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Adaptation Through Prediction: Multisensory
Active Inference Torque Control

Cristian Meo , Giovanni Franzese , Corrado Pezzato , Max Spahn, Member, IEEE, and Pablo Lanillos

Abstract—Adaptation to external and internal changes is of
major importance for robotic systems in uncertain environments.
Here, we present a novel multisensory active inference (AIF)
torque controller for industrial arms that shows how prediction
can be used to resolve adaptation. Our controller, inspired by
the predictive brain hypothesis, improves the capabilities of cur-
rent AIF approaches by incorporating learning and multimodal
integration of low- and high-dimensional sensor inputs (e.g., raw
images) while simplifying the architecture. We performed a sys-
tematic evaluation of our model on a 7DoF Franka Emika Panda
robot arm by comparing its behavior with previous AIF baselines
and classic controllers, analyzing both qualitatively and quanti-
tatively adaptation capabilities and control accuracy. The results
showed improved control accuracy in goal-directed reaching with
high noise rejection due to multimodal filtering, and adaptability
to dynamical inertial changes, elasticity constraints, and human
disturbances without the need to relearn the model or parameter
retuning.

Index Terms—Bio-inspired robotics, robot control, representa-
tion learning.

I. INTRODUCTION

REAL-WORLD complex robots, such as airplanes, cars,
and manipulators, may need to process unstructured

high-dimensional data coming from different sensors depend-
ing on the domain or task (e.g., LIDAR in cars, sonar in
submarines, and different sensors to measure the internal state
of the robotic system). In this context, one of the biggest chal-
lenges is mapping this rich stream of multisensory information
into a lower dimensional space that integrates and compresses
all modalities into a latent representation; the agent could then
use this embedded latent representation that encodes the state
of the robot and the world aiding the controller. Another key
challenge is how to use this encoded representation to deal
with real-world applications with changes and uncertainty.
These environments may always present unmodeled behav-
iors, such as air turbulence in airplanes, unmodeled dynamics
of water streams, or unexpected parameter changes. In the last
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years, some proof-of-concept studies in robotics have shown
that active inference (AIF) may be a powerful framework to
address challenges [18], such as adaptation [22], [28], robust-
ness [1], [2], and multisensory integration [17], [20]. AIF is
prominent in neuroscientific literature as a biologically plau-
sible mathematical construct of the brain based on the free
energy principle (FEP) [7]. According to this theory, the brain
learns a generative model of the world/body that is used to per-
form state estimation (perception) as well as to execute control
(actions), optimizing one single objective: Bayesian model evi-
dence. This approach, which grounds on variational inference
and dynamical systems estimation [9], has strong connections
with Bayesian filtering [29] and control as inference [21], as it
both estimates the system state and computes the control com-
mands as a result of the inference process. Recent experiments
in humans indicate that sensory prediction errors (SPE) may
be responsible for body estimation and also involuntary adap-
tive active strategies that suppress multisensory conflicts [16].
Here, we show that once the robot has learned to predict the
(multi)sensory input, then it can exploit those predictions to
adapt to unexpected world/body variations, such as measure-
ments noise, force disturbances, environmental changes (e.g.,
gravity or elasticity constraints), and internal changes (e.g.,
inertia or motor stiffness). We combine state representation
learning [19] with variational free energy (VFE) optimization
in generalized coordinates [8], [22] to infer the torques needed
to achieve goal-directed behaviors. We evaluated our approach
in several real-world experiments with a 7DoF Franka Emika
Panda robot arm and compared it to state-of-the-art baselines
in AIF and classic controllers.

A. Related Works

In 2003, Yamashita and Tani [30] described a robotic exper-
iment that can be linked with the theory of what now is estab-
lished as AIF [8]. They were able to generate motor primitives
from sensorimotor experience in a top-down fashion. Since
then, many researchers have pursued the design of these types
of biologically (functional) plausible controllers [4]. Recently,
a state estimation algorithm and an AIF-based reaching con-
troller for humanoid robots were proposed in [15] and [22],
respectively, showing robust sensory fusion (visual, proprio-
ceptive, and tactile) and adaptability to unexpected sensory
changes in real experiments. However, they could only han-
dle low-dimensional inputs and did not implement low-level
torque control. Latter, adaptive AIF torque controllers [2], [25]
showed better performances than a state-of-the-art model
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reference adaptive controller. However, they cannot handle
high-dimensional inputs. Furthermore, an AIF planning algo-
rithm was presented in [12] and [27], showing that the
introduction of visual working memory and the variational
inference mechanism significantly improves the performance
in planning adequate goal-directed actions. Reference [28]
showed the plausibility of using neural networks architec-
tures to scale AIF to raw images inputs. Finally, in the
previous work, we presented a multimodal variational autoen-
coder active inference (MAIC-VAE) [20] torque controller,
which integrated visual and joint sensory spaces. However,
a clear and systematic comparison of adaptation between AIF
and classic controllers is still missing. Besides, [20] did not
present the generalized mathematical framework of multisen-
sory AIF torque control scheme and the experiments were only
in simulation.

