informative of the aliphaticity, aromaticity, heteroatom-based functional-
ity, and oxygenation of bitumen components. Most of the absorption peaks are assigned to different
typesofC–Hvibrations. Thebandbetween3050and3000 cm−1 is assigned to theC–Hstretchingof cis
double bonds and aromatics. The bands ranging from2965 to 2946 cm−1 and from2876 to 2864 cm−1

are representative of the antisymmetric and symmetric C–H stretching vibrations of CH3 groups,
respectively. For CH2 groups, the antisymmetric and symmetric vibration bands are 2946–2880 cm−1

and 2864–2825 cm−1. The aliphatic –CH2 and –CH3 bending vibrations are shown at band areas of
1485–1400 cm−1 and 1400–1357 cm−1. Specifically, the peak at 722 cm−1 indicates the presence of
long alkyl chain groups in saturates, i.e. (CH2)n, where n is larger than 4. The C–H bending vibration of
aromatic groups is at 3100–3000 cm−1, and the bands between at 900–838 cm−1, 838–783 cm−1, and
783–732 cm−1 are attributed to various aromatic C–H in-plane and out-of-plane bending vibrations.
The multiple C = C stretching vibrations are at 1600 cm−1 (Castro & Vazquez, 2009).
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Figure 1. FTIR spectra of neat bitumen (4000–600 cm−1) and SBS-modified bitumen (1100–600 cm−1).

The peaks describing heteroatom-based functional groups are observable in FTIR spectra. The
absorption bands at 3650–3500 cm−1 denote the OH stretching. The bands of 3500–3200 cm−1 show
the intermolecular hydrogen bonds (–OH, –NH) in phenolic, alcoholic, and carboxylic acids. The
regionsbetween1750and1610 cm−1 are attributed to the stretching vibrations of carbonyl functional
groups (including esters, ketones, aldehydes, and carboxylic acids) (Asemani & Rabbani, 2020), and
the peaks at 1310, 1260, 1160, 1080, 1030, and 810 cm−1 are sulfur-containing functional groups, i.e.
sulfoxides, sulfones and sulfate ester (Mirwald et al., 2020a). Both the carbonyl- and sulfur-based func-
tional groups are crucial for the chemical changes of binders due to ageing (Buenrostro-Gonzalez et al.,
2002; Petersen, 2009). Nitrogen-based functional groups are found at ca. 3239 cm−1 (N–H stretching
in amides), 1575 cm−1 (N-H bending in amides), and 1310 cm−1 (C–N bending in pyridine, pyrrole,
and amides) (Asemani & Rabbani, 2020; Gabrienko et al., 2015). The peaks and regions denoting these
functional groups can overlap with other chemicals and have low intensity in FTIR spectra (Asemani &
Rabbani, 2020; Zojaji et al., 2021). Therefore, they are less discussed in literature than the carbon and
sulfur related ones.

The SBS modifier consists of a polybutadiene (PB) segment in the middle with polystyrene (PS)
blocks at the end. The representative FTIR peaks of SBS-modified bitumen are the out-of-plane wag-
gingof =C–H in cis- and trans-alkenes at 670, 910, and966 cm−1, the aromatic C–Hbending in styrene
at 699 cm−1, the aliphatic –[CH2]– at 1450 cm−1, andC–C aromatic rings at ca. 1490 cm−1. The last two
peaks overlap with the peaks of neat bitumen spectra (Kumar et al., 2020). During the ageing process,
polystyrene remains stable while polybutadiene shows a reduction in peak intensities that denotes
polymer degradation due to chain scission.

2.3. Variable selectionmethods

In this work, two variables selection methods were used to optimise the discriminant analysis, i.e. the
MW and the SA methods. The MW selection method allows the selection of a narrower wavelength
region than the full spectral region, which is more representative for the differentiation of observa-
tions. To achieve this, two variables are to be optimised, i.e. the window size and the window range. In
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the presentwork, considering that the area ofmost peaks (Figure 1) iswider than 50 cm−1, thewindow
sizes in the rangeof 50–800 cm−1 (ca. a quarter ofwhole spectra)with a stepof 50 cm−1 were analysed.
For each window size, a series of band intervals were generated by moving the window through the
whole spectra with amoving step of 25 cm−1. The determination of optimal window size andwindow
range was based on the prediction accuracy (the fraction of correctly classified samples).

