
 
 

Delft University of Technology

Modeling and Efficient Passenger-Oriented Control for Urban Rail Transit Networks

Liu, Xiaoyu; Dabiri, Azita; Wang, Yihui; De Schutter, Bart

DOI
10.1109/TITS.2022.3228340
Publication date
2023
Document Version
Final published version
Published in
IEEE Transactions on Intelligent Transportation Systems

Citation (APA)
Liu, X., Dabiri, A., Wang, Y., & De Schutter, B. (2023). Modeling and Efficient Passenger-Oriented Control
for Urban Rail Transit Networks. IEEE Transactions on Intelligent Transportation Systems, 24(3), 3325-
3338. https://doi.org/10.1109/TITS.2022.3228340

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/TITS.2022.3228340
https://doi.org/10.1109/TITS.2022.3228340


IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 24, NO. 3, MARCH 2023 3325

Modeling and Efficient Passenger-Oriented Control
for Urban Rail Transit Networks

Xiaoyu Liu , Graduate Student Member, IEEE, Azita Dabiri , Yihui Wang ,

and Bart De Schutter , Fellow, IEEE

Abstract— Real-time timetable scheduling is an effective way
to improve passenger satisfaction and to reduce operational costs
in urban rail transit networks. In this paper, a novel passenger-
oriented network model is developed for real-time timetable
scheduling that can model time-dependent passenger origin-
destination demands with consideration of a balanced trade-off
between model accuracy and computation speed. Then, a model
predictive control (MPC) approach is proposed for the timetable
scheduling problem based on the developed model. The resulting
MPC optimization problem is a nonlinear non-convex problem.
In this context, the online computational complexity becomes
the main issue for the real-time feasibility of MPC. To reduce
the online computational complexity, the MPC optimization
problem is therefore reformulated into a mixed-integer linear
programming (MILP) problem. The resulting MILP problem is
exactly equivalent to the original MPC optimization problem
and can be solved very efficiently by existing MILP solvers,
so that we can obtain the solution very fast and realize real-time
timetable scheduling. Numerical experiments based on a part of
Beijing subway network show the effectiveness and efficiency of
the developed model and the MILP-based MPC method.

Index Terms— Model predictive control, urban rail transit,
real-time timetable scheduling, time-dependent passenger origin-
destination demand.

I. INTRODUCTION

URBAN rail transit is recognized as a safe, sustainable,
and high-efficiency transportation modality, and it plays

an increasingly important role in the public transportation
systems. Real-time timetable scheduling is one of the most
effective and efficient approaches to improve passenger sat-
isfaction and to reduce operational costs. With the rapidly
growing passenger demands and the increasing urban rail
network scale, advanced urban rail network models and the
corresponding control approaches are crucial to obtain efficient
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timetables and to improve the performance of transportation
services.

In the research on railway traffic management problems, one
important class of studies pays attention to departure times and
arrival times of trains in the network [1], [2], [3], where the
aim is to improve the performance of daily timetables and
to minimize the effects of delays or cascade delays caused
by disturbances. Another class of studies incorporates rolling
stock circulation [4], train orders [5], conflict resolution [6],
etc., into timetable scheduling problems, which is particularly
helpful when disruptions occur, as it can be used to adjust
the impacted timetable and make the railway network recover
from disruptions as soon as possible. In this paper, we consider
passenger demands when generating timetables online in order
to provide high-quality service for passengers.

There are many studies related to passenger-oriented
timetable scheduling. Several studies handle passenger flows
while including rolling stock circulation [4], [7], speed pro-
files [8], and short-turning [9], but without detailed passen-
ger origin-destination (OD) information. Another direction of
studies addresses passenger OD demands on a single line
[10], [11]. However, the passenger demands in networks are
more complex than those of a single line due to the trans-
fer activities of passengers, and hence, efficient approaches
that consider passenger OD demands in urban rail net-
works are required. Some studies consider passenger OD
demands in railway networks [12] or urban rail networks [13],
[14]; however, the computational complexity of including the
time-dependent passenger demands and the detailed number of
passengers is still a challenging issue. In real life, passenger
demands are typically represented as time-dependent OD
matrices. Nevertheless, most studies on timetable scheduling
problems do not take the detailed time-dependent passenger
OD demands into account, leaving an open gap for further
improving the timetable through closed-loop control while
taking real-time passenger demands into account.

Generally, the timetable scheduling problem is a typical
constrained control problem. Model predictive control (MPC)
is a well-recognized effective method for its ability to handle
multi-variable constrained control problems [15], [16], [17].
The online computational burden of the MPC optimization
problem is the main challenge for real-time timetable schedul-
ing when taking time-dependent passenger OD demands into
account. Passenger flows in railway networks have a certain
similarity with traffic flows in urban road networks. The effi-
cient traffic flow model and fast MPC methods for the urban
road network [18], [19] have inspired us to develop an efficient
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model for passenger-orient railway traffic networks and to
develop efficient MPC methods for the real-time timetable
scheduling problem.

The main contributions of the paper are listed as follows:
1) A novel model for passenger-oriented urban rail traffic

networks is proposed that can explicitly include the
number of passengers in urban rail networks under
time-dependent passenger origin-destination demands.

2) Thanks to the notion of cycle time introduced in this
paper, the time-varying passenger demands are approx-
imated as piecewise constant functions in the model
to achieve a trade-off between model accuracy and
computation speed.

3) An MPC approach is proposed for the real-time
timetable scheduling problem based on the developed
model. The nonlinear MPC optimization problem is
exactly transformed into an MILP problem to reduce
the online computational burden.

The rest of this paper is structured as follows. Section II
summarizes the literature related to this paper. In Section III,
the passenger-oriented urban rail traffic model is proposed.
In Section IV, the MPC controller is designed for the
passenger-oriented timetable scheduling problem based on the
proposed model. In Section V, the MPC optimization problem
is solved with different methods, and an MILP-based approach
is proposed. Section VI provides case studies to illustrate the
accuracy of the model and the efficiency of the developed
method. Finally, conclusions are given in Section VII.

