
 
 

Delft University of Technology

Dynamic-risk-informed safety barrier management
An application to cost-effective barrier optimization based on data from multiple sources
Yuan, Shuaiqi; Reniers, Genserik; Yang, Ming

DOI
10.1016/j.jlp.2023.105034
Publication date
2023
Document Version
Final published version
Published in
Journal of Loss Prevention in the Process Industries

Citation (APA)
Yuan, S., Reniers, G., & Yang, M. (2023). Dynamic-risk-informed safety barrier management: An application
to cost-effective barrier optimization based on data from multiple sources. Journal of Loss Prevention in the
Process Industries, 83, Article 105034. https://doi.org/10.1016/j.jlp.2023.105034

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.jlp.2023.105034
https://doi.org/10.1016/j.jlp.2023.105034


Journal of Loss Prevention in the Process Industries 83 (2023) 105034

Available online 15 March 2023
0950-4230/© 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Dynamic-risk-informed safety barrier management: An application to 
cost-effective barrier optimization based on data from multiple sources 

Shuaiqi Yuan a,*, Genserik Reniers a,b,c,**, Ming Yang a,d,e 

a Safety and Security Science Section, Faculty of Technology, Policy and Management, TU Delft, Delft, the Netherlands 
b Faculty of Applied Economics, Antwerp Research Group on Safety and Security (ARGoSS), Universiteit Antwerpen, 2000, Antwerp, Belgium 
c CEDON, KULeuven, 1000, Brussels, Belgium 
d Centre of Hydrogen Energy, Institute of Future Energy, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor, Malaysia 
e National Centre of Maritime Engineering and Hydrodynamics, Australia Maritime College, University of Tasmania, Launceston, Tasmania, Australia   

A R T I C L E  I N F O   

Keywords: 
Safety barrier management 
Dynamic risk assessment 
Cost-effectiveness analysis 
Bayesian updating 
Safety barrier degradation 
Condition monitoring 

A B S T R A C T   

An integrated approach for performance assessment and management of safety barriers in a systemic manner is 
needed concerning the prevention and mitigation of major accidents in chemical process industries. Particularly, 
the effects of safety barriers on system risk reduction should be assessed in a dynamic manner to support the 
decision-making on safety barrier establishments and improvements. A simulation approach, named Simulink- 
based Safety Barrier Modeling (SSBM), is proposed in this paper to conduct dynamic risk assessment of chem-
ical facilities with the consideration of the degradation of safety barriers. The main functional features of the 
SSBM include i) the basic model structures of SSBM can be determined based on bow-tie diagrams, ii) multiple 
data (periodic proof test data, continuous condition-monitoring data, and accident precursor data) may be 
combined to update barrier failure probabilities and initiating event probabilities, iii) SSBM is able to handle 
uncertainty propagation in probabilistic risk assessment by using Monte Carlo simulations, and iv) cost- 
effectiveness analysis (CEA) and optimization algorithms are integrated to support the decision-making on 
safety barrier establishments and improvements. An illustrative case study is demonstrated to show the pro-
cedures of applying the SSBM on dynamic risk-informed safety barrier management and validate the feasibility of 
implementing the SSBM for cost-effective safety barrier optimization.   

1. Introduction 

The application of the barrier concept in the safety science domain 
has a long history. Various models use the barrier concept or similar 
concepts to demonstrate the protection of technical or non-technical 
measures on target objects from hazards, such as the energy model 
(Gibson, 1961), bow-tie (CCPS/EI, 2018), LOPA (CCPS, 2001), and the 
Swiss cheese model (Reason et al., 2006). However, conceptual accident 
analysis models cannot evaluate the intervention of safety barriers in a 
quantitative manner, and thus can only provide limited information and 
supports for safety barrier management. By contrast, the integration of 
quantitative risk assessment (QRA) and the safety barrier concept 
naturally has the advantage of assessing the intervention of the safety 
barriers quantitatively in the form of risk-associated indicators. For 
instance, the European ARAMIS (Accidental Risk Assessment 

Methodology for Industries) project integrated QRA and safety barrier 
assessment to facilitate the audit and management of safety barriers 
(Andersen et al., 2004). In the last decades, the development of ap-
proaches for safety barrier performance assessment and management 
has attracted more and more attention. Landucci et al. (2015) proposed 
a LOPA (layer of protection analysis) based method for quantitative 
assessment of safety barrier performance in preventing the escalation of 
fire-induced domino effects. Then, this methodology was adapted to the 
performance assessment of safety barriers in Natech event scenarios by 
characterizing the effectiveness and PFD (probability of failure on de-
mand) of safety barriers (Misuri et al., 2020, 2021). Bayesian network 
(BN) was also used to support safety barrier assessment under different 
accident scenarios. Khakzad et al. (2017) applied a dynamic Bayesian 
network (DBN) for the performance assessment of fire protection sys-
tems with respect to domino effect scenarios. Zeng et al. (2020) 
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employed DBN to model the spatial-temporal propagation of domino 
effects and to estimate the dynamic probabilities of domino chains 
considering the impact of add-on safety barriers. DIMAIO et al. (2021) 
proposed an approach for the performance assessment of safety barriers 
based on multistate BN accounting for safety barriers degradation in the 
risk assessment of oil and gas systems. A hybrid DBN embedding 
multiphase Markov (MSMM) process was developed for dynamic per-
formance prediction of safety barriers and supporting the 
decision-making on barrier maintenance (Wu et al., 2022). Additionally, 
the analytical formulas and modeling approaches for performance 
evaluation of digitalized safety barriers were introduced by (Zhang and 
Liu, 2022). Yuan et al. (2022b) proposed an approach for the perfor-
mance assessment of safety barriers under toxic gas leakage scenarios by 
integrating computational fluid dynamics (CFD) and evacuation 
modeling. 

In terms of safety barrier management, Johansen and Rausand 
(2015) discussed the main principles related to barrier management in 
the offshore oil and gas industry and emphasized the need for inte-
grating a systematic approach to risk management and safety barrier 
management. CCPS (USA) and Energy Institute (UK) developed guid-
ance on employing bow-tie diagrams to facilitate safety barrier man-
agement through the proper depiction and allocation of safety barriers 
(CCPS/EI, 2018). Similarly, bow-tie diagrams were employed to support 
accident process monitoring and barrier alarm management based on 
the inspection of barrier status (Schmitz et al., 2020, 2021). An approach 
based on bow-tie was proposed to support the identification of inte-
grated safety and security barriers Yuan et al. (2022c). By integrating 
safety barrier assessment into a QRA framework, the effectiveness 
(risk-reduction performance) of barriers can be reflected by how much 
risk can be reduced by implementing such barriers and further making 
decisions based on the comparison of risks to achieve risk-based safety 
barrier management. 

Moreover, the dynamic barrier management concept was introduced 
by Pitblado et al. (2016), in which the usage of multiple data sources for 
determining near-real-time barrier status was suggested. To develop a 
dynamic barrier management approach, updating safety barrier status 
and risk profiles is necessary when new information becomes available 
over time. Bayes’ theorem was introduced to achieve dynamic risk 
assessment of chemical process systems by using near misses and inci-
dent data to update accident likelihood and the failure probability of 
safety barriers (Kalantarnia et al., 2009, 2010; Khakzad et al., 2012). 
Additionally, there are some attempts to use condition-monitoring data 
for dynamic risk assessment (DRA). For instance, condition-monitoring 
data was employed to estimate the degradation states of chemical pro-
cess systems with the help of Kalman filtering (Zadakbar et al., 2013a), 
particle filtering (Zadakbar et al., 2015), and principal component 
analysis (Zadakbar et al., 2013b). Zeng and Zio (2018) integrated sta-
tistical failure data and condition-monitoring data for dynamic risk 
assessment of a high-flow safety system by using a Bayesian updating 
algorithm. In PRA (probabilistic risk assessment) and DRA, probability 
distributions are widely-used to interpret uncertainty (Yazdi et al., 
2019). Thus, the handling of uncertainty propagation in DRA/PRA 
should be properly addressed to facilitate risk-based safety barrier 
management. 