On the other hand, the SAmethod is a probabilistic global optimisation technique that is primarily
used to find the global optimum in the presence of large numbers of local optima (Kirkpatrick et al.,
1983). This method simulates the annealing of crystals after heating to a temperature to reach its
minimum internal energy in thermodynamics, which depends on the initial temperature and rate of
cooling. Compared to the annealing in materials, simulated annealing uses the objective function of
an optimisation problem instead of the energy of a material. This method starts with a random selec-
tion of a subset of all variables (all wavelengths in a measured FTIR spectra), and then the prediction
accuracy is calculated. Part of the variables in the subset are then exchanged with variables outside of
the subset, and theprediction accuracy is evaluated for a second time. Thenewvariable set is accepted
if the new prediction accuracy is higher than the previous one. When the new set has lower accuracy,
there is still a probability (po) to accept the exchange process that is quantified by

po(�S) = exp
(−�S

T

)
(1)

where �S is the difference between the current and previous prediction accuracies, and T is a pre-
defined cooling factor, which is determined so as to obtain a fair probability; not too large to hinder
convergence or too small to allow for occasional fluctuation. The acceptance of non-improving steps
is to avoid being frozen at a local optimum. The maximum iteration time is also needed to designate
the end of the selection procedure. For the SA method in this work, the number of variables ranging
from 10 to 180 with a step of 10 were compared. The maximum iteration time was defined as 150.
Trial discriminant modelling results with regard to bitumen type and ageing state showed that the
prediction accuracy had limited improvement after 150 iterations.

2.4. Multivariate discriminantmodels

Prior to discriminant analysis, the FTIR spectra data was preprocessed to eliminate unwanted vari-
ations arising from instrumental drifts and differences in sample preparation (Hofko et al., 2017).
The standard normal variate (SNV) was used to correct wavenumber scaling and background effects.
The Savitzky–Golay (SG) was performed for smoothing the mid-infrared spectra and obtaining the
first derivative of the spectra to reduce the overlap of peaks, accentuate small structural differences
between similar spectra, and to avoid issues with baseline shifting (Meléndez et al., 2012).

After preprocessing of spectral dataset, the FTIR data (3700–2400 cm−1 and 1900–900 cm−1) with
a resolution of 1 cm−1 were merged into a resolution of 5 cm−1. Therefore 560 spectra variables were
ultimately considered for multivariate analysis using chemometric methods.

Chemometric methods, such as PCA, PLS, and LDA, are used for sample classification and pattern
recognition, by determining mathematical relationships between a set of descriptive variables (e.g.
chemical spectral information) and qualitative variables (e.g. defined class). PCA is primarily used to
transform datasets with many variables into uncorrelated components to reduce dimensionality. The
scores of target samples are calculated as

Y = X × W (2)

where X is the dataset composed of m samples (divided into l groups) and n variables, W is a n × p
loadingmatrix where p is the number of selected principal components, and Y is am × p scorematrix
describing the projection of X into a p-dimensional feature subspace. To obtainW, the eigenvectors
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and eigenvalues of the covariancematrix of the variables in a spectra dataset are calculated. The eigen-
values are then sorted in descending order and p eigenvectors with largest eigenvalues are selected
to constructW.

LDA is a linear discriminant analysis method which performs supervised dimensionality reduction
by selecting the space directions that achieve a maximum separation among the different classes
according to the Euclidean distance. Therefore, the loading matrix W of LDA minimises the scat-
ter within each class and maximises the scatter among classes. LDA can only project datasets to a
dimensional space lower than the number of classes l.

In the PCA-LDA modelling approach, first the PCA model is performed to reduce the number of
variables and retain as much variance as possible. The PCA-extracted variables are then used to per-
form LDA modelling. In the PCA-LDA model, the loading matrix W is the dot product of the loading
matrix of PCA (n × p) and LDA (p × q), and thus has a size of n × qwhere q is the selected number of
components in LDA.

To analyse the FTIR datasets and differentiate among bitumen types and ageing states, PCA, LDA,
and PCA-LDA models were utilised. Spectra of all bitumen samples (40 binders and with three repli-
cates per sample) were collected for the differentiation of both bitumen type and ageing state. These
spectra were preprocessed to eliminate unwanted information, and then subsets of variables were
obtained from the spectra by means of the MW and SA variable selection methods. The prediction
accuracies of PCA, LDA, and PCA-LDA modelling utilising the selected variables were evaluated. To
quantify the robustness of these models (PCA, LDA and PCA-LDA) and avoid overfitting, a 5-fold
cross-validation method was applied. This method divides the whole dataset into 5 sub-sets, uses
four of them as training datasets, and discriminant results are validated on the remaining data (test-
ing data) to obtain the prediction accuracy. Five different combinations of training and testing data
can be generated, and the ultimate prediction accuracy of the model is the average of the five
loops. The prediction accuracy of the three models was compared and the variable sets with the
best prediction performance were used for the discriminant analysis of bitumen types and ageing
states.

