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In the design of human-like steering support systems, driver models are essential for matching the 
supporting automation’s behavior to that of the human driver. However, current driver models 
are very limited in capturing the driver’s adaptation to key task variables such as road width 
and visibility (i.e., ‘preview’ of the road ahead). This paper uses a recently proposed, novel 
control-theoretical model for centerline tracking to investigate driver steering in lane-keeping 
tasks with restricted and unrestricted preview, in an attempt to substantially extend this 
model’s validity. Using data from a tailored driving simulator experiment, three driver control 
loops (feedforward, heading and position feedback) are separately quantified using system 
identification techniques. The results show that when preview is restricted, drivers use all of the 
remaining preview to anticipate the curves of the road ahead, and are no longer able to ‘smooth’ 
tight curves in the road trajectory (i.e., corner cutting). When sufficient preview and lane width 
are available, the time to line crossing increases, and steering behavior is less aggressive and more 
intermittent, or more ‘satisficing’. The novel driver steering model captures these adaptations very 
well (over 95% of the steering actions) and can thereby be instrumental in realizing human-like 
steering automation and support systems.

1. Introduction

The rise of automation in automotive technology, from advanced driver assistance systems (ADAS) to self-driving cars, holds a 
huge promise for lower accident numbers and improving safety in general. Across many domains where similar automation trends 
can be observed, e.g., in manufacturing, industry, on board aircraft and in air traffic control, an important requirement for the design 
and use of automation will be whether human operators trust and accept it. An avenue to improve driver acceptance of automation 
is to design that automation such that it behaves in a reliable, predictable, and even a ‘human-like’ way (Schnelle et al., 2018, Saleh 
et al., 2011, Wang et al., 2022, Mulder et al., 2018). For this purpose it is important to understand, and be able to predict, how 
drivers behave in – and adapt to changes in – particular circumstances, such as road geometry, delineation, and visibility of the road 
ahead (Barendswaard et al., 2019, Weir & McRuer, 1973). Ideally, the automation would then behave and adapt in a similar way as 
the driver would do, building driver trust in the automation’s capabilities (Mars, 2008, Mulder et al., 2018).

Mathematical models of driver behavior can be extremely helpful in designing, tuning, testing and evaluating vehicle automation. 
The ability to objectively describe and quantify the driver dynamic response in similar terms as the automation being designed has 
been an important motivation for research since the 1960s. A plethora of driver models have been developed and published, ranging 
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from a broad set of classical control-theoretical models (Weir & McRuer, 1970, McRuer et al., 1977, Allen et al., 1977, Donges, 1978, 
MacAdam, 2003, Saleh et al., 2011) to models based on adaptive predictive control (Ungoren & Peng, 2005), hierarchical concurrent 
state machines (Demir & Cavusoglu, 2012), optimal linear preview control (Odhams & Cole, 2014), QN-ACTR control (Deng et al., 
2019, Li et al., 2020), optical cue-based control (Kovakova et al., 2020), and sliding mode control (Zhu & He, 2020). The ultimate 
goal is to have a model as part of the support or automation system that identifies (changes in) driver behavior in real-time, to 
directly update the parameters of an ‘internal’ control-theoretical model (McRuer et al., 1975) or to be able to categorize changes 
between different steering strategies (Barendswaard et al., 2019).

This paper extends on a recently proposed unified driver model which originates from fundamental research studying how human 
controllers use preview of the target trajectory ahead in time (van der El, Pool, & Mulder, 2019, van der El et al., 2020). The model 
focuses on the lane keeping task and has a number of key advantages: (i) it is relatively simple, as it is based on classical quasi-linear 
manual control theory, extending earlier work (McRuer et al., 1975, van der El, Pool, et al., 2018), (ii) its loop closures and parameters 
can be physically interpreted, as they are based on variables that the driver can see ahead, (iii) its parameters can be objectively 
identified from experimental data, (iv) it has been shown to be able to explain and predict 95% of observed human control behavior 
in a variety of settings (van der El, Pool, & Mulder, 2019, van der El et al., 2020). A current limitation of the model is that it has 
not been demonstrated to also account for driver adaptation to crucial task variables such as driving velocity, visibility (preview), 
and lane width. In this paper, the model will be applied to study how drivers adapt their lane keeping behavior to two crucial task 
variables. First, the available preview of the road ahead, i.e., the effects of visibility in driving, simulated with computer-generated 
fog. Second, the task instruction, that is, the instruction to either drive exactly along the road center, or keep the car in the driving 
lane (i.e., “drive as one normally would”), simulated with presenting, respectively, only the road centerline or the road boundaries.

Such model-based analysis traditionally relies heavily on frequency-domain measures (Weir & McRuer, 1970, van der El, Pool, & 
Mulder, 2019). However, in the literature on driving often more readily interpretable time-domain measures are used, such as the 
‘time to line crossing’ (TLC), see e.g., Godthelp et al. (1984), Godthelp (1986), Reymond et al. (2001), Xu et al. (2015), Wolters et 
al. (2018). A secondary goal of this paper is to connect the model-based and frequency-domain results (van der El, Pool, & Mulder, 
2019, van der El et al., 2020), to such time-domain measures. To do so, new empirical human-in-the-loop steering data are presented. 
These data were collected in a simulator driving experiment, with the specific purpose to facilitate analyzing the driver’s adaptation 
both in the time- and frequency-domain, as well as by identifying the parameters in the control-theoretic driver model from van der 
El et al. (2020).

The contributions of this paper are as follows. A novel control-theoretical driver model is presented that allows for an objective 
description and prediction of driver control behavior adaptations to preview and task instruction. The model unifies existing driver 
models and theories of driver perception and will be verified in a realistic simulated environment; its parameters can be physically 
interpreted and linked to vehicle dynamics and visual scene properties; the control-theoretical insights (mostly in the frequency 
domain) will be linked to more commonly used time-domain behavioral metrics. The relevance of the paper lies in the potential use 
of the model in designing ADAS for steering (e.g., lane keeping assist), the acceptance of which depends on the ability to adapt to 
changes in the available preview ahead (limited visibility, fog) in ways drivers will understand, appreciate, and trust.

The paper is structured as follows. In Section 2 the essential background literature on driver steering behavior and the 
control-theoretic driver model of van der El et al. (2020) will be summarized. This includes how the cues available in the driver’s 
visual field are captured by the model. We then proceed with explaining the experiment performed to identify the driver model 
parameters in Section 3. The results are presented in detail in Section 4 and discussed in Section 5. The paper ends with conclusions 
and recommendations for future work in Section 6.

2. Background

2.1. Literature

2.1.1. Available preview

Human and automated controllers can benefit profoundly from the availability of preview information about the target trajectory 
to follow in the near future (e.g., see Weir & McRuer, 1970, McRuer et al., 1977, Allen et al., 1977, Donges, 1978, MacAdam, 2003, 
Saleh et al., 2011, McLean & Hoffmann, 1973, Hess & Modjtahedzadeh, 1989). Both stability and performance metrics deteriorate 
when preview is restricted, which has been shown, for example, when driving through fog on a winding road (McLean & Hoffmann, 
1973, Allen et al., 1977, Allen & O’Hanlon, 1979, Land & Horwood, 1995a, van der Hulst et al., 1998) and when the available preview 
is limited on tracking displays, e.g. van der El, Padmos, et al. (2018). Experiments with single-loop tracking tasks and quasi-linear 
control models revealed that restricted preview does not only limit the human’s abilities to anticipate, as reported in driving (van der 
Hulst et al., 1998), but also to smooth the target trajectory ahead, that is, to effectively filter-out the higher-frequency components of 
the road ahead, see van der El, Padmos, et al. (2018), van der El et al. (2020). Although restricted preview has an equivalent negative 
effect on centerline-tracking performance in steering of ground vehicles such as passenger cars, it is as of yet unclear whether humans 
adapt their control behavior identically in these more realistic tasks.

