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A B S T R A C T

This paper presents a computationally efficient model for vibratory pile installation. A semi-analytical finite
element (SAFE) model for thin cylindrical shells is derived to represent the pile. The linear dynamic response
of the soil medium is described by means of Green’s functions via the Thin-Layer Method (TLM) coupled
with Perfectly Matched Layers (PMLs) to account for the underlying elastic half-space. Furthermore, the
non-linear pile–soil interaction is addressed through a history-dependent frictional interface and a visco-
elasto-plastic tip reaction model that can be characterized on the basis of standard geotechnical in-situ
measurements. The solution to the non-linear dynamic pile–soil interaction problem is based on the sequential
application of the Harmonic Balance Method (HBM). The constituent components of the model are first
benchmarked against established numerical schemes. Subsequently, model predictions are compared with
experimental data collected from field tests. It is demonstrated that the proposed model amalgamates rigorous
theoretical elements and promising prediction capabilities in a computationally efficient framework, applicable
to engineering practice.
1. Introduction

The global endeavour towards decarbonization of the energy sector
has intensified in recent years (Ahmad and Zhang, 2020). As a result,
the demand for renewable energy soars in order to accommodate
these rapid developments (Papadis and Tsatsaronis, 2020). Amongst
the renewables, offshore wind is considered one of the most propitious
energy resources, by virtue of its advantages in comparison with other
renewable technologies, e.g. resource availability and cost-related ma-
turity as a technology (Esteban et al., 2011). Due to its pivotal role, the
share of offshore wind energy has surged over the past decade leading
to a constant increase of the size of offshore wind turbines (OWTs), the
distance to shore and the water depth of installation (Rodrigues et al.,
2015; Ramírez et al., 2020).

Bottom-fixed foundations are primarily used to support OWTs and
amongst the available concepts the monopile is the foremost one, corre-
sponding to 81% of all OWT foundations up to date in Europe (Ramírez
et al., 2020). The installation of offshore monopiles is most commonly
performed by means of impact hammering, due its robustness and
efficacy (Merchant, 2019). However, this approach results into signif-
icant underwater noise emissions that can be harmful to marine life,
ranging from site avoidance to permanent auditory damage (Tsouvalas
and Metrikine, 2016). For that purpose, strict regulatory criteria are
imposed and costly noise mitigation systems are employed to conform
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with those (Tsouvalas, 2020). In view of these concerns, as well as the
challenges entailed in the continuous size increase of monopiles, it is
essential that alternative installation methods with low environmental
impact are developed.

Vibratory driving is a well-known and established technique, char-
acterized by low noise levels, short installation time and low costs, that
has been used onshore for decades (Rodger and Littlejohn, 1980). Dur-
ing vibratory installation, the pile excitation is induced by the harmonic
(or periodic) rotation of eccentric masses, which leads to significantly
lower piling loads compared to impact hammering. At present, the
offshore wind industry is increasingly adopting vibratory techniques,
albeit their use was hindered in the past due to the limited availability
of field data. To further accelerate this shift, knowledge gaps and open
questions regarding pile drivability, installation efficiency and post-
installation effects need to be addressed (Achmus et al., 2020; Tsetas
et al., 2020; Gómez et al., 2022).

The available modelling approaches for vibratory pile installation
can be broadly divided into two categories. The first category comprises
high-fidelity models. In these approaches, computational schemes such
as the total Lagrangian (Chrisopoulos and Vogelsang, 2019), the up-
dated Lagrangian (Machaček et al., 2021) and the Coupled-Eulerian
Lagrangian formulation (Staubach et al., 2021) have been employed in
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conjunction with advanced soil constitutive models (e.g. hypoplastic-
ity), whereas the pile is treated as a rigid body. Significant insights can
be gained with such approaches, regarding post-installation soil stress
state and the mechanisms of vibratory driving. However, the limitations
of these models lie in their excessive computational cost, which renders
them rather prohibitive for engineering purposes, and the large number
of constitutive soil parameters that need to be calibrated. The latter
cannot be retrieved by standard in-situ measurements, thus such models
require additional extensive laboratory testing.

On the other hand, a range of medium-fidelity models exists for
vibratory driving, albeit no established approach can be distinguished.
One-dimensional (1-D) radial models have been widely used, where the
pile is modelled as a rigid body and the soil is discretized into concen-
tric rigid cylinders (Berghe and Holeyman, 2002; Xiao and Ge, 2022).
Such an approach disregards the pile flexible motion and precludes the
consideration of soil layering. Furthermore, 1-D wave equation models
have been adopted from the area of impact piling (Van Dorp et al.,
2019; Mazza and Holeyman, 2019). In these approaches, the pile is
modelled as a thin rod and the soil reaction is considered through
local and frequency-independent mechanical analogues (Buckley et al.,
2017). However, these approaches were originally developed for small-
diameter piles and their applicability to offshore monopiles has been
questioned in terms of pile (Tsetas et al., 2021) and soil reaction mod-
elling (Byrne et al., 2018). It is evident that an engineering-oriented
model that captures adequately the mechanics of vibratory installation
is essential.

In this paper, a vibratory pile driving model is developed that aims
to bridge the gap between medium- and high-fidelity approaches. The
former possess multiple empirical components which are based on
various simplifications, while the latter are hindered by computational
and practical aspects. For that purpose, modelling approaches that
can adequately address the physics of the process, while retaining
computational efficiency and engineering applicability are indispens-
able. In this work, the pile is described as a thin cylindrical shell
via a semi-analytical finite element (SAFE) approach (Santos et al.,
2009; Spada et al., 2020). Furthermore, the linear elastic layered soil
medium is modelled by means of the Thin-Layer Method (TLM) (Kausel,
1999), coupled with Perfectly Matched Layers (PMLs) to describe the
underlying half-space (de Oliveira Barbosa et al., 2012; Nguyen and
Tassoulas, 2018). The Green’s functions for ring loads are found in the
frequency-space domain and employed in the solution method (Kausel
and Peek, 1982). The contact at the pile–soil interface follows a history-
dependent Coulomb friction law, while at the tip a visco-elasto-plastic
reaction model is used. Subsequently, the coupled problem is solved
by means of sequential application of the Alternating Frequency–Time
(AFT) Harmonic Balance Method (HBM) (Cameron and Griffin, 1989;
Krack and Gross, 2019), leading to a computationally efficient yet
accurate scheme. All these elements are integrated into a non-linear
dynamic pile–soil interaction model that constitutes the main novel
contribution of this paper. Finally, the established model is compared
with pile installation data from field tests (Metrikine et al., 2020; Tsetas
et al., 2023). The soil parameters are calibrated based on standard
in-situ geotechnical measurements and installation data from a vibro-
driven pile are compared with model predictions, showcasing its full
predictive capabilities.

This paper is structured as follows. In Section 2, the SAFE pile model
is developed and the Green’s functions of the layered half-space are
derived via the TLM+PMLs. The method of solution of the coupled
problem by means of a sequential AFT-HBM is presented in Section 3.
In Section 4, the numerical components of the model are validated and
its predictions are compared with field data in Section 5. Conclusively,
in Section 6 a brief outline of the present work is given and the relevant
2

findings are discussed.
Fig. 1. A pipe pile partially embedded in a layered soil medium.

2. Model description

The present model describes the process of vibratory pile instal-
lation. The pile is represented as a thin cylindrical shell and the soil
medium as a layered half-space. As regards the input excitation, either
a harmonic (or periodic) load can be directly applied at the pile head,
or a mechanical analogue of a few degrees-of-freedom (DoFs) can be
coupled with the pile by virtue of the finite element-based framework
employed (see Section 2.1). In the latter case the harmonic load is
applied at a certain component and the overall interaction is taken into
account. Considering that all the components of our model are sym-
metric around the vertical axis, i.e. pile, soil and input excitation, the
overall three-dimensional model is axisymmetric and circumferential
motion is absent. A schematic of the described model is shown in Fig. 1
and a flowchart that outlines the overall computational framework is
presented in Fig. 2.

2.1. A semi-analytical finite element (SAFE) model for thin cylindrical
shells

Consider a thin cylindrical shell with wall thickness ℎp, length
𝐿p and mid-surface radius 𝑅p as shown in Fig. 3. The thin shell is
comprised by linear isotropic elastic material with Young’s modulus
𝐸p, Poisson ratio 𝜈p and mass density 𝜌p. The equations of motion
for a thin cylindrical shell according to Love–Timoshenko shell theory
read (Timoshenko and Woinowsky-Krieger, 1959):

pp + p𝐬p − p𝐀p
𝜕2up

𝜕𝑡2
= 𝟎 (1)

where the pile displacement/rotation vector up, the surface
forces/moments vector pp and the force/moment resultants vector 𝐬p
are defined as follows:

up =
[

𝑢 𝑣 𝑤 𝛽𝑧
]T , pp =

[

𝑝𝑧,p 𝑝𝜃,p 𝑝𝑟,p 𝑚𝑧,p 𝑚𝜃,p
]T

(2)
𝐬p = 𝐒p𝐀pup

=
[

𝑁𝑧 𝑁𝜃 𝑁𝑧𝜃 𝑁𝜃𝑧 𝑄𝑧 𝑄𝜃 𝑀𝑧 𝑀𝜃 𝑀𝑧𝜃 𝑀𝜃𝑧
]T

(3)

For a cylindrical shell, the two mid-surface circumferences at the shell
edges comprise its boundary curves and in case of prescribed tractions
the associated boundary conditions read (Leissa, 1973):