3. Results and discussion

3.1. FTIR results

Figure 2 shows themid-infraredoriginal spectra and their first derivatives for all bitumen samples from
different sources at various ageing states. Compared to the original spectra, the differences in the first
derivatives caused by baseline shifting are removed, as demonstrated by the standard deviation of
original spectra and first derivatives in Figure 2. Large deviations are shown in the band areas of ca.
3000–2800 cm−1 and 1700–700 cm−1. The chemical information of these wavelengths are described
in Figure 1.

Figure 3 depicts the FTIR spectra of all bitumen types at fresh conditions. In Figure 3(a), the dif-
ferences between the neat (pure) and modified bitumen are shown at wavenumbers of ca. 965, 910,
and 695 cm−1. The V710 and VPMB samples show similar spectra since VPMB uses V710 as base bitu-
men; this also holds for the Q460 and Q710 samples and the T710, T1015, and T1622 samples that
are produced from the same crude oil source. The sulfoxide peak of T1622 at 1030 cm−1 is smaller
than that of T1015 and T710, and the peak intensities between 1800 and 1640 cm−1 are also lower for
T1622. This indicates that T1622 has less functional groups. Figure 3(b) depicts the spectral regions of
3100–2700 cm−1 for all bitumen types. All bitumen types show similar peak positions and intensities.
Therefore, advanced methods are needed to differentiate bitumen types based on this range.

The spectra of Q710, T710, and VPMB samples at all ageing states are shown in Figure 4. The peaks
of carbonyl and sulfoxide increase with ageing states for all three bitumen types, while the change in
965 and 695 cm−1 with increasing ageing levels is not obvious.
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Figure 2. (a) Original FTIR spectra and (b) first derivative of FTIR spectra of bitumen; (c) standard deviation of original spectra, and
(d) standard deviation of first derivatives of all bitumen spectra.

Figure 3. FTIR spectra (average of three replicates for each sample) of fresh bitumen from different sources at wavenumbers of (a)
1800–600 cm−1 and (b) 3100–2700 cm−1.

3.2. Evaluation of discriminantmodels and variable selectionmethods

Figure 5 shows the PCA score plots marked based on bitumen type and ageing state. It can be
seen that PCA fails to distinguish bitumen samples with different types or at different ageing states.
Therefore, the supervised classification method, i.e. LDA was used which uses both spectra data and
classifications of samples as input data.

To compare the multivariate analysis results of the peaks and the full spectra using LDA and PCA-
LDA models, the areas of all the peaks described in Figure 1 were calculated using the tangential
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Figure 4. FTIR spectra (averages of three replicates for each sample) of bitumen at different ageing states: (a) Q710 (upper five
spectra) and T710 (lower five spectra), and (b) VPMB samples.

Figure 5. PCA score plots based on (a) bitumen types and (b) ageing states.

integration method (Hofko et al., 2017). The prediction accuracies of LDA and PCA-LDA based on the
peaks and the full spectra are listed in Table 1. The accuracy of predicting the crude oil source is 1.0 for
all the combinations of analysis (namely considering peaks and full spectral data) except for the LDA
modelling using spectral data. The prediction accuracy of the ageing state is lower than the accuracy
of bitumen source and type. This is due to the higher similarities of the FTIR spectra of bitumen at dif-
ferent ageing states compared to bitumen source and type. The performance of LDA and PCA-LDA is
similar for all the analysis cases. Classification models considering only the peak data seem to exhibit
slightly higher prediction accuracy. The LDA and PCA-LDA models using full spectra may take noisy
information into consideration, and thus present a similar or even lower prediction accuracy than the
analysis using peaks. In practice, peak results are composed of informative but incomplete data, while
both chemical information and noise are included in the full spectra. Consequently, the use of variable
selection methods is required to provide variable sets with high data quality.