II. STATE OF THE ART

A. Models for Timetable Scheduling

In the literature, many models and methods have been
explored for the timetable scheduling problem. One direction
of research is based on event-driven models where train actions
are defined as different events with predefined rules determin-
ing the orders of events. In [2], the timetable was formulated as
an alternative graph model, and a branch-and-bound algorithm
was proposed to find solutions efficiently. Based on the alter-
native graph model, a tabu search algorithm was proposed to
reroute trains in [20]. In [21], the interaction between train
speeds and headway under the quasi-moving block system
was considered, when rescheduling high-speed trains based
on the alternative graph model. The timetable scheduling
problem can also be formulated through an event-activity
network (a directed graph), which can be used to minimize
the total weighted train delay and the number of canceled
trains [22], to optimize passengers’ routes [9], and to integrate
passenger reassignment and timetable scheduling [12]. Fur-
thermore, max-plus models [23] and switching max-plus-linear
models [1], [24] have also been used to efficiently generate
efficient timetables; as the models make use of properties
from max-plus algebra, the resulting problem can be reduced
efficiently, and less time is required to get the solution.

Another important direction of research is based on time-
driven models, where train actions are formulated with respect
to time constraints. Time-driven models are widely used in
the literature as they can directly include different factors
in railway traffic, such as passenger demands, train speeds,

and energy consumption. In [25], the timetable and the train
speed profile of one urban rail line with several stations were
jointly optimized within a bi-level scheme, where a numerical
approach was proposed to allocate the total time to each
section, given the optimal speed profile of a fixed running time
for each section. In [26], it was indicated that the timetable can
be optimized in real time with a closed-loop control framework
by predicting the traffic conditions through the real-time train
positions and speed profiles information. In [27] and [28], the
timetable and train speed profile were integrally optimized by
a mixed-integer nonlinear programming (MINLP) approach,
a mixed-integer linear programming (MILP) approach, and a
simplified MILP approach considering different train speed
profile options. In [5], the rescheduling of large-scale railway
traffic networks was formulated as a bi-level MILP problem,
and an MPC scheme was applied to handle disruptions and
disturbances in real time.

B. Passenger-Oriented Timetable Scheduling

In recent decades, many studies have focused on
passenger-oriented timetable scheduling, where passenger
demands are explicitly taken into account to provide
high-quality services for passengers. In [29], a nonlinear
integer programming model was proposed to optimize arrival
and departure times of trains with the objective of mini-
mizing operational costs and passenger waiting times. In
[30], the train speed and stop-skipping were incorporated
into the timetable scheduling problem to minimize the energy
consumption and the passenger travel time, and a bi-level
approach was proposed to solve the resulting MINLP problem.
Furthermore, an iterative convex programming approach was
developed to improve the computational speed in [10]. In [31],
an MINLP problem was formulated to minimize passenger
waiting time with consideration of time-varying passenger
demands. In [11], a Lagrangian relaxation-based heuristic
timetable scheduling algorithm was proposed to minimize
passenger waiting times and operational costs by using a
space-time network. An integer linear programming problem
was formulated to jointly optimize the timetable and passen-
ger flow control strategies for an over-saturated railway line
in [32]; then, a hybrid algorithm was developed to solve the
resulting optimization problem. However, most research only
focuses on the timetable scheduling of a single line, and hence
leaving an open gap for improving the operational performance
of urban rail transit networks.

Passenger-oriented timetable scheduling of urban rail net-
works is more challenging than that of a single line as
different lines will interact with each other through the transfer
passengers. An urban rail network including time-dependent
passenger OD demands was modeled as a detailed event-driven
model in [13], and then the passenger travel time and the
train energy consumption were collaboratively optimized.
Furthermore, the event-driven model was extended as a
disruption management model for an integrated disruption
management problem with the objective of recovering the
impacted timetable and minimizing passenger waiting times
in [33]. In [34], an MINLP model was proposed to optimize
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line frequencies and capacities in railway rapid transit net-
works; the objective of that paper was to minimize opera-
tional costs and passenger trip time and transfer time given
a certain OD matrix. In [14], feasible passengers routes
in the urban rail network were defined through a directed
graph, so that the passenger OD demands and the trans-
fer actions can be included explicitly; then, a decomposed
adaptive large-neighborhood search method was proposed to
minimize the number of waiting passengers in the busiest
station. However, incorporating time-dependent passenger OD
demands in the urban rail network timetable scheduling prob-
lem is still a challenging task because of the network’s
size, high non-linearity of the problem, and the large com-
putational burden. Accurate models for urban rail networks
that include time-dependent passenger OD demands and fast
solution methods for passenger-oriented timetable scheduling
are urgently needed for real-time timetable scheduling.

C. MPC for Railway Traffic Management

As an efficient real-time control approach for constrained
systems, MPC has been applied in railway timetable schedul-
ing problems to optimize and adjust the timetable in real
time. In [1], MPC was used for railway timetable scheduling
based on the switching max-plus-linear models to minimize
train delays and operational costs of breaking connections or
changing the order of trains. Furthermore, the switching max-
plus-linear model-based timetable scheduling problem was
solved in a distributed manner to handle large-scale cases [24].
In [35], an MPC approach was proposed to cope with train
rescheduling problems in the complex station areas. MPC was
also used in railway traffic management in case of disruptions,
and the MPC optimization problem was transformed into
an MILP problem to reduce the computational burden [5].
A hierarchical MPC approach was proposed for real-time high-
speed railway delay management and train control problem,
where the train delay was minimized at the upper level
while the detailed train speed control was conducted at the
lower level [36]. The optimization problem in both levels
of the hierarchical MPC approach were also formulated as
MILP problems to increase the online feasibility. The existing
literature indicates that the online computational burden of
the MPC optimization problem must be reduced for real-time
scheduling of large-scale railway networks. The problem is
even more challenging when taking time-dependent passenger
OD demands into account.

This paper proposes a novel timetable scheduling model
which can take time-dependent passenger OD demands into
account. An MPC approach is then proposed for real-time
timetable scheduling. Based on the proposed model the MPC
optimization problem can be easily transformed into an MILP
problem, to overcome computational complexity issues.

III. PASSENGER-ORIENTED REAL-TIME TIMETABLE

SCHEDULING MODEL

In this section, we propose a novel model for passenger-
oriented real-time timetable scheduling in urban rail traffic

networks. Some general explanations and assumptions adopted
for the model formulation throughout this paper are as follows:

1) Since the number of passengers is very large, the approx-
imation error of treating it as a real-valued variable is
relatively small. Hence, variables indicating the number
of passengers are regarded as real-valued variables.

2) The paper focuses on optimizing arrival and departure
times of trains, and hence, short-turning, stop-skipping,
and rolling stock circulation are not considered.

3) A platform can only accommodate one train at a time,
and the order of trains at a platform is fixed.

The notations used in this paper are introduced in
Section III-A. Then, the simplified passenger flow model is
proposed in Section III-B. In Section III-C, the train operation
model related to the simplified passenger flow model is given.