B. Contribution

We describe the multisensory active inference controller
(MAIC), which extends current AIF control approaches in
the literature by allowing function learning [14], [17] through
multimodal state representation learning [19] while main-
taining the adaptation capabilities of an AIF controller and
working at the level of torque. We provide the general math-
ematical framework of the MAIC and we derive two versions
of the proposed algorithm as a proof of concept. Finally, we
experimentally evaluated the proposed algorithm on a 7DOF
Franka Emika Panda arm under different conditions. We sys-
tematically compared the MAIC with state-of-the-art torque
AIF controllers, such as the AIC [25] and the uAIC [2], and
standard controllers, such as model predictive control (MPC)
and joint impedance control (IC). We present both qualitative
and quantitative analysis in different experiments, focusing on
adaptation capability and control accuracy.

II. AIF GENERAL FORMULATION AND NOTATION

Here, we introduce the standard equations and concepts
from the AIF literature [7], and the notation used in this arti-
cle, framed for unimodal estimation and control of robotic
systems [22]. The aim of the robot is to infer its state (unob-
served variable) by means of noisy sensory inputs (observed).
For that purpose, it can refine its state using the measurements
or perform actions to fit the observed world to its internal
model. This is dually computed by optimizing the VFE, a
bound on the Bayesian model evidence [3]

System Variables: State, observations, actions, and their
n-order time derivatives (generalized coordinates)

x = [x1, x2, . . . , xc], sensors observations (c sensors)

r = [r1, r2, . . . , rc], sensory noise (c sensors)

x̃ =
[
x, x(1), . . . , x(nd)

]
, generalized sensors

z̃ =
[
z, z(1), . . . , z(nd)

]
, multimodal system state

μ̃ =
[
μ,μ(1), . . . ,μ(nd)

]
, proprioceptive state

r̃ =
[
r, r(1), . . . , r(nd)

]
, generalized sensory noise

w̃ =
[
w, w(1), . . . , w(nd)

]
, state fluctuations

a = [
a1, a2, . . . , ap

]
, actions (p actuators) (1)

where the notation x(n) = (dnx/dtn) is adopted for the nth-
order derivative and nd is the chosen number of generalized
motions. Depending on the formulation, the action a can be
force, torque, acceleration, or velocity. In this work, action
refers to torque. We further define the time derivative of the
state vector Dz̃ as

Dz̃ = d

dt

([
z, z′, . . . , zn]) =

[
z′, z′′, . . . , zn+1

]
.

Generative Models: Two generative models govern the
robot: 1) the mapping function between the robot’s state and
the sensory input g(z̃) (e.g., forward kinematics) and 2) the
dynamics of the internal state f (z̃) [3]

x̃ = g(z̃)+ r̃ (2)

Dz̃ = f
(
z̃
)+ w̃ (3)

where r ∼ N (0, �x̃) and w ∼ N (0, �z̃) are the sensory and
process noise, respectively, and �x̃ and �z̃ are the covariance
matrices that represent the controller’s confidence about each
sensory input and about its dynamics, respectively.

Variational Free Energy: The VFE is the optimization
objective for both estimation and control. We use the definition
of the F based on [8], where the action is implicit within the
observation model x(a). Using the KL-divergence, the VFE is

F = KL
[
q
(
z̃
)||p(

z̃|x̃)]− log p(x̃) (4)

where q(z̃), p(z̃|x̃), and p(x̃) are the variational density, pos-
terior, and prior distribution. The VFE is an upper bound on
the model evidence, and the minimization of the VFE will
result in a minimization of surprise, and thus, a maximization
of model evidence.
State estimation using gradient optimization

˙̃z = Dz̃− kz∇z̃F(x̃, z̃) (5)

Control using gradient optimization

ȧ = −ka
∂ x̃
∂a
∇x̃F

(
x̃, z̃

)
(6)

where kz and ka are the gradient descent step sizes. The
VFE has a closed form under the Laplace and mean-field
approximations [3], [22] and it is defined as

F(
z̃, x̃

)
� − ln p

(
z̃, x̃

)− 1

2
ln(2π |�|) � −p

(
x̃|z̃)p

(
z̃
)

�
(
x̃− g

(
z̃
))T

�−1
x̃

(
x̃− g

(
z̃
))

+ (
Dz̃− f

(
z̃
))T

�−1
z̃

(
Dz̃− f

(
z̃
))

+ 1

2
ln |�x̃| + 1

2
ln |�z̃| (7)

where � is the optimal variance that optimizes the VFE [3].
The first two terms of (7) are the sensor and dynamics
prediction error, while the last two are sensory and dynamics
log variances (uncertainty associated).
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Algorithm 1 MAIC
Require: xd = {xd1 , xd2 , . . . , xdc }

while ¬goal reached do

x = [x1, x2, . . . , xc]← c Sensors

State Estimation˙̃z← multimodal state update law Eq. (9)