Considering the limited budget faced by chemical companies, the 
trade-off between accident risk levels and the investment in safety 
barrier establishment and management is another important issue (Chen 
and Reniers, 2021). How to make decisions on cost-effective safety 
barrier management based on dynamic risks is challenging, particularly 
considering the utilization of data from multiple sources for risk 
updating. As discussed above, new approaches and tools for dynamic 
risk-informed safety barrier management need to be developed. We 
identify several challenges that need to be tackled in terms of dynamic 
risk-informed safety barrier management.  

■ i) The integration of dynamic risk assessment with safety barrier 
management procedures needs to be enhanced. A comprehensive 
tool should be developed to integrate dynamic risk assessment and 
cost-efficient decision-making on safety barrier management.  

■ ii) Interactions and interdependency between safety barriers/barrier 
components should be considered in the barrier failure assessment. 
Meanwhile, barrier failure assessment and DRA should be integrated 
and performed in a unified tool.  

■ iii) Multiple data (real-time monitoring data, barrier inspection data, 
accident precursor data, etc.) may be used to update failure proba-
bilities of safety barriers and initiating event probabilities, and thus 
to update risk profiles and facilitate dynamic safety barrier 
management.  

■ iv) Uncertainty propagation in DRA needs to be handled. Meanwhile, 
decision-making on safety barrier management based on dynamic 
risks needs to be further investigated from a cost-effective 
perspective. 

To fill the identified gaps, this study proposes a safety barrier 
modeling tool, named Simulink-based safety barrier modeling (SSBM), 
for performance assessment and dynamic management of safety barriers 
based on the MATLAB/Simulink platform (Chaturvedi, 2017). Bow-tie 
analysis/safety barrier diagram analysis, dynamic risk assessment 
techniques, Monte Carlo simulation, cost-effectiveness analysis (CEA), 
and optimization algorithms are integrated into the SSBM with a variety 
of functionalities to support the dynamic risk-informed safety barrier 
management. The remainder of this paper is organized as follows. 
Firstly, the proposed methodology is introduced in section 2. Then, an 
illustrative case study is employed in section 3 to demonstrate the 
application of the proposed approach in dynamic risk assessment and 
cost-effective safety barrier optimization. Followed by the discussions 
are given in section 4, and conclusions are presented in section 5. 

2. Methodology 

2.1. Overview of the proposed approach 

Simulink is a MATLAB-based graphical programming environment 
for modeling, simulating, and analyzing multidomain dynamical sys-
tems (Chaturvedi, 2017). Due to several advantages of Simulink, such as 
its user-friendly primary interface, customizable block libraries, and 
good compatibility with the rest of the MATLAB environment, the 
Simulink programming environment is a good option for the develop-
ment of safety barrier modeling with multiple functionalities. Therefore, 
a dynamic-risk-informed safety barrier management approach is pro-
posed, and the Simulink-based safety barrier modeling (SSBM) is 
developed for implementing the proposed approach in practice. The 
flowchart of the proposed approach is illustrated in Fig. 1, and a detailed 
elaboration on the three main steps of the approach is given in the 
following sub-sections. 

2.2. Transform the bow-tie/safety barrier diagram to a simulink model 
(step 1) 

This step aims to build accident scenarios with the consideration of 
the intervention of safety barriers. A bow-tie diagram, which is a com-
bination of a fault tree and an event tree, is widely used to conduct 
HAZard IDentification (HAZID) and demonstrate the linkages between 
safety barriers and specific hazards. It is suggested to implement the 
bow-tie technique for HAZID, then followed by constructing safety 
barrier diagrams (SBDs) by placing safety barriers on the paths of the 
bow-tie diagrams (Duijm, 2009). 

2.2.1. Basic rules for safety barrier modeling 
The safety barrier diagram (SBD) was introduced by Duijm (2009) as 

a safety management tool. It can be regarded as a modified version of the 
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bow-tie diagram, and it has the advantages of i) relative simplicity that 
supports communication with non-expert stakeholders, ii) having 
deliberately inserted safety systems that support the management and 
maintenance of these systems, and iii) providing a useful framework for 
integrating information from risk analysis with operational safety 
management. A comparison between the conventional bow-tie diagram 
and the SBD is shown in Fig. 2. The main difference between SBD and 
BT/fault tree exists in the demonstration of safety barriers/add-on safety 
systems in the diagrams, as shown in Fig. 2. According to the basic re-
quirements of safety barriers suggested by (CCPS/EI, 2018), a safety 
barrier should be a complete system fulfilling the criteria of being 
effective, independent, and auditable, which means a safety barrier 
should be capable of performing the complete intended function on its 
own when demanded. Among the intermediate events in an event tree, 
some can be presented as safety barriers because they meet the 

above-mentioned requirements some cannot. Although in some previous 
studies, all of those intermediate events were called safety barriers, we 
do not consider some of them (such as ignition and confined space 
nearby) as safety barriers. For those intermediate events that cannot be 
managed and do not meet the requirements of a safety barrier, we call 
them escalation factors/events. 

The calculation rules considering the failure of safety barriers are 
presented as follows: 

POUT1 =PIN ∗ PFD (1)  

POUT2 =PIN ∗ (1 − PFD) (2)  

where PIN is the input probability for the safety barrier. POUT1 is the 
output probability of the branch with the condition that the safety 
barrier failed and POUT2 is the output probability of the branch with the 

Fig. 1. Flowchart of the dynamic-risk-informed safety barrier management approach.  
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condition that the safety barrier functioned. PFD is the probability of 
failure on demand of this barrier. On the left-hand of the SBD, multiple 
barriers may be located before an undesired event on the same branch. 
In that case, the output probability of this branch can be calculated by 
formula (3). 

POUT =PIN ∗ (PFD1 ∗ PFD2⋯PFDn) (3)  

where POUT is the output probability and PIN is the input probability of 
this branch. PFD1 to PFDn denote the PFDs of safety barriers, and n is the 
number of barriers located on this branch. This equation is valid under 

the assumption that the occurrence of failure of each safety barrier in 
this branch is independent. 

2.2.2. Mapping algorithm 
Previous studies already investigated the implementation of MAT-

LAB/Simulink simulations for the construction of fault trees (Latif--
Shabgahi and Tajarrod, 2009; Papadopoulos and Maruhn, 2001) and the 
reliability analysis of safety instrumented systems (Ouache et al., 2015). 
To enhance the flexibility and adaptability of the SSBM, this paper 
suggests developing all the elements (exclude arrows/linkages) of the 
bow-tie diagram or SBD as sub-systems in the Simulink simulations. 

Fig. 2. A comparison between the conventional bow-tie diagram (top) and the safety barrier diagram (bottom).  

Fig. 3. A mapping algorithm reflecting the relationships between conventional bow-tie diagram, SBD, and SSBM.  
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Then, the configuration of the elements can be made by developing 
specific simulation structures inside the sub-systems according to the 
needs of users. The basic rules for probability calculation are adapted 
from the fault tree (Haasl et al., 1981) and event tree (Andrews and 
Dunnett, 2000). The mapping relations between the elements in a con-
ventional bow-tie, SBD, and the sub-systems in SSBM are presented in 
Fig. 3. 

Additionally, a sub-system named “management delivery system” is 
also added to the SSBM. Management delivery system (MDS) was 
defined as a set of organizational and management factors that can 
prevent or mitigate undesired events indirectly and mainly play roles by 
enhancing/maintaining the performances of the scenario-specific safety 
barriers or increasing the accident response capabilities of the overall 
system (Yuan et al., 2022a). As shown in Fig. 4, an example of SSBM is 
presented corresponding to the bow-tie and SBD in Fig. 2. Table 1 shows 
the features/tasks of each sub-system in the SSBM. 

