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Abstract

Phononic crystals can be designed to show band gaps—ranges of frequencies whose propagation is strongly attenuated
n the material. In essence, their working principle is based on destructive interference of waves reflecting from the periodic
rrangement of material interfaces (i.e., Bragg scattering). Consequently, capturing accurately the behavior at material interfaces

requires appropriate numerical modeling and computational design techniques. However, the commonly used density-based
representation in popular topology optimization methods results in a diffuse staircased boundary. The heavily refined finite
element meshes required to compensate for this boundary description results in exceedingly large and expensive optimization
problems. In this paper, we demonstrate the adverse effect of the density-based boundary description. Furthermore, we propose
a level set-based topology optimization procedure with an enriched finite element method that shows improved performance
when compared to the density-based approach.
© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

Keywords: Phononic crystals; Topology optimization; Band gap maximization; Smoothness; Diffuse boundaries

1. Introduction

Since their introduction in the seminal papers by Sigalas and Economou [1,2], and Kushwaha et al. [3], phononic
rystals (PnCs) have gained increased attention due to their peculiar effect on traveling waves. Because band gaps
an be tuned to any mechanical wavelength, applications can vary from thermal control by operating on the nano
cale [4], to seismic engineering on the other side of the wavelength spectrum [5]. These materials can be designed
or vibrationless environments [6], and for specialized control over the traveling waves, which can be used for
nergy harvesting [7,8] and for efficient sound radiation [9]. For instance, these periodic media can be used to
evelop new sensing technology for the characterization of biological samples and sensitive chemicals [10–12],
nd are sometimes also combined with photonics to form phoxonic sensors [13]. For an overview of the historical
evelopment of phononic crystal research, see the review by Hussein et al. [6], the more recent reviews by Vasileiadis
t al. [14] and Muhammad and Lim [15], and the review that focusses on tunable and active PnCs by Wang et al.
16].
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To design these materials for a specific functionality, ad hoc trial-and-error design procedures based on intuition
are not an option due to the complexity of the structure in these band gap materials. Instead, systematic
computational procedures are needed for their design, which can generate candidate solutions and quantitatively
discriminate among them. Topology Optimization (TO) [17–20] is a powerful numerical tool widely used for
designing complex materials and structures that can be used to unlock the full potential of phononic crystals.
A first categorization of TO procedures can be made on whether or not gradient information is used during a
numerical optimization process. Single- and multi- objective optimization of phononic crystals has successfully been
demonstrated using Non-Gradient-based Topology Optimization (NGTO) techniques, such as Genetic Algorithms
(GAs). GAs have been used for maximizing absolute and relative band gaps [21–28], for designing tunable
PnCs [29,30], PnCs with prestress [31], PnCs with separate band gaps with different polarizations [32], and PnCs
with reduced symmetry [24,33]. GAs have also been used for multiobjective optimization [34], including the
optimization for band gaps and thermal expansion [35]. Moreover, they have been used in a two-scale approach [36],
and in combination with Kriging [37]. NGTO methods can handle discrete design variables, and can therefore
be used to assign a material to each element. Although this avoids diffuse boundaries, these methods generally
still suffer from staircasing. Furthermore, NGTO methods are usually population-based, and as such, they require
vast computational resources despite being embarrassingly parallel. As an alternative to NGTO, machine learning
techniques have been introduced in recent years for designing PnCs [38–41].

Gradient-based Topology Optimization (GTO), on the other hand, has the advantage of requiring considerably less
function evaluations, although it generally cannot handle discrete design variables. Consequently, simply assigning
a discrete material to each element is not possible, and other means of describing the geometry are required.
Most commonly, the material properties in each element are continuously interpolated to ensure differentiability.
Sigmund and Jensen [42,43] were the first to propose density-based topology optimization for designing both
PnC unit cells and finite sized phononic crystals. Density-based TO has been used for maximizing the absolute
or relative width of band gaps [44–48], the spatial decay of evanescent waves [49], and the wave attenuation in
viscoelastic materials [50]. It has also been used to design PnCs that show self-collimation of elastic waves [51],
piezoelectric PnCs [52], PnCs with different properties in different directions [53,54], and PnCs that are robust
to imperfections [55–59]. Extensive reviews on the developments of topology optimization of PnCs were written
by Yi and Youn [60] and Li et al. [61], where the latter also includes works on the topology optimization of
Photonic Crystals (PtCs). Despite its popularity, GTO with a density approach leads to boundary descriptions that
are both staircased and diffuse, i.e., they have intermediate (gray) values in the design. These staircased and diffused

oundaries can lead to inaccurate modeling during the optimization, and therefore to non-optimal designs. This was
ecently reported by Dalklint et al. [62], who showed that optimized designs that had large tunable band gaps
uring density-based optimization showed different bad gaps after postprocessing. After postprocessing they also
ound band gaps for the strain levels that had full bands during optimization.

