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ABSTRACT
Reading on digital devices has become more commonplace, while
it often poses challenges to learners’ attention. In this study, we hy-
pothesized that allowing learners to reflect on their reading phases
with an empathic social robot companion might enhance learners’
attention in e-reading. To verify our assumption, we collected a
novel dataset (SKEP) in an e-reading setting with social robot sup-
port. It contains 25 multimodal features from various sensors and
logged data that are direct and indirect cues of attention. Based
on the SKEP dataset, we comprehensively compared the difference
between HRI-based (treatment) and GUI-based (control) feedback
and obtained insights for intervention design. Based on the hu-
man annotation of the nearly 40 hours of video data streams from
60 subjects, we developed a machine learning model to capture
attention-regulation behaviors in e-reading. We exploited a two-
stage framework to recognize learners’ observable self-regulatory
behaviors and conducted attention analysis. The proposed system
showed a promising performance with high prediction results of
e-reading with HRI, such as 72.97% accuracy in recognizing atten-
tion regulation behaviors, 74.29% accuracy in predicting knowledge
gain, 75.00% for perceived interaction experience, and 75.00% for
perceived social presence. We believe our work can inspire the
future design of HRI-based e-reading and its analysis.

CCS CONCEPTS
• Applied computing→ E-learning; Interactive learning environ-
ments.
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1 INTRODUCTION
With the convergence of diverse e-learning platforms and periph-
eral device usage, e-learning has become a mainstream education
form over the last decade. The previous year’s pandemic accelerated
the need for e-learning due to the rapid transformation into on-
line and hybrid settings. In e-learning, many learners have trouble
managing their learning processes with less feedback on learning
progress and support from educators. Research on Learning An-
alytics (LA) has developed a variety of methods and approaches
to support self-regulation for learners in online and hybrid envi-
ronments [7, 22, 26]. At the same time, educators have difficulty
checking learners’ engagement and progress and thus cannot pro-
vide timely learning support.

Reading documents on screen and tablet devices is essential
to online and self-regulated learning. In the context of e-reading,
attention management and keeping up attentive e-reading has been
a difficult challenge for learners [47]. Especially, young readers in
the previous years have suffered from attention span reduction by
heavy usage of social media and primarily video-based content [47].
On the one hand, low attention of learners in e-reading leads to
less effective and efficient learning [42]. On the other hand, it can
also form a negative loop resulting in learners losing interest and
engaging less in reading activities [52]. In this regard, our research
investigates the impact of Human-Robot Interaction (HRI) design
with affective and meta-cognitive support as an added intervention
for e-reading.

In recent years, HRI has been implemented in diverse education
practices and domains (e.g., physics, math, handwriting, reading,
vocabulary, and chess [36]). Educational support has been imple-
mented for various learning objectives (e.g., vocational training
[53]) and different target groups (e.g., elementary school students
[24]), taking different roles in the educational dialogue as educators,
co-learners, and companions [48] in and outside the classroom [4].

In our research, we focus on HRI for reading support as we
consider reading a core activity in most of today’s higher edu-
cation activities, and more and more reading is done on digital
devices, from classical computer screens to tablets and mobile de-
vices. We design our Furhat Robot1 to function as a feedback agent
in e-reading, which forms a social relationship with its empathic
feedback and human-like features with appearance, speech, and

1https://furhatrobotics.com/
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gestures. Educators’ feedback with empathy and meta-cognitive
prompts have been directly related to learners’ cognitive, affective,
and behavioral development in learning, leading to positive experi-
ences and effective learning outcomes [34, 54]. Likewise, feedback
with empathy and reflection is considered desirable for the educa-
tional HRI design to establish social relationships with learners and
promote their critical thinking and meta-cognition [29, 38]. In this
regard, we have the following research questions that we would
like to focus on:

• How can HRI with empathic and meta-cognitive prompts
support attention self-regulation in e-reading?

• How can self-regulatory learner behaviors in e-reading be
recognized through a machine-learning approach?

• How can we develop an automatic system to predict learning
outcomes, perceived learning experience, and perceived so-
cial presence of the social robot through the self-regulatory
behaviors of learners?

2 BACKGROUND AND RELATEDWORKS
2.1 Attention theories and indicators
Human attention has been defined and interpreted diversely at an
intersection of education, psychology, neuroscience, and affective
computing. [9] found that external attention toward different ob-
jects, modalities, and features is closely interlinked with internal
attention. For instance, emotional arousal, triggered by external
stimuli, can change the level of attention when acquiring informa-
tion [35], form different internal associations [37], and affect the
levels of working memory involved [46]. [55] also revealed that
affective signals from sensory stimuli are one source that regulates
various levels of awareness, perception, and attention. Such a link
between sensory stimulation and attention emphasizes the impor-
tance of engaging in intervention for more productive, motivating,
and better-perceived learning experiences [42]. [45] defined social
attention as behaviors and motivations to engage in learning as a
part of social communication, followed by visual attention towards
learning materials.

However, in the context of e-reading and the implementation
of HRI, the understanding of attention seems to be more specific
since it is an educational environment where human agents (i.e.,
educators and peers) are absent. In this regard, our focus is to inves-
tigate the HRI effects on e-reading via diverse measurements. As
discussed above and argued in the framework of Attention Network
[40], human attention is characterized by not only cognition but
also by temperamental differences such as expression and control
of emotions and internal thoughts. In this regard, we examine multi-
modal cues that are direct and indirect clues of attention: attention
self-regulation behaviors, knowledge gain, perceived interaction
experience, and perceived social presence of the HRI.

2.2 Learning Analytics on HRI
We adopted the Analytics4Action Evaluation Framework (A4AEF)
for our HRI analytics, an evidence-based LA intervention evalua-
tion protocol that can be applied to online learning [41]. A4AEF
has suggested teaching presence, cognitive presence, emotional
presence, and social presence as core components of learning in-
terventions to assist learners in planning, meaning construction,

and facilitating engagement with the community of inquiry (e.g.,
learning technologies, contents, peers, and instructor). It is typically
achieved by establishing a social learning space which is especially
important in blended and online settings. A4AEF has further em-
phasized the usefulness of predictive models for instructors and
learners based on learner data and analysis. We focus on four vari-
ables in our HRI analytics approach related to learners’ attention: 1)
attention self-regulation that are found as self-regulatory behaviors,
2) knowledge gain as a cognitive learning outcome, 3) perceived
interaction experience from learners through their learning prac-
tices, and 4) perceived social presence of a social robot as a learning
companion.