Control Action
ȧ = −∑c

m=1 kam∂axm�−1
m (xm − gm(z̃))

Euler Integration
z̃ += δt ˙̃z
a += δt ȧ

end while

Defining the Goal Through the Internal Dynamics: As
in [28], we define the system internal dynamics f (z̃) as

f
(
z̃, ρ = xd

) = ∂g
(
z̃
)

∂ z̃

(
xd − g

(
z̃
))

(8)

where ρ = xd steers the system toward the desired target. In
other words, the desired goal xd produces an error with respect
to the inferred state g(z̃), which causes an action toward xd

itself.

III. ARCHITECTURE AND DESIGN: MULTIMODAL

ACTIVE INFERENCE CONTROLLER

As long as we can learn the generative mapping of a cer-
tain sensory space, we can add any modality to (5), combining
free energy optimization [8] with generative model learning
and performing sensory integration. The online estimation and
control problem is solved by optimizing the VFE through
gradient optimization, computing (5) and (6). We first intro-
duce the required preliminaries. Consequently, we illustrate
the multimodal AIF update equations and the full algorithm.

A. Multimodal Active Inference

As discussed in [3], (7) can be extended for different
modalities. Hence, state estimation and control equations can
be derived for the multimodal case as well. We define the
sensory generative function g(z̃) with multiple modalities as
g(z̃) = [g1(z̃), . . . , gc(z̃)]. Therefore, substituting (7) into (5)
and (6) and rewriting it for the multimodal case, we can obtain
the multimodal state estimation update law

˙̃z = Dz̃+
c∑

m=1

(
km

∂gm
(
z̃
)

∂ z̃
�−1

m

(
xm − gm

(
z̃
)))

+ kz
∂f

(
z̃, ρ

)

∂ z̃
�−1

z̃

(
xd − f

(
z̃, ρ

))
(9)

and the control equation

ȧ = −
c∑

m=1

kam∂axm�−1
m

(
xm − gm

(
z̃
))

(10)

where km and kam are state estimation and control gradi-
ent descent step sizes related to modality m, and ∂axm =
(∂xm/∂a). Algorithm 1 illustrates the general multimodal AIF
controller scheme.

IV. ALGORITHM IMPLEMENTATIONS

In this work, we present two different implementations of
the same algorithm as proofs of concept, chancing the dimen-
sionality of the used sensory input. In the first case, we use
end-effector positions (i.e., low-dimensional sensory inputs)
xee, learning the generative mapping with Gaussian processes
(MAIC-GP), while in the second case, we scale to the full
raw images xv (i.e., high-dimensional sensory inputs), learn-
ing the mapping through a multimodal variational autoencoder
(MAIC-VAE).

A. MAIC-GP

Here, we describe the multimodal AIF for low-dimensional
inputs (e.g., end-effector position). We define the multisensory
state and the sensory generative functions, respectively, as

x = [
xq, xee

]
(11)

gq(μ) = μ (12)

gee(μ) = GPee(μ) (13)

where gq(μ), as in [25], is the proprioceptive generative
sensory function (i.e., joint states), and gee(μ) is the end-
effector generative sensory function. Since this implementa-
tion is a proof of concept and we are assuming that we
do not know the system dynamics, as in [15], gee(μ) is
computed using a Gaussian Process (GP) regressor between
proprioceptive sensory input and end-effector positions. This
approach is particularly useful because we can compute a
closed form for the derivative of the GP with respect to the
beliefs μ, which is required for the multimodal state update
law (9).

1) Learning: We train the model through guided self-
supervised learning. This generated a data set of 9261 pairs
end-effector positions and joint values (Xee, Xq). We use a
squared exponential kernel k of the form

k
(

xqi
, xqj

)
= σ 2

f e

(
− 1

2

(
xqi−xqj

)T
�

(
xqi−xqj

))

+ σ 2
n dij (14)

where xqi
, xqj
∈ Xq, dij is the Kronocker delta function, and

� is the hyperparameters diagonal matrix. We can compute
the end-effector location given any joint state configuration as

gee(μ) = k(μ, Xq)K−1Xee. (15)

Finally, we can compute the derivative of gee(μ) with respect
to μ as

∂gee(μ)

∂μ
= −�−1(μ− Xq

)T
[
k
(
μ, Xq

)T · α
]

(16)

where K is the covariance matrix, α = K−1Xee and · represents
elementwise multiplication. Additional information about GP
learning procedure can be found in Appendix B.