2.2.3. PFD calculation of safety barriers 
The implementation of fault tree analysis (FTA) or reliability block 

diagram (RBD) helps to determine the PFD of a complex safety barrier 
system considering the failures of different components of the barrier 
system. In SSBM, a hierarchical structure for reliability analysis of safety 
barrier systems can be easily obtained by using hierarchical sub-systems 
due to the flexibility and adaptability of the Simulink platform. For 
instance, for a safety barrier system with the elements/functionalities of 
‘detect-decide-act’, the different functionalities should be achieved by 
using different components. The corresponding structure for this safety 
barrier system can be represented by a fault tree inside the “barrier sub- 
system”, as shown in Fig. 5. After the PFD of this safety barrier system 
was determined, the probabilities/frequencies for the outlet branches 
should be calculated and output according to formulas (1) and (2). 

Additionally, several safety barriers may have common components. 
If those safety barriers with shared components were located on the 
same branch, the conditional probabilities should be used for the safety 
barriers excluding the first occurrence barrier (the barrier that may fail 
first). For example, two safety barriers with a shared component are 
presented in Fig. 6. In that case, a conditional probability P′

2 should be 
used for barrier 2 given the failure of barrier 1. The conditional proba-
bility can be calculated as follows (Duijm, 2009): 

P2,R =
P2 − PC

1 − PC
(4)  

P′

2 =P(B2 fails |B1 has failed)

= P2,R + P(C fails | B1 has failed)
[
1 − P2,R

]

= P2,R + (PC /P1)
[
1 − P2,R

]
(5)  

where P1 presents the PFD of the whole barrier 1, which contains a 
common component C with a PFD PC. P2 presents the PFD of the whole 
barrier 2, which also contains the component C. P1,R presents the PFD of 
the remaining components of the barrier 1 in series with component C. 
P2,R presents the PFD of the remaining components of the barrier 2 in 
series with component C. The above formulas can also be extended and 
adapted to calculate the conditional probabilities of multiple barriers 
with a shared component and located on the same branch of the SBD. 

Fig. 4. Barrier modeling based on Simulink simulation.  

Table 1 
Features/tasks of each sub-system in the SSBM.  

Sub-systems Features/tasks Sub- 
systems 

Features/tasks 

Event Event sub-systems 
contain and transport the 
frequencies or 
probabilities (or 
probability distributions 
in case of handling 
uncertainty propagation) 
of such events 
happening. 

Barrier Barrier sub-systems aim 
to determine the PFDs of 
such safety barriers and 
calculate and output the 
probabilities/frequencies 
for outlet branches. 
For complex safety 
barrier systems, the PFDs 
can be calculated with the 
help of fault tree analysis 
or reliability block 
diagrams. 

Consequence Consequence sub- 
systems contain and 
transport information 
associated with both the 
frequencies/ 
probabilities and the 
severities of such 
consequences. 

MDS MDS sub-systems collect 
information, including 
both the probabilities/ 
frequencies and severities 
of the consequences, from 
the consequence sub- 
systems and transport 
necessary parameters to 
barrier sub-systems for 
safety barrier 
configurations and PFD 
calculation. Decision- 
making modules can be 
incorporated into the 
MDS sub-systems. 

AND 
operator 

AND operators receive 
frequencies/ 
probabilities from the 
inlets and calculate and 
output the frequencies/ 
probabilities for the 
outlet by following an 
“AND” logic. 

OR 
operator 

OR operators receive 
frequencies/probabilities 
from the inlets and 
calculate and output the 
frequencies/probabilities 
for the outlet by following 
an “OR” logic.  
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2.3. Dynamic risk assessment (step 2) 

Based on the Simulink model developed in step 1, a probabilistic risk 
assessment (PRA) can be performed after making some configurations to 
the sub-systems of the model. The inputs of the PRA are the probabilities 
of the happening of the initiating events and the PFDs of safety barrier 
components. Additionally, various data are employed to update the 
failure probabilities of safety barriers and the probabilities of the 
happening of initiating events to achieve a dynamic risk assessment 
(DRA). With DRA performed by the SSBM, updated risk profiles may be 
utilized to support safety barrier optimization by using a decision- 
making module. 

2.3.1. Data sources for updating risks 
In previous studies, statistical failure data, for instance, the counts of 

incidents or near-misses from the same or similar systems, were widely- 
used for barrier failure probability updating and risk updating based on 
Bayes’s theorem (Meel and Seider, 2006; Kalantarnia et al., 2009; 
Khakzad et al., 2012). However, there are some unavoidable difficulties 

in collecting enough statistical failure data and fully reflecting 
system-specific features of the target system by using accident pre-
cursors of similar systems (Zeng and Zio, 2018). Generally, safety bar-
riers follow a low-demand mode. Periodic proof tests are implemented 
to evaluate the health status of safety barriers, particularly for the final 
elements of the safety-instrumented systems (SISs), which are posed to 
degradations caused by harsh working environments (Zhang et al., 
2020). Health indicators of barrier status obtained from the periodic 
proof tests are useful in terms of dynamic failure assessment of safety 
barriers. Additionally, the collection and analysis of real-time con-
dition-monitoring data of process systems also provide the opportunity 
to update the failure probability of the target system and further update 
risk profiles. Some real-time information obtained from condition 
monitoring (temperature, pressure, vibration, etc.) helps to measure the 
degradation states of the target systems and obtain more accurate failure 
rates (Zeng and Zio, 2018). Therefore, periodic proof test data of barrier 
health status and continuous condition-monitoring data of process sys-
tems are also introduced in this study to combine with the accident 
precursor data to update the risk profiles. Moreover, as an alternative 
approach to mathematical analytic methods, the implementation of 
Monte Carlo simulations helps to handle the calculation of probability 
distributions in PRA (Hickman, 1983; Hauptmanns, 2002; Manno et al., 
2012). By implementing Monte Carlo simulations based on the SSBM, 
the proposed approach is able to perform dynamic risk assessment 
involving both deterministic probability point values and probability 
distributions. A detailed elaboration on the risk updating methods is 
presented in the following sub-sections. 

2.3.2. Bayesian updating by using accident precursor data 
Probability distributions were introduced and widely used to support 

the interpretation of uncertainty in fault-tree-based risk assessment 
approaches (Yazdi et al., 2019). Beta distributions and gamma distri-
butions were used to describe failure probabilities because they have 
advantages in serving as prior distributions in the Bayesian estimation of 
parameters (Eide et al., 2007; Khakzad et al., 2012). Beta-binomial 
model and Gamma-Poisson model were used as the base for con-
ducting Bayesian updating of failure probabilities in PRA (Siu and Kelly, 

Fig. 5. A safety barrier system illustrated by a barrier sub-system in the SSBM.  

Fig. 6. Two safety barriers with a shared component.  
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1998). In this study, the Beta-binomial model is used, and the Beta 
distributions are suggested to describe prior PFDs of safety barriers or 
safety barrier components. Beta distribution can be presented as follows: 

f (μ)= τ(a + b)
τ(a)τ(b)μ

a− 1(1 − μ)b− 1 ∝μa− 1(1 − μ)b− 1
, a > 0, b> 0 (6)  

where f(μ) is a Beta distribution of μ. a and b are distribution parameters. 
τ(a) =

∫∞
0 ta− 1e− t dt is a gamma function. Generally, prior probability 

distributions are derived from the failure database or expert opinions to 
describe the uncertainty in failure probabilities. When new accident 
precursor data becomes available, the prior probability distributions can 
be updated using Bayes’s theorem and obtaining posterior probability 
distributions, as follows: 

f (x | Data)=
g(Data | x)f (x)

∫
g(Data | x)f (x)dx

∝g(Data | x)f (x) (7)  

where f(x) is the prior distribution of x, g(Data | x) is the likelihood 
function, and f(x | Data) presents the posterior distribution. By using the 
binomial distribution, the conditional probability of observing r failures 
in n trials given a PFD, μ, can be presented as follows: 

g(r failures in n trials | μ)= n!
r!(n − r)!

μr(1 − μ)n− r (8) 

By integrating equation (8) and equation (6) into Bayes’s theorem, 
which is presented by equation (7), the posterior distribution of μ can be 
obtained as follows: 

f (μ| r failures in n trials)=
τ(a’ + b’)
τ(a′

)τ(b′
)
μa′ − 1(1 − μ)b′ − 1 (9)  

where a′

= a + r and b′

= b+ n − r. 