𝐭(𝑢) = −
(

 𝐬
)(𝑢) , 𝐭(𝑙) =

(

 𝐬
)(𝑙) (4)
p p p p p p
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Fig. 2. A flowchart of the present computational framework for vibratory pile installation.
where the superscripts (𝑢) and (𝑙) correspond to the upper (𝑧 = 𝑧𝑢) and
lower (𝑧 = 𝑧𝑙) shell boundaries, respectively. The differential matrix
operators p, p, 𝐒p and 𝐀p and p can be obtained from Timoshenko
and Woinowsky-Krieger (1959) and will be omitted for brevity. The
vector of external forces/moments at the boundary 𝐭p reads:

𝐭p =
[

𝑡𝑧,p 𝑡𝜃,p 𝑡𝑟,p 𝑡𝑧𝑧,p
]T (5)

In the ensuing, a semi-analytical finite element (SAFE) approach is
developed for the vibrations of cylindrical shells. The essence of the
method lies in the combination of finite element (FE) discretization
in a single coordinate with analytical solutions in the remaining ones
and has been successfully applied to laminated composite plates and
shells (Bandyopadhyay and Archer, 1979; Taciroglu et al., 2004; Bartoli
et al., 2006). In our problem, analytical solutions in 𝜃 are combined
with an FE discretization in 𝑧, resulting into a series of nodal rings
(see Fig. 3). First, a cylindrical shell segment is considered with the
following assumed solution:

up = 𝜣𝑛𝐍p𝐱p (6)

The diagonal matrix 𝜣𝑛 ensures that the response is periodic in 𝜃. Both
symmetric and anti-symmetric configurations with respect to 𝜃 = 0 are
admissible and can be expressed as:
𝜣s

𝑛 = diag {cos(𝑛𝜃) − sin(𝑛𝜃) cos(𝑛𝜃) cos(𝑛𝜃)} ,

𝜣a
𝑛 = diag {sin(𝑛𝜃) cos(𝑛𝜃) sin(𝑛𝜃) sin(𝑛𝜃)}

(7)

where the superscripts s and a denote the symmetric and anti-symmetric
cases with respect to 𝜃 = 0, respectively. The interpolation matrix 𝐍p
encapsulates the polynomials used to approximate the response of the
shell element along the 𝑧 axis based on the nodal ring values 𝐱p:

𝐍p =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑁 𝑙
1(𝑧) 0 0 0 𝑁 𝑙

2(𝑧) 0 0 0

0 𝑁 𝑙
1(𝑧) 0 0 0 𝑁 𝑙

2(𝑧) 0 0

0 0 𝑁𝑐
1 (𝑧) 𝑁𝑐

2 (𝑧) 0 0 𝑁𝑐
3 (𝑧) 𝑁𝑐

4 (𝑧)

0 0 −
d𝑁𝑐

1 (𝑧)
d𝑧

−
d𝑁𝑐

2 (𝑧)
d𝑧

0 0 −
d𝑁𝑐

3 (𝑧)
d𝑧

−
d𝑁𝑐

4 (𝑧)
d𝑧

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(8)

where the linear Lagrange polynomials 𝑁 𝑙
1(𝑧), 𝑁 𝑙

2(𝑧) and the cubic
Hermite polynomials 𝑁𝑐 (𝑧), 𝑁𝑐 (𝑧), 𝑁𝑐 (𝑧), 𝑁𝑐 (𝑧) are employed. To
3

1 2 3 4
Fig. 3. A thin cylindrical shell with axial discretization into nodal rings based on the
SAFE method.

derive the SAFE equations, we formulate the principle of virtual work
for a cylindrical shell segment and set the virtual work performed by
the residuals along the boundary curves and the shell surface equal to
zero:

∫

2𝜋

0

(

(

𝛿u(𝑖)
p

)T
𝐫(𝑖)p +

(

𝛿u(𝑖+1)
p

)T
𝐫(𝑖+1)p + ∫

𝑧𝑖+1

𝑧𝑖
𝛿(𝐀pup)T𝐫p,S d𝑧

)

𝑅p d𝜃 = 0

(9)

where 𝐫(𝑖)p and 𝐫(𝑖+1)p denote the residual force/moment resultants at
the shell segment boundaries and 𝐫p,S denotes the residual surface
forces/moments on the shell surface. The aforementioned residuals are
expressed as follows:

𝐫(𝑖)p = 𝐭(𝑖)p +
(

p𝐬p
)(𝑖) , 𝐫(𝑖+1)p = 𝐭(𝑖+1)p −

(

p𝐬p
)(𝑖+1) ,

𝐫p,S = pp + p𝐬p − p𝐀p
𝜕2up

𝜕𝑡2

(10)
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∫

Upon a series of mathematical operations, which are omitted for
brevity, the element mass matrix 𝐈𝑙p,𝑛, the element stiffness matrix 𝐋𝑙

p,𝑛
and the vector of consistent forces/moments at the element nodal rings
𝐩𝑙p,𝑛 are obtained (see Appendix A):

𝐈𝑙p,𝑛 = ∫

2𝜋

0 ∫

𝑧𝑖+1

𝑧𝑖
(𝐍θ

𝑛)
T𝐀T

pp𝐀p𝐍θ
𝑛𝑅p d𝑧d𝜃 (11)

𝐋𝑙
p,𝑛 =∫

2𝜋

0 ∫

𝑧𝑖+1

𝑧𝑖

(

(𝐍θ
𝑛)

Tp𝐒𝑎𝐀p
d𝐍θ

𝑛
d𝑧

+
d(𝐍θ

𝑛)
T

d𝑧
p𝐒𝑎𝐀p𝐍θ

𝑛 − (𝐍θ
𝑛)

T𝐀T
pp𝐒𝑎𝐀p𝐍θ

𝑛

)

𝑅p d𝑧d𝜃 (12)

𝑙
p,𝑛 = ∫

2𝜋

0

([

𝜣T
𝑛 𝐭

(𝑖)
p

𝜣T
𝑛 𝐭

(𝑖+1)
p

]

+ ∫

𝑧𝑖+1

𝑧𝑖
(𝐍θ

𝑛)
T𝐀T

ppp d𝑧

)

𝑅p d𝜃 (13)

here 𝐍θ
𝑛 = 𝜣𝑛𝐍p has been introduced for notation compactness. It

s remarked that 𝐈𝑙p,𝑛, 𝐋𝑙
p,𝑛 and 𝐩𝑙p,𝑛 of the first shell element (pile top)

re augmented to account for the pile–device coupling in the case of
mechanical analogue (of few DoFs) describing the vibratory device.
he latter enters the formulation via the virtual work performed along
he boundary curves, as in standard FE models.

The final SAFE equations are formulated by overlapping all the
btained vectors and matrices in the classical FE sense and rearranging
ows and columns to organize by DoFs instead of nodal rings. In that
anner the SAFE shell matrices 𝐈p,𝑛, 𝐋p,𝑛 and vectors 𝐮p,𝑛, 𝐩p,𝑛 are

ormed. For an axisymmetric problem (𝑛 = 0) and in the absence
f circumferential motion (symmetric form only), the shell governing
quations reduce to:

s
p,0

d2𝐮sp,0
d𝑡2

+ 𝐋s
p,0𝐮

s
p,0 = 𝐩sp,0 (14)

To further improve the computational aspects of the model, the
odal decomposition is applied in our solution method. The eigenma-

rix of the symmetric form for 𝑛 = 0 reads:

s
p,0 =

⎡

⎢

⎢

⎢

⎣

𝐔s
0

𝐖s
0

𝑩s
0

⎤

⎥

⎥

⎥

⎦

, 𝐔s
0 =

[

𝐮s0,1 𝐮s0,2 ⋯
]

,

s
0 =

[

𝐰s
0,1 𝐰s

0,2 ⋯
]

, 𝑩s
0 =

[

𝜷s
0,1 𝜷s

0,2 ⋯
]

(15)

s can be seen, the circumferential term 𝐕s
0 (equal to zero) is erased for

eadability in Eq. (15), as well as in all subsequent shell expressions.
inally, the matrix equation that governs the pile modal coordinates 𝐪s0
eads:

𝜱s
p,0

)T
𝐈sp,0𝜱

s
p,0

d2𝐪s0
d𝑡2

+
(

𝜱s
p,0

)T
𝐋s
p,0𝜱

s
p,0𝐪

s
0 =

(

𝜱s
p,0

)T
𝐩sp,0 (16)

so the pile displacements/rotation 𝐮p and line load 𝐩p vectors can be
compactly written as:

𝐮p = 𝜱s
p,0𝐪

s
0, 𝐩p =

𝐩sp,0
2𝜋𝑅p

(17)

As regards the full pile–soil installation model, it is noted that the
on-linear soil reaction forces will be introduced as additional loading
erms in 𝐩sp,0 (Eq. (14)).

.2. Wave propagation in a layered medium

.2.1. Normal modes of a layered medium via the Thin-Layer Method
Consider a soil layer of infinite horizontal extent comprised of a lin-

ar elastic isotropic material with mass density 𝜌s and Lamé constants
𝜆s and 𝐺s. The equations of motion in cylindrical coordinates (𝑟, 𝜃, 𝑧)
can be expressed in matrix form as follows (Kausel, 2006):

p − 𝜌
𝜕2us + 𝐋T 𝐃𝐋 u = 𝟎 (18)
4

s s 𝜕𝑡2 𝜎,s 𝜀,s s
here the body force vector ps and the displacement vector us are
efined as:

s =
[

𝑝𝑟,s 𝑝𝜃,s 𝑝𝑧,s
]T , us =

[

𝑢𝑟 𝑢𝜃 𝑢𝑧
]T (19)

The differential matrix operators 𝐋𝜎,s and 𝐋𝜀,s and the constitutive
matrix 𝐃 can be found in Kausel (2006).