A. Notations

Sets and Indices

j Index of stations, j ∈ S, S is the set of stations
p Index of platforms
k p Index of cycles at platform p; also indicating the

train visiting platform p at cycle k p

spla (p) Successor platform of platform p
ppla (p) Predecessor platform of platform p

Input Parameters

cp(k p) Length of cycle k p at platform p
L p(k p) Starting time of cycle k p at platform p
rmin

p (k p) Minimum running time of train from plat-
form p to its successor platform at cycle kp

rmax
p (k p) Maximum running time of train from plat-

form p to its successor platform at cycle kp

τmin
p Minimum dwell time of train at platform p

hmin
p Minimum headway of platform p

λstation
j,m (k p) Passenger arrival rate at station j with sta-

tion m as their destination at cycle k p

β j,p,m Splitting rate of passengers at station j who
are assigned to platform p with destination
m as their destination

β train
p,q,m Transfer rate of passengers from platform

p to platform q with station m as their
destination

θ trans
p,q Average walking time for passengers walk-

ing from platform p to platform q
θduration

p,q Duration time for the transfer process from
platform p to platform q

Decision variables

ap(k p) Arrival time of train at cycle k p of platform
p

dp(k p) Departure time of train at cycle kp of
platform p

Output variables

rp(k p) Running time of train from platform p to
its successor platform spla (p) in cycle k p
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τp(k p) Dwell time of train at cycle kp of plat-
form p

λp,m(k p) Passenger arrival rate at platform p with
station m as their destination at cycle kp

n p,m(k p) Number of passengers with station m as
their destination waiting at platform p
immediately after time k pcp

narrive,new
p,m (k p) Number of passengers outside the urban

rail network with destination m arriving at
platform p at cycle k p

narrive,trans
p,m (k p) Number of transfer passengers with des-

tination m arriving at platform p at
cycle k p

nbefore
p,m (k p) Number of passengers at platform p with

station m as their destination immediately
before the departure of train kp

nboard
p,m (k p) Number of passengers with station m as

their destination boarding on the train at
cycle k p

ndepart
p,m (k p) Number of passengers on train kp depart-

ing from platform p with station m as their
destination

nafter
p,m (k p) Number of passengers at platform p with

station m as their destination immediately
after the departure of train kp

ntrans
p,q,m(k p) Number of passengers alighting from train

k p of platform p who want to transfer
to platform q with station m as their
destination

nremain
p,m (k p) Number of passengers who continue to

stay on train k p after the alighting process

nalight
p,m (k p) Number of passengers with station m as

their destination alighting from train k p at
platform p

B. Simplified Passenger Flow Model

The passenger origin-destination demands can be described
as a time-varying matrix, and the element of the matrix is
denoted as λstation

j,m (t), with j and m indicating the origin
and destination stations, respectively. Passengers usually care
about whether there are regular departures at a platform so that
they can plan their journey easily and do not have to wait too
long for the next train if they missed the current train. A train
only visits a platform at a certain time period, and the passen-
ger arrival rate generally does not change significantly during
a short time period. Therefore, at each platform, we discretize
the planning time window into several time intervals of equal
length, where every time interval includes one and only one
arrival-departure pair of a train at the same platform so as to
provide reliable service for passengers. In addition, we assume
the passenger arrival rate is constant in each time interval.
In the sequel, we refer to these time intervals as cycles. The
cycle time for a given platform is then the length of the cycle

Fig. 1. Illustration of approximating passenger arrival rate.

for that platform.1 The cycle times for platform p and platform
q , which are represented by cp(k p) and cq(k p) respectively,
can be different from each other.

The passenger arrival rate λ
original
p,m (t) at platform p with

station m as destination is determined by

λ
original
p,m (t) = β j,p,mλstation

j,m (t) ,∀p ∈ Pj ,∀m ∈ S, (1)

where Pj defines a set of platforms at station j ; S is the set of
stations in the urban rail network; β j,p,m is the splitting rate
of passengers at station j who are assigned to platform p with
destination m as their destination,

∑
p∈Pj

β j,p,m = 1,∀m ∈ S,

and β j,p,m can be obtained based on the historical data.
Fig. 1 illustrates the procedure of approximating the original

passenger arrival rate for the simplified passenger flow model,
where k p represents the index of the cycle at platform p, and
the approximated arrival rate can be calculated by:

λp,m(k p) = 1

cp(k p)

∫ L p(kp)+cp(kp)

L p(kp)
λ

original
p,m (t)dt, (2)

where λ
original
p,m (t) represents the original passenger arrival rate,

L p(k p) represents the starting time of cycle kp , and cp(k p) is
the length of cycle kp . By introducing the cycle time, the com-
putational efficiency for calculating passenger-related factors
can be significantly improved. Note that the approximation
can be conducted offline to reduce the online computational
burden.

According to the definition of cycle, only one train would
visit platform p at cycle kp; therefore, in this paper, for the

1The cycle time at a platform can be equal to the expected
departure-departure headway of the basic timetable. Then, we can adjust
departure and arrival times to further improve the basic timetable based
on the detailed passenger demands. We can also generate the expected
departure-departure headway by a higher-level controller; for more details,
we refer to our recent work [37].
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sake of simplification, we use “train k p” to represent the train
visiting platform p at cycle kp.

At each cycle, the number of passengers waiting at the plat-
form is updated as some passengers have boarded on a train
and departed from the platform. The number of passengers
waiting at platform p is updated at every cycle, according
to the new arriving passengers narrive,new

p,m (k p) from outside the
station, the transfer passengers narrive,trans

p,m (k p) from other lines,
and the boarding passengers nboard

p,m (k p), by

n p,m(k p + 1) = n p,m(k p) + narrive,new
p,m (k p)

+ narrive,trans
p,m (k p) − nboard

p,m (k p), (3)

where n p,m(k p) denotes the number of passengers with station
m as their destination waiting at platform p at the beginning
of cycle k p .

As depicted in Fig. 1, in each cycle, the passenger arrival
rate is regarded as constant, and the number of new pas-
sengers narrive,new

p,m (k p) arriving at platform p with destination
m between kp and k p + 1 can be calculated based on the
passenger arrival rate:

narrive,new
p,m (k p) = cp(k p)λp,m(k p), (4)

where λp,m(k p) is the passenger arrival rate at platform p with
station m as their destination at cycle kp .