2.3.3. Updating risks by using periodic proof test data 
This study assumes that the final safety barrier elements (such as 

shutdown valves) are subject to continuous aging degradation with 
time, and periodic proof tests are executed. The degradation process is 
modeled by a Gamma process and the degradation level X(t) is presented 
as follows (Zhang et al., 2020): 

X(t) ∼ Γ(αt, β) = fX(t)(x)=
βαt

Γ(αt)
xαt− 1e− βx, α, β > 0 (10)  

where X(0) = 0, the mean and variance of X(t) are αt/ β and αt/ β2, 
respectively. The cumulative density function (CDF) of X(t) for t > 0 is: 

FX(t)(x)=
∫x

0

fX(t)(x)dx (11) 

Proof tests are assumed as perfect/no harm tests in this study, which 
means the proof tests have no direct influence on the degradation pro-
cess (Gamma process) and only observe/measure the barrier degrada-
tion levels. The time spent on tests is also ignored compared to the much 
longer test intervals. We also assume that the barrier component will fail 
to play its function when the degradation level reaches or overpasses a 
predefined failure threshold L. Under those assumptions, the availability 
of the barrier component in the i-th test interval given the observed 
degradation level from the (i-1)-th test is as follows: 

A(t)=Pr
(
X(t)<L

⃒
⃒X(i− 1)τ

)
=FX(t− (i− 1)τ)

(
L − X(i− 1)τ

)
, (i − 1)τ< t ≤ iτ (12) 

The average PFD of this barrier component in the i-th test interval is 
calculated as follows. 

PFDi
avg = 1 −

∫ iτ
(i− 1)τ FX(t− (i− 1)τ)

(
L − X(i− 1)τ

)
dt

τ , (i − 1)τ< t ≤ iτ (13)  

where PFDi
avg is the average PFD of the barrier component. τ is the time 

interval for proof tests. With the observed degradation level Xiτ 
becoming available from periodic proof tests continuously, the average 
PFD of this barrier component at the next time interval can be updated 
according to Eq (13). 

2.3.4. Updating risks by continuous condition monitoring 
Condition-monitoring data usually refers to the online-monitoring 

data that is related to the degradation of target systems of interest 
(Kim et al., 2015). Condition-monitoring data provides the opportunity 
to predict and anticipate the failures of target systems with reference to 
specific thresholds of the monitored variables (Zeng and Zio, 2018). 
Usually, there are a couple of methods that can be applied for fault 
detection and diagnosis (FDD), those methods can be classified into 
model-based FDD and model-free FDD (Zadakbar et al., 2013a). Based 
on the assumption that the probability of a failure increases as the 
process moves away further from the normal operation, the probability 
of a failure can be calculated as follows (Zadakbar et al., 2013a): 

for r> μ,P=φ
(

r − (μ + 3σ)
σ

)

=

∫ r

− ∞

1̅̅̅
̅̅

2π
√

σ
e
− (r− (μ+3σ))2

2σ2 dr (14)  

for r< μ,P= 1 − φ
(

r − (μ − 3σ)
σ

)

= 1 −

∫ r

− ∞

1̅̅̅
̅̅

2π
√

σ
e
− (r− (μ− 3σ))2

2σ2 dr (15)  

where r is the residual value of the key variable with respect to the 
system performance, and P is the failure probability of the investigated 
system. μ + 3σ and μ − 3σ are the lower and upper threshold for the 
normal operation, respectively. Additionally, because condition- 
monitoring data are usually subject to process and observation noises, 
it is necessary to filter those noises and estimate the true degradation 
states of process systems with the help of filtering techniques, for 
instance, Kalman filter (Zadakbar et al., 2013a) and particle filtering 
(Zeng and Zio, 2018). Because particle filtering (PF) has the capability of 
being applied to nonlinear and non-Gaussian systems, this study im-
plements the PF for generating residual values of the key variable and 
estimating the failure probabilities of basic process control systems. A 
detailed introduction to implementing the PF for residual value (r) 
generation and fault diagnosis can be found in (Zadakbar et al., 2015). 
We omit the repeated illustration here. 

2.3.5. Consequence assessment 
Consequence assessment is another important task of risk assess-

ment. In the SSBM, both quantitative and semi-quantitative risk as-
sessments can be performed and incorporated with the decision-making 
module for cost-effective decision-making on safety barrier optimiza-
tion, as shown in Fig. 7. “Consequence” sub-systems take responsibility 
for consequence assessments in the SSBM. With respect to major acci-
dent scenarios, the calculation of disastrous physical effects (associated 
with fire, explosion, toxic leakage, etc.) and the assessment of their 
corresponding damages may be integrated to obtain quantitative 
consequence assessment results. In terms of physical effects modeling, 
some software (PHAST, ALOHA, Ansys Fluent, FLACS, etc.) based on 
empirical models or computational fluid dynamics (CFD) models can be 
employed (Lewis, 2005). Damage analysis models for heat radiation, 
explosion effects, acute intoxication, and fragments can be found in TNO 
Green Book (Van Den Bosh et al., 1989) and other studies (Gubinelli 
et al., 2004; Cozzani et al., 2005). 

Due to the compatibility and scalability of the MATLAB/Simulink 
simulation platform, using blocks from the User-Defined Functions li-
brary (Mathworks-User-defined functions., 2022) helps to incorporate 
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physical effect modeling results and damage analysis models. For 
instance, damage analysis models and empirical models of physical ef-
fect modeling can be integrated into the “consequence” sub-systems by 
using MATLAB code based on the MATLAB Function blocks. It is also 
possible to input the results from CFD simulations (Cai et al., 2022) into 
the “consequence” sub-systems and combine them with the damage 
analysis models to obtain quantitative consequence assessment results. 
Alternatively, qualitative consequence assessments can also be per-
formed. For instance, the risk matrix is widely used to demonstrate the 
major accident risks in terms of both probability/frequency and conse-
quence severity. A severity class for typical dangerous phenomena in 
chemical process industries was suggested by the ARAMIS project 
(Andersen et al., 2004). If qualitative consequence assessment is per-
formed, the “consequence” sub-systems take the responsibility to collect 
the occurrence probabilities and severity classes of the corresponding 
consequences to generate a risk matrix. 

2.4. Decision-making on safety barrier improvements (step 3) 

This step aims to provide a decision-making module for safety barrier 
management based on the risk assessment results obtained from step 2. 
This decision-making module has several functionalities to support 
safety barrier management. Firstly, it helps to identify critical safety 
barriers with respect to specific accident consequences through sensi-
tivity analysis. Secondly, the integration of cost-effectiveness analysis 
(CEA) and optimization algorithms helps decision makers to obtain the 
optimal cost-effective strategies for safety barrier improvements (such 
as allocating new barriers and optimizing barrier redundancy structure). 

2.4.1. Identify critical safety barriers in terms of risk-reduction 
After quantitative or semi-quantitative risk assessment results are 

obtained by the SSBM, sensitivity analysis may be employed to identify 
critical safety barriers that object to unacceptable risks. In previous 
studies, the Birnbaum importance measure (Van der Borst and 
Schoonakker, 2001), risk reduction measure (Yazdi and Kabir, 2017), 
and ratio of variance (RoV) measure (Zarei et al., 2017) were used to 
rank the importance of initiating/intermediate events on the happening 
of the top event in a fault tree. Similarly, we formulate two measures for 
ranking the importance/sensitivity of safety barriers on the happening 
of accident scenarios with unacceptable risks. Using Birnbaum impor-
tance measure, the importance of a safety barrier in the occurrence of an 
unwanted accident scenario is presented as follows: 

In = ps(pn = 1) − ps(pn = 0) (16)  

where In is the importance of safety barrier n. ps is the probability of 
occurrence of the undesired accident scenario. pn is the probability of 
failure on demand (PFD) of safety barrier n. Meanwhile, the risk 
reduction measure of a safety barrier with respect to the happening of an 
unwanted accident scenario is presented as follows: 

RIn = ps − ps(pn = 0) (17) 

By ranking the safety barrier criticality based on the above measures 
and considering the operability of enhancing the corresponding barriers, 
decision-makers may give more priority to critical barriers for im-
provements and optimization. 

