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Preface

The Egyptian landscape has been rapidly changing since the last decades. Most of
these changes are a consequence of the Aswan High Dam construction, which stopped
the Nile’s yearly floods and brought electricity to Egyptian homes. Until that moment,
urban settlements could only exist in elevated areas within the floodplain, as the other
areas were subject to yearly floods. After completion of the Aswan High Dam, the
urban settlements started to grow, most rapidly in larger cities, with Greater Cairo as
an extreme case, with an exponentially increasing population since the early twentieth
century.

The research reported in this thesis is focused on the analysis of the landscape
dynamics of Egypt, with special attention to (i) urban expansion in urban and rural
areas, and (ii) dune dynamics. The latter can become a hazard to agricultural fields and
villages located in the western edge of the Nile floodplain.

During this PhD study, I experienced a revolution in the Earth Observation domain,
starting from the open data policies, the Copernicus Sentinels, and a data process-
ing paradigm shift, evolving from the traditional tools and methods to the current
exploitation platforms. These enabled working with satellite data without the need of
downloading them, increasing the processing possibilities.

In this multidisciplinary research, I had the chance to learn under the supervision
of Ramon Hanssen and Gert Verstraeten, from two of the world leading faculties and
research groups in their relative disciplines, i.e., (In)SAR theory and applications, geo-
graphy and geomorphology of Egypt, dune formation, dune dynamics and Egyptian
archaeology.

I explored the synergy of fusing Synthetic Aperture Radar (SAR) data with multi-
spectral optical data, and the design of Artificial Neural Networks (ANN) to develop
machine learning methods that improve state-of-the-art methods, especially for Land
Use Land Cover (LULC). In collaboration with Dr. Fabio Cian I explored the usage of
large time series statistics and Big data platforms to improve LULC classification models.
Together with Dr. Marco Chini, I developed the first fully automatic method to compute
dune dynamics using SAR data.

In collaboration with Prof. Dr. Antonio M. Ruiz-Armenteros I analysed the structural
stability of Aswan High Dam using interferometry with the available SAR sensors.

I hope that this thesis will prove useful for new generations of scientists, and sparkle
the same excitement as I experienced writing it.

José Manuel Delgado Blasco
Delft, April 2023
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Summary

Monitoring rapidly changing landscapes, especially those which cannot be easily
accessed due to climate conditions, access or insecurity has been always a very chal-
lenging task. It is particularly timely to be able to accurately monitor such changing
landscapes given the current socio-economical changes and population growth of many
developing countries, as land is a limited resource and it is crucial that it is used in a
planned and sustainable manner. Egypt is the perfect example of a country where the
population increase linked to urban growth goes at the expense of agricultural land.
Landscape dynamics in Egypt are changing very rapidly. In particular the continuous
growth of urban areas, sand storms regularly covering roads and buildings, and dunes
approaching villages and crop fields in the western edge of the Nile floodplain call for a
continuous monitoring strategy. Satellite remote sensing is optimally suited to provide
the required spatio-temporal coverage. Yet, currently used satellite remote sensing
technologies have shortcomings that need to be addressed. Optical remote sensing
techniques fail to detect the construction of buildings when the same materials (mud
blocks) are used as their natural surroundings.

Dunes need also to be regularly monitored, specially the ones that are considered
hazards as they migrate towards inhabited areas or crop fields, but this has been tradi-
tionally done or at very small scale and using time consuming and expensive procedures.
In this research, we investigated the combination of optical and microwave (SAR) satel-
lite data to overcome the aforementioned limitations and we propose the usage of SAR
data to analyse dune migration phenomena.

In this study we develop appropriate methods and provide accurate maps to facilitate
landscape dynamics analysis for Egypt, focusing on urban sprawl and dune dynamics.
We improved the detection of urban areas and developed an automatic method for the
monitoring the dynamics of individual dunes. Our method for urban change detection
overcomes the limitations of previous urban maps derived from optical sensors and
improved state-of-the-art global urban layers. Additionally, our method for individual
dune dynamics improves the traditional field survey methods, overcoming limitations
of the optical sensor methods and is, to our knowledge, the first automatic method
using SAR backscatter to monitor individual dune dynamics at dune-field scale.

We employed satellite data fusion methods, artificial neural networks, and big data
analysis to develop land cover classification methods applicable not only in Egypt but
also in similar environments. Additionally, the developed method for dune dynamics
analysis with SAR is also exportable to other dune-fields and dune types, enabling a
more frequent individual dune dynamics monitoring at dune-field scale, which was not
possible until now.

The proposed methods for land use classification can be applied to other locations
with similar conditions, and countries rapidly changing landscapes with arid environ-
ment. These methods can help in urban planning activities or in monitoring systems, as
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XII Summary

they can detect areas where built-up activities are in early stages, or areas with undefined
anthropogenic disturbances.

The proposed method for dune mapping and dune migration analysis could be
employed for i) permanent monitoring of dune fields, ii) planning building activities
inside a sandy desert,iii) protecting and planning any possible relocation activities of
already-built infrastructure on Earth or any other planet with sandy desert and dune
formations, among others.



Samenvatting

Het monitoren van snel veranderend landgebruik is een uitdagende taak, in het
bijzonder op locaties die moeilijk toegankelijk zijn, bijvoorbeeld door klimaat- of vei-
ligheidsomstandigheden. Met name voor ontwikkelingslanden, vaak gekenmerkt door
grote bevolkingsgroei en snelle sociaal-economische veranderingen, is het tijdig volgen
van veranderend landgebruik van groot belang. Bruikbaar land is daar schaars, en moet
bovendien planmatig en duurzaam worden gebruikt. Egypte is een voorbeeld van een
land waar bevolkingstoename leidt tot stedelijke groei ten koste van landbouwgrond.
De dynamiek van het landgebruik in Egypte is groot. Hierdoor is een permanente en
systematische monitoringsstrategie vereist, zowel met het oog op de voortdurende groei
van stedelijke gebieden, maar ook met betrekking tot de effecten van zandstormen die
regelmatig wegen blokkeren en gebouwen bedekken, en de systematische beweging van
zandduinen die dorpen en akkers aan de westelijke rand van de uiterwaard van de Nijl
bedreigen.

Satelliet remote sensing is optimaal geschikt om de vereiste spatio-temporele dek-
king te verschaffen. Echter, de momenteel gebruikte technologieën vertonen signifi-
cante tekortkomingen. Zo slaagt optische remote sensing er bijvoorbeeld niet goed in
om de constructie van gebouwen te detecteren indien hiervoor dezelfde materialen
(kleiblokken) worden gebruikt als hun natuurlijke omgeving. Ook de positie en migra-
tie van zandduinen dient regelmatig te worden gecontroleerd, vooral duinen die als
gevaarlijk kunnen worden beschouwd omdat zij zich richting bewoonde gebieden of
akkers bewegen. Traditioneel wordt dit alleen lokaal gedaan, gebruikmakend van tijdro-
vende en dure procedures. In dit onderzoek combineren we optische en microgolf (SAR)
satellietgegevens om bovengenoemde beperkingen te overwinnen en analyseren we
duinmigratieverschijnselen met SAR-gegevens. De focus ligt hierbij op het ontwikkelen
en testen van methoden en het leveren van nauwkeurige kaarten om de analyse van
landgebruiksdynamiek van Egypte te vergemakkelijken, met de nadruk op stadsuitbrei-
ding en duindynamiek. De detectie van stedelijke gebieden is hierdoor sterk verbeterd
en de dynamiek van individuele duinen wordt automatisch gemonitord. De nieuwe me-
thode voor de detectie van stedelijke veranderingen verbetert eerdere stedelijke kaarten,
gebaseerd op uitsluitend van optische sensoren, en dientengevolge de state-of-the-art
globale stedelijke kaartlagen. De methode voor het monitoren van de dynamiek van in-
dividuele duinen is effectiever dan de traditionele veldkarteringsmethoden, overtreft de
optische sensormethoden, en is de eerste automatische methode die gebruik maakt van
SAR-backscatter om de dynamiek van individuele duinen op veldschaal te monitoren.

Satelliet data fusie methoden, kunstmatige neurale netwerken, en big data analy-
ses zijn gebruikt om land-cover classificatie methoden te ontwikkelen die niet alleen
in Egypte toepasbaar zijn, maar ook in vergelijkbare omgevingen. Zij kunnen helpen
bij stadsplanningsactiviteiten of in monitoringsystemen, omdat zij gebieden kunnen
detecteren waar de bebouwingsactiviteiten zich in een vroeg stadium bevinden, of
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XIV Samenvatting

gebieden met ongedefinieerde antropogene verstoringen. Ook de methode voor duin-
dynamiekanalyse met SAR is exporteerbaar naar andere duingebieden en duintypes,
waardoor een frequentere individuele duindynamiekmonitoring op duinveldschaal
mogelijk wordt. Deze zou kunnen worden gebruikt voor permanente monitoring van
duingebieden, planning van bouwactiviteiten in een zandwoestijn, de bescherming en
planning van eventuele verplaatsingsactiviteiten van reeds gebouwde infrastructuur, of
de analyse van zandwoestijn- en duinformaties op andere planeten.



Resumen

El seguimiento de los paisajes que cambian rápidamente, especialmente aquellos a
los que no se puede acceder fácilmente debido a las condiciones climáticas, el acceso
o la inseguridad, ha sido siempre una tarea muy difícil. Es especialmente oportuno
poder supervisar con precisión esos paisajes cambiantes, dados los actuales cambios
socioeconómicos y el crecimiento demográfico de muchos países en desarrollo, ya que
la tierra es un recurso limitado y es crucial que se utilice de forma adecuada, planificada
y sostenible.

Egipto es el ejemplo perfecto de un país en el que el aumento de la población ligado
al crecimiento urbano va en detrimento del suelo agrícola. La dinámica del paisaje en
Egipto está cambiando muy rápidamente. En particular, el crecimiento continuo de las
zonas urbanas, con tormentas de arena que cubren regularmente las carreteras y los
edificios, y las dunas que se acercan a los pueblos y a los campos de cultivo en el borde
occidental de la llanura de inundación del Nilo exigen una estrategia de seguimiento
continuo. La teledetección por satélite es idónea para proporcionar la cobertura espacio-
temporal necesaria. Sin embargo, las tecnologías de teledetección por satélite que se
utilizan en la actualidad presentan deficiencias que es preciso subsanar. Las técnicas
de teledetección óptica no detectan la construcción de edificios cuando se utilizan los
mismos materiales (bloques de barro) que su entorno natural.

También es necesario vigilar periódicamente las dunas, especialmente las que se
consideran peligrosas porque migran hacia zonas habitadas o campos de cultivo. Esto
se ha hecho tradicionalmente, pero a muy pequeña escala y utilizando procedimientos
costosos y que requieren mucho tiempo.

En esta tesis, investigamos la combinación de datos satelitales ópticos y de micro-
ondas (SAR) para superar las limitaciones mencionadas y proponemos el uso de datos
SAR para analizar los fenómenos de migración de dunas. En este estudio desarrollamos
métodos adecuados y proporcionamos mapas precisos para facilitar el análisis de la
dinámica del paisaje en Egipto, centrándonos en la expansión urbana y la dinámica de
las dunas. Mejoramos la detección de las zonas urbanas y desarrollamos un método au-
tomático para el seguimiento de la dinámica de las dunas individuales. Nuestro método
para la detección de cambios urbanos supera las limitaciones de los mapas urbanos
anteriores derivados de sensores ópticos y mejora las capas urbanas globales de última
generación. Además, nuestro método para la dinámica de dunas individuales mejora los
métodos tradicionales de estudio de campo, superando las limitaciones de los métodos
de sensores ópticos y es, hasta donde sabemos, el primer método automático que utiliza
la retrodispersión SAR para monitorizar la dinámica de dunas individuales a escala de
campo de dunas.

Empleamos métodos de fusión de datos satelitales, redes neuronales artificiales y
análisis de big data para desarrollar métodos de clasificación de la cobertura del suelo
aplicables no sólo en Egipto sino también en entornos similares. Además, el método
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desarrollado para el análisis de la dinámica de las dunas con SAR también es exportable
a otros campos de dunas y tipos de dunas, lo que permite un seguimiento más frecuente
de la dinámica de las dunas individuales a escala de campo de dunas, lo que no era
posible hasta ahora.

Los métodos propuestos para la clasificación del uso del suelo pueden aplicarse a
otros lugares con condiciones similares, y a países con paisajes rápidamente cambiantes
con un entorno árido. Estos métodos pueden ayudar a las actividades de planificación
urbana o a los sistemas de monitorización, ya que permiten detectar las zonas en
las que las actividades de construcción están en sus primeras etapas, o las zonas con
perturbaciones antropogénicas no definidas.

El método propuesto para el mapeo de dunas y el análisis de la migración de las
dunas podría emplearse para i) el monitoreo permanente de los campos de dunas,
ii) la planificación de las actividades de construcción dentro de un desierto arenoso,
iii) la protección y la planificación de cualquier posible actividad de reubicación de la
infraestructura ya construida en la Tierra o cualquier otro planeta con desierto arenoso
y formaciones de dunas, entre otros.
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1
Introduction

1.1. Motivation
The world’s landscape is transforming rapidly and monitoring these changing land-

scapes is a very challenging task. Due to the current socio-economical changes and
population growth of many developing countries, there is a huge anthropogenic pres-
sure on land cover (Brink et al., 2014; Dong et al., 2019), including on the one hand urban
expansion and on the other hand agricultural development. Hence, it is particularly
timely to accurately monitor such changing landscapes, as land is a limited resource
and it is crucial that it is used in a sustainable manner.

The research here presented is framed within the STEREO-II project called "An-
thropogenic and physical landscape dynamics in large fluvial systems" (APLADYN)
(BELSPO, 2019), from the Belgian Science Policy Office (BELSPO). In particular, this
research contributed to the APLADYN project with the development of monitoring
tools and the provision of accurate measurements of the anthropogenic and physical
landscape dynamics of large fluvial systems. We had focused our study on Egypt, as
it is the perfect example of a country where the population increase linked to urban
growth goes at the expense of agricultural land, and its landscape had suffered a huge
transformation in the last decades, especially in urban growth, since the completion of
the Aswan High Dam.

The controlled and uncontrolled changes that Egypt suffered are also linked to its
socio-economical and geo-political factors, which also play an important role in its
urban transformation, and had a direct effect on the reduction of available fertile and
arable land within the Nile floodplain. This reduction pushed the conversion of some
desert areas into new arable land, and after several years, this land becomes abandoned
or decommissioned and turned back to desert.

Analyzing landscape dynamics in arid environments using field surveys and medium
resolution optical data has been and is still widely used, but the methods employed
in such analysis present several limitations. We want to improve these methods by
introducing the usage of SAR data in specific domains such as urban expansion analysis
and dune dynamics.

1
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1.2. Background and Problem statement
Since the origin of remote sensing, applications had been developed using the first

available source of data, i.e. aero-photography Karan (1960); Bowden and Brooner
(1970); Vinogradov (1977); Kozlov (1979) which later included also optical or multi-
spectral satellite imagery acquired by IRS-1 and Landsat satellites Miller (1978); Punkari
(1982); Mainguet (1984); Payette and Filion (1985). Since then and until recent years,
and despite the appearance of the first Synthetic Aperture Radar (SAR) satellites in 1991,
land mapping applications such as land cover classification have been dominated by
the usage of optical imagery despite its known limitations (according to Google Scholar
only 10% of the publications used SAR data for land cover classification purposes from
1991 to 1999). These limitations include dependency on sun illumination, cloud cover
or difficulties to differentiate objects composed of similar materials. On contrary, SAR
imagery is weather independent and can acquire images independently of day/night
and weather conditions. However, only a minority started to use SAR data since its
origin. Some of the reasons could be due to their data access policies, their complexity
to process the data (specific methods, software and knowledge where needed) or their
immediate differences to interpret with the optical satellite data, which is more similar
to what the human eye is used to see.

When working in arid environments, (e.g Egypt), optical data faces additional dif-
ficulties in mapping the urban growth of cities, where periodic sand storms covering
roads and building roofs add more difficulty to the land cover mapping tasks of such
environments, preventing, for example, an accurate detection or urban features.

After listing above some of the different limitations of the most used techniques,
and exactly in these scenarios, it is when SAR data needs to be investigated and when
possible, also integrated in approaches that could improve the traditional land cover
methods.

While SAR data had already demonstrated a huge potential for sand dune mapping
and/or dune characterization (Blumberg, 1998), practical studies still use traditional sur-
vey tools (Barnes, 2001; Al-Harthi, 2002; Käyhkö, 2007; Santalla et al., 2009; Kostaschuk
and Best, 2005; Baptista, P; Bastos, L; Bernardes, C; Cunha, T; Dias, 2008; Nuyts et al.,
2020) or satellite optical data (Mohamed and Verstraeten, 2012; Hermas et al., 2004;
Nuyts et al., 2020). Traditional survey tools are time-consuming and provide data over
very limited and selected areas while optical or SAR data could potentially provide
observations more frequently and in a larger-scale. However, no automatic method was
found at the moment of initiating this research.

Countries that could benefit the most from the exploitation and inclusion of SAR
data in their daily monitoring activities could be the ones located in arid regions and
suffering an acceleration rate of demographic increase and urban pressure. A clear
example is Egypt, where Greater Cairo had not stopped growing and where all the above
limitations are found in papers studying Cairo and Egypt.

This dissertation aims to improve methodologies, by introducing the usage of SAR
data, to overcome limitations of the traditional methods which employed multi-spectral
or field survey methods,with special interest on urban, rural, and desert areas of Egypt.

We present an overview of the state-of-the-art methods found in literature, which
have evolved since the beginning of this PhD research until its end for each of the main
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techniques employed.

Landscape dynamics can be analyzed using multi-temporal land cover maps. In
this regard, land cover classification has traditionally been derived from optical data.
However, this has shown already its limitations, which are still visible in the Sentinel-2
prototype Land Cover map 20m of Africa released on 2017 (European Space Agency,
2017), but also in previous works of land cover classification with problems distinguish-
ing between different objects composed of the same material can be difficult. Stewart
et al. (2004) reported difficulties in spectrally distinguishing urban and desert features
from optical sensors in the desert areas of Greater Cairo, due to the heavy layer of
sand/dust that coats buildings and the fact that in this area construction materials are
sourced from the nearby desert land.

More recently, the urban sprawl of Greater Cairo has been also analyzed using
TerraSAR-X data and Landsat data (Taubenböck et al., 2008) from 1972 to 2008, using a
statistical feature based approach, extending his initial research with urban data derived
from TerraSAR-X data for 2010 (Taubenböck et al., 2012). However, his results classified
cemeteries as urban, and these should not be taken into consideration for accounting
for the urban population density.

Finally, more recent efforts are dedicated to get global urban and global land cover
layers such as the Global Urban Footprint (Esch et al., 2017, 2011) processed by the
German Aerospace Center, the Global Human Settlements layers from the Joint Research
Center (Florczyk et al., 2018) or the ESA-CCI Land cover maps (European Space Agency,
2017). However, each of them come with its advantages and limitations when using
them at regional or small scale, and they are designed with different methods and
satellite data.

Since the last decades, the usage of artificial intelligence methods has been exploited
for land cover classification, starting with machine learning techniques such as Multi-
layer Perceptron (MLP), Support Vector Machines (SVM), Random Forest (RF), etc. and
more recently also Deep Learning (DL) techniques are being used, despite needing much
higher computing resources and training data than traditional supervised classification
methods.

Regarding natural landscape dynamics, the research will focus on dunes dynamics,
as it has been traditionally studied and measured using field surveys, with measuring
tape roads (Barnes, 2001; Al-Harthi, 2002), optical and electronic levelling (Käyhkö,
2007), DGPS (Santalla et al., 2009; Kostaschuk and Best, 2005; Baptista, P; Bastos, L;
Bernardes, C; Cunha, T; Dias, 2008), RTK-GPS (Pardo-Pascual et al., 2005; Mitasova et al.,
2005), total station (Arteaga et al., 2008), terrestrial laser scanning (Łabuz, 2016) and
ground penetrating radar (Santalla et al., 2009; Buynevich et al., 2011). However, field
campaigns are costly and limited (spatial and temporal coverage).

In the last decades, satellite imagery was adopted on such studies, but mainly optical
data with semi or automatic techniques such as multitemporal RGB (Mohamed and
Verstraeten, 2012) or COSI-Corr (Hermas et al., 2004) respectively. However, medium
resolution optical data has difficulties in properly differentiating the full sand dunes’
shapes from their sandy surroundings and has its dependency on sun illumination,
cloud coverage, and weather conditions. SAR data overcome these limitations and it
has been used only in the last few years, but mainly in interplanetary dune exploration,
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such as in Mars (Luke and King, 2019) or in equatorial regions of Titan (Radebaugh
et al., 2010; Paillou et al., 2014; Le Gall et al., 2012; Lopes et al., 2010; Radebaugh et al.,
2008; Paillou et al., 2016). Some works on dunes using SAR data had been found to
derive dunes characteristics (Qong, 1996; Blumberg, 2006, 1998), detect dunes’ area
using correlation (Gouinaud et al., 2013) or interferometric coherence (Havivi et al.,
2018; Song et al., 2020). However, no automatic method has been found using SAR data.

1.3. Research objectives
This thesis is aimed to develop methodologies to analyze the multi-temporal evo-

lution of specific landscape features across a range of environments following anthro-
pogenic activities with a focus on Egypt.

This research will focus on three different but interconnected phenomena, from
which two of them are related to the global changes which are also encountered in
Egypt:

1. Urban transformation of Greater Cairo and selected rural areas which had been
increasing dramatically in the last decades following exponential population
growth.

2. Natural dynamics caused by dune migration, with special attention to the South-
Rayan dune field which interacts with crop fields in the west flank of the Nile
floodplain

3. Agricultural explosion in desert areas, especially after the Spring Arab revolution
as it can be seen in next sections and chapters.

These phenomena are interconnected, and not only because they occur in the Nile
floodplain or in the near surroundings. As stated above, Egypt is characterized by
specific geomorphology leaving little space to live and perform agricultural activities (i.e.
restricted to the Nile valley from ancient times onwards), whilst it has been confronted
with a significant population increase. Urbanization processes have become critical
over the last few decades. However, this process of urbanization resulted in a loss of
fertile agricultural land and hence, new urban developments as well as agricultural
extensions have been initiated in the desert regions.

This research aims also to offer a set of tools for an effective landscape dynamics
management policy. This set of tools is especially crucial for Egypt where controversial
subjects regarding urban governance and the protection of cultural heritage need to be
carefully considered with accurate and updated information.

These objectives are formulated as the following research questions:

• Can the current methods of urban classification in arid environments be im-
proved by introducing satellite SAR data and machine learning techniques?
Are we able to provide accurate urban expansion maps over urban and rural
areas in Egypt?

Current classification maps are mainly produced using satellite optical data, as
historically, the research community is more used to this type of data. It was
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found in the literature that the usage of such data has some intrinsic limitations
when working in arid/semiarid regions, which we want to overcome by intro-
ducing Synthetic Aperture Radar data. Until one decade ago, the land use/land
cover classification maps were created using the most common supervised and
unsupervised classification methods such as Maximum likelihood and K-means.
Artificial Neural Networks just started to be employed for this purpose and, it was
blooming the usage of SAR data, as it has the very big advantage of being an active
sensor able to provide data independently of the weather conditions.

In this research, it will be explored the usage of SAR data to produce Land Use
Land Cover (LULC) classification maps alone and in combination with other
sensors so that the best LULC maps could be generated for the defined AOIs. The
usage of ANN will be also investigated for such LULC production.

• Can satellite SAR data help to improve the current methods of dune migration
analysis? Can be these analysis done automatically? Can this be done at dune
field scale?

Current dune migration analysis are still done via GPS campaigns where the set of
studied dunes are very limited, mainly due to the cost and efforts required to carry
out field surveys in such extreme and dangerous environments where dunes are
located, normally within the desert. Other methods rely on processing workflows
that need manual delineation/correction of dune shapes, such as (?), showing
the need of having a robust, reliable and automatic method to measure dune
dynamics.

