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Robustness of Network Controllability
with Respect to Node Removals

Fenghua Wang and Robert Kooij

Abstract Network controllability and its robustness has been widely studied. How-
ever, analytical methods to calculate network controllability with respect to node
removals are currently lacking. This paper develops methods, based upon generating
functions for the in- and out-degree distributions, to approximate the minimum num-
ber of driver nodes needed to control directed networks, during random and targeted
node removals. By validating the proposed methods on synthetic and real-world
networks, we show that our methods work very well in the case of random node
removals and reasonably well in the case of targeted node removals, in particular for
moderate fractions of attacked nodes.

Keywords Controllability · Complex networks · Node failures · Node attacks

1 Introduction

Network controllability has been investigated for different kinds of networks, like
biological networks [1], transportation networks [2] and corruption networks [3]. A
network is controllable if the states of nodes can be steered to any expected states
in a finite time by imposing external inputs to some of the nodes. Kalman’s con-
trollability rank condition is used to judge whether a linear system is controllable
or not [4]. However, sometimes we do not know the weighted interactions within
the network, which describe the strength with which a node affects other nodes. To
overcome the issue, the concept of structural controllability has been proposed [5].
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The interaction matrix and input matrix of the linear time-invariant system are struc-
tural if their elements are independently free parameters or some are fixed zeros. The
system is called structurally controllable if it is possible to find values of structural
interaction and input matrices to make the system satisfy the usual controllability
condition. Besides investigating the necessary and sufficient conditions to make the
specific system strong structural controllable [6], another research direction is to find
the minimum set of inputs to make the system fully controllable [7]. Liu et al. [8]
reduce the structural controllability problem into the optimization problem of find-
ing a set of unmatched nodes in a maximum matching of the network. The nodes
where the external input signals are imposed are named driver nodes. The number
of unmatched nodes equals the minimum number of driver nodes needed to fully
control the network. Note that the results reported in Liu et al. [8] critically depend
on the assumption that the direct network has no self-links, i.e. a node’s internal state
can only be changed upon interaction with neighboring nodes [9]. We will follow
this assumption throughout the paper.

Network structural controllability as a generic system property is applied to mea-
sure and enhance network robustness. Measuring network robustness is usually done
by measuring network performance changes during perturbations imposed upon the
network [10]. The widely adopted perturbations in the research of the robustness of
network controllability are random node or link removal, which are used as a bench-
mark compared with other perturbations. Another kind of perturbation deals with
targeted attack strategies. For example, attack strategies can relate to network topol-
ogy features, such as betweenness, degree and closeness. Pu et al. [11] demonstrate
that degree-based attacks are more harmful to network controllability compared to
random attacks. Lu et al. [12] find that a betweenness-based attack strategy is more
harmful than a degree-based attack strategy in most real-world networks. However,
Wang et al. [13] find that attacking bridge links, whose removal results in a discon-
nected network, is an effective way to destroy network controllability. Another kind
of targeted attack strategy is based on critical nodes and links. Critical nodes and links
are defined through the property that their removal will increase the number of driver
nodes [8]. Sun et al. [14] report random attack under the protection of critical links is
less efficient than a random link attack, and a targeted attack aiming at critical links
is more harmful than a random attack. Lou et al. [15] propose a hierarchical attack
removal framework where nodes or links are classified into critical, sub-critical and
normal categories. They find that hierarchical attack strategies aremore efficient than
some metric-based attack strategies such as betweenness- or degree-based strategies
in interdependent networks. There is also some research focusing on how to enhance
the robustness of network controllability. Giulia et al. [16] show that network con-
trollability is determined by the density of nodes with in-degree and out-degree equal
to one or two. Adding links to low degree nodes is beneficial to network control-
lability. Lou et al. [17] find that multi-loop structures can improve the robustness
of network controllability. Zhang et al. [18] investigate different redundant design
strategies of interdependent networks. They present that betweenness-based strategy
and degree-based strategy for node backup and high degree first strategy for edge
backup can optimize robustness of network controllability.
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Besides the aforementioned qualitative research on the robustness of network
controllability, quantitative research has been conducted. Lu et al. [12] develop the
numerical approximations of random node attacks and target node attacks based on
degree on Erdös-Rényi (ER) networks. The results fit well when the fraction of nodes
is below 20%. Sun et al. [14] explore the closed-form approximation of the number
of controllable nodes under random link attacks, targeted attacks and random attacks
with protection. Dhiman et al. [19] use machine learning to quantify the minimum
fraction of driver nodes under random link attacks and target link attacks, which per-
forms better than the closed-form approximation proposed by Sun et al. [14]. Later,
Chen et al. [20] develop analytical approximations for theminimumnumber of driver
nodes during random link removal by using methods based on generating functions.