Both LDA and PCA-LDA models using either spectral data or peak values present a relatively low
accuracy in distinguishingbitumen type and ageing state. To improve thepredictionperformance, the
MW and SA variable selectionmethods were applied and the prediction results are provided in Tables
2 and 3. Using the MW and SA methods increase the prediction accuracy of LDA and PCA-LDA. The
highest accuracy of MW and SA is similar for the prediction of bitumen type and ageing state. The pre-
diction accuracy for bitumen type is 0.75, 0.82, 0.93, and 0.95, and for the classification of ageing state
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Table 1. Prediction accuracy of LDA and PCA-LDA models considering peak data and full spectral data.

Source Type Ageing state

Method Spectra Peak Spectra Peak Spectra Peak

LDA 0.91 (0.09) 1.00 (0.00) 0.75 (0.14) 0.82 (0.08) 0.60 (0.27) 0.65 (0.11)
PCA-LDA 1.00 (0.00) 1.00 (0.00) 0.82 (0.05) 0.83 (0.10) 0.58 (0.24) 0.66 (0.23)

Note: Values in brackets denote the standard deviations of the prediction accuracies for five loops in the 5-fold cross-validation
method.

Table 2. Prediction accuracy values of LDA and PCA-LDA models based on MW variable selection method.

Type Ageing state

Window size (cm−1) LDA PCA-LDA Band range (cm−1) LDA PCA-LDA Band range (cm−1)

50 0.86 0.87 1425–1475 0.66 0.71 1650–1700
100 0.91 0.89 2875–2975 0.69 0.71 1225–1325
150 0.92 0.92 2825–2975 0.72 0.74 1600–1750
200 0.93 0.95 2800–3000 0.72 0.75 1600–1800
250 0.90 0.92 2800–3050 0.76 0.76 900–1150
300 0.90 0.90 2650–2950 0.75 0.80 1050–1350
350 0.89 0.91 2650–3000 0.85 0.80 1000–1350
400 0.89 0.91 975–1375 0.80 0.84 1000–1400
450 0.91 0.91 1000–1450 0.78 0.88 900–1350
500 0.85 0.91 950–1450 0.74 0.84 900–1400
550 0.81 0.92 825–1375 0.67 0.86 750–1300
600 0.86 0.93 825–1425 0.62 0.85 700–1300
650 0.89 0.92 850–1500 0.71 0.83 750–1400
700 0.88 0.93 850–1550 0.72 0.83 700–1400
750 0.88 0.93 650–1400 0.75 0.83 825–1575
800 0.89 0.92 600–1400 0.77 0.83 825–1625

Note: The band range is the interval where the highest accuracy of PCA-LDA is obtained.

Table 3. Prediction accuracy values of LDA and PCA-LDA models based on SA variable selection method.

Type Ageing state Type Ageing state

Variable number LDA PCA-LDA LDA PCA-LDA Variable number LDA PCA-LDA LDA PCA-LDA

10 0.85 0.83 0.74 0.79 100 0.89 0.9 0.70 0.83
20 0.91 0.85 0.80 0.77 110 0.8 0.93 0.64 0.81
30 0.92 0.88 0.74 0.81 120 0.83 0.89 0.53 0.79
40 0.94 0.86 0.86 0.83 130 0.84 0.92 0.66 0.82
50 0.96 0.90 0.8 0.87 140 0.91 0.91 0.70 0.78
60 0.93 0.96 0.78 0.82 150 0.88 0.93 0.66 0.75
70 0.93 0.94 0.79 0.81 160 0.87 0.91 0.64 0.82
80 0.93 0.89 0.71 0.83 170 0.92 0.91 0.70 0.74
90 0.88 0.93 0.80 0.80 180 0.86 0.93 0.68 0.75

is 0.60, 0.58, 0.85, and 0.88, respectively for the LDA, PCA-LDA, MW-LDA, and MW-PCA-LDA methods.
This indicates that the PCA-LDA model has practically better performance than LDA, especially when
coupled with variable selection methods.

For the MW-aided discriminant analysis, the prediction results depend on the selection of window
size, as shown in Table 2. With increasing window size from 50 to 800 cm−1, the accuracy of both LDA
and PCA-LDA models initially increases and then generally decreases. In datasets with window size
smaller than ca. 450 cm−1, the selected variables are sufficient to distinguish all the bitumen samples.
Additional variables in a larger band interval provide limited chemical information and may contain
more noisy and irrelevant variables. As a result, a decrease in the prediction accuracy is achieved. The
same trend also holds for the SA variable selection method.
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Figure 6. Classification of bitumen sources using PCA-LDA model: (a) score plot and (b) normalised loading plot of full spectra for
all 40 samples.