2.1.2. Driving speed

Much of the literature on the effects of reduced visibility (preview) on driver behavior focuses on speed adaptation in fog, and 
not on changes in behavior when it comes to the task of lane-keeping (i.e., steering). To reduce risk, drivers are known to lower their 
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speed and increase time headway to other vehicles when visibility reduces (van der Hulst et al., 1998, Broughton et al., 2007, Caro 
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et al., 2009, Yan et al., 2014, Li et al., 2015, Siebert & Wallis, 2019, Huang et al., 2020, Zolali & Mirbaha, 2020). Speed reductions 
also occur as a function of curve radius (slower in steeper curves) and curve deflection (van Winsum & Godthelp, 1996, Bella et al., 
2014), and experienced drivers have been shown to drive faster in clear visibility, compared to novice drivers, but slower in reduced 
visibility (Mueller & Trick, 2012). Whereas van der Hulst et al. (1998) found that when speed compensation was not possible drivers 
simply have to maintain high alertness (to react to unpredictable events), Brooks et al. (2011) showed that drivers do not tend to 
slow down significantly until visibility distance is drastically reduced, and lane keeping ability is maintained until fog results in 
visibility distances less than 30 meters.1 Naturally, these results all depend heavily on the presence and predictability of traffic (or 
obstacles) ahead, as when no traffic is ahead the driver can focus mainly on following the road, possibly at higher speeds as there is 
no risk of collision.

2.1.3. Lane keeping

When the nature of the driving task is studied, it is clear that instead of tracking an exactly defined target trajectory (e.g., the 
road centerline), a range of lateral positions between the demarcated lane edges is equally acceptable: lane-keeping is essentially 
a boundary-avoidance task (Godthelp, 1986, Mammer et al., 2006, Boer, 2016). Tracking tasks require continuous attention and 
control from the operator, and changes in the target signal, external disturbances, and internal perception or motor noise directly 
yield ‘errors’ and thus an incentive to steer (Mulder et al., 2018).

In contrast, in boundary-avoidance tasks deviations from the centerline are not considered errors per se; such deviations may 
accumulate over time, before evoking a control response only after passing a certain threshold. In this respect, the phenomenon of 
corner cutting is often a manifestation of driving skill, and not control error (Boer, 2016). Experimental data suggest that drivers 
aim to keep the ‘time to line crossing’ (TLC), that is, the time before the vehicle would leave the road assuming constant control 
inputs, above a threshold of 3-4 s (Godthelp, 1986). The TLC quantifies the time available to the driver to make a corrective steering 
action; sufficiently high TLCs evoke no steering response and can even lead to intermittent control (Godthelp et al., 1984, Godthelp, 
1986, Markkula et al., 2018). As opposed to tracking, such human behavior has been quite generally referred to as error-neglecting 
(Godthelp, 1986), boundary-avoidance (Gray, 2005, 2008, Mammer et al., 2006, Padfield et al., 2012), or – as will be used here – 
satisficing control (Boer, 2016).

It is important to distinguish the control task from the human’s behavior. Boundary-avoidance tasks may still evoke tracking 
behavior, for example, narrower road lanes were shown to lead to smaller deviations from the centerline in driver steering tasks 
(McLean & Hoffmann, 1972), and also from the tunnel center when flying through a virtual tunnel-in-the-sky (Mulder & Mulder, 
2005). Vice versa, operators may (temporarily) adopt satisficing behavior in tracking tasks, for example, when prioritizing lower 
control effort.

2.1.4. Visual field

Most if not all driver model-based investigations referred to above have shown that drivers adopt a multiloop control organization, 
exploiting preview/feedforward information about the future road curvature, as well as feedback signals about both lateral position 
and heading, see Weir and McRuer (1973), McRuer et al. (1977). Information-centered studies revealed the richness of information 
from the outside visual scene, including the optical flow caused by the vehicle motion (see e.g., Gordon, 1965, 1966a, 1966b). 
Pioneering work by Grunwald and Merhav (1976) showed that in following a reference trajectory in three-dimensional space, the 
visual scene can be separated in two regions. The ‘far field’ provides information about the vehicle’s heading (direction of motion) 
relative to the (possibly curved) trajectory, whereas the ‘near field’ provides information about the vehicle’s position relative to 
the reference trajectory. These elementary geometrical motion mapping relationships can explain the landmark studies on driver 
perception published twenty years later by Land and Lee (1994), Land and Horwood (1995b), which showed that driver lane keeping 
performance indeed depends on what parts of the outside visual field are available.

2.2. Model rationale

Multiloop control-theoretical driver models exist since the mid-1960s (Weir & McRuer, 1970) (Donges, 1978) and have often 
been tuned, modified and expanded ever since. Most if not all of these models have in common that they capture at least the 
two essential loops to be closed by the driver, that of the vehicle heading and its lateral position on the road. Most models are 
constructed as a combined feedforward (on future road curvature or position) and feedback (on heading error and position error) 
control structure. The vehicle ‘states’ (heading, position) and road characteristics (curvature, look-ahead) are typically assumed to be 
‘known’ or ‘perceived’ by the driver, without much detail on how exactly these are perceived from the outside visual scene. Similarly, 
much literature exists on what visual cues the driver can use, see Gordon (1965, 1966a, 1966b) for some early examples, without 
specifying what feedback loops may result from perceiving them (Mulder & Mulder, 2005).

van der El et al. (2020) proposed a new theory of driver steering, which aims to unify visual perception and control models. For 
a detailed description of this model the reader is referred to this previous paper, here only the main elements will be explained at 
the hand of Fig. 1 and Fig. 2. Fig. 1 shows a typical, straight-ahead, frontal view from a car’s windshield, with a winding road ahead 
(curved black lines) and the car’s predicted future path in gray. With unrestricted visibility the driver can see ahead up until the 
horizon line (note that we assume a flat surface), but when preview is restricted we model this with the time constant 𝜏𝑝: beyond 
this time (indicated by the horizontal black dashed line in Fig. 1) the road ahead is not visible.
364
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Fig. 1. Illustration of physical meaning of the model’s look-ahead times, together with the visual angle 𝜂 that is effectively minimized by the driver through 
compensatory control.

Fig. 2. Multiloop driver steering model, combining visual feedback selection and control.