2) State Estimation and Control: Substituting (12) and (13)
into (9) and (10), we can now write the state estimation update
laws

μ̇ = μ(1) + kμ�−1
q εxq + kee�

−1
ee

∂gee(μ)

∂μ
εxee − kμ�−1

μ εμ

(17)
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μ̇(1) = μ(2) + kμ�−1
q̇ εq̇ − kμ�−1

μ εμ − kμ�−1
μ(1)εμ(1) (18)

μ̇(2) = −kμ�−1
μ(1)εμ(1) (19)

where �−1
i are the inverse variance (precision) matrices related

to state observations and internal state beliefs and εi are the
SPE, with i ∈ {xq, xq̇, xee,μ,μ(1)}. SPE represents the errors
between expected sensory inputs and observed ones and are
defined as

εxq = xq − μ (20)

εxq̇ = xq̇ − μ(1) (21)

εxee = xee − gee(μ) (22)

εμ = μ(1) + μ− xqd
(23)

εμ(1) = μ(1) + μ(2). (24)

Finally, we can rewrite the control equation as

ȧ = −ka

(
∂axq�−1

q εxq + ∂axq̇�−1
q̇ εxq̇

+ ∂axee
∂gee(μ)

∂μ
�−1

ee εxee

)
. (25)

Note that as in [25], in (25), the partial derivatives with
respect to the action are set to identity matrices, encoding
just the sign of the relation between actions and the change
in the observations. Although we can compute the action
inverse models ∂axq, ∂axq̇, ∂axee through online learning using
regressors [14], we let the adaptive controller absorb the non-
linearities. Thus, as described by [25], we just consider the
sign of the derivatives.

B. MAIC-VAE

Here, we describe the multimodal AIF controller for high-
dimensional sensory inputs. We use the autoencoder architec-
ture to compress the information into a common latent space z
that represents the system’s internal state. We define the multi-
sensory state and sensory generative functions, respectively, as

x = [
xq, xv

]
(26)

gq(z) = decoderq(z) (27)

gv(z) = decoderv(z) (28)

where decoderq(z) and decoderv(z) describe the mapping
between z and the sensory spaces. The interested reader can
find a detailed description of MAIC-VAE in [20].

1) Generative Models Learning: The multimodal varia-
tional autoencoder (MVAE) was trained through guided self-
supervised learning. The data set generated (50 000 samples)
consisted in pairs of images with size (128 × 128) and
joint angles (Xv, Xq). In order to accelerate the training, we
included a precision mask �xv = �−1

xv
, computed by the

variance of all images and highlighting the pixels with more
information. The augmented reconstruction loss employed was

L = MSE
((

1+�xv

)
gv(z), xv

)+MSE
(
gq(z), xq

)
(29)

where xq ∈ Xq and xv ∈ Xv. Appendix C provides a detailed
description of the MVAE learning procedure.

2) State Estimation and Control: As in MAIC-GP,
substituting the defined generative mappings, (27) and (28),
into (9) and (10), we can rewrite the state estimation update
law

ż = kv
∂gv

∂z
�−1

xv
(xv − gv(z))+ kq

∂gq

∂z
�−1

q (xq − gq(z))

− kz
∂f

∂z
�−1

f (xd − f (z, ρ)). (30)

As we do not have access to the high-order generalized
coordinates of the latent space z′ and z′′, we track both the
multimodal shared latent space z and the higher orders of the
proprioceptive (joints) state μ(1) and μ(2). Thus, we update
the proprioceptive state velocity and acceleration using (18)
and (19), while the joint angles are predicted by the MVAE:
μ = gq(z). Finally, as before the action (torque) is computed
by optimizing the VFE using (6). Here, since we cannot eas-
ily compute the partial derivative of gv with respect to the
action, we only consider the proprioceptive errors. Thus, the
torque commands are updated with the following differential
equation:

ȧ = −ka

(
�−1

q εxq +�−1
q̇ εxq̇

)
(31)

where even in this case we just consider the sign of the partial
derivatives ∂aμ, ∂aμ

(1).

V. RESULTS

A. Experiments and Evaluation Measures

We systematically evaluated our MAIC approach in a
7DOF Franka Emika Panda robot arm. We performed three
different experimental analyzes and compared the MAIC
approach against two state-of-the-art torque AIF controllers
(AIC [25] and uAIC [2]) and two classic controllers: 1) (MPC,
Appendix A) and 2) (IC, Appendix E).

1) Qualitative Analysis in Sequential Reaching
(Section V-C): We evaluated MAIC approaches
qualitative behaviors, focusing on how multimodal
filtering affects control accuracy on the presented
controllers.

2) Adaptation Study (Section V-D): We evaluated the
response of the system to unmodeled dynamics and
environment variations by altering dynamically the mass
matrix (inertial experiment), by adding an elastic con-
straint (constrain experiment), by adding random human
disturbances (human disturbances experiment), and by
adding random noise to the published joints values
(noisy experiment).

3) Ablation Analysis in Sequential Reaching (Section V-C):
We evaluated the algorithm’s accuracy and behavior
removing the extra modality from the algorithm.

In order to evaluate the experiments, we used the following
evaluation metrics.