For a soil layer bounded by two horizontal planes, the boundary
conditions in the presence of external tractions read:

𝐭(𝑢)s = −𝐬(𝑢)𝑧 , 𝐭(𝑙)s = 𝐬(𝑙)𝑧 (20)

where the superscripts (𝑢) and (𝑙) correspond to the upper (𝑧 = 𝑧𝑢) and
lower (𝑧 = 𝑧𝑙) horizontal planes, respectively. The traction vector 𝐭s and
the stress vector along a horizontal surface 𝐬𝑧 are defined as:

𝐭s =
[

𝑡𝑟,s 𝑡𝜃,s 𝑡𝑧,s
]T , 𝐬𝑧 =

[

𝜎𝑧𝑟,s 𝜎𝑧𝜃,s 𝜎𝑧𝑧,s
]T (21)

At this point, we proceed to discretize a vertically inhomoge-
neous medium (comprised by homogeneous horizontal layers of dis-
similar material properties) into thin layers in FE sense, i.e. small
compared to the excited wavelengths, according to the Thin-Layer
Method (TLM) (Kausel and Roësset, 1981). We begin by assuming that
the solution inside a homogeneous thin layer of thickness ℎ𝑙 has the
following general form:

us = 𝐓𝑛𝐂𝑛𝐍s𝐱s (22)

In Eq. (22), the diagonal matrix 𝐓𝑛 is an azimuthal matrix expanding
the displacement field into a Fourier series in 𝜃. The displacement field
may be either symmetric or anti-symmetric with respect to 𝜃 = 0, with
the corresponding azimuthal matrices defined as:
𝐓s
𝑛 = diag {cos(𝑛𝜃) − sin(𝑛𝜃) cos(𝑛𝜃)} ,

𝐓a
𝑛 = diag {sin(𝑛𝜃) cos(𝑛𝜃) sin(𝑛𝜃)}

(23)

Furthermore, the Bessel matrix 𝐂𝑛 is defined as follows:

𝐂𝑛 =

⎡

⎢

⎢

⎢

⎢

⎣

d𝐽𝑛(𝑘𝑟)
d(𝑘𝑟)

𝑛
𝑘𝑟𝐽𝑛(𝑘𝑟) 0

𝑛
𝑘𝑟𝐽𝑛(𝑘𝑟)

d𝐽𝑛(𝑘𝑟)
d(𝑘𝑟)

0

0 0 𝐽𝑛(𝑘𝑟)

⎤

⎥

⎥

⎥

⎥

⎦

(24)

where 𝑘 is the radial wavenumber variable.
The chosen dependencies in the radial and circumferential direc-

tions are based on the exact solutions for wave propagation in a solid
medium (Kausel, 2006). Finally, the soil displacements are interpolated
along 𝑧 based on the vector of interface values 𝐱s and the interpolation
matrix 𝐍s which can be expressed as:

𝐍s =
[

𝑁 𝑙
1(𝑧)𝐈3 𝑁 𝑙

2(𝑧)𝐈3
]

(25)

here 𝑁 𝑙
1(𝑧) and 𝑁 𝑙

2(𝑧) are linear Lagrange polynomials and 𝐈3 is a 3 × 3
dentity matrix.

By substituting Eq. (22) into Eqs. (18) and (20) and considering that
he adopted solution is approximate, residual body forces and surface
ractions at the boundaries are generated. By invoking the principle
f virtual work and requiring that residual body forces and surface
ractions perform virtual work equal to zero, we obtain:

+∞

0 ∫

2𝜋

0

(

(

𝛿u(𝑖)
s
)T 𝐫(𝑖)s +

(

𝛿u(𝑖+1)
s

)T 𝐫(𝑖+1)s + ∫

𝑧𝑖+1

𝑧𝑖
𝛿uT

s 𝐫s,Vd𝑧
)

𝑟 d𝜃 d𝑟 = 0

(26)

where 𝐫s,V is the vector of residual body forces in the interior of the
thin layer and 𝐫(𝑖)s , 𝐫(𝑖+1)s are the vectors of residual surface tractions at
the upper (𝑧 = 𝑧𝑖) and lower (𝑧 = 𝑧𝑖+1) bounding horizontal planes,
respectively. The residuals 𝐫(𝑖)s , 𝐫(𝑖+1)s and 𝐫s,V are defined as:

𝐫(𝑖)s = 𝐭(𝑖)s + 𝐬(𝑖)𝑧 , 𝐫(𝑖+1)s = 𝐭(𝑖+1)s − 𝐬(𝑖+1)𝑧 , 𝐫s,V = ps + 𝐋T
𝜎,s𝐃𝐋𝜀,sus − 𝜌s

𝜕2us

𝜕𝑡2

(27)
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𝑧

𝑧

Fig. 4. Attenuation of propagating waves inside the PML region.

In the absence of external body forces and surface tractions, the
matrices 𝐀𝑙, 𝐁𝑙, 𝐆𝑙 and 𝐌𝑙 are obtained, which characterize each
thin layer 𝑙 (Kausel and Roësset, 1981). By overlapping all the thin
layer matrices in the usual FE sense, the matrices for the layered soil
medium are formed. Subsequently, we group the DoFs instead of the
layer interfaces by rearranging rows and columns, which leads to the
following matrix equation:
(

𝑘2𝐀* + 𝑘𝐁* +𝐆* − 𝜔2𝐌*)𝛟 = 𝟎 (28)

where the soil matrices are defined as:

𝐀* =
⎡

⎢

⎢

⎣

𝐀𝑟 𝟎 𝟎
𝟎 𝐀𝜃 𝟎
𝟎 𝟎 𝐀𝑧

⎤

⎥

⎥

⎦

, 𝐁* =
⎡

⎢

⎢

⎣

𝟎 𝟎 𝐁𝑟𝑧
𝟎 𝟎 𝟎
𝐁𝑧𝑟 𝟎 𝟎

⎤

⎥

⎥

⎦

,

𝐆* =
⎡

⎢

⎢

⎣

𝐆𝑟 𝟎 𝟎
𝟎 𝐆𝜃 𝟎
𝟎 𝟎 𝐆𝑧

⎤

⎥

⎥

⎦

, 𝐌* =
⎡

⎢

⎢

⎣

𝐌𝑟 𝟎 𝟎
𝟎 𝐌𝜃 𝟎
𝟎 𝟎 𝐌𝑧

⎤

⎥

⎥

⎦

(29)

As can be seen, Eq. (28) describes a quadratic eigenvalue problem in
𝑘. The special structure of the involved matrices (Eq. (29)) can be
exploited and results in two uncoupled generalized linear eigenvalue
problems for the normal modes of generalized Rayleigh (SV-P) and Love
(SH) waves, respectively. Due to the axisymmetric problem formulation
(𝑛 = 0) and the absence of circumferential motion, only SV-P waves are
considered:
(

𝑘2𝐀 + 𝐂
)

[

𝛟𝑟
𝑘𝛟𝑧

]

=
[

𝟎
𝟎

]

(30)

where the matrices 𝐀 and 𝐂 are defined as:

𝐀 =
[

𝐀𝑟 𝟎
𝐁𝑧𝑟 𝐀𝑧

]

, 𝐂 =
[

𝐆𝑟 − 𝜔2𝐌𝑟 𝐁𝑟𝑧
𝟎 𝐆𝑧 − 𝜔2𝐌𝑧

]

(31)

2.2.2. Half-space inclusion in the Thin-Layer Method via Perfectly Matched
Layers

The approach outlined in Section 2.2.1 is suitable to analyse wave
propagation in a layered medium with fixed base (e.g. bedrock).
Presently, the Perfectly Matched Layers (PMLs) comprise one of the
most successful techniques to describe semi-infinite media with fi-
nite computational domains augmented with absorbing boundary lay-
ers (Morvaridi and Brun, 2016; Kucukcoban et al., 2019). In the ensuing
we outline the coupling of the TLM with PMLs, in order to analyse
a layered soil medium underlain by a half-space (de Oliveira Barbosa
et al., 2012; Kausel and de Oliveira Barbosa, 2012).