Define θ trans
q,p as the average walking time for passengers

walking from platform q to platform p, ap(k p) and dp(k p)
as the arriving and departure times of train kp at platform p,
respectively. Then, we introduce a binary variable ykq ,q,kp,p

to represent the connection of trains at a transfer station:

ykq ,q,kp ,p =
{

1, if dp(k p−1) < aq(kq) + θ trans
q,p ≤ dp(k p);

0, otherwise,
(5)

with ykq ,q,kp ,p = 1 denoting that passengers from train
kq of platform q connect to train k p of platform p, i.e.,
passengers from train kq at platform q could arrive at platform
p between the departure of train kp − 1 and k p; otherwise,
when ykq ,q,kp,p = 0, the passengers from train kq at platform
q cannot connect to train kp at platform p.

With ykq ,q,kp ,p defined as in (5), the number of passengers
narrive,trans

p,m (k p) transferring from other platforms of station j
and arriving at platform p before the departure of train kp can
be calculated by

narrive,trans
p,m (k p) =

∑
q∈plat(p)

∑
kq ∈Nq

ykq ,q,kp ,pntrans
q,p,m(kq), (6)

where plat(p) is the set of the platforms at the same station
as platform p, and Nq collects the indices of all the cycles of
platform q .

Then, the number of passengers nbefore
p,m (k p) at platform p

with station m as their destination immediately before the
departure of train kp can be computed by

nbefore
p,m (k p) = n p,m(k p) + (dp(k p) − L p(k p))λp,m(k p)

+ narrive,trans
p,m (k p), (7)

Then, the total number of passengers nbefore
p (k p) waiting at

platform p immediately before the departure of train kp is

nbefore
p (k p) =

∑
m∈S

nbefore
p,m (k p). (8)

The total number of passengers nboard
p (k p) boarding the train

at cycle kp can be computed by

nboard
p (k p) = min

(
Cmax,kp − nremain

p (k p), nbefore
p (k p)

)
, (9)

where Cmax,kp represents the capacity of train k p at platform
p, and nremain

p (k p) is the number of passengers remaining on
train kp after the alighting process at platform p.

Therefore, the number of passengers nafter
p (k p), who cannot

board train kp , waiting at platform p immediately after train
k p departs can be computed by

nafter
p (k p) = nbefore

p (k p) − nboard
p (k p). (10)

If we define

λp(k p) =
∑
m∈S

λp,m(k p), (11)

then the number of passengers who cannot board train kp at
platform p with different destinations can be calculated by

nafter
p,m (k p) = nafter

p (k p)
λp,m(k p)

λp(k p)
, (12)

which means the proportion of waiting passengers with
different destinations, who cannot board train kp at plat-
form p, is assumed not to change significantly compared with
the proportion of passengers arriving in the current cycle.
As λp,m(k p) is defined as a known constant, nafter

p,m (k p) can
be computed linearly.

Then, the number of boarding passengers nboard
p,m (k p) with

destination m can be computed by

nboard
p,m (k p) = nbefore

p,m (k p) − nafter
p,m (k p). (13)

When train kp arrives at platform p, the number of passen-
gers ntrans

p,q,m(k p) with station m as their destination on train kp

transferring from platform p to platform q can be calculated
by

ntrans
p,q,m(k p) = β train

p,q,m ndepart
ppla(p),m

(k p),∀q ∈ plat(p)/{p}, (14)

where ndepart
ppla(p),m

(k p) denotes the number of passengers with
destination m on train k p immediately after the train departure
from the predecessor platform ppla (p) of platform p, and
β train

p,q,m is the transfer rate of passengers on train kp, trans-
ferring from platform p to q ∈ plat(p) with destination m
immediately after arrival at platform p, and∑

q∈plat(p)

β train
p,q,m = 1. (15)

The transfer rate of passengers can be obtained based on the
historical data or by a shortest path algorithm, e.g., Yen’s
algorithm [38], assuming that passengers select the platform
corresponding to the shortest path to reach their destination.

Remark 2.1: It is worth noting that β train
p,p,m denotes the

proportion of passengers with m as their destination remaining
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on train k p at platform p after the alighting process, i.e.,
no transfer behavior is needed; thus, we have ntrans

p,p,m(k p) = 0.
In particular, If the arrival station is not a transfer station, then
β train

p,p,m = 1.

Remark 2.2: Define sta(p) as the station corresponding to
platform p. For passengers whose destination is the arrival
station, i.e., j = sta(p), we set β train

p,p, j = 1 and β train
p,q, j =

0,∀q ∈ plat(p)/{p}, which means passengers who have
arrived at their destination will directly exit the station j
from platform p without any transfer behavior, and we have
ntrans

p,q, j (k p) = 0, ∀q ∈ plat(p).
The number of passengers nremain

p,m (k p) remaining on the train
at platform p in cycle kp with destination m after the alighting
process can be calculated by

nremain
p,m (k p) = β train

p,p,m ndepart
ppla(p),m

(k p),∀m ∈ S/{sta(p)}. (16)

In other words, nremain
p,m (k p) represents the number of pas-

sengers who continue to stay on train kp after the alighting
process. In particular, passengers, who have arrived at their
destination station when train kp arrives at platform p, will
alight from the train directly, i.e., no passengers with desti-
nation sta(p) will remain on train kp after arriving at station
sta(p), nremain

p,sta(p)(k p) = 0.
Having (16), the total number of passengers nremain

p (k p)
remaining on train kp at platform p after the alighting process
can be calculated by

nremain
p (k p) =

∑
m∈S

nremain
p,m (k p). (17)

Then, the number of passengers ndepart
p,m (k p) with station m as

their destination, who will depart from platform p at time kp,
can be computed by

ndepart
p,m (k p) = nremain

p,m (k p) + nboard
p,m (k p). (18)

The total number of passengers ndepart
p (k p), who will depart

from platform p at time k p, can be calculated by

ndepart
p (k p) =

∑
m∈S

ndepart
p,m (k p). (19)

The total number of passengers nalight
p (k p) alighting from

train k p at platform p can be calculated by

nalight
p (k p) = ndepart

ppla(p)
(k p) − nremain

p (k p), (20)

where ndepart
ppla(p)

(k p) denotes the total number of passengers on

board of train k p departing from the predecessor platform
ppla (p) of platform p.

C. Train Operation Model

In this paper, we assume the order of trains at each platform
is fixed, and the aim is to generate departure and arrival
times by incorporating the detailed time-dependent passenger
OD demands of the urban rail network to further improve
passenger satisfaction. In this context, for a general urban rail
transit timetable scheduling problem, the operation of trains
can be described by arrival times, dwell times, departure times,

and running times. These variables interact with each other by
several constraints to guarantee the conflict-free and efficient
traffic operation.