2.2.1 Attention self-regulation. With the convergence of sensor-
driven approaches and machine learning techniques, diverse multi-
modal datasets have helped to gain insights into learners’ cogni-
tive and non-cognitive processes [6]. [22] indicated that there had
been only a few studies about behavioral and measurable indica-
tors of self-regulation in learning compared to its well-established
theoretical and conceptual frameworks. Self-reporting is a tradi-
tional measure to collect learners’ responses during or after learn-
ing activities, which is also often criticized due to the high de-
pendency on learners’ perception and awareness [58]. Biological
signals from the body, brain, actions, and language have been im-
plemented to measure brain activity, while learner behaviors have
been coded and combined with diverse log data [22]. For instance,
diverse parameters from the eyes, such as pupil diameter [49],
fixations [21], and the number of blinks [23] have been investi-
gated as cues of attention with the implementation of dedicated
eye trackers and computer-vision approaches. Learners’ emotions
and arousal, which are known to be critical elements for attention
changes, have been interpreted through facial expression changes,
combined with various data points [18]. Gestural cues from the
hands and body have been studied for individual, and group level
attention [15]. In this work, we implement a framework of [27]
for the data collection and behavior labeling, which combines the
classification of self-regulatory learner behaviors and associated
self-reported distractions in an e-reading setting. Specifically, the
behavioral cues of attention self-regulation include movements from
eyebrows, blinking, mumbling, hands, and body. We found such
behavioral cues vital since it is the moment when learners are
aware of changes in their own attention, which are also observ-
able, that could directly lead to relevant intervention. Model build-
ing for attention regulation behavior recognition could also help
to develop real-time loops for future LA and instructional design
research.

2.2.2 Knowledge gain. Attention is known to enhance learning
outcomes, and the acquisition of new knowledge, promoting the
effectiveness of the learning [31]. Especially in e-reading, attention
contributes to sifting vital information from others in the infor-
mation selection process, which is a critical process of managing
cognitive load during the learning process [47]. [47] suggested that
the fundamental learning goals in e-reading as comprehension,
reducing reading times, and increasing meta-cognition. Diverse
learning strategies have been developed for e-reading as explor-
ing, finding, analyzing, and evaluating documents to enhance the
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knowledge gain [44]. For the knowledge gain assessment in read-
ing, standard practices have been: asking questions about global or
local information, text organization tasks, identifying main ideas,
matching the sequence of events, and conclusions [47]. Meanwhile,
three interrelated measures have been suggested to assess learners’
knowledge gain, having their particular functions: diagnostic, for-
mative, and summative assessments. While diagnostic assessment
aims to determine the existing knowledge levels of learners, the for-
mative assessment focuses on the current ongoing learning process
and knowledge, both in formal and informal forms. The summa-
tive assessment evaluates the mastery level of the learning, which
provides an overview of final learning achievements [13]. In this
regard, we collect diagnostic, formative, and summative assessment
results through pre-session, in-session, and post-session in diverse
formats (e.g., multiple choice, true or false, multiple answers) to
measure the knowledge gained in e-reading.

2.2.3 Perceived interaction experience. Attention span is known to
be highly associated with the motivations, and emotional arousal
of learners [2]. From the instructional design perspective, interac-
tion is a critical component that affects motivation and emotional
arousal in e-learning, where learners get better self-efficacy and ad-
just the cognitive load through sensory stimuli [51]. In this regard,
the concept of User Experience (UX) and interaction experience [57]
has often been adopted to understand learners’ emotions, beliefs,
preferences, perceptions, and accomplishments and applied to HRI
and social robot evaluation, too [32]. The traditional circumplex
model of affects has interpreted affects by dividing them into two
dimensions: positive or negative valence and degree or extent of
activation [39]. [12] has suggested an emotion measurement by
categorizing users’ perceptions based on appealingness, legitimacy,
motive compliance, and novelty of emotions. The usability aspect
of the interface has been scrutinized through the System Usability
Scale (SUS) [3], while Attrakdiff measurement [20] has been de-
veloped for investigating diverse interface experiences and values
that are delivered to users, having Pragmatic, Hedonic-Identity
(Hedonic-I), Hedonic-Stimulation (Hedonic-S), and Attractiveness
as its sub-dimensions. We implemented the Attrakdiff measurement
[20] in our study since it has been a measurement developed espe-
cially for evaluating the interaction quality and focused on users’
affective perceptions, which is our focus of interaction experience
analysis.

2.2.4 Perceived social presence. In e-learning, social presence has
been understood as a key component for deep andmeaningful learn-
ing, contributing to learner participation and satisfaction towards
learning [43]. Furthermore, it is known to encourage the cognitive
actions of learners, and their critical thinking in learning processes
[10]. Especially for e-readingwithHRI, understanding the perceived
social presence seems to be especially critical since the social robot
forms an additional layer in the learning environment compared
to the GUI-based interface. Traditionally, social robots have been
evaluated for their interaction quality [45], perception of the robot
appearance [1], rapport building, and relationship dynamics [25].
Immersion, parasocial interaction, parasocial relationships, physio-
logical responses, social reality, and general social richness have
been found as crucial factors of media as presence, which has been
explicitly applied to compare the robot interaction with animated

characters as social presence [33]. The framework of Social Pres-
ence [19] has emphasized attentional allocation, perceived message
understanding, perceived affective understanding, perceived emo-
tional interdependence, and perceived behavioral interdependence
as criteria to evaluate the social presence, which has been adopted
for HRI evaluation for the iCat, a companion robot for chess play
[28]. We implement the modified Social Presence measurement since
it is a measurement that has been well-established for diverse do-
mains, including HRI evaluation, with diverse sub-dimensions and
its validity.