The potential usage of SAR data for carrying out such kind of analysis will be
evaluated, and we will investigate the possible developments of a fully automatic
method which could be not dependent on the area of interest analyzed.

1.4. Thesis roadmap
The current chapter states the motivation and the goals of this study.
Chapter 2 is dedicated to the analysis of the urban expansion and crop fields evolu-

tion on Egypt’s capital, Cairo and its surroundings, which analysis is carried out using
a multi-temporal satellite data fusion approach using SAR and optical data, using ma-
chine learning approach using limited data available due to the limits of data access
and processing of that period. Finally, the resulting produced maps are compared with
current state-of-the-art urban layers produced by institutions such as European Space
Agency (ESA), German Aerospace Center (DLR), and Joint Research Center (JRC).

Chapter 3 presents the landscape dynamics of Egypt’s rural area of the Middle Egypt
province, and it uses new big data technologies offered by Google, the so-called Google
Earth Engine for the pre-processing of the satellite data in order to produce annual
temporal statistics both on optical data and free available SAR data. Here, we selected
Support Vector Machine as the land cover classifier that will finally produce the desired
LULC maps over the region. In this chapter, we had also compared our results with the
urban layers provided by ESA, DLR and JRC, with outstanding outcomes.

Chapter 4 presents and describes the automatic method developed for monitoring
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dune dynamics of isolated barchan dunes. This method has been produced in collabo-
ration with Dr. Marco Chini from the Luxembourg Institute of Science and Technology
(LIST).

Finally, Chapter 5 summarises the most important findings and conclusions of this
research, and provides some suggestions for future work.



2
Greater Cairo urban growth

analysis (1998 – 2015)

Due to the rapid land cover changes that occurred in Greater Cairo in the last decades,
traditional land cover methods showed limitations in detecting new urban areas in
the desert. In this chapter, these limitations were overcome by applying a data fusion
approach. In addition, we had defined a new land use class that enables the early
identification of future built-up areas. This new methodology could be used for detecting
illegal housing and it is exportable to other areas with similar conditions.

2.1. Introduction

T he world is becoming progressively urbanized. Especially in developing countries,
this trend has been accelerating over the last two decades. Over the next 30 years,

the world’s population growth is expected to be concentrated in urban areas within
the developing world (Vermeiren et al., 2012). The challenges for achieving sustainable
urban development will be particularly significant in Africa (Cohen, 2006). This is
certainly true for Cairo, the most populous urban agglomeration in Africa in 2010 (The
Guardian, 2010) and the second most populated in 2015 after Lagos (Karuga, 2019). The
urban sprawl of Cairo during the last decades resulted in the replacement of the fertile
floodplain of the River Nile by urban structures. From the time of the 1996 population
census onwards, the Egyptian government has tried to avoid new constructions in the
Nile floodplain by encouraging people to live outside the so-called ’green land’ and
settle in the arid areas of the eastern and western desert plateau (Sutton and Fahmi,

This chapter has been published in Journal of Cultural Heritage with the title Detecting modern desert to
urban transitions from space in the surroundings of the Giza World Heritage site and Greater Cairo, (Delgado
Blasco, Verstraeten and Hanssen, 2016). To fit the publication into this study minor changes have been made.
Data and maps on urban expansion have been updated with new information from 2015 as published in
the Proceedings of ESA Living Planet Symposium 2016 with title Exploring the Data Fusion of European SAR
and Landsat Satellites for Monitoring the Urban Changes in Greater Cairo (Egypt) from 2010 to 2015 (Delgado
Blasco, Verstraeten, Hanssen and Ruiz-Armenteros, 2016)

7
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2001). Despite the restrictions introduced in 1996 inner-city slums grew, and informal
settlements bloomed on the urban fringe (Harris and Wahba, 2002). What is particularly
troublesome is the increasing urban pressure on the Giza pyramids plateau, designated
as UNESCO World Heritage Site (WHS) and protected by the 1972 World Heritage
Convention (UNESCO, 2008). Debate between scholars, practitioners, and activists over
development activities within and around this unique site is leading to growing conflict
between conserving the archaeological site on the entire plateau and developing the
surrounding areas (Shetawy and El Khateeb, 2009).

In 1996, Cairo’s population was approximately 6.78 million citizens, while in 2006
it reached 7.78 million inhabitants, reported in 2012 an approximate population of
8.76 (Source: http://statoids.com/ueg.html), and latest CAMPAS publish population
information reports more than 9 million people (Fig. 2.1). Considering that Cairo is only
one of the three main districts forming the so-called Greater Cairo (Kayouba, Cairo, and
Giza districts). Then, the total population of Greater Cairo is about 22 million people in
2015 according to Statoids and CAMPAS (Law, 2016).

Figure 2.1: Greater Cairo population figures by governorate from 1937 to 2015 (Source:Statoids and CAMPAS).

Detailed mapping and monitoring of the evolution of Cairo’s urban structure and
morphology is therefore needed for an effective management policy and a comprehen-
sive view on urban governance and the protection of cultural heritage.

2.1.1. Previous works on land cover classification over Greater Cairo:
limitations

Several studies have discussed remote sensing techniques to monitor and analyze
dynamic expansion and urbanization in Greater Cairo. Most of them have made use of
optical sensors (de Noronha Vaz et al., 2011b; Hassan, 2011). However, using just optical
data, distinguishing between different objects composed of the same material can be
difficult. Stewart et al. (2004) reported difficulties in spectrally distinguishing urban
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and desert features from optical sensors in the desert areas of Greater Cairo, due to the
heavy layer of sand/dust that coats buildings and the fact that in this area construction
materials are sourced from the nearby desert land.

Because of this limitation found in the literature, we had explored the Landsat
5 TM and 7 ETM+ data to derive land use maps for different periods using artificial
neural networks with multi-layer perceptron. Parallelly, we had explored the land cover
classification using ERS SAR and Envisat ASAR IMS data to derive as well land cover
maps for the same time period done with Landsat data, in order to compare them and
see their differences.

Figure 2.2: 2010 Optical land cover classification derived from Landsat 7 ETM+ imagery acquired on 2010 and
detailed on Table2.2. Ellipses indicate areas with main differences between this classification map (containing
desert and urban classes) and the ones on Fig.2.3 (containing field and urban classes).

In Fig. 2.2 is illustrated the land cover classification obtained using Landsat data and
in Fig. 2.3 the one obtained for Envisat ASAR data, both using 2010 data. In color circles
highlight the main differences between both classification maps. SAR data derived maps
provided vegetation areas inside the desert which optical does not, and optical data
derived maps provide less urban data inside such ellipses. In addition inside black circle
SAR maps provide higher urban, and that could be due to higher topography in the scene.
As it was discussed in Delgado Blasco et al. (2013), analysis using only Synthetic Aperture
RADAR data and their derived coherence products might also produce misclassification
of areas with high temporal variability.

In Tab. 2.1 are indicated the km2 occupied by the different classes on the computed
Land Cover maps for the different analyzed time periods. Both approaches seem to
have different values for all classes, and we consider that the main differences could be
caused by the temporal variability of the input data employed for the SAR classifications.
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Figure 2.3: 2010 SAR land cover classification map derived from Envisat ASAR imagery acquired in 2010 and
detailed on Table2.2. Ellipses indicate areas with main differences between this classification map (containing
vegetation and urban classes) and the ones on Fig.2.2 (containing desert and urban classes).

Table 2.1: Comparative of area (km2) occupied by classes for the different dates and classification maps.
Differences between SAR and Optical increase with time. Main differences in desert class are distributed in
water and field classes.

Class
1998 2004 2010 2015

SAR Optical SAR Optical SAR Optical SAR Optical

Urban 497.56 485.26 519.35 573.13 591.59 612.67 611.75 957.19

Desert 840.37 1270.57 917.32 1149.29 908.98 1161.08 746.63 1018.60

Water 48.79 31.98 40.96 37.02 41.11 34.38 177.35 37.06

Fields 1114.96 713.90 1029.37 747.56 965.32 698.87 1048.80 571.65

These indicators contain information of changes, at this is the reason why many areas
detected as desert in optical derived maps, in SAR derived maps are consider either
vegetation or water.

In addition, visualizing the Normalized Vegetation Index (NDVI) derived from the
Landsat image selected for 2010 as shown in Fig 2.4, there are not significant differences
between the values inside and outside the red ellipses in Fig. 2.2 and Fig. 2.3. The NDVI
inside the red ellipses exhibits values lower than zero (typical values of desert cover) and
are far from typical NDVI values of vegetation cover class (with values usually greater
than 0.3).

Therefore, our assumption is that in this case, contrary to the natural behaviour of
the coherence maps, low coherence does not represent only water or fields (Bruzzone
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Figure 2.4: Normalised Difference Vegetation Index derived from Landsat 7 ETM+ 2010 data.

et al., 2004) but also areas where other activities are ongoing (Milisavljevic et al., 2010).
The same effect is applicable to the SAR amplitude indicators: in our case, high values
of the SAR temporal variability are not only linked to water and vegetation. Hence, we
define a new land use class for detecting these areas and differentiating them from other
classes.

This chapter proposes the analysis of the optical and SAR data fusion for land use
classification over Greater Cairo and Giza to overcome the aforementioned limitations.
In addition, we also checked if the introduction of a new land use class could better
capture the differences between the optical and SAR based techniques (reported in
(Delgado Blasco et al., 2013)). This new class may represent areas with human induced
changes, that could be permanent or transitory, such as open pits, roads eventually
covered by sand and ongoing building activities among others. This new class has been
called ’Undefined Anthropogenic Disturbances’ (UAD) and is mainly located in desert
areas.

In this chapter, the effect of optical and radar satellite data fusion in medium spatial
resolution is and applied to analyze the multi-temporal evolution of the urban extension
of Greater Cairo for the period from 1998 to 2015.
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2.2. Study area and remote sensing datasets
The study area is centred on Greater Cairo and its surroundings, which covers a total

area of approximately 50×50 km2 (Fig. 2.5).
In the last decades, the informal construction (Meikle, 2011) increased dramatically,

threatening the Giza’s Pyramids World Heritage site. Therefore, we have focused on
analyzing the built-up increase in the Pyramids Gardens area, named Hadayek Al Ahram,
as well as in the entire Greater Cairo for which their results are analyzed individually.

In addition, due to the Arab Spring occurring in Egypt on January 2011, both periods
before and after Arab Spring will be considered for analysis, since different behaviour in
urban dynamics could be expected a priori.

Figure 2.5: Location of the study area in Greater Cairo, Egypt.

We used the freely available archives of Landsat 5 TM,7 ETM+ and 8 OLITIRS mul-
tispectral data, as well as ERS1/2, Envisat and Sentinel-1 SAR data. The selected SAR
datasets comprised the full archive of ERS-1/2, Envisat ASAR satellites, both in track 436,
and Sentinel-1 on track 167, jointly covering the entire period from 1992 to 2015. The
chosen optical satellite imagery was Landsat 5 TM (1998 data), 7 ETM+ (2004 and 2010
datasets) and 8 OLITIRS (2015 data). The specific information is shown in Table 2.2.
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Table 2.2: The selected satellite remote sensing imagery.

Acquisition date Sensor Path / Track Spatial resolution (m) Signal characteristics N. images
1998-09-11 Landsat 5 TM 176 / 39 30 x 30 Visible, NIR, SWIR-1/2, Thermal 1

2004-04-12 /2004-07-17 Landsat 7 ETM+ 176,177 / 39 30 x 30 Visible, NIR, SWIR-1/2, Thermal 4
2010-05-15 /2010-06-07 Landsat 7 ETM+ 176,177 / 39 30 x 30 Visible, NIR, SWIR-1/2, Thermal 4

2015-07-24 Landsat 8 OLITIRS 176 / 39 30 x 30 Visible, NIR, SWIR-1/2, Thermal 1
1992-06-01 /2001-01-04 ERS-1/2 SAR 436 4 x 20 Microwave (C band) 6
2003-11-20 /2010-09-09 Envisat ASAR IS2 436 4 x 20 Microwave (C band) 18
2015-01-01 /2015-12-31 Sentinel-1 IW SLC 167 20 x 4 Microwave (C band) 45

2.3. Methodology
In order to study the land cover dynamics based on the data fusion of SAR and

optical data, the implemented methodology follows this three steps (Fig. 2.6): (i) data
preparation; (ii) land use classification; (iii) temporal evolution analysis of the obtained
classification maps.

Figure 2.6: Methodology flow diagram for analyzing the land use dynamics by fusing SAR and optical imagery.

2.3.1. Data preparation
The first step is preparing the various datasets. Initially, ERS SAR and Envisat ASAR

imagery are calibrated considering the incidence angle, look angle and the antenna pat-
tern using ESA specifications implemented in the Next ESA SAR Toolbox (NEST) (ARRAY,
2010). Then, coregistration, resampling, interferometric coherence computation and
geocoding are performed using the DORIS interferometric software from Delft Univer-
sity of Technology (Kampes et al., 2003). Precise orbits are used to recompute orbital
information in order to reduce the coregistration errors. ERS-1/2 and Envisat precise



2

14 2. Greater Cairo urban growth analysis (1998 – 2015)

orbits were from Delft Earth Observation and Space Systems (DEOS). The interferogram
image pairs are selected for the subsequent computation of the interferometric coher-
ence based both on short temporal and perpendicular baseline criteria (maximum of
140 days and 120 m respectively for this study). Coherence can be affected by temporal,
spatial and thermal decorrelation factors (Zebker et al., 1992). Hence, a short tempo-
ral baseline ensures that there will be minimum changes present in our scene due to
the physical changes, and having a short perpendicular baseline minimizes geometric
decorrelation (Zebker et al., 1992). This short temporal and perpendicular baseline
condition is required to enable the preliminary identification of urban, desert and field
areas using the interferometric coherence (Bruzzone et al., 2004). It is worth mentioning
the seasonal effects of the sand storms characteristic of our study area around March-
April every year. Hence, coherence maps with images acquired during the period with a
higher frequency of sand storms in the region (i.e. March-April) were rejected for further
analysis. Sand storms minimally affect the SAR C-band backscatter as only a thin layer
of sand is moved, but it does affect the interferometric coherence of the affected desert
areas as their changes are detectable with a drop of their coherence values (see Fig. 2.7).
Finally, calibrated SAR images and coherence maps are geocoded using SRTM DEM
information (downloaded from the Consortium for Spatial Information (CGIAR-CSI))in
order to have them geometrically corrected.

Figure 2.7: Coherence maps computed within SAR image pairs with low perpendicular baseline. The coherence
map on the right is affected by sand storms that occurred during the period March-April 2008. This effect of
the drop of coherence is visible in the desert areas, as inside the red ellipse.

In case of the Sentinel-1 data, similar approach to the ERS and Envisat data is
followed, adapting for TOPSAR data using the SentiNel Application Platform (SNAP)
(Veci et al., 2014) and using the Precise Orbits produced by the ESA Quality Control
Group. In this case, all Sentinel-1 data could satisfy our requirements of maximum
perpendicular and temporal baseline, so it has decided to take a temporal baseline
of 120 days avoiding the aforementioned sand storm period. Processed data are then
geocoded also using the same SRTM DEM employed for ERS and Envisat.

Radiance Landsat values are computed using the data provided in the Landsat
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metadata using the radiometric calibration method suggested by USGS (Chander et al.,
2009) and implemented in ENVI ESRI software. Four scenes are selected for 2004 and
2010, because of the scan line corrector failure (SLC-off) that occurred on 31st May
2003 (U.S. Department of the Interior, 2013). These four images were acquired within a
maximum period of four months, minimizing the urbanization changes in such a short
time period. Hence each group of four images is mosaicked in order to fill the gaps,
since given any three Landsat 7 SLC-off images, there is a 90% probability that > 90%
scene coverage can be achieved (Schneider, 2012).

Finally, all SAR images are georeferenced into the geometry of the Landsat data using
30 ground control points (GCPs) obtained by coregistering SAR with the Multi-spectral
data. These GPCs are uniformly distributed all over the study area and represent road
intersections on the satellite images. The final images are resampled using a first order
polynomial, obtaining a final Root Mean Square Error (RMSE) lower than 1 pixel (30
m.) for all the different cases (Table 2.3). Optical images are finally cropped to match
the SAR data over the study area. At the end of the data preparation all data are unified
to the same image size and georeference system of the Universal Tranverse Mercator
(UTM) projection (Zone 36N) and Datum World Geodetic System 84 (WGS84).

Table 2.3: GCPs used in the SAR imagery georeferenciation step and RMS values

Dataset Number GCPs RMS error (pixels)
ERS SAR 30 0.97

Envisat ASAR 31 0.95
Sentinel-1 IW SLC 30 0.74

2.3.2. Land use classification
Four generic classes are proposed: (i) built-up area, hereafter named ’urban’; (ii)

sandy and rocky desert combined in a ’desert’ class; (iii) vegetation, crops, garden, grass
and agricultural fields named as ’field’ and; (iv) ’water’ class mainly formed by Nile
River and smaller water bodies present in the scene. In addition, we have also defined
a new class named ’undefined anthropogenic disturbances’ (UAD) that exploits the
data fusion approach in order to identify areas inside the desert where anthropogenic
disturbances are detectable, such as construction in early stages, cultural heritage sites,
open pits and dirt roads (roads covered with sand). This class does not include finished
man-made infrastructures. Hence, this class is expected to be characterized by having
low coherence and high temporal variability of the radar signal, with high radiance
values characteristic of soil and rocks in optical data (see Fig. 2.8).

Land use classification has been performed for computing land cover maps with the
aforementioned five classes and finally, we have investigated the relationship between
the UAD class with built-up areas classified in subsequent LULC maps.

In order to produce land use land cover (LULC) maps with SAR and optical im-
agery, neural network supervised classifier has been selected due to the higher accuracy
reported by Chettri et al. (1992) and Cetin et al. (2004).

We decided to give equal weight to the information derived from each sensor in
the mixed sensor approach. Hence, the designed data fusion supervised classifier have
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equal number of input bands from the different sensors.

The SAR dataset is chosen according to the optical data acquisition dates (Table 2.2).
Specifically, a group of SAR images is selected per optical image spanning one year
around the date of the optical image. Two of these SAR images are expected to be
able to produce an interferometric coherence product with both short temporal and
perpendicular baseline (in this study with maximum of 105 m and 140 days).

The indicators to classify in the proposed LULC scheme were analyzed considering
the peculiarities of the five-class problem addressed. Specifically, correlation of Landsat
bands were performed, resulting in only four bands with correlation lower than 0.8
among them: Near Infra-Red (NIR), shortwave-1 (SWIR-1), shortwave IR-2 (SWIR-2)
and thermal IR. Bands blue, green and red were highly correlated with SWIR-1. The
Normalized Difference Vegetation Index (NDVI) was also introduced due to its capacity
to distinguish between healthy fields among the other features. Consequently, we used
five optical indicators, corresponding to the less correlated bands NIR, SWIR-1, SWIR-2,
Thermal and the NDVI (see Landsat band specifications in Tab 2.4).

Table 2.4: Landsat bands correspondence with Red, Near Infra-Red, Short Infra-Red (1 and 2) and Thermal
Infra-Red bands (USGS, 2021)

.

Satellite Landsat 5 TM Landsat 7 ETM+ Landsat 8 OLITIRS

Name band wavelength (µm) band wavelength (µm) band wavelength (µm)

RED 3 0.63-0.69 3 0.63-0.69 4 0.636-0.673

NIR 4 0.76-0.90 4 0.77-0.90 5 0.851-0.879

SWIR-1 5 1.55-1.75 5 1.55-1.75 6 1.566-1.651

SWIR-2 7 2.08-2.35 7 2.09-2.35 7 2.107-2.294

Thermal-IR 6 10.40-12.50 6 10.40-12.50 10 10.60-11.19

In order to select the five indicators from SAR data, the multi-temporal behaviour
of the SAR signal and its relationship with the analyzed classes are analyzed based on
Wegmüller et al. (2000); Bruzzone et al. (2004). Essentially, desert and urban classes
can be identified based on the low temporal variability of the backscattering coefficient
compared to most other cover types. In contrast, the water and field classes showed
high temporal variability because of their variations with seasons, rain and vegetation
growth. Therefore, indicators based on the estimation of temporal variability were
chosen as input for the supervised classifier. In addition, interferometric coherence
was also selected due to its effectiveness in identifying urban areas as reported in other
studies (Strozzi and Wegmuller, 1998).

Therefore, the input data selected for the classifier consists in 5 information bands
of the multi-spectral imagery and 5 information bands derived from the SAR datasets,
as follows: (i) near IR; (ii) shortwave IR-1; (iii) thermal IR; (iv) shortwave IR-2; (v) NDVI
(Eq. (2.1)); (vi) temporal average calibrated SAR in decibel scaled (dB) (Eq. (2.2)); (vii)
temporal standard deviation of calibrated SAR signal per pixel in dB (Eq. (2.3)); (viii)
normalized temporal standard deviation in dB (Eq. (2.4)); (ix) ratio of maximum to
minimum calibrated SAR signal per pixel (Bruzzone et al., 2004) defined as Eq. (2.5)
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and; (x) interferometric coherence (Hanssen, 2001) defined as in Eq. (2.6);

N DV I = N I R −RED

N I R +RED
(2.1)

From Eq. (2.1), NIR corresponds with the Near Infra-Red band, RED with the Red band,
for the different Landsat satellites. Specific information found in Tab. 2.4.

Table 2.5: Formulas of the 5 selected bands of SAR derived information employed as input in the LULC ANN
classifier. Each index is calculated within the temporal data series of each pixel i for N images and L represents
the window size employed in the interferometric coherence computation.

Indicator Formula

Backscatter average σav gi = 10log10
1

N

N∑
k=1

σk,i (2.2)

Backscatter standard deviation σstdi
= 10log10

√√√√ 1

N −1

N∑
k=1

(σk,i −σav g ,i )2

(2.3)

Normalized standard deviation σnor mstdi
= 10log10

(
σstd ,i

σav g ,i

)
(2.4)

Maximum-minimum backscatter ratio Ri = 10log10

(
σmaxi ,i

σmi n,i

)
(2.5)

Interferometric coherence |γ̂i | =
|∑L

k=1 AMk
· A∗

Sk
|√∑L

k=1 A2
Mk

· A2
Sk

(2.6)

Fig. 2.8 shows qualitatively the expected distribution of the five classes in the inter-
ferometric coherence and Shortwave IR-2 (SWIR-2) feature space derived from the SAR
and optical sensors. It is noteworthy that the UAD class has low coherence values such
as water and field classes, but also high values in SWIR-2 such as desert. Hence, only a
combination of sensors would detect this new class.

As mentioned before, the classifier is designed based on artificial neural networks for
land use classification. Among the different network typologies, the feed-forward back-
propagation multi-layer perceptron (MLP) was selected, being the most commonly
used neural network for remote sensing (Atkinson and Tatnall, 1997). It has shown
its successful application for land cover classification purposes (Simone et al., 2002;
Del Frate et al., 2007).

Concerning the number of nodes (named neurons) in the hidden layer, we selected
for our study the heuristic by Kanellopoulos and Wilkinson (1997) and Hush (1989), in
which the number of neurons in hidden layer is equal to 3 times the number of input
bands.
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Figure 2.8: Qualitative classes distribution in the interferometric coherence and short-wave infrared (SWIR-2)
feature space.

2.3.3. Validation approach
The validation of the classification maps is performed by visual inspection of the

very high resolution imagery (< 3 meters) copyrighted by Digital Globe and available in
Google Earth, selecting different point sets for the time periods 2004 and 2010, speci-
fically 2661 and 2129 points respectively. It is possible to do this due to the historical
dataset available that goes back to the year 2000. Hence, results obtained for 1998 could
not been validated using this approach. We computed the accuracy of the final classifi-
cation maps using the overall accuracy (or overall success rate) and also the agreement
occurring by chance using the kappa index (Cohen, 1960), as performed by Congalton
(1991) and Mather and Koch (2004).

Our assumption is that 1998 results behave in the same manner that for 2004, 2010
and 2015 as we have employed the same methodology to produce the LULC maps.