However, to our knowledge, analytical methods to approximate the network con-
trollability during random and targeted node removal on different kinds of networks
are lacking. The framework to calculate the structural controllability of linear sys-
tems for directed networks has been proposed by Liu et al. [8]. This paper uses their
framework to develop analytical approximations based on degree distributions to
calculate the minimum fraction of driver nodes during node removal. We choose two
cases for the removal of nodes: random node removal and targeted node removal,
based upon the node degrees. In order to validate our methods, we use two types of
synthetic networks and four real-world communication networks.

This paper is organized as follows. The second section introduces the networks
used in the study for validation. The analytical results for the robustness of network
controllability during random node removal are presented in the third section. The
fourth section shows the results for the robustness of network controllability for
targeted node removal. The final section reports the conclusion and discussion.

2 Network Data

We will validate our theoretical results, which will be derived in the subsequent sec-
tions, on two classes of synthetic networks and on a number of real-world networks.
In this section, we give details on the used networks.

2.1 Directed Synthetic Networks

We choose two kinds of synthetic networks: Erdös-Rényi (ER) networks and Swarm
Signalling networks (SSNs).

We generate a directed ERnetwork on N nodes, by placing a directed link between
any pair of nodes, with a given probability pER . The average number of links for
such ER networks satisfies L = N (N − 1)pER . In this paper we have used two ER
networks, with N = 50, pER = 0.07 and N = 100, pER = 0.04.
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Table 1 Properties of four real-world communication networks

Name N L <k>

HinerniaGlobal 55 81 2.95

Syringa 74 74 2.00

Interoute 110 146 2.65

Cogentco 197 243 2.47

The topology for Swarm Signalling Networks (SSNs) that we use was suggested
in [21]. The SSN has a regular out-degree, while the in-degree distribution follows a
Poisson distribution. To generate SSNs, we need two parameters. One is the number
of nodes N , and the other is the out-degree value k. For each node, the node randomly
creates k outgoing links to other nodes. In this paper we have used two SSNs, both
with N = 104 and with k = 2 and k = 5.

2.2 Real-World Networks

The real-world networks used in this study are taken from the Internet Topology
Zoo [22], a collection of real-world communication networks. We change those
undirected networks into directed networks by using two attributes: source node
and target node [14]. The properties of the networks are shown in Table1, which
shows the number of nodes N , the number of links L , and the average total degree
<k>. The total degree is the sum of the in-degree and the out-degree. Obviously,
the average in-degree equals the average out-degree and therefore the average total
degree is twice the average in-degree (and hence the average out-degree).

3 Minimum Fraction of Driver Nodes Under Random
Node Removals

This section presents how to analytically approximate network controllability in the
case of random node removals.

3.1 Analytical Approximation

3.1.1 General Networks

From [8], for directed network G(N , L)with N nodes and L links, we can determine
the minimum number of driver nodes by using generating functions of the in- and
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out-degree distributions (Gin(x) and Gout (x), respectively) and of the excess in-
and out-degree distributions (Hin(x) and Hout (x), respectively). These generating
functions are defined as follows:

Gin(x) =
∞∑

k=0

Pin(kin)x
kin ,Gout (x) =

∞∑

k=0

Pout (kout)x
kout ,

Hin(x) =
∑∞

k=1 kin Pin(kin)x
kin−1

<kin >
= G ′

in(x)

G ′
in(1)

,

Hout (x) =
∑∞

k=1 kout Pout (kout )x
kout−1

<kout >
= G ′

out (x)

G ′
out (1)

,

(1)

where kin and kout denote in- and out-degree, respectively, while Pin(·) and Pout (·) are
in- and out-degree probability distribution, respectively. Then the minimum fraction
of driver nodes is given by:

nd = 1

2
{Gin(ω2) + Gin(1 − ω1) − 2 + Gout (ω̂2) + Gout (1 − ω̂1)