The key principle of PMLs lies in the transformation of the spa-
tial coordinates into complex-valued coordinates by means of com-
plex stretching functions. In our case, the vertical coordinate 𝑧 is
5

transformed to a complex-valued stretched coordinate �̄� as follows:

̄ = ∫

𝑧

0
𝜀𝑠

(

𝑧′, 𝜔
)

d𝑧′ (32)

where 𝜀𝑠(𝑧, 𝜔) denotes the complex-valued stretching function and in
the standard PML formulation has the following form:

𝜀𝑠(𝑧, 𝜔) = 𝛼𝑠(𝑧) +
𝛽𝑠(𝑧)
i𝜔

(33)

where 𝛼𝑠(𝑧) is the scaling function and 𝛽𝑠(𝑧) is the attenuation func-
tion; the former controls the amplitude decay of evanescent waves,
while the latter is responsible for the attenuation of propagating waves
(see Fig. 4). Both functions should increase monotonically with 𝑧 and
ensure continuity of the vertical coordinate at the interface between
the regular and the PML domain, i.e. 𝛼𝑠(𝐻EL) = 1 and 𝛽𝑠(𝐻EL) =
0 (Kucukcoban and Kallivokas, 2011). The scaling and attenuation
functions are customarily expressed as follows (Francois et al., 2021):

𝛼𝑠(𝑧) =

⎧

⎪

⎨

⎪

⎩

1, 0 ≤ 𝑧 ≤ 𝐻EL

1 + 𝛼0

(

𝑧 −𝐻EL
𝐻PML

)𝑚PML
, 𝐻EL ≤ 𝑧 ≤ 𝐻EL +𝐻PML

(34)

𝛽𝑠(𝑧) =

⎧

⎪

⎨

⎪

⎩

0, 0 ≤ 𝑧 ≤ 𝐻EL

𝛽0

(

𝑧 −𝐻EL
𝐻PML

)𝑚PML
, 𝐻EL ≤ 𝑧 ≤ 𝐻EL +𝐻PML

(35)

where 𝐻EL is the thickness of the regular domain, 𝐻PML is the thickness
of the PML domain and 𝑚PML is the degree of the polynomial attenu-
ation inside the PMLs. The scalar tuning parameters 𝛼0 and 𝛽0 control
the scaling and attenuation inside the PMLs, respectively.

By employing the stretching function used by Collino and Tsogka
(2001) and substituting it in Eq. (32), the complex-valued stretched
coordinate �̄� is obtained:

̄ = 𝑧 − iH(𝑧 −𝐻EL)
𝛽0𝐻PML

𝜔(𝑚PML + 1)

(

𝑧 −𝐻EL
𝐻PML

)𝑚PML+1
(36)

where H(⋅) is the Heaviside function. Consider a PML domain with
thickness 𝐻PML that is discretized into 𝑁PML thin layers of equal
thickness. Following the procedure developed by Kausel and de Oliveira
Barbosa (2012), PMLs are readily incorporated in the TLM by simply
replacing the thickness of the 𝑙th thin layer ℎ𝑙 in the PML domain with
a complex-valued stretched thickness ℎ̄𝑙, defined as:

ℎ̄𝑙 =𝐻PML

[

1
𝑁PML

− i
𝛽0

𝜔(𝑚PML + 1)

×

(

(

𝑙
𝑁PML

)𝑚PML+1
−
(

𝑙 − 1
𝑁PML

)𝑚PML+1
)]

, 1 ≤ 𝑙 ≤ 𝑁PML (37)

It is noted that the introduction of PMLs may lead to spurious modes
depending on the size of the PML domain, the thickness of the thin
layers inside the PML region, as well as the scaling and attenuation
parameters (Kim and Pasciak, 2009; Matuszyk, 2017; Gallezot et al.,
2018). To avoid leaking of non-physical energy into the elastic domain,
either simple measures such as enlargement of the PML domain may
be employed or the spurious modes may be filtered, e.g. based on the
ratio of kinetic energy in PML region over the kinetic energy in the
whole domain (Treyssede et al., 2014). Without entering into lengthy
details, the choice of the scaling and attenuation tuning parameters is
based on the recommendations by de Oliveira Barbosa et al. (2012).
Conclusively, in our model the layered soil is placed on top of an
assembly of PMLs, defined as thin layers with complex-valued stretched
thickness, to account for the underlying half-space as shown in Fig. 5.

2.2.3. Green’s functions of a layered medium via the Thin-Layer Method
For the problem of our interest, we proceed to derive the Green’s

functions in the frequency-space domain due to vertical and radial
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̃

̂

Fig. 5. A layered soil half-space modelled via the TLM+PMLs.

ring loads. First, we define the displacement vector �̃�(𝑖)s at 𝑖th elevation
(layer interface) in the frequency-space domain:

𝐮(𝑖)s =
[

�̃�(𝑖)𝑟 �̃�(𝑖)𝜃 �̃�(𝑖)𝑧
]T

=
∞
∑

𝑛=0
𝐓𝑛 ∫

∞

0
𝑘𝐂𝑛�̂�(𝑖)s,𝑛 d𝑘 (38)

where �̂�(𝑖)s,𝑛 denotes the displacement vector at elevation 𝑧𝑖 in the
frequency-(radial–azimuthal)-wavenumber domain. In the ensuing, the
symbols (̃⋅) and (̂⋅) refer to quantities in the frequency-space and
frequency-(radial–azimuthal)-wavenumber domain, respectively. Trans-
formation to the latter can be achieved by means of a discrete Fourier
transform in the azimuth 𝜃 and a Hankel transform in the radial
coordinate 𝑟:

𝐮(𝑖)s,𝑛 =
[

�̂�(𝑖)𝑟,𝑛 �̂�(𝑖)𝜃,𝑛 �̂�(𝑖)𝑧,𝑛
]T

= 𝑎𝑛 ∫

∞

0
𝑟𝐂𝑛 ∫

2𝜋

0
𝐓𝑛�̃�(𝑖)s d𝜃 d𝑟 (39)

where 𝑎0 =
1
2𝜋 and 𝑎𝑛 =

1
𝜋 (𝑛 ≠ 0). The azimuthal matrix 𝐓𝑛 is a place-

holder that can be substituted by its symmetric (𝐓s
𝑛) or anti-symmetric

(𝐓a
𝑛) form, depending on the case considered. For the external load

vector, an analogous transformation pair �̃�(𝑗)s , �̂�(𝑗)s,𝑛 is defined at the
𝑗th layer interface, involving the exact same transformations employed
in Eqs. (38) and (39).

A solution in the form of modal superposition is sought, starting
from the following relation between external loads and displacements
in the frequency-(radial–azimuthal)-wavenumber domain (SV-P):
(

𝑘2𝐀 + 𝐂
)

[

�̂�𝑟,𝑛
𝑘�̂�𝑧,𝑛

]

=

[

�̂�𝑟,𝑛
𝑘�̂�𝑧,𝑛

]

(40)

where �̂�𝑟,𝑛 and �̂�𝑧,𝑛 are the radial and vertical displacement vectors,
respectively. The vectors �̂�𝑟,𝑛 and �̂�𝑧,𝑛 denote the consistent external
loads at the layer interfaces, derived according to the TLM.

A series of matrix operations needs to be performed at this point,
involving the following orthogonality and normalization relations em-
ployed by Waas (1972) and Kausel (1981):

𝐘T𝐀𝐙 = 𝐊R, 𝐘T𝐂𝐙 = −𝐊3
R (41)

where 𝐊R = diag
{

𝑘R,1 𝑘R,2 ⋯
}

is a diagonal matrix containing the
wavenumbers 𝑘 associated with the Rayleigh modes, which are
6

R,𝑚
found by Eq. (30). Furthermore, the matrices 𝐘 and 𝐙 contain the left
and right eigenvectors, respectively:

𝐙 =

[

𝜱𝑟

𝜱𝑧𝐊R

]

, 𝐘 =

[

𝜱𝑟𝐊R

𝜱𝑧

]

,

𝜱𝑟 =
[

𝛟𝑟,1 𝛟𝑟,2 ⋯
]

, 𝜱𝑧 =
[

𝛟𝑧,1 𝛟𝑧,2 ⋯
]

(42)

where 𝛟𝑟,𝑚 =
[

𝜙(1)
𝑟,𝑚 𝜙(2)

𝑟,𝑚 ⋯
]T

and 𝛟𝑧,𝑚 =
[

𝜙(1)
𝑧,𝑚 𝜙(2)

𝑧,𝑚 ⋯
]T

are the vectors of radial and vertical displacements at the layer in-
terfaces for the 𝑚th Rayleigh mode. An elaborate description of the
intermediate operations can be found in Kausel and Peek (1982), Kausel
(1981). Finally, for the SV-P problem the displacements at the layer in-
terfaces in the frequency-(radial–azimuthal)-wavenumber domain can
be written as:
[

�̂�𝑟,𝑛
�̂�𝑧,𝑛

]

=

[

𝜱𝑟𝐃R𝜱T
𝑟 𝑘𝜱𝑟𝐊−1

R 𝐃R𝜱T
𝑧

1
𝑘𝜱𝑧𝐃R𝐊R𝜱T

𝑟 𝜱𝑧𝐃R𝜱T
𝑧

][

�̂�𝑟,𝑛
�̂�𝑧,𝑛

]

(43)

where the matrix 𝐃R =
(

𝑘2𝐈 −𝐊2
R
)−1.

For a given source, the displacement vector is computed via Eq. (43)
and transformed into the frequency-space domain via Eq. (38). In the
present work, the Green’s functions are computed due to (i) a unit
radial ring load at 𝑟 = 𝑅p (𝑛 = 0 and symmetric) and (ii) a unit vertical
ring load at 𝑟 = 𝑅p (𝑛 = 0 and symmetric), as shown in Fig. 6. The
explicit expressions for the latter in the framework of the TLM can be
found in Kausel (1981).

Assembling together the Green’s functions, the dynamic flexibility
matrix �̃�s is obtained in the frequency-space domain, which relates the
applied ring loads to the soil displacements as follows:
[

�̃�𝑟
�̃�𝑧

]

=

[

�̃�𝑟𝑟 �̃�𝑟𝑧

�̃�𝑧𝑟 �̃�𝑧𝑧

][

�̃�𝑟,s
�̃�𝑧,s

]

(44)

Similarly to the shell treatment in Section 2.1, in Eq. (44) the non-
linear pile–soil interaction forces will be accommodated in �̃�𝑟,s and �̃�𝑧,s
as additional loading terms. The latter treatment is facilitated by the
numerical solution method that will be presented in the ensuing.