In our attempt to employ independent validation of our results, we use the Global
Urban Footprint (GUF) provided by the German Space Agency (DLR) that was computed
using TerraSAR-X data at 3 meters resolution for 2012, as well as the recent Prototype of
Sentinel-2 Land Cover Map of Africa at 20 meters released by the ESA Climate Change
Initiative (ESA-CCI).

The validation of the 2015 land cover maps, was done by comparing only our urban
class with the GUF, and also comparing the common classes with the ESA-CCI Land
Sentinel-2 Prototype Map of Africa after aggregating the vegetation classes into a single
one to match with our four classes ’urban’, ’desert’ with the bare soil (ESA-CCI), ’water’
and ’vegetation’.

2.3.4. Temporal evolution analysis
After obtaining the five-class LULC maps for the different time periods, we identify

pixels that remained stable and those that underwent changes from one land use class
to another between 1998 and 2015. Non-realistic changes are also detected and labelled
as mis-classified pixels, by assuming that: 1) once a pixel is urban, it will stay urban
in the following periods; 2) water cannot turn into urban, field or desert; 3) fields can
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only become urban or UAD, but not desert or water. In our study area the water class
mainly correspond to the River Nile, and has been stable during the considered time
period. Fig. 2.9 shows the possible transitions of land use class between consecutive
LULC maps.

Figure 2.9: Accepted land transitions in consecutive LULC maps

2.4. Results
2.4.1. Land use classification

The resulting supervised land use classifications maps are shown for 1998 and 2015
in Fig. 2.10. Their analysis can be found in the discussion section.

Table 2.6: Confusion matrix, kappa index and overall accuracy of the resulting land use maps. Google Earth
data is used as ground truth.

Year
GoogleEarth Land use classification map Accuracy criteria

ground truth Urban Desert Water Fields UAD

2004

Urban 369 32 0 32 4 kappa index (%)

Desert 96 1121 2 29 38 82.47%

Water 1 0 52 9 0 Overall accuracy

Fields 42 4 2 789 5 88.54%

UAD 1 8 0 0 25

2010

Urban 342 37 1 20 0 kappa index (%)

Desert 50 890 0 8 15 86.24%

Water 3 0 30 5 0 Overall accuracy

Fields 45 4 0 643 2 90.93%

UAD 0 3 0 0 31

The kappa index shows very good or almost perfect degree of accuracy according to
Altman (1991) and Landis and Koch (1977) respectively (higher than 0.80 or 80%) for
both 2004 and 2010 land cover maps.
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Figure 2.10: Land use classification maps obtained for 1998, 2004, 2010 and, 2015. UAD class (in black) detects
the areas which had suffered any change during the analyzed period.

For evaluating the goodness of our approach, the 2015 LULC map was compared
with the GUF provided by DLR over our study area, created with TerraSAR-X data at 3
meters resolution for 2012 and with the ESA CCI Prototype African LULC map computed
with Sentinel-2 data from 2016 at 20 meters resolution. Note that both datasets are
higher resolution than our results (30 meters) and not matching totally on the observed
time (Fig 2.11).

Both GUF and ESA-CCI Land Cover map were resampled with at 30m and reprojected
in UTM coordinates and clipped over our study area to ensure pixel to pixel matching.
For the comparison between the different datasets we should consider that: i)both are
produced with single sensor approach and our maps not; ii) Original spatial resolution
is higher than ours, so we expect that these maps from ESA and DLR are able to detect
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(a) GUF 2012. Source: DLR (b) ESA CCI Land Cover.

Figure 2.11: Global Urban Footprint (left) and ESA-CCI Prototype Land Cover of Africa (right) employed for
evaluating the goodness of our data fusion approach.

smaller features than ours. Still, we consider necessary to compare with real products
that can be nowadays found.

In addition, as the GUF is computed using data from 2012, our latest map from 2015
should contain the GUF detected features, as we also assumed that urban is an invariant
class. In addition, we measure the same but for comparing the GUF with the ESA-CCI of
Africa, finding interesting values, as shown in Tab. 2.7.

Table 2.7: Percentage of match between the 2012 GUF’s urban class and the 4-classes aggregated ESA-CCI
Land Cover map of Africa 2016 and our 5-classes Land Cover map for 2015.

ESA-CCI 2016 Our LULC map 2015

Urban Desert Water Fields Urban Desert Water Fields UAD

GUF 2012 Urban 73.05 24.00 0.003 2.92 79.8 6.14 0.20 8.88 4.98

Tab. 2.7 shows that our LULC map obtained for 2015 is in agreement almost at 80%
with the urban class detected in the GUF, being this agreement higher than the obtained
between GUF and ESA-CCI Land use of Africa. In addition, large part of urban in the
GUF is detected as bare areas / sand areas in the ESA-CCI Land use class, proving that
optical sensor have problems in detecting features inside arid/desert areas as mentioned
in the introduction.

In addition, we computed the Confusion Matrix between 2500 random pixels of
the aggregated version of the ESA-CCI Sentinel-2 Prototype (which only 2442 felt into
classified pixels in our LULC map) with our LULC map of 2015 which detailed values are
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in Tab 2.8, showing a near 80% of agreement (overall accuracy) and 69.20% of Kappa
Index, categorised as good level of agreement (Altman, 1991). In addition, it is worth
to highlight that many pixels classified as desert (bare soil) on the ESA-CCI Prototype
dataset in our approach are identified as ’urban’ or ’UAD’.

Table 2.8: Confusion matrix, kappa index and overall accuracy of the 2015 resulting land use map with respect
to the ESA-CCI Sentinel-2 Prototype Land Cover Map Africa at 20m used as ground truth.

Our LULC map
Sentinel-2 Prototype LC map Accuracy criteria

2015 Urban Desert Water Fields

Urban 371 198 0 99 kappa index (%)

Desert 6 1022 0 9 69.20%

Water 1 3 19 11 Overall accuracy

Fields 56 7 0 537 79.81%

UAD 22 72 0 9

Zooming into the different maps to understand what is happening (see Fig 2.12),
we see that in fact the ESA-CCI Land use of Africa missed many urban features, already
detected in the GUF, and later detected in our map. In addition, the ESA-CCI also
identifies as desert many urban pixels located within the cities. Moreover, the GUF and
the ESA-CCI Land use map of Africa are not detecting as urban, among others roads,
the part of the Ring Rd located behind the Pyramids Garden area, and others crossing
desert areas, while with our approach it is clearly detected.

The spatial extents and locations of the results showed in Fig. 2.15 and Fig. 2.18 are
represented in Fig. 2.13.

2.4.2. Temporal evaluation of the classified land use/cover maps
The land use maps were analyzed in order to ensure the feasibility of the existence

of different classes based on their evolution. Therefore, a comparative analysis was
done taking into account all the classification maps for identification of mis-classified
pixels. The 1998, 2004 and 2010 classification maps were analyzed together and it was
established that changes have to stay coherent for the whole time span analyzed. As a
result, both the urban expansion and the stable areas in Greater Cairo are computed
and mapped (see urban evolution map in Fig. 2.14).

The analysis of the Hadayek Al Ahram (Pyramids Garden) is done splitting the period
before and after 2010. We suspect that the Arab Spring could have an effect also in the
natural evolution behavior of this area.

Stable areas around the Giza Pyramids (Fig. 2.15, left) show the detected permanent
UAD areas from 1996 until 2010, confirming the assumption that UAD class would
include Cultural Heritage sites with intense transit of visitors. In addition, the Fig. 2.15
right, shows that the built-up evolution in Hadayek Al Ahram area increased much more
during the period from 2005 to 2010 than before.

By applying these criteria three groups were found:(i) stable (non-varying);(ii) vary-
ing and;(iii) misclassified pixels. The non-varying pixels are 69% and the varying ones
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(a) Zoom of GUF map 2012 (b) Zoom of ESA-CCI Land Use map of Africa 2016

(c) Zoom of our LULC map 2015

Figure 2.12: Zoom on the Giza Pyramids area and 6th October City for GUF 2012 (a)), ESA-CCI 2016 (b)) and
our LULC map 2015 (c).Urban is colored black in GUF map (a) and red in ESA-CCI (b) and our LULC map (c).
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Figure 2.13: Spatial extents for full area of study (cian), Fig. 8 (red) and Fig. 9 (black).

are 22%. Therefore, the total misclassified pixels are the 8% of the total number of pixels.
Fig. 2.15 shows that the site of the Giza Pyramids is classified as stable UAD class. Hence,
this supports our hypothesis that UAD represents Cultural sites with intense transit of
visitors as well.

In 2010, the total constructed area equals 655 km2 which corresponds to an increase
in built-up areas of 72% since 1998. Of the 274 km2 of newly constructed areas, 37%
are situated in former desert areas. Between 2004 and 2010, half of newly constructed
area is situated in the Nile floodplain (49%), while in the desert is 33% and 18% in UAD
(see Tab. 2.9). This matches results obtained by de Noronha Vaz et al. (2011a), where
the construction activities in the floodplain appeared to be more important than in the
desert for the more recent time period. Moreover, in 2010 around 100 km2 are identified
as undefined anthropogenic disturbances (UAD), and part of this extension is identified
as urban in 2013 (Fig. 2.18).

2.4.3. Built-up sprawl in Hadayek Al Ahram (Pyramids Gardens)
The results of the built-up expansion obtained from the temporal evolution analysis

are detailed in Table 2.9.
In 1998, the built-up extent in Hadayek Al Ahram was about 1.01 km2. However, from

1998 to 2010, the built-up extent increased by 4.4 km2, occupying over 400% more area
in 2010 than in 1998. In this case, since the Pyramids Gardens area is located completely
inside the desert plateau, the new constructions appeared in desert and UAD detected
areas in the previous LULC maps. During the period from 1998 to 2004, one third of
the total constructions were built up, while in the period from 2004 to 2010 the growth
accelerated, with the identified new constructions of this period more than two times
that observed in the previous period (Table 2.9). Finally, for the latest period analyzed,
the growth still continued with an intermediate rate, increasing the built up in 2.6 km2,
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Figure 2.14: Built-up evolution of Greater Cairo since 1998 to 2015 computed considering the criteria described
in section 2.3.4. Floodplain is located between the desert edge lines. Desert is located at west and east of the
respectives left and right desert edge lines.
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Figure 2.15: Zoom of stable areas(left) and built-up evolution (right) in Hadayek Al Ahram area (ROI) obtained
from 1996 until 2010.

Figure 2.16: Zoom of stable areas(left) and built-up evolution (right) in Hadayek Al Ahram area (ROI) obtained
from 1996 until 2015.
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Table 2.9: Origin of new built-up areas (km2) for Greater Cairo and Hadayek Al Ahram area. Values obtained
from the temporal evolution analysis considering only feasible changes.

Greater Cairo Hadayek Al Ahram

Class 1999-2004 2005-2010 2011-2015 subtotal 1999-2004 2005-2010 2011-2015 subtotal

Desert 47.6 32.0 97.4 177.0 1.1 1.9 2.0 5.0

UAD 41.9 15 33.8 90.7 0.4 1.0 0.6 2.0

Field 35.4 39.8 84.5 159.7 - - - -

subtotal 124.9 86.8 215.7 427.4 1.50 2.9 2.6 7.0

making a total computed growth during the period from 1998 to 2015 in 7 km2, being a
700% of increase with respect to the urban detected at 1998.

In addition, our results shows that among the consequences of the Arab Spring on
Egypt, we have observed a reduction of the activities around the Giza World Heritage
Cultural Site (WHCS). Until that day, the Giza WHCS appeared as permanent UAD class
(Fig. 2.15), while including the period until 2015, only a small part of it continue being
permanent UAD (Fig. 2.16). Fig 2.17 illustrates the reduction of the number of arrivals
of international tourists (The World Bank Group, 2017), that supports our assumption
regarding the reduction of tourists visiting the Pyramids.

Figure 2.17: Tourist arrival in Egypt data, showing a decrease after Arab Spring in January 2011.

2.5. Discussion
The proposed data fusion approach enables to identify areas where undefined

anthropogenic disturbances are potentially going on, such as early construction stages
of new buildings (black pixels in Fig. 2.10). Moreover, the UAD class also represents
arid areas of transit like dirt roads (asphalt roads eventually covered with sand) or areas
with high human activity in cultural heritage sites, such as the surroundings of the Giza
Pyramids area (Fig. 2.15).
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Fig. 2.14 shows the temporal evolution of the built-up areas in the Greater Cairo
region. In 1998, almost no built-up area was constructed outside the floodplain, but
since the government started encouraging people to construct in arid areas, the new
built-up area grew both inside and outside the floodplain, being the growth in the desert
between 1998 and 2004 more significant. Despite government efforts, construction has
not stopped in the floodplain.

The UAD class shows values in the thermal infrared similar to the ones measured
for ’urban’ and ’desert’ classes. In addition, the UAD areas has as low coherence values
as the ones found in ’water’ and ’field’ classes. This means that this new UAD class
represents areas that had changed during the analyzed time period. It is remarkable
that the new class completely overlaps the other classes and, therefore, its detection is
only possible with the proposed data fusion approach.

The evolution of the detected areas classified as undefined anthropogenic distur-
bances is also analyzed. 17 km2 of permanent areas of UAD have been detected during
the period between 1998 to 2010. These permanent areas can be attributed to intense
transit in cultural heritage sites as well as open air mining activities or traffic in dirt
roads. Since 2004, 16 km2 of UAD areas appeared, which remained invariant up to 2010.
In 2010, around 67 km2 of new UAD areas appeared in desert areas. This increase may
have been caused by the early stages of new construction works. Moreover, from 1998
to 2010, about 71 km2 of new urban areas (26% of the total new built-up areas) were
constructed in areas which had been classified as UAD in previous land use maps. These
results also support our hypothesis that the UAD class represents construction areas
in early stages of development because part of the detected UAD areas in one period,
evolve into urban areas in the next one.

Figure 2.18: Zoom on the Western desert between Pyramids Garden and 6th October city, where UAD pixels
were detected in 2010 (left) and 2015 (right), overlaid with the OpenStreetMap road layer of 2013, showing the
correspondence between UAD and future built-up.
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From 1998 to 2010, urbanization in both field and desert areas close to Cairo in-
creased continuously. Between 1998 and 2004, new urban areas were constructed more
in the nearby desert than in field areas, but the trend changed during the period from
2004 to 2010. However, in the land use map of 2010, 68 km2 of UAD areas were de-
tected in previously desert areas, part of which may become urban areas in the future
(Fig. 2.18).

2.6. Conclusion
In this study we have applied a data fusion classification approach for quantifying

the Greater Cairo urban sprawl from 1998 to 2010 with medium resolution optical and
SAR data. This is useful in detecting areas affected by anthropogenic activities even if the
natural environment does not show a significant change using only medium resolution
optical imagery from space. This is only valid for short time lapses and short baselines
in the image pairs used in the interferometric coherence computation. The individual
limitations of SAR and optical images in detecting UAD areas in the desert have been
overcome by mixing both sensors and defining a new class.

Including the new UAD class made it possible to detect construction areas at early
stages. Also areas disturbed by other activities than building, such as the intense pressure
related to tourist activities at the Giza Pyramid plateau were identified within this class.
The identification of UAD is helpful for determining the built-up extension of rapidly
changing environments such as Greater Cairo.

The extent of built-up areas in Greater Cairo increased by 73% between 1998 to 2010,
corresponding to an average annual growth rate of 4.7%. However, an increase of 500%
in 13 years is detected at Hadayek Al Ahram (Pyramids Gardens), at close proximity to
the Giza Pyramids.

The potential of this data fusion approach requires the availability of suitable optical
and SAR data. With the new generation of remote sensing satellites, higher resolution
SAR and optical data is available, facilitating a more detailed analysis of the land cover
dynamics in both temporal and spatial resolution.





3
Land cover dynamics in the Nile

Valley and Middle Egypt

A good understanding of the landscape dynamics in Egypt should not be only focused on
the analysis of the Capital and surroundings, but also analyze the changes in rural areas.
To this aim we had applied similar methodology on data fusion land cover classification
on the Middle Egypt region.

3.1. Introduction

O ver the next 25 years, the world’s population growth is expected to be concentrated
in urban conglomerates within the developing world (Vermeiren et al., 2012). The

challenges in achieving sustainable urban development will be particularly significant in
Africa (Cohen, 2006; Cobbinah et al., 2015). Over the last decades, urban sprawl resulted
in the loss of fertile soil for agricultural food production in the Egyptian Nile Valley. From
the time of the 1996 population census onwards, the policy of the Egyptian government
has been to avoid new constructions in the Nile floodplain, thus encouraging people
to live outside the so-called ’green land’ by settling in the arid areas of the eastern and
western desert plateau (Sutton and Fahmi, 2001). Despite the restrictions introduced
in 1996, inner-city slums have grown and informal settlements have bloomed on the
urban fringes (Harris and Wahba, 2002).

Satellite remote sensing can provide rapid information to detect and map new
built-up areas, and this information could be accessible by the decision-makers to act
accordingly. Many studies have focused on urban sprawl for major centers around the
globe (Schneider and Woodcock, 2008; Ward et al., 2000; Griffiths et al., 2010), includ-
ing Africa (Vermeiren et al., 2012; Hou et al., 2016; Brinkmann et al., 2012). However,

This chapter has been published in Remote Sensing with the title Mapping and Quantifying the Human-
Environment Interactions in Middle Egypt Using Machine Learning and Satellite Data Fusion Techniques,
(Delgado Blasco, Cian, Hanssen and Verstraeten, 2020). To fit the publication in this study minor changes
have been made.
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increasing urbanization of the rural areas in the hinterland of major urban centers is
less studied (Li, 2012; Inostroza et al., 2019).

Our aim is to analyze the landscape dynamics in Middle Egypt, which is an area
of particular importance for several reasons. Compared to larger urban areas, such as
Caïro, Middle Egypt is much more rural, yet experiencing a strong demographic trend
(population increase) putting large pressure on arable land (see Fig. 3.1). Furthermore,
the fertile Nile floodplain is a narrow strip (10–15 km) in an extensive desert area, leaving
little space for urban and agricultural development. Next to loss of fertile land, the
encroachment of desert areas by anthropogenic activities is, therefore, another major
trend in land use.

In addition, to the west of the Nile floodplain, Middle Egypt is encroached by the
South-Rayan dune field that stretches from the south of the Faiyum depression in an
NNW-SSE direction (Embabi, 2004; Mohamed and Verstraeten, 2012). This dune-field
contains barchan dunes migrating at a rate of 2–6 m per year (Mohamed and Verstraeten,
2012). Thus, desert dune dynamics at the interface of the floodplain may also lead to
sand encroachment into the fertile floodplain (Willems and Dahms, 2017), and to an-
chored dunes within large vegetation fields. Moreover, the area is rich in archaeological
sites that are threatened by the various land cover changes. Furthermore, the desert
margin in Middle Egypt on the western side of the floodplain is also experiencing land
reclamation efforts to increase the extent of arable land environments (Mohamed and
Verstraeten, 2012).

Whilst many studies have been carried out to analyze Greater Cairo’s urban area (de
Noronha Vaz et al., 2011a; Hassan, 2011; Delgado Blasco et al., 2017; Mohamed, 2012a;
Taubenböck et al., 2008; Osman et al., 2016; Stewart et al., 2004), little information is
available on changes in land cover and, specifically, the urbanisation of the rural areas
in the Nile floodplain upstream (or South) of Cairo. Some regional-scale studies (El-
Bayomi, G., & Ali, 2015) have addressed land cover dynamics in this region, but little or
no quantitative spatial information about the evolution of the urban extent of regional
cities such as Mallawi is available (Wikipedia, 2018). The mixture of active or inactive
sand dunes, tilled fields on reclaimed desert soils, as well as the construction of buildings
in so-called ’mud bricks’ makes a detailed analysis of land-use transformations in the
Middle Egypt area challenging with optical imagery.

Together with other regions in Africa, Middle Egypt was mapped by the AFRICOVER
project (Kalensky, 1998), using Landsat TM data acquired mainly in 1997. More recently,
within the European Space Agency Climate Change Initiative (ESA-CCI), a land cover
prototype of Africa has been produced using Sentinel-2 data acquired in 2016 (Lesiv
et al., 2017). This approach showed the limitations of optical sensors in distinguishing
spectral signatures of urban features made of materials similar to the ones composing
the surrounding soil. This holds true for areas where buildings and roads are temporarily
covered by sand or dust following intense sand storm events. Similar limitations for the
classification of optical images were reported in past land cover classification studies
(Stewart et al., 2004).

Previous studies have shown that the fusion of multi-spectral (including optical)
remote sensing (MS) data in combination with Synthetic Aperture Radar (SAR) data may
overcome this problem and can lead to improved land cover classification (Tupin, 2010;
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Joshi et al., 2016). Given the amount of free multi-spectral and SAR data continuously
acquired over the whole globe by different satellite missions, the fusion of the two types
of data offers much potential. In this study, such a data fusion approach is followed to
quantitatively analyze and map the landscape dynamics in Middle Egypt.

This work aims to create accurate land use land cover maps using the aforemen-
tioned data fusion approach to provide precise information about the evolution of urban
and agricultural areas in Middle Egypt in relation to changes in population dynamics.

Figure 3.1: A) Google Earth image of Egypt indicating the location of B) within the red rectangle. B) False-color
Landsat 8 OLITIRS image over the South-Rayan dune field and the direction of sand dune movement (source
El Gammal and El Gammal (2010)), indicating the interaction area within the yellow polygon.

3.2. The Study Area
The study area is located in Middle Egypt (Figure 3.2) and includes part of the

governorates of El-Minya and Asyut. It stretches from approximately 170 km to 280 km
south of Cairo and comprises the regional cities of El-Minya, Mallawi and Dayrut from
north to south. The study area comprises the Nile floodplain where almost all the urban
areas and agricultural land is situated, but also a stretch of desert to the west and east.

Within the Nile floodplain, two major river channels are running south to north, i.e.,
the Nile River in the eastern part and the Bahr Youssef River in the western part. The
latter branches of the Nile River near Dayrut is the main source of water flowing into the
Faiyum depression in the North. The total study area comprised of 6170 km2.
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Figure 3.2: A) Location of the study area in Middle Egypt (black polygon), over the satellite imagery footprints
(background image Google Earth). B) Detailed map of the study area highlighting the main cities and simplified
representation of the landform regions.
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3.3. Materials and Methods
In order to overcome the limitations of the optical sensors, we employed a satellite

data fusion approach, combining Synthetic Aperture Radar (SAR) and optical multi-
spectral data, covering the period from 1998 up to 2015 enabling the analysis of the
human-environment interactions for almost three decades. Before 1998, there was not
enough data available for the study area to apply this data fusion approach. Information
on the selected SAR and optical data are provided in Table 3.1, whereas the footprint is
shown in 3.2.

Table 3.1: The selected satellite remote sensing imagery.

LULC Map created Acquisition date Sensor Path / Track Spatial resolution (m) Signal characteristics N. images

1998
1997-05-15 /1999-03-11 ERS-1/2 SAR IMS 436 4 x 20 C band, VV channel 12
1988-01-01/1998-12-31 Landsat 5 TM 176 / 40,41 30 x 30 Visible, NIR, SWIR-1/2 39

2004
2003-11-20 /2004-12-09 Envisat ASAR IS2 436 4 x 20 C band, VV channel 18
2004-01-01 /2004-12-31 Landsat 7 ETM+ 176 / 40,41 30 x 30 Visible, NIR, SWIR-1/2 25

2010
2009-01-22 /2010-08-05 Envisat ASAR IS2 436 4 x 20 C band, VV channel 18
2010-01-01 /2010-12-31 Landsat 7 ETM+ 176 / 40,41 30 x 30 Visible, NIR, SWIR-1/2 16

2015
2015-01-01 /2015-12-31 Sentinel-1A IW GRD 167 20 x 23 C band, VV channel 52
2015-01-01 /2015-12-31 Landsat 8 OLITIRS 176 / 40,41 30 x 30 Visible, NIR, SWIR-1/2 44

To analyze the land cover dynamics in the Middle Egypt region, the methodology
employed can be described in the following three steps (Figure 3.3): (1) data prepa-
ration and extraction of land cover indicators; (2) spatio-temporal land use and land
cover (LULC) mapping; (3) computation of urban and agricultural land cover changes,
and changes in urban population density. Individual steps are further detailed in the
following sections.