2.3 Behavior-based attention prediction
To our best knowledge, very little behavior-based attention pre-
diction research has been conducted in e-reading. [30] developed
an attention prediction model in e-reading based on multimodal
cues, such as eyebrow, lip, head movements, and mouse orientation.
[56] used head orientation, eyelid, mouth height, gaze direction,
and emotion to predict the six levels of attention labeled by anno-
tators (i,e., sleepiness, drowsiness, fatigue, distraction, attention
shift, concentration). [27] focused on self-regulatory learner be-
haviors (i.e., attention regulation behaviors) to regain attention
during the e-reading and used it as a predictor of self-reported
distractions from learners. In this work, we collect attention reg-
ulation behavior [27] to identify learning behavior differences in
HRI. As we found that behavior patterns and analysis should vary
based on a specific scenario [17], we collected a novel dataset
containing the HRI analytics on attention self-regulation, knowl-
edge gain, perceived interaction experience, and perceived social
presence.

All in all, our contributions to the fields of Learning Analytics,
Affective Computing, and Human-Robot Interaction are as stated
as follows:

• We developed preliminary HRI interventions with empathic
and meta-cognitive support for attentive e-reading. We ana-
lyzed learners’ e-reading with HRI from diverse perspectives
through direct and indirect attentional cues: attention self-
regulation, knowledge gain, perceived interaction experi-
ence, and perceived social presence. It enables HRI analytics
for both learners and instructors and further assists the de-
sign of e-reading support.

• We collected a novel dataset (SKEP) with five measurements
and 25 features, spanning a total duration of nearly 40 hours
with 4,210,860 frames, which includes data from sophisti-
cated sensors, such as an eye tracker, and data layers with
easy reproducibility, with a commercialized webcam and
questionnaires. Rich data layers and intensive human an-
notations are provided as ground truths that enable more
comprehensive analysis.

• A data-driven system has been proposed with state-of-the-
art deep learning models for recognizing attention regula-
tion behaviors (i.e., low-level recognition) and predicting
knowledge gain, perceived interaction experience, and per-
ceived social presence (i.e., high-level understanding). Our
webcam-based approach is applicable to diverse reading-
based e-learning scenarios, that can further be used to design
and assess feedback.
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3 A NOVEL DATASET FOR HRI-BASED
E-READING ANALYTICS

3.1 Apparatus
We designed two interfaces: 1) a GUI-based system, with a monitor,
mouse, and eye tracker implemented, and 2) an HRI-based sys-
tem, which has a monitor, mouse, eye tracker, and Furhat Robot as
physical components. See the footnote to check the specification of
the Pupil Core eye tracker2 and Logitech C505 HD Webcam3, that
were implemented. For both conditions, an informative e-reading
material with technicality, “Waste management and critical raw
materials,” has been provided through a screen-based reader, which
we explicitly developed for this study. The content has been chosen,
aiming for an equal baseline knowledge for general readers. The
text contains 4,750 words, divided into 29 pages, which cover seven
subtopics. The text has been implemented with 47pt on a 27-inch
monitor, having 2560 × 1440 resolution. The setting was optimized
for the eye tracker implementation, which requires a bigger font
size than the usual PDF readers for high-resolution data collection.
See Figure 1 for a procedural summary of experimental settings.

3.2 Materials
We implemented four measurements that are direct and indirect
attentional cues. Data features and granularity varies based on the
data collection methods, collection timing, and post-processing of
data.

3.2.1 Attention self-regulation. Learners’ self-regulatory behavior
has been collected through a video feed and annotated second-
by-second by human labelers as post hoc. Labels are observable
behavioral cues that indicate learners’ attentional shifts. As [27]
revealed that movements from the 1) eyebrow, 2) blink, 3) mumble,
4) hands, and 5) body works as good predictors of learners’ self-
awareness on attention loss, we annotated 60 video samples by
applying six labels, including 6) neutral state as opposed to five
attention regulation behaviour labels.

3.2.2 Knowledge gain. Knowledge levels have been measured pre-
session, in-session, and post-session, to understand learners’ base-
line knowledge and knowledge gained through the reading session.
Questionnaires with the same content have followed diverse for-
mats (e.g., multiple choice, true or false, multiple answers) to pre-
vent learners from getting familiarized with questions and making
judgments based on their memory. We followed the formula below
to reduce the complication in calculating knowledge gain

𝑆𝑐𝑜𝑟𝑒𝑝𝑟𝑒 =

𝑁𝑝𝑟𝑒∑︁
𝑖=1

𝑆
𝑝𝑟𝑒

𝑖
, (1)

𝑆𝑐𝑜𝑟𝑒𝑝𝑜𝑠𝑡 =

𝑁𝑖𝑛∑︁
𝑖=1

𝑆𝑖𝑛𝑖 +
𝑁𝑝𝑜𝑠𝑡∑︁
𝑖=1

𝑆
𝑝𝑜𝑠𝑡

𝑖
, (2)

𝐾𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒𝐺𝑎𝑖𝑛 = 𝑆𝑐𝑜𝑟𝑒𝑝𝑜𝑠𝑡 − 𝑆𝑐𝑜𝑟𝑒𝑝𝑟𝑒 , (3)
where 𝑆𝑝𝑟𝑒

𝑖
is the pre-session score (0 or 1) for question 𝑖 , while

𝑆𝑖𝑛
𝑖

is the in-session score (0 or 1) for question 𝑖 and 𝑆𝑝𝑜𝑠𝑡
𝑖

is the
post-session score (0 or 1) for question 𝑖 . 𝑁𝑝𝑟𝑒 , 𝑁𝑖𝑛, and 𝑁𝑝𝑜𝑠𝑡 that
2https://pupil-labs.com/
3https://www.logitech.com/

indicate the total number of questions in practices for pre-session,
in-session, and post-session, which are 14, 7, and 7, respectively.

3.2.3 Perceived interaction experience. Attrakdiffmeasurement [20]
provides assessments of learners’ perceived interaction. The ques-
tionnaire has 28 questions with four sub-dimensions and seven
scales between word pairs: 1) Pragmatic quality refers to users’
perceived usability of the system (e.g., technical, complicated, prac-
tical, straightforward, predictable, clearly structured, manageable).
2) Hedonic-I focuses on characteristics that identify the system
(e.g., connective, professional, stylish, premium, integrating, brings
me closer, presentable). 3) Hedonic-S investigates perceived ad-
vancements of the system (e.g., inventive, creative, bold, innovative,
captivating, challenging, novel). 4) Attractiveness measurement as-
sesses the likeability of the system (e.g., pleasant, attractive, likable,
inviting, good, appealing, motivating).