2.3. Pile–soil compatibility conditions

The numerical method to be employed is based on the solution
of the pile–soil system at discrete depths coinciding with the vertical
mesh of pile and soil. Consider the pile at a certain embedment depth,
where nodal rings and layer interfaces corresponding to the region of
pile–soil contact are defined by the superscripts c and the remaining
rings and interfaces (out-of-contact) are defined by the superscript
nc. Therefore, vectors of quantities related to both pile and soil are
partitioned into an in-contact and an out-of-contact part, e.g. 𝐩𝑧,s =
[

(

𝐩c𝑧,s
)T (

𝐩nc𝑧,s
)T

]T
and 𝐩𝑧,p =

[

(

𝐩nc𝑧,p
)T (

𝐩c𝑧,p
)T

]T
. The latter

partitioning into in-contact and out-of-contact quantities is employed
in the following for both displacement and traction components. Ev-
idently, the pile–soil interface is comprised by the lower part of the
pile nodal rings (embedded) and the upper part of soil layer interfaces,
irrespectively of the size of the contact region.

The pile and soil motions are described by Eq. (16) and Eq. (44),
respectively, and the compatibility conditions that complete the math-
ematical formulation are:

(i) continuity of radial displacements at the pile–soil interface:

𝐰c = 𝐮c𝑟
|

|

|

𝑟=𝑅p
(45)

(ii) compatibility of vertical tractions applied at the pile–soil inter-
face and the pile tip:

𝐩c𝑧,s = −𝐩c𝑧,p, 𝑝(t)𝑧,s = −𝑝(t)𝑧,p (46)

in which the superscript (t) denotes the tip related component. It is
remarked that the load at the tip and the last entry of the load vector
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Fig. 6. Schematic of a (a) unit radial and (b) unit vertical ring source at elevation 𝑧𝑗 .
at the shaft, correspond to the same nodal ring/layer interface, albeit
they are split for computational purposes.

(iii) compatibility of radial tractions applied at pile and soil:

𝐩c𝑟,s = −𝐩c𝑟,p (47)

The above conditions require the compatibility of tractions applied
to both pile and soil along the shaft and at the tip, whereas continuity
of displacements is retained only for the radial displacements. As
regards the vertical motion, there is continuous pile sliding along the
interface during installation, thus the vertical pile and soil velocities
(and displacements) are different.

The frictional forces along the pile shaft are described according to a
hereditary Coulomb friction law. Several numerical schemes are avail-
able for frictional contact problems; in the present work the hyperbolic
tangent regularization is employed to retain computational efficiency
and accuracy (Marques et al., 2016):

𝑝(𝑖)𝑧,s = −𝑝(𝑖)𝑧,p = 𝑓 (𝑖)
s,ult𝑙

(𝑖) tanh
⎛

⎜

⎜

⎝

1
𝑣tol

⎛

⎜

⎜

⎝

𝜕𝑢(𝑖)

𝜕𝑡
−

𝜕𝑢(𝑖)𝑧
𝜕𝑡

|

|

|

|

|𝑟=𝑅p

⎞

⎟

⎟

⎠

⎞

⎟

⎟

⎠

(48)

where 𝑣tol is a velocity tolerance parameter, 𝑙(𝑖) is the length of influ-
ence derived from the FE projection and 𝑓 (𝑖)

s,ult defines the amplitude of
the static (and kinetic) friction. It is remarked that Eq. (48) includes the
friction forces resulting from both the inner and outer pile surfaces. A
distinction between the two is beyond the scope of the present model.

In the present friction model, a memory mechanism is incorporated
that leads to reduction of the friction amplitude under cyclic loading
conditions. The latter effect is known to occur due to soil degradation
and reduction of effective stresses in the immediate vicinity of the
shaft (Holeyman, 2002). Moriyasu et al. (2018) performed field tests
with different driving frequencies and found that the shaft degradation
follows closely the number of loading cycles. We proceed to formulate
such a hereditary law that incorporates that effect with the least
number of parameters as follows:

𝑓 (𝑖)
s,ult = 𝑓 (𝑖)

s,0

(

𝛽∞ + (1 − 𝛽∞)e−𝑐𝑁𝑁cycl
)

(49)

where 𝛽∞ is the ratio of the ultimately degraded friction amplitude to
the initial one (𝑓 (𝑖)

s,0), 𝑐𝑁 is a memory parameter that controls the rate
of degradation and 𝑁cycl is the number of loading cycles accumulated
at the 𝑖th soil interface during driving. Therefore, the accumulation of
loading cycles at a specific point in the soil, as the pile penetrates into
the ground, leads to reduction of the friction force at this particular
point.

The ring load at the pile tip includes a contribution of both shaft
friction as well as tip reaction, due to the adopted discretization. For
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the tip reaction, the following local description is considered:

𝑝(t)𝑧,s = −𝑝(t)𝑧,p =

⎧

⎪

⎨

⎪

⎩

𝑘t (𝑢(t) − 𝑢pl) + 𝑐t
𝜕𝑢(t)

𝜕𝑡
, |𝑘t (𝑢(t) − 𝑢pl)| < 𝑓t,ultℎp

𝑓t,ultℎpsgn
(

𝜕𝑢(t)

𝜕𝑡

)

+ 𝑐t
𝜕𝑢(t)

𝜕𝑡
, |𝑘t (𝑢(t) − 𝑢pl)| = 𝑓t,ultℎp

(50)

where 𝑢pl is the plastic tip displacement, 𝑓t,ult is the plastic tip resistance
and the distributed stiffness and damping coefficients are defined as 𝑘t
and 𝑐t , respectively. The latter are extracted from the diagonal entry of
the soil dynamic stiffness matrix �̃�s that corresponds to the pile tip; the
matrix �̃�s is obtained via inversion of �̃�s given in Eq. (44). The present
tip reaction model parallels that of a mechanical analogue comprised
of a spring-slider in parallel with a viscous dashpot. However, in the
present model the parameters 𝑘t and 𝑐t are derived from the exact
dynamic stiffness of the layered soil medium and rely solely on standard
soil properties, instead of being computed by approximate formulas and
empirical parameters.

3. A solution to the coupled problem via the Harmonic Balance
Method

In this problem, a time domain solution would be strictly pro-
hibitive for engineering purposes, due to excessive computational cost.
For that purpose, a novel solution scheme is proposed uniquely in-
spired by the physics of the installation process, based on the Har-
monic Balance Method (HBM). The latter method has been successfully
employed in various applications, such as buckling analysis of com-
posite plates (Juhász and Szekrényes, 2015), vibrations of beams on
non-linear and visco-elastic foundations (Bhattiprolu et al., 2016) and
bladed discs in turbomachinery (Quaegebeur et al., 2022). However,
its use in soil–structure interaction problems has not been realized as
yet. In vibratory pile installation, the excitation induced by the vibrator
is harmonic (or periodic), thus the HBM is appealing. However, the
overall problem is not periodic as the pile penetration into the soil
leads to an increase of the pile embedment and varying soil reaction
along the shaft and at the tip. Therefore, we pursue a solution based
on multiple sequential HB analyses for different pile positions, that
once assembled together can provide the total solution. The present
approach is structured as follows:

(i) First, we define a compatible vertical mesh for the pile (SAFE)
and soil (TLM), e.g. uniform mesh of identical size.

(ii) For each compatible position, i.e. elevations at which pile nodal
rings and soil layer interfaces coincide, a solution is sought via the



International Journal of Solids and Structures 269 (2023) 112202A. Tsetas et al.
Fig. 7. Schematic of the sequential HB approach for two pile positions 𝑖 and 𝑖 + 1, accompanied by the linear interpolation of the HB coefficients in the frequency-time plane.
HBM. This solution is valid for a time interval significantly larger than
the HB fundamental period, as the pile position and overall response
varies in a much slower rate than the driving frequency (different time
scales). Therefore, the HB coefficients for each pile position along the
mesh can be found in a sequential manner.

(iii) The HB coefficients are considered to vary linearly in the
transition from each position to the subsequent one, given that the
adjacent positions are close enough to allow for such an approximation.

(iv) The solutions from each HB analysis are assembled into the total
solution, leading effectively to amplitude modulation of the involved
harmonics and thus an overall quasi-periodic system response.

A visual representation of the process described is also shown in
Fig. 7. Two adjacent positions are denoted by states 𝑖 and 𝑖+1 and linear
interpolation of the resulting HB coefficients takes place to transition
from state 𝑖 to state 𝑖 + 1. It is noted that by DoFs we consider all the
quantities that are approximated by the HBM.

We proceed to define our solution ansatz according to the HBM. For
the pile modal coordinates the following ansatz is considered:

𝑞s0,𝑚 =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑐0,0𝑡 +
𝑁h
∑

𝑗=1

(

𝑐0,𝑗 cos(𝑗𝛺𝑡) + 𝑠0,𝑗 sin(𝑗𝛺𝑡)
)

, 𝑚 = 0

𝑐𝑚,0 +
𝑁h
∑

𝑗=1

(

𝑐𝑚,𝑗 cos(𝑗𝛺𝑡) + 𝑠𝑚,𝑗 sin(𝑗𝛺𝑡)
)

, 𝑚 > 0

(51)

where 𝐜𝑚 =
[

𝑐𝑚,0 𝑐𝑚,1 ⋯
]T and 𝐬𝑚 =

[

𝑠𝑚,1 𝑠𝑚,2 ⋯
]T denote

the vectors encapsulating the Fourier coefficients of the 𝑚th mode
related to the cosine and sine terms, respectively. As can be seen, the
ansatz that corresponds to the rigid body mode (𝑚 = 0) is periodic in
velocity, such that linear pile progression into the soil with time can be
addressed (Tsetas et al., 2022a).