Figure 3.3: Overview of the methodological approach with the three steps discussed in the text.
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3.3.1. Step 1: Data Preparation and Indicators Extraction
Step 1 was implemented within Google Earth Engine (GEE) (Gorelick, 2012) for the

analysis of the Landsat (5 TM, 7 ETM+, and 8 OLITIRS) and Sentinel-1 IW GRD imagery,
as it allows direct access and processing of the datasets to export the indicators used as
input in step 2.

However, as the historical ERS SAR and Envisat ASAR are not available within GEE,
these images were processed on a Virtual Machine provided by the ESA Research and
Service Support through their CloudToolbox service (Delgado Blasco et al., 2016). These
ERS and Envisat SAR datasets were calibrated using the ESA specifications in NEST
(ARRAY, 2010) and calibrated SAR images were geocoded using the Digital Elevation
Model from the Shuttle Radar Topography Mission. The resulting datasets were grouped
in three periods: (i) ERS dataset acquired in a time range centered around 1998; (ii)
Envisat data acquired around 2004; and (iii) Envisat data acquired in 2010 (see Table
3.1).

Finally, the images were registered with the corresponding Landsat dataset, using 20
ground control points that were manually selected and uniformly distributed over the
study area and represent road intersections on the satellite images. The georeferenced
SAR images were resampled using a linear polynomial, obtaining a final Root Mean
Square Error (RMSE) lower than 1 pixel (30 m) for all the different cases. Optical images
were finally cropped to match the SAR data extent. At the end of the data preparation, all
data were unified to the same image resolution, namely 30 m posting, and georeferenced
in the Universal Transverse Mercator (UTM) projection (Zone 36N) and World Geodetic
System 84 (WGS84) Datum.

Satellite-Derived Indicators for Land-Cover Classification
Different sets of indicators, feeding the land-cover supervised classifier, are defined

for SAR and multi-spectral data. Regarding the SAR data, we selected indicators (see
Table 2) with significant temporal statistical information per pixel (Delgado Blasco et al.,
2017). Different land cover classes are expected to exhibit different statistical backscatter
properties. Among those, urban areas have the lowest temporal standard deviation as
opposed to crop fields or water, which exhibit larger fluctuation of the signal measured
over time.

Regarding the multi-spectral data, instead of using single spectral bands, often a
linear combination of bands is used on normalized differences of different bands (Joshi
et al., 2016; Angiuli and Trianni, 2014; Aswatha et al., 2016). Traditionally, many indexes
(e.g., NDVI) have been defined as the normalized difference of two bands with the aim
of highlighting specific features of the land, such as vegetation, water surfaces and
built-up areas (Aswatha et al., 2016; Li and Chen, 2014; Silleos et al., 2006; Zhou et al.,
2014). The advantages of this method are manifold. Firstly, data are globally consistent.
Secondly, the information provided by each index gives the opportunity of analyzing the
contribution of different features in mixed urban areas. Finally, the risk of ambiguities is
minimised since the different indexes complement each other in distinguishing the land
cover classes. This approach has been found to be effective by several studies (Aswatha
et al., 2016; López-Caloca, 2015; Patel et al., 2015; Trianni et al., 2014) and has been
selected as the starting point of this work.
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As shown in Table 3.2, for SAR data, the following indicators were investigated: (i)
temporal average calibrated SAR backscatter, Eq. (3.1), expressed in decibel scale (dB);
(ii) temporal standard deviation of calibrated SAR backscatter signal per pixel in dB, Eq.
(3.2); (iii) temporal coefficient of variation of calibrated SAR signal per pixel in dB, Eq.
(3.3) and; (iv) coefficient of dispersion in linear scale, Eq. (3.4).

Table 3.2: Formulas of the four selected indicators of SAR derived information employed as input in the land
use/land cover (LULC) classifier. Each index is calculated within the temporal data series of each pixel i and K
images, with K ε[1, N ], being N the total number of images.

Indicator Formula

Backscatter average [dB] µav gi = 10log10
1

N

N∑
k=1

σk,i (3.1)

Backscatter standard deviation [dB] σstdi
[dB ] = 10log10

√√√√ 1

N −1

N∑
k=1

(σk,i −10
µav g ,i

10 )2

(3.2)

Coefficient of variation [dB] σnor mstdi
[dB ] = 10log10

( σstd ,i
10

σav g ,i
10

)
(3.3)

Coefficient of dispersion Di =
10

σstd ,i
10

10
σav g ,i

10

(3.4)

As shown in Table 3.3, for multi-spectral data the following normalized ratios were
computed: (i) Normalized Difference Built-up Index (NDBI, Eq. (3.5)); (ii) Normalized
Difference between SWIR-1 and SWIR-2 (NDSWIR12, Eq. (3.6)); (iii) Normalized Differ-
ence Vegetation Index (NDVI, Eq. (3.7)) and; (iv) Normalized Difference Water Index
(NDWI, Eq. (3.8)). Of these indicators, the 95th percentiles, respectively, were computed
from the temporal distribution (N images) of each pixel (i) and selected as the final
indicators. Using this 95th percentile, we avoid artifacts in the data such as the ones
produced by the cloud-covered data.

Each of the inputs selected for the classifier helps to better discriminate one or more
land cover classes we intend to identify. For example, from the optical indicators, the
NDVI helps to discriminate vegetation cover class, providing higher values for vegetation
cover and negative values for water and desert cover. The NDWI helps with the water
class identification due to their positive and higher values while using NDVI and NDWI
together facilitate the desert class identification. From the SAR indicators, the coefficient
of variation helps to discriminate urban and desert cover as they exhibit lower values
from the higher values of the vegetation and water cover. The coefficient of dispersion
helps to discriminate the dunes class from the vegetation and water cover class being
characterized the three classes by their higher SAR backscatter temporal variability.
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Table 3.3: Formulas of the four normalized ratios derived from each of the multi-spectral datasets. Each index
is calculated within the temporal data series of each pixel i and K images, with K ε[1, N ], being N the total
number of images.

Indicator Formula

Normalized Difference Built-up Index N DB Ii ,k = SW I R1i ,k −N I Ri ,k

SW I R1i ,k +N I Ri ,k
(3.5)

Normalized Difference SWIR channels N DSW I R12i ,k = SW I R1i ,k −SW I R2i ,k

SW I R1i ,k +SW I R2i ,k
(3.6)

Normalized Difference Vegetation Index N DV Ii ,k = N I Ri ,k −REDi ,k

N I Ri ,k +REDi ,k
(3.7)

Normalized Difference Water Index N DW Ii ,k = GREE Ni ,k −SW I R1i ,k

GREE Ni ,k +SW I R1i ,k
(3.8)

3.3.2. Step 2: Land Cover Mapping
In this work, we have chosen a pixel-based feature fusion approach, using the

aforementioned pixel-based indicators as an input of the supervised classifier.

Supervised Classifiers
We made use of an open-source C++ suite of utilities for remote sensing (RS) image

processing (McInerney and Kempeneers, 2015). This suite implements support vector
machine (SVM) models that are machine learning supervised learning models with
associated algorithms. In particular, the suite implements a supervised classification
SVM model (C-SVM) based on the library libSVM and it uses a radial basis function
(RBF) kernel (Vapnik, 1998; Keerthi S. S., 2003). Several steps are needed in order to
perform a classification: (i) the input indicators composing the dataset to be classified
were scaled in order to avoid values spanning greater numeric ranges dominate those
with smaller numeric ranges (e.g., normalized between minus one and plus one); (ii) a
training dataset (a shapefile of points) was prepared for each target class using Google
Earth where each point corresponds to an array containing the correspondent values
of the input indicators for that pixel; (iii) using the RBF kernel, the optimal parameters
C (penalty parameter for the wrong classification) and g (transformation parameter in
the kernel) were obtained maximising the accuracy in classifying test data. These C
and g parameters were obtained using the pkopt function provided within the pktools
package, which with iterations explores in the user-defined range of C and g values until
finding the local minimum that minimises the errors produced by the classifier. At this
stage, the classification engine was ready to process and classify unseen data.

Land Cover classes
We have defined five classes to be employed to create our classification maps. Four

generic classes: (i) built-up area, hereafter named ’urban’; (ii) sandy and rocky desert
combined into a ’desert’ class; (iii) vegetation, crops, garden, grass, and agricultural fields
named as ’field’ and; (iv) ’water’ class mainly formed by the Nile River and smaller water
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bodies present in the scene. Finally, our fifth class named ’dunes’ identifiable thanks to
the data fusion approach, not only inside the desert but also inside the floodplain. This
class is expected to be characterised by having high temporal variability of the radar
signal, with high optical radiance values characteristic of a sandy desert. ’Dunes’ and
’desert’ behave differently from the SAR response of each of them.

Land Cover Classification
Land cover classification was performed by labeling land cover maps using the

aforementioned five classes. We investigated the temporal continuity of land classes in
subsequent LULC maps, with special focus on the transitions: (i) ’urban’ → ’field’; (ii)
’field’ → ’desert’; and (iii) ’dunes’ → ’crop’.

The training dataset retrieved from the labeled classes using Google Earth, which was
split into 11 sets, of which 10 were used to train as many classifiers, and the remaining
one used as ground truth dataset for final validation. Subsequently, each classifier
was applied to the datasets referring to the various years studied, thus returning 10
intermediate classifications per dataset. Unique final classification maps were obtained
by feeding the intermediate results to a majority voting condition. The majority voting
strategy assigns a pixel to class ’X’ if it was classified as ’X’ in 6 or more classification
maps obtained for the same period.

Validation approaches
The proposed method is validated by evaluating the goodness of the resulting indi-

vidual classification maps against the ground truth datasets by calculating the standard
metrics typically employed in classification purposes, such as overall accuracy and Co-
hen’s Kappa index (Cohen, 1960) as well as qualitatively comparing our resulting LULC
maps with state-of-the-art available datasets, as explained in the following paragraphs.

Validation against ground-truth datasets The ground truth datasets were selected
from the high-resolution (<3 m) historical imagery copyrighted by DigitalGlobe and
available in Google Earth as of 2016. Different point sets were selected for the time
periods 2004, 2010, and 2015. No data referring to 1998 was available when this work
was performed. We computed the accuracy of the final classification maps using the
overall accuracy and Cohen’s Kappa (K) index, as performed by Congalton (Congalton,
1991) and Mather (Mather and Koch, 2004), in order to keep into account agreement
occurring by chance.

Comparison with state-of-the-art datasets We employed independent state-of-the-
art datasets to compare our results, namely: (i) the Global Urban Footprint (GUF) (Esch
et al., 2017, 2011), processed by the German Aerospace Centre (DLR); (ii) the Prototype
of Sentinel-2 Land Cover Map of Africa at 20 m (European Space Agency, 2017) released
by the European Space Agency Climate Change Initiative (ESA-CCI); (iii) Global Human
Settlements Layer using Landsat data for 2014 (Florczyk, Aneta; Politis, Panagiotis;
Corbane, Christina; Pesaresi, 2018) (GHSL-L8), created by the Joint Research Center
(JRC) and; (iv) Global Human Settlements Layer using Sentinel-1 data for 2016 (Corbane,
Christina; Politis, Panagiotis; Syrris, Vasileios; Pesaresi, 2018) (GHSL-S1) with a 19 m
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spatial resolution (Corbane et al., 2017), also created by the JRC. Note that the GUF,
ESA-CCI and GSHL-S1 have a higher resolution than our results (30 m) and none of
them totally matches the observation time of the data analyzed here.

Due to the heterogeneity of the different datasets (data sensor employed, spatial
resolution, dates), in order to compare these, a harmonisation process is needed. All
datasets were resampled with 30 m resolution and re-projected in the same projection
system of our dataset.

Finally, we compared the urban class across the different datasets: GUF, GHSL-S1
and GHSL-L8, ESA-CCI and our classification maps for 2010 and 2015.

3.3.3. Step 3: Multi-Temporal Evolution Analysis
After obtaining the five-class LULC maps for the four time periods, we identified

pixels that remained stable and those that underwent changes from one land-use class
to another between 1998 and 2015. Non-realistic changes were also detected and labeled
as miss-classified pixels, based on our "multi-temporal consistency rules", defined as
follows: (1) once a pixel is urban, it will stay urban in the following periods; (2) water
cannot turn into urban, field or desert; (3) fields can only become urban, and not desert
or water. In our study area the water class mainly corresponds to the Nile River, and
was stable during the considered time period and; (4) desert can change to urban land
or crop fields, as well as to dunes. In the latter case, it implies that dunes have been
migrating into rocky deserts or across desert pavement surfaces.

In the Middle Egypt region, rule 2 is a simplification as there has effectively been
a change in the size of the islands in the Nile channel which may have impacted the
area classified as water or agriculture. However, as this does not have an impact on
the urbanised areas, being the focus of this work, we believe that this simplification is
justified.

With the temporal evolution maps for the urban and field classes, together with the
population data from Central Agency for Public Mobilization and Statistics of Egypt
(CAPMAS) (Central Agency for Public Mobilization and Statistics (CAPMAS)., 2017),
we have computed the trends of urban population density and field area per person.
Since these data were not available for the entire study area, this analysis was limited to
El-Minya governorate which is centrally located in the study area, as shown in Fig. 3.4.
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Figure 3.4: Google Earth image overlaid with the Egyptian administrative boundaries of its governorates (left),
and zoom over the location of our study area with the district boundaries (right).
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3.4. Result
Figure 3.5 shows the resulting land use and land cover maps for 1998 and 2015. Areas

with important changes in LULC between 1998 and 2015 are indicated in Figure 3.5
as well. These areas include new urbanisation (black rectangles) both in the Eastern
Deserts and within the Nile floodplain, expansion of irrigated agriculture in the Western
Desert (cyan rectangles) and reclamation of dune fields in the interaction area with the
expansion of agriculture (red rectangles).

Figure 3.5: LULC maps obtained over the study area with a data fusion approach using SAR and multi-
spectral data for 1998 and 2015. Black rectangles highlight areas with an urban increase, cyan rectangles
correspond with fields increase in the desert area and red rectangles with crop increase within the Nile Valley
and interaction area.

The accuracy of the land use and land cover maps is expressed in the confusion
matrix, see Table 3.4. Overall, the agreement between the constructed LULC maps
and ground truth data is very high as is illustrated by a Kappa index above 0.98 for the
different time periods, which is considered an almost perfect agreement (Landis and
Koch, 1977). Note that for the period of 1998, historical data in Google Earth over our
study area was not available.

Tab. 3.5 clearly shows an increase in built-up areas in both the Nile Valley and the
desert however, in the latter region, urbanization mainly took place between 2010 and
2015. Similarly, "land reclamation", i.e., the extension of agricultural fields in former
desert environments, became more significant in the final period (2015), i.e., an 11-fold
increase in its extent in comparison with the first period (2004), reaching a total new
field class of almost 260 km2 for the period between 2010 and 2015. Another visible
trend is the constant reduction of the field class within the Nile Valley, as a consequence
of the continuous urbanisation over the fertile soil of the Nile Valley. From 1998 to 2015,
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Table 3.4: Confusion matrix, kappa index and overall accuracy of the resulting land use maps. Google Earth
data is used as ground truth.

Year
GoogleEarth Land use classification map Accuracy criteria

ground truth Urban Desert Water Fields Dunes

2004

Urban 431 1 0 0 0 kappa index (%)

Desert 1 6081 0 0 22 99.0%

Water 0 0 150 0 0 Overall accuracy

Fields 0 0 0 1936 0 99.5%

Dunes 0 17 0 0 186

2010

Urban 431 0 0 0 0 kappa index (%)

Desert 1 6088 1 0 21 99.1%

Water 0 0 151 0 0 Overall accuracy

Fields 0 0 0 1936 0 99.6%

Dunes 0 13 0 0 189

2015

Urban 430 0 0 0 0 kappa index (%)

Desert 1 6092 0 0 13 99.1%

Water 0 0 147 0 0 Overall accuracy

Fields 1 2 5 1936 7 99.6%

Dunes 0 7 0 0 193

almost 54 km2 of arable land has been transformed into urbanized land cover in the
Nile floodplain.

Table 3.5: Evolution in urban and field classes across the different landforms from 1998 to 2015 (km2).

Class Landform
Year

1998 2004 2010 2015

Field
Valley 1705.1 1690.1 1679.7 1652.0

Desert 0 22.1 46.5 259.7

Urban
Valley 85.5 100.5 110.9 138.6

Desert 0 2.3 4.7 13.8

The temporal evolution of the different land use classes is extremely interlinked
(field → urban, field → desert/dune, desert → dune, desert → field, desert → urban,
dune → field, dune → urban), since an increase in one class is directly translated into
the reduction of others. This is the case, for example, for the urban increase on the first
periods analyzed (1998–2010), when most of the newly built-up area was located on
the edges of the cities and villages (see Fig. 3.6), and the increase in fields was due to
the "land reclamation" phenomena mainly linked to the reduction of desert classes by
introducing crop fields with irrigation systems inside the arid environment (see Fig. 3.7).
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Figure 3.6: Urban expansion in the study area from 1998 to 2015. Green areas were already urban in 1998
whereas other colours show where urban expansion occurred during the corresponding time period.

Figure 3.7: Changes in the spatial extent of agricultural fields for the El-Minya governorate from 1998 to 2015.
Permanent fields in the edges indicate the limits of the Nile valley floodplain.

The urban extent and its evolution per district in the El-Minya governorate are
summarised in Table 3.6. Growth rates vary between 0.01 and 0.61 km2/yr. Over the
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entire period, urban areas have increased from 33 to 888% by 2015 compared to 1998.
The lowest percentage increase is for El-Minya city itself, whereas a more prominent
increase is observed for the new cities in the desert (New Minya and unorganized
El-Minya district).

Table 3.6: Urban spatial extent (km2) within the different analyzed districts in Middle Egypt for four time
periods, and urban growth rates (% and km2/yr) for the period 1998–2015 (total size of the study area equals
6170 km2).

District District Area [km2]
Urban spatial extent [km2] Urban Growth Rate 1998-2015

1998 2004 2010 2015 [%] [km2/yr]

Abu Qurqas 279.54 10.54 13.33 14.81 19.07 80.93 0.47
Al-Minya 356.24 10.97 13.86 15.94 21.29 94.07 0.57

Al-Minya City 21.80 6.62 7.49 8.06 8.86 33.84 0.12
Dayr Mawas 195.85 7.32 8.96 10.06 12.81 75.00 0.31

Dayrut 221.66 11.90 13.68 14.66 18.61 56.39 0.37
Malawi 294.51 10.66 13.08 14.66 18.39 72.51 0.43

Malawi City 17.96 3.13 3.58 3.91 5.13 63.90 0.11
Matay 169.03 3.18 3.63 4.08 5.67 78.30 0.14

New Minya City 15.66 0.08 0.15 0.23 0.79 887.50 0.04
Samalut 468.49 12.29 15.19 17.24 23.34 89.91 0.61

Surtah Al Dakhlah 177.72 0.09 0.09 0.11 0.24 166.67 0.01
Unorganised Al-Minya 3697.48 2.07 3.06 4.83 11.51 456.04 0.52

Total 6170 78.85 96.09 108.9 145.74 84.83 3.72

Figure 3.8 shows the evolution in population density for the built-up environment in
El-Minya governorate. These values were calculated by dividing the population census
data by the urban spatial extent as shown in Table 3.6. Overall, there is a decrease from
46 thousand people/km2 urban area in 1998 to 35 thousand people/km2 urban area in
2015. Figure 3.8. also shows how with an increasing population but a decrease in the
class ’fields’, the average size of agricultural land available per inhabitant is decreasing
from 4.7 ha/person in 1998 to 3.6 ha/person in 2015.

Figure 3.8: Changes in population, urban population density and agricultural land per person in El-Minya
governorate in the period 1998–2015.

Finally, we compared the urban features detected using our approach with the state-
of-the-art urban global datasets, such as GUF and GHSL, as well as the urban class from
the ESA-CCI Land Cover Prototype over Africa. In addition, we computed the urban
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extent detected on El-Minya governorate, in order to understand whether it is possible
or not to use these datasets together for urban expansion analysis. Details of the urban
extent measured per dataset are shown in Table 3.7.

Table 3.7: Characteristics of the different urban layers and land cover maps employed and measured urban
extent across the El-Minya governorate. The temporal evolution of the urban extent shows unrealistic urban
extension over time, as urban extent only increased in our study area during that period.

Year Urban extent [km2] Producer Data employed Dataset name Spatial resolution [m]
2010 109.01 Our Envisat ASAR IMS/ Landsat 7 ETM+ Results 30
2012 184.35 DLR TerraSAR-X / TanDEM-X GUF 12
2014 207.31 JRC Landsat 8 OLITIRS GHSL-L8 38
2015 148.88 Our Sentinel-1 / Landsat 8 OLITIRS Results 30
2016 145.81 ESA Sentinel-2 ESA-CCI 20
2016 147.45 JRC Sentinel-1 GHSL-S1 19

We visually compared the urban extent over two smaller areas contained within our
study area detected on all the datasets shown in Table 3.7, one over El-Minya City and
surroundings (Figure 3.9) and the second one over Mallawi and surroundings (Figure
3.10), from where it was possible to obtain additional information regarding old urban
extent and modern cemeteries from Willems et al. (Willems and Muammad, 2010). The
main differences are highlighted within colour ellipses in these figures and described in
the discussion section. It is important to note the non-realistic changes in the temporal
evolution of detected urban extent for different datasets as seen in Table 3.7. and Figure
3.9. These inconsistencies reveal the limitations of performing a blind analysis using
data obtained from different producers with their particular data sources and methods.
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Figure 3.9: Urban/built-up area of El-Minya city and surroundings from the different datasets: (A) 2010, this
study, (B) GUF for 2012, (C) GHSL-L8 2014, (D) 2015, this study, (E) ESA-CCI Prototype 2016 and (F) GHSL-S1
2016. In colour circles, different areas highlighting different classification performances. The blue rectangle
highlights our results.

Figure 3.10: Urban/built-up of Mallawi city and surroundings from the different datasets: (A) 2010, this study,
(B) GUF for 2012, (C) GHSL-L8 2014, (D) 2015, this study, (E) ESA-CCI Prototype 2016 and (F) GHSL-S1 2016.
Top left map showing the location of modern cemeteries [55]. In colour circles different areas highlighting
different classification performances. The blue rectangle highlights our results.
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3.5. Discussion

3.5.1. Quality of the Data Fusion Approach Compared to Single Plat-
form Approaches

Table 3.7 and Figures 3.9 and 3.10 compare the results of urban expansion obtained
in this study with the data fusion approach to urban global datasets, as well as with a
high-resolution visual Google Earth image. A direct and accurate comparison, how-
ever, is complicated as the timing of the imagery is different, such that discrepancies
between the various urban maps are not solely related to differences in methodology
but partly also to real changes in urban extent between the periods covered by each
map. Nevertheless, some differences emerge from this comparison. The Global Urban
Footprint dataset (Esch et al., 2017, 2011) does not detect flat urban areas, such as the
Minya airport tracks (see Figure 3.9 —yellow oval), as the method employed is optimised
for the detection of man-made building structures with a vertical component. Both
Sentinel products (ESA-CCI and GHSL-S1) are also having difficulties in mapping the
spatial extent of the airport correctly. Only the data fusion approach (this study) and
the GHSL-L8 dataset correctly identifies these flat urbanised areas. On the other hand,
narrower strips of urban land, such as road surfaces, are in some cases mapped by the
GUF and ESA-CCL dataset but not by the data fusion approach (Figure 3.10 – blue oval).
This could be related to the resolution of the imagery used to create these maps. Indeed,
the GUF and ESA-CCL maps are using 12 and 20 m resolution data, respectively, whilst
in this study, we used 30-m resolution data. A 30-m resolution image could be too low
to identify narrow roads accurately. The newly constructed Nile bridge and access road
(Figure 3.10 —red oval) is identified relatively well on most images, except the GSHL-S1
dataset. Note that road construction started in 2008–2009 and that the bridge and road
were only finished in 2013–2014. Hence, the differences in mapping quality between
the various datasets likely correspond to the building progress. The GHSL-L8 dataset
performs very poorly when it comes to detecting the new urban expansions of New
Minya (red oval in Figure 3.9). The GUF and GSHLS1 data seem to overestimate the
urban density of this new settlement and suggest a similar density as the ancient city
center. However, this is not observed, i.e.,the new town has more open spaces and parts
are not yet developed. Here, the data fusion approach correctly predicts the expansion
of the new town between 2010 and 2014 but at a lower density than the El-Minya city
center itself. Furthermore, the ESA-CCI classifies many city centers as bare soil, thus
showing a lower built-up density (Figure 3.9 El-Minya city and Figure 3.10 Mallawi city
center). We attribute this to the fact that many buildings have similar spectral properties
as bare soil: many buildings have been constructed from soil material (mud bricks)
and deposition of dust on rooftops and against buildings walls in this extremely dry
environment may also contribute to this effect. Finally, some large cemeteries can be
found along the Eastern Desert margin (Figure 3.10 —yellow). These cemeteries are
detected only in the GUF layer, due to the higher spatial resolution and characteristics
of the data employed. In our specific case, it is advantageous not to map cemeteries as
urban, as the urban extent is used to compute the urban population density estimates.