3.2.4 Perceived social presence. Social presence measurement [19]
represents learners’ evaluation of interfaces as perceived social be-
ings. The questionnaire has 36 questions with six sub-dimensions:
1) Co-presence refers to users’ perceived mutual awareness between
the interface and the user. 2) Attentional allocation refers to a users’
impression of exchanging attention with the interface. 3) Perceived
message understanding is users’ interpretation of mutual message
understanding with the interface. 4) Perceived affective understand-
ing is users’ perception that both interface and users can interpret
each others’ affective states. 5) Perceived emotional interdependence
conveys perceived mutual emotional impacts on each other. 6) Per-
ceived behavioral interdependence shows the perceived behavioral
changes triggered between the user and the interface.

3.3 Procedure
We recruited bachelor’s and master’s students on campus who use
the English language for their daily education. We kept nearly
equal gender ratios and non-significant age differences to prevent
cognitive capability differences and following distinctions among
participants. GUI condition had 18 males and 12 females with an
age range of 19 to 33 (M=25.8, SD=3.35). HRI condition had 19 males
and 11 females with an age range of 19 to 37 (M=24.1, SD=4.30).
Participants have been invited to an experiment individually for
an e-reading task. While a researcher in the GUI condition solely
gave instructions about the interface and the procedure, a Furhat
Robot helped the researcher’s instruction in the HRI setting so
that participants could internalize how to make the speech input
to the robot. A screen-based pre-test questionnaire with 14 ques-
tions was given to measure the baseline knowledge about the topic.
There were 10 minutes of time limitations for the pre-test. Once
the pre-test was finished, a researcher entered the room, let learn-
ers wear an eye tracker, and further calibrated it. A webcam was
activated when learners clicked the “start reading” button. Partic-
ipants proceeded with the reading session by reviewing the text
on the screen reader. Throughout the process, seven pop-up ques-
tions were given to both conditions at the end of each subtopic,
while emphatic & meta-cognitive robot feedback (Figure 2) was
given only in the HRI condition, two seconds after the last page of
each subtopic was triggered. Once the reading session had finished,
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30 Participants

Screen-based Reader

30 Participants

Pre-session

In-session

Post-session

Pre-test:14 Content-related Questions (Knowledge Gain)

Post-test: 7 Content-related Questions-Multiple Answer (Knowledge Gain)

Attrakdiff Questionnaire (Perceived Interaction Experience)

Social Presence Questionnaire (Perceived Social Presence)

GUI Condition HRI Condition

+ +

+

Screen-based Reader

Screen-based Reader

Screen-based Reader

+

+

+

+

+

Pop-up Questions on the Screen: True or False (Knowledge Gain)
Screen-based Reader

Webcam
Behavioral Cues (Attention Self-regulation)

Pupil Core Eye Tracker
Patterns from Eyes (Physiological Measure)

Furhat Robot
Emphatic & Reflective Feedback

+

Figure 1: A procedural summary of the GUI and HRI settings.

participants were given a post-test questionnaire with seven state-
ments as multiple-answer questions in both conditions. Likewise,
all participants received an Attrakdiff questionnaire with 28 ques-
tions and a Social Presence questionnaire with 36 questions as the
final post-reading session.

3.4 Dataset construction
As illustrated in Table 1, our SKEP dataset contains multimodal
data with diverse objectives, input channels, features, granularity,
and data formats in different collection timing, which gives insights
into direct and indirect cues of attention. Note that the data from
the eye tracker has not been used in this study.

3.5 Data processing and annotation
Sixty video samples from the GUI and HRI conditions with nearly
40 hours (2,339 minutes) have been collected. The raw data has been
segmented into every 30 frames (1 second) for the second-to-second
labeling from annotators. In total, the video data that has been
annotated are 4,210,860 frames. Two labelers (one doctoral student
and one master’s student) have been instructed about the labeling
criteria for the annotation. Six labels have been used, including
neutral state, as opposed to five attention regulation behaviors:
movements in eyebrow, blink, mumble, hand, and body. In the
second round, the labels were summarized and cross-checked to
address the inconsistent cases for validation. Note that the behavior
labels should be able to provide nearly homogeneous judgments
regardless of observers’ expertise in attention analysis since labeling
only requires factual judgments based on the criteria. See Figure 3
for an overview of the data processing and annotation criteria.

4 STATISTICAL ANALYSIS ON ATTENTIONAL
CUES IN E-READING: GUI VS. HRI

In the following, we present descriptive and statistical analysis
to show the overall effects of the treatment (GUI, control group
and HRI, treatment group) on learners’ 1) attention regulation
behaviors, 2) knowledge gain, 3) perceived interaction experience,
and 4) perceived social presence. Note that the average of all sub-
dimensions has been derived to get the overall Attrakdiff and Social
Presence evaluation. Furthermore, a one-way ANOVA (Welch’s)
analysis has been conducted to find the statistically significant
differences between GUI and HRI conditions.

4.1 Attention self-regulation behaviors
We labeled five attention regulation behaviors, which are sound
indicators of learners’ perceived distractions [27], every second.
The neutral behavior indicates the status without any attention reg-
ulation behaviors. The dataset showed that the movements on the
body (1,048,170) as the most frequent form of attention regulation
behavior, while the blink (196,590 frames) and the eyebrow (59,010
frames) have minor cases among labeled attention regulation behav-
iors. Mumble has recorded 563,640 frames, while hand movements
have shown 268,230 frames. As shown in Table 2, more neutral be-
havior has been observed in the HRI (M=1198.0, SD=273.99) than in
the GUI (M=1198.0, SD=273.99), while more eyebrow, mumble, and
body movements have taken more places in the HRI with statistical
significance. More mumbling and body movements have occurred
in HRI since speech-based interaction, and robot-looking has been a
part of HRI design. According to our observation, different individu-
als’ unique behavioral patterns, such as expressiveness in behaviors,
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Did you understand 
the content that you just  

read about?

Are you clear about 
the subtopic that we just  

went through?

Did you like the text?

Did you understand 
everything in the text?

Have you been focused 
while you were reading?

Do you think you can 
apply the knowledge that you 

just learned?

Can you recall the 
main point of the subtopic 

in your mind?

My internal thumbs up for you! Keep up the good work!