To obtain the soil response, it is chosen to approximate the non-
linear reaction forces at the soil–pile interface and at the tip as Fourier
series. Furthermore, to reduce the dimensionality of the friction forces
along the pile–soil interface, a matrix decomposition of the following
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form is applied:

𝐩cs,𝑧 = 𝜳

(

𝛂0 +
𝑁h
∑

𝑗=1

(

𝛂𝑗 cos(𝑗𝛺𝑡) + 𝛃𝑗 sin(𝑗𝛺𝑡)
)

)

(52)

in which 𝛂𝑗 and 𝛃𝑗 are the vectors of the Fourier coefficients related
to the 𝑗th cosine and sine terms and the matrix 𝜳 encapsulates the
basis vectors employed to approximate the spatial distribution of the
interface forces. In particular, these basis vectors are obtained by
projection of the respective function class to the vertical FE mesh;
a multitude of functions is suitable for that purpose, e.g. Lagrange
polynomials, Fourier-based shape functions and B-splines (Gravenkamp
et al., 2021). As follows from the HBM, the tip reaction is also assumed
to be periodic:

𝑝(t)s,𝑧 = αt,0 +
𝑁h
∑

𝑗=1

(

αt,𝑗 cos(𝑗𝛺𝑡) + βt,𝑗 sin(𝑗𝛺𝑡)
)

(53)

where 𝛂t =
[

αt,0 αt,1 ⋯
]T and 𝛃t =

[

βt,1 βt,2 ⋯
]T denote

the vectors encapsulating the Fourier coefficients of the tip reaction
related to the cosine and sine terms, respectively.

In all the above equations, the involved quantities are in the space–
time domain. Based on the premise of periodic response, the inverse
Fourier transform of the soil displacements and loads from frequency
to time domain is analytically tractable and will not be elaborated.
By substituting the assumed solutions into the dynamic equilibria of
pile and soil and the compatibility conditions, it can be shown that the
following residuals are required to vanish:

𝐫c = 𝜳T
(

𝐩cs,𝑧 + 𝐩cp,𝑧
)

, 𝑟t = 𝑝(t)s,𝑧 + 𝑝(t)p,𝑧,

𝐫𝑞 =
(

𝜱s
p,0

)T
(

𝐈s0𝜱
s
p,0

d2𝐪s0
d𝑡2

+ 𝐋s
0𝜱

s
p,0𝐪

s
0 − 𝐩sp,0

) (54)

which can be arranged in the following residual vector:

𝐫 =
⎡

⎢

⎢

𝐫c
𝑟t

⎤

⎥

⎥

(55)

⎣ 𝐫𝑞 ⎦
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Following the HBM, we require that the Fourier coefficients of the
residual vector 𝐫 vanish up to the truncation limit and are obtained via
a Fourier–Galerkin projection as follows:

𝐑F = 1
𝑇 ∫

𝑇

0
𝐫𝐡 d𝑡, 𝐡 =

[

1 cos(𝛺𝑡) ⋯ cos(𝑁h𝛺𝑡) sin(𝛺𝑡) ⋯ sin(𝑁h𝛺𝑡)
]

(56)

where 𝐑F is a matrix that encapsulates the Fourier coefficients of
the residuals and 𝑇 is the period corresponding to the fundamental
frequency, i.e. the driving frequency 𝛺. It is noted that the non-linear
reaction forces in the present problem cannot be analytically expanded
in terms of the assumed Fourier coefficients, thus the Alternating
Frequency-Time (AFT) HBM is applied (Laxalde and Thouverez, 2009;
Fontanela et al., 2019). The latter is based on the evaluation of the non-
linear forcing terms in the time domain and the subsequent application
of the Discrete Fourier Transform (DFT) via the Fast Fourier Transform
(FFT) algorithm. The AFT-HBM entails an iterative process that in our
solution approach is posed as a vector optimization problem and cus-
tomarily is solved by the Newton–Raphson or similar algorithms (Krack
and Gross, 2019; Laxalde and Thouverez, 2009; Krack et al., 2013).
In our solution scheme, the Powell’s hybrid method is found to be
superior both in terms of accuracy and computational performance and
is employed in the ensuing analyses (Powell, 1970).

Briefly, the overall process can be summarized as follows:
(i) a periodic ansatz is considered for the pile modal coordinates

(Eq. (51)) and the vertical tractions (Eqs. (52) and (53)), thus the
pile and soil displacement fields can be obtained via Eqs. (17) and
(44), respectively. It is remarked that the radial soil displacements are
directly obtained via Eq. (45).

(ii) a residual is formed by the assumed tractions and the tractions
resulting from the pile–soil relative motion according to Coulomb’s
friction (Eq. (48)). Similarly, the residual of the SAFE equations of
motion in the modal domain is formed.

(iii) the Fourier coefficients of the preceding residuals are required
to vanish – implying vanishing of the residuals – according to the HBM.
The vectors of Fourier coefficients (𝐜𝑚, 𝐬𝑚, 𝛂𝑗 , 𝛃𝑗 , 𝛂t , 𝛃t) obtained from
the vector optimization problem and leading to 𝐑F = 𝟎 provide the final
solution to the problem.

Conclusively, the described procedure corresponds to the solution of
the system at a single embedment depth. For each subsequent depth, it
follows that the involved vector and matrix quantities need to updated
in accordance with Fig. 2.

4. Numerical validation of model components

The numerical components that have been introduced in this paper
are first benchmarked against established numerical schemes. In par-
ticular, the SAFE shell model, the Green’s functions obtained via the
TLM+PMLs and the sequential HB solution method are validated in the
ensuing.

4.1. Validation of the SAFE cylindrical shell model

A SAFE model for cylindrical shells has been presented in Sec-
tion 2.1. In our problem, the symmetric configuration for 𝑛 = 0 is only
used, so we proceed to validate the developed SAFE model for 𝑛 = 0.
For that purpose, the SAFE approach is compared against an FE model
developed in COMSOL Multiphysics® software (COMSOL AB, 2022). A
free–free cylindrical shell is considered, which is modelled in COMSOL
by means of MITC shell elements (Chapelle and Bathe, 2010). The pile
properties are presented in Table 1. In Fig. 8, the natural frequencies
of the first 30 modes for 𝑛 = 0 are found by the SAFE shell model and
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Fig. 8. Comparison of natural frequencies obtained from the SAFE model and the FE
(COMSOL) model for 𝑛 = 0.

Table 1
Pile parameters for the validation of the SAFE shell model.
𝜌p [kg/m3] 𝐸p [Pa] 𝜈p [-] 𝐿p [m] 𝑅p [m] ℎp [m]

7850 210⋅109 0.3 10 0.373 0.0159

Table 2
Soil parameters for the validation case of the Green’s functions.

𝜌s [kg/m3] 𝐺s [MPa] 𝜈𝑠 [-] 𝜉s [-]

Upper soil layer 2000 20 0.3 0.025
Bottom half-space 1800 23 0.499 0.025

compared with those obtained from COMSOL. Evidently, the agreement
is such that the two sets are virtually indistinguishable.

4.2. Validation of the Green’s functions via the TLM+PMLs

In the present work, the Green’s functions of a linear elastic layered
half-space are obtained via the TLM coupled with PMLs
(TLM+PMLs). For validation purposes, the TLM+PMLs results are com-
pared with those of an FE model developed in COMSOL.

The case study is based on a two-layer soil profile as described in
Table 2. Hysteretic soil damping is considered in the form of complex-
valued Lamé constants, where the damping ratio 𝜉s is taken identical
for both dilatational and distortional waves. A harmonic ring source
(vertical or radial) with frequency 𝑓 = 23 Hz is applied at 𝑧 = 4 m and
𝑟 = 0.4 m, while the Green’s functions are evaluated along the vertical
axis and at the source radius. The upper layer is unsaturated with a
thickness 𝐻EL,1 = 5 m and underlain by a water-saturated half-space.
In the TLM+PMLs, the half-space is substituted by a linear elastic layer
with thickness 𝐻EL,2 = 5 m and a PML domain with thickness 𝐻PML = 5
m. For the half-space approximation in the COMSOL model, a linear
elastic layer with large depth is used (𝐻EL,2 = 25 m) and supported
below by a horizontal low-reflecting boundary. Similarly, the radial
extent of the FE model is finite with a domain radius of 50 m and
bounded by a cylindrical low-reflecting boundary. In the TLM+PMLs,
such an approach is altogether avoided, due to analytical solutions
employed in the radial direction that satisfy the radiation condition at
infinity. In Fig. 9, the Green’s functions are compared for the cases of
radial and vertical ring loads. As can be seen, the results agreement
between the TLM+PMLs and the FE model is remarkable for both load
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Fig. 9. Comparison of Green’s functions obtained via the TLM+PMLs and the FE (COMSOL) model for (a,b) a unit vertical ring load and (c,d) a unit radial ring load.
cases, with sole discrepancy in Figs. 9(a) and 9(c) the source-receiver
concurrence which is expected due to singularity.