The essence of the model lies in the fact that it assumes the driver, when following curved or straight roads, to use the preview 
ahead of the car to self-generate an ‘aim-point’ some distance or time ahead of the car, and then minimize the visual angle 𝜂 between 
the aim-point heading and the current vehicle heading 𝜓 . This is further illustrated in Fig. 2, which shows the multiloop driver model 
with three inputs: (i) the previewed road centerline lateral position 𝜏𝑓 seconds ahead (𝑦𝑐(𝑡 + 𝜏𝑓 )), (ii) the current lateral position 
(𝑦(𝑡)), and (iii) the heading of the vehicle 𝜓(𝑡). The model assumes the driver to ‘smooth’ the previewed road centerline (𝑦𝑐 (𝑡 + 𝜏𝑓 )) 
through low-pass filtering with a time constant of 𝑇𝑙,𝑓 seconds. This effectively places that point 𝑇𝑙,𝑓 seconds closer to the driver, 
yielding an aim point lateral position 𝑦⋆

𝑐
with ‘look-ahead time’ 𝑇𝑙𝑎 = 𝜏𝑓 − 𝑇𝑙,𝑓 in seconds ahead. Applying perspective geometry, 

using the current lateral position and the effective distance ahead to the aim point (𝑈0𝑇𝑙𝑎, with 𝑈0 the vehicle velocity in m/s), 
yields the ‘target heading’ 𝜓⋆

𝑐
of that aim point. Then, comparing this target heading with the current heading yields the visual angle 

𝜂 to the aim point from the driver’s perspective which can be minimized through simple compensatory tracking. As in traditional 
quasi-linear operator models, all human behavior that is not linear time-invariant is captured by a single remnant signal 𝑛(𝑡), see for 
example McRuer et al. (1975). The remnant includes nonlinear and time-varying steering behavior, as well as a random component 
due to perception and motor noise (Levison et al., 1969, Mulder et al., 2018).

2.3. Model parameters and identifiability

An advantage of the model is that its parameters can be physically interpreted, that is, related to the view outside the car. 
Summarizing its main parameters, the 𝜏𝑓 variable indicates the farthest point of the road ahead that is used by the driver for control, 
which is used in two ways. The farthest 𝑇𝑙,𝑓 seconds of these are used to smooth the ‘oscillations’ or tight curves of the trajectory 
ahead, such that the driver only follows the lower-frequency variations, effectively leading to behavior known as ‘corner cutting’. 
The closest 𝑇𝑙𝑎 seconds are used to anticipate on what is coming, effectively allowing the driver to compensate for the vehicle’s 
response lag, and her or his own limitations, mainly neuromuscular actuation lags and perception, processing and actuation time 
delays. The compensatory control model has a traditional structure (McRuer et al., 1977) and will be explained in more detail in 
Section 3.5.2.

Regarding the model’s identifiability, Fig. 2 shows that the driver model has three inputs, hence the driver effectively closes 
three loops. From a model identification perspective, using an instrumental variable technique means that three independent ‘forcing 
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functions’ must be inserted in the closed-loop (van Paassen & Mulder, 1998). One is readily available, namely the trajectory of 
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Fig. 3. Central portion of the experimental visuals as presented to the participants.

the road centerline ahead, 𝑦𝑐(𝑡). The other two are defined here as a direct perturbation on the vehicle’s position (𝑦𝑑 (𝑡)) and 
heading (𝜓𝑑 (𝑡)), both artificially representing effects of wind disturbances. What results is a target-following, disturbance-rejection 
task, with the road trajectory 𝑦𝑐 (𝑡) the ‘target’ signal, and the position and heading perturbations reflecting the disturbance 
signals.

In a recent paper in which we derive the novel driver model (van der El et al., 2020), we have shown that the three forcing 
functions can be designed as sums of 10 sine waves (yielding a total of 30 unique frequencies) to allow for estimating the three 
frequency response function blocks (preview processing, perspective geometry, compensatory control) in Fig. 2. In addition, for 
each loop closure the crossover frequency and phase margin can be estimated from the data, measures that reflect the controller’s 
performance and stability, respectively. These nonparametric frequency-domain data then act as input for estimating the model 
parameters: 𝜏𝑓 , 𝑇𝑙,𝑓 , 𝑇𝑙𝑎, and the compensatory submodel parameters. How to compute these frequency-domain measures is detailed 
in multiple earlier papers, see for example Weir and McRuer (1970), van Paassen and Mulder (1998), van der El, Pool, van Paassen, 
et al. (2019), van der El et al. (2020).

3. Driving experiment

3.1. Rationale

A simulator experiment has been performed where drivers were instructed to drive along a winding road (𝑦𝑐(𝑡)), while two 
independent disturbances (𝑦𝑑 (𝑡) and 𝜓𝑑 (𝑡)) representing wind effects were present. These signals were multisines as in (van der El et 
al., 2020) to enable identification of the driver dynamics according to the method described in the previous section. The velocity of 
the car was fixed to 50 km/hour, a common speed limit for urban driving in the Netherlands. Hence, drivers performed a fixed-paced

lane-keeping task. Participants were asked to repeatedly drive ‘runs’ of about 1.8 km long along the winding road to gather data for 
identification.

3.2. Independent variables

Two independent variables were varied in the experiment: (i) the road presentation, and (ii) the available preview, see Fig. 3. 
The road was presented either by its centerline only, yielding the exact same tracking task (TR) as used in (van der El et al., 2020) 
to derive the driver model, or by a 3.5 m wide lane, extending 1.75 m on each side of the centerline, yielding a lane-keeping task 
(LK). Preview was either unrestricted (PR) or limited to 7 m (≈ 0.5 s) by fog (FG) ahead of the vehicle. The factorial of the two 
366

independent variables was tested, yielding four experimental conditions referred to as TR-FG, LK-FG, TR-PR, and LK-PR.



Transportation Research Part F: Psychology and Behaviour 94 (2023) 362–378K. van der El, D.M. Pool, M.M. van Paassen et al.

3.3. Apparatus and control variables

The experiment was performed in the SIMONA research simulator of TU Delft. The simulator has an outside visual (180x40 
deg) projected on a collimated screen; no physical motion was simulated. The setup was identical to that used in (van der El et 
al., 2020), but with slight adaptations to better represent real-life driving tasks. First, the ‘bicycle model’ was used for the vehicle 
dynamics (Rajamani, 2011); the model parameters were configured to resemble a neutrally steering, typical passenger car, identical 
to Lakerveld et al. (2016). Second, the ground and sky planes of the outside scenery showed a typical rural road found in The 
Netherlands, identical to Wolters et al. (2018). The rich textures for the grass and clouds were absent in the experiment of van der 
El et al. (2020), but Wolters et al. (2018) measured only minor driver behavior adaptations to this additional optical flow. Third, the 
control loading of the steering wheel was manually tuned to better match the feel of a typical passenger car, resulting in a stiffness of 
10 N m/rad (≈ 0.17 N m/deg); the rotational limit was increased relative to van der El et al. (2020), but for safety still limited to ±2 
rad (≈ ±115 deg). All other experimental settings were equal to van der El et al. (2020), including the road trajectory, the external 
disturbances, and the vehicle’s constant forward velocity (50 km/h).

3.4. Participants, instructions, and procedure

Eleven motivated volunteers participated, of which three did not finish due to emerging signs of motion sickness. The remaining 
eight participants (five male, three female) were on average 26.4 years old (𝜎 = 2.8 years), were in possession of a driver’s license 
for 5 years (𝜎 = 2.2 years), and drove 7,400 km/year (𝜎 = 6,000 km). All participants signed for informed consent before starting the 
experiment. Participants were instructed to drive as they would normally do in the lane-keeping tasks, and to minimize the lateral 
position error relative to the centerline in the tracking tasks.

Participants started with a five-run training phase, to familiarize themselves with the simulator and the given driving task. The 
LK-PR task was first performed with the wind-gust disturbances switched off, such that participants had a good feel for how their 
steering changed the vehicle’s heading and lateral position before the disturbances were switched on in the second run. Subsequently, 
the LK-FG, TR-PR, and TR-FG tasks were practiced. These training data were not further analyzed.