2.4.2. Cost-effective safety barrier optimization 
After critical safety barriers are identified, we should investigate the 

optimal improvement strategies for those barriers. Generally, a series of 
measures can be implemented to improve the performance of safety 
barriers, including establishing and allocating new barriers, improving 
the redundancy structure of safety barriers, revising barrier mainte-
nance intervals, training operators involved in the operation of safety 
barriers, etc. The specific ways for improving safety barrier performance 
may be decided based on the real situations of the chemical plants. In the 
safety science domain, cost-effectiveness analysis (CEA) is widely used 
to handle the trade-off between cost and safety due to its advantages of 
conducting comparative studies and its flexibility in determining safety 
indicators based on the preferences of decision-makers (Reniers and Van 
Erp, 2016; Chen and Reniers, 2021; Chen et al., 2021). The imple-
mentation of CEA in the SSBM helps decision-makers to obtain optimal 
strategies for safety barrier improvements with the consideration of both 
economic constraints and technical constraints. 

A series of barrier improvement strategies should be formulated 
before conducting a cost-effectiveness analysis (CEA). Typically, there 
are two kinds of constraints imposed on decision-makers in terms of 
CEA. They are i) a minimum acceptable level of effectiveness (Effmin) and 
ii) a maximum acceptable use of safety budget (Bumax). The optimization 
problems considering the two kinds of constraints are presented as fol-
lows, respectively (Reniers and Van Erp, 2016): 
⎧
⎨

⎩

Min(Ci)

Effi ≥ Effmin
i ∈ {1, 2, 3,⋯,N}

(18)  

and 
⎧
⎨

⎩

Max(Effi)

Ci ≤ Bumax
i ∈ {1, 2, 3,⋯,N}

(19) 

Fig. 7. Conduct consequence assessment based on the “consequence” sub-systems.  
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where i means a strategy i from N possible strategies for improving safety 
barrier performance. Ci is the cost of implementing strategy i. Effi is the 
effectiveness (risk-reduction performance) of implementing strategy i. 
In this study, the effectiveness of implementing a strategy is evaluated 
by a comparison between risk assessment results with and without 
implementing this strategy. In this way, the effectiveness of imple-
menting a safety barrier optimization strategy can be represented by the 
corresponding risk-reduction outcomes. If there are only a limited 
number of strategies can be formulated, the best strategy may be ob-
tained through exhaustive search optimization. Otherwise, evolutionary 
algorithms (for instance, genetic algorithms) may be implemented to 
solve the optimization problem with a large solution space. 

3. Case study: an application to cost-effective safety barrier 
optimization 

This section demonstrates the application of the proposed approach 
in dynamic risk assessment and cost-effective safety barrier optimization 
by using an illustrative case study. 

3.1. Scenario building and model configurations 

In this study, a continuous stirred tank reactor (CSTR) for carrying 
out an exothermic first-order reaction A→B was investigated. This CSTR 
model is adapted from (Pilario and Cao, 2018), in which a jacketed tank 
is implemented and the reactor temperature T is maintained by 
manipulating the coolant flow rate Qc. The dynamic process of the CSTR 
is simulated by following Eq (20) to Eq (22). The CSTR with its safety 
barrier systems is shown in Fig. 8. 

dC
dt

=
Q
V
(Ci − C) − αkC + v1 (20)  

dT
dt

=
Q
V
(Ti − T) − α (ΔHr)kC

ρCp
− b

UA
ρCpV

(T − Tc) + v2 (21)  

dTc

dt
=

Qc

Vc
(Tci − Tc)+ b

UA
ρcCpcVc

(T − Tc) + v3 (22)  

where the inputs of this model are u = [Ci Ti Tci]
T , the outputs are y =

⌊C T TC Qc⌋
T, v1, v2, and v3 are process noises, and k is an Arrhenius- 

type rate constant, k = k0 exp
(
− E
RT
)
. Table 2 shows the parameter 

values in Eq (20)–Eq (22). In the model, α and b are both equal to 1.00 at 
normal operating conditions. The CSTR model was developed based on 
the Simulink platform, and it is available online (Karl, 2022). 

By following the scenario-building procedures presented in section 
2.2, the accident scenarios associated with the CSTR were identified by 
using the bow-tie technique, and then, the constructed bow-tie was 
transformed into a Simulink model, as shown in Fig. 9. Meanwhile, the 
configurations of the initiating events and safety barriers in the Simulink 
model are illustrated in Table 3. It should be noted that the safety bar-
riers with multiple components in Table 2 all follow an “OR” logic, 
which means the failure of any one component could lead to the failure 
of the whole safety barrier. 

The probability of cooling system failure is determined and updated 
based on continuous condition-monitoring data by following the 
method illustrated in Section 2.3.4. The residual values of ΔTC (dem-
onstrates the temperature variation inside the cooling jacket) was 
selected as the variable for failure probability calculation based on Eq 
(14) and Eq (15). Under ideal operating situations, ΔTC should be 
0 because the temperature inside the cooling jacket remains stable. 
Therefore, the deviation of the ΔTC values reflects the likelihood of the 
cooling system failure. It is assumed that the coolant inlet temperature, 
coolant outlet temperature, and the temperature inside the reactor (Tci, 
Tc, T) were monitored. Based on that, particle filtering (PF) was inte-
grated with Eq (22) to generate the residual values of ΔTC, with the state 
vector X = [Tci,Tc,T,ΔTC]

T and measurement vector Y = [Tci,Tc,T]T. 
Then, the obtained residual values were integrated into Eq (14) and Eq 
(15) to estimate the failure probabilities of the cooling system. The 
normal operation threshold ±3σ in Eq (14) and Eq (15) is set as ± 10 
according to simulation results under normal operations (as shown in 
Fig. 11). In real cases, this threshold may be determined based on the 
real monitored data under normal operating situations with the 
consultation with experts. 

In this study, three ways are used to calculate the PFD of safety 
barriers/safety barrier components. i) the PFDs can be calculated based 
on constant failure rates, as presented in Eq (23). 

PFD=
1
2

λT (23)  

where λ is the failure rate of the safety barrier/barrier component, which 
can be derived from existing databases, such as the OREDA database 
(OREDA, 2002) and PDS database (Hauge and Onshus, 2010). T is the 
periodic inspection interval, it is assumed as 4380 h in this study.  

ii) In terms of the ESD (emergency shutdown system), constant 
failure rates were used for the pressure sensor and programmable 
safety system because the assumption of constant failure rates is 
usually valid for electronic components (Zhang et al., 2020). By 
contrast, the degradation of the shutdown valve was considered 
because it is operated in harsh conditions. The PFD of the shut-
down valve was calculated based on the approach presented in 
Section 2.3.3 and was updated by using periodic proof test data. 
We used the assumptions and configurations of the shutdown 
valve from (Zhang et al., 2020), in which the designed closing 
time for a shutdown valve is 12 s. A predefined failure threshold L 
was set as 1.25 × 10− 3, and it is assumed that no maintenance 

Fig. 8. A continuous stirred tank reactor (CSTR) with its safety barrier systems, 
adapted from (Pilario and Cao, 2018). 

Table 2 
Parameter configurations in the CSTR model, adapted from (Pilario and Cao, 
2018).  