1) Joints Perception Error: It is the error between the
inferred (belief) and the observed joint angle. The more
accurate the predictions are, the lower will be the
perception error.

2) Joints Goal Error: It is the error between the current
joint angles and the desired ones (goal).
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(a) (b) (c) (d)

Fig. 1. Goal poses images. (a) xvd1 . (b) xvd2 . (c) xvd3 . (d) xvd4 .

3) Image Reconstruction Error: It is the error between the
predicted visual input and the observed image. It is com-
puted as the Frobenius norm of the difference between
current and goal images. It describes the accuracy of the
visual generative model.

4) End-Effector Reconstruction Error: It is the Euclidean
distance between the predicted end-effector positions
and the ones computed through the forward kinematics
of the observed joints.

To summarize, joints perception and image reconstruction
errors measure how well the state is estimated, while joints
goal errors give a measure of how well the control task is
executed.

B. Experimental Setup and Parameters

The experiments were performed on the 7DOF Franka
Panda robot arm using ROS [13] as the interface, Pytorch [23]
for the MVAE, and Sklearn [24] for the GPs. An Intel
Realsense D455 camera was used to acquire visual gray scaled
images with size of 128×128 pixels. The camera was centered
in front of the robot arm with a distance of 0.8 m.

The tuning parameters for the MAIC controllers are as
follows.

1) �xv : Variance representing the visual sensory data con-
fidence, which was set as the variances of the training
data set.

2) δt = 0.001: Euler integration step.
3) �q = 3, �q̇ = 3, �μ = 5, �μ(1) = 5, �f =

4, and �ee = 6: Variances representing the confidence
of internal belief about the states.

4) kμ = 18.67, kq = 1.5, kv = 0.2, kee = 1.4, and ka = 9:
The learning rates for state update and control actions
respectively, were manually tuned in the ideal settings
experiment.

All experiments were executed on a computer with CPU:
Intel Core i7 8th Gen, GPU: Nvidia GeForce GTX 1050 Ti.1

C. Qualitative Analysis in Sequential Reaching Task

In order to analyze MAIC qualitative behavior, we designed
a sequential reaching task with desired goals xd = [xqd

, xeed ]
and xd = [xqd

, xvd ], respectively, defined for MAIC-GP and
MAIC-VAE. The sequential reaching task is evaluated using
four different desired states, defined by the final joint angles
{xqd1

, xqd2
, xqd3

, xqd4
}, expressed in radiants as follows.

1) xqd1
= [0.45,−0.38, 0.32,−2.45, 0.14, 2.06, 1.26].

2) xqd2
= [0.70,−0.15, 0.10,−2.65, 0.31, 2.55, 1.23].

3) xqd3
= [−0.03,−0.73,−0.25,−2.69,−0.18, 1.83, 0.79].

4) xqd4
= [0.31,−0.47, 0.38,−2.16, 0.14, 1.71, 1.28].

1For reproducibility, the code is publicly available
at https://github.com/Cmeo97/MAIC.

(a) (b)

(c)

(d) (e)

Fig. 2. Qualitative analysis of the error measures in the sequential reaching
of four goals. All errors present peaks when a new goal is set. (a) and (d)
Each line represents the error between the ith joint belief and the ground truth.
(b) Image reconstruction error. (c) Sequence of the predicted images by the
generative model along the trajectory. (e) End-effector Reconstruction error.

The desired end-effector positions {xeed1 , xeed2, xeed3 , xeed4}
and the desired visual input {xvd1 , xvd2 , xvd3 , xvd4}, where both
desired end-effector positions and visual input are defined con-
sistently with the desired joint positions (Fig. 1). In order to
select unbiased desired goals, all the desired joint poses were
randomly sampled from the data set. In all experiments, the
robot starts from the home position (xqhome = xqd4

rad).

1) MAIC-VAE Qualitative Behavior: Fig. 2(a)–(c) illus-
trates MAIC-VAE qualitative internal behavior. It can be
seen that both modalities are successfully estimated. However,
Fig. 2(a) shows that joints reconstructions present overshoot,
leading to a similar behavior on the control task, as shown
in Fig. 3. Moreover, the robot updates its internal belief by
approximating the conditional density, maximizing the like-
lihood of the observed sensations, and then generates an
action that results in a new sensory state, which is consis-
tent with the current internal representation. However, the
visual decoder requires much more computational time than
the main control loop, leading to the irregular behavior shown
in Fig. 2(a). Although Fig. 2(b) shows that image reconstruc-
tions present different errors for different poses, Fig. 2(c)
shows that the image reconstructions through the experiment
are well reconstructed.
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TABLE I
QUANTITATIVE JOINTS GOAL ERRORS COMPARISON. RMSE [RAD] AND STD [RAD] OF THE JOINTS ERRORS ARE PRESENTED,

LOWEST ERRORS ARE SHOWED IN Black Bold AND SECOND LOWEST IN Blue Bold. ERRORS ARE COMPUTED FOR

THE FULL EXPERIMENT, TRANSIENT PHASE (0–10 S) AND STEADY STATE (10–20 S)

Fig. 3. Vanilla comparison. Lines represent the average of absolute joints
goal errors. Peaks are present when the new goal is set.