Overall, the detailed comparisons of the various urban datasets show that in general,
the data fusion approach outperforms the quality of the global urban datasets that
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are constructed from a single data platform, whether it is optical or radar data. In
particular, the data fusion of radar and optical imagery is able to correctly capture
the extent of urban areas s.s., i.e., buildings. Errors in the classification of roads are
probably related to the lower resolution. Our results also show that comparing data
on the urban extent mapped using different approaches is not an accurate method to
map and quantify rates of urban expansion through time. Table 3.7 could incorrectly
suggest urban expansion took place between 2010 and 2014 (from 109 to 207 km2),
followed by a significant reduction in urban expansion in 2015 (again 148 km2). In the
next section, we will, therefore, discuss changes in urban and agricultural land areas
using a single methodology, i.e., the data fusion approach applied to 1998, 2004, 2010
and 2015 imagery.

3.5.2. Urban and Agricultural Land Dynamics
Urbanisation follows a trend that accelerated during the last period analyzed (see

Table 3.6). Whereas urbanisation rates were already high in the first two periods, 2.5
and 1.8 km2/year for the periods 1998–2004 and 2004–2010, respectively, it is mainly in
the period 2010–2015 that new urban land was created at a rate of 6.1 km2/year. Urban
expansion is mainly linked to a reduction in arable land ("fields" class) within the flood-
plain (compare Figures 3.6 and 3.7 ). This type of urban expansion typically involves a
diffusion process whereby cities and villages grow along their edges. This is illustrated
in the area around the city of Mallawi in the El-Minya governorate (Figure 3.11 ). No less
than 60% of the urban growth near Mallawi between 1998 and 2015 took place in the
last five years. It involved mainly new building blocks to the north and south of the city
of Mallawi. In more recent time periods, however, urbanisation is no longer restricted to
the floodplain. Table 3.5 shows how between 2010 and 2015, a significant part of the
urban expansion took place in the desert. This is strongly linked to government-led
urban planning whereby new cities are built in desert areas, such as New Minya, located
within the eastern desert (see Figure 3.9 , red circle). Around Cairo, desert cities such as
6th of October City, 10th of Ramadan City and New Cairo, amongst others, have been
developed since the 1970s and 1980s (Stewart, 1996). This process has also gradually
impacted Middle and Upper Egypt from the 1990s and 2000s onwards, with new towns
being planned near Minya, Assiut and Qena, amongst others (Ibrahim and Masoumi,
2016).

Urban expansion goes hand in hand with a reduction in land used for agricultural
activities in the Nile floodplain: 53 km2 of arable land has been irreversibly converted
into urban land between 1998 and 2015 in the entire study area (Table 3.5). However,
this does not imply that agricultural land is decreasing. In the same period, no less
than 260 km2 of barren desert or former dunes has been reclaimed for agricultural
purposes. This includes areas in the western and eastern desert where large-scale ir-
rigation schemes have been set up, as well as dune-levelling in the interaction area
(Mohamed and Verstraeten, 2012). Figure 3.7 shows that the levelling of dunes in the
interaction area already started in the late 1990s, whereas land reclamation in the desert
is a more recent phenomenon. It is mainly the latter process which is responsible for
the increasing rate at which new agricultural land is created. These two phenomena are
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also illustrated in Figures 3.12 and 3.13 respectively.

The aim of the Egyptian government with the new-town policy has been to release
pressure on the fertile agricultural land with a rising population and to improve the
living conditions in highly populated ancient urban centers (Stewart, 1996). However,
whilst our data indeed shows that urban expansion in the desert takes place at increasing
rates, it is clear that urban expansion in the Nile Valley is far more important in absolute
numbers. Contrary to the planned desert cities, this type of urban expansion is not
planned and often informal (Hegazy, 2016). Between 1998 and 2015, approximately
1500 ha of fertile land has still been converted into urban land each year. Despite the
overall increase in arable land through land reclamation in the desert, it cannot keep
pace with increasing population numbers. In the El-Minya governorate, the average
extent of agricultural land per inhabitant has decreased from 4.7 to 3.7 ha/person, i.e., a
reduction of 21% over 17 years. Hence, we can conclude that at least for Middle Egypt,
the new town policy did not halt the reduction in the availability of fertile soils for crop
cultivation. Newly reclaimed areas are also more vulnerable as water has to be pumped
from the Nile Valley or from groundwater resources, which is not only very costly but
it may also lead to failures in water supply in the case of malfunctioning systems, thus
questioning the sustainability of this type of agriculture (e.g., (Adriansen, 2009; Barnes,
2012)). On the other hand, urban population density decreased from 46,000 to 35,400
inhabitants/km2 built-up area in the same period (Figure 3.8 ). Despite this reduction,
these average urban population densities of more than 350 people per hectare remain
very high to global standards (Angel et al., 2010). Furthermore, population densities
in the new desert towns are often lower as more open spaces are provided and not all
towns are yet successful. For New Minya, the population is currently estimated at 45,000,
whilst it should reach 638,000 in 2050 (New Urban Communities Authorities, 2019).This
means that population densities in the towns and villages in the Nile Valley so far remain
densely populated, similar to many residential areas in Greater Cairo (Harms, 2017).
Furthermore, contrary to the planned desert cities, this type of urban expansion is not
planned and often informal (Hegazy, 2016). Hence, living conditions remain in general
very poor.
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Figure 3.11: Urban classes detected for 1998, 2004, 2010 and 2015 in Mallawi province overlaid on optical
image (right) and optical image over the area (left).

Figure 3.12: Field classes detected for 1998, 2004, 2010 and 2015 in the Eastern South-Rayan dune field area
overlaid on high-resolution optical image (right) and optical image over the area (left).
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Figure 3.13: Field classes detected for 1998, 2004, 2010 and 2015 in the Western Dalija region overlaid on a
high-resolution optical image (right) and optical image over the area (left).

3.6. Conclusions
In this study, we applied a data-fusion approach to map land-use dynamics in Mid-

dle Egypt for the period 1998–2015. Our data-fusion approach proved to be an effective
method to discriminate urban areas where other approaches fail, especially when urban
areas are built with mud bricks or constructed within desert areas. The combination
of optical imagery (Landsat 5 TM, 7 ETM+ and 8 OLITIRS) with radar imagery (ERS-
2 SAR, Envisat ASAR and Sentinel-1 IW) resulted in four multi-temporal land cover
maps at a resolution of 30 m. Comparison with high-resolution optical images (Google
Earth) showed very high accuracy, stressing the efficacy of the data-fusion approach
in mapping land cover dynamics. Furthermore, comparison with globally available
urban datasets shows that the data fusion approach is performing better than the single
platform-based approaches when it comes to identifying new settlements in the desert
or to discriminate urban buildings from bare arable land. Our study also suggests that
multi-temporal studies on the land cover that combine results from various producers
obtained with different methodologies could lead to erroneous nonrealistic interpreta-
tions.

Our data show a rapidly increasing trend in urbanisation in Middle Egypt (65 km2),
in particular, along the margins of existing towns and villages in the Nile Valley. As a
result, a continuous decrease of fertile Nile floodplain soils for agricultural practices
can be seen. This loss is compensated by land reclamation processes whereby former
dunes in the Nile Valley are levelled, and by irrigation practices in the desert (over 200
km2). Finally, the results show that both the urban population density and the amount
of agricultural land per person have decreased by more than 20% since 1998. Finally, we
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have demonstrated that the proposed data-fusion approach is a viable tool to continu-
ously monitor future land cover changes and can be used to update the management
and planning of urban areas.





4
Automatic dune dynamics

analysis using multi-temporal
SAR data

Sand dunes can freely move in deserts with limited sand source and a predominant
wind direction. However, dunes can become a real hazard when approaching agricultural
land or human settlements. Being able to analyse their position and dynamics periodi-
cally at low cost can help decision-makers to act beforehand. This chapter presents an
automatic method for the monitoring of sand dune dynamics applicable everywhere.

4.1. Introduction

An understanding of dune dynamics becomes critical in cases where dunes represent
a real hazard due to their proximity to villages or agricultural fields and when

dunes move towards them, as is the case for (Lorenz et al., 2013a) and (Mohamed and
Verstraeten, 2012; Verstraeten et al., 2014, 2017), respectively.

In order to increase our understanding of this, the accumulation of windblown sand
into sand dunes has been the subject of numerous studies using both traditional field
surveys and remote sensing techniques. Field surveys may include the use of measuring
tape roads (Barnes, 2001; Al-Harthi, 2002), optical and electronic levelling (Käyhkö,
2007), DGPS (Santalla et al., 2009; Kostaschuk and Best, 2005; Baptista, P; Bastos, L;
Bernardes, C; Cunha, T; Dias, 2008), RTK-GPS (Pardo-Pascual et al., 2005; Mitasova et al.,
2005), total station (Arteaga et al., 2008), terrestrial laser scanning (Łabuz, 2016) and
ground penetrating radar (Santalla et al., 2009; Buynevich et al., 2011). However, field
surveys are expensive and have limited spatial coverage and revisits compared to satellite
remote sensing techniques, which can cover very wide areas systematically, repetitively,

This chapter has been published in Remote Sensing with the tile Sand Dune Dynamics Exploiting a Fully
Automatic Method Using Satellite SAR Data, (Delgado Blasco, Chini, Verstraeten and Hanssen, 2020).To fit the
publication in this study minor changes have been made.
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and at a very low cost. Nowadays, satellite data is systematically acquired globally with a
repetition frequency that can range from 1 to 16 days with spatial resolutions from below
a meter up to tens of meters, such as PlanetScope, Sentinel-1/2 or Landsat 8 (European
Space Agency., 2019). Furthermore, satellite RS has the advantage of being able to
analyze less accessible dune regions and/or regions with extreme climatic conditions
that may restrict field surveys. This even includes extraterrestrial dune systems, such
as those on Mars (Luke and King, 2019), or on equatorial regions of Titan (Radebaugh
et al., 2010; Paillou et al., 2014; Le Gall et al., 2012; Lopes et al., 2010; Radebaugh et al.,
2008; Paillou et al., 2016).

Monitoring sand dunes on Earth is mostly performed by optical RS data, using
multi-spectral datasets (Hugenholtz et al., 2012), applying multi-temporal false RGB
color techniques (Mohamed and Verstraeten, 2012), manual delineation of dunes, GIS
models (Ghadiry and Koch, 2010) or even more advanced techniques such as sub-pixel
correlation of multi-temporal acquisitions, e.g. COSI-CORR (Hermas et al., 2004). The
potential of microwave (SAR) sensors for monitoring dune dynamics has not been
fully exploited, despite being able to acquire data independently from daylight, cloud
coverage and weather conditions. Early works focused on deriving linear dune attributes
(Qong, 1996), such as dune height using JERS-1 and ERS-1 data, studies using SAR for
detecting dunes on Earth using SAR or SRTM data (Blumberg, 2006, 1998), some works
based on correlation of SAR images for automatic detection of dune area (Gouinaud
et al., 2013) and more recently using interferometric SAR techniques (Havivi et al., 2018;
Song et al., 2020). In this work we go a step further automatizing the full dune dynamics’
analysis.

As demonstrated by Blumberg (1998), dunes can be identified easily in radar images,
appearing darker than their surroundings when they are located in either rougher or
vegetated environments. In optical images, sand dunes are more difficult to delineate
as their composition can be the same as their surroundings, see Fig. 4.1. How dark
they appear within an SAR image can vary depending on the incidence angle, signal
wavelength, dune type and orientation, and their being able to return a higher signal
that becomes a white pixel (like a corner reflector) on the dunes’ crests and edges, see
Fig. 4.1). However, the predominant dune characteristic is that they appear darker than
their environment. Furthermore, even when interdune areas are also characterized
by sand, with the same optical properties as the dune itself, the dune can still be de-
tected on SAR images when the SAR signal attenuation produced in the dune returns a
backscatter signal much lower than its surroundings. A recent study (Nashashibi et al.,
2012) modelled the radar backscatter response of sand-covered objects to radar signals,
measuring the backscatter response of a surface covered with very dry sand, showing a
predominant volume scatter mechanism with values lower than 15 dB for sigma0 VV
channel.
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Figure 4.1: (A) Google Earth image over South Rayan dune field centered on latitude 28.51465,longitude
30.52506 in WGS84. (B) Sentinel-1 image over the same area showing a strong radar backscatter, corner
reflector-alike, over a sand dune.

It is essential to highlight the importance of developing an effective and accurate
sand dune monitoring system, as it is critical to monitor sand dunes that could become a
threat. In the last years, migrating dunes had threatened water wells and infrastructures
(Government of Western Australia, 2017; Ahmed Mutasim Abdalla Mahmoud, The
Conversation, 2021), archaeological sites (Greenwatch Trust, Twitter, 2022), or buried
famous film sets (Lorenz et al., 2013b). These are only some examples of situations
where the proposed monitoring technique could help to prevent.

The potential and advantages of SAR imagery over in situ and optical methods is
related to the geomorphology of dunes and the difficulties of monitoring their dynamics.
Sand dunes may be classified by their (i) size and shape, (ii) location (coastal, desert,
polar), (iii) growth stages and degree of complexity and (iv) the wind direction responsi-
ble for their formation (Lancaster, 1994). In addition, a geomorphological classification
groups dunes by shape, number of slip faces and the wind directions that form them,
resulting in six categories: barchan, transverse, barchanoid, longitudinal, parabolic and
star (Tsoar, 2001).

In this work, we focus on the dune dynamics of barchan dunes, see Fig. 4.2, which
are characterized by a crescent shape with a concave slip face and "horns" or arms
extending downwind (Lancaster, 1994). Barchan dunes can form when the terrain
is flat while winds blow from one dominant direction (15 degrees difference or less),
vegetation cannot grow and sand is available but limited (Lancaster, 1994). If the sand
supply increases, barchan dunes begin to connect with others, forming barchanoid
ridges and eventually transforming into transverse dunes. Barchan dunes have the
ability to migrate long distances with only a minor change in form when the above
conditions are in place (Wippermann and Gross, 1986).
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Figure 4.2: Barchan dune schematic illustrating wind, dune movement and slip face (licensed CC BY-SA 3.0).

In this study, we propose a fully automatic method to analyze the dynamics of
isolated barchan dunes using SAR data. We have applied this method over two dune
fields with multi-temporal C-band SAR satellites, allowing us to identify a consistent,
efficient and reliable way to derive dune shapes, dunes migration rates, and directions,
that is applicable globally. We focus our analysis only on this type of dune for the sake of
simplicity and to test the proposed approach.

4.2. Study area
To test the proposed methodology, we have selected two sandy deserts in Western

Sahara-Mauritania (WSM) and Egypt, whose locations are illustrated in Fig. 4.3. We
will focus our work on the dune dynamics of isolated barchan dunes found at the two
sites. These frequently propagate as a group, sometimes interacting with one another
through collisions and indirect sand exchange (Livingstone et al., 2007), making more
difficult the automatic analysis of them. Isolated barchans in equilibrium move without
changing their shape (Wippermann and Gross, 1986) enabling the usage or the proposed
automatic analysis approach.

Both sites have different topography and wind conditions. The yearly average wind
in the WSM area is much higher than in Egypt, being, N-NE 4-6 and NW 1-2, corre-
sponding to 20-50km/h and 1-10 km/h respectively (WeatherOnline, 2019). On one
side, the WSM site comprises a sand dune field with barchan dunes, with an almost flat
topography, having an average slope of 7 m/km in a westerly direction (USGS, 2018) and
its substrate layer is a desert paviment formed by gravel and coarse sand (Ould Ahme-
dou et al., 2007). The South Rayan dune field (SRDF) in Egypt lays over a substrate
similar to WSM desert pavement, also formed by gravel and coarse sand (Said, 2012;
Mohamed, 2012b) and starts with linear dunes that develop into isolated barchan dunes,
which encroach on the western part of the Nile valley. Due to the tilted topography
with an average slope of 50m/km in West-East direction, the barchan dunes are not as
symmetric as the ones from WSM site, but have an elongated eastern horn as illustrated
in Fig. 4.3G.
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Figure 4.3: A) Overview of the location of both areas of interest: i) in Western Sahara and Mauritania desert
(B) and, ii) in the South Rayan dune field in Egypt (E). Barchan dunes viewed from optical (C and F) and SAR
satellites (D and G) over the respective red rectangles from B and E.

4.3. Materials and Methods

4.3.1. Materials

The selected datasets are from previous and current European SAR satellites, i.e. the
European Remote Sensing satellite (ERS), the Environmental Satellite (Envisat) and the
Copernicus Sentinel-1 (S-1). Due to the spatial resolutions (about 20 m for all three
sensors) and the expected dune migration rate on the study area, we have selected time
intervals distant enough to measure the dune movement. Detailed information on the
employed dataset is provided in Table 4.1.

4.3.2. Methodology

The key element of our automatic method consists in the identification of the dunes
using SAR images, assuming that in a SAR image, dunes look like dark areas surrounded
by brighter pixels, see Fig. 4.4.
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Table 4.1: The selected satellite remote sensing imagery.

Study area Satellite Acquisition Relative Orbit path Mean incidence
date orbit / track angle [degrees]

South Rayan (Egypt)

ERS-1/2 SAR IMS 2000/09/05 207 Descending 23

Envisat ASAR IMS
2004/07/06

207 Descending 23
2010/08/24

Sentinel-1 IW GRD
2014/10/14

131 Ascending 33.4
2019/01/15

West-Sahara and Mauritania

ERS-1/2 SAR IMS
1992/12/11

309 Descending 22.8
1999/09/20

Envisat ASAR IMS
2003/07/27

309 Descending 22.82006/09/05
2009/09/17

Sentinel-1 IW GRD
2015/04/07

60 Ascending 33.4
2018/02/26

Figure 4.4: Optical (A) and SAR (B) view over the South-Rayan dune field, delimited by the red polygon.
Barchan dunes are the dark areas within the red line in B). C shows the intensity of the SAR backscatter signal
in decibels over the yellow rectangle in B in radar coordinates. D shows the profile of the vertical red line in
figure C for two different SAR data acquired on 2004/07/07 and 2010/09/09 depicting very low intensity of
signal over the barchan dunes.

The method is divided into three steps, see Fig. 4.5: i) SAR data preprocessing;
ii) dune identification using the Hierarchical Split Based Approach (HSBA) algorithm
(Havivi et al., 2018) and; iii) dune movement computation using Geographic Information
System command line tools and validation. The validation is performed using existing
data and Google Earth and validated data over the South Rayan dune made available
from (Mohamed, 2012b).
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Figure 4.5: Overview of the methodological approach with the three steps discussed in the text.

SAR data preprocessing
SAR data has been calibrated and geocoded using the ESA calibration method incor-

porated in the Sentinel-1 Toolbox (Veci et al., 2014) integrated in the SentiNel Application
Platform (SNAP), using the Precise Orbits and the SRTM DEM for accurate geocoding
determination. Output SAR data has been converted to decibel scale, enhancing the
contrast of the image, and making the backscattering distributions more symmetrical
and Gaussian, suitable for the subsequent identification step.

Dune identification using the HSBA algorithm
This step uses as input the calibrated and geocoded SAR data in decibel scale and

produces using the HSBA algorithm, a raster binary image where dunes are identified.
The HSBA algorithm assumes that dune backscattering is very low, positioning its prob-
ability density function (PDF) in the lowest part of the image histogram, see Figs. 4.6B
and D.
To separate the target class from the background, a thresholding approach is frequently
used (Rosin, 1998). The drawback of this method is that the classification heavily relies
on the adequacy of the selected threshold. To this aim, parametric thresholding algo-
rithms are preferable because they estimate PDFs of the target class and its background,
and based on them the threshold is selected (Bruzzone and Prieto, 2002). In this context,
one of the main difficulties in parameterizing these functions originates from the fact
that the target class often represents only a small fraction of the image. Under such
circumstances, the histogram of the image values is often not obviously bimodal, and it
becomes difficult to parameterize PDFs. In the case of water detection, HSBA searches
for tiles of variable size allowing the parameterization of PDFs of two classes (Chini et al.,
2017a). This is here applied for dunes detection, see Fig. 4.6. The approach has also been
successfully applied for detecting buildings at a global scale (Chini et al., 2017a, 2018)
and volcanic lava flow induced changes (Bignami et al., 2020) from SAR intensity images.
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To fit the PDF of the dunes class (PDFD) we use HSBA, a statistically based algorithm
which makes use of a hierarchical tilling of the image. Based on PDFD, we combine
histogram thresholding and region-growing processes to identify the dunes. The pa-
rameters of the region-growing and thresholding processes are automatically derived
from PDFD. The definition of PDFD starting from the entire SAR acquisition is possible
if the class is sufficiently represented, i.e. identifiable, and this generally depends on the
shape of the histogram. The PDFD may not be easily fit from the histogram when dunes
represent only a small percentage of the entire image. Therefore, it is necessary to focus
on those areas of the image that are composed of a similar number of pixels belonging
to dunes and the background (PDFB) classes respectively. To this aim, HSBA has been
used for automatically identifying regions in any given SAR image where the two PDFs
of dunes and background are well separated and giving rise a bimodal histogram of the
region. The main scope of this is to obtain a robust parameterization of the PDFD and
PDFB, making more reliable the classification of the dune class. Here, the PDFD and
PDFB are assumed Gaussian. This choice is motivated by the fact that the input data
are multi-looked and log-transformed SAR intensity images to increase the equivalent
number of looks (ENL) and to have more Gaussian distributions (Xie et al., 2002).

The proposed approach is described in detail in Chini et al. (Chini et al., 2017a). In
HSBA, a hierarchical tiling of the scene is initiated starting with 40 tiles (i.e., the entire
image) on the first level and then continuing by iteratively subdividing the image into
4L sub images, with L being the hierarchical level of splitting. At L = 1, the image is split
into quarters; with L = 2, the image is subdivided into sixteenths; and so on. Depending
on L, the tiles will thus be characterized by different sizes. At each level, descending
from the upper level to the lower one, only tiles fulfilling fixed criteria are selected, while
the others will be further split.
The criteria to select a tile are: 1) The histogram of the tile has to be bimodal and com-
posed of two Gaussian PDFs (Fig. 4.6D); 2) The number of pixels belonging to dunes
class must be composed at least of 20% of the considered tile; 3) The mode of PDFD has
to be lower than a predefined value, which is set to -17 dB, because the backscattering
of dune class is expected to be low.
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Figure 4.6: A) Sentinel-1 image acquired over Egypt including the South-Rayan dune field showing three
levels of tiles similar to the employed in the HSBA. B) Level 1 (full scene) backscatter histogram. C) Sentinel-1
image zoomed over the Level 3 tile colored in red in A), and D) its corresponding histogram, highlighting the
separability of the normal distributions of the dune backscatter (red Gaussian) in the lower part and the other
Gaussian in black for the non-dune areas.