+ k[ω̂1(1 − ω2) + ω1(1 − ω̂2)]},
(2)

where ω1, ω2, ω̂1 and ω̂2 satisfy

ω1 = Hout (ω̂2), ω2 = 1 − Hout (1 − ω̂1), ω̂1 = Hin(ω2), ω̂2 = 1 − Hin(1 − ω1),

(3)
and k denotes half of the average degree equal to the average in-degree and the
average out-degree, k = 1

2 <k>=<kin >=<kout >.
During the node removal process, the set of driver nodes includes two parts. One

is the set containing ND driver nodes that control the remaining part of the network,
and the other set is formed by Nr removed nodes. We assume that each removed
node needs to be controlled by an individual driver node. We define the fraction of
driver nodes nD as nD = ND+Nr

N . After randomly removing a fraction p of nodes in
the network, the fraction of driver nodes nD satisfies

nD = nd(1 − p)N + pN

N
= nd(1 − p) + p. (4)

Based on the research of Shao et al. [23], the generating function after randomly
removing a fraction p nodes corresponds to the original generating function, with
the adjusted argument x̄ = p + (1 − p)x . Then the generating functions of in- and
out-degree, and the excess in- and out-degree, after randomly removing a fraction p
of nodes, are adjusted as follows:
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Ḡin(x) = Gin(p + (1 − p)x), Ḡout (x) = Gout (p + (1 − p)x),

H̄in(x) = Ḡ ′
in(x)

Ḡ ′
in(1)

, H̄out (x) = Ḡ ′
out (x)

Ḡ ′
out (1)

.
(5)

Next, we use Eqs. (2) and (4) to acquire the fraction of minimum number of nodes
nD after randomly removing a fraction p of nodes:

nD = 1

2
(1 − p){Ḡin(ω2) + Ḡin(1 − ω1) − 2 + Ḡout (ω̂2) + Ḡout (1 − ω̂1)

+ k(1 − p)[ω̂1(1 − ω2) + ω1(1 − ω̂2)]} + p,
(6)

where ω1, ω2, ω̂1 and ω̂2 satisfy

ω1 = H̄out (ω̂2), ω2 = 1 − H̄out (1 − ω̂1), ω̂1 = H̄in(ω2), ω̂2 = 1 − H̄in(1 − ω1),

(7)
and k is half of the average degree equal to the average in-degree and the average
out-degree, k = 1

2 <k>=<kin >=<kout >.

3.1.2 ER Networks

Both the in-degree distribution Pin(kin) and the out-degree distribution Pout (kout ) of
ER networks follow a Poisson distribution with average degree k [20]. Therefore,
the generating functions of in-degree and out-degree are as follows,

Gin(x) = e−k(−x+1),Gout (x) = e−k(−x+1). (8)

The minimum fraction of driver nodes nD after a fraction p of nodes is randomly
removed in the ER networks can be obtained through Eq. (6) as

nD = p + pω2 − ω2 + [1 − p + k(1 − p)2(1 − ω2)]ek(1−p)(ω2−1) (9)

where ω2 satisfies 1 − ω2 − e−k(1−p)e−k(1−p)(1−ω2) = 0.

3.1.3 SSNs

In a SSN with the number of nodes N and average in-degree and out-degree equal
to k, the in-degree distribution resembles a Poisson distribution with mean value k
and the out-degree distribution follows a Dirac delta function. Then the generating
functions of in-degree and out-degree distribution can be denoted as follows,

Gin(x) = e−k(−x+1),Gout (x) = xk . (10)
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Based on Eq. (6), the minimum fraction of driver nodes nD after randomly remov-
ing a fraction p of nodes can be calculated by

nD = p + pω2 − ω2 + [1 − p + (k − 1)(1 − p)2(1 − ω2)]ek(1−p)(ω2−1) (11)

where ω2 satisfies 1 − ω2 − [p + (1 − p)(1 − e−k(1−p)(1−ω2))]k−1 = 0.
Note that for the real-world networks, the generating functions for the in- and

out-degree distributions, can simply be obtained from the histograms of these distri-
butions. We use the relative frequency of degree as the corresponding probability in
generating functions.

3.2 Validation

We ran simulations on the various networks described in Sect. 2. Specifically, for
each communication network, we do 10,000 realizations, and in each realization, we
remove a node randomly at each step until all nodes have been removed. For each kind
of synthetic network, we heuristically choose two pairs of parameters: ER networks
with N = 50, p = 0.07 and N = 100, p = 0.04 and SSNs with N = 104, k = 2
and N = 104, k = 5. In each realization, we generate a synthetic network, given
its parameters, and remove nodes one by one randomly. After removing a node,
we recalculate the minimum fraction of driver nodes using the maximum matching
algorithm. However, as our SSNs have a large number of nodes, we remove 1% of the
original number of nodes at each step. We do 10,000 realizations for each synthetic
network as well. Then we obtain the average minimum fraction of driver nodes. The
green lines in Fig. 1 show the simulation results.