Then, the measurement phase of the experiment commenced. The four experimental conditions were performed in an order 
randomized according to a balanced Latin-square design. A condition was performed at least until the average deviations from the 
centerline and steering wheel deflections were approximately constant in five consecutive runs, indicating that the participant’s 
initial learning and adaptation curve had flattened. After each run, participants were given a performance score to motivate them, 
defined as the root-mean-square of the car deviations from the centerline in tracking tasks, and as cumulative road departures in lane 
keeping tasks. They were additionally asked to indicate signs of emerging motion sickness on the 11-point MIsery SCale (MISC, Bos 
et al., 2005); for comfort of the participants, the experiment was directly terminated when a MISC score of 5 or higher (first onset of 
nausea) was given. To reduce fatigue, participants left the simulator after each condition for a 10-20 min break, before moving on to 
the next condition. The experiment was typically completed in three hours.

3.5. Dependent measures

Two categories of dependent measures were calculated from the data. Those that could be directly obtained from the data 
(nonparametric measures) and those that required fits of the driver model. All measures presented in this paper are explained below 
in order of occurrence. Various more control-theoretic measures that were computed from the experiment data can be found in van 
der El (2018), including spectral densities, crossover frequencies and phase margins.

3.5.1. Nonparametric measures

Position in the lane: Lateral position on the road was used as a measure of performance, and is characterized by the vehicle’s 
deviation 𝑦𝑒 from the centerline. The standard deviation 𝜎𝑦𝑒

is used to compare driving performance to literature (Allen et al., 1975, 
Allen & O’Hanlon, 1979, Land & Horwood, 1998, Hildreth et al., 2000, Mars, 2008, Lakerveld et al., 2016, Wolters et al., 2018). 
The contributions due to the external target 𝑦𝑐 (𝑡), lateral position disturbance 𝑦𝑑 (𝑡), and heading disturbance 𝜓𝑑 (𝑡) signals, as well 
as due to the human remnant 𝑛(𝑡) (remaining frequencies), are characterized by the standard deviation 𝜎𝑦𝑒

at each respective set of 
input frequencies, that is, 𝜔𝑦𝑐

, 𝜔𝑦𝑑
, 𝜔𝜓𝑑

, and 𝜔𝑛. These separate contributions were calculated in the frequency domain, following 
the methodology detailed in van der El, Pool, et al. (2018), van der El, Padmos, et al. (2018). To better show the variability between 
conditions, all 95% confidence interval errorbars shown in our results figures were corrected for between-participant variability, by 
adjusting the means of individual participants’ data to the overall grand mean of the data. The target-to-error dynamics 𝑌𝑒(𝑗𝜔)∕𝑌𝑐(𝑗𝜔)
were estimated to further quantify road-following performance, see van der El, Pool, van Paassen, et al. (2019) for details.

Lateral acceleration: The standard deviation (SD) of the lateral vehicle acceleration 𝜎𝑎𝑦
was used to compare the performed driving 

task with measurements obtained in the real world and other simulator driving tasks (Reymond et al., 2001, Xu et al., 2015).

Intermittent control behavior: The level of intermittent control was characterized by the time 𝑇�̇�≈0 for which participants have 
an approximately constant control input. To estimate 𝑇�̇�≈0, the control input was assumed to be constant when the steering wheel 
deflection rate �̇� < 3 deg/s, identical to Godthelp (1986), but only for periods longer than 0.3 s to omit steering reversals. The time to 
line crossing (TLC) was used as measure for the incentive for continuous control, opposed to intermittent control (Godthelp, 1986). 
The TLC indicates the time before any side of the vehicle will hit a lane edge, when the current steering wheel angle is maintained, 
367

see Fig. 1. The curved TLC was calculated, by extrapolating both the current heading angle and rate, see Godthelp (1986), Boer 
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Fig. 4. Hypothesized qualitative changes in the dependent measures when driver behavior shifts between pure tracking and satisficing control.

(2016) for details. The alternative straight TLC was not considered, because neglecting the heading rate would yield a poor estimate 
of the actual time until road departure, due to the considerable road curvatures used in this experiment. The vehicle was assumed to 
be 1.5 m wide, identical to Boer (2016). For the tracking tasks a ‘virtual TLC’ was calculated for comparison with the lane-keeping 
tasks, by assuming the same road width (3.5 m).

Control activity: The SD of the steering wheel position 𝜎𝛿 was used as measure for control activity. Identical as is done for the 
lateral position, 𝜎𝛿 was further separated into contributions due to the target and disturbance signals and the human remnant.

3.5.2. Driver modeling-related measures

Estimates of the human’s multiloop control dynamics were used as an explicit measure for driver visual cue selection, information 
processing, and control behavior. These measures include multiloop Frequency-Response Function (FRF) estimates (𝐻𝑜𝑦𝑐

(𝑗𝜔), 
𝐻𝑜𝑦

(𝑗𝜔), and 𝐻𝑜𝜓
(𝑗𝜔)), estimates of the parameters of the multiloop driver model (𝐾𝑒⋆ , 𝑇𝐿,𝑒⋆ , 𝜏𝑣, 𝜔𝑛𝑚𝑠, 𝜁𝑛𝑚𝑠, 𝑇𝑙𝑎, 𝜏𝑓 , and 𝑇𝑙,𝑓 ), 

and the estimated visual angle 𝜂 that is minimized through compensatory control. For the model parameter estimates, the multiloop 
driver model is first fit to the data, before the look-ahead time 𝑇𝑙𝑎 = 1∕(𝑈0𝐾

𝜓
𝑦 ) is computed from the estimated value of 𝐾𝜓

𝑦 in a 
second step (van der El et al., 2020). Fig. 1 illustrates the physical meaning of the model look-ahead times and the visual angle 𝜂.

To quantify human adaptation in even more detail than in van der El et al. (2020), a second-order model for the human’s 
neuromuscular system (NMS) actuation dynamics (identical as in van der El, Pool, et al. (2018), van der El, Padmos, et al. (2018)) is 
also included in the compensatory control response 𝐻𝑐𝑜𝑚𝑝

𝑜 (𝑗𝜔). Corresponding to Fig. 2, the modeled control output as a function of 
the optical angle 𝜂 is then given by 𝛿(𝑗𝜔) = 𝐻

𝑐𝑜𝑚𝑝
𝑜 (𝑗𝜔)𝜂(𝑗𝜔) +𝑁(𝑗𝜔), with remnant 𝑁 and:

𝐻𝑐𝑜𝑚𝑝
𝑜

(𝑗𝜔) = 𝐾𝑒⋆ (1 + 𝑇𝐿,𝑒⋆ 𝑗𝜔)𝑒−𝜏𝑣𝑗𝜔
𝜔2

𝑛𝑚𝑠

(𝑗𝜔)2 + 2𝜁𝑛𝑚𝑠𝜔𝑛𝑚𝑠𝑗𝜔+𝜔2
𝑛𝑚𝑠

(1)

In Eq. (1), 𝜔𝑛𝑚𝑠 and 𝜁𝑛𝑚𝑠 are the neuromuscular break frequency and damping ratio, respectively. To avoid obtaining physically 
unrealistic break frequencies and damping ratios, constraints of 𝜔𝑛𝑚𝑠 < 18 rad/s and 0.05 < 𝜁𝑛𝑚𝑠 < 0.4 were applied while estimating 
the parameters from the data.

Note that the modeled delay 𝜏𝑣 represents only the human’s visual response delay, as opposed to the original model from van der 
El et al. (2020), where the delay captured both the human’s visual response delay and the phase effects of the NMS.