2) MAIC-GP Qualitative Behavior: Fig. 2(d) and (e) illus-
trates MAIC-GP qualitative internal behavior. As in the
previous case, both modalities are successfully estimated.
Fig. 2(d) shows that MAIC-GP joint estimations do not
overshoot.

3) Vanilla Comparison: Fig. 2 illustrates the qualitative
behavior of the compared controllers. From one goal to the
next one, the errors drop down. Although the joint belief
errors [Fig. 2(a)] show synchronous convergence without sig-
nificant steady-state errors, due to slow algorithmic frequency,
the MVAE-AIC behavior is not smooth.

Moreover, some goals can be better reconstructed than oth-
ers, resulting in different steady-state errors. The reason is that
different z solutions lead to similar images. Furthermore, due
to dynamical model errors, MPC and IC present significant
steady-state errors. Finally, MAIC-VAE and uAIC overshoot,
while all the other present overdamped behaviors.

D. Adaptation Study

To investigate our approach adaptability to unmodeled
dynamics and environment variations we systematically tested

(a) (b)

Fig. 4. Experimental setup. (a) Inertial experiment: a bottle half full of water
is attached to the 5th joint. (b) Constraint Experiment setup: an elastic band
links the first to the 5th joint.

the controllers in four experiments. The first three experi-
ments aim to evaluate the adaptability to unmodeled dynamics
and the robustness against variations on inertial parameters.
First, we attached a bottle half full of water to the 5th joint
[Fig. 4(a)]. As a result, due to water movements, the robot
inertia changes dynamically. Second, we constrained the robot
with an elastic band [Fig. 4(b)], connecting the first robot
link to the last one and, therefore, introducing a substan-
tial change in the robot dynamics. Third, we perturbed the
robot along the experiment pushing it along random direc-
tions and, therefore, testing if they are able to recover from
human random disturbances. Finally, we reevaluated the con-
trollers in the presence of sensory noise, focusing on the
robot behavior. Again, we compared our algorithm implemen-
tations (MAIC-GP and MAIC-VAE) with AIC, uAIC, MPC,
and an IC. All controllers parameters were the same as in the
previous experiments: no retuning was done. Table I reports
the root-mean-square errors (RMSE) and the related standard
deviations (std), which represent all the results collected dur-
ing the experiments, the most accurate results are highlighted
in black bold and the second most accurate in blue bold. In
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(a) (b) (c)

Fig. 5. Lines represent the average of absolute joints goal errors. Peaks coincide with the instants when a new goal is set, overshoots instead are present some
seconds later, when the error already dropped substantially. (a) Inertial Experiment. (b) Constraint Experiment. (c) Red rectangles show the time intervals on
which the disturbances are applied, small peaks represent human disturbances.

order to evaluate quantitatively both steady-state errors, tran-
sient behavior, and average errors, we present both RMSE
and std for each phase. On average, MAIC-GP is the most
robust against dynamic parameters change and the most adap-
tive to unmodeled dynamics, while MAIC-VAE is the best
one on noise rejection. Only at the steady-state (after 10 s
of execution) AIC has the lowest error on both Vanilla and
Human disturbances experiments and uAIC at inertial experi-
ment due to its integration term. Furthermore, at the steady
state, MAIC-GP adapts better in the constraint experiment
and MAIC-VAE is the best one on noise rejection. Finally,
although both MPC and IC reported the worst performances
in all experiments, they presented significant offsets already
in the vanilla comparison. Therefore, we will focus just on
their qualitative behaviors. We now present the details of each
experiment.

1) Inertial Experiment: A bottle half full of water has been
attached to the 5th robot joint. The water moves along the
experiment, changing the inertial characteristic of the object
attached to the robot. Fig. 5(a) illustrates the controllers’ qual-
itative behaviors during the inertial experiment. It can be seen
that due to the unmodeled dynamics, IC and MPC show differ-
ent offsets than the ones in the vanilla comparison. Moreover,
MPC shows an unstable behavior in one of the desired poses.
Furthermore, since all the AIF controllers do not use any
robot model, they are not affected by the change of dynamics.
Table I shows that on average the most accurate controllers
are MAIC-GP (3.33E-03), uAIC (3.38E-03), and MAIC-VAE
(3.40E-03).

2) Elastic Constraint Experiment: The experiment aims to
drastically change the underlying dynamics of the system.
Specifically, a rubber band was attached to the robot. To
prevent the robot from entering safety mode, we chose to link
the first joint to the last one. We bounded the elastic ten-
sion to a sustainable value. Fig. 5(b) shows that both classic
and unimodal AIF controllers are significantly affected by the
elastic tension, presenting remarkable offsets. In contrast, as
recorded on Table I, MAIC-GP and MAIC-VAE present the
highest control accuracy.