Based on the definition of the cycle, we can generate
the lower and upper bounds of each cycle according to the
expected departure-departure headway. Then, the arrival and
departure times of train k p at platform p should satisfy

L p(k p) < ap(k p) < dp(k p) ≤ L p(k p) + cp(k p), (21)

where L p(k p) is the starting time of cycle k p at platform
p, and cp(k p) is the length of cycle k p; ap(k p) and dp(k p)
represent the arrival time and the departure time of train kp at
platform p, respectively.

The dwell time τp(k p) of train k p at platform p can be
calculated by

τp(k p) = dp(k p) − ap(k p), (22)

and τp(k p) should be constrained by

τp(k p) ≥ τmin
p , (23)

where τmin
p is the minimum dwell time.

Then, the arrival time of train kp at platform p is also
constrained by the departure-arrival headway constraint

ap(k p) ≥ dp(k p−1) + hmin
p , (24)

where dp(k p − 1) is the departure time of train (kp − 1) at
platform p, and hmin

p is the minimum headway between two
successive trains at platform p.

The arrival time of train kp at the successor platform spla (p)
of platform p is

aspla(p)(k p) = dp(k p) + rp(k p), (25)

where rp(k p) represents the running time of train kp from plat-
form p to platform spla (p), and rp(k p) should be constrained
by

rmin
p (k p) ≤ rp(k p) ≤ rmax

p (k p), (26)

where rmax
p (k p) and rmin

p (k p) are maximal and minimal run-
ning time of train kp from platform p to spla (p), respectively.
The minimum running time is limited by the condition of the
line, speed limit, and train characteristics, and the maximum
running time is determined by the operational requirement.

IV. MODEL PREDICTIVE CONTROL FOR

PASSENGER-ORIENTED TIMETABLE SCHEDULING

Model predictive control is a control method that repeatedly
solves finite-horizon optimization problems and implements
optimized decisions in a moving horizon manner [39]. In the
MPC scheme, the current control action is obtained by solving
an optimization problem over a finite-horizon window. The
optimization yields a control sequence, but only the first
control action is implemented in the real system. At the next
control step, the optimization is conducted again using updated
state information and with a shifted finite-horizon window.
This moving horizon optimization procedure is repeated until
the end of the overall control period.
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In this paper, the control time interval of each platform
is defined as the cycle time of the platform. Given the train
is assumed to run from the starting platform to the terminal
platform of a line, the cycle times of all platforms of a line are
identical. As cycle times can be different for different lines,
we introduce control time interval Tctrl, and the control time
step is indexed as κ . The number of cycles included in one
time step for different platforms can be different. The MPC
method can be described by the following three elements:

1) Prediction model.
The passenger-oriented urban rail traffic network model
developed in Section III can be used as the prediction
model for the MPC controller. The model is a nonlinear
model, and, for each cycle, it can be represented as
follows:
n p,m(k p + 1) = f

(
n p,m(k p), ntrans

q,p,m(kq), gp(k p)
)

,

(27)

where n p,m(k p) is the number of passengers waiting at
platform p with station m as their destination at the
beginning of cycle k p; ntrans

q,p,m(k p) represents the number
of passengers transferring from other platforms (denotes
as q) at the same station; gp(k p) collects the decision
variables including arrival and departure times of trains
at cycle k p of platform p.

2) Optimization problem.
The waiting time of passengers at the platform is an
important criterion to evaluate passenger satisfaction.
Furthermore, to further improve passenger satisfaction
a penalty factor is added for passengers who cannot
board a train because of the train capacity. Hence, in this
paper, an objective function of the following form is
considered:
J =

∑
p∈P

∑
kp∈Np(κ)

(
nbefore

p (k p)cp(k p)+ξnafter
p (k p)cp(k p)

)
,

(28)

where Np(κ) is the set indices of trains visiting platform
p within the prediction window starting at control step
κ , P denotes the set of platforms of the considered urban
rail network; nbefore

p (k p) and nafter
p (k p) represent the

number of passengers waiting at platform p immediately
before the departure of train kp and immediately after
the departure of train kp , respectively, and ξ is a non-
negative weight.
Generally speaking, passengers waiting at a platform
consist of two classes of passengers, i.e., passengers who
cannot board the previous train and the new arrival pas-
sengers. For all the passengers waiting at the platform,
the largest waiting time is the time interval between two
adjacent departure times, therefore the first term in (28)
is used as the cost function of total passenger waiting
time, which, loosely speaking, provides an upper bound
of the passenger waiting time. The passengers who can-
not board the train have to stay at the platform and wait
for the next train, so a penalty factor nafter

p (k p)cp(k p) is

Fig. 2. MPC for passenger-oriented timetable scheduling.

employed to make the trains carry as many passengers
as possible.
Therefore, the optimization problem for MPC in each
control step is

⎧⎨
⎩

min
g(κ)

J = ∑
p∈P

∑
kp∈Np(κ)

(
nbefore

p (k p)+ξnafter
p (k p)

)
cp(k p),

s.t. (1) − (14) , (16) − (26) ,

(29)

where g(κ) collects all decision variables gp(k p |κ ) for
all platform p and all kp ∈ N p(κ).

3) Moving horizon optimization.
Solving the optimization problem (29) results in a
sequence of decision variables represented by g(κ), and
only the decision variables at the current time step are
implemented to the real-life urban rail network. At the
next control time step κ + 1, the time window is shifted
for one step, and the optimization problem is solved
again based on the new information collected from the
urban rail network. The procedure of the closed-loop
control scheme is shown in Fig. 2.

As the length of cycle time at a platform can be equal to
the departure headway of a basic timetable, cycle times that
can ensure constraint satisfaction of problem (29) can always
be found, i.e., a feasible solution is always available if we
use the basic timetable. Therefore, the recursive feasibility of
MPC can be ensured.

V. SOLUTION APPROACHES

The resulting optimization problem in Section IV is a
nonlinear non-convex problem because of (5), (6), and (9). The
problem can be solved by nonlinear optimization approaches,
e.g., sequential quadratic programming approach. In order
to increase the online feasibility of the problem, the MPC
optimization problem is formulated as a mixed-integer linear
programming (MILP) problem and a simplified mixed-integer
linear programming (SMILP) problem, which can be solved
efficiently by existing solvers.
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A. Sequential Quadratic Programming Approach

Sequential quadratic programming (SQP) approach is a
gradient-based nonlinear programming approach, which is
widely used in many fields to solve nonlinear optimization
problems [40]. In SQP, a sequence of quadratic programming
problems is solved to get descent directions of the original
problem. The objective function and the constraints of the
optimization problem should be continuously differentiable
when applying the SQP algorithm. In this paper, the optimiza-
tion problem has some points of non-smoothness due to the
min function in (9). As the optimal solution is generally not
obtained at the points of non-smoothness, the SQP approach
can jump over these points. Since the SQP algorithm might
obtain a local optimal solution when handling non-convex
problems, multi-start SQP is used to improve the solution
quality of SQP in this paper.