3.3. Classification of bitumen source and type

Figure 6 shows the score and loading plots of bitumen source. Three sources are well distinguished in
the score plots. Principal component 1 (PC1) is able to differentiate among the three crude oil sources.
The differences in source Q and the other two crude oil sources can be explained by principal com-
ponent 2 (PC2). Loadings plots are used to determine the specific band regions accounting for the
variance in PC1 and PC2. According to the loading plots of PC1 and PC2, the aliphatic C–H stretching
and bending in CH2 and CH3, the aromatic C=C stretching and C–H bending, and the sulfoxide func-
tional group are the critical peaks in determining bitumen sources. Particularly, the C–H bending (at
700–900 cm−1) and the sulfoxide functional group (peak at 1030 cm−1) differentiate the sourceQ from
other crude oil sources, as shown in the PC2 loading plot. The PC1 and PC2 loading plots show that
the samples from source Q have similar C=C content (1600 cm−1) with the samples from the V and T
source, while its C–H structure is distinct. Three peaks denoting the aromatic C–H out-of-plane bend-
ing at wavenumbers of 877, 810, and 754 cm−1 are ascribed to the C–H in isolated adjacent hydrogen
aromatic rings, two isolated adjacent hydrogen aromatic rings, and four isolated adjacent hydrogen
aromatic rings, respectively (Asemani & Rabbani, 2020). These peaks indicate that the number of adja-
cent hydrogens and their positions in aromatic rings are different for theQ samples (Castro & Vazquez,
2009). Overall, discriminant analysis shows that the aliphatic and the aromatic content and structure
are of key importance for distinguishing different bitumen sources. However, in Figure 3, the relevant
band ranges show limited differences. In fact, the differences in bitumen sourcesmay not only depend
on the intensities of these peaks but also on their positions, shapes, and the intensity ratio between
these peaks. Therefore, integrated analysis of all peak regions are required, which can be achieved
using discriminant analysis and variable selection methods.

Figure 7 shows the score plots for bitumen type classification. It can be observed that the three
penetration grades from source T are closer to each other compared to the two penetration grades
from Q. This indicates a higher stability and consistency of source T for different penetration grades.

To identify the critical band areas with regard to the identification of bitumen type, MW screening
of the whole band range with a size of 50 cm−1 was performed considering peak ranges that are close
to or slightly larger than 50 cm−1 (note that MW screening is different from the MW variable selec-
tion method; screening simply divides the whole spectrum into intervals with the same size, and all
intervals are used for discriminant analysis). A loading matrix of optimised band variables using the
SA method was also evaluated. As shown in Figure 8, most band areas depicted in Figure 1 show a
relatively good accuracy in differentiating bitumen type in the case of MW. Among them, the aliphatic
C–H stretching in CH2 and CH3 at 3000–2800 cm−1, the aliphatic C–H bending at 1485–1350 cm−1,
the aromatic C–H bending at 900–710 cm−1, the aromatic C=C stretching, and sulfoxide stretching
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Figure 7. Score plots for bitumen type classification using PCA-LDAmodel using the full spectra of all (40) samples: (a) PC1 vs. PC2,
(b) PC1 vs. PC3, (c) PC1 vs. PC4. The spectra variables were obtained from the dataset with the highest prediction accuracy in the
moving-window search results as shown in Table 2.

Figure 8. Classification of bitumen type using PCA-LDAmodel coupled with MW and SA variable selection methods using the full
spectra of all (40) samples. ForMW, thewhole spectrumwas divided into 52 intervals with a size of 50 cm−1. The prediction accuracy
of every band interval was then calculated. For SA, the normalised loading of the 60 variables selected based on highest prediction
accuracy (Table 3) is depicted.

are the peaks with the highest prediction accuracy. Accuracy values up to 0.8 show that the chemical
components represented by these band ranges exhibit important differences in all bitumen samples.
Expect for the peaks shown in Figure 1, it is noted that band area at 1350–1100 cm−1 provides a pre-
diction accuracy of 0.5–0.6. This area is related to heteroatom-atombased functional groups including
alcohols, esters, ethers, sulfones, sulfate esters, and amides (Asemani & Rabbani, 2020).