To fit PDFD and PDFB from the histogram of a given tile, we use the Levenberg –
Marquardt algorithm, a technique to solve nonlinear least square problems (Marquardt,
1963). To check the bimodality of the histogram we use the Ashman D coefficient (Ash-
man et al., 1994), which quantifies how well two Gaussian distributions are separated,
e.g., PDFD and PDFB, by considering the distance between their main modes and
their dispersions, i.e., standard deviations. To consider the PDFs as well-separated, the
Ashman D coefficient has to be higher than 2.

All tiles selected based on the three previously defined criteria are merged together
and the resulting histogram is used to fit the final PDFD and PDFB to be used in the
next steps for thresholding the image. Although the resulting PDFs are well-separated,
some overlap is still present, consequently setting the threshold where PDFD is equal
PDFB can produces some over- and under-detection. To reduce these latter drawbacks,
contextual information is also used via a region-growing approach (Chini et al., 2017b;
Giustarini et al., 2012). The region-growing algorithm starts from seed pixels and adds
to them connected pixels that lie within a predefined tolerance value. The choice of the
threshold values for the seeds and for stopping the growth is a crucial point. The strategy
we follow to select these two parameters is based on PDFD. We select seed pixels with an
high likelihood to belong to the dunes class, e.g., pixels with backscattering values lower
than the PDFD mode, while many different thresholds to stop the growth are tested,
and we select the one that minimizes the RMSE between the theoretical PDFD and the
empirical histogram resulting from the region-growing.
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Dune movement using GIS functions
This last step uses as input a pair of binary images obtained after the dune iden-

tification step and it computes the movement of individual dunes based in centroid
differences of the intersecting dunes, see Fig. 4.7 as done in (Mohamed and Verstraeten,
2010). The algorithm assumes that a dune shift is less of its width in the moving direc-
tion, thus an adequate SAR time sampling is necessary. This latter will be guaranteed by
new satellites constellations which are able to image systematically the surface with a
very small repeat cycle, e.g. the six days of Sentinel-1.

Figure 4.7: Schematics of: A) Detected dune, B) Filled dune, C) Polygonized dune and, D) dune movement
computation based on centroid difference, resulting in the black arrow symbolising the displacement vector.

The functions employed in this step are: i) hole-filling of the binary images; ii) poly-
gonize them; iii) compute x and y centroid coordinates for the different polygons; iv)
intersection of the polygons in two dates and; v) movement and direction estimation.
Directions of dunes movement range, clockwise, from 0 to 360 degrees, where 0 degree
corresponds to north direction. The QGIS processing modeler (Graser, 2013) has been
employed for defining and creating the automatic processing employed in this step, see
Fig. 4.8.

Figure 4.8: Processing diagram defined using the QGIS processing modeller.

The obtained results are finally filtered based on an area consistency criterion that
we have defined in line with the area consistency principle of the isolated barchan, which
move conserving their shape and hence also their area. This area consistency criterion
can be translated as the dune area loss between the observed dates, as illustrated in
Eq. (4.1). Based on that criterion, variations on the area measured using our method
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can take values ranging in the interval [0, 1] and it can help us to discriminate individual
dunes from other cases such as dune merging, dune splitting, (see Fig. 4.9) which could
produce high variability of the observed dune area. The area consistency criterion
measures the area loss, given by

ar eal oss = abs(ar eat1 −ar eat2)

max(ar eat1, ar eat2)
(4.1)

where ar ea is the dune area for each time observed t1 and t2 and measures the area
loss between two observations respect to the maximum area observed.

Figure 4.9: Example of the merging and splitting phenomena that can occur in dune fields when smaller
dunes reach larger dunes. Barchan dunes are characterized for conserving shape while moving, as illustrated
in the images available in Google Earth over the WSM site. Images sorted in acquisition time from left to right.
A) acquired in 25/10/2011; B) in 18/02/2013; C) in 20/07/2013 and D) in 24/07/2016.

Validation
We have manually delineated dunes from both WSM and SRDF areas on two dif-

ferent time periods using very high resolution optical data available in Google Earth,
enabling the comparison of the results obtained from our automatic approach versus
the manually delineation and analysis, in terms of dunes locations, and movement char-
acteristics such as distance, average velocity, direction and area loss for both delineated
and satellite-derived data.
In addition, and for the specific case of the South-Rayan dune field, we have also used
the existing dataset obtained from (Mohamed and Verstraeten, 2012).

4.4. Results
4.4.1. West Sahara - Mauritania

In order to obtain ground truth data over the WSM site, we have manually delineated
6 dunes over VHR optical data on 2 dates, one in 2003, matching one of our datasets,
and in 2013, as it was the last data available in Google Earth over that area, see Fig. 4.10.
By doing so, it was possible to obtain a value that could be used in our study as threshold
for the area loss computation, see Eq. (4.1). Moreover, we are able to compute their
long-term movement characteristics. Furthermore, Fig. 4.10G shows a small area of
the WSM site where are located the six dunes employed as ground-truth, showing the
crescent shape of the barchan dunes, being symmetric for most of the cases. Their
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computed distance, velocity, area loss and direction, are found in Table 4.2 confirming
the area consistency principle of isolated barchan dunes (with area loss <0.2), and also
confirms the average direction obtained using the automatic method (direction SSE,
from 180 to 190 degrees).

Figure 4.10: West Sahara dunes detected for 2003. A) Subset of the SAR image covering the dune field. B) SAR
image overlaid with the detected sand bodies in orange. C) Zoom showing SAR image in the yellow rectangle
in Figure A) as background overlaid with the contour of the dunes in orange.

Table 4.2: Dune migration information of the delineated dunes, obtained between 2003 and 2013, specifying
distance, velocity, heading direction, mean area and area loss.

Id. dune
Distance Velocity Heading Mean area Area loss

[m] [m/yr] [degrees] (t1,t2) [ha] (%)
A 142 13 190 22.90 5
B 305 28 190 2.42 5
C 213 19 190 5.27 14
D 152 14 189 16.35 3
E 152 14 189 14.53 9
F 162 15 189 11.58 0

We have applied the aforementioned methodology to the West Sahara dataset, de-
tecting a total amount of sand bodies (not only isolated dunes) which varies from one
image to another (Table 4.3). Biggest differences among the detected sand bodies
correspond to images acquired with different sensor, and not having the exact same
geographic coverage. Higher number correspond to images acquired with same sen-
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sor, i.e.: ERS2-ERS2, Envisat-Envisat, S1-S1 (Table 4.3). One example of sand bodies
identification obtained using Envisat data acquired on 2003 is shown in Fig. 4.11.

Table 4.3: Detected sand bodies, and average distance, velocity and heading of the isolated barchan dunes
obtained applying the dune area consistency criterion, obtained over the West Sahara-Mauritania dune field.

Period Sensors
Detected Isolated Distance Velocity Heading

sand bodies barchans [m] [m/yr] [degrees]
1992-1999 ERS-2 / ERS-2 2032 181 119 15 183
1999-2003 ERS-2 / Envisat 2724 116 132 26 219
2003-2006 Envisat / Envisat 7148 369 74 19 192
2006-2009 Envisat / Envisat 4911 211 76 19 181
2009-2015 Envisat / S1 4696 289 112 16 189
2015-2018 S1 / S1 5052 400 79 20 180

Figure 4.11: Figure showing the delineated dunes in green for 2003 and red for 2013 in A, B, C, D, E, F and in
G (right) the Envisat SAR image for 2003 as background, overlaid with the outline polygons of the manually
delineated dunes within yellow rectangles.

We have applied the area consistency criterion to using Eq. (4.1), ensuring that dunes
measurement reported are obtained over isolated barchan dunes, which characteristic
is the shape invariant in ideal situation, which results are reported in Table 3. We have
obtained average dune velocities ranging from 15-26 m/yr over the analyzed area. Note
that the resulted number of isolated dunes with overlap between dates is much lower
than the total amount of detected sand bodies. Fig. 4.12 illustrates the histogram of the
heading direction of movement of these isolated barchans in WSM.

Looking at the values reported in Table 4.3 and Fig. 4.12, seems that it could be an
error on the average heading obtained, which could also interfere in the calculated
velocity. We will analyze this in the discussion section.
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Figure 4.12: Dune displacement directions for the different periods analyzed, indicating the number of dunes
and the mean values of migration distance, migration rate and direction or heading. A), C), E), F) show dunes
displacement direction in SSW direction for the periods 1992-1999, 2003-2006, 2006-2009, 2009-2015 and
2015-2018 respectively. B) shows a dunes displacement direction in WSW for the intersensor period 1999-2003
and, D) shows a main displacement direction ranging from SSW-SSE for the period 2006-2009.

The values obtained using the proposed method for the delineated dunes are shown
in Table 4.4. There is a very good agreement between the velocities obtained with the
automatic method and the ground truth, as well as the heading (max difference of 7
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degrees) and distance. Despite these agreements, there are differences in the mean area
detected, being more important for the smallest dunes (B and C) detecting near 36%
less against the 12-20% for the others. These differences in detected area are linked to:
i) the spatial resolution of the sensor (20 m x 20 m) and; ii) the non-detected areas are
located in the borders of the dunes, as a certain volume of sand accumulated is needed
in order to appear dark in the SAR data.

Table 4.4: Dune migration information obtained using the automatic method over the delineated dunes,
obtained between 2003 and 2015, specifying distance, velocity, heading direction, mean area and area loss.

Id. dune
Distance Velocity Heading Mean area Area loss

[m] [m/yr] [degrees] (t1,t2) [ha] (%)
A 170 13 183 22.29 6
B 178 25 197 1.56 8
C 264 20 190 3.36 12
D 147 11 190 14.44 14
E 193 15 189 11.87 18
F 193 15 190 9.27 11

4.4.2. South-Rayan Dune Field in Egypt
We also applied our methodology to the SRDF dataset. A general overview of the

results obtained in the dune detection step is illustrated in Fig. 4.13C, and Fig. 4.13A
shows the Google Earth overview of the SRDF (within the red polygon). Fig. 4.13B
illustrates how dunes can be easily identified using SAR data, compared to optical
data (Fig. 4.13A), as they appear darker than their surroundings, as explained in the
introduction section.

Figure 4.13: South-Rayan Dune field view in optical (A), Envisat ASAR (B) and Envisat ASAR overlaid with the
detected sand bodies (C).

Furthermore, we delineated three dunes using Google Earth, selecting the ones which
were specially monitored and validated with GPS and VHR optical data in (Mohamed,
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2012b). These three manually delineated dunes in the South Rayan dune field are
illustrated in Fig. 4.14 and their values obtained are shown in Table 4.5. Table 4.6 reports
the information over the same three dunes observed in (Mohamed, 2012b).

Figure 4.14: A-C shows the delineated dunes in green for 2007 and red for 2010. D (middle) the Envisat SAR
image for 2010 as background, overlaid with the outline polygons of the manually delineated dunes within
yellow rectangles. E (right) shows the Envisat SAR image for 2010 as background, overlaid with the outline
polygons of the detected dunes using the automatic approach.

Table 4.5: Dunes’ information extracted from the manually delineated dunes on Google Earth in 2007 and
2010.

Id. dune
Distance Velocity Heading Mean area Area loss

[m] [m/yr] [degrees] (t1,t2) [ha] (%)
A 10 3 163 19.81 3
B 20 5 174 11.90 0
C 20 5 186 10.12 3

Table 4.6: Information extracted from (Mohamed, 2012b) over the three selected dunes from 1984 and 2003
using Landsat 5 TM.

Id. dune
Distance Velocity Heading Mean area Area loss

[m] [m/yr] [degrees] (t1,t2) [ha] (%)
A 83 4 174 20.35 4
B 87 5 178 11.29 1
C 99 5 166 10.48 0

Applying our automatic method, we have detected a total amount of sand bodies
reported in Table 4.7. Again, the biggest differences among the detected sand bodies
with overlap corresponded to images acquired with different sensors, and not always to
the same exact geographical extent.
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Table 4.7: Average filtered results based on dune area consistency criteria, measured over the South-Rayan
dune field.

Period Sensors
Detected Isolated Distance Velocity Heading

sand bodies barchans [m] [m/yr] [degrees]
2000-2004 ERS-2 / Envisat 1928 43 66 13 208
2004-2010 Envisat / Envisat 2729 434 45 6 158
2010-2014 Envisat / S1 2785 93 36 7 177
2014-2019 S1 / S1 1714 112 176 29 169
2000-2010 ERS-2 / Envisat 1866 64 89 8 201
2000-2019 ERS-2 / S1 581 73 188 9 184

According to (Mohamed, 2012b), the average velocity of the dune movement for the
SRDF is expected to be around 2–6 m/yr. Similar values were found for some of the
analyzed periods reported in Table 4.7. These values can be affected by the merging or
splitting of several dunes (Horvat, 2006). This was observed when smaller dunes moving
faster reached larger dunes moving at a slower pace (Horvat, 2006). Furthermore, dunes
in the SRDF could have been affected by new fields that had appeared in the proximities
of the dune field, even surrounding dunes, in the Western Desert.

In Table 4.6, information extracted from (Mohamed, 2012b) over the dunes A, B
and C are reported and it is possible to appreciate that both velocity and area are in
agreement with the dunes extracted from Google Earth.

Fig. 4.14 shows the manually delineated dunes using Google Earth from 2007 and
2010, in green and red respectively. In the middle image (D) we show the delineated
dunes over the Envisat ASAR data acquired on 2010/08/24, highlighting the good agree-
ment between the outline polygons of dunes in left (A, B and C) and the black dunes in
the SAR image. In the right Fig. 4.14E, the Envisat image is overlapped with the outline
of the dunes detected using our automatic method. We can observe some differences in
the detected shapes in D and E, that will be discussed in Section 4.5.

From Fig. 4.14E we can see that detected dunes do not exactly match the delineated
ones, as some dunes do not appear totally black in the SAR images as they have white
pixels due to high backscatter produced over the sharp edged created with the help of
the topography (average slope of 50m/km). These bright spots on the dunes were not
encountered in the uniform and regular barchan shapes on the WSM dune field, see
Fig. 4.10.

In Table 4.7, there are reported the average values for distance, velocity and direction
obtained for isolated dunes after applying the area consistency criterion. For the periods
from 2000 to 2004 and from 2014 to 2019, values are higher than in the other observed
periods. In the South-Rayan dune field, dunes move slower, and for some cases, the
observed movement is near the sensitivity of the technique. A good area detection
become critical when the expected movement is only 1 or 2 pixels (with 20m pixel
spacing). In this case, the topography influences the dune morphology creating sharp
edges on dunes. These sharp edges appear as white pixels in the SAR image, not being
detected as dune, and hence, affecting the dune area measured and finally its movement.
However, long-term migration is well detected, both in speed and direction.

In Table 4.7, we have analyzed the dune migration within consecutive observations,
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and also the observations with more time difference for both sensor change: i.e. ERS2-
Envisat (2000-2010) and ERS2-S1 (2000-2019). It is also important to highlight that
different sensor data had not the same extent, for which the maximum overlap is ob-
tained within the same sensor: i.e. Envisat-Envisat (2004-2010) and S1-S1 (2014-2019)
where we have detected higher number of individual dunes.

For the dunes remaining after applying the area consistency criterion, in order
to validate further our results we have compared our dunes map with the data from
(Mohamed, 2012b), obtaining 30 overlapping dunes. From these 30 dunes, we have
analyzed the variation in their area detection for the different dates, obtaining the results
illustrated in Fig. 4.15. From this figure, we can identify 8 dunes for which there are
area differences at least in 2000 and 2019 with respect to the other observed years. This
means that on 22 of the 30 total intersected dunes, our method is in total agreement
with the results from (Mohamed, 2012b) regarding the dunes areas, while in 8 dunes,
something could had happened for those specific time periods.

Figure 4.15: Dune’s area variation for the different years of the 30 dunes in common with (Mohamed, 2012b).

Finally, our method provided dune migration information also for the dunes A, B
and C which values are reported in Table 4.8. These values are not totally in agreement
with the ones found in literature, probably due to the detected dune area, being a 85%,
80% and 65% the area detected in the SAR images for the dunes A, B and C respectively.
This underestimation of the dune area directly affects their centroid coordinates and
hence the distance and velocity. Despite of this, the obtained values are in still the in the
range of the expected dune migration and close to the ground-truth values.

Table 4.8: Dune information provided by the automatic method on SAR data acquired in 2004 and 2010 for the
same dunes which were also manually delineated, located in the South Rayan dune field.

Id. dune
Distance Velocity Heading Mean area Area loss

[m] [m/yr] [degrees] (t1,t2) [ha] (%)
A 38 5 141 17.31 2
B 23 3 149 9.12 2
C 21 3 163 6.80 8
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4.5. Discussion
The total number of the detected sand bodies reported in Table 4.3 and Table 4.7

showed high variability among different periods. One of the possible causes of this high
variability could be explained by the differences in area detected which are minimized
after applying the proposed criterion.

An intrinsic characteristic of free dunes belonging to the same dune field is that the
distance that rove the dunes have an inverse relationship with their size, i.e. small dunes
move longer and faster than bigger ones, with the characteristic of keeping their shape
invariant in case of barchans in equilibrium (Wippermann and Gross, 1986). Dunes can
fuse when smaller and faster dunes reach bigger and slower ones, and this fusion can be
temporary or permanent (Horvat, 2006).

Fig. 4.16 illustrates the curve fitting of the aforementioned characteristic (the dis-
tance that the dunes rove has an inverse relationship with their size) of our manually
delineated dunes on the WSM site (in blue) and the dunes from SRDF delineated in
Mohamed (2012b) (in orange), and clearly shows the differences in area and migration
rate of the dunes of both analyzed sites.

Figure 4.16: Curve dune area versus migration rate for the WSM and SRDF sites, including trend lines.

Small dunes rove faster than larger dunes, as illustrated in Fig. 4.16. This may
produce their non-intersection between two time periods, which excluded them from
our analysis due to the non-intersection condition. In order to provide dune migration
information, our method needs each dune shape to intersect in space for the analyzed
time periods. Nowadays, and due to the revisit times of the new satellite constellations
such as Sentinel-1, we could also analyze faster dunes, just by decreasing the time
interval between images. Barchan dunes located in the almost flat WSM area have a
more regular shape, helping the proper detection of the dune area. And, the average
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velocity measured on the intersected dunes is over 18 m/yr, and almost as fast as the
barchan dunes in Chad, considered some of the fastest dunes on Earth, moving at an
average velocity of about 20 m/yr (Vermeesch and Drake, 2008). Moreover, we measured
an average ratio of the dune migration rates (automatically computed versus ground
truth) of 0.96, being very consistent with the estimated migration rates. Moreover, we
also computed the differences in the dune area measured, which varied from 11% to
36% of area difference compared to the ground truth, being more critical for smaller
dunes. This is directly linked to the spatial resolution of the data employed. However,
this misdetection of the dune area seems systematic and is located on the dune edges,
where thinner sand layers are located, allowing us to compute reliable migration rates
despite the dune area difference.

We also computed the dune migration information for the different periods analyzed
for the intersecting dunes in the SRDF dune field, obtaining an average movement of
4–5 m/yr in the SSE direction in agreement with (Mohamed, 2012b), which reported an
average migration rate of 4.4 m/yr also in the SSE direction. We also observed that the
dune area on the SRDF site is slightly underestimated, probably due to the bright pixels
that appear, preventing better detection, see Fig. 4.2. However, long-term migration
information is properly detected.

We have also noticed a miss-alignment of the ERS-2 SAR data with respect to the
Envisat ASAR and Sentinel-1 dataset. This is visible when computing the dune’s displace-
ment direction for the period 1999 to 2003 in Fig. 4.12B and Fig. 4.17C. This shift found
could not be avoided and could be attributed to the precision of the orbital information
available and employed during the pre-processing of the ERS-2 data. We can observe
this shift when comparing multi-sensor data but does not appear when considering
the analysis of the results obtained from each sensor independently. Moreover, this has
been only found for the historical ERS-2 data, and not for the other datasets employed.

Figure 4.17: A) False RGB composition of SAR images acquired on 2018 (Red), 2009 (Green) and 2003 (Blue). B)
Polygons of the dunes detected for Envisat and Sentinel-1 data with movement direction indicated with black
arrows. C) Polygons of the dunes detected for all period, including ERS-2 SAR, which appear misaligned for
the periods 1992 and 1999 (black and dark green polygons respectively).

Hence, despite the fact that dunes may appear slightly smaller in SAR images compared
to optical images, we have demonstrated that SAR data can be used to analyze dune
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dynamics at the dune field scale, as shown in the consistency of the dune migration
rates between our results and the ground-truth data.

4.5.1. Overall comments from the proper exploitation of the proposed
approach

For all the sandy areas detected, we discarded larger volumes of sand corresponding
to dune groups in our analysis, analyzing only individual dunes for which the detected
area has varied less than 20%. By doing this, additional dunes are discarded, for example,
when such dunes join and separate from other dunes through the analyzed period.

Considerations identified for a proper usage of our approach can be grouped into
two categories: (i) dune detection; and (ii) dune migration analysis. For the former, ob-
taining an accurate detection is linked directly to the spatial resolution of the employed
sensor and to bright pixels that sometimes appear on dunes, while for the latter, dune
migration information can only be provided for isolated dunes that have spatial overlap
on the analyzed images.

To maximize the number of dunes with overlap, it is suggested that the number
of images to be processed is increased, thus reducing the time interval between two
consecutive ones, in order to ensure a geographical overlap of the moving dunes. This
can be foreseen by knowing the wind speed of the area of interest and by selecting the
proper dataset with spatial-temporal resolution to ensure the success of the method
presented here.

As seen in the case of the South Rayan dune field, dunes located there are more likely
to show SAR bright pixels on their large tail, which our approach sometimes cuts off
from the dune, affecting their detected area, and hence their movement. However, this
has not been found in dunes located in the West Sahara-Mauritania dune field.

It is important to note that on the SRDF site, for some cases we have tried to measure
movements near the limit of the detection error, as one pixel counts for 20 m, and this
is, on average, the distance an average dune in that field will move in four years, at the
speed of 5 m/yr. Hence, we obtained better results for longer periods (i.e., 2000 to 2019
or 2004 to 2014).

Moreover, special attention must be paid to the proper geolocation of the satellite
data, to avoid misalignments among data coming from different sensors, as is the case
for the older dataset employed, i.e., ERS-2 SAR, and as we have shown happens on the
WSM test site, but not on the SRDF. Note that this misalignment does not happen with
the newer satellite data, as seen with Envisat and Sentinel-1.

Despite our both dune fields moving mainly in the N-S direction, we consider that
our method should work as well in dune fields where the main direction is E-W as there
is no constraint in our method that limits the migration direction.

Anywhere where no criterion is applied based on dune area consistency (area loss <
0.2), individual dune migration information might be perturbed.

Future research directions will lead to an enhancement of the method we propose
to enable dune matching even for dunes that do not overlap using computer vision
algorithms and analyzing dunes in both ascending and descending orbits when possible.
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4.5.2. Implications in other domains
Climate change studies point towards the increase in wind speed on Earth, which will

directly affect the dune dynamics of entire dune fields. Our automatic approach could be
used to measure such wind variations of dune fields from all the world, providing results
more rapidly and in a systematic manner. This systematic and global monitoring is not
possible using other non-automatic techniques, such as traditional field campaigns or
using optical data, the limitations of which were already mentioned in the introduction
section.

Deriving the dune migration information from multiple dates, and obtaining the
dune speed and movement direction could help to derive wind parameters, such as
average direction, speed or the possible variations of them over time. This could help us
to understand whether these conditions have changed over time during the analyzed
periods.

Moreover, extra-planetary research, as already mentioned in the introduction sec-
tion, has observed dunes on Mars and Titan. Hence, applying the proposed approach
when sufficient data is available could help measure wind speeds on their surface.
These wind speeds could become crucial pieces of information for the planning of space
exploration missions, especially for those planning to land on them.