3) Human Disturbances Experiment: This experiment aims
to evaluate compliance and controllers’ recovery ability after

Fig. 6. Noisy experiment. Lines represent the average of absolute joints goal
errors. Peaks coincide with the instants when a new goal is set.

random disturbances. To do this, a human operator pushed the
robot in random directions during the experiment. Red shaded
areas in Fig. 5(c) indicate the periods on which the robot is
disturbed. Apart from the MPC, which is not able to recover
and perform the task, all the other ones fully recover from
the disturbances, showing a safe behavior in case of human
disturbances.

4) Noise Experiment: We reevaluated the controller behav-
ior in the presence of proprioceptive noise, focusing on
the noise rejection capabilities of the six controllers.
Proprioceptive noise was implemented as additive noise sam-
pled from a normal distribution rq ∼ N (0, �rq = 0.1). Fig. 6
shows that MAIC controllers were the most adaptive, present-
ing the smoothest behaviors. The reason is that multimodal
filtering acts as a filter for the injected noise, reducing its
effect and allowing a smooth control behavior. All the other
controllers oscillate significantly more along the experiment.

E. Ablation Study

In order to evaluate the effect of the extra modalities, we
performed an ablation study removing the extra modality from
the algorithm scheme. Fig. 7 shows that by removing the
visual modality, the behavior becomes much smoother. Indeed,
the control loop frequency increased from 120 to 1000 Hz.
However, Table II reports that the control accuracy does not
change significantly. Moreover, from Fig. 7, it can be seen that
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Fig. 7. Ablation study. Lines represent the average of absolute joints goal
errors. Peaks are present when the new goal is set.

TABLE II
ABLATION STUDY: QUANTITATIVE ANALYSIS. RMSE [RAD] AND

STD[RAD] ARE SHOWN FOR BOTH MAICS AND THEIR ABLATED

VERSIONS. LOWEST ERRORS ARE SHOWED IN Black Bold AND

SECOND LOWEST IN Blue Bold

controllers’ response behaviors do not change when they are
ablated.

VI. LIMITATIONS AND ADVANTAGES

On the one hand, although the quantitative table comparison
shows that on average MAIC implementations are more adap-
tive and accurate, they still have limitations. First, multimodal
filtering requires more computational time, leading to irregular
behaviors. Indeed, the ablation study clearly shows that when
removing the visual modality, the control behavior becomes
significantly smoother. Using a faster GPU may solve this
issue. Moreover, the multimodal state estimation depends on
the accuracy of the learned generative mapping. In all exper-
iments, we used a black background to facilitate the image
reconstruction. Furthermore, another limitation is that for goal-
directed behaviors, we need to provide the desired values for
all the sensor modalities, which may not be always avail-
able. However, as in [26], it may be possible to combine
MAIC with a high-level controller in order to control com-
plex robotics systems (e.g., soft robots). On the other hand,
MAIC can incorporate any type and number of sensors besides
the end-effector position or images. It can work in an imagi-
nary regime (Appendix D) by mentally simulating the expected
behavior, opening many opportunities for future research such
as model predictive AIF controllers, where the controller pre-
dicts N steps head. Besides, the multimodal filtering scheme
can be integrated into other kinds of controllers, such as an IC.

VII. CONCLUSION

We described MAIC, a scalable multisensory enhancement
of the torque proprioceptive AIF controller presented in [25]
and the velocity controller presented in [22]. Our approach

makes use of the alleged adaptability and robustness of AIF,
taking advantage of previous works and overcoming some
related limitations. We solved state estimation by combin-
ing representation learning and multimodal filtering with VFE
optimization, improving the representational power and adapt-
ability. Hence, we can perform online multisensory torque
control, without the use of any dynamic or kinematic model of
the robot at runtime. Furthermore, we performed a systematic
comparison of several controllers on different experiments pro-
viding both qualitative and quantitative analysis on a robotic
manipulator. The results showed that our proposed algorithm
is more adaptive than state-of-the-art torque AIF baselines and
classical controllers (MPC and IC), and it was more accurate
in the presence of sensory noise, showing the strongest noise
rejection capability. MAICs were highly adaptive and robust to
different contexts, such as changes in the robot dynamics (i.e.,
elastic constraint) and changes in the robot properties (i.e.,
inertial properties). Furthermore, our simplified architecture
makes the controller easy to deploy in any robotic manipu-
lator. In line with the Bayesian hypothesis of how the brain
processes the information from the senses, this work reinforces
the idea that learning to predict can be directly transformed
into adaptive control. The experimental validation shows the
viability of this approach to standard industrial robotic tasks.

APPENDIX A
MODEL PREDICTIVE CONTROLLER

The results are compared to a standard model predictive
torque control (MPC) formulation.