B. Mixed-Integer Linear Programming Approach

In this section, the MPC optimization problem is trans-
formed into an MILP problem, by introducing auxiliary binary
variables to handle the nonlinear terms in (5), (6), and (9).

In order to transform (5) into a mixed logical dynami-
cal (MLD) system [41], the time checking binary variable
xkq ,q,kp ,p is introduced as

xkq ,q,kp,p =
{

1, if aq(kq) + θ trans
q,p ≤ dp(k p);

0, otherwise,
(30)

where aq(kq) is the arrival time of train kq at platform q ,
θ trans

q,p represents the average transfer time from platform q to

platform p, and dp(k p) denotes departure time of train kp at
platform p.

We define Mt and mt as the maximum and minimum value
of the departure (arrival) time, which are finite as we consider
problems in a finite time window.2 Then, (30) is equivalent to{

aq(kq) + θ trans
q,p −dp(k p) ≤ (

1 − xkq ,q,kp,p
) (

Mt −dp(k p)
) ;

aq(kq) + θ trans
q,p −dp(k p) ≥ ε + xkq ,q,kp,p

(
mt−dp(k p)−ε

)
,

(31)

where ε is a sufficient small number (generally the machine
precision) [41]. Define

ykq ,q,kp ,p = xkq ,q,kp,p − xkq ,q,kp−1,p. (32)

Then, based on Lemma 5.1, (5) is equivalent to (31) and (32).
Lemma 5.1: Given ykq ,q,kp,p = xkq ,q,kp ,p − xkq ,q,kp−1,p,

dp(k p−1) < aq(kq) + θ trans
q,p ≤ dp(k p) holds if and only if

ykq ,q,kp ,p = 1; otherwise, ykq ,q,kp,p = 0.
Proof: From the definition of xkq ,q,kp,p in (30), we have

xkq ,q,kp ,p ≥ xkq ,q,kp−1,p. Then, we have the following three
situations based on the value of aq(kq) + θ trans

q,p :

if aq(kq) + θ trans
q,p > dp(k p), we have xkq ,q,kp,p = 0 and

xkq ,q,kp−1,p = 0; then, ykq ,q,kp ,p = 0;
if dp(k p−1) < aq(kq) + θ trans

q,p ≤ dp(k p), we have
xkq ,q,kp ,p = 1 and xkq ,q,kp−1,p = 0; then, ykq ,q,kp ,p = 1;

if aq(kq) + θ trans
q,p ≤ dp(k p−1), we have xkq ,q,kp,p = 1 and

xkq ,q,kp−1,p = 1; then, ykq ,q,kp,p = 0. �
2The value of Mt can be the length of the planning time window, i.e.,

Mt = tend , and mt can be equal to 0.

The min function in (9) can be handled by introducing the
auxiliary binary variable δboard

kp,p and the auxiliary real variable
fkp ,p . Define

fkp ,p =
(

Cmax,kp − nremain
p (k p)

)
− nbefore

p (k p), (33)

Then, the expression δboard
kp,p = 1 ⇔ fkp ,p ≤ 0 is equivalent to

⎧⎨
⎩

fkp ,p ≤ Mp

(
1 − δboard

kp,p

)
,

fkp ,p ≥ ε + (
mp − ε

)
δboard

kp ,p ,
(34)

where Mp and mp are the maximum value and the minimum
value of fkp ,p , respectively.3

Having (34), the expression (9) is equivalent to

nboard
p (k p) = δboard

kp ,p

(
Cmax,kp − nremain

p (k p)
)

+
(

1 − δboard
kp ,p

)
nbefore

p (k p). (35)

After introducing auxiliary variables in (30) and (34),
we still have nonlinear terms, i.e., the product of binary
variables and real variables in (6), (31), and (35). The product
of binary variables and real variables can be transformed into
linear inequalities by introducing some auxiliary variables by
using the method presented in [41] and [42]. The details of
the transformation are given in Appendix A.

In summary, we introduce three equivalence transforma-
tions, i.e., (5) with (31)-(32), (9) with (33)-(35), and (37)
with (38) in Appendix A. The proof for “(5) is equivalent
to (31)-(32)” is provided in Lemma 5.1. The equivalence of
“(9) and (33)-(35)” and “(37) and (38)” can be found in [41]
and [42]. Based on the above transformations, we can finally
obtain an MILP problem that is exactly equivalent to the
original optimization problem.

C. Simplified Mixed-Integer Linear Programming Approach

In Section V-B, several auxiliary variables and constraints
are introduced to handle the train capacity constraints in (9)
which calculates the possible number of boarding passengers
at a platform. These constraints play an important role in
accurately calculating the number of passengers in peak hours,
when there are a large number of passengers waiting at
platforms. During the peak hours, not all passengers can board
the current train, and, instead, some passengers must wait
for the next train at the platform. However, in off-peak hours,
the number of passengers waiting at the platform is relatively
small, and almost all passengers can board the current train
upon their arrival. In this case, we can disregard the train
capacity constraints in (9), and hence the constraints (33), (34),
and (35) are not required. Therefore, we can further reduce the
computational burden.

With this simplification, the number of passengers who can
board the train at cycle kp is equal to the number of waiting
passengers, i.e., (9) will be replaced with:

nboard
p (k p) = nbefore

p (k p). (36)

3The value of Mp can be a very large value related to train capacities, i.e.,
Mp=10 · Cmax,kp , and mt can be a small value, i.e., mp=-10 · Cmax,kp .
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The simplification results in a simplified mixed-integer linear
programming (SMILP) problem.

As mentioned in Section V-A, the SQP algorithm might
get stuck in a local optimal solution when handling non-
convex problems. In this context, several starting points are
required for SQP, so as to improve the solution quality. The
simplified problem is solved by disregarding train capacity
constraints, and other constraints are identical with the original
MILP problem. Therefore, instead of doing multi-start SQP,
the SMILP formulation can be used to get an initial solution;
then, this initial solution is employed as the starting point of
SQP for the original nonlinear optimization problem.

VI. CASE STUDY

In this section, simulations are performed to evaluate the
effectiveness of the developed passenger-oriented urban rail
traffic model and the MILP-based MPC approach. We first
simulate the urban rail network using the proposed model and
the model in [13] and [33] based on the real-life operation data
of part of the Beijing metro network, and simulation results
are used to test the accuracy of the proposed model. Then,
numerical experiments are designed to test the performance of
the solution approaches and the corresponding MPC controller.