Parameters Descriptions Values Units 

Q Inlet flow rate 100.0 L/min 
V Tank volume 150.0 L 
Vc Jacket volume 10.0 L 
ΔHr Heat of reaction − 2.0 × 105 cal/mol 
UA Heat transfer coefficient 7.0 × 105 cal/min/K 
k0 Pre-exponential factor to k 7.2 × 1010 min− 1 

E/R Activation energy 1.0 × 104 K 
ρ, ρc Fluid density 1000 g/L 
Cp, Cpc Fluid heat capacity 1.0 cal/g/K  
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action will be implemented unless the degradation level exceeds 
L. α and β used in Eq (10) were set as 1.02 × 10− 4 and 1.2 × 104, 
respectively. The time interval for proof tests, τ, is set as 2190 h. 
By checking the closing time of the shutdown valve and evalu-
ating the corresponding degradation level, the average PFD of the 
shutdown valve in the test interval can be updated according to 
Eq (13).  

iii) A Beta distribution is used to describe the failure probability of 
human actions in the manual shutdown barrier. The Beta distri-
bution parameters are set as: a = 32.3 and b = 137.7, adapted 
from (Roy et al., 2015). As new accident precursor data becomes 
available, the Beta distribution can be updated through Bayesian 
updating. Because the ESD barrier and manual shutdown barrier 

have shared components (a pressure sensor and a shutdown 
valve), the conditional probability of manual shutdown failure 
given the failure of ESD is used, according to the method pre-
sented in Section 2.2.3. 

3.2. Dynamic risk assessment results 

This section illustrates the dynamic risk assessment results of the 
targeted CSTR by integrating periodic proof test data, continuous 
condition-monitoring data, and accident precursor data into the 
Simulink-based modeling. The hypothetical accident sequence precur-
sor data of “fail to close valve manually” is given in Table 4. The hy-
pothetical periodic proof test data of the emergency shutdown valve is 

Fig. 9. The developed Simulink model for safety barrier modeling.  

Fig. 10. Availability and average PFDs of the shutdown valve over time.  
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presented in Table 5. Fig. 10 shows the availability and average PFDs of 
the shutdown valve over time, which are calculated based on the hy-
pothetical data in Table 5. It is assumed that a shock degradation 
happened to the cooling system at 5000 h. We simulated this 

degradation by adding a disturbance following a Gaussian distribution 
N(0.01, 0.03) to the coolant inlet temperature Tci. It means the degra-
dation reduces the capability and precision of the control system in 
regulating the key variable at the required level. The residual values of 
ΔTC with and without a certain degree of degradation are compared in 
Fig. 11. The average residual values before and after the degradation 
were used to calculate the failure probabilities of the cooling system. By 
employing the periodic proof test data, continuous condition- 
monitoring data, and accident precursor data for risk profile updating, 
the dynamic risk profiles of the CSTR explosion accident are obtained 
and are shown in Fig. 12. The probability distributions obtained from 
Monte Carlo simulations are demonstrated in (a) and their corre-
sponding mean values are demonstrated in (b). As we can see from 
Fig. 12, the risk profile increases gradually and peaks at 8760 h, which 
results from the degradation of the safety barriers and the cooling 
system. 

3.3. Cost-effective barrier optimization 

According to the obtained dynamic risk profiles, we demonstrate the 
risks of CSTR explosion in a risk matrix (Fig. 13), in which the red region 
means unacceptable, the yellow region means acceptable with mitiga-
tion, and the green region means acceptable. Based on the risk profiles at 
the final stage (8760 h–10000 h), a sensitivity analysis of safety barriers 
and initiating events were conducted according to section 2.4.1. Two 
measures (Birnbaum importance measure and risk reduction measure) 
were used to rank the criticality of safety barriers in risk reduction, as 
shown in Table 6. 

Table 6 shows that the most important safety barriers/barrier com-
ponents targeting the explosion risk are the pressure sensor, shutdown 
valve, and pressure relief valve, with importance measures as 1.86E-04, 

Table 3 
Configurations of initiating events and safety barriers.  

Initiating 
event OR 
safety barrier 

Descriptions (some safety barriers 
consist of multiple components) 

Configurations of 
probabilities/PFDs 

Initiating 
event 

External fire probability = 5.52E-02 
y¡1 (Debray et al., 2004) 

Initiating 
event 

Feeding control valve failure probability = 4.00E-02 
y¡1 (Taylor, 2010) 

Initiating 
event 

Cooling system failure The probability of cooling 
system failure is 
determined and updated 
by using continuous 
condition-monitoring 
data. 

Safety 
barrier 

Fire protection 
system 

Smoke/ 
combustion 
detector 

PFD = 9.02E-03, λ =
4.12E-06 (OREDA, 2002) 

Programmable 
logic solver 

PFD = 2.19E-03, λ = 1.0E- 
06 (Hauge and Onshus, 
2010) 

Fire pump PFD = 1.58E-01, λ = 7.2E- 
5 (Gravestock, 2008) 

Deluge Valve PFD = 1.27E-02, λ = 5.8E- 
06 (Gravestock, 2008) 

Safety 
barrier 

ESD 
(emergency 
shutdown 
system) 

Pressure 
sensor*,a 

PFD = 3.29E-04, λ = 1.5E- 
07 (Hauge and Onshus, 
2010) 

Programmable 
safety system 

PFD = 2.19E-03, λ = 1.0E- 
06 (Hauge and Onshus, 
2010) 

Shutdown valve* PFD of the shutdown valve 
is calculated and updated 
based on periodic proof 
test data. 

Safety 
barrier 

Manual 
shutdown 

Pressure sensor* The same as the pressure 
sensor in ESD. 

Fail to close 
valve manually 

Beta distribution 
parameters: a = 32.3, b =
137.7, (Roy et al., 2015). 
The Beta distribution is 
updated by using accident 
precursor data. 

Shutdown valve* The same as the shutdown 
valve in ESD. 

Safety 
barrier 

Pressure relief 
valve 

/ PFD = 2.4E-03, λ = 1.1E- 
06 (Hauge and Onshus, 
2010)  

a A barrier component with * means it is a shared component. 

Fig. 11. Residual values of ΔTC with and without cooling system degradation, (a) without degradation before PF (particle filtering), (b) with degradation before PF 
(particle filtering), (c) without degradation after PF (particle filtering), and (d) with degradation after PF (particle filtering). 

Table 4 
Hypothetical accident sequence precursor data of “fail to close valve manually”.  

Time (h) Cumulative failure number Cumulative trial number 

3000 6 30 
5000 9 50 
7000 11 70  

Table 5 
Hypothetical periodic proof test data of the shutdown valve.  

Test time (h) Degradation level Test time (h) Degradation level 

2190 8 × 10− 4 4380 9 × 10− 4 

6570 1 × 10− 3 8760 1.1 × 10− 3  
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1.86E-04, and 4.54E-04, respectively. Considering their current esti-
mated PFDs, the most sensitive safety barriers/barrier components in 
risk reduction are the pressure relief valve and shutdown valve, with risk 
reduction measures as 1.09E-06 and 9.32E-07, respectively. Based on 
the dynamic risk assessment results, the goals for safety barrier man-
agement and optimization should be formulated. In this case study, the 

optimization principles are formulated as follows: i) When the explosion 
risk exceeds 1.00E-06 y− 1, barrier improvements should be made. ii) 
The goal of safety barrier optimization is to limit the explosion risk 
below 1.00E-08 y− 1. iii) When the degradation of safety barriers or basic 
process control systems is detected, the maintenance or replacement of 
the degraded components should be given more priority instead of 
allocating new safety barriers. In real cases, the safety barrier manage-
ment/optimization principles may be determined according to the 
production and safety needs with consultation with experts. 

Based on the above optimization principles, the optimization 
objective function and constraints presented in Eq (18) are adapted for 
safety barrier optimization. The optimization objective function and 
constraints are presented as follows: 
⎧
⎨

⎩

Min(Ci)

Riski ≤ Riskthreshold
i ∈ {1, 2, 3,⋯,N}

(24)  

where Ci means the cost of strategy i. Riski is the risk assessment 
outcome after implementing strategy i. Riskthreshold is set as 1.00E-08 y− 1 

in this case study. This optimization aims to minimize the costs spent on 
safety barrier improvement and meanwhile to ensure the explosion risk 
is below 1.00E-08 y− 1. Because the cooling system degradation and 
shutdown valve degradation were detected, we considered the 

Fig. 12. Risk profiles of the CSTR explosion accident over time, (a) demonstrates the probability distributions obtained from Monte Carlo simulations with 10000 
trails (different colors are used to distinguish the probability distributions at different times), and (b) demonstrates the mean values of the probability distributions. 
(For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 13. A risk matrix with respect to time-varied explosion risks.  