4.6. Conclusions
We have developed a totally automatic approach to measure dune dynamics, and

have applied it to different test sites where barchan dunes move freely, but at different
speeds and in different directions, showing the robustness of our method.

We have demonstrated the possibility of extending the applicability of techniques
that were originally developed for other purposes, such as flood mapping, to dune dy-
namic analysis, due to the similar behavior of dunes and water to the SAR co-polarized
signal, and hence we have also demonstrated the usability of SAR data for dune migra-
tion analysis at scale.

The proposed methodology has been demonstrated to work on isolated barchan
dunes and provides dune migration information about dunes with an overlap between
images. This methodology can be exported to other barchan dune fields. As a future
work, the applicability of this method to other dune types could be explored.

We have measured, for our analyzed time period, dune migration rates of 11–20
m/yr moving in a south–south westerly direction for the West Sahara/Mauritania study
area and 2–6 m/yr moving in a south-easterly direction for the South Rayan dune field,
being very consistent with the available ground truth being 13–28 m/yr and 3–5 m/yr
respectively.
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Conclusions and

Recommendations

IN this final chapter, the findings from the research will be discussed in the light of
the research questions introduced in chapter 1. We also discuss the scientific and

technical achievements and evaluate the potential of the developed methods and their
applications. Finally, a set of recommendations is provided.

5.1. Conclusions
The main objective of this research is to improve methodologies to analyze the

multi-temporal evolution of some specific landscape features due to natural and an-
thropogenic dynamics with a focus on Egypt. Below, we provide an answer to the main
research questions:

• Can current urban classification methods be improved by using satellite SAR
data and machine learning techniques? Are we able to provide accurate urban
expansion maps over urban and rural areas in Egypt?

In chapter 2 and chapter 3 we presented two different methodologies, one using
Multi-Spectral, SAR and SAR interferometric coherence data and the second based
on exploiting large Multi-Spectral and SAR amplitude time series data, both using
machine learning data fusion approaches for multi-temporal land cover classification.
In chapter 2, we have demonstrated that introducing SAR and SAR interferometric
coherence together with information derived from the optical satellites overcomes
limitations imposed by the usage of optical satellite data only, while in chapter 3, we
have exploited the statistics derived from large satellite data from SAR and optical
sensors to derive accurate land cover maps.

With these methods, we improved the discrimination of urban features in arid
regions and defined a new land use class that captures the transitions between the
desert and urban classes, even in the early stages of construction. By using this new

77



5

78 5. Conclusions and Recommendations

class it was possible to detect areas subject to continuous changes, such as the Giza
Pyramids World Heritage Cultural Site due to the intense movement of cars, buses, and
people. And it was also possible to see the transition of the highly visited area to a less
disturbed area after the Spring Arab Revolution. The reduction of such UAD class over
the Giza Pyramid WHS during the period from 2010 to 2015 correlates with the reduction
of tourists during several years after the revolution (see page 27).

Recently developed land cover classification strategies follow similar approaches
to the ones developed in this work, such as in the new WorldCover (ESA, 2021b) and
WorldCereal (ESA, 2021a) or the already completed SInCohMap (ESA, 2019), among
others. Our land classification maps improved the urban detection of state-of-the-art
global layers, i.e. we detect more than 6% more urban areas over the Greater Cairo
area when comparing with ESA-CCI1 using GUF2 as reference dataset. In particular, we
improved the detection of urban features located with respect to ESA-CCI and GHSL3 at
least when analyzing at local and regional scale. Our maps show a better match with the
urban areas visible in Google Earth datasets, where the ESA-CCI underestimates old city
centers and GHSL misses, in some cases, entire cities located outside the floodplain, as
it happened with New Al-Minya city, as shown in Fig. 3.9 (page 47).

It shall be highlighted that the above-mentioned layers used different methods, and
satellite data and were developed with global data from heterogeneous areas, while
the proposed method has been developed with data specifically collected for the study
areas presented in this dissertation.

Results of our research showed a continuous increase of urban areas in within the
Nile floodplain, causing a reduction of crop fields. In chapter 2, we have measured the
Greater Cairo urban extent in 1998 corresponded to 381 km2 and, from 1998 to 2015,
the urban areas increased by 427 km2. These new urban areas were constructed on
previous cropland (almost 160 km2), but also within the desert areas (over 267 km2)
over both previous desert and UAD classes. In chapter 3, we have measured an increase
of urban area of 53 km2 within the Valley at expenses of cropland, and we have also
seen how new cities appeared within desert areas (i.e. New Al-Minya). In addition, we
have measured a decrease of agricultural land (hectares per person) and, a decrease of
urban population density, meaning that new urban areas become more residential.

These results show that the building activities over fertile soil had never stopped
during the analysed period, despite government’s efforts, as urban areas continued to
appear on the Nile Valley, reducing fertile cropland areas. However, new urban areas
had growth within the desert, such as New Cairo, Pyramids Gardens, 6th October, Sheikh
Zayed city and New Al-Minya.

Moreover, within the period 2010-2015, both crop fields and urban areas had prolifer-
ated in an accelerated rate in areas inside the desert areas (page 43). More than 200 km2

of cropland appeared within the desert areas during this period on the analysed part of
the Middle Egypt region. Probably part of these new croplands in the desert would be
later abandoned, as suggested in (NASA Earth Observatory, 2021), but this could be the
scope of future work. Finally, our resulting urban detection excludes cemeteries, which

1ESA-Climate Change Initiative: Land Cover — S2 Prototype land cover 20 m map of Africa
2Global Urban Footprint of the German Aerospace Center
3JRC Global Human Settlements Layers
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allows us to better compute population density estimates on urban areas. More precise
information on the quality assessment is described in chapter 2 and chapter 3.

• Can satellite SAR data help to improve the current methods of dune migration
analysis? Can this analysis be done automatically? Can this be done at dune
field scale?

In chapter 4 we presented a new fully automatic method, which exploits C-band SAR
data to derive dune dynamics information on isolated barchan dunes. We have tested
this method in two dune fields with different dune migration characteristics. This is
the first automatic method using SAR C-band presented in literature designed for this
purpose and that facilitates dune migration analysis at dune-field scale.

The results correlate with values found in literature, demonstrating that our method
allows for fast, automatic, and accurate barchan dune migration mapping. Our approach
is as fast as almost near-real time, and as accurate as other approaches which may be
not automatic and more expensive. Contrary to the results used for the comparison,
derived from Landsat data using a method that required manual intervention, our
method operated fully automatic, which facilitates operational applications. Other
contemporary methods are based on optical satellite data (with its intrinsic limitations),
or on VHR resolution optical data, which is expensive. The C-band SAR data employed
in this study is weather independent, and free, which can be even more beneficial for
areas where clouds is a real problem.

5.2. Contributions
The main contributions of this research are summarized as follows:

1. The development of two urban detection methods, fusing SAR, SAR coherence,
Multi-spectral and Thermal data with ANN classifiers.

2. The generation of urban detection maps that improve existing urban maps pro-
duced by ESA and JRC, in our specific region of interest, using single sensor data
(Delgado Blasco et al., 2013, 2020).

3. The definition of a new land cover class, Undefined Anthropogenic Disturbances
(UAD), allowing to identify new urban areas, i.e., urban being built or completed,
see chapter 2.

4. Prove that the use of temporal statistical data for LULC mapping improves tra-
ditional methods that employ a single satellite image (SAR and/or optical) see
chapter 3.

5. Development of an automatic method for dune dynamics using SAR data, which
is able to provide dune dynamics information in a reliable and robust way, see
chapter 4. The method is exportable to other environments containing sand
dunes, including extraterrestrial dune fields found on Mars and Titan. The method
is able to provide dune migration rates and directions of individual barchan dunes.
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While demonstrated on the test sites used in this study, our methods can be used in
other (arid) environments, such as urban expansion in countries with similar environ-
mental conditions to Egypt, such as Tunisia, Sudan, or the United Arab Emirates (UAE).
The methods could be used by authorities, NGOs, or other entities which need updated
and accurate information about urban expansion.

The dune migration analysis are particularly important when dunes represent a
hazard, e.g., when they are moving towards villages or agricultural fields, but also when
oil and gas companies plan to install new wells in desert areas, to avoid installing them
in the dune’s path. Dune migration can be monitored using SAR data and the technique
developed in chapter 4. The techniques may be valuable for Mars landing mission
planning, as a Mars lander may bounce several times and end up near active dunes,
cf. (Kavulich Jr, 2008).

Regarding the implications for society, the results indicate that Egyptian crop field
areas are not increasing at the same pace as population growth in rural areas such as the
Middle Egypt region, and that the new urban areas built in there are more residential, as
the population urban density decreased.

5.3. Recommendations
Despite the existence of Global land cover layers, regional geospatial studies need

to be performed using dedicated regional maps, because they have shown to be more
accurate than global layers, as they are generated using techniques specifically designed
and trained on data from that region.

Secondly, the fusion of SAR and multi-spectral satellites is able to overcome each
sensor’s limitations, and hence we recommend the usage of data fusion approaches
when analyzing landscape dynamics in similar environments.

It is also recommended to extend this work following the same approach, especially
to understand how tourism activities evolved in Greater Cairo, as it is highly relevant to
understand how to monitor tourism activities from space.

In this research, we have focused on the land cover dynamics while it is recom-
mended to analyze also the land use, as combining both information sources it is
possible to provide a more detailed and precise urban population density, as in this
research we assumed the urban population density to be uniformly distributed over
the detected urban cover areas. Hence imperviousness information could be retrieved
and applied together with the land cover classes to improve the reported figures in this
research.

The correlation of SAR and optical data and their capabilities of reconstructing
cloudy optical data should be investigated.

Due to the presence of speckle in SAR data and its difficulties for image interpreta-
tion, the use of SAR data with a high revisit frequency is recommended, so that their
derived temporal statistics are able to better discriminate the different land use classes.
When such high temporal acquisition density is not available, such as for the historical
ERS and Envisat missions, it is recommended to add interferometric coherence products
to compensate it. However, the best combination, when possible, is to use both high
temporal density SAR datasets as well as their derived interferometric coherence to
achieve the most accurate results.
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It is also recommended to use online platforms as they are a valuable tool for fast
prototyping, algorithm development, and for using large volume datasets. However,
currently, there is no online processing platform that provides analysis-ready data for
both SAR and InSAR products. This makes the usage of both SAR high temporal density
data and their interferometric coherence products more difficult.

Due to the highly changing environment in Egypt, we recommend national authori-
ties to operationally implement the analysis described in this dissertation to generate
more frequent maps, since our results showed that, despite the government’s efforts
initiated after the 1996 population census from which they tried to avoid new construc-
tions on the Nile floodplain, agricultural fields within the floodplain have been replaced
by urbanized areas for the whole analyzed period, and it might be happening still today.

Furthermore, since the automatic algorithm described in chapter 4 has been tested
only on barchan dunes and located in desert areas with a specific geomorphological
set-up, we recommend proceeding with further testing of our algorithm for different
desert environments and for other dune types. Besides, it is recommended to possess
a prior knowledge of the average dune migration rates/speeds as this is needed for
an appropriate data sampling selection to be employed for the analysis. In case this
information is not available, we suggest using a data sampling of 1 year.

New technologies such as deep learning techniques could be explored for enhancing
data and methods of this research, in particular for: SAR speckle noise reduction, end-
to-end dune dynamics analysis, and land classification purposes.

Finally, multidisciplinary research is recommended for increasing the impact of the
new products and methods developed for analyzing its social-economic, cultural and
geological implications.





Bibliography

Adriansen, H. K. (2009). Land reclamation in Egypt: A study of life in the new lands.
Geoforum, 40(4):664–674.

Ahmed Mutasim Abdalla Mahmoud, The Conversation (2021). In Sudan,
shifting sand dunes threaten the world’s largest collection of pyramids.
https://scroll.in/article/998119/in-sudan-shifting-sand-dunes-
threaten-the-worlds-largest-collection-of-pyramids. accessed: 27 June
2021.

Al-Harthi, A. (2002). Geohazard assessment of sand dunes between Jeddah and Al-Lith,
western Saudi Arabia. Environmental Geology, 42(4):360–369.

Altman, D. G. (1991). Mathematics for kappa. Practical Statistics for Medical Research,
pages 406–407.

Angel, S., Parent, J., Civco, D. L., and Blei, A. M. (2010). Persistent Decline in Urban
Densities: Global and Historical Evidence of ‘Sprawl’. Lincoln Institute of Land Policy.

Angiuli, E. and Trianni, G. (2014). Urban mapping in Landsat images based on normal-
ized difference spectral vector. IEEE Geoscience and Remote Sensing Letters, 11(3):661–
665.

ARRAY (2010). NEST-Calibration Operator.

Arteaga, C., de Sanjose, J., and Serrano, E. (2008). Terrestrial photogrammetric tech-
niques applied to the control of a parabolic dune in the Liencres dune system,
Cantabria (Spain). Earth Surface Processes and Landforms, 33(14):2201–2210.

Ashman, K. M., Bird, C. M., and Zepf, S. E. (1994). Detecting bimodality in astronomical
datasets. arXiv preprint astro-ph/9408030.

Aswatha, S. M., Mukhopadhyay, J., and Biswas, P. K. (2016). Spectral slopes for automated
classification of land cover in landsat images. In 2016 IEEE International Conference
on Image Processing (ICIP), pages 4354–4358. IEEE.

Atkinson, P. M. and Tatnall, a. R. L. (1997). Introduction Neural networks in remote
sensing. International Journal of Remote Sensing, 18(4):699–709.

Baptista, P; Bastos, L; Bernardes, C; Cunha, T; Dias, J. (2008). Monitoring sandy shores
morphologies by DGPS-a practical tool to generate digital elevation models. Journal
of Coastal Research2, pages 1516–1528.

83

https://scroll.in/article/998119/in-sudan-shifting-sand-dunes-threaten-the-worlds-largest-collection-of-pyramids
https://scroll.in/article/998119/in-sudan-shifting-sand-dunes-threaten-the-worlds-largest-collection-of-pyramids


84 Bibliography

Barnes, J. (2001). Barchan dunes on the Kuiseb River delta, Namibia. South African
Geographical Journal, 83(3):283–292.

Barnes, J. (2012). Pumping possibility: Agricultural expansion through desert reclama-
tion in Egypt. Social Studies of Science, 42(4):517–538.

BELSPO (2019). APLADYN - Anthropogenic and physical landscape dynamics
in large fluvial systems? "https://eo.belspo.be/en/stereo-in-action/
projects/anthropogenic-and-physical-landscape-dynamics-large-
fluvial-systems". accessed: 03-10-2022.

Bignami, C., Chini, M., Amici, S., and Trasatti, E. (2020). Synergic Use of Multi-Sensor
Satellite Data for Volcanic Hazards Monitoring: The Fogo (Cape Verde) 2014–2015
Effusive Eruption. Frontiers in Earth Science.

Blumberg, D. (2006). Analysis of large aeolian (wind-blown) bedforms using the Shuttle
Radar Topography Mission (SRTM) digital elevation data. Remote Sensing of Environ-
ment, 100(2):179–189.

Blumberg, D. G. (1998). Remote sensing of desert dune forms by polarimetric synthetic
aperture radar (SAR). Remote Sensing of Environment.

Bowden, L. W. and Brooner, W. G. (1970). Aerial photography: A diversified tool. Geofo-
rum, 1(2):19–32.

Brink, A. B., Bodart, C., Brodsky, L., Defourney, P., Ernst, C., Donney, F., Lupi, A., and
Tuckova, K. (2014). Anthropogenic pressure in east africa—monitoring 20 years of
land cover changes by means of medium resolution satellite data. International
Journal of Applied Earth Observation and Geoinformation, 28:60–69.

Brinkmann, K., Schumacher, J., Dittrich, A., Kadaore, I., and Buerkert, A. (2012). Analysis
of landscape transformation processes in and around four West African cities over
the last 50 years. Landscape and Urban Planning, 105(1-2):94–105.

Bruzzone, L., Marconcini, M., Wegmuller, U., Wiesmann, A., Member, S., and Wegmüller,
U. (2004). An advanced system for the automatic classification of multitemporal SAR
images.

Bruzzone, L. and Prieto, D. F. (2002). An adaptive semiparametric and context-based
approach to unsupervised change detection in multitemporal remote-sensing images.
IEEE Transactions on image processing, 11(4):452–466.

Buynevich, I. V., Bitinas, A., Souza-Filho, P. W. M., Pupienis, D., Asp, N. E., Goble, R. J.,
and Kerber, L. E. (2011). Rapid coastal dune migration into temperate and equato-
rial forests: optical chronology of imaged upper slipface strata. Journal of Coastal
Research, pages 726–730.

Central Agency for Public Mobilization and Statistics (CAPMAS). (2017). Egypt Adminis-
trative Boundaries. https://www.diva-gis.org.

"https://eo.belspo.be/en/stereo-in-action/projects/anthropogenic-and-physical-landscape-dynamics-large-fluvial-systems"
"https://eo.belspo.be/en/stereo-in-action/projects/anthropogenic-and-physical-landscape-dynamics-large-fluvial-systems"
"https://eo.belspo.be/en/stereo-in-action/projects/anthropogenic-and-physical-landscape-dynamics-large-fluvial-systems"


Bibliography 85

Cetin, M., Kavzoglu, T., and Musaoglu, N. (2004). Classification of multi-spectral, multi-
temporal and multi-sensor images using principal components analysis and artificial
neural networks: Beykoz case. In XXth International Society for Photogrammetry and
Remote Sensing-Congress, pages 12–23.

Chander, G., Markham, B. L., and Helder, D. L. (2009). Summary of current radiometric
calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote
Sensing of Environment, 113(5):893–903.

Chettri, S. R., Cromp, R. F., and Birmingham, M. (1992). Design of neural networks for
classification of remotely sensed imagery. Telematics and Informatics, 9(3-4):145–156.

Chini, M., Hostache, R., Giustarini, L., and Matgen, P. (2017a). A hierarchical split-based
approach for parametric thresholding of SAR images: Flood inundation as a test case.
IEEE Transactions on Geoscience and Remote Sensing, 55(12):6975–6988.

Chini, M., Hostache, R., Giustarini, L., and Matgen, P. (2017b). A hierarchical split-based
approach for parametric thresholding of SAR images: Flood inundation as a test case.
IEEE Transactions on Geoscience and Remote Sensing, 55(12):6975–6988.

Chini, M., Pelich, R., Hostache, R., Matgen, P., and Lopez-Martinez, C. (2018). Towards a
20 m global building map from sentinel-1 sar data. Remote Sensing, 10(11):1833.

Cobbinah, P. B., Erdiaw-Kwasie, M. O., and Amoateng, P. (2015). Africa’s urbanisation:
Implications for sustainable development. Cities, 47:62–72.

Cohen, B. (2006). Urbanization in developing countries: Current trends, future projec-
tions, and key challenges for sustainability. Technology in Society, 28(1-2):63–80.

Cohen, J. (1960). A Coefficient of Agreement for Nominal Scales. Educational and
Psychological Measurement, 20(1):37–46.

Congalton, R. G. (1991). A Review of Assessing the Accuracy of Classifications of Re-
motely Sensed Data. Remote Sensing of Environment, 46(October 1990):35–46.

Corbane, C., Pesaresi, M., Politis, P., Syrris, V., Florczyk, A. J., Soille, P., Maffenini, L.,
Burger, A., Vasilev, V., Rodriguez, D., and Others (2017). Big earth data analytics on
Sentinel-1 and Landsat imagery in support to global human settlements mapping.
Big Earth Data, 1(1-2):118–144.

Corbane, Christina; Politis, Panagiotis; Syrris, Vasileios; Pesaresi, M. (2018). GHS built-up
grid, derived from Sentinel-1 (2016), R2018A. European Commission, Joint Research
Centre (JRC).

de Noronha Vaz, E., Caetano, M., and Nijkamp, P. (2011a). A multi-level spatial urban
pressure analysis of the Giza pyramid plateau in Egypt. Journal of Heritage Tourism,
6(2):99–108.

de Noronha Vaz, E., Caetano, M., and Nijkamp, P. (2011b). A multi-level spatial urban
pressure analysis of the Giza Pyramid Plateau in Egypt Research Memorandum 2011-
43.



86 Bibliography

Del Frate, F., Pacifici, F., and Solimini, D. (2007). Urban land cover in rome, italy, moni-
tored by single-parameter multi-temporal sar images. In 2007 Urban Remote Sensing
Joint Event, pages 1–5. IEEE.

Delgado Blasco, J., Sabatino, G., Cuccu, R., Rivolta, G., Giorgio, P., and Marchetti, M.
(2016). Research and service support: Bringing users to data. In European Space
Agency, (Special Publication) ESA SP, volume SP-740.

Delgado Blasco, J., Verstraeten, G., and Hanssen, R. (2017). Detecting modern desert to
urban transitions from space in the surroundings of the Giza World Heritage site and
Greater Cairo. Journal of Cultural Heritage, 23.

Delgado Blasco, J. M., Cian, F., Hanssen, R. F., and Verstraeten, G. (2020). Mapping and
quantifying the human-environment interactions in middle egypt using machine
learning and satellite data fusion techniques. Remote Sensing, 12(3):584.

Delgado Blasco, J. M., Verstraeten, G., and Hanssen, R. F. (2013). Monitoring the urban
expansion of Cairo from 2004 to 2010 through SAR data using a non-parametric
supervised classifier. In Proc. ‘Living Planet Symposium 2013’, Edinburgh, UK 9–13
September 2013 (ESA SP-722, December 2013), volume 1. ESA Communications ESTEC,
Noordwijk, The Netherlands.

Dong, N., Liu, Z., Luo, M., Fang, C., and Lin, H. (2019). The effects of anthropogenic
land use changes on climate in china driven by global socioeconomic and emission
scenarios. Earth’s Future, 7(7):784–804.

El-Bayomi, G., & Ali, R. R. (2015). Assessment of Urban Sprawl on El Minya Archeological
Sites, Egypt. Journal of Applied Sciences, 15(2):264–270.

El Gammal, E. S. A. and El Gammal, A. E. D. A. (2010). Hazard impact and genetic
development of sand dunes west of Samalut, Egypt. Egyptian Journal of Remote
Sensing and Space Science.

Embabi, N. S. (2004). The geomorphology of Egypt, landforms and evolution, Volume I:
The Nile Valley and the Western Desert. Spec. Pub., Egypt. Geograph. Soc, 447.

ESA (2019). The Sentinel-1 Interferometric Coherence for Vegetation and Mapping
(SInCohMap) project. http://www.sincohmap.org/. accessed: 2021-10-09.

ESA (2021a). The ESA WorldCereal Project. https://esa-worldcereal.org/en. ac-
cessed: 2021-10-09.

ESA (2021b). The ESA WorldCover Project. https://esa-worldcover.org/en. ac-
cessed: 2021-10-09.

Esch, T., Heldens, W., Hirner, A., Keil, M., Marconcini, M., Roth, A., Zeidler, J., Dech, S.,
and Strano, E. (2017). Breaking new ground in mapping human settlements from
space–The Global Urban Footprint. ISPRS Journal of Photogrammetry and Remote
Sensing, 134:30–42.

http://www.sincohmap.org/
https://esa-worldcereal.org/en
https://esa-worldcover.org/en


Bibliography 87

Esch, T., Schenk, A., Ullmann, T., Thiel, M., Roth, A., and Dech, S. (2011). Character-
ization of land cover types in TerraSAR-X images by combined analysis of speckle
statistics and intensity information. IEEE Transactions on Geoscience and Remote
Sensing, 49(6):1911–1925.

European Space Agency (2017). CCI Land Cover -Sentinel-2 Prototype Land Cover 20m
of Africa 2016. http://2016africalandcover20m.esrin.esa.int/.

European Space Agency. (2019). Some Commonly Used EO Satellite Systems.

Florczyk, A., Politis, P., Corbane, C., and Pesaresi, M. (2018). GHS-BUILT R2018A - GHS
built-up grid INPUT DATA, Landsat multitemporal collections (1975-1990-2000-2014).
European Commission, Joint Research Centre (JRC).