4.3. Validation of a linear pile–soil model via coupling of the SAFE method
and the TLM+PMLs

As a final validation of the pile and soil components, the linear
dynamic response of a pile embedded in a homogeneous half-space is
considered. Specifically, the pile properties are given in Table 1 and
the embedment length is equal to half of the pile length (𝐿emb =
0.5𝐿p). Furthermore, the soil domain is described as a linear elastic soil
half-space with properties identical to the ones of the upper layer in
Table 2. The pile–soil coupling is realized by combining the dynamic
stiffness matrices of pile and soil via substructuring (Géradin and Rixen,
2014). For the pile, the dynamic stiffness matrix is readily derived by
applying the Fourier transform to Eq. (14) (and division by 2𝜋𝑅p), and
for the soil by inverting the dynamic flexibility matrix (Eq. (44)) via
spectral decomposition. The compatibility conditions of displacements
and tractions (both vertical and radial) are invoked and the full pile–
soil system is partitioned into pile DoFs, soil DoFs and pile–soil DoFs
10
along the interface (shaft and tip). Without further details, the resulting
axial (�̃�) and radial (�̃�) pile responses are shown in Fig. 10 for a unit
vertical ring load applied at the pile top with frequency 𝑓 = 23 Hz. As
can be seen the agreement between the SAFE+TLM+PMLs approach
and the FE model is remarkable and demonstrates the capability of
the present framework to address also the problem of linear pile–
soil interaction. In the ensuing, the numerical method that facilitates
the coupling in the non-linear problem is benchmarked, namely the
sequential HBM.

4.4. Validation of the sequential HBM

In Section 3, a new solution scheme based on the HBM has been
presented for the problem at hand. To focus on the validation of the
proposed sequential HB solution scheme, we formulate a corresponding
1-D problem (Tsetas et al., 2022b). Specifically, two rods in frictional
contact are considered, where the first rod is free to slide along the sec-
ond. Modal decomposition is applied to rod 1 and rod 2 is described via
Green’s functions in the frequency domain, as in the solution approach
adopted in the pile–soil problem. The advantage of this benchmark
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Fig. 10. Comparison of (a) axial (�̃�) and (b) radial (�̃�) responses of an embedded pile obtained via the coupled SAFE+TLM+PMLs model and the FE (COMSOL) model for a unit
vertical ring load applied at the pile top.
problem is that it lends itself to direct solution in the time domain
via numerical integration. Specifically, an explicit Runge–Kutta method
(RK45) is employed (Dormand and Prince, 1980). In Appendix B the
problem of the two rods in frictional contact is outlined and more
details can be found in Tsetas et al. (2022b).

The properties of the two rods are identical to the ones given in
Table 1 and the contact region is equal to 50% of their length. A
harmonic excitation with amplitude 𝑃1 = 100 kN and frequency 𝛺1 =
157.08 rad/s is applied at the top of rod 1, along with a static force
𝑃0 = 10 kN. The contact interface is described by Coulomb friction with
amplitude 𝑓𝑐 = 8.379 kN/m, which is constant along the longitudinal
axis. In Fig. 11, the displacement at the top of rod 1 is shown. The
dashed red line corresponds to the first HB solution found at the initial
position of rod 1 and is used to indicate the initial (and maximum)
penetration rate. As rod 1 progresses and the contact length increases,
the penetration rate reduces due to the increase of the total friction
force. As can be seen, the proposed sequential HBM scheme captures
remarkably the overall penetration process.

5. Comparison of numerical and experimental results

The presented numerical model is used to study a vibratory-driven
pile from the ’Gentle Driving of Piles’ (GDP) experimental campaign
(Tsetas et al., 2023; Kementzetzidis et al., 2023). First, input data from
in-situ tests are used to characterize the relevant model parameters.
Subsequently, model predictions are compared with field data and the
effect of the driving frequency is studied theoretically.

5.1. Input data

In the GDP campaign different installation methods (impact, axial
vibratory and GDP) were tested and the pile considered herein is the
only one installed via vibro-driving (VH). An aerial view of the test
site is shown in Fig. 12. The driven pile properties are identical to
those described in Table 1 and the specifications of the vibratory device
are given in Table 3. For both pile and soil, hysteretic damping is
considered with ratios 𝜉p = 0.001 and 𝜉s = 0.025 (for both P- and S-
waves), respectively. In the installation tests, for the upper 3 m the pile
was laterally restrained to eliminate any inclination and controlled by
a crane, thus the interval from 3 m to 8 m is considered in this study.
11
Fig. 11. Comparison of displacement at top of rod 1 obtained via numerical integration
(RK-45) and the sequential AFT-HBM.

The dynamic excitation at the pile top is introduced in the model based
on strain measurements via fibre Bragg grating (FBG) sensors; the FBG
sensors were located 1.62 m from the pile top. In our solution approach
via the HBM, the dynamic excitation is considered nearly stationary,
i.e. periodic for time intervals significantly larger than the fundamental
period during which we apply the HBM. The latter has been found
to hold for both vibratory methods (VH and GDP) in the GDP field
tests (Gómez et al., 2023; Tsetas et al., 2023). Furthermore, a time–
frequency analysis of the top axial strain (𝜀𝑧𝑧,p) by means of a discrete
short-time Fourier transform (STFT) is also performed to support that
finding. As can be seen in Fig. 13, the frequency content and the associ-
ated amplitudes remain fairly constant during installation, indicating a
quasi-periodic excitation due to amplitude modulation of the involved
harmonics.

For the characterization of the soil properties, Seismic Cone Pen-
etration Tests with pore water pressure measurements (SCPTu) were
performed (see Fig. 14) and the depth of the water table was found
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Fig. 12. The test site of the GDP field campaign.
Fig. 13. Amplitude of the axial strain (|𝜀𝑧𝑧,p|) STFT for the VH pile.
Table 3
Technical specifications of the vibro-hammer CV-25.

Mass
[kg]

Eccentric moment
[kgm]

Rotational speed
[rpm]

Operational power
[kW]

4100 25 1800 204

at 4.5 m. From the SCPTu measurements, the basic soil properties
that characterize the linear elastic layered medium can be obtained.
Therefore, the Green’s functions can be directly computed, as well as
the values 𝑘t and 𝑐t that follow from the dynamic stiffness matrix.
In general, ultimate shaft resistance (friction amplitude) as well as
ultimate tip resistance have been found to correlate strongly with the
cone tip resistance 𝑞𝑐 measured during CPTs (Randolph et al., 1994;
Schneider et al., 2008). The relevant studies were focused on static
axial pile capacity and recent field tests by Moriyasu et al. (2018)
investigated such correlations also in the case of vibro-driving of pipe
piles. Based on the latter tests, an initial friction amplitude of 𝑓 (𝑖)

s,0 =
0.012𝑞𝑐 (𝑧𝑖) is adopted in our analysis. Regarding the ratio of ultimately
degraded to initial shaft resistance, a value of 𝛽∞ = 0.2 is selected
for the sandy soil considered (Jonker, 1987; Bielefeld et al., 2020). In
the latter studies the ultimately degraded value is typically reached at
approximately 10 000 loading cycles, while a range from approximately
7000 to 15 000 cycles was observed by Moriyasu et al. (2018). For
the memory mechanism of our friction model, this range of loading
12
cycles corresponds to 𝑐𝑁 values between 0.0003 and 0.0005. For the
tip reaction during vibratory driving, field observations are scarce, so
we investigate a range of 𝑓t,ult values. As will be shown in the ensuing,
this uncertainty has insignificant effect on the pile drivability. Notwith-
standing the previous, dynamic CPTs (e.g. VCPT (Al-Sammarraie et al.,
2022)) that allow to control the vibration amplitude and the driving
frequency of the cone penetrometer may be more suitable for parameter
calibration in vibratory driving.

5.2. Measurements and model predictions

In Fig. 15, the pile penetration is shown, as measured by the
potentiometer transducer (PM) and the driving logging (DL) system.
The former measurement has a high sampling rate (𝑓 = 1000 Hz) and is
considered more reliable than the latter, which is a sparse measurement
(recorded per 25 cm of penetration). As can be seen, the predictions of
the model provide fairly similar penetration trends and form an upper
and lower bound (of soil reaction), respectively. The best prediction
was found for 𝑐𝑁 = 0.0004 for the overall duration of installation (in
least squares sense). This result is promising for the predictive potential
of our model, considering the small number of non-standard parameters
that need to be calibrated and its robust theoretical formulation. In
Table 4, a summary of the parameters that characterize the shaft and
tip reactions is given. It is remarked that four out of the six parameters
can be characterized directly from (S)CPTs, while the degradation rate
(𝑐𝑁 ) and the ultimate-to-initial friction ratio (𝛽∞) are non-standard

parameters and intrinsically related to the soil material. The calibration
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Fig. 14. Profiles of (a) cone tip resistance (𝑞𝑐 ), (b) mass density (𝜌s), and (c) shear modulus (𝐺s) obtained from the SCPTu tests.
Fig. 15. Comparison of vibratory installation model predictions with field data as
recorded by a potentiometer (PM) and the vibratory device logging system (DL).

process of the full parameter set is expected to improve with the inflow
of additional field data in order to facilitate the use of the present model
in engineering practice.