Table 6 
Sensitivity of safety barrier failures and initiating events in the explosion risk.  

Safety barrier 
OR Initiating 
event 

Descriptions Risk 
reduction 
measure 

Birnbaum 
importance 
measure 

Initiating event External fire 1.28E-07 2.32E-06 
Initiating event Feeding control valve 

failure 
5.38E-07 1.35E-05 

Initiating event Cooling system failure 3.97E-07 1.33E-05 
Safety barrier Fire protection system 1.28E-07 7.20E-07 
Safety barrier ESD Pressure sensor 6.11E-08 1.86E-04 
Safety barrier Shutdown valve 9.32E-07 1.86E-04 
Safety barrier Programmable 

safety system 
9.49E-08 4.33E-05 

Safety barrier Fail to close valve 
manually 

9.49E-08 4.07E-07 

Safety barrier Pressure relief valve 1.09E-06 4.54E-04  
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maintenance/replacement of such facilities in all candidate strategies. 
Apart from that, improvements may be made to the three most impor-
tant safety barriers/barrier components (pressure sensor, shutdown 
valve, and pressure relief valve) by adding redundant devices. A series of 
barrier improvement strategies are formulated, as shown in Table 7. The 
cost analysis of each strategy is also performed in Table 7. 

As shown in Table 7, strategy 4, strategy 6, and strategy 7 are the 
candidate strategies that meet the optimization constraint, which is to 
lower the explosion risk below the risk threshold. Among those three 
strategies, strategy 4 has the lowest total cost (2150€) for safety barrier 
system improvements, so it is selected as the most cost-effective strategy. 
For illustrative purposes, seven strategies were formulated, and the re-
sults of those strategies were compared to determine the optimal strat-
egy. For more complex systems with more candidate strategies, a similar 
optimization may be done by comparing the results of those strategies 
and following exhaustive search optimization. If a large number of 
strategies can be formulated as candidate strategies, it may become 
unreasonable to assess all the strategies using exhaustive optimizations. 
Alternatively, genetic algorithms may be implemented to solve optimi-
zation problems with a large solution space. Another study from us 
demonstrates the application of genetic algorithms in safety barrier 
optimization (Yuan et al., 2023). 

4. Discussions 

4.1. A comparison of SSBM and BN 

As a widely-used tool for quantitative risk assessment (QRA) and 
dynamic risk assessment (DRA), Bayesian networks (BN) were also 
employed to support safety barrier assessment and management. This 
section compares BN and the proposed SSBM approach considering their 
characteristics and capabilities in QRA, DRA, and supporting decision- 
making. It helps practitioners get insight into the application prospects 
of the SSBM approach. The comparison results are presented in Table 8. 

4.2. Recommendations for future work 

This study provides a comprehensive tool to support safety barrier 
management based on dynamic risk assessment results. Periodic proof 
test data, continuous condition-monitoring data, and accident precursor 
data are utilized for risk profile updating with the consideration of the 
degradation of safety barriers and chemical process systems. Our pre-
vious study proposed an approach for cost-effective maintenance of 
safety and security barriers (Yuan et al., 2023), which can serve on the 
determination of barrier maintenance intervals at the design stage. With 
the combination of this study, which may be used to make adjustments 
to barrier maintenance plans and barrier allocation strategies in the 
operation stage, it is possible to develop a full life cycle safety barrier 
management system in the future. 

However, the imperfection of the proof tests in revealing barrier 
health states was not considered in this study. In real situations, the 
proof tests/inspections are usually subject to errors and defects (Zhang 
et al., 2021). The quantification and modeling of the proof test errors in 
revealing barrier health states should be further incorporated into the 
SSBM approach. Additionally, the safety barrier degradation process 
may be different under different environmental conditions. How to 
involve environmental influence factors in the estimation of barrier 
health states may be further investigated. 

This study incorporates a model-based fault detection and diagnosis 
(FDD) approach, which is a preliminary exploration. More advanced 
FDD methods with more accuracy and adaptability in solving complex 
non-linear chemical process models may be integrated into the proposed 
approach for failure estimation of chemical systems. Additionally, dy-
namic risk assessment was performed by this study through the updating 
of probabilities while the model structure remains static. In some cases, 
the model structure may also need to be updated when new evidence 

Table 7 
Candidate strategies of safety barrier optimization.  

Strategy 
number 

Description Cost analysis Explosion risk 
after barrier 
improvements 
(y− 1) 

1 a. Maintenance of the 
degraded cooling 
system (restore its 
performance to the 
initial); 
b. Maintenance of the 
degraded shutdown 
valve (perfect 
maintenance/ 
replacement). 

a = 1000€ (one-time 
maintenance cost); 
b = 400€ 
(replacement cost); 
Total cost = a+b =
1400€. 

9.2453E-08 

2 a. Maintenance of the 
degraded cooling 
system (restore its 
performance to the 
initial); 
b. Maintenance of the 
degraded shutdown 
valve (perfect 
maintenance/ 
replacement); 
c. Add a redundant 
pressure sensor. 

a = 1000€ (one-time 
maintenance cost); 
b = 400€ 
(replacement cost); 
c = 600€ (equipment 
and installation 
cost)+200€ × 2 
(annual maintenance/ 
inspection cost); 
Total cost = a+b + c 
= 2600€. 

5.0599E-08 

3 a. Maintenance of the 
degraded cooling 
system (restore its 
performance to the 
initial); 
b. Maintenance of the 
degraded shutdown 
valve (perfect 
maintenance/ 
replacement); 
c. Add a redundant 
shutdown valve. 

a = 1000€ (one-time 
maintenance cost); 
b = 400€ 
(replacement cost); 
c = 600€ (equipment 
and installation 
cost)+200€ × 4 
(annual maintenance/ 
inspection cost); 
Total cost = a+b + c 
= 2800€. 

9.2452E-08 

4 a. Maintenance of the 
degraded cooling 
system (restore its 
performance to the 
initial); 
b. Maintenance of the 
degraded shutdown 
valve (perfect 
maintenance/ 
replacement); 
c. Add a redundant 
pressure relief valve. 

a = 1000€ (one-time 
maintenance cost); 
b = 400€ 
(replacement cost); 
c = 450€ (equipment 
and installation 
cost)+150€ × 2 
(annual maintenance/ 
inspection cost); 
Total cost = a+b + c 
= 2150€. 

2.2189E-10 

5 a. Maintenance of the 
degraded cooling 
system (restore its 
performance to the 
initial); 
b. Maintenance of the 
degraded shutdown 
valve (perfect 
maintenance/ 
replacement); 
c. Add a redundant 
pressure sensor; 
d. Add a redundant 
shutdown valve. 

a = 1000€ (one-time 
maintenance cost); 
b = 400€ 
(replacement cost); 
c = 600€ (equipment 
and installation 
cost)+200€ × 2 
(annual maintenance/ 
inspection cost); 
d = 600€ (equipment 
and installation 
cost)+200€ × 4 
(annual maintenance/ 
inspection cost); 
Total cost = a+b + c 
+ d = 3800€. 

5.0599E-08 

6 a. Maintenance of the 
degraded cooling 
system (restore its 
performance to the 
initial); 
b. Maintenance of the 
degraded shutdown 
valve (perfect 
maintenance/ 

a = 1000€ (one-time 
maintenance cost); 
b = 400€ 
(replacement cost); 
c = 600€ (equipment 
and installation 
cost)+200€ × 2 
(annual maintenance/ 
inspection cost); 

1.2144E-10 

(continued on next page) 
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becomes available. The capability of the SSBM in model structure 
updating may be enhanced. The case study in this paper only demon-
strates the application of the SSBM in qualitative consequence assess-
ment by using a risk matrix. The feasibility of the SSBM in quantitative 
consequence assessment with the integration of physical effects 
modeling and damage analysis models should be further validated. 