Since we know each network’s in-degree and out-degree distributions, we can
compute the minimum fraction of driver nodes of a network according to the equa-
tions mentioned above for the minimum fraction nD . The results obtained using the

(a) HinerniaGlobal (b) Syringa (c) Interoute (d) Cogentco

(e) ER(50,0.07) (f) ER(100,0.04) (g) SSN(104, 2) (h) SSN(104, 5)

Fig. 1 The minimum fraction of driver nodes nD during random node removal in different kinds
of networks. The green lines are calculated by the maximum matching algorithm over 10,000
realizations. The red dashed lines are obtained by the analytical methods
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generating functions of the degree distributions are depicted as red dashed lines in
Fig. 1.

The results are shown in Fig. 1. As the predicted values in the red lines and the
simulated values virtually overlap, we conclude that the analytical approximations
for network controllability in the case of random node removals are very accurate.
The reason for this is that, after removing a fraction p of the nodes at random, we still
have expressions for the generating functions of the in- and out-degree distributions,
see Eq. (5).

4 Minimum Fraction of Number of Driver Nodes Under
Targeted Node Removals

Degree centrality has been deeply investigated in the context of network robust-
ness [24]. Nodes with a high degree have a large influence on network functioning
and might be assumed to have a high probability of being attacked. We will explore
how to analytically approximate network controllability during targeteddegree-based
node removals.

Weassume that for node attacks, the probability of attacking anode, is proportional
to some power of its degree. Becausewe consider directed graphsG(N , L), with node
setN , there are three types of node degree: in-degree, out-degree and total degree. In
this paper we will only consider node attacks based upon total degree. If we denote
the probability of removing node i with total degree ki as pi , we have pi = ki α∑

j∈N kα
j
.

For α = 0, each node has the same probability of being removed, hence for this case
targeted node removal corresponds to random node removal, as discussed in Sect. 3.
If α > 0, the node with a larger degree has a higher probability of being removed;
when α < 0, the node with the smaller degree has a higher probability of being
removed. In this section, we focus on analyzing the results with α > 0. Specifically,
we consider two cases: α = 1 and α = 10.

4.1 Analytical Approximation

4.1.1 Case: α = 1

The main challenge is to obtain expressions for the generating functions for the in-
and out-degree distributions after removing a fraction p of the nodes through attacks.
In general, it is not possible to obtain the generating function both for the in- and
the out-degree distribution, after a fraction p of nodes has been attacked. Therefore
we have to come up with a heuristic to deal with this. Here we will map the targeted
node attack process (based upon total degree) into a random node attack process.
We suppose that the generating functions of in-degree distribution and out-degree
distribution change to those corresponding to random node removal, but such that
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the total number of links after randomly removing a fraction p̄ of nodes is equal
to the total number of links after targeted removal of a fraction p of the nodes. As
reported in [24], the fraction p̄ can be calculated by

p̄ = 1 − f G ′
α( f )

< k >
, (12)

where f ≡ G−1
α (1 − p), Gα(x) ≡ ∑

k pkx
kα

and < k > is the average total degree
of the initial network and pk is the probability of total degree k. If α = 1, Gα(x) ≡∑

k pkx
k , which is the generating function for the total degree distribution. For ER

networks, the generating function of total degree is G(x) = e−<k>(−x+1) and for
SSNs, the generating function of total degree is G(x) = x

<k>
2 e− <k>

2 (−x+1).

4.1.2 Case: α = 10

The interesting part of parameterα is thatwhenα approaches∞, the order of removed
nodes follows the rank of node degree values in descending order. At each step, the
node with the largest degree will be removed. In the simulations, we adopted large
values of α, and we found that the results for α = 10 are the same as the results for
α = 100, which means the result for α = 10 is representative for the case α = ∞.