For the analyses shown in Fig. 15, 𝑓t,ult = 0.5𝑞𝑐 (𝑧t ) was considered
in the tip reaction model, due to its fair comparison with the FBG-
measured reaction 0.5 m from the pile tip as shown in Fig. 16(a). We
proceed to showcase that the tip reaction uncertainty is of minor impor-
tance for the penetration process of the studied pile. In Fig. 16(b), the
penetration for different analyses is shown, where a range of 𝑓t,ult from
0.3𝑞𝑐 (𝑧t ) to 0.7𝑞𝑐 (𝑧t ) has been considered. Based on the two extrema
(𝑓t,ult = 0.3𝑞𝑐 (𝑧t ) and 𝑓t,ult = 0.7𝑞𝑐 (𝑧t )), an increase of the plastic tip
resistance 𝑓t,ult by 133.3% led to a minor increase of 12.8% in the total
installation time. Therefore, for the present pile the effect of the tip
reaction on the installation rate is secondary and the pile–soil friction at
the shaft provides the main resistance to driving. To elaborate further,
the comparison of the tip and the total shaft reactions (as line loads)
is depicted in Fig. 17(a), where the total shaft reaction comprises the
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major component. In Fig. 17(b), the total shaft and tip reactions are
given as fractions of the total soil reaction

(

𝑝(t)𝑧,s +
∑

𝑖 𝑝
(𝑖)
𝑧,s

)

, whereas the
average of the two ratios during installation are approximately 77% and
23% for the shaft and tip components, respectively. This observation
is expected to be even more prominent in the installation of offshore
monopiles given the significantly larger embedment depth. For that
purpose, field campaigns that include in their scope the identification
of the memory mechanism that leads to soil–pile friction reduction are
considered of major importance for better understanding the vibratory
installation process.

It is interesting to note the relatively small variation of the total
shaft reaction during installation in Fig. 17(a), which results from the
cyclic memory mechanism. To better visualize the latter effect, Fig. 18
presents the distribution of the friction amplitude 𝑓 (𝑖)

s,ult along depth z for
different instances during driving, i.e. every 0.5 m of pile penetration.
The gradual reduction of friction amplitude with number of cycles and
the ‘‘saturation’’ of the degradation effect in the shallow soil layers are
both clearly visible. Naturally, the proposed cyclic memory mechanism
is an effective one and at this stage it does not assume dependence on
variables that may be of importance, e.g. driving frequency, loading
cycle amplitude and surface roughness. Both experimental and numer-
ical studies are required to better understand the physical mechanisms
at hand and develop a formulation that incorporates such additional
dependencies with a view to installation modelling.

5.3. Effect of driving frequency on penetration rate

An interesting aspect of vibratory driving is the effect of the driving
frequency on the penetration rate. We proceed to analyse the penetra-
tion of the VH pile for a range of driving frequencies without altering
any other parameter (e.g. excitation amplitude). In Fig. 19, the average
penetration rates for all driving frequencies and degradation rate values
𝑐𝑁 are shown. The general trend indicates that the average penetration
rate is a monotonic function of frequency for the examined range,
i.e. from 16 Hz to 60 Hz. This observation persists for all three 𝑐𝑁
values considered and a plateau region becomes apparent above 45 Hz.
A similar trend has also been reported by Xiao and Ge (2022), based
on numerical analyses. Field experiments that will investigate the effect

of driving frequency are necessary to test the validity of the trend
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Fig. 16. (a) Comparison of tip reaction 𝑝(t)s,𝑧 from the vibratory installation model (𝑓t,ult = 0.5𝑞𝑐 (𝑧t )) with the FBG-based axial force resultant close to the pile tip. (b) Comparison
of penetration model predictions for different ultimate tip resistance 𝑓t,ult values.
Fig. 17. (a) Total shaft and tip reactions during driving and (b) ratios of total shaft and tip reactions to total soil reaction during driving.
Table 4
Summary of soil reaction parameters for the vibratory driving model.
Shaft reaction Tip reaction

𝑓 (𝑖)
s,0 [Pa] 𝛽∞ [-] 𝑐𝑁 [-] 𝑓t,ult [Pa] 𝑘t [Pa] 𝑐t [Pa⋅s]

0.012𝑞𝑐 (𝑧𝑖) 0.2 0.0004 0.5𝑞𝑐 (𝑧t ) extracted from �̃�s extracted from �̃�s
presented in Fig. 19, as well as the effect of driving frequency on the
post-installation performance.

5.4. Computational aspects of the model

Conclusively, the present model has been developed to improve the
existing medium-fidelity approaches. Therefore, some additional details
regarding its computational performance are required. For both pile
and soil a vertical mesh of size ℎ = 0.05 m was considered, while
5 trial functions (i.e. modes) were adequate to obtain an accurate
pile response. As regards the velocity tolerance 𝑣tol of the frictional
interface, all response quantities are found unaffected for 𝑣tol below
1% of the relative velocity extrema occurring during a cycle of motion.
Given the HB-based scheme, the relative velocity at the pile–soil inter-
face is known prior to the optimization process, thus the threshold is
adaptive and constantly less than 1% of the relative velocity extrema.
In the HB analyses, terms up to the 15th super-harmonic were retained
(31 terms in total) in each Fourier series. A parametric study of 54
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numerical analyses for the VH pile was performed in a computer
desktop with a 10-core 3.3 GHz processor. A parallel implementation of
the described task had a run time of 3 h, leading to a remarkable CPU
time of 3∼4 min per analysis (for 5 m of pile penetration). Therefore,
the present modelling framework can be readily employed in large
parametric and uncertainty quantification studies.

6. Conclusions

In this paper, a computationally efficient model for vibratory pile
installation has been presented, that aims to bridge the gap between
medium- and high-fidelity approaches. The pile is described by a thin
shell theory and the soil is modelled as a linear elastic layered half-
space. In particular, a SAFE model is used for the thin cylindrical
shell and the Green’s functions in the frequency-space domain are
computed for the layered soil medium via the TLM coupled with PMLs.
The pile–soil interaction is described by a history-dependent frictional
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Fig. 18. Friction amplitude distribution along soil depth 𝑧 for different penetration
depths (per 0.5 m), showcasing the memory effect on shaft friction reduction.

Fig. 19. Comparison of average penetration rates for different driving frequencies,
based on model predictions.

interface, based on loading cycles accumulation and a visco-elasto-
plastic tip reaction model, both characterized by SCPT measurements.
For the solution of the coupled problem, a sequential HBM has been
developed, that was motivated by the quasi-periodic character of the
response. The latter approach comprises a remarkably efficient scheme
for this problem and a potential candidate for a wider class of systems
with quasi-periodic response due to slow amplitude modulation of the
involved harmonics. The present modelling framework was employed
to study the case of a vibro-driven pile from the GDP field campaign.
Conclusively, the numerical results were compared with field data and
the major points are listed as follows:

– vibratory pile installation comprises a quasi-periodic process,
i.e. amplitude modulation of the involved harmonics is induced by the
continuous – yet slow compared to the excitation time scale – change
of the non-linear soil reaction.

– a memory mechanism that accounts for friction reduction at the
pile–soil interface is proposed and implemented, based on the number
of accumulated loading cycles. Comparison between model predictions
15
and field data showcases the potential of the proposed shaft reaction
model in the analysis of vibratory pile installation.

– the shaft friction is identified as the main mechanism of soil
reaction to driving in the present case, while the pile penetration is
found insensitive to variation of the plastic tip resistance. This finding is
strongly dependent on the pile dimensions and for offshore monopiles
it is expected to be even more apparent, given the large embedment
depths required.

– the average penetration rate was found to be a monotonic function
of the driving frequency, based on a numerical study conducted by
means of the presented model. Field tests that focus on the effect of
the driving frequency on both installation and post-installation perfor-
mance are necessary to define what may constitute the optimal driving
frequency.
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Appendix A. Vibrations of cylindrical shells via the SAFE method

For 𝑛 = 0, the SAFE mass and stiffness matrices 𝐈𝑙p,0 and 𝐋𝑙
p,0 for a

cylindrical shell segment 𝑙 with length 𝑑𝑙 read:
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Fig. B.20. Two rods in frictional contact.
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where 𝐷p =
𝐸pℎp
1−𝜈2p

.

ppendix B. Vibrations of two elastic rods in frictional contact

Two linear homogeneous elastic rods are considered with domains
≤ 𝑧1 ≤ 𝐿1 and 0 ≤ 𝑧2 ≤ 𝐿2, respectively (see Fig. B.20), and their

equations of motion read:

𝜌1𝐴1
𝜕2𝑢1
𝜕𝑡2

= 𝐸1𝐴1
𝜕2𝑢1
𝜕𝑧21

+ 𝑓, 𝜌2𝐴2
𝜕2𝑢2
𝜕𝑡2

= 𝐸2𝐴2
𝜕2𝑢2
𝜕𝑧22

− 𝑓 (B.1)

In Eq. (B.1), 𝐸𝑖, 𝐴𝑖, 𝜌𝑖, 𝑢𝑖(𝑧𝑖, 𝑡) denote the modulus of elasticity, the
area of the cross section, the mass density per unit length and the axial
displacements of the rods (𝑖 = 1, 2), while 𝑓 is the distributed Coulomb
friction force. Conclusively, the boundary conditions read as follows:

𝑁1(0, 𝑡) = −𝑃 (𝑡), 𝑁1(𝐿1, 𝑡) = 0, 𝑁2(0, 𝑡) = 0, 𝑢2(𝐿2, 𝑡) = 0 (B.2)

where 𝑁1(𝑧1, 𝑡) and 𝑁2(𝑧2, 𝑡) denote the axial forces of rods 1 and 2,
respectively, and 𝑃 (𝑡) is the external force at the top of rod 1. The
governing equations of the problem have been presented herein and
further details about this problem can be found in Tsetas et al. (2022b).
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