Yera et al. [63] combine a level set-based approach with local mesh refinements during the topology optimization
o achieve a better mesh resolution near the boundaries. However, this method does not remove the staircasing and
ntermediate densities, and therefore it does not completely solve the issue of inaccurate boundaries. Alternatively,
o avoid staircased boundaries, enriched finite element methods can be used in combination with a level set-based
opology optimization approach. The enriched analysis of PnCs was demonstrated by Zhao et al. [64] and van
en Boom et al. [65], but to the best of our knowledge, topology optimization of PnCs using an enriched finite
lement method has not yet been described in literature despite its great potential. Once such procedure is the
nterface-enriched Generalized Finite Element Method (IGFEM) [66], which has several advantages over the well
nown eXtended/Generalized Finite Element Method (X/GFEM) [67–69]. In IGFEM, the approximation used in the
tandard Finite Element Method (FEM) is enriched with an additional term that accounts for a priori knowledge
bout the kinematics of material interfaces. Contrary to X/GFEM, where enrichment functions are associated to
odes of the standard finite element mesh, IGFEM places enrichments to nodes collocated along discontinuities;
his provides considerable benefits over X/GFEM with respect to the enforcement of boundary conditions on non-

atching edges and the recovery of smooth reactive tractions in Dirichlet boundaries [65,70–72]. IGFEM has been
hown to converge optimally with mesh refinement [66,73], and has previously been demonstrated for the topology
ptimization for compliance minimization [74], and for the immersed analysis of PnC [65].

In this work we study the importance of smooth and non-diffuse boundaries in the analysis and design of

hononic crystals. To that end, we first investigate the influence of a staircased and diffuse boundary description. It
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Fig. 1. Schematic representation of a PnC: the finite-sized phononic crystal consists of a periodic array of periodic unit cells. The PUC
itself is a cube with lattice vectors a1, a2, and a3. The domain Ω consists of a host phase Ωh and an inclusion Ωi . The boundary between
the two is denoted Γi , and Γo is the boundary of the PUC.

is demonstrated that highly refined meshes are needed to reach the same level of accuracy in staircased and diffuse
cases. Therefore, a level set-based topology optimization procedure is proposed in combination with IGFEM in
order to find optimized unit cell topologies for band gap maximization without staircased boundaries. The topology
optimization problem and corresponding sensitivity analysis is discussed in detail. Finally, the procedure is employed
to generate optimized phononic crystal topologies with non-staircased boundaries in 2-D and 3-D for band gap
maximization. We show that the method can generate designs with band gaps between desired bands, despite
numerical challenges.

2. Computational analysis of phononic crystals

The computational analysis of the effect that phononic crystals have on traveling waves can be divided into two
categories: approaches considering the full finite-sized phononic crystal, and approaches using a periodic unit cell
(PUC), where the PnC is assumed to be infinite. In this paper, the latter approach is used, using the governing
equations, modeling approach, and boundary representations described in this section.

Fig. 1 illustrates a 3-D finite-sized PnC and its corresponding PUC. The phononic crystal consists of a periodic
array of inclusions Ωi inside a host material Ωh , where material interfaces are denoted Γi . To obtain this phononic
crystal, the PUC is repeated along the lattice vectors a1, a2, and a3.

2.1. Governing equation and formulation

On both the host domain (Ωh) and the inclusion (Ωi ), the behavior is governed by the elastodynamic wave
equation:

ρ j ü j − ∇σ j = 0 , j = h, i, (1)

here material density is denoted ρ j , u j (x, t) ≡ u|Ω j is the restriction of the displacement field u to the domain
j , x indicates spatial coordinate, t indicates time, σ j = λ j tr

(
ε j
)
ε j + 2µ jε j is the stress tensor in the j th phase,

. is the divergence operator, and ε j =
1
2

(
∇u j + ∇u⊺

j

)
is the linearized strain tensor.