A. Assessment of the Proposed Model

To the best of the authors’ knowledge, there is no commonly
recognized accurate model for passenger-oriented urban rail
networks, and the most accurate model we found in the
literature is the model in [13] and [33]. Therefore, in this
paper, we define the model in [13] and [33] as an “accurate
model” to simulate the real-life urban network and to test the
accuracy of our model.

The real-life network we use is shown in Fig. 3. The
network contains two bi-directional lines that consist of 19 sta-
tions and 40 platforms. The passenger OD data used for the
case study are obtained based on the real-life entering and
exiting passenger flows of automatic fare collection systems.
The passenger flows over each half-hour are recorded and
stored. In the real-life data used for the case study, passenger
arrival rates in different stations have different dynamics. The
lines we use contains both normal and over-saturated lines. For
the simulation, we use the real-life passenger data from the
Beijing Subway, which is one of the busiest subway systems
in the world. Line 9 is one of the busiest lines in the Beijing
subway network. In order to show the effectiveness of the
developed method in severely congested situations, we select
the data corresponding to Line 9 during the morning peak
hours from 7:00 to 9:00 for the simulation.

We use MATLAB (R2019b) for simulations on a computer
with an Intel Xeon W-2223 CPU and 8GB RAM. The main
parameters associated with the simulation are listed in Table I.
In the developed model, we use the departure-departure head-
way as the cycle time, which is equal to the sum of the dwell
time and the departure-arrival headway of the basic timetable.
In the developed model, variables related to the number of
passengers for all platforms are updated every cycle.

Fig. 3. Real-life network of 2 lines from Beijing subway.

TABLE I

PARAMETERS FOR SIMULATION OF LINE 9 AND LINE 14

At each platform, the comparisons are conducted with three
key values in the model, i.e., the accumulated number of
passengers boarding the trains, the number of departing pas-
sengers, and the accumulated number of passengers that cannot
board. The number of boarding passengers and departing
passengers can reflect the utility of trains, which are related
to operational costs, as the train operation company wants to
transport as many passengers as possible with the available
trains. The number of passengers who cannot board is related
to passenger satisfaction, because if passengers cannot board
the current train upon their arrival, they have to wait for the
next train.

We conduct simulations using both the accurate model and
the developed model. For each line and each platform, we get
the accumulated number of boarding passengers, the number
of departing passengers, and the accumulated number of
passengers that cannot board. The computation times needed
to simulate the accurate model and the proposed model for the
given period are 1.17 s and 0.24 s, respectively. The platform
with the largest deviation between the proposed model and
the accurate model is selected to illustrate the accuracy of the
proposed model. The deviations are shown in Table II.

For the accumulated number of boarding passengers,
Line 9 Station LLQ (up direction platform) and Line 14 Station
DWY (down direction platform) have the largest deviation,
with an error of 8.14% and 0.58%, respectively. The simula-
tion results of the platforms are also shown in Fig. 4.
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TABLE II

THE LARGEST DEVIATION FOR EACH LINE

Fig. 4. Accumulated number of boarding passengers at platforms.

Fig. 5. Number of departing passengers at each time step.

The largest deviation of the number of departing passengers
for the lines occurs at Line 8 Station BSQN (up direction
platform) and Line 14 Station DWY (down direction platform),
with an error of 11.59% and 1.25%, respectively (see Fig. 5).

For the accumulated number of passengers that cannot
board, the largest deviation happens at Line 9 Station LLQ
(up direction platform) and Line 14 Station GZZ (up direction
platform), with an error of 5.43% and 0.1%, respectively, and
we also provide the simulation results in Fig. 6.

According to above simulation results, we can conclude that
the developed model can model the passenger flows with a
maximal error of around 10% while the simulating time is
reduced with a factor about 5, compared with the accurate
model. Therefore, with an acceptable loss of accuracy, the
proposed model can efficiently incorporate time-dependent
passenger OD demands into the real-time timetable scheduling
problem, which provides more possibilities to develop fast
solution methods.

Fig. 6. Accumulated number of passengers that cannot board at platforms.

TABLE III

PARAMETERS FOR TRAIN OPERATION CONSTRAINTS

B. Open-Loop Optimization Based on the Proposed Model

Now we perform numerical experiments for open-loop opti-
mization to illustrate the solution quality and computation time
of the approaches provided in Section V, which can reflect
the effectiveness and the real-time feasibility of the developed
MPC controller. The model in [13] and [33] is also used as the
accurate model to simulate the “real-life network”, in order to
compare and evaluate the performance of the approaches.

We use the same urban rail network as introduced in
Section VI-A, and the parameters for train operation con-
straints are listed in Table III, where rregular indicates the
running time from the corresponding platform to its successor
platform of the basic timetable.

For the SQP approach, we use the fmincon function of the
MATLAB Optimization Toolbox, and we adopt the gurobi
solver implemented in MATLAB (R2019b) to solve the MILP
problem. The experiments are performed on a computer with
an Intel Xeon W-2223 CPU and 8GB RAM.

The basic timetable of the given urban rail network can
be calculated by the parameters in Table I and the dis-
tance between each pair of consecutive platforms. The basic
timetable represents the case without optimization. In the
case study, we use the same data set with Section VI-A.
We optimize the arrival and departure times of each platform
for 5 time steps (i.e., 5 · Tctrl). As the real-time feasibility is
also important for the online implementation of an approach,
the maximum solution time is set as 3600 s.

Simulation results are shown in Table IV, where the perfor-
mance is the value of the objective function in (28). We find
that all the approaches have better performance than basic
timetable. In particular, the MILP approach has the best
performance with the improvements for 22.66% compared
with the basic timetable, while the improvement of SQP
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TABLE IV

COMPARISON OF PERFORMANCE AND COMPUTATION TIME
CORRESPONDING TO DIFFERENT PROBLEM FORMULATIONS

(with 1 starting point), SQP (with 10 starting points), and
SMILP+SQP are 17.87%, 18.74%, and 18.30%, respectively.

In order to investigate the impact of regarding the variables
related to the number of passengers as real-valued variables,
we conduct an extra case study using the MILP formulation
and by regarding passengers’ number as integer variables,
which is indicated as MILP-int in Table IV. We can find that
the objective function value of MILP-int is very close to that
of MILP. As the number of integer variables grows rapidly, the
CPU time however increases dramatically, and the MILP-int
approach cannot get its optimal solution within 3600 s, which
indicates that MILP-int is not a suitable choice for real-time
timetable scheduling.