3.6. Hypotheses

H.I Restricted preview affects human control behavior identically as in single-loop tracking tasks (van der El, Padmos, et al., 2018). 
An expected main effect is larger lateral position variations in the lane (higher 𝜎𝑦𝑒

). In terms of the driver model, these are 
caused by limiting the most distant visual trajectory input to the driver (𝜏𝑓 ) to 0.5 s ahead, and, as 𝜏𝑓 = 𝑇𝑙𝑎 + 𝑇𝑙,𝑓 , this limits the 
driver’s ability to anticipate (𝑇𝑙𝑎) and smooth (𝑇𝑙,𝑓 ) the trajectory’s curves.

H.II Drivers are hypothesized to show higher levels of satisficing control behavior in lane-keeping tasks (LK) with full preview, 
as compared to centerline-tracking (TR) tasks, but not when preview is restricted. There is thus an interaction effect of road 
presentation and restricted preview on driver steering behavior. While available lane width increases the range of acceptable 
vehicle trajectories, it is expected that drivers can exploit this additional freedom only when there is adequate baseline 
performance and stability, which may not be attained when fog limits the preview of the road ahead. Fig. 4 illustrates the 
changes in the dependent measures that are expected to occur when participants show higher levels of satisficing control 
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behavior in LK-PR tasks.
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Fig. 5. Lateral position deviations 𝑦𝑒 from the road centerline: a top view of representative traveled paths in single runs of LK-FG and TR-PR tasks (a); the 𝑦𝑒

distribution summed over all eight participants (b); the average standard deviations of 𝑦𝑒 of the eight participants (c-g), with 95% confidence intervals (corrected for 
between-participant variability); and the target-to-error dynamics, average of eight participants and standard deviations (h). (For interpretation of the colors in the 
figure(s), the reader is referred to the web version of this article.)

4. Results

4.1. Nonparametric measures

4.1.1. Position on the road

Fig. 5a shows a portion of the road, together with the trajectories traveled by a representative participant in the conditions where 
the average lateral deviations were found to be the largest (LK-FG) and smallest (TR-PR). The vehicle trajectories both follow the road 
trajectory, but the absence of preview in the LK-FG task clearly results in vehicle trajectories that are often closer to the road edges. 
This is confirmed by the lateral position distributions on the road (Fig. 5b), which show that the vehicle’s center of gravity seldomly 
crosses the road’s boundaries, except occasionally in the LK-FG condition. Figs. 5b and 5c both show that participants keep their 
vehicle closer to the road’s centerline in TR tasks (opposed to LK), and when preview is available (opposed to FG). In the nominal 
driving task (LK-PR), 𝜎𝑦𝑒

is on average 0.38 m, which is higher than typical deviations (0.1 < 𝜎𝑦𝑒
< 0.3 m) reported throughout 

literature (Allen et al., 1975, Allen & O’Hanlon, 1979, Land & Horwood, 1998, Hildreth et al., 2000, Mars, 2008, Lakerveld et 
al., 2016). Yet, the measured performance is comparable to the similar simulator experiment by Wolters et al. (2018), which also 
included relatively strong external disturbances.

Figs. 5d–5g show that the target 𝑦𝑐 , disturbances 𝑦𝑑 and 𝜓𝑑 , and remnant 𝑛 all contribute to the increase in total 𝑦𝑒 between 
TR and LK tasks, but that the increase is largest at the input frequencies of the target signal (i.e., the road trajectory). Restricted 
preview mainly results in poorer target tracking, very similar as in single-loop tracking tasks (see van der El, Padmos, et al., 2018), by 
inhibiting participants from anticipating the road’s upcoming curves. Disturbance rejection is only marginally affected by restricted 
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preview, both in TR (corresponding to van der El, Padmos, et al., 2018) and LK tasks. Lateral position deviations at remnant 
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Fig. 6. Standard deviation of the vehicle lateral accelerations 𝑎𝑦 ; average of eight participants and 95% confidence intervals, corrected for between-subject variability.

Fig. 7. Time that the control output is approximately constant, single-run data of a representative participant in the LK-PR condition (a) and the average of eight 
participants (b), with 95% confidence intervals (corrected for between-participant variability).

(𝑛) frequencies increase for FG compared to PR tasks, see Fig. 5g, indicating an increase in nonlinear, time-varying behavior, or 
perception or motor noise.

The measured target-to-error dynamics are shown in Fig. 5h. In PR tasks, the magnitude of the target-to-error dynamics is 
always smaller than unity, which indicates that drivers could track all frequency components of the trajectory ahead, albeit less 
accurately for the higher-frequency components. In contrast, in FG tasks the magnitude is larger than unity at frequencies above 
2.5 rad/s, indicating that here the participants’ steering efforts increased the vehicle’s deviation from the centerline as compared to 
a ‘no-control’ strategy (do nothing). Such error amplification results from the human’s visual response time delay when performing 
closed-loop feedback control, and reflects the ‘jerky’ control behavior that is reported in driving experiments were the ‘far visual field’ 
is occluded (Land & Horwood, 1995a, Frissen & Mars, 2014, Mole et al., 2016). Identical to the single-loop tracking tasks in (van der 
El, Pool, et al., 2018, van der El, Pool, van Paassen, et al., 2019), preview allows participants to anticipate the target trajectory to 
compensate for their own response lags, which, consequently, eliminates the amplification peak.

4.1.2. Lateral acceleration

The standard deviations of the vehicle lateral accelerations 𝜎𝑎𝑦
are on average between 3 and 6.5 m/s2, see Fig. 6. The lateral 

acceleration is 50-100% higher when preview is restricted (compared to PR tasks). Opposed to TR, LK yields lower accelerations 
when preview is available, but higher accelerations when preview is limited.

The measured lateral accelerations in the nominal driving task (LK-PR) are in general below 11 m/s2 (= 3𝜎𝑎𝑦
, 99.7% of the sampled 

data). This is markedly higher than the maximum 𝑎𝑦 ≈ 5 m/s2 reported for real-world driving scenarios in Xu et al. (2015), and also 
higher than the peak of around 9 m/s2 in other simulator driving experiments (e.g., in Reymond et al., 2001). The high accelerations 
are a direct result of the fixed forward vehicle velocity, the strong lateral wind-gust disturbances (𝑦𝑑 and 𝜓𝑑 ), and relatively high 
road curvatures (𝜎 = 0.0175 m−1). Moreover, the performed experiment lacked physical motion feedback, the absence of which is 
known to lead to more aggressive control behavior (Wolters et al., 2018), and higher lateral accelerations (Reymond et al., 2001).

4.1.3. Intermittent control

Fig. 7 shows the time 𝑇�̇�≈0 for which participants kept the steering wheel angle 𝛿 constant, the intermittent control output. Overall, 
Fig. 7 shows that participants seldomly kept their control output 𝛿 constant for a sustained period of time. Especially when preview 
is restricted by fog, 𝑇�̇�≈0 approaches zero, indicating continuous closed-loop control activity. With preview, 𝑇�̇�≈0 is clearly higher 
and increases further from TR to LK tasks. However, even in LK-PR tasks, the average time that participants kept the steering wheel 
angle approximately constant is below 10% of the total measurement time (Fig. 7b). Although no comparable results are available 
from literature, the 𝑇�̇�≈0 values are likely relatively low due to the characteristics of the performed driving task, with its constantly 
varying road curvature and persistent quasi-random external disturbances (𝜓𝑑 and 𝑦𝑑 ).