5. Conclusions 

This study proposes an integrated approach to facilitate dynamic 
risk-informed safety barrier management. A simulation tool, which is 
named Simulink-based safety barrier modeling (SSBM), is developed to 
integrate dynamic risk assessment and safety barrier management in 
chemical process industries. The SSBM contains multiple functionalities 
to support decision-making on safety barrier optimization based on 
evaluating the risk-reduction performance of safety barriers. Periodic 
proof test data, continuous condition-monitoring data, and accident 
precursor data are combined to update risk profiles with the consider-
ation of safety barrier degradation. The combination of cost- 
effectiveness analysis (CEA) and optimization algorithms is employed 
by the SSBM to determine the optimal strategies for safety barrier es-
tablishments and improvements from a cost-effectiveness perspective. A 
dynamic risk assessment of a continuous stirred tank reactor (CSTR) was 
employed as the case study to validate the feasibility of the proposed 
approach in dynamic risk-informed safety barrier management. The 
results show that the pressure relief valve and shutdown valve are the 
most critical safety barrier/barrier components for risk reduction. Apart 
from implementing maintenance/replacement of the degraded facilities, 
the allocation of a redundant pressure relief valve is the most cost- 
effective strategy for improving the safety barrier system. A compari-
son of the SSBM and Bayesian networks is given to demonstrate the 
characteristics and capabilities of the SSBM in risk assessment and safety 
barrier management. The comparison shows that the SSBM has advan-
tages in supporting communication with non-expert stakeholders, and 
various techniques/methods can be incorporated into the SSBM to 
facilitate safety barrier assessment and risk-based safety barrier man-
agement due to the flexibility and adaptability of the Matlab/Simulink 
platform. 

Declaration of competing interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Data availability 

The authors are unable or have chosen not to specify which data has 
been used. 

Acknowledgments 

This work is supported by the China Scholarship Council (Grant No: 
202006430007). 

References 

Andersen, H., Casal, J., Dandrieux, A., Debray, B., De Dianous, V., Duijm, N., 
Gowland, R., 2004. ARAMIS User Guide. EC Contract Number EVG1-CT-2001-00036. 

Andrews, J.D., Dunnett, S.J., 2000. Event-tree analysis using binary decision diagrams. 
IEEE Trans. Reliab. 49 (2), 230–238. 

Cai, J., Wu, J., Yuan, S., Kong, D., Zhang, X., 2022. Prediction of gas leakage and 
dispersion in utility tunnels based on CFD-EnKF coupling model: A 3D full-scale 
application. Sustainable Cities and Society 80, 103789. 

CCPS, 2001. Layers of Protection Analysis: Simplified Process Risk Assessment. American 
Institute of Chemical Engineers-Center of Chemical Process Safety, New York.  

CCPS/EI, 2018. Bow Ties in Risk Management. Center for Chemical Process Safety and 
Energy Institute (UK), Wiley - AIChE, New York.  

Table 7 (continued ) 

Strategy 
number 

Description Cost analysis Explosion risk 
after barrier 
improvements 
(y− 1) 

replacement); 
c. Add a redundant 
pressure sensor; 
d. Add a redundant 
pressure relief valve. 

c = 450€ (equipment 
and installation 
cost)+150€ × 2 
(annual maintenance/ 
inspection cost); 
Total cost = a+b + c 
+ d = 3150€. 

7 a. Maintenance of the 
degraded cooling 
system (restore its 
performance to the 
initial); 
b. Maintenance of the 
degraded shutdown 
valve (perfect 
maintenance/ 
replacement); 
c. Add a redundant 
shutdown valve; 
d. Add a redundant 
pressure relief valve. 

a = 1000€ (one-time 
maintenance cost); 
b = 400€ 
(replacement cost); 
d = 600€ (equipment 
and installation 
cost)+200€ × 4 
(annual maintenance/ 
inspection cost); 
c = 450€ (equipment 
and installation 
cost)+150€ × 2 
(annual maintenance/ 
inspection cost); 
Total cost = a+b + c 
+ d = 3550€. 

2.2189E-10  

Table 8 
A comparison of SSBM and BN with respect to safety barrier management.  

Approaches QRA capabilities DRA capabilities Decision-making 
capabilities 

BN BN has the advantage 
of representing the 
dependencies of 
events, incorporating 
multi-state variables, 
and updating 
probabilities in QRA. 

Dynamic Bayesian 
networks (DBN) can 
be employed for 
conducting DRA. 
Hierarchical 
Bayesian networks 
can combine with 
Bayes’s theorem to 
update the 
reliability of safety 
barriers and 
perform DRA ( 
Khakzad et al., 
2014). 

The combination of 
BN and influence 
diagram can be 
employed to 
determine the 
optimal strategy 
for decision- 
making (Khakzad, 
2021). However, it 
has difficulties in 
solving large 
solution space 
optimization 
problems. 

SSBM As a bow-tie-based 
approach, multiple 
occurring events 
(MOE) are not 
allowed on the left- 
hand side of the SSBM 
model. As a result, a 
simplification should 
be performed based 
on the minimal cut 
sets to determine the 
correct model 
structure. SSBM 
highlights 
deliberately inserted 
safety barrier. Its 
relative simplicity 
supports 
communication with 
non-expert 
stakeholders and 
facilitates safety 
barrier audition and 
management. 

Due to the 
flexibility and 
compatibility of the 
Simulink 
simulations, SSBM 
is able to 
incorporate the 
data from various 
sources (periodic 
proof test data, 
continuous 
condition- 
monitoring data, 
accident precursor 
data, etc.) to update 
the failure 
probabilities of 
safety barriers and 
also update the 
happening 
probabilities of 
initiating events. 

SSBM has the 
advantage of 
integrating with 
various 
optimization 
algorithms 
(exhaustive search 
algorithms, 
evolutionary 
algorithms, etc.) to 
solve large solution 
space optimization 
problems and 
support decision- 
making.  

S. Yuan et al.                                                                                                                                                                                                                                    

http://refhub.elsevier.com/S0950-4230(23)00064-5/sref1
http://refhub.elsevier.com/S0950-4230(23)00064-5/sref1
http://refhub.elsevier.com/S0950-4230(23)00064-5/sref2
http://refhub.elsevier.com/S0950-4230(23)00064-5/sref2
http://refhub.elsevier.com/S0950-4230(23)00064-5/optILEYTrK7j6
http://refhub.elsevier.com/S0950-4230(23)00064-5/optILEYTrK7j6
http://refhub.elsevier.com/S0950-4230(23)00064-5/optILEYTrK7j6
http://refhub.elsevier.com/S0950-4230(23)00064-5/sref3
http://refhub.elsevier.com/S0950-4230(23)00064-5/sref3
http://refhub.elsevier.com/S0950-4230(23)00064-5/sref4
http://refhub.elsevier.com/S0950-4230(23)00064-5/sref4


Journal of Loss Prevention in the Process Industries 83 (2023) 105034

15

Chaturvedi, D.K., 2017. Modeling and Simulation of Systems Using MATLAB® and 
Simulink®. CRC press. 

Chen, C., Reniers, G., 2021. Economic model for tackling intentional domino effects in a 
chemical facility. In: Dynamic Risk Assessment and Management of Domino Effects 
and Cascading Events in the Process Industry. Elsevier, pp. 193–222. 

Chen, C., Reniers, G., Khakzad, N., Yang, M., 2021. Operational safety economics: 
foundations, current approaches and paths for future research. Saf. Sci. 141, 105326. 

Cozzani, V., Gubinelli, G., Antonioni, G., Spadoni, G., Zanelli, S., 2005. The assessment of 
risk caused by domino effect in quantitative area risk analysis. J. Hazard Mater. 127 
(1–3), 14–30. 

Debray, B., Piatyszek, E., Cauffet, F., Londiche, H., 2004. Frequencies and Probabilities 
Data for the Fault Tree. Accidental Risk Assessment Methodology for Industries in 
the Framework of SEVESO II Directive (ARAMIS), Armines, vol. 100. École Nationale 
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