The simulation results show that MILP performs best in
terms of solution quality and solution time, which indi-
cates that we can use the MILP-based MPC controller for
real-time timetable scheduling. We can also find that the SQP
approach is a bit time consuming compared with the MILP
approach. SQP can easily fall into a suboptimal solution of
the non-convex optimization problem, and the implementation
of multi-start SQP can help to improve the performance of
SQP. However, the computational burden of multi-start SQP is
much larger than single-start SQP, which would also influence
the real-time feasibility of MPC. The SMILP approach can
be used to find a starting point for the SQP approach so
as to further improve the performance. In the case study,
the solution obtained from SMILP approach is already a
suboptimal solution of SQP; therefore, the application of SQP
cannot further improve the performance of SMILP.

C. Closed-Loop Control for Real-Time Timetable Scheduling

In Section VI-A and Section VI-B, we have illustrated the
effectiveness of the developed model and the MILP-based
approach, respectively. In this section, numerical experiments
are conducted from the control side based on the accurate
model (i.e. the model of [13] and [33]) and the newly
developed model.

The urban rail network is shown in Fig. 3, and all set-
tings related to the numerical experiment are identical with
Section VI-B. The simulation is conducted for 15 time steps
and the prediction horizon of MPC is 5 (i.e. 5 · Tctrl). In the
developed model, variables related to the number of passengers
are updated every time step.

It has been illustrated in Section VI-B that MILP-based
formulation performs best among the optimization approaches
provided in Section IV; therefore, we only use the MILP-based

TABLE V

PERFORMANCE OF MPC IN REAL-TIME TIMETABLE SCHEDULING

Fig. 7. Basic timetable.

MPC when employing the newly developed model as the
prediction model. For the accurate model, we use SQP-based
MPC as it is difficult to transform the MPC optimization prob-
lem of the accurate model into an MILP or SMILP problem.
As real-time feasibility is important for MPC, in this section,
we conduct numerical experiments for SQP-based MPC (with
one starting point) to obtain an acceptable performance. For
further improvement of SQP-based approach (with the cost of
increasing computational burden), we refer to multi-start SQP
approach which has been included in Section VI-B.

As Table V shows, both SQP-based MPC and MILP-based
MPC perform much better than the basic timetable, with
an improvement of 13.56% and 19.70% respectively in the
performance, which indicates that SQP-based MPC and MILP-
based MPC can be used to improve the performance of the
basic timetable. Although we use a more accurate model for
SQP-based MPC, MILP-based MPC performs slightly better
than SQP-based MPC, as SQP can fall into suboptimal solution
in the timetable scheduling problem.

We collect the computation time of the MPC optimization
problem in each control step. The average and maximum
CPU time of SQP-based MPC are 1799.4 s and 2680.5 s,
respectively, which indicates SQP-based MPC may not be a
suitable choice for real-time timetable scheduling. MILP-based
MPC is time efficiency, with average and maximum CPU time
as 4.0 s and 9.1 s, respectively.

In order to graphically show the results, we depict a part
of the timetable from Line 9 in the considered time window.
The basic timetable, the timetable generated by SQP-based
MPC, and the timetable generated by MILP-based MPC
are shown in Fig. 7, Fig. 8, and Fig. 9, respectively. Both
SQP-based MPC and MILP-based MPC can adjust the arrival
and departure times in real time so that the performance of
the corresponding timetable is improved compared with that
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Fig. 8. Timetable generated by SQP-based MPC.

Fig. 9. Timetable generated by MILP-based MPC.

Fig. 10. Total number of departing passengers at each time step.

of the basic timetable. The timetable of SQP-based MPC is
not the same as that of MILP-based MPC, because we only
take one starting point (considering the real-time feasibility of
the approach), which would typically result in a suboptimal
solution. In order to show the impact on the passengers of
different timetables more clearly, the variables related to the
number of passengers are analyzed in the following.

The total number of departing passengers for all lines and all
platforms is depicted in Fig. 10. The timetable obtained from
the MILP-based MPC approach results in more boarding and

Fig. 11. Total number of waiting passengers at each time step.

Fig. 12. Total number of passengers that cannot depart at each time step.

departing passengers, which means the resulting timetable can
make better use of the available trains.

The total number of waiting passengers before the train
departs and the total number of passenger who cannot board
the train, for all lines and all platforms, is depicted in Fig. 11
and Fig. 12, respectively. We can find that the timetable
obtained from the MILP-based MPC controller results in less
number of waiting passengers and less number of passengers
who cannot depart, i.e., more passengers can board their target
trains, which indicates that MILP-based MPC can help to
improve passenger satisfaction.

VII. CONCLUSION

In this paper, we have proposed a novel passenger flow
model for real-time timetable scheduling of urban rail net-
works. By introducing the cycle time, the time-dependent
passenger origin-destination demands can be modeled very
efficiently, with a loss of accuracy at around 10% compared
with an accurate model for a simulation including part of
Beijing urban rail network. Furthermore, a model predic-
tive control framework was proposed for real-time timetable
scheduling. In order to increase the real-time feasibility of
MPC, the optimization problem in MPC has been transformed
into a mixed-integer linear programming problem, which can
be solved very fast by existing MILP solvers. Simulation
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results indicate that the MILP approach can greatly reduce
the online computational burden of the MPC controller with
the developed model. The developed model and MILP-based
MPC controller can be used in real-time timetable scheduling
for real-life passenger-oriented urban rail networks.

In our future work, we will investigate the possibility of
using MILP-based MPC combined with more accurate models
by designing efficient methods to transform or approximate the
integral of the passenger arrival rates into mixed-integer linear
inequalities. We will design distributed control approaches for
large-scale networks, where the developed MILP-based MPC
controller will be used as the local controller. Furthermore,
flexible coupling of trains will be considered, so that the
capacity of trains at each cycle can be adjusted based on
passenger demands. The influence of uncertain passenger
demands and the order of trains will also be a topic for future
research.

APPENDIX A

The product of real-valued variable f and binary variable
δ can be transformed into linear inequalities by introducing
an auxiliary real-valued variable z using the method in [41]
and [42], with

z = δ · f. (37)

Then, z = δ · f is equivalent to⎧⎪⎪⎨
⎪⎪⎩

z ≤ M f δ,
z ≥ m f δ,
z ≤ f − m f (1 − δ),
z ≥ f − M f (1 − δ),

(38)

where M f and m f denote the maximum and minimum value
of f , respectively.
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