We want to develop an analytical method to estimate the corresponding network
controllability for α = 10. We map the fraction p of removed nodes under targeted
attacks for α = 10 onto the effective proportion p̄ of nodes under random node
attack. Under the attack strategy to remove the largest degree node at each step, total
degree of all removed nodes can be obtained according to the degree distribution
after giving the removed fraction p. The effective proportion p̄ is the total degree of
all removed nodes normalizing by the total degree of all nodes in the initial network,

which can be calculated as p̄ =
∑k=k̄

k=kmax pk Nk
N<k> =

∑k=k̄
k=kmax pkk

<k> , where the largest degree
value is denoted as kmax , the probability of removed nodes with degree k is denoted

as pk and degree k̄ satisfies
∑k=k̄

k=kmax
pk = p. Similarly, except removed probability

pk̄ , other probability pk is equal to probability P(k) in the generating function. Then
the minimum number of driver nodes can be approximated by replacing argument p
by p̄ in Eqs. (5)–(6).

4.2 Validation

4.2.1 α = 1

We choose the same network set to do simulations under targeted node removal,
based on total degree. When using the maximum matching algorithm to calculate
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the minimum fraction of the number of driver nodes, we recalculate the fraction
value nD after removing nodes for each kind of targeted attack with α = 1. We do
10,000 realizations for each communication network and 1000 realizations for each
synthetic network. The simulation results are presented as green lines in Fig. 2. For the
analytical method, we employ the effective fraction of removed nodes p̄ acquired
by Eq. (12). Red lines in Fig. 2 represent the analytical results. We also show the
simulation results under random node removals in grey lines in Fig. 2.

We find that the analytical results are a reasonable fit with the simulations, espe-
cially for small values of the fraction p of attackednodes. It indicates that the proposed
method of calculating the effective proportion p̄ is inaccurate in the late removal
stage.

4.2.2 α = 10

Analogously, we do the simulations with α = 10 under total degree targeted node
removal, 10000 realizations for each communication network and 1000 realizations
for each synthetic network. The simulation results are shown in the green lines.
We present the analytical results in red lines. The simulation results of network
controllability under random node attacks are depicted in grey lines. The results
with α = 10 of total degree target node removal are shown in Fig. 3.

The proposed approaches for the case α = 10 can approximate network control-
lability in a closed-form but do not perfectly fit the simulation results. The analytical
result lines are first above the targeted attack lines, then below the targeted attack
lines but still above the random attack lines, until the fraction of removed nodes
approaches one.

(a) HinerniaGlobal (b) Syringa (c) Interoute (d) Cogentco

(e) ER(50, 0.07) (f) ER(100, 0.04) (g) SSN(104, 2) (h) SSN(104, 5)

Fig. 2 The minimum fraction of driver nodes nD during targeted node removal based on the total
degree with α = 1 in different kinds of networks. The green and grey lines are the average nD
calculated by the maximummatching algorithm over 10,000 realizations of real networks and 1000
realizations of synthetic networks. The grey lines are the results of simulations under random node
removal (α = 0), and the green lines are the results of removing nodes with probability based on
the degree with α = 1. The red dashed lines are obtained by the analytical approximation approach
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(a) HinerniaGlobal (b) Syringa (c) Interoute (d) Cogentco

(e) ER(50, 0.07) (f) ER(100, 0.04) (g) SSN(104, 2) (h) SSN(104, 5)

Fig. 3 The minimum fraction of driver nodes nD during targeted node removal based on the total
degree with α = 10 in different kinds of networks. The green and grey lines are the average nD
calculated by the maximummatching algorithm over 10,000 realizations of real networks and 1000
realizations of synthetic networks. The grey lines are the results of simulations under random node
removal (α = 0), and the green lines present the results of removing nodes with probability based on
the degree with α = 10. The red dashed lines are obtained by the analytical approximation methods

5 Conclusion and Discussion

In this study, we propose analytical methods, based on generating functions, to com-
pute theminimum fraction of the number of driver nodes in directed networks, subject
to node removals. We find that the analytical methods fit simulation results very well
for random node removals. Moreover, we develop analytical methods for two cases
during targeted node removal based on different degrees. One is the probability of
a removed node in proportion to the degree, and the other is that a node with the
largest degree tends to be removed. We find that the proposed analytical methods
for targeted node removal fit the simulation results reasonably well, in particular for
small values of the fraction of removed nodes.

In the future, we aim to extend our results by also considering node attacks, based
on the in-degree or the out-degree of nodes, and localized node attacks, as in [24].
Also, we would like to validate our results on a larger set of networks, both synthetic
and real-world networks, such as scale-free networks, small-world networks and
power grids.
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