Florczyk, Aneta; Politis, Panagiotis; Corbane, Christina; Pesaresi, M. (2018). GHS-BUILT
R2018A - GHS built-up grid INPUT DATA, Landsat multitemporal collections (1975-
1990-2000-2014). European Commission, Joint Research Centre (JRC).

Ghadiry, M. and Koch, B. (2010). Developing a monitoring system for sand dunes
migration in dakhla oasis, western desert, egypt. In Proceedings of the 30th EARSeL
Symposium on Remote Sensing for Science, Education and Culture, Paris, France,
volume 31.

Giustarini, L., Hostache, R., Matgen, P., Schumann, G. J.-P., Bates, P. D., and Mason,
D. C. (2012). A change detection approach to flood mapping in urban areas using
TerraSAR-X. IEEE transactions on Geoscience and Remote Sensing, 51(4):2417–2430.

Gorelick, N. (2012). Google Earth Engine. In AGU Fall Meeting Abstracts, volume 1,
page 4.

Gouinaud, C., Doutoum, A. I., Gouinaud, P., and Traore, M. K. (2013). SAR IMAGE
AUTOMATED DETECTION OF DUNE AREA. In IGARSS 2013, pages 1489–1492.

Government of Western Australia (2017). Migrating sand dunes pose potential risks to
roads, homes and infrastructure. https://www.dmp.wa.gov.au/News/Migrating-
sand-dunes-pose-21368.aspx. accessed: 4 September 2022.

Graser, A. (2013). Learning QGIS 2.0. Packt Publishing Ltd.

Greenwatch Trust, Twitter (2022). Somalia in worst Desertification! Not only
drought, sand dunes affected the water wells infrastructure in Dhinowda village
30KM from Garacad (Mudug). https://twitter.com/GreenwatchTrust/status/
1543601952331862020. accessed: 4 July 2022.

Griffiths, P., Hostert, P., Gruebner, O., and van der Linden, S. (2010). Mapping megacity
growth with multi-sensor data. Remote Sensing of Environment, 114(2):426–439.

Hanssen, R. F. (2001). Radar Interferometry: Data Interpretation and Error Analysis.
Kluwer Academic Publishers, Boston, MA (USA).

https://www.dmp.wa.gov.au/News/Migrating-sand-dunes-pose-21368.aspx
https://www.dmp.wa.gov.au/News/Migrating-sand-dunes-pose-21368.aspx
https://twitter.com/GreenwatchTrust/status/1543601952331862020
https://twitter.com/GreenwatchTrust/status/1543601952331862020


88 Bibliography

Harms, H. (2017). Challenges for sustainable development of informal settlements and
of desert new towns in Cairo. In Revitalizing City Districts, pages 147–169. Springer.

Harris, R. and Wahba, M. (2002). The Urban Geography of Low-Income Housing : Cairo (
1947 – 96 ) Exemplifies a Model. International Journal of Urban and Regional Research,
26(March):58–79.

Hassan, A. A. M. (2011). Change in the urban spatial structure of the Greater Cairo
metropolitan area, Egypt. Archives, XXXVIII(Udms):133–136.

Havivi, S., Amir, D., Schvartzman, I., August, Y., Maman, S., Rotman, S. R., and Blumberg,
D. G. (2018). Mapping dune dynamics by InSAR coherence. Earth Surface Processes
and Landforms, 43(6):1229–1240.

Hegazy, I. R. (2016). Informal settlement upgrading policies in Egypt: towards improve-
ment in the upgrading process. Journal of Urbanism: International Research on
Placemaking and Urban Sustainability, 9(3):254–275.

Hermas, E. A., Elmagd, I. H. A., Alharbi, K., and Al-mukkarramah, M. (2004). MEASURE-
MENT OF SAND DUNE MOVEMENTS USING THE SUB-PIXEL CORRELATION OF
ASTER IMAGES : A PREMIMINARY RESULTS FROM NORTH SINAI ,. Sciences-New
York, pages 1–4.

Horvat, B. (2006). Barchan dunes Seminar 2. http://www–f1. ijs. si/˜ rudi/sola/Sem4. pdf.

Hou, H., Estoque, R. C., and Murayama, Y. (2016). Spatiotemporal analysis of urban
growth in three African capital cities: A grid-cell-based analysis using remote sensing
data. Journal of African Earth Sciences, 123:381–391.

Hugenholtz, C. H., Levin, N., Barchyn, T. E., and Baddock, M. C. (2012). Remote sensing
and spatial analysis of aeolian sand dunes: A review and outlook. Earth-Science
Reviews, 111(3-4):319–334.

Hush, D. (1989). Classification with neural networks: a performance analysis. In
Proceedings of the IEEE International Conference on Systems Engineering, Dayton,
Ohio, USA, pages 277–280.

Ibrahim, M. R. and Masoumi, H. E. (2016). Will Distance to the Capital City Matter When
Supplying New Cities in Egypt? GeoScape, 10(2):35–52.

Inostroza, L., Hamstead, Z., Spyra, M., and Qhreshi, S. (2019). Beyond urban–rural
dichotomies: Measuring urbanisation degrees in central European landscapes using
the technomass as an explicit indicator. Ecological indicators, 96:466–476.

Joshi, N., Baumann, M., Ehammer, A., Fensholt, R., Grogan, K., Hostert, P., Jepsen,
M., Kuemmerle, T., Meyfroidt, P., Mitchard, E., and Others (2016). A review of the
application of optical and radar remote sensing data fusion to land use mapping and
monitoring. Remote Sensing, 8(1):70.



Bibliography 89

Kalensky, Z. D. (1998). AFRICOVER land cover database and map of Africa. Canadian
journal of remote sensing, 24(3):292–297.

Kampes, B. M., Hanssen, R. F., and Perski, Z. (2003). Radar Interferometry With Public
Domain Tools. In Third International Workshop on ERS SAR Interferometry "FRINGE
2003", page 6 pp, Frascati, Italy.

Kanellopoulos, I. and Wilkinson, G. (1997). Strategies and best practice for neural
network image classification. International Journal of Remote Sensing, 18:711–725.

Karan, P. P. (1960). A land use reconnaissance in nepal by aero-field techniques and
photography. Proceedings of the American Philosophical Society, 104(2):172–187.

Karuga, J. (2019). 15 biggest cities in africa. World Facts.

Kavulich Jr, M. J. (2008). The Physics of Sand Dune Formation and Migration on Mars.
PhD thesis, WORCESTER POLYTECHNIC INSTITUTE.

Käyhkö, J. (2007). Aeolian blowout dynamics in subarctic Lapland based on decadal
levelling investigations. Geografiska Annaler: Series A, Physical Geography, 89(1):65–
81.

Keerthi S. S., L. C. J. (2003). Asymptotic behaviors of support vector machines with
Gaussian kernel. Neural computation, 15(7):1667–1689.

Kostaschuk, R. and Best, J. (2005). Response of sand dunes to variations in tidal flow:
Fraser Estuary, Canada. Journal of Geophysical Research: Earth Surface, 110(F4).

Kozlov, V. (1979). Use of satellite photographs to study deep crustal structures of petro-
liferous regions. report iii. lineaments of the aral-caspian region, their classification
and association with fractures. International Geology Review, 21(11):1337–1344.

Łabuz, T. A. (2016). A review of field methods to survey coastal dunes—experience based
on research from South Baltic coast. Journal of Coastal Conservation, 20(2):175–190.

Lancaster, N. (1994). Dune morphology and dynamics. In Geomorphology of desert
environments, pages 474–505. Springer.

Landis, J. R. and Koch, G. G. (1977). The measurement of observer agreement for
categorical data. biometrics, pages 159–174.

Law, G. (2016). Egypt Governorates: Population history.

Le Gall, a., a.G. Hayes, Ewing, R., Janssen, M., Radebaugh, J., Savage, C., and Encrenaz, P.
(2012). Latitudinal and altitudinal controls of Titan’s dune field morphometry. Icarus,
217(1):231–242.

Lesiv, M., Fritz, S., McCallum, I., Tsendbazar, N., Herold, M., Pekel, J.-F., Buchhorn, M.,
Smets, B., and Van De Kerchove, R. (2017). Evaluation of ESA CCI prototype land cover
map at 20m. Working Paper of the International Institute for Applied Systems Analysis.



90 Bibliography

Li, S. and Chen, X. (2014). A new bare-soil index for rapid mapping developing areas
using landsat 8 data. The International Archives of Photogrammetry, Remote Sensing
and Spatial Information Sciences, 40(4):139.

Li, Y. (2012). Urban–rural interaction patterns and dynamic land use: implications for
urban–rural integration in China. Regional Environmental Change, 12(4):803–812.

Livingstone, I., Wiggs, G. F. S., and Weaver, C. M. (2007). Geomorphology of desert sand
dunes: A review of recent progress. Earth-Science Reviews, 80(3-4):239–257.

Lopes, R. M. C., Stofan, E. R., Peckyno, R., Radebaugh, J., Mitchell, K. L., Mitri, G., Wood,
C., Kirk, R. L., Wall, S. D., Lunine, J. I., Hayes, a., Lorenz, R., Farr, T., Wye, L., Craig, J.,
Ollerenshaw, R. J., Janssen, M., LeGall, a., Paganelli, F., West, R., Stiles, B., Callahan,
P., Anderson, Y., Valora, P., and Soderblom, L. (2010). Distribution and interplay of
geologic processes on Titan from Cassini radar data. Icarus, 205(2):540–558.

López-Caloca, A. A. (2015). Data fusion approach for Urban area identification using
multisensor information. In 8th International Workshop on the Analysis of Multitem-
poral Remote Sensing Images (Multi-Temp). IEEE, 2015. IEEE.

Lorenz, R. D., Gasmi, N., Radebaugh, J., Barnes, J. W., and Ori, G. G. (2013a). Dunes on
planet Tatooine: Observation of barchan migration at the Star Wars film set in Tunisia.
Geomorphology, 201:264–271.

Lorenz, R. D., Gasmi, N., Radebaugh, J., Barnes, J. W., and Ori, G. G. (2013b). Dunes on
planet Tatooine: Observation of barchan migration at the Star Wars film set in Tunisia.
Geomorphology.

Luke, J. and King, D. T. (2019). Automated Object-Based Identification of Dunes at
Hargraves Crater , Mars. In 50th Lunar and Planetary Science Conference, held 18-22
March, 2019 at The Woodlands, Texas. LPI Contribution No. 2132, id.1157, pages 2–3.

Mainguet, M. (1984). Space observation of saharan aeolian dynamics. In Deserts and
arid lands, pages 59–77. Springer.

Marquardt, D. W. (1963). An algorithm for least-squares estimation of nonlinear param-
eters. Journal of the society for Industrial and Applied Mathematics, 11(2):431–441.

Mather, P. M. and Koch, M. (2004). Computer Processing of Remotely-Sensed Images: An
introduction. John Wiley & Sons Ltd, Chichester, UK., third edit edition.

McInerney, D. and Kempeneers, P. (2015). Pktools. In Open Source Geospatial Tools,
pages 173–197. Springer.

Meikle, J. (2011). Note on: Informal Construction. In International Cooperation Program
2011, 5th Technical Advisory Group Meeting, Washington D.C., USA. World Bank.

Milisavljevic, N., Closson, D., and Bloch, I. (2010). Detecting human-induced scene
changes using coherent change detection in SAR images. In ISPRS TC VII Symposium-
100 Years ISPRS, volume XXXVIII, pages 389–394.



Bibliography 91

Miller, L. D. (1978). Analysis of the dynamics of shifting cultivation in the tropical forests
of northern Thailand using landscape modeling and classification of Landsat imagery,
volume 79545. National Aeronautics and Space Administration, Goddard Space Flight
Center.

Mitasova, H., Overton, M., and Harmon, R. S. (2005). Geospatial analysis of a coastal
sand dune field evolution: Jockey’s Ridge, North Carolina. Geomorphology, 72(1-
4):204–221.

Mohamed, H. E. (2012a). Analysis of urban growth at Cairo, Egypt using remote sensing
and GIS. Natural Science, 4(6):355–361.

Mohamed, I. and Verstraeten, G. (2010). Investigating dune dynamics of the South-
Rayan Dune Field (Egypt) based on multi-temporal analysis of Landsat images. In
International Conference on Aeolian Research “ICAR VII”, Date: 2010/07/05-2010/07/09,
Location: Santa Rosa-LaPampa, Argentina.

Mohamed, I. N. L. (2012b). Evolution of South-Rayan Dune-Field (Central Egypt) and its
interaction with the Nile fluvial system. PhD thesis, KU Leuven.

Mohamed, I. N. L. and Verstraeten, G. (2012). Analyzing dune dynamics at the dune-field
scale based on multi-temporal analysis of Landsat-TM images. Remote Sensing of
Environment, 119:105–117.

NASA Earth Observatory (2021). The Nile Delta’s Disappearing Farmland.
https://earthobservatory.nasa.gov/images/149183/the-nile-deltas-
disappearing-farmland. accessed: 2021-11-09.

Nashashibi, A. Y., Sarabandi, K., Al-zaid, F. A., and Alhumaidi, S. (2012). Characteriza-
tion of Radar Backscatter Response of Sand-Covered Surfaces at Millimeter-Wave
Frequencies. IEEE Transactions on Geoscience and Remote Sensing, 50(6):2345–2354.

New Urban Communities Authorities (2019). New Minia.

Nuyts, S., O’Shea, M., and Murphy, J. (2020). Monitoring the morphodynamic canni-
balization of the rossbeigh coastal barrier and dune system over a 19-year period
(2001–2019). Journal of Marine Science and Engineering, 8(6):421.

Osman, T., Arima, T., and Divigalpitiya, P. (2016). Measuring urban sprawl patterns in
Greater Cairo Metropolitan Region. Journal of the Indian Society of Remote Sensing,
44(2):287–295.

Ould Ahmedou, D., Ould Mahfoudh, A., Dupont, P., Ould El Moctar, A., Valance, A., and
Rasmussen, K. R. (2007). Barchan dune mobility in mauritania related to dune and
interdune sand fluxes. Journal of Geophysical Research: Earth Surface, 112(F2).

Paillou, P., Bernard, D., Radebaugh, J., Lorenz, R., Le Gall, a., and Farr, T. (2014). Modeling
the SAR backscatter of linear dunes on Earth and Titan. Icarus, 230:208–214.

https://earthobservatory.nasa.gov/images/149183/the-nile-deltas-disappearing-farmland
https://earthobservatory.nasa.gov/images/149183/the-nile-deltas-disappearing-farmland


92 Bibliography

Paillou, P., Seignovert, B., Radebaugh, J., and Wall, S. (2016). Radar scattering of linear
dunes and mega-yardangs: Application to Titan. Icarus.

Pardo-Pascual, J. E., Garc\’\ia-Asenjo, L., Palomar-Vázquez, J., and Garrigues-Talens, P.
(2005). New methods and tools to analyze beach-dune system evolution using a Real-
Time Kinematic Global Positioning System and Geographic Information Systems.
Journal of Coastal Research, pages 34–39.

Patel, N. N., Angiuli, E., Gamba, P., Gaughan, A., Lisini, G., Stevens, F. R., Tatem, A. J., and
Trianni, G. (2015). Multitemporal settlement and population mapping from Landsat
using Google Earth Engine. Int. J. Applied Earth Observation and Geoinformation,
35:199–208.

Payette, S. and Filion, L. (1985). White spruce expansion at the tree line and recent
climatic change. Canadian Journal of Forest Research, 15(1):241–251.

Punkari, M. (1982). Glacial geomorphology and dynamics in the eastern parts of the
baltic shield interpreted using landsat imagery. Photogrammetric journal of Finland,
9(1):77–93.

Qong, M. (1996). Sand Dune Attributes Estimated from SAR Images. Science, 4257(00).

Radebaugh, J., Lorenz, R., Farr, T., Paillou, P., Savage, C., and Spencer, C. (2010). Linear
dunes on Titan and earth: Initial remote sensing comparisons. Geomorphology,
121(1-2):122–132.

Radebaugh, J., Lorenz, R., Lunine, J., Wall, S., Boubin, G., Reffet, E., Kirk, R., Lopes, R.,
Stofan, E., Soderblom, L., Allison, M., Janssen, M., Paillou, P., Callahan, P., and Spencer,
C. (2008). Dunes on Titan observed by Cassini Radar. Icarus, 194(2):690–703.

Rosin, P. (1998). Thresholding for change detection. In Sixth International Conference
on Computer Vision (IEEE Cat. No. 98CH36271), pages 274–279.

Said, R. (2012). The geological evolution of the River Nile. Springer Science & Business
Media.

Santalla, I. R., Garcia, M. J. S., Montes, I. M., Ortiz, D. G., Crespo, T. M., and Raventos,
J. S. (2009). Internal structure of the aeolian sand dunes of El Fangar spit, Ebro Delta
(Tarragona, Spain). Geomorphology, 104(3-4):238–252.

Schneider, A. (2012). Monitoring land cover change in urban and peri-urban areas
using dense time stacks of Landsat satellite data and a data mining approach. Remote
Sensing of Environment, 124:689–704.

Schneider, A. and Woodcock, C. E. (2008). Compact, dispersed, fragmented, extensive?
A comparison of urban growth in twenty-five global cities using remotely sensed data,
pattern metrics and census information. Urban Studies, 45(3):659–692.

Shetawy, A. A. A. and El Khateeb, S. M. (2009). The pyramids plateau: A dream searching
for survival. Tourism Management, 30(6):819–827.



Bibliography 93

Silleos, N. G., Alexandridis, T. K., Gitas, I. Z., and Perakis, K. (2006). Vegetation indices:
advances made in biomass estimation and vegetation monitoring in the last 30 years.
Geocarto International, 21(4):21–28.

Simone, G., Farina, a., Morabito, F., Serpico, S., and Bruzzone, L. (2002). Image fusion
techniques for remote sensing applications. Information Fusion, 3(1):3–15.

Song, Y., Chen, C., Xu, W., Zheng, H., Bao, A., Lei, J., Luo, G., Chen, X., Zhang, R., and
Tan, Z. (2020). Mapping the temporal and spatial changes in crescent dunes using
an interferometric synthetic aperture radar temporal decorrelation model. Aeolian
Research, 46:100616.

Stewart, D. J. (1996). Cities in the desert: the Egyptian new-town program. Annals of the
Association of American Geographers, 86(3):459–480.

Stewart, D. J., Yin, Z.-y., Bullard, S. M., and Maclachlan, J. T. (2004). Assessing the spatial
structure of urban and population growth in the greater Cairo area, Egypt: a GIS and
imagery analysis approach. Urban Studies, 41(1):95–117.

Strozzi, T. and Wegmuller, U. (1998). Delimitation of Urban Areas with SAR Interferome-
try. In Geoscience and Remote Sensing Symposium Proceedings,1998. IGARSS ’98. 1998
IEEE International, pages 1632–1634.

Sutton, K. and Fahmi, W. (2001). Cairo’s urban growth and strategic master plans in the
light of Egypt’s 1996 population census results. Science, 18(3):135–149.

Taubenböck, H., Esch, T., Felbier, A., Wiesner, M., Roth, A., and Dech, S. (2012). Mon-
itoring urbanization in mega cities from space. Remote Sensing of Environment,
117:162–176.

Taubenböck, H., Wegmann, M., Roth, A., Mehl, H., and Dech, S. (2008). Analysis of
urban sprawl at mega city Cairo , Egypt using multisensoral remote sensing data ,
landscape metrics and gradient analysis. Area.

The Guardian (2010). "population of african cities to triple: Get the data," nov. 23, 2010.

The World Bank Group (2017). "International tourism, number of arrivals", World Devel-
opment Indicators. https://databank.worldbank.org/reports.aspx?source=
2&series=ST.INT.ARVL&country=EGY#. accessed: 2017-09-11.

Trianni, G., Angiuli, E., Lisini, G., and Gamba, P. (2014). Human settlements from
landsat data using google earth engine. In 2014 IEEE Geoscience and Remote Sensing
Symposium, pages 1473–1476. IEEE.

Tsoar, H. (2001). Types of aeolian sand dunes and their formation. In Geomorphological
fluid mechanics, pages 403–429. Springer.

Tupin, F. (2010). Fusion of optical and SAR images. Radar Remote Sensing of Urban
Areas, pages 133–159.

https://databank.worldbank.org/reports.aspx?source=2&series=ST.INT.ARVL&country=EGY#
https://databank.worldbank.org/reports.aspx?source=2&series=ST.INT.ARVL&country=EGY#


94 Bibliography

UNESCO, W. H. C. (2008). Operational Guidelines for the Implementation of the World
Heritage Convention.

U.S. Department of the Interior (2013). SLC-off Products: Background.

USGS (2021). What are the band designations for the Landsat satellites? "https:
//www.usgs.gov/faqs/what-are-band-designations-landsat-satellites".
accessed: 03-10-2022.

USGS, U. S. (2018). Geological Survey (2019l): USGS EROS Archive–Digital Elevation–
Shuttle Radar Topography Mission (SRTM) 1 Arc-Second Global.

Vapnik, V. N. (1998). Statistical Learning Theory. John Wiley & Sons.

Veci, L., Lu, J., Prats-Iraola, P., Scheiber, R., Collard, F., Fomferra, N., and Engdahl, M.
(2014). The Sentinel-1 Toolbox. In Proceedings of the IEEE International Geoscience
and Remote Sensing Symposium (IGARSS)., pages 1–3.

Vermeesch, P. and Drake, N. (2008). Remotely sensed dune celerity and sand flux
measurements of the world’s fastest barchans (Bodele, Chad). Geophysical Research
Letters, 35(24).

Vermeiren, K., Van Rompaey, A., Loopmans, M., Serwajja, E., and Mukwaya, P. (2012).
Urban growth of Kampala, Uganda: Pattern analysis and scenario development.
Landscape and Urban Planning, 106(December 2015):199–206.

Verstraeten, G., Mohamed, I., Notebaert, B., and Willems, H. (2017). The dynamic nature
of the transition from the Nile floodplain to the desert in central Egypt since the
Mid-Holocene. Mainz Historical Cultural Sciences| Volume 36, page 239.

Verstraeten, G., Mohamed, I., Willems, H., De Laet, V., and Delgado Blasco, J. M. (2014).
Analysis of Aeolian-Fluvial-Human Interactions in the Nile Valley (Central Egypt)
by Combining Field-Based Geomorphology with Remote Sensing. In 34th EARSeL
Symposium. 5th European Remote Sensing–New Opportunities for Science and Prac-
tice. Abstract and Programme Book. Warsaw, 16-20 June 2014, volume 34, page 55.
University of Warsaw.

Vinogradov, B. (1977). Remote sensing in ecological botany. Remote sensing of environ-
ment, 6(2):83–94.

Ward, D., Phinn, S. R., and Murray, A. T. (2000). Monitoring growth in rapidly urbanizing
areas using remotely sensed data. The Professional Geographer, 52(3):371–386.

WeatherOnline (2019). Wind speed forecasts. weattheronline.co.uk. accessed: 2019-
05-01.

Wegmüller, U., Strozzi, T., Farr, T., and Werner, C. L. (2000). Arid Land Surface Charac-
terization with Repeat-Pass. IEEE Transactions on Geoscience and Remote Sensing,
38(2):776–781.

"https://www.usgs.gov/faqs/what-are-band-designations-landsat-satellites"
"https://www.usgs.gov/faqs/what-are-band-designations-landsat-satellites"
weattheronline.co.uk


Bibliography 95

Wikipedia (2018). Mallawi. https://en.wikipedia.org/wiki/Mallawi. accessed:
2018-06-29.

Willems, H. and Dahms, J.-M. (2017). The Nile: Natural and Cultural Landscape in
Egypt : Proceedings of the International Symposium held at the Johannes Gutenberg-
Universität Mainz, 22 & 23 February 2013. transcript Verlag, Bielefeld, Germany.

Willems, H. and Muammad, W. (2010). A note on the origin of the toponym al-Barshā.
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