4.1.4. Time to line crossing

The TLC was on average between 0.5 and 1.5 s throughout the experiment, see Fig. 8. This is lower than what is typically observed 
in curve driving tasks (e.g., TLC > 3 s (Godthelp, 1986)), which is a direct result of the road’s constantly varying curvature, as well 
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as the high average curvature, in combination with the vehicle’s fixed velocity. Availability of preview leads to a notably higher TLC 
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Fig. 8. The curved TLC, single-run data of a representative participant in the LK-PR condition (a), and the median of eight participants (b), with 95% confidence 
intervals (corrected for between-participant variability); in tracking, TLC is based on a virtual 3.5 m wide road.

Fig. 9. Standard deviations of the control output 𝛿 (a-e), average of eight participants and 95% confidence intervals (corrected for between-participant variability).

(Fig. 8b). Compared to the ‘virtual’ TLC in tracking tasks, lane-keeping yields a higher TLC in preview tasks, but a lower TLC in tasks 
with fog, suggesting that available lane width makes the task more difficult without preview and easier with preview.

For the conditions with preview, during the periods where the control output is constant (Fig. 7), the TLC is around 0.2 s higher 
than the average TLC measured throughout the full experiment (see the “x” markers in Fig. 8b). Higher TLCs thus indeed appear to 
evoke less steering corrections, as suggested previously by Godthelp (1986).

4.1.5. Driver steering wheel activity

The standard deviation of the control activity 𝜎𝛿 , shown in Fig. 9a, is 50-75% higher in tasks with fog (compared to PR). This 
contradicts single-loop tracking results from van der El, Pool, et al. (2018), where identical control activity was measured in tasks 
with and without preview. From TR to LK tasks, participants increase their control activity 𝜎𝛿 by approximately 10% without preview, 
but decrease 𝜎𝛿 by around 20% with full preview. Lane keeping thus evokes less control activity than tracking in PR tasks, supporting 
the obtained TLCs that the LK task is easier and that the higher lateral position variability on the road (Fig. 5) is the result of satisficing

control behavior.

In contrast, the higher lateral position variability in LK-FG tasks (compared to TR-FG) does not reflect satisficing behavior, as 
the accompanying higher control activity suggests that the task is more difficult. The increased task difficulty likely results from the 
visual presentation: comparing Figs. 3a and 3b shows that the centerline in TR tasks is more salient than the lane edges in LK tasks. 
Note that changes in 𝜎𝛿 between conditions are strongly correlated to the vehicle’s lateral accelerations, compare Fig. 9a and Fig. 6.

Figs. 9b–9e show that the target frequencies account for over 50% of the total 𝜎𝛿 , such that over 75% of the control output power

(𝜎2
𝛿
) is primarily dedicated to target tracking. Neither of the independent variables has a marked effect on the control output power 

at the frequencies of the disturbance signals 𝑦𝑑 (Fig. 9c) and 𝜓𝑑 (Fig. 9d). Fig. 9e shows that the control activity at the remnant (𝑛) 
frequencies increases for FG compared to PR tasks, which is mainly a consequence of the higher total control activity (Fig. 9a) with 
which remnant typically scales (Levison et al., 1969). The increased remnant activity explains why 𝜎𝑦𝑒

at the remnant frequencies 
was also higher in FG tasks, see Fig. 5g.

4.1.6. Driver frequency response function (FRF)

FRF estimates of driver multiloop control dynamics are given by markers in the Bode plots in Figs. 10 and 11. The shapes of 
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the three measured FRFs are identical in TR and LK tasks, both with and without preview, which indicates that participants adopt a 
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Fig. 10. Bode plots of the multiloop steering dynamics of a representative participant in conditions with fog (TR-FG and LK-FG): nonparamteric FRF estimates with 
standard errors, perfect target-tracking dynamics, and the model fits.

Fig. 11. Bode plots of the multiloop steering dynamics of a representative participant in conditions with full preview (TR-PR and LK-PR): nonparametric FRF estimates 
with standard errors, perfect target-tracking dynamics, and the model fits.

similar control strategy. Restricted preview has some notable effects, in particular on the target feedforward response 𝐻𝑜𝑦𝑐
(𝑗𝜔), as is 

well-known from tracking tasks (van der El, Padmos, et al., 2018). With fog, less phase lead and a higher FRF magnitude is visible at 
the higher input frequencies of 𝐻𝑜𝑦𝑐

(𝑗𝜔), indicating less centerline trajectory anticipation and smoothing, respectively. Participants 
adopt a target response 𝐻𝑜𝑦𝑐

(𝑗𝜔) that approximates the 𝐻𝑃
𝑜𝑦𝑐

(𝑗𝜔) dynamics required for perfect target-tracking, see van der El et 
al. (2020); however, they mainly match the phase of 𝐻𝑃

𝑜𝑦𝑐

(𝑗𝜔) in preview tasks and its magnitude in tasks with restricted preview, 
indicating that synchronizing the vehicle with the centerline oscillations is prioritized in PR tasks. These effects correspond to the 
experimental results in van der El, Padmos, et al. (2018), where available preview was limited in single-loop tracking tasks.

4.2. Driver model-related results

4.2.1. Model quality-of-fit

The dynamics of the fitted multiloop driver model are also shown in Figs. 10 and 11, together with the estimated FRFs. In general, 
the driver model captures the shape of all three FRF estimates well in all four tasks, with the following exceptions:

• The highest frequencies of the feedforward response 𝐻𝑜𝑦𝑐
(𝑗𝜔), Figs. 10 and 11 (a,d), especially in preview tasks, because 

participants ignore the highest frequencies of the target trajectory, see Fig. 9.

• The lowest frequencies of the heading response 𝐻𝑜𝜓
(𝑗𝜔), Figs. 10 and 11 (b,e), because, here, control output is dominated by 
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the lateral position loop (Allen, 1981).
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Fig. 12. Estimated feedforward anticipatory control behavior parameters; individual participants are shown with bars, markers indicate the average and 95% 
confidence intervals (corrected for between-participant variability). White bars are hardly visible in tasks with fog, as 𝑇𝑙,𝑓 is approximately zero for most participants. 
The feedback and feedforward look-ahead time parameters, 1∕(𝑈0𝐾

𝜓
𝑦 ) and 𝜏𝑓 − 𝑇𝑙,𝑓 , respectively, which correspond to 𝑇𝑙𝑎 , are shown for comparison with van der El 

et al. (2020).

• The highest frequencies of all three FRFs in the LK-FG task; here, the neuromuscular system dynamics were difficult to estimate, 
likely because the break frequency 𝜔𝑛𝑚𝑠 is beyond the highest forcing function input frequency (11.5 rad/s).

In addition to capturing the estimated FRFs of participants’ multiloop steering dynamics, the model also accurately matches 
participants’ steering outputs, as model VAFs are high (>95% for all participants in all experimental conditions). In fact, even 
when considering the measured control outputs (𝛿) in a single run – opposed to the five-run average considered throughout this 
paper – the human’s control output is accurately captured. Together, these results indicate that the unified driver model proposed 
in van der El et al. (2020) not only captures driver behavior in centerline-tracking tasks with full preview (TR-PR), but can also be 
applied in more realistic lane-keeping tasks, including situations with limited visibility. This considerably extends the applicability 
of the quasi-linear driver modeling framework.