No problem! We can always review once more!
Two seconds after the 

last page of subtopic 1 
has triggered

Yes

No

Alright, Let's continue.N/A

Two seconds after the 
last page of subtopic 2 

has triggered

That's music to my ear! Let's move on.

I know, it's all about learning. We can go through the unclear part once more.

Yes

No

Alright, Let's continue.N/A

Two seconds after the 
last page of subtopic 3 

has triggered

I am happy to hear that. I am interested in this topic, too.

I am sorry to hear that. I believe that you will like the next subtopic better.

Yes

No

Alright, Let's continue.N/A

Two seconds after the 
last page of subtopic 4 

has triggered

That's super! Let's try to keep your good focus until the end of the text!

Maintaining good focus is always difficult. You are doing good already.

Yes

No

Alright, Let's continue.N/A

Two seconds after the 
last page of subtopic 5 

has triggered

That's amazing! I am proud to be your reading companion.

It's okay. I always review once more if I don't understand something. Maybe you can do it too.

Yes

No

Alright, Let's continue.N/A

Two seconds after the 
last page of subtopic 6 

has triggered

Wow, you are a fast learner!

I know it's not that easy. One tip is to reflect on the main point while you are reading.

Yes

No

Alright, Let's continue.N/A

Two seconds after the 
last page of subtopic 7 

has triggered

Great, you are doing even better than I expected!

Recalling new information always takes. some time. It's all about practice.

Yes

No

Alright, Let's continue.N/A

Feedback Trigger Robot Question
Learner 

Response
Emphatic & Meta-cognitive 
Robot Feedback: Speech

Big smile + Nod

Gesture LED

White blink (1.5s)

Big smile

Smile

Big smile + Nod

Big smile

Smile

Big smile + Nod

Big smile

Smile

Big smile + Nod

Big smile

Smile

Big smile + Nod

Big smile

Smile

Big smile + Nod

Big smile

Smile

Big smile + Nod

Big smile

Smile

White blink (1.5s)

None

White blink (1.5s)

White blink (1.5s)

None

White blink (1.5s)

White blink (1.5s)

None

White blink (1.5s)

White blink (1.5s)

None

White blink (1.5s)

White blink (1.5s)

None

White blink (1.5s)

White blink (1.5s)

None

White blink (1.5s)

White blink (1.5s)

None

Figure 2: Emphatic & meta-cognitive HRI feedback protocol.

Table 1: A summary of our novel attention self-regulation, knowledge gain, perceived interaction experience, and perceived
social presence with HRI in the e-reading (SKEP) dataset.

Objectives Measurements Collection
Timing

Input
Channels Modalities Features Granularity Data

Formats

Attention
Self-regulation

Attention
Regulation
Behaviors

-Throughout
the session -Webcam -Behaviors

-Annotations

-Eyebrow
-Blink
-Mumble
-Hands
-Body

-Video
-Human Annotation
on Every Second
(30 fps on
4,210,860 Frames)

-AVI
-CSV

Patterns
from eyes

Eye
Tracking

-Throughout
the session -Eye Tracker -Eye

movements

-Pupil Diameter
-Gaze Positions
-Gaze on Surface/Markers
-Blinks
-Fixation
-Video (Head Mounted)
-Video (Infrared for Eyes)

-Infrared Cameras:
120Hz
-Frontal Camera:
30Hz

-AVI
-JSON
-CSV

Knowledge Gain
Diagnostic,
formative, and
summative assessments

-Pre-session
-In-session
-Post-session

-Mouse
Click -Text

-Pre-test
-In-session
-Post-test

-14 Instances
on Each Subtopic -CSV

Perceived
Interaction
Experience

Attrakdiff
Measurement -Post-session -Mouse

Click -Text

-Pragmatic Quality
-Hedonic-I Quality
-Hedonic-S Quality
-Attractiveness

-28 Questions on
Overall Interface
(7-Scale Likert)

-CSV

Perceived
Social
Presence

Social Presence
Measurement -Post-session -Mouse

Click -Text

-Co-presence
-Attentional Allocation
-Perceived Message Understanding
-Perceived Affective Understanding
-Perceived Emotional Interdependence
-Perceived Behavioral Interdependence

-36 Questions on
Overall Interface
(7-Scale Likert)

-CSV
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Blink Mumble Hand BodyEyebrowNeutral

-Blink Flurries 
-Voluntary  
 Prolonged Blink 

-Mumble Reading -Touch Body 
-Touch Face

-Adjust Torso 
-Adjust Arm 
-Adjust Head 
-Lean Forward

-Eyebrows Raise 
-Eyebrows Bring 
 Together

-Without Attention
 Regulator  
 Behaviors

2,339 minutes 
(≈ 40 hours)

2,631,510 
Frames

60 Video Samples

59,010 
Frames

196,590 
Frames

563,640 
Frames

268,230 
Frames

1,048,170 
Frames

2. Video Segmentations1. Raw Videos 3. Attention Regulator Behaviors Annotation (Second-to-second)

4,210,860 
Frames

Segmentation (30 fps)

...

...

...

... ... ...

1,954,710 
Frames

2,256,150 
Frames

GUI HRI

30 Video 
Samples

GUI HRI

30 Video 
Samples

Figure 3: Data processing and annotation criteria.1
1 Images were blurred for identity protection purposes. All images were consented to be used for publication.

Table 2: Attention regulation behaviors from GUI & HRI.

Measurement GUI HRI One-way ANOVA
M(SD) F df1 df2 p

Neutral 1081.13(317.82) 1198.0(273.99) 118.73 1 83991 <.001
Eyebrow 3.50(3.57) 16.10(16.13) 11.78 1 87792 <.001
Blink 31.03(13.36) 28.83(11.18) 13.62 1 86616 <.001
Mumble 3.97(3.74) 40.43(34.14) 98.96 1 87040 <.001
Hand 65.93(93.50) 21.60(16.46) 1.41 1 84239 0.234
Body 189.43(100.48) 264.83(115.50) 425.43 1 81155 <.001

Table 3: Knowledge gain from GUI & HRI.