For band structure analysis of PnCs a periodic unit cell is used as illustrated in Fig. 1. Bloch–Floquet periodic
boundary conditions are prescribed on the outer boundary Γo of this PUC:

u x + a , t = ei(k·ai )u x, t , (2)
( i ) ( )

3
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Fig. 2. The three boundary representations used in this paper: the left figure shows a fitted mesh, the middle figure illustrates the density-based
approach, and the figure on the right shows an immersed boundary representation.

where ai is the lattice vector between two periodic edges, i is the imaginary unit, and k is a wave vector. These
boundary conditions enforce periodicity on the displacement field while accommodating for the phase difference
of the traveling wave on the two sides of the PUC. The band structure can then be evaluated by performing an
eigenvalue analysis for all the wave vectors along the irreducible Brillouin zone [75].

2.2. Boundary representations

Three types of boundary representation are considered in this work, as illustrated in Fig. 2 for a 2-D PUC:

• Fitted meshes In these discretizations the material boundary is piece-wise linearly represented by the edges
of elements in the mesh. This method would require remeshing in every design iteration in an optimization
setting;

• Density-based meshes In these meshes, boundaries are represented based on a pseudo-density ρ of the
material within each element. A density of 0 is used to represent the host material, while a density of 1
represents the inclusion material. Intermediate density values are assigned to elements that are intersected
by the boundary, corresponding to the volume percentage of the element that lies inside the inclusion. For
this boundary representation no remeshing is needed during optimization, but the resulting boundaries are
staircased and diffuse;

• Immersed boundaries The material boundary is decoupled from the analysis mesh by means of IGFEM. This
leads to a non-staircased black-and-white piece-wise linear boundary representation. The use of IGFEM for
analysis of phononic crystals is described in more detail in the next section and in van den Boom et al. [65].

2.3. Enriched band structure analysis

For the enriched analysis of PnCs, IGFEM is used. Both the trial and test functions in the weak form of (1) are
chosen from the same enriched finite element space, where the enriched part of the approximation reproduces the
kinematics of a material interface Γi , i.e., a discontinuity in the field gradient (a weak discontinuity). The IGFEM
approximation is written as

uh(x) =

∑
i∈ιh

Ni (x)U i  
standard FEM

+

∑
i∈ιw

ψi (x)αi  
enrichment

. (3)

The enriched DOFs αi are associated to new enriched nodes collocated along material interfaces, at the intersection
ith element edges in the mesh. The material interface is located at the zero contour of a level set function φ,

that is discretized using the nodes of the background mesh. The location of the intersection xl between the node
locations x j and xk , with level set values φ j and φk , respectively, is found as

xl = x j −
φ j

φk − φ j

(
xk − x j

)
. (4)

Standard FEM procedures can then be employed to obtain the element mass matrix me and stiffness matrix

ke. For elements that are intersected by a material interface, integration elements are created. In the integration
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elements, standard shape functions N of the parent element and enrichment functions ψ are stacked to obtain ke

nd me as

ke =

∫
e

je B⊺
e DBedξ, and

me =

∫
e

jeρe

[
N
ψ

] [
N⊺ ψ⊺] dξ,

(5)

here D is the constitutive matrix and ρe is the element mass density. The strain-displacement matrix is computed
s Be =

[
∆N1 ∆N2 . . . ∆Nn ∆ψ1 . . . ∆ψm

]
, where the differential operator ∆ is defined as:

∆ ≡

[
∂
∂x 0 ∂

∂y

0 ∂
∂y

∂
∂x

]⊤

,

∆ ≡

⎡⎢⎢⎣
∂
∂x 0 0 0 ∂

∂z
∂
∂y

0 ∂
∂y 0 ∂

∂z 0 ∂
∂x

0 0 ∂
∂z

∂
∂y

∂
∂x 0

⎤⎥⎥⎦
⊤

,

(6)

or 2-D and 3-D, respectively. The derivatives in global coordinates are computed from the derivatives in local
oordinates as

∇x Ni = J−1
∇ξ Ni , ∇xψi = J−1

e ∇ξψi , (7)

or standard and enriched shape functions, respectively. The determinant and the inverse of the Jacobian of the
soparamatric mapping are denoted je and J−1

e , and J−1 is the inverse of the Jacobian of the mapping of the parent
lement. The global mass matrix M and stiffness matrix K are subsequently assembled using the standard FEM
ssembly procedure.