The SA method presents similar peak positions as revealed by the MWmethod (Figure 8). At band
areas of 1485–1350 cm−1 and 900–710 cm−1, not all characteristic peaks are selected. Instead, only
one to two representative peaks are identified. This indicates that adjacent peaks at these band areas
are highly correlated to each other for the same bitumen type and only one or two peaks in this range
are capable of describing the bitumen type. The similar prediction accuracies (using the MWwindow)
at wavelengths of 1475, 1425, and 1375 cm−1, and at wavelengths of 875, 825, 775, and 725 cm−1 also
indicate their similar functionalities for the classification of bitumen type.

3.4. Classification of bitumen ageing state

The differentiation of ageing state is depicted in Figure 9. According to the score results, fresh bitumen
and oven-aged bitumen aremore difficult to separate compared to other ageing states. This indicates
the smaller chemical differences between fresh and oven-aged bitumen compared to other ageing
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Figure 9. Classification of ageing states: (a) score plot of PCA-LDA model and (b) loading plot of PCA-LDA model. The variables
used here are based on the MW results with the highest prediction accuracy, namely the band range from 1350 to 900 cm−1

(Table 2).

states. The loading plot of PC1 shows that the bands ranging from 1350 to 1300 cm−1 and from 1100
to 1000 cm−1 significantly contribute to the chemical changes during ageing process.

Figure 10 describes the prediction accuracy ofWM-based PCA-LDAmodelling for all band intervals
with a length of 50 cm−1 and the loading plot obtained from SA-based PCA-LDA modelling using full
spectra. Both MW and SA show that the main band ranges related to chemical changes due to age-
ing are at wavenumbers of ca.1800–900 cm−1. This wavenumber region is related to carbon-related
functional groups including esters, ketones, aldehydes, and carboxylic acids (Asemani & Rabbani,
2020), sulfur-containing functional groups such as sulfoxides, sulfones and sulfate ester (Mirwald et al.,
2020a), andnitrogen-based amides. These functional groups are involved in chemical reactions during
thebitumenageingprocess. Among these functional groups, carbonyls and sulfoxides arewidely used
for evaluating bitumen ageing. The remainder carbon-related, sulfur-containing and nitrogen-based
amides functional groups are less investigatedbecauseofdifficulties associatedwithpeakoverlapping
and low intensity. Figure 4 demonstrates that the peaks in the range of 1800–900 cm−1 change with
ageing, but changes are not sufficiently large to be precisely quantified by calculating the intensities
or the tangential areas of these peaks.

For the ageing of SBS-modified bitumen, both SA andMWdetects the peak at 966 cm−1 describing
the =C–Hwagging in trans-alkenes, while the peak at 700 cm−1 is less related to ageing. This finding
indicates that during the ageing of SBS-modified bitumens is mainly associated to the degradation of
polybutadiene due to chain scission (Nivitha et al., 2016).

4. Conclusions

This paper investigates the classification of bitumen source, bitumen type, and ageing state using
principal component analysis (PCA) and linear discriminant analysis (LDA) models. To increase the
efficiency and accuracy of the coupled PCA-LDA analysis, the chemometric methods were combined
with themovingwindow (MW) and the simulated annealing (SA) variable selectionmethods. The anal-
ysis revealed the essential wavenumber band areas that indicate chemical changes responsible for the
identification of bitumen type and ageing state.

The classification analysis results demonstrate that PCA-LDA shows better performance than LDA
when variable selectionmethods are applied. The prediction accuracy values of bitumen source, type,
and ageing state are 1.0, 0.96, and 0.88, indicating a good differentiation of bitumen samples using
the LDA and PCA-LDA when coupled with variable selection methods.
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Figure 10. Classification of ageing states using PCA-LDA model coupled with MW and SA variable selection methods for the full
spectra of all (40) samples. For MW, the whole spectrum was divided into 52 intervals with a size of 50 cm−1. The prediction accu-
racy of each band interval was computed. For SA, the normalised loading of the 50 variables selected based on highest prediction
accuracy (Table 3) is depicted.

Themain chemical components associatedwith the classification of bitumen sources and types are
the aliphatic and aromatic bond vibrations atwavenumbers of ca. 3000–2880 cm−1, 1350–1500 cm−1,
and 750–900 cm−1, aswell as the sulfoxide group. Bands areas atwavenumbers of ca. 1800–900 cm−1,
which reveal the chemical changes of heteroatom-based functional groups, are found to be critical to
the classification of ageing state.

This work shows that chemometric analysis combined with variable selection methods is able
to identify the main functional groups related to the chemical differences of various bitumen types
and ageing states. These chemical information provides new insights into the study of the chemical
composition and ageing mechanisms of bituminous binders.
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