Measurement GUI HUM One-way ANOVA
M(SD) F df1 df2 p

Pre-test Score 3.47(2.52) 2.47(2.18) 2.711 1 56.8 0.105
Post-test Score 9(1.66) 9.3(1.86) 0.434 1 57.3 0.513
Knowledge Gain 5.53(2.86) 6.83(3.04) 2.908 1 57.8 0.094
Perceived Knowledge Gain 4.1(1.47) 5(1.14) 4.337 1 55.2 0.042

Table 4: Perceived interaction experience from GUI & HRI.

Measurement GUI HUM One-way ANOVA
M(SD) F df1 df2 p

Overall Attrikdiff 0.583(0.633) 0.537(0.511) 0.09777 1 55.5 0.756
Pragmatic Quality 1.1(0.721) 0.676(0.824) 4.49836 1 57.0 0.038
Hedonic Quality-I 0.324(0.833) 0.314(0.597) 0.00259 1 52.6 0.960
Hedonic Quality-S 0.348(1.12) 0.652(0.718) 1.56827 1 49.3 0.216
Attractiveness 0.562(0.852) 0.505(0.958) 0.05956 1 57.2 0.808

Table 5: Perceived social presence from GUI & HRI.

GUI HUM One-way ANOVAMeasurement M(SD) F df1 df2 p
Overall Social Presence 3.59(0.671) 4.14(0.484) 13.07 1 52.7 <.001
Co-presence 4.32(1.4) 5.45(0.796) 14.81 1 45.9 <.001
Attentional Allocation 3.59(0.823) 4.03(0.683) 5.18 1 56.1 0.027
Perceived Message Understanding 4.14(0.51) 4.48(0.437) 7.39 1 56.7 0.009
Perceived Affective Understanding 3.47(0.907) 3.73(0.606) 1.65 1 50.6 0.205
Perceived Emotional Interdependence 2.64(1.05) 3.33(1.02) 6.63 1 57.9 0.013
Perceived Behavioral Interdependence 3.39(1.4) 3.81(1.17) 1.60 1 56.2 0.211

frequent usage of particular behaviors, and significant behaviors as
attentional cues, have been derived mainly from individual differ-
ences than experimental conditions. In this regard, further model
training does not differentiate attention regulation behavior labels
by experimental conditions. We combine both conditions as a whole
to achieve attention regulation behavior recognition and further
predict other attentional cues.

4.2 Knowledge gain
Table 3 summarizes the overall knowledge gained in both condi-
tions, with the pre-test score, post-test score, and perceived knowl-
edge gain. The GUI (M=3.47, SD=2.52) recorded a higher pre-test
score than the HRI (M=2.47, SD=2.18). However, a higher post-test
score has been documented in the HRI (M=9.3, SD=1.86) than in
the GUI (M=9, SD=1.66), representing higher knowledge gain in
the HRI. However, the difference between groups did not show
statistical significance. The perceived knowledge gain after the
reading practice was higher in the HRI (M=5, SD=1.14) setting com-
pared to the GUI (M=4.1, SD=1.47) on a significant level (p=0.042).
It indicates that empathic and meta-cognitive HRI feedback has
helped learners’ self-efficacy. We conducted a further Pearson’s
correlation analysis between the perceived knowledge gain and
the actual knowledge gain to find if learners’ perception of their
learning achievement correlates to the objective learning outcomes.
However, the perceived knowledge gain did not show a correlation
with actual knowledge gain (r=.071, p=.589) both in the GUI (r=.052,
p=.786) and the HRI (r=-.030, p=.876) settings.

4.3 Perceived interaction experience
Overall Attrakdiff. As shown in Table 4, the overall Attrakdiff

measurement on the GUI (M=0.583, SD=0.633) has gained higher
scores than the HRI (M=0.537, SD=0.511). However, our ANOVA
analysis has shown significance only in Pragmatic Quality mea-
surement between two conditions.

Pragmatic Quality. Table 4 shows that the GUI (M=1.1, SD=0.721)
has been evaluated to be more pragmatic than the HRI (M=0.676,
SD=0.824). Participants highly appreciated the simplicity, practical-
ity, straightforwardness, predictability, and clear structure of the
GUI compared to the HRI. The assessment of the HRI has shown
a wide distribution, especially in the “technical-human” measure,
representing users’ contradicting perceptions. It indicates that the
presence of the reflective & empathic robot has often been per-
ceived differently than the original system design intention: we
premised the HRI will be consistently perceived as more “human”
than the GUI system, but the evaluation results have varied. We
assume participants’ preconceptions of robots and human-robot
interactions impacted their current evaluation, which should be
further investigated.
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Hedonic-S. The overall hedonic-S measure was highly evaluated
in the HRI (M=0.652, SD=0.718) compared to the GUI (M=0.348,
SD=1.12). The HRI has been perceived as inventive, creative, inno-
vative, captivating, challenging, and novel than the GUI system. A
wide distribution of participant responses was found in the overall
GUI for hedonic-S evaluation. It seems to be because some users
have perceived our GUI system as a traditional e-reading system,
while some perceived the pop-up questions as creative and novel
stimuli, which could be developed as a potential intervention with
improvements.

Hedonic-I andAttractiveness. In hedonic-I (GUI:M=0.324, SD=0.833;
HRI:M=0.314, SD=0.597) and attractiveness (GUI:M=0.562, SD=0.852;
HRI: M=0.505, SD=0.958) measurements, the GUI has received
slightly higher scores than the HRI without significance. However,
the HRI has been evaluated as more premium in the hedonic-I mea-
sure while being evaluated as more likable, inviting, and motivating
in the Attractiveness measure.

4.4 Perceived social presence
Perceived social presence. The overall Social Presence measure-

ment has gained higher scores in the HRI (M=4.14, SD=0.484) com-
pared to the GUI (M=3.59, SD=0.671) on all sub-dimensions (Table
5). An ANOVA analysis has shown significance in the overall Social
Presence, Co-presence, Attentional Allocation, Perceived Message
Understanding, and Perceived Emotional Interdependence.

Co-presence. Most participants perceived the HRI as a “presence”,
while evaluation of the GUI has varied. Co-presence has shown
the highest evaluation result among all sub-dimensions in the HRI
(M=5.45, SD=0.796) while showing the widest distribution in the
GUI (M=4.32, SD=1.4). The same tendency has been observed from
the perceived behavioral independence measurement, showing that
HRI is more often perceived as a “presence” than the GUI.