Finally, Bloch–Floquet periodicity, as described in (2), is enforced by a transformation matrix T as

K̃ (k) = T (k)H K T (k), and

M̃(k) = T (k)H MT (k),
(8)

here T is complex valued and dependent on the wave vector k. A series of eigenvalue analysis is performed to
nd the band structure, where wave vectors along the edge of the irreducible Brillouin zone are considered:(

K̃ (k) − ω2
k j M̃(k)

)
Ṽ k j = 0. (9)

or more details on IGFEM, the reader is referred to Soghrati et al. [66] and Aragón et al. [76]. The IGFEM analysis
f immersed phononic crystals is described in more detail in van den Boom et al. [74].

. Comparison of boundary representations

To illustrate the benefits of piece-wise linear representations in an immersed setting, IGFEM is compared to
taircased meshes for a band structure analysis. The effect of these boundary approximations is investigated in
ig. 3 , which shows the predicted band structure for a coarse staircased unit cell (light green) and a unit cell with
n immersed representation, analyzed on the same discretization mesh (dark green). Both methods are compared to
he results of a very fine standard FEM mesh (black). As apparent from the figure, the band gap obtained by the
GFEM procedure is much closer to the real band gap than the staircased approximation.

Noteworthy, the result given by the enriched formulation requires marginally more DOFs than the result of the
ensity-based approach, because additional enriched nodes are used. However, as these enriched nodes are placed
nly along the boundary, the number of enriched nodes relative to the number of standard nodes reduces with
esh refinement. To better assess the performance with respect to computational cost, Fig. 4 shows the rate of

onvergence, where the error in the bands that define the band gap is defined by

ϵ =

√
1

∑
k∈K

∑
j (ωk j − ω∗

k j )2∑ ∑
∗2 , (10)
|K |N k∈K j ωk j

5
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Fig. 3. Comparison of band structures computed with a staircased boundary representation (light green) and a crisp description of the
boundary (dark green) to the band structure computed on an overkill matching mesh (black). The band gap for the latter is shown in gray.
Clearly, the two approximations show propagation bands within the band gap. For a comparable number of DOFs, the crisp representation
performs considerably better than the staircased boundary. On the left, the irreducible Brillouin zone is illustrated. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

where K is the set of wave vectors along the irreducible Brillouin zone, with cardinality |K |, ω∗

k j is the j th frequency
for wave vector k, obtained by an overkill matching mesh and ωk j is the approximated frequency. As apparent from
Fig. 4, not only does the IGFEM analysis provide better accuracy, the rate of convergence is also higher. In fact,
for some levels of accuracy, the density-based approach requires almost an order of magnitude more DOFs.

The importance of an accurate boundary description for the modeling of phononic crystals is not limited to
Bloch–Floquet analysis. This is illustrated in Fig. 5, where the parameter retrieval method [77,78] is used to analyze
the dynamic compliance (D = k/ (Zω) where Z is the impedance) of the phononic crystal. Here, a coarse staircased
epresentation and a matching mesh with the same element size are compared to a very fine matching mesh. It is
lear that the dynamic compliance is not accurately captured with the staircased representation.

To conclude, the use of piece-wise linear representations of the material boundary results in a more accurate
olution in the band structure analysis. As a result, much coarser meshes may be used in the analysis and
omputational design of PnCs. In the context of topology optimization, this does not only drastically reduce the
omputational effort for the analysis part of the optimization, but it also reduces the number of design variables; this
s because in density-based topology optimization, the number of design variables is directly coupled to the number
f finite elements. Therefore, level set-based topology optimization using IGFEM may help mitigate to some extent
he curse of dimensionality in the computational design of phononic crystals.

. Optimization problem

Now that the importance of using a non-staircased and non-diffuse boundary is demonstrated, a level set-based
opology optimization using IGFEM for the boundary description is formulated. In this work we aim to maximize the
idth of the band gap between the nth and (n + 1)th propagation bands, on a set of wave vectors K . Henceforward
e denote the frequencies corresponding to the nth band that defines the band gap from below f̂k, and the (n + 1)th,

hat defines the band gap from above f̌k, where fk = ωk/ (2π). The optimization problem is now formally stated
s

s⋆ = arg min
s∈D

F = max
(

f̂k

)
− min

(
f̌k

)
such that

(
K̃ (k, s)− ω2

k j M̃ (k, s)
)

Ṽ k j = 0 ∀k ∈ K (11)
smin ≤ s ≤ smax.