1) Optimization Problem: Neglecting external forces, the
dynamics of the system are defined by the equation of
motion as

τ = M(q)q̈+ C(q, q̇)q+ g(q)

which is composed of the mass matrix M, the Coriolis matrix
C, and the gravitational forces g [6]. Various approaches to
compute the forward dynamics have been proposed [11]. The
forward dynamics can be discretized to obtain the transition
function

zk+1 = f (zk, ak)

where z is the concatenated vector of joint positions, velocities,
and accelerations.

The control problem can be formulated as an optimization
problem as follows:

J� = min
z0:N,a0:N

N∑
k=0

J(zk, ak) (32)

s.t. zk+1 = f (zk, ak) (33)

ak ∈ U , zk ∈ Z (34)

z0 = z(0) (35)

where J is the objective function, U and Z are the admissible
sets of actions and states respectively, and z0 is the initial
condition. The objective function was formulated as follows:

J(zk, ak) =
(
qk − qgoal

)T
Wgoal

(
qk − qgoal

)+ aT
k Waak (36)
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TABLE III
PARAMETER SETTING FOR MPC

Fig. 8. End-effector reconstruction error.

where Wgoal and Wτ are the weighting matrices for the goal
configuration and the actions respectively.

2) Realization: In this work, we used the recursive
Newton–Euler algorithm to solve the forward dynamics and a
second-order explicit Runge–Kutta integrator. The parameter
setting is summarized in Table III. In accordance to the time
step, the control frequency is 10 Hz. The optimization problem
is solved using the nonlinear solver proposed in [31] and the
corresponding implementation [5]. The forward dynamics are
computed using [11].

APPENDIX B
GP TRAINING

Fig. 8 illustrates a 3-D scatter plot that shows a heatmap
of the end-effector reconstruction errors. Moreover, the axes
define the cartesian workspace we considered in our experi-
ments, where the robot base is placed at xbase = {0, 0, 0} and
is frontally directed toward the x-direction. What is more, in
order to define the training set we created a cubic grid of points
over the defined workspace, splitting the cubic workspaces
into 9261 points, 21 for every direction (i.e., x, y, and z
axis). Consequently, we used an inverse kinematics algorithm
from roboticstoolbox-python in order to define the joint values
related to the obtained end-effector positions. We used 80%
of these paired set as training set and the remaining 20% as
the test set. Finally, from Fig. 8, it can be seen that on average
the reconstruction error is roughly 0.010 m.

APPENDIX C
MULTIMODAL VAE TRAINING

In order to create the image data set, we used an impedance
controller to explore the workspace defined in Appendix B
and collect pictures of the robot in different poses. We used

Fig. 9. Image reconstruction error.

the joint values from the GP training set as a reference for
the controller and with subscribers we collected both joints
values and related images, creating a data set of 50 000 sam-
ples of paired joint values and images. The multimodal VAE
was then trained using the loss function defined by (29). The
network architecture and parameters are publicly available at
https://github.com/Cmeo97/MAIC. Fig. 9 presents the average
reconstruction loss during the training, and 50 epochs were
used to train the network.

APPENDIX D
MENTAL SIMULATION

Unlike most of the AIF controllers present in the literature, a
great advantage of combining our approach with a multimodal
VAE is the possibility to perform imagined simulations. In
other words, given xd, the entire experiment can be simu-
lated. Since sensory data are not available, the state update
law becomes

ż = −kz
∂f

∂z
�−1

f (xd − f (z, ρ)). (37)

As a result, performing the integration step of the new internal
state and decoding it, the updated {xv, xq} can be computed
and the new errors can be backpropagated again, creating a
loop that allows the system to do imaginary simulations.

Fig. 10(a) and (b) shows, respectively, imagined joints error
and images reconstruction error through the entire simula-
tion. These results show that the errors converge faster to zero
than in the normal regime [Fig. 2(a)] as it does not need to
accommodate the real dynamics of the robot.

APPENDIX E
IMPEDANCE CONTROLLER

The presented impedance controller [10] is based on the
following dynamic equation:

τ = K
(
qgoal − q

)+ D
(−q̇

)+ C(q, q̇)q+ g(q)

where K is the set joint stiffness, D is the corresponding
critical damping, C is the Coriolis matrix, and g is the gravi-
tational term. Considering that the dynamics of the robot are
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(a)

(b)

Fig. 10. Mental simulation of sequential reaching of four goals. The goal
is updated on time steps where peaks are present. (a) Joints errors of an
imagined simulation. Each line represents the error of the ith joint. (b) Image
reconstruction errors of an imagined simulation.

described by

M(q)q̈+ C(q, q̇)+ g(g) = τ + τ ext (38)

with the impedance controller, the dynamics result in

M(q)q̈ = K(qgoal − q)+ D(−q̇)+ τ ext (39)

this translates in a second-order critically damped dynamics
of the robot in the transition toward the desired goal.
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