Attentional Allocation, Perceived Message Understanding, Per-
ceived Affective Understanding, Perceived Emotional Interdependence,
and Perceived Behavioral Interdependence. Unlike the GUI, users
expected a certain attentional, intentional, emotional connectivity
with the HRI, showing different role expectations towards different
interfaces. Such perception toward HRI has likely to affect learn-
ers’ emotional (M=3.33, SD=1.02) and behavioral (M=3.81, SD=1.17)
susceptibility to the HRI, leading to higher interdependence on emo-
tional and behavioral levels. On the other hand, the broad spectrum
in the Attentional Allocation (M=3.59, SD=0.823) and Perceived
Behavioral Interdependence (M=3.39, SD=1.4) measurements in the
GUI indicates that it was unclear for some users whether the GUI
reacts based on their behaviors (i.e., intelligent system) or if the
feedback was independent to participants. It seems to be because
participants premised the HRI as an intelligent system, though
robot behavior has been pre-designed regardless of learners’ behav-
iors or speech: it indicates the necessity of developing an intelligent
system based on real-time learning analytics.

5 A DATA-DRIVEN SYSTEM DEVELOPMENT
WITH DEEP LEARNING APPROACHES FOR
ATTENTIVE E-READING ANALYSIS

This section introduces a data-driven system with deep learning ap-
proaches for developing an attentive e-reading analysis. Specifically,
we exploit a two-stage framework to build the system by leveraging
the rich data streams collected from the SKEP dataset. In the first
stage of low-level processing, we implemented vision-based behav-
ior recognition of the subjects with computer vision technologies.
In the latter stage of high-level analysis, we utilized recognized sub-
jects’ behaviors as feature vectors to achieve the attentive e-reading
analysis with machine learning models in a holistic way.

5.1 Recognizing attention regulation behaviors
with computer vision techniques

In recent years, the deep learning and computer vision fields have
made remarkable achievements in various vision tasks [5, 8, 14]. In-
spired by powerful AI models, we tried to leverage them to enhance
HRI-based attentive e-reading. More precisely, we implemented
three of the most standard temporal neural networks: CNN-RNN,
CNN-LSTM, and CNN-Transformer to achieve the low-level behav-
ior recognition of subjects during their e-reading. To have standard
evaluations for all the reported results on the SKEP dataset, we
utilized the cross-subject evaluation protocol, which divides the 60
subjects into a training group of 40 subjects (94,519 samples), and a
testing group of 20 subjects (45,843 samples). We used the six classes
of annotated attention regulation behaviors as the ground truth to
train and evaluate the models’ performances. Table 6, presents the
performances of baseline networks.

With the result listed in Table 6, our observations are listed as
follows: 1) the best methods’ accuracy went up to 72.79 %, which is
much higher compared to a random guess over six classes (16.67%).
It verifies the powerful video recognition ability of deep learning
models. 2) RNN-based model has shown the highest performance of
72.97% since larger-scale models like LSTM and Transformermodels
easily overfit on our SKEP dataset. 3) Capturing shorter temporal
dynamics (temporal reasoning) is vital for better performancewhich
proves again that fewer parameters can avoid the overfitting issue
(the best two performances are obtained by setting the temporal
step as 5). Note that the vast performance drop in 112-size images
with an accuracy of 47.72% (compared to 224 size with 72.97%)
has been mainly caused by information loss due to the smaller
image size. For instance, movements from mumbling, eyebrows,
and blinking are extremely subtle. It only takes 2-10 pixels to present
those regions at an image size of 112, which provides insufficient
image information. However, when it comes to size 224, feature
learning can be significantly improved.

5.2 Automatic e-reading-based attention
analysis using attention regulation
behaviors

In this section, we applied classical machine learning models to
predict knowledge gain, perceived interaction experience, and per-
ceived social presence, using attention regulation behaviors ob-
tained from the previous stage as the feature vectors. Similar to the
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Table 6: attention regulation behavior recognition using
deep neural networks on SKEP dataset. The highest result is
marked in bold. The second highest result is marked under-
line.

Model Type Temporal Step Video Input Size Accuracy

CNN-RNN
5 112 47.72%

224 72.97%

10 112 63.92%
224 62.03%

CNN-LSTM
5 112 58.17%

224 49.86%

10 112 34.19%
224 65.61%

CNN-Transformer
5 112 36.91%

224 72.84%

10 112 55.88%
224 65.89%

previous stage, we utilized the cross-subject evaluation protocol.
Note that the measurement of attentive analysis (e.g. knowledge
gain) is obtained based on the whole e-reading progress. Thus, one
subject can have 60 samples in total (40 for training and 20 for
testing). We deployed five of the most classical machine learning
models to learn the various attention patterns as shown in Table 7,
8, and 9. See the footnote4 for the implementation details.

5.2.1 Knowledge gain prediction. Knowledge gain prediction is
of the highest importance among all measurements since knowl-
edge gain is the most fundamental objective of e-reading activities.
We encoded the distribution of attention regulation behaviors that
happened within a given attention span as feature vectors with
dimensions of 1×𝑁 . 𝑁 is the number of attention regulation behav-
iors and neutral behavior, as six in practice. Then, we fed the feature
vectors into classifiers to predict learners’ knowledge gain with
the probability distribution. We present two evaluation settings: 1)
fine-grained knowledge gain prediction (5-level): excellent-good-
average-poor-very poor; and 2) coarse knowledge gain prediction
(3-level): good-average-poor. Even through human observation,
differentiating fine-grained knowledge gains is difficult or nearly
impossible. As shown in Table 7, all the classifiers can achieve
encouraging results (above 63.57% accuracy) in the coarse(3-level)
knowledge gain prediction, while relatively lower accuracy (around
40%) has been achieved on challenging fine-grained knowledge gain
prediction. The SVM classifier has achieved the highest accuracy
for both fine-grained and coarse 45.0% and 74.29%, respectively.