4.2.2. Anticipatory control behavior

The estimated feedforward model parameters 𝑇𝑙𝑎, 𝑇𝑙,𝑓 , and 𝜏𝑓 are shown in Fig. 12. In tasks where preview was restricted by fog, 
the farthest point of the centerline trajectory ahead that is used by participants, characterized by 𝜏𝑓 , is well within the remaining 
0.5 s visible region ahead of the vehicle. Note that 𝜏𝑓 was not constrained during identification and was free to take any value. This 
supports that the quasi-linear model’s look-ahead times have physical meaning and can be interpreted as such, and reflect the portion 
of the previewed trajectory used by drivers for control (see Fig. 1), identical as in single-loop preview tracking tasks (see Rezunenko 
et al., 2018, van der El, Padmos, et al., 2018). In fact, in TR-FG and LK-FG tasks, the most distant target point used for control (𝜏𝑓 ) 
lies 0.44 s and 0.33 s ahead of the vehicle, respectively, such that not all the 0.5 s of available preview information is exploited. This 
is likely the consequence of the poor contrast of the road trajectory at the 0.5 s limit where it disappears in the fog (see Fig. 3). 
Because in our experiment the white centerline in TR tasks is easier to perceive up to the preview limit (thicker line, brighter white) 
than the road lane edges in LK tasks, participants can adopt a larger look-ahead time. This explains exactly why the LK-FG task was 
more difficult than the TR-FG task, as suggested before by the lateral position deviations (Fig. 5), the TLCs (Fig. 8) and the control 
activity (Fig. 9a): the experiment’s visual scene made it more difficult for participants to use the full 0.5 s of ‘theoretically’ available 
preview.

Fig. 12 further shows that restricted preview severely limits participants to both anticipate (𝑇𝑙𝑎) and smooth (𝑇𝑙,𝑓 ) the target 
trajectory. The most distant point on the trajectory ahead that is used for control (𝜏𝑓 ) decreases substantially, from around 1.2 s in 
tasks with preview to around 0.4 s in tasks with fog. Interestingly, participants do not smooth the target trajectory at all in tasks 
with fog (𝑇𝑙,𝑓 ≈ 0 s) and use all of the remaining preview for anticipation (𝑇𝑙𝑎), that is, to compensate for vehicle lag and their 
own response delay. The look-ahead time 𝑇𝑙𝑎 is decreased only slightly when preview is restricted, from around 0.6 (PR) to 0.4 s 
(FG) ahead. A lower 𝑇𝑙𝑎 implies that participants rely relatively more on lateral position feedback and less on heading feedback (as 
explained in van der El et al., 2020 and Weir & McRuer, 1970, McRuer et al., 1975, Allen, 1981), which corresponds with the fact 
that the (still visible) ‘near visual field’ provides mostly lateral position information (Grunwald & Merhav, 1976, Land & Horwood, 
1995a). In tasks with preview, lane-keeping (LK-PR) leads to more trajectory smoothing than centerline tracking (TR-PR): 𝑇𝑙,𝑓 on 
average increases from 0.43 to 0.64 s. This indicates that the higher-frequency oscillations of the road trajectory are ignored.

4.2.3. Feedback control behavior

As explained in detail in (van der El et al., 2020), the model fits yield two independent estimates of the look-ahead time 𝑇𝑙𝑎, 
namely 1∕(𝑈0𝐾

𝜓
𝑦 ) for the feedback responses and 𝜏𝑓 − 𝑇𝑙,𝑓 for the feedforward response. Fig. 12 shows that these two 𝑇𝑙𝑎 estimates 

are almost identical also in the more realistic tasks tested here, supporting the key finding of van der El et al. (2020). The main 
implication of this fact is the model suggests that drivers minimize the visual angle 𝜂 between the vehicle’s heading and a ‘target’ 
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heading, obtained by smoothing a portion of the centerline trajectory. Recall that Fig. 1 illustrated this visual angle, which was 



Transportation Research Part F: Psychology and Behaviour 94 (2023) 362–378K. van der El, D.M. Pool, M.M. van Paassen et al.

Fig. 13. The visual angle 𝜂 that drivers minimize through compensatory control.

Fig. 14. Estimated compensatory response parameters; average of eight participants and 95% confidence intervals (corrected for between-participant variability). 
Gray lines indicate the parameters estimation constraints imposed on 𝜔𝑛𝑚𝑠 and 𝜁𝑛𝑚𝑠 .

drawn for a look-ahead time that corresponds to the measured LK-PR task data: 𝑇𝑙𝑎 = 0.6 s and 𝜏𝑓 = 1.25 s. This self-generated 𝜂 is 
the signal that is minimized by drivers through compensatory feedback control, see also van der El et al. (2020). Using the estimated 
look-ahead times in open-loop model simulations, the actual visual angles 𝜂 could be estimated, the results of which are shown in 
Fig. 13. The visual angle 𝜂 is generally below ±20 deg, so the target heading or ‘aim point’ (𝑇𝑙𝑎 s ahead) is always well within the 
driver’s visual field when he or she looks straight ahead. The magnitude of the visual angle increases in tasks where the deviations 
from the centerline are larger (Fig. 5), leading to the largest angles in LK-FG tasks and the smallest angles in TR-PR tasks.

Fig. 14 shows the estimated parameters of the compensatory submodel, which quantify how participants minimized the visual 
angle 𝜂. Compared to TR tasks, participants reduce their gain 𝐾𝑒⋆ in LK tasks, that is, they minimize 𝜂 less aggressively. In tasks with 
restricted preview, in particular in lane-keeping tasks (LK-FG), participants generate more lead (𝑇𝑙,𝑒⋆ ). The fog limits the heading 
information conveyed by the visual scene, leading to a lower 𝑇𝑙𝑎 and reduced stability (see van der El et al., 2020), which must then 
be compensated for by a stronger reliance on predictive behavior (higher 𝑇𝐿,𝑒⋆ ). Participants have a slightly higher visual delay 𝜏𝑣

during LK as compared to TR tasks.

Tentatively, the ‘error’ directly visible in the tracking task motivates participants to put additional effort into reducing their 
response delay to increase performance. An identical increase in response delay was observed when additional heading feedback 
was made available in single-axis preview tracking tasks (van der El et al., 2020). Finally, participants also markedly adapt their 
neuromuscular system dynamics to the task. The NMS break frequency 𝜔𝑛𝑚𝑠 trends resemble those found for control activity, Fig. 9a. 
The NMS break frequency increases from lane-keeping to centerline-tracking tasks with preview from 9.5 (LK-PR) to 12 rad/s 
(TR-PR); then to 15.5 rad/s when preview is restricted in tracking tasks (TR-FG), and finally to 18 rad/s in lane-keeping tasks with 
fog (LK-FG), where the highest control activity is observed.

5. Discussion

It was hypothesized (H.I) that in a (more) realistic driving task, limiting the preview ahead would affect human control behavior 
identically as in classical single-loop preview tracking tasks (van der El, Padmos, et al., 2018). Indeed, fog led to increased lateral 
position deviations from the road’s centerline. Disturbance-rejection was barely affected by limited visibility. Model fits showed 
that drivers’ main steering adaptation is to use road preview information from less far ahead, below the restricted preview limit of 
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0.5 s, opposed to using approximately 1.2 s in tasks with unrestricted preview. Limiting the available preview inhibits drivers from 
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Fig. 15. Correlation between the TLC and the estimated farthest preview point used for control (𝜏𝑓 ); gray area indicates the available preview in tasks with fog (FG).

smoothing the road’s trajectory; the remaining preview is instead used for anticipation. Without smoothing, the to-be-minimized 
self-generated visual angle 𝜂 contains more high-frequency components, leading to higher control activity and higher lateral 
accelerations. With fog, drivers still select an aim point for the visual angle that is positioned as far ahead as possible, so the 
look-ahead time 𝑇𝑙𝑎 is right below the 0.5 s preview limit, to maximize feedback performance for disturbance-rejection. These results 
support the first hypothesis (H.I).

The control-theoretic driver model from van der El et al. (2020) captures the measured driver steering behavior very well, 
including driver adaptation of their multiloop steering dynamics between the full and restricted preview cases. The preview 
time-related model parameters obtained from fitting the model to the three frequency response functions perfectly reflect the imposed 
viewing limitations (i.e., our restricted and unrestricted preview cases), revealing that in our experiment the drivers always used the 
complete visual preview available to them. The self-generated visual angle 𝜂 was reconstructed to be below ±20 degrees, which 
means that the aim-point generally lies in front of the vehicle, but with preview available considerably smoothed relative to the 
future trajectory. While it can be expected that drivers outside our limited test pool of eight participants will achieve both higher 
and lower performance, control activity, and TLCs, the observed low-level loop closures and control adaptations to limited preview 
(fog) and road boundaries seem generalizable.

We also hypothesized (H.II) that drivers show higher levels of satisficing control behavior in lane-keeping tasks (LK) as compared 
to centerline-tracking tasks (TR), but only with full preview. This hypothesis is also confirmed, as all dependent measures reflect a 
higher level of satisficing control in LK tasks with preview, as compared to TR, see Fig. 4. In particular, the lateral deviation from the 
lane centerline, the TLC, and the intermittent steering wheel control (𝑇�̇�≈0) all increase, while drivers steer less aggressively (lower 
𝐾𝑒⋆ ), minimize the visual angle farther ahead (higher 𝑇𝑙𝑎) and ignore more of the road trajectory’s higher frequencies (higher 𝑇𝑙,𝑓 ). 
With limited preview, lateral deviations also increase from TR to LK tasks; however, this is not a manifestation of more satisficing 
behavior per se, but rather the result of the smaller look-ahead time, as a consequence of the limited visual contrast between the 
rendered lane edges and the simulated fog in LK-FG tasks.

In our experiment, differences in driver behavior between tracking en lane-keeping tasks are smaller than expected, and no clear, 
discrete control-mode ‘switch’ was observed from tracking to satisficing behavior. Instead, the switch to more satisficing and less 
tracking control appears to be gradual, as graphically indicated in Fig. 4 and as suggested by Gray (2005, 2008). The relative level 
of satisficing or tracking behavior in a driving task likely depends on driver experience and task difficulty, characterized by variables 
such as the vehicle dynamics, road curvature and lane width, and the presence and strength of external (wind-gust) disturbances. The 
low TLC values in our experiment suggest that participants exhibited only limited levels of satisficing control behavior. Experiments 
with more realistic road-curvature profiles and less strong external disturbances likely result in higher TLCs, and may, consequently, 
evoke more pronounced satisficing behavior. Such future experiments are a key next step for further extending the applicability of 
the proposed quasi-linear model to explain driver steering in more realistic driving tasks. However, the lower power of the road and 
disturbance signals will excite the driver dynamics less, inevitably leading to less accurate driver modeling data.

The TLC is often considered as a measure for drivers’ incentive to steer: when the TLC drops below a certain threshold, steering 
corrections are required to avoid lane departures. Estimated control-theoretic model parameters in our experiment suggest that 
participants respond to the road trajectory 𝜏𝑓 s ahead, such that there may be a correlation with the TLC. Fig. 15 shows that a 
correlation between the experimental TLCs and the model’s look-ahead times 𝜏𝑓 indeed appears to exist, especially in tasks with full 
preview. More experimental data are needed to verify whether such a relation holds over a wide range of task variables. Larger TLCs 
in general occur in less demanding driving tasks (Godthelp et al., 1984, Godthelp, 1986). Correspondingly, here, less demanding 
tasks also lead to higher model look-ahead times, as is visible, for example, from the difference between TR-PR and LK-PR in Fig. 12.

Like many earlier investigations into driver steering (Land & Horwood, 1995b, Land & Lee, 1994, Weir & McRuer, 1973, van der 
El et al., 2020, Wolters et al., 2018, McRuer et al., 1975, McLean & Hoffmann, 1972, McRuer et al., 1977, Lakerveld et al., 2016), 
in our experiment the driving speed was kept constant (here at 50 km/h) to collect ‘clean’ data on how drivers steer through curves. 
In reality, drivers are of course known to reduce their vehicle’s speed before an approaching tight curve (van Winsum & Godthelp, 
1996, Bella et al., 2014) and in restricted viewing conditions (van der Hulst et al., 1998, Broughton et al., 2007, Caro et al., 2009, 
Yan et al., 2014, Li et al., 2015, Siebert & Wallis, 2019, Huang et al., 2020, Zolali & Mirbaha, 2020) to reduce risk, lower experienced 
lateral accelerations, and improve steering precision. As such speed reductions are thus a key characteristic of how drivers steer 
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through curves, we intent to measure and include driver adaptation to driving speed into the proposed model as the next step in 
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our research. It will be essential to compare steering adaptations between various fixed driving speeds with self-imposed, continuous 
speed changes. For the latter, a time- or parameter-varying modeling approach may prove unavoidable. How drivers exactly adapt 
their steering behavior as a function of driving speed is still poorly understood today.

With an accurate fit to measured steering data in the frequency domain and intuitively interpretable parameters, the proposed 
driver modeling method provided new insight into steering behavior variations across a wide range of viewing conditions. We foresee 
that the same approach can be followed to extend our modeling framework to include variable speed. First, the current experiment 
setup can be used to measure how drivers steer at different (constant) driving speeds, which will show how key steering parameters 
(e.g., 𝑇𝑙𝑎 and 𝑇𝑙,𝑓 ) vary with speed. Then, these steady-state differences in steering behavior can be directly compared to steering 
behavior in “normal” speed-varying tasks, to obtain a time- or parameter-varying driver model (Godthelp et al., 1984, MacAdam, 
2003, Mulder et al., 2018). This is the crucial next step for driver steering modeling towards its key real-world applications, such as 
the development of more ‘human-like’ lane-keeping assist systems and other steering ADAS.

6. Conclusion

Experimental data are presented to investigate, and to model, differences between driver steering behavior in centerline-tracking 
and lane-keeping tasks, with full or restricted preview. When preview is restricted, drivers use as much as possible of the remaining 
preview to anticipate the curves of the road ahead, but cease to use preview for ‘smoothing’ the trajectory (a phenomenon known as 
‘corner cutting’). Steering behavior measured in the experiment mostly resembles tracking and not satisficing control, both in tracking 
and lane-keeping tasks, as near-continuous steering was required to follow the constantly-varying road curvature and suppress the 
external disturbances. Traditional time-domain measures (steering angle, TLC) and estimated model parameters all point to emergent 
satisficing behavior in the lane-keeping, curve driving task with preview: drivers steer less aggressively, more intermittently, and 
ignore more of the road’s fast changes, which leads to a larger lateral position variability within the lane. For the first time, these 
adaptations in driver multiloop steering dynamics with and without preview could be modeled, extending the quasi-linear driver 
modeling framework extensively. The model’s physically interpretable parameters provide novel quantitative insights, in particular 
regarding how drivers adapt their use of the visual cues provided by the road ahead when visibility conditions change. The model 
can be used to make steering support systems behave more human-like, or even to tailor them to an individual’s behavior.
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