6
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Fig. 4. Convergence of the staircased representation, compared to an enriched formulation using IGFEM. Not only is the enriched
representation more accurate, a higher rate of convergence is found.

Fig. 5. Retrieved dynamic compliance Dr for staircased representation of a circle and a crisp piece-wise linear representation with the same
levels of mesh refinement, compared to the results of a fine matching mesh.

The level set function is parametrized using a number of radial basis functions (RBFs) [74,79], that are scaled using
the design variables s (see van den Boom et al. [74]). The value of s is bounded between smin = −1 and smax = 1
to regularize the optimization problem by preventing the level set function from becoming too steep. Note that the
optimization problem is self-constrained in the sense that the optimal design does not correspond to a fully empty
or a fully filled domain. Therefore, this formulation does not require a volume constraint. It was found that this
formulation where the band gap is optimized using f̌k and f̂k (or ω̌k and ω̂k), scales better than using ω̌2

k and ω̂2
k

(see Appendix A). A band gap opens up when the objective function is negative.
The maximum operator in Eq. (11) is implemented as the α-smooth max function:

Sα
(

f̂k

)
=

∑
k∈K f̂keα f̂k∑

k∈K eα f̂k
, (12)

hich has the property Sα
(

f̂k

)
→ max for α → ∞. Similarly, it tends to a minimum for α → −∞, and thus, the

mooth minimum is implemented analogously. In this work we use α = 40 and α = −40 for smooth maximum
and minimum functions, respectively.
7
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This optimization problem is solved using the Method of Moving Asymptotes (MMA) [80],1 which is a widely
sed optimizer in topology optimization. It requires information of the response function values, as well as their
radients or sensitivities. The derivation of the sensitivities for band gap maximization can be found in Section 4.1.

.1. Sensitivity analysis

The objective function described in this paper can be written as a function of the smooth minimum and maximum
unction as

F = Sα
(

f̂k

)
− S−α

(
f̌k

)
. (13)

he derivative of this objective function with respect to the design variables s can be expressed as

∂F
∂si

=

(
∂Sα
∂ f̂k

∂ f̂k

∂ω̂2
k

∂ω̂2
k

∂xl
−
∂S−α

∂ f̌k

∂ f̌k

∂ω̌2
k

∂ω̌2
k

∂xl

)
∂xl

∂φ j

∂φ j

∂si
, (14)

here the chain rule is applied. Here, the partial derivative ∂Sα/∂ fk corresponds to the sensitivity of the smooth
aximum/minimum function when an eigenfrequency in the band is changed, ∂ fk/∂ω

2
k = 1/ (4πω) describes the

ensitivity of the eigenfrequency fk with respect to the eigenvalue ω2
k, ∂ω2

k/∂xl denotes the change in eigenfrequency
hen an enriched node is moved, ∂xl/∂φ j are the design velocities, and ∂φ j/∂si are the derivatives of the nodal

evel set values with respect to the design parameters.
First, the derivative of the smooth maximum function can be computed simply as the derivative of Eq. (12):

∂Sα
∂ f̂k

=
eα f̂k∑
k eα f̂k

(
1 + α

(
f̂k − Sα

))
. (15)

The derivative of the smooth minimum function is computed analogously.
The derivative of the eigenfrequencies with respect to the enriched node locations xl can be written as

∂ω2
k j

∂xn
=

1
m j j

Ṽ
H
k j T

H
k

(
∂K
∂xl

− ω2
k j
∂M
∂xl

)
T kṼ k j , (16)

here the modal mass m j j = Ṽ
H
ki T

H
k MT kṼ k j = 1 due to mass orthogonality of the eigenvectors. Note that

V j = T kṼ k j , and ∂K/∂xl and ∂M/∂xl are independent of the wave vector k. Omitting the index j and the
dependence on wave vector k for clarity, this derivative can now be computed element-wise as

∂ω2

∂xl
=

∑
e∈ιl

vH
e

(
∂ke

∂xl
− ω2 ∂me

∂xl

)
ve, (17)

here ιl denotes the set of integration elements in the support of enriched node xl , and ve is the part of the
igenvector associated with the element.

The derivative of the element stiffness matrix can be computed as

∂ke

∂xn
=
∂ je
∂xn

B⊺
e De Be + je

(
∂B⊺

e

∂xn
De Be + B⊺

e De
∂Be

∂xn

)
. (18)

or the element mass matrix, following a similar approach, the derivative is written as

∂me

∂xn
=
∂ je
∂xn

ρe

[
N
ψ

] [
N⊺ ψ⊺]

+ jeρe

([
∂N/∂xn

0

] [
N⊺ ψ⊺]

+

[
N
ψ

] [
∂N⊺/∂xn 0⊺

])
. (19)

or details on the remaining terms in the sensitivity analysis see Appendix B and van den Boom et al. [74].

. Optimized phononic crystal designs

The previously described topology optimization procedure is now used to design of phononic crystals in 2-D
nd 3-D with maximized band gaps.

1 The author would like to thank Krister Svanberg for providing us with the MMA implementation.
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Fig. 6. Initial designs for the 2-D phononic crystal optimization. On the left (right), 20 × 20 × 2 (40 × 40 × 2) triangular elements are
used. The top row shows initial conditions with a lead matrix (black) and polycarbonate inclusions(gray). In the bottom row the inclusions
(black) are made of lead and the matrix is polycarbonate (gray). The red triangle indicates the reduced design area due to symmetry. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 7. Optimized results for a band gap maximization between the 3th and 4th bands starting from the initial designs shown in Fig. 6. A
large band gap has opened in all four optimizations, and the designs have a similar shape.

5.1. Band gap maximization in 2-D PnCs

First, the maximization of band gaps between different bands in a 2-D PnC is considered. To that end, a
square periodic unit cell is optimized with an arbitrary topology that has 8-fold symmetry. The choice of 8-fold
symmetry was made to reduce the number of design variables in the optimization problem, to reduce the irreducible
Brillouin zone and therefore the numbers of wave vectors that need to be evaluated, and to ensure that the material
interfaces will be periodic. The periodic unit cell has dimensions of 25 mm×25 mm, and consists of polycarbonate
(E1 = 2.3 GPa, ν1 = 0.37, ρ1 = 1200 kg/m3) and lead (E2 = 16 GPa, ν2 = 0.44, ρ2 = 11 340 kg/m3). The
phononic crystal is optimized for maximized band gap between the 3th and 4th, and 6th and 7th bands. Because
the method cannot nucleate inclusions, initial designs with a number of inclusions are defined. Two types of initial
designs are used: lead inclusions in a polycarbonate matrix, and polycarbonate inclusions in a lead matrix. Each
optimization problem is solved on two sizes of symmetric triangular meshes, consisting of 20 × 20 × 2 and
40 × 40 × 2 triangular elements, respectively.

The initial designs and their corresponding band structures, without a band gap, are shown in Fig. 6. The red
triangles indicate the reduced design area due to the 8-fold symmetry in which the inclusion can be optimized. The
full PUC topology is recovered by unfolding the design in this red area. In these figures, the polycarbonate is shown

in gray, and lead is shown in black.

9
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Fig. 8. Optimized results for a band gap maximization between the 6th and 7th bands starting from the initial designs shown in Fig. 6. A
large band gap has opened up between these bands for two optimization cases, while in the other two cases no band gap was created.

Fig. 9. Convergence of the optimization problems of Figs. 7, and 8. The figure on the left shows the convergence for a band gap between
he 3th and 4th bands, the figure on the right show the convergence for a band gap between the 6th and 7th bands.

Figs. 7 and 8 show the optimized designs for maximized band gap between bands 3–4, and 6–7, respectively.
or the former, both mesh sizes and both initial designs result in a design that roughly resembles a single circular

ead inclusion in a polycarbonate matrix. The band structures show that a large band gap has indeed opened up
etween the 3th and 4th bands. As demonstrated earlier in Figs. 3 and 4, this design would be poorly represented
y a density-based approach. Although all four designs are very similar, they are not exactly the same, indicating
hat the optimizer has found a local optimum.

The effect of local optima is more clearly observed in the results for band gaps between the 6th and 7th bands.
n two of the four cases, the optimizer did not succeed in opening up a band gap. This effect of local optima will
e further discussed in Section 6. In the two cases where the optimizer succeeded to create a band gap between the
th and 7th bands, top right and bottom left, it did so by creating a total of two inclusions in the unit cell. In the
ase of the top right figure, four halves of the inclusion are visible in the unit cell. The figure on the bottom left
as a full inclusion in the center and four quarters in the corners.

Fig. 9 illustrates the convergence of the optimization cases. It is observed that the optimizer converges quickly
n all cases, albeit sometimes to a local optimum. Note that the two cases without a band gap still appear to
ave a negative objective value, which would indicate a band gap. This can be explained by the fact that the
mooth minimum and smooth maximum functions that are used in the optimization are approximations of the
ctual minimum and maximum functions respectively (see (12)). Increasing the value of α in (12) would improve

this approximation, but it would simultaneously increase the nonlinearity of the problem, which could lead to
instabilities.
10
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Fig. 10. 3-D results for band gap maximization: On the left the initial design, irreducible Brillouin zone, and corresponding band structure
are shown; the right shows the optimized design and band structure with the band gap.

Fig. 11. On the right this figure shows the convergence of the 3D band gap maximization problem, the left shows an alternative representation
of the optimized design.

5.2. Band gap maximization in 3-D PnCs

To demonstrate the method for the design of 3-D phononic crystals, a band gap maximization between the 6th
nd 7th bands is performed for a 3-D periodic unit cell with 48-fold symmetry. This example uses the same material
roperties and sizes, i.e., a 25 × 25 × 25 mm unit cell, as the previous numerical example. Fig. 10 shows the initial
esign with polycarbonate inclusions inside a lead matrix, and its corresponding band structure without a band gap.
he same figure also shows the final design after 50 iterations and the corresponding band gap. The final design
as 8 sections of a single spherical inclusion. In Fig. 11 the convergence of this optimization is shown. Initially, the
ptimization converges slowly, but after about 15 iterations it rapidly converges to form a large band gap. This figure
lso shows an alternative representation of the optimized design that more clearly shows that the result resembles
spherical inclusion.
11
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6. Discussion and conclusions

In this work we have shown that the numerical analysis and design of phononic crystals relies heavily on the
oundary description of material interfaces. The popular density-based topology optimization method results in
taircased and diffuse boundaries that are detrimental for the analysis accuracy in periodic unit cell-based phononic
rystals. As shown in this work, highly refined analysis meshes are needed when using a density-based approach
o compensate for the loss of accuracy. These highly refined meshes lead to prohibitively expensive optimization
roblems.

The level set-based topology optimization that uses IGFEM for phononic crystal design proposed in this paper
rovides an alternative optimization method in which coarser meshes can be used to achieve the same level of
ccuracy compared to density methods. Furthermore, in this method the design variables are decoupled from
he analysis mesh, which further reduces computational costs. The method was demonstrated for full band gap

aximization in 2-D and 3-D. However, there are still challenges.
The first observation is the fact that there are many local optima to which the optimizer may converge that may

ot even show a band gap at all. Small changes in the initial design or the move limit that is used in the MMA
ay result in a completely different optimized design. To illustrate this, Fig. 12 shows the optimization for a band

ap between the 6th and 7th bands. On the left it shows the optimized result that converged to a solution without
band gap. The right shows the same optimization problem, that started from the same initial design, but was

ptimized using a larger move limit and less wave vectors along the irreducible Brillouin zone. Starting from an
nitial design with slightly larger inclusions also has a similar effect in that it also results in the desired band gap.
his problem may therefore be partially alleviated by using a method to nucleate inclusions in the design, such as
sing topological derivatives [81].

The initial design and move limit are not the only factors for local optima to occur in the topology optimization
f phononic crystals. Fig. 13 shows on the left a 2 × 2 phononic crystal based on the unit cell that was optimized for
band gap between the 6th and 7th bands. The unit cell with a green outline is the result of a topology optimization

s presented in this work. The unit cell that is outlined in blue describes the exact same PnC, and therefore has
he exact same performance. The unit cell shown with the red outline cannot be achieved during the optimization
ue to the symmetry constraints, but it would also have the same performance. In fact, any unit cell of the same
imensions would perform the same. Therefore, the number of local optima is amplified significantly when the
ymmetry is released. Additionally, reducing the symmetry would lead to another – larger – irreducible Brillouin
one, so more wave vectors should be considered during the optimization, increasing computation time.

Another observation that can be made is that there are small oscillations in the objective function. These
scillations are especially visible in Fig. 9. Several explanations for these oscillations exist. First, as observed in the
ptimization of lattice-based PnCs in Quinteros et al. [82], the oscillations may be caused by the MMA optimizer,
n which case implementing a Globally Convergent Method of Moving Asymptotes (GCMMA) [83] in future work
ould help. Another possible explanation is found in the fact that the sensitivities are not always accurate during

he optimization. As described in van den Boom et al. [74], this can be attributed to the discretization of the level
et function. These oscillations can be alleviated by using a smaller move limit, using a finer grid for the level set
iscretization, or imposing a minimum length scale.

Another reason for inaccurate sensitivities is found in the multiplicity of eigenmodes and mode switching,
hich occurs often in the highly symmetric unit cells of the PnC. As discussed in Seyranian et al. [84], these
ultiple eigenvalues are not differentiable in the normal sense but they require instead sensitivity analysis based

n a perturbation technique to compute directional derivatives. For simplicity, this was not done in this work, but
t could prove beneficial in further developments. Indeed, mode switching is observed in Fig. 12 as illustrated with
ed circles. Alternatively, Quinteros et al. [82] suggest that mode switching may be avoided when all the lower and
pper bands are included in the approximation of the maximum and minimum, respectively.

Despite these challenges, the computational design procedure presented herein enables efficient generation of
hononic crystal arrangements for specialized functionalities. Furthermore, the proposed procedure may be extended
o other problems that require a smooth description of the boundaries, such as fluid–structure interaction.
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A

i

Fig. 12. Band gap optimization for a band gap between the 6th and 7th band. On the left the results are shown for which no band gap
opened. The right shows the results for the same optimization problem with a larger move limit and with less wave vectors evaluated along
the horizontal axis. The red circles on the left highlight mode switching in the band structure. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

Fig. 13. Illustration of a few periodic unit cells that describe the same PnC, and cause the problem to have many local optima. Due to the
symmetry constraint, the unit cell with a red outline cannot be achieved during optimization. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

Data availability

No data was used for the research described in the article.

ppendix A. Objective scaling

The objective function for the maximization of absolute and relative bandgaps in literature is sometimes described
n terms of ω2, and sometimes in terms of ω or f . In this appendix it is illustrated why the optimizer converges

better when using f (or ω) instead of ω2. Fig. 14 shows a small 1D PnC that is used for this purpose. It consists
of a L = 25 mm unit cell with lead and polycarbonate constituents. It is meshed with a single 1D element and
the material is described with an IGFEM enrichment at location b. Bloch–Floquet periodic boundary conditions are
prescribed to both standard nodes, and the band structure is computed.

Fig. 15 illustrates the scaling of the objective value in terms of ω2 and f as a function of the location b. In the

figure the absolute value of the objective function is shown, and the objective is scaled to 1 for an interface in the
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Fig. 14. Small 1D test problem to illustrate the scaling of the objective as a function of the interface location.

Fig. 15. Scaled objective values as a function of the interface location b.

middle of the unit cell, b = L/2 = 12.5 mm. The scaled objective value in terms of ω2 crosses more than an order
of magnitude, while the scaled objective value in terms of f has a less extreme curve. Therefore, in optimization
it is preferred to remove the square from the objective function.

Appendix B. Sensitivity analysis

The sensitivity of the Be-matrix with respect to the enriched node location is
∂Be

∂xn
=

[
0 0 . . . 0 ∂∆ψ1

∂xn
. . .

∂∆ψm
∂xn

]
, (20)

here the terms can be computed as

∂∇xψi

∂xn
=
∂ J−1

e

∂xn
∇ξψi , (21)

nd the derivative of the Jacobian determinant can be written as:
∂ je
∂xn

= tr
(

adj (J e)
∂ J e

∂xn

)
, (22)

here the adjugate is the transpose of the cofactor matrix of J e. The sensitivity of the Jacobian inverse is computed
s

∂ J−1
e

∂xn
= −J−1

e
∂ J e

∂xn
J−1

e , (23)

and the sensitivity of the Jacobian itself is defined as:
∂ J e

∂xn
=
∂xe

∂xn

∂Ne

∂ξ
, (24)

The derivatives of the value of the parent shape function on an integration point with respect to the enriched node
location are found as:

∂N
∂xn

=
∂N
∂ξ p

A−1 ∂xe

∂xn
Ne, (25)

here A is the isoparametric mapping matrix.
Finally, the design velocities can straightforwardly be found as
∂xn

∂φ
= −

φk( )2

(
x j − xk

)
, (26)
j φ j − φk
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F
d

R

and the derivative of the nodal level set values with respect to the design variables s are computed as
∂φ

∂s
= θ⊺. (27)

or more information about the use of RBFs in the level set based topology optimization using IGFEM, see van
en Boom et al. [74].
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