5.2.2 Perceived interaction experience prediction. Similar to knowl-
edge gain, we trained the classifiers to predict the perceived in-
teraction experience of subjects. Instead of making it a regression
task, we converted the task into a classification task by assigning
learners’ scores into positive, neutral, and negative, based on the

4In the above models, we set the following architecture hyper-parameters: CNN:
ImageNet-pre-trained [11] InceptionV3 [50] with N = 2048 feature dimensions and
average pooling for the last layer. RNN: LSTM: 1-Layer LSTM with N = 256 units.
Transformer: Positional Embedding, TransformerEncoder with N=2048 units, Glob-
alMaxPooling1D, and a fully connected layer to Softmax output. The learning rate
is all set as 0.0002 with a decay factor of 0.999 for every five training epochs with a
Titan RTX GPU. All other configurations follow the original network architectures
unless stated otherwise, such as temporal step and video input size in Table 6. We
used Tensorflow/2.8 platform for deploying the deep learning models and scikit-learn
Python for machine learning models.

Table 7: Knowledge Gain (KG) prediction using attention
regulation behaviors as a predictor.

Method Accuracy (%)
Fine-grained KG (5-level) Coarse KG (3-level )

Random Guess 20.00 33.33
Random Forest 38.57 69.29
AdaBoost 37.14 63.57
MLP 40.00 70.00
kNN 40.71 70.00
SVM 45.00 74.29

medium value of “4” from the Attrakdiff 7-Likert scale. The predic-
tion with the raw score shows whether learners will have positive,
neutral, or negative interaction experiences. However, using the
raw score has a limitation in that it leads to nearly-binary prediction
(positive or negative) as it is improbable that the evaluation result
of a specific sub-dimension takes the exact neutral value. Thus, we
further defined the three classes into a normalized distribution [16]
with the percentile of participants’ scores (below 25%, 25-75%, and
above 75%). As described in Table 8, Random Forest provides the
best performance for all sub-dimensions of Attrakdiff measurement,
scoring the highest performance in the raw score for the Pragmatic
Quality prediction with 92.5% of accuracy. The best accuracy lies
in the Hedonic-I prediction with 87.5%.

5.2.3 Perceived social presence prediction. Perceived social pres-
ence prediction has followed the protocol of perceived interaction
experience prediction: 1) splitting raw distribution to positive, neu-
tral, and negative levels and 2) dividing normalized distribution
into the first (25%), second (25-75%), and third quartiles (75%). Table
9 shows that the Random Forest classifier best predicted the over-
all Social Presence (SP), Co-presence (CP), Attentional Allocation
(AA), and Perceived message understanding (PMU) for both raw
and normalized distributions. The MLP also has shown high per-
formance in predicting the Perceived Behavioral Interdependence
measurement (PBI). From the raw distribution, the highest result
has been achieved with 92.5% accuracy in both Co-presence (CP)
and Perceived Emotional Interdependence measurement (PEI) pre-
dictions. For the classes obtained from normalized distribution, the
prediction results went up to 100%, 97.5%, and 95% for predicting
Co-presence (CP), Perceived Message Understanding (PMU), and
Perceived Emotional Interdependence (PEI), respectively, represent-
ing the attention regulation behaviors as effective predictors.

6 CONCLUSION
We comprehensively investigated the effect of social robots in e-
reading by collecting the novel SKEP dataset. In the SKEP dataset,
we set HRI-based (treatment) and GUI-based (control) conditions
and captured rich multimodal features. The SKEP dataset includes
more than four-million frames of various sensor data and intensive
human annotated ground truths, which function as learners’ direct
and indirect attentional cues shown during the e-reading. We found
that there have been specific role expectations toward different in-
terface types, which leads to more attentional, emotional, and social
connectivity with the HRI. We developed a data-driven system us-
ing the SKEP dataset with cutting-edge deep-learning approaches.
The proposed system showed a promising performance with high

528



LAK 2023, March 13–17, 2023, Arlington, TX, USA Yoon Lee and Marcus Specht

Table 8: Perceived interaction experience prediction using attention regulation behaviors as a predictor.

Method
Accuracy (%)

Overall Attrakdiff Pragmatic Quality Hedonic Quality-I Hedonic Quality-S Attractiveness
Raw Normalized Raw Normalized Raw Normalized Raw Normalized Raw Normalized

Random Guess 33.33 33.33 33.33 33.33 33.33 33.33 33.33 33.33 33.33 33.33
SVM 62.50 62.50 87.50 52.50 50.00 60.00 52.50 52.50 62.50 62.50
Random Forest 72.50 72.50 92.50 72.50 82.50 82.50 77.50 72.50 70.0 72.5
AdaBoost 52.50 67.50 90.00 57.50 57.50 87.50 70.00 70.00 60.00 67.50
MLP 62.50 75.00 87.50 45.00 65.00 47.50 42.50 40.00 70.00 57.50
kNN 60.00 62.50 87.50 47.50 57.50 62.50 42.50 42.50 62.50 62.50

Table 9: Perceived social presence measurement prediction using attention regulation behaviors as a predictor. 1 SP: Social
Presence, CP: Co-presence, AA: Attentional Allocation, PMU: Perceived Message Understanding, PAU: Perceived Affective Understanding, PEI: Perceived Emotional
Interdependence, PBI: Perceived Behavioral Interdependence.

Method Accuracy (%)
Overall SP CP AA PMU PAU PEI PBI

Raw Normalized Raw Normalized Raw Normalized Raw Normalized Raw Normalized Raw Normalized Raw Normalized
Random Guess 50.00 33.33 50.00 33.33 50.00 33.33 50.00 33.33 50.00 33.33 50.00 33.33 50.00 33.33
SVM 62.50 52.50 87.50 97.50 50.00 60.00 52.50 87.50 62.50 47.50 90.00 95.00 75.00 75.00
Random Forest 72.50 75.00 92.50 100.0 80.00 85.00 70.00 97.50 70.0 60.00 92.50 92.5 80.0 82.50
AdaBoost 52.50 65.00 90.00 97.50 57.50 67.50 67.50 87.50 60.00 57.50 85.00 90.00 70.00 70.00
MLP 67.50 67.50 90.00 95.00 70.00 72.50 70.00 90.00 75.00 37.50 77.50 92.50 85.00 82.50
kNN 60.00 55.00 87.50 97.50 57.50 57.50 42.50 87.50 62.50 37.50 90.00 95.00 67.50 67.50

attention regulation behavior recognition and high prediction re-
sults for knowledge gain, perceived interaction experience, and
perceived social presence. It proves the attention regulation behav-
ior as sound observable cues of direct and indirect attention cues
in e-reading.
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