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Abstract. Microscopic traffic flow models enable predictions of traffic operations, which
allows traffic engineers to assess the efficiency and safety effects of roadway designs. Mod-
eling vehicle trajectories inside intersections is challenging because there is an infinite num-
ber of possible paths in a two-dimensional space, and drivers can simultaneously adapt
their speeds as well. To date, human driver models for simultaneous longitudinal and lat-
eral vehicle control based on the infrastructure characteristics and interactions with other
drivers inside an intersection are still lacking. The contribution of this paper is threefold.
First, it proposes an integrated microscopic traffic flow model to describe human-driven
vehicle maneuvers under interactions. Drivers plan their heading and acceleration in the
predicted future to minimize costs representing undesirable situations. The model works
with a joint optimization for an interaction cost term. The weights associated with the inter-
action cost reflect how selfish or altruistic drivers are. Second, the proposed model endoge-
nously gives the order of vehicles in case of crossing paths. Third, the paper develops a
clustered validation method for microscopic traffic flow models with interacting vehicles,
which account for interdriver variations. Results show that the model can accurately
describe vehicle passing orders of interacting maneuvers, paths, and speeds against empir-
ical data. The model can be applied to assess various intersection designs.

Open Access Statement: This work is licensed under a Creative Commons Attribution 4.0 International
License. You are free to copy, distribute, transmit and adapt this work, but youmust attribute this work
as “Transportation Science. Copyright © 2022 The Author(s). https://doi.org/10.1287/trsc.2022.1163,
used under aCreativeCommonsAttribution License: https://creativecommons.org/licenses/by/4.0/.”
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1. Introduction
Intersections are the critical nodes of the urban traffic
network, and their design has great implications for traf-
fic safety and efficiency. Microscopic traffic flow models
describing vehicular maneuvers and traffic patterns are
widely used as a tool for optimal design and perform-
ance evaluation of traffic facilities. In the inner area of
interactions, driver behavior is heavily influenced by the
interactions with conflicting vehicles. Understanding
and describing vehicle maneuvers in the inner area of
interactions taking into account vehicle interactions is a
challenging task for traffic flow modeling and deserves
dedicated attention.

A significant volume of research exists on microscopic
traffic flow modeling at intersections. They can be mainly
divided into four categories: car-following combined with
lane-changing models, cellular automata models, social

force models, and optimal control models. The following
paragraphs made a brief review of the existing studies in
the aforementioned order.

Car-following and lane-changing models are the
two fundamental driving behavior models. Car-
following models describe the longitudinal behavior
of the following vehicle under the influence of the pre-
ceding vehicle(s), and lane changing models describe
drivers’ decision to change from the current lane to an
adjacent lane (Li, Jiang, and Jia 2011, Wang et al.
2020). At intersections, existing studies mainly include
the effect of signal control and traffic management
on driving behavior. Ahn, Cassidy, and Laval (2004)
discussed the time-space trajectory of discharging
vehicles by verifying Newell (2002)’s simplified car-
following model. Sasaki and Nagatani (2003) explored
the traffic flow under three signal control scenarios:
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the simple synchronized, green wave, and random
switching strategies. Tang et al. (2008) explored the
traffic clustering, dissipating, and the propagation of
stop and start waves caused by the signal control. The
effects of the various signal control methods on the
car-following behavior at intersections were dis-
cussed, such as the green signal countdown device
(Yu and Shi 2015, Tang et al. 2017), the speed guid-
ance system (Zhao and Li 2016, Tang, Zhang, and Liu
2017), and the automation and communication tech-
nology (Hoogendoorn, van Arerm, and Hoogendoom
2014). Human factors were also considered in model-
ing to achieve a more realistic representation of driv-
ing behavior in complex traffic conditions and to
better understand the widely reported puzzling traffic
flow phenomena (Saifuzzaman and Zheng 2014).
Based on a series of car-following experiments on the
open road (Jiang et al. 2015, 2018), Jiang et al. (2018)
proposed that traffic instability is caused by the cumu-
lative effect of stochastic factors. A two-dimensional
intelligent driver model (2D-IDM) was proposed to
describe the car-following behavior correspondingly,
in which the desired time gap changes over time. It is
found that the traffic state of the following vehicle
could oscillate in the 2D region of the velocity-spacing
plane, even if the leading vehicle moves with constant
velocity. The 2D-IDM was further improved to elimi-
nate overly high deceleration by restricting the chang-
ing rate of desired time gap (Xiong, Jiang, and Tian
2019). In general, car-following and lane-changing
models have well-described vehicle behaviors on the
approach lanes of intersections. However, existing
car-following and lane-changing models are lane
based, that is, vehicles have to travel along a given
lane. Mullakkal-Babu et al. (2021) presented a method
to integrate vehicle lateral dynamics and yaw motion
into a submicroscopic traffic modeling framework so
that 2D vehicle trajectories can be generated. However,
it focused on lane-based highway driving, and tactical
lane change decisions are needed. The mechanism
behind these models is intrinsically different from the
2D driver behavior in the inner area of the intersection
absent of lanes. Because the concept of traffic lanes is
weakened in the inner area of intersections, existing
car-following and lane-changing models cannot pro-
vide a realistic description of traffic operations.

Cellular automata (CA) models are another type of
widely used model in describing the complex move-
ments of vehicles at intersections. The conflicts between
the vehicles at intersections were firstly analyzed (Rus-
kin and Wang 2002, Foulaadvand and Belbasi 2007, Li
et al. 2009). Based on these CA models, the relationship
between conflict occurrences and control strategies can
be explored (Chai and Wong 2014). Chai and Wong
(2015) proposed a fuzzy cellular automata model at

signalized intersections by combining the cellular autom-
ata and fuzzy logic, which can replicate the decision-
making processes of the driver. The CA model was also
developed for the mixed traffic flow at intersections, for
example, the interaction between vehicles and bicycles
(Zhao, Gao, and Jia 2007, Vasic and Ruskin 2012).
Recently, the driving behavior models of electric bicycles
(Tang et al. 2018) and the connected vehicles (Zhu and
Ukkusuri 2018) at the intersections were also proposed.
However, because the lattice of cells in CA models has
an equal size, the movement of vehicles is limited by the
given tracks of cells in the CA model. Therefore, the
descriptive power of the CA model is also limited in the
inner area of the intersection.

Social force-based models can describe vehicle move-
ments in the inner area of the intersection without lane
division. In the literature, the social force-basedmodel has
been applied to describe the pedestrian flow (Helbing
et al. 2005, Zeng et al. 2014), cyclist flow (Huang et al.
2016), and vehicular flow (Ma et al. 2017) at intersections
and the interaction between them in shared spaces
(Anvari et al. 2014, 2015; Yuan et al. 2017). Several types of
forces were considered to obtain realistic trajectories,
including the self-driven force, the repulsive force, the
attractive force, and other forces for specific conditions.
Thesemodels reproduce abroad set of collectivephenom-
ena successfully. For the vehicular movement, several
social force-based vehicle movement models were estab-
lished to simulate the vehicular traffic flow with the con-
sideration of no lane division (Fellendorf, Schönauer, and
Huang 2012, Huynh, Boltze, and Vu 2013, Yang et al.
2019). Aiming at describing the vehicular movement at
intersections, Ma, Sun, and Wang (2017) proposed a
three-layered “plan-decision-action” model to simulate
the moving of turning vehicles at mixed-flow intersec-
tions. The social forcemodel was further used to generate
vehiclemovements in the operation layer (Ma et al. 2017).
However, one of the shortcomings of social force-based
models is that the trajectory is obtained by the compre-
hensive result of several types of forces instead of being
obtained from the driver’s maneuvers. The interpretabil-
ity ofmodel resultsmay be argued.

The optimal control model is another feasible method
to describe vehicular movement at intersections. In the
field of autonomous vehicle control, lots of cooperative
vehicle control algorithms were established to enable
autonomous vehicles to pass the intersection coopera-
tively without traffic signals (Yu et al. 2019) The
vehicular trajectories are assumed to be along the pre-
determined traffic lanes in these models. For the 2D
modeling, Hoogendoorn and colleagues planned the
route of pedestrians (Hoogendoorn and Bovy 2004)
and vessels (Shu et al. 2015). For vehicles, Bichiou and
Rakha (2018) developed an algorithm to obtain an
optimal trajectory for the automated vehicle. The
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algorithm was further simplified to make it possible
for real-time implementations (Bichiou and Rakha 2019).
The model can well control autonomous vehicles. To
describe the maneuvers of human drivers, a 2D vehicu-
lar movement model for one vehicle movement was pro-
posed (Zhao, Knoop, and Wang 2020). The model can
handle interactions with the roadway. However, only
one vehicle movement was considered. The interactions
between vehicles are not considered with the rigorous
formulation and systematic calibration and validation.

Therefore, the purpose of this paper is to establish
the 2D traffic flowmodel to describe vehicle maneuvers
with the consideration of the interactions between
human-driven vehicles inside interactions. The diffi-
culty of modeling vehicle maneuvers in the inner area
of interactions lies in (1) getting the order of vehicles
correct, (2) getting the right path in 2D space because
there is an infinite number of possible, and (3) getting
the right speed of the drivers on that path.

The contributions of the paper are threefold. First, the
model can describe 2D vehicle maneuvers of paths and
speeds under interactions accurately. Second, the model
endogenously gives the order of vehicles in case of cross-
ing paths. Third, a “calibration-clustering-validation”
method is proposed to validate the established model.
Compared with the previous model (Zhao, Knoop, and
Wang 2020), the current model can describe the interac-
tions of vehicles with each other, whereas the previous
model can only handle interactions between the vehicle
and the roadway. Moreover, model validation is an
issue for stochastic models because neither selecting a
random set of parameters for each vehicle nor trying the
best of all trajectories with calibrated parameters are
desirable. A new three-step approach validation method
is proposed, which is a generic methodology validating
the traffic flow model with stochastic driver behavior.
The application of the model lies in the evaluation of
intersection design.

The remainder of the article is organized as follows. The
optimization model formulation and implementation are
introduced in Section 2. The properties of the proposed
model, including the descriptive power and plausibility
analysis, are explored in Section 3. Section 4 proposes a
generic methodology for validating models with interact-
ing vehicles. Then, Section 5 presents the tailored valida-
tion method for the proposed model and the validation
procedure using empirical data. Section 6 presents the
conclusions anddiscusses future research directions.

2. Optimization Model Formulation and
Implementation

This section introduces the mathematical model. The
conceptual idea of the new model is first introduced.
Then, the vehicular movement model for one vehicle
is briefly revisited. The specification of the vehicle

interactions is described in Section 2.3, which consid-
ers the interaction between human-driven vehicles at
intersections. Last, the solution of the proposed model
is introduced in Section 2.4.

2.1. Conceptual Model and Assumptions
At intersections, vehicles move from an approach lane
to an exit lane. In such continuous 2D space, an infinite
number of trajectories from origin to destination is pos-
sible. In the process of passing intersections, vehicles
have to interact with each other, such as crossing, merg-
ing, and car-following, as shown in Figure 1. Generally,
human drivers control the longitudinal and lateral
vehicle motion based on the infrastructure characteris-
tics and interactions with other drivers. The model
framework postulates human drivers are predictive
utility maximizers: that is, they predict the change in
the dynamic driving environment and control the steer-
ing angle and accelerations simultaneously to minimize
a cost function. Costs/disutilities reflect undesirable sit-
uations such as deviation from the preferred path,
desired speed, and increased risk of collision with static
and moving objects (Zhao, Knoop, andWang 2020).

In this paper, we focus on interactions with other
human drivers. We do so by adding a safety cost term
for being close to another driver, of which the magni-
tude depends on the proximity, speeds, and relative
angles. We assume that drivers are rational and able
to estimate the trajectories (a combination of location
in space and speed profile) of interacting vehicles and
minimize this safety cost while maximizing driving
efficiency and ride comfort. Conflicts are handled by
making tradeoffs between different costs.

Figure 1. (Color online) Problem Description
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Under the behavioral assumptions and the optimal
control framework, the model can capture conflicts as
crossing, merging, and car-following, as well as
describe different strategies as slowing down to yield,
making a detour to avoid the conflict, and speeding
up to make a hard cut. Different drivers can have dif-
ferent driving styles that are reflected by the weights
of the costs.

2.2. Revisit of the One Vehicle Movement Model
The 2D vehicular movement model for one vehicle
was proposed in previous work (Zhao, Knoop, and
Wang 2020). It incorporates steering and acceleration
as two separate model inputs and chooses the trav-
elled distance (s) as the main independent variable
instead of time. The advantage of choosing the trav-
elled distance as the main independent variable is that
the longitudinal and lateral controls are decoupled. A
particular steering function as a function of s leads,
independently of the acceleration function, to a partic-
ular path in space. The vehicle motion dynamics can
be described by Equation (1); κi and αi constitute the
control Ui, as shown in Equation (2). The control vari-
able κi can be seen as the control of the steering wheel,
whereas another control variable αi can be seen as the
control of the brake or throttle pedals. In this way, the
full trajectory of a vehicle from the approach lane to
the exit lane can be described as the control result of a
human driver. The lane-free approach is used because
there is no lane division inside the intersection in
most cases. If there is strict lane discipline inside the
interaction, the constraint of the allowed moving
space can be added:

d
ds

Xi(s) � d
ds

xi(s)
yi(s)
θi(s)
pi(s)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ �

cosθi(s)
sinθi(s)
κi(s)
αi(s)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,with Xi(0) � X0i

and Xi(sfi) � Xfi, (1)

where Xi(s) is the state vector of vehicle i at moving
distance s; xi(s) and yi(s) are the plane coordinate of
vehicle i at moving distance s, in meters; θi(s) is the
heading angle of vehicle i at moving distance s, in rad;
pi(s) is the pace of vehicle i (reciprocal of the speed of
vehicle i at moving distance s), in seconds per meter;
κi(s) is the curvature (reciprocal of the turning radius)
of the trajectory of vehicle i at moving distance s, in
rad per meter; αi(s) is the parameter indicating the
acceleration of vehicle i at moving distance s, in sec-
onds per meter (a positive value indicates decelerat-
ing, a negative value indicates accelerating); X0i is the
initial state of vehicle i; Xfi is the terminal state of
vehicle i; and sfi is the distance traveled from the

initial state to the terminal state of vehicle i, in meters:

Ui(s) � κi(s)
αi(s)
[ ]

, (2)

where Ui(s) is the control vector of vehicle i at moving
distance s.

The optimal full trajectory planning problem from
the initial state X0i to the terminal state Xfi can be for-
mulated as Equation (3). The initial state and terminal
state are given, which reflects the geometric character-
istics. The running cost Li reflects the different cost
aspects considered by the drivers during driving. We
model it as a sum of different elements, including the
travel time of the trajectory (travel time cost), the
vehicular lateral acceleration (turning cost), and longi-
tudinal acceleration (acceleration cost), as shown in
Equation (4):

min
Ui

C Xi,Ui( ) �min
Ui

∫ Sfi

0
Li s,Xi,Ui( )ds, (3)

where Li is the running cost of vehicle i, which reflects
the costs occurring during a trajectory:

Li �
∑
j
βjiLji � β1ipi + β2i

1
2
a2ci + β3i

1
2
a2li, (4)

where, Lji is the running cost of term j of vehicle i; βji
is the relative weight of the running cost aspect j of
vehicle i, which is the intrinsic characteristic of driv-
ers; aci is the vehicular lateral acceleration, in meters
per second2, which can be calculated by Equation (5);
and ali is the vehicular longitudinal acceleration, in
meters per second2, which can be calculated by Equa-
tion (6):

aci � κip−2i , (5)

ali � −αip−3i : (6)

For constraints, the running speed, curvature, and
acceleration should be limited according to the traffic
rule and the characteristic of a vehicle, as shown in
Equations (7)–(9), respectively:

1
vimax

≤ pi ≤ 1
vimin

, (7)

− 1
rimin

≤ κi ≤ 1
rimin

, (8)

aimin ≤ ali ≤ aimax (9)

where vimax and vimin are the speed limit of vehicle i,
in meters per second; rimin is the minimum turning
radius of vehicle i, in meters; and aimin and aimax are
the minimum and maximum acceleration of vehicle i,
in meters per second2.

2.3. Model with Vehicle Interactions
When there is more than one vehicle, human drivers
want to keep safe and avoid collisions during driving.
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However, various human drivers have various aware-
ness of safety (Hamdar, Mahmassani, and Treiber
2015, Hamdar et al. 2020). We hope the proposed
model can reflect the difference in the safety concept
among human drivers and the tradeoff between the
utilities of time, comfort, and safety during driving.
Therefore, the vehicle interaction is treated by adding
a new running cost term in the objective function of
the model instead of adding a hard constraint on
safety. In this way, the weights of the costs can be
used to reflect the interdriver variations and the prior-
ity rules, for example, aggressive drivers care more
about travel time, whereas conservative drivers care
more about safety.

The new running cost term is shown in Equation
(10). It is a function of the radial velocity and the dis-
tance, as shown in Figure 2(a). The radial velocity of
an object with respect to a given point is the rate of
change of the distance between the object and the
point. That is, the radial velocity is the component of
the object’s velocity that points in the direction of the
radius connecting the point and the object. Here, only
the positive value is used, as shown in Equation (11).
Additionally, according to the physical concept,
kinetic energy is proportional to the square of the
speed. Therefore, the square of the radial velocity is
used. Moreover, enlarging the distance between the
vehicles can increase safety. The distance has a more
significant effect when the two vehicles are close to
each other. Therefore, the negative exponential func-
tion of the distance is used. Then, the safety running
cost (L4i) increases with the increase of the radial
velocity and with the decrease of the distance between
the interacting vehicles. The combined effect is shown
in Figure 2(b):

L4i � v2ribe
−Dib , (10)

where vrib is the radial velocity of the interacting

vehicle b with respect to the target vehicle i, in meters
per second, which can be determined by Equation
(11); and Dib is the distance between two vehicles,

Dib�
��������������������������
xi − xb( )2 + yi − yb

( )2√
, in meters:

vrib �
vi cosφib + vb cosγib, vi cosφib + vb cosγib ≥ 0

0, vi cosφib + vb cosγib < 0,

{
(11)

where vi � 1=pi and vb � 1=pi are the velocities of the
target and interacting vehicles, respectively, in meters
per second; φib is the angle between the direction
from the target vehicle i to the interacting vehicle b
and direction of the target vehicle’s velocity, in rad;
and γib is the angle between the direction from the
interacting vehicle b to the target vehicle i and direc-
tion of the interacting vehicle’s velocity, in rad. The
safety cost will be active (larger than zero) when the
radial velocity is larger than zero. For the oncoming
vehicles, the radial velocity is always larger than zero
because the directions of the interacting vehicles are
opposing. For crossing and merging conflicts, the
radial velocity is larger than zero before one vehicle
passes the conflict point because the velocity compo-
nents in the direction of connecting the two interac-
tion vehicles are opposing. For other conditions such
as following vehicles and diverging conflicts, it
depends. For example, if the velocity of the following
vehicle is lower than that of the vehicle in front, there
is no risk of collision.

Therefore, the running cost of one vehicle can be
determined by Equation (12). For multiple vehicles
condition, the interacting vehicles deal with the conflict
together to pass the intersection. One way to formulate
this process is to incorporate the cost into the path
planning of both interacting vehicles simultaneously.

Figure 2. (Color online) Safety Cost Under the Combined Effect of Radial Velocity and Distance

Notes. (a) Component of the safety cost. (b) Safety cost value.
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Alternative formulations are that each driver planned
his own cost in a game-theoretical framework (Tale-
bpour, Mahmassani, and Hamdar 2015, Wang et al.
2015, Kang and Rakha 2018, Ali et al. 2019). Some mod-
els allow balancing between cooperation and selfish-
ness (Kesting, Treiber, and Helbing 2007). The model
that we propose chooses the cooperative modeling
method, which assumes that drivers will consider the
running cost of other vehicles. From the modeling per-
spective, there is an advantage to the cooperative way
of modeling. In that case, a full trajectory of a vehicle
from the approach lane to the exit lane can be planned
at one time using the cooperative objective function of
multiple vehicles. In the case of selfish game-theoretic
modeling, the trajectory of a vehicle passing the inter-
section has to be generated by repeating trajectory
planning because the running condition of conflicting
vehicles will change over time. In real life, at the inter-
section, drivers have almost complete information
about conflicting vehicles, so predicting the paths of
others is not unreasonable to assume. Moreover, driv-
ers are trained to drivers control their vehicles to avoid
collisions. For the proposed model, the cooperative
approach predicts the vehicle interactions well (see the
validation results in Section 5); hence, this approach is
followed in the paper.

The total running cost equals the sum of the run-
ning cost of each vehicle, as shown in Equation (13),
and the full trajectories of multiple vehicles can be
obtained simultaneously.

Li �
∑

βjiLji

� β1ipi + β2i
1
2
κ2
i p

−4
i + β3i

1
2
α2
i p

−6
i + β4iv

2
ribe

−Dib (12)

L � ∑
i

1
β4i

Li (13)

The reciprocal of β4i is used as the weight for Li, which
indicates the dominant level of a vehicle among the
interacting vehicles, as shown in Equation (13). The
running cost of the vehicle with a lower safety concern
(lower β4i) will have a relatively higher weight in the
cooperative running cost of the interacting vehicles.
Then, the model is inclined to keep the original trajec-
tory without the consideration of the vehicle interac-
tion. In the other extreme end, for the vehicle with
higher safety concerns (higher β4i), its running cost will
have a relatively lower weight in the total running cost
of the interacting vehicles. Then, its trajectory will be
largely affected by the conflicting vehicles. In the
absence of interactions, the value β4i has no effect, and
the planned trajectory will be the same as the result of
the one-vehicle movement model in previous work
(Zhao, Knoop, and Wang 2020) because the weights are
relative. The optimal objective function value will increase

proportionally by multiplying a coefficient to the running
cost, but the optimal solution will not change.

2.4. Solution of the Optimal Control Model
The proposed model can plan the full trajectories from
the approach lanes to the exit lanes of multiple human-
driven vehicles. The trajectories of interacting vehicles
are jointly planned. The proposed 2D trajectory plan-
ning problem is a free terminal problem because the
upper limit of integral in Equation (3), sfi, is unspeci-
fied. To handle this problem, the traveled distance is
rescaled to be ζ � s=sfi: Then, ζ ∈ [0, 1], and the rescaled
distance at the terminal equals to 1: Correspondingly,
the derivative ds should be replaced by sfidζ. sfi
becomes an additional unknown that has to be deter-
mined by the optimization. Hence, the control vector
Ui( ) and the distance traveled from the initial state to
the terminal state (sfi) of all interacting vehicles are
planed together, as shown in Equation (14):

U � UT
1 , sf1, : : : ,U

T
n , sfn

( )T
, (14)

where U is the set of control variables of all interacting
vehicles; and I � 1, 2: : :n is the set of interacting
vehicles we considered.

In summary, the 2D trajectory planning problem
can be reformulated as follows:

min
U

∑
i

∫ 1

0

1
β4i

Lisfidζ, ∀i ∈ I

( )
(15)

subject to

d
dζ

xi
yi
θi
pi

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ � sfi

cosθi
sinθi
κi
αi

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, with Xi(0) � X0i and Xi(1) � Xfi,

(16)

Li �
∑

βjiLji � β1ipi + β2i
1
2
κ2
i p

−4
i + β3i

1
2
α2
i p

−6
i + β4iv

2
ribe

−Dib ,

(17)
1

vimax
≤ pi ≤ 1

vimin
, (18)

− 1
rimin

≤ κi ≤ 1
rimin

: (19)

aimin ≤ ali ≤ aimax (20)

The optimizer then picks the appropriate traveled dis-
tance at the terminal (sfi) and the control vector Ui( ),
which contains the curvature κi and acceleration αi
in each control step, for all interacting vehicles
simultaneously.

To solve the proposed trajectory planning model
(Equations (15)–(20)), the control variables are discre-
tized with the consideration of control constraints.
Then, the state variables in each control step and the
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objective function can be derived from the initial state
in succession by numerical integration. The discrete
problem is solved as a constrained optimization prob-
lem. The numeric optimization toolbox CasADi is
used (Andersson et al. 2019) to solve the proposed
model, in which we opt for the IPOPT (interior-point
optimizer) algorithm (Wächter and Biegler 2006). The
computational time is around 150 seconds for each
interacting pair with the precision of 50 control steps
in the full trajectory on an Intel(R) Core(TM) i7 2.60-
GHz processor with 16.0 GB of RAM, which is accept-
able for this offline traffic flow model.

The states of the interacting vehicles should be at
the same timestamp when calculating the safety cost.
Because the state of a vehicle is described by using the
moving distance as the dependent variable in the pro-
posed model, the state of a conflicting vehicle should
be converted to a state with the same timestamp. The
time Δt between the two successive control steps can
be obtained from distance s and the pace p, as shown
in Equation (21). In a quite short distance, Equation
(21) turns to Equation (22) by using the Euler forward
difference. Normally, it will cause a stability issue.
However, the terminal state is given as external input
in this study. The vehicle is restricted to reach the ter-
minal state even the discretization step is large. There-
fore, the stability issue can be avoided. The Euler
backward scheme is an alternative method to enhance
stability, which is more complex as it requires itera-
tion:

Δtik �
∫ ζi(k+1)

ζik

pisfidζ, (21)

Δtik � piksfiΔζi + 1
2
αiksfiΔζ

2
i , (22)

where Δtik is the passed time between the two succes-
sive control steps k and k + 1 of vehicle i, in seconds;
and Δζi is the normalized control step length of
vehicle i.

The reaction time and other time-related factors can
be incorporated in the proposed model using the
receding horizon concept. Reaction time can be mod-
eled explicitly as delay in the state variables. One may
argue that there are other human factors: human
anticipation in space and time, which can effectively
compensate for delays and hence justify the delay-free
formulation as we did. In car-following, this has been
shown by Treiber, Kesting, and Helbing (2006). Com-
pensation delay in optimal control is very straight-
forward and leads to almost the same trajectory as
the delay-free formulation if a delay is insignificant
(Wang et al. 2018). Errors in estimation and prediction
of surrounding vehicles trajectories can also be in-
cluded. Receding horizon control is a feedback optimal
control approach that allows replanning of trajectories,

which can correct human errors in estimating and
predicting other vehicles’ trajectories in our case. How-
ever, our modeling principle is parsimonious. Incorpo-
rating more human factors will increase the model
complexity, the number of parameters, and add addi-
tional challenges in model validation and calibration.
This is a dedicated subject and can be left for future
research.

The numerical implementation leads to numerical
errors. For special cases, we can find analytical solu-
tions to verify numerical solutions. The main idea in
the analytical solution procedure is to construct the
Hamiltonian and solve it with the Pontryagin princi-
ple (Hoogendoorn et al. 2012, Wang et al. 2012, Zhao,
Knoop, and Wang 2020). We have analyzed 16 real-
life inspired cases of movement of a single vehicle to
check the effects of the numerical errors. As listed in
Table 1, they contain U-turn (Scenarios A and B), left
turns with various angles (Scenarios C to I), through
movements with/without an offset (Scenarios J to L),
and right turns with various angles (Scenarios M to
P). The results of the numerical solution and the ana-
lytical one are illustrated in Figure 3. The Euclidean
distance for the path and the absolute error of the
pace at each calculated step is calculated. Then, the
RMSE (root-mean-square error) in path (position
state) and pace under each case can be obtained, as
shown in Table 1. Overall, the differences between the
numerical solution and the analytical one are minimal:
a typical error in position in the order of millimeters
and a typical error in speed in the order of 1E-5 m/s.

3. Model Properties
The properties of the proposed model are explored in
this section according to the following two steps: (1)
analyze the descriptive power of a solution to the
model by simultaneously planning the trajectories of
several vehicles (Section 3.1); and (2) analyze the plau-
sibility of model behavior in the crossing, merging,
and car-following maneuvers (Section 3.2).

3.1. Descriptive Power Analysis
The proposed method can plan the trajectories of sev-
eral vehicles simultaneously. As an example, several
vehicles with various initial and terminal states are
listed in Table 2. The planned trajectories are illus-
trated in Figure 4, in which the color of the trajectory
indicates the running time. One can find that because
the conflict point between vehicles A and B is closer to
the initial position of vehicle A, vehicle A crosses the
conflict point first, whereas vehicle B slows down and
makes a slight detour to avoid the conflict. Similarly,
vehicles C crosses the conflict point with vehicle A
first and then passes the conflict point following vehicle
B. It shows that the proposed solution algorithm can
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plan trajectories with different numbers of vehicles. For
simplicity, we use two vehicles in the sequel of the
analysis.

3.2. Plausibility Analysis of Model Behavior
To explore the plausibility of model behavior, three
common maneuvers shown in Figure 1 are tested. We
illustrate the plausibility of the model behavior in the
crossing, merging, and car-following maneuvers.

3.2.1. Crossing Maneuver. There are two interacting
vehicles, as illustrated in Figure 5. Vehicle A drives

from x0A,y0A
( ) � (0, 0)m to (xfA,yfA) � (10,15)m: Its

initial heading angle θ0A( ) is 0 rad, initial velocity
v0A( ) is 8m=s, and terminal heading angle (θfA) is π=2
rad. Vehicle B drives from (x0B,y0B) � (5, 15)m to
(xfB,yfB) � (15,0)m. Its initial heading angle θ0B( ) is
−π=2 rad, initial velocity v0B( ) is 8m=s, and terminal
heading angle (θfB) is 0 rad. The weights of the travel
time cost β1i

( )
, turning cost β2i

( )
, and acceleration

cost β3i
( )

are set to be 1, 0:01s5=m3, and 0:01s5=m3,
respectively, for both vehicles. Because this paper
aims to analyze the behavior of vehicles under the
interaction effect, we focus on the effect of the change
of the safety cost (β4i) on the trajectories. In the tested
scenarios, the weight of the safety cost of vehicle B
(β4B) is changed in the range of 0.01 s2=m and 1.0
s2=m, whereas the safety cost of vehicle A (β4A) is con-
stant to be 0.01 s2=m. The maximum speed is set to be
15 m/s. The acceleration is limited in the range of
[−5, 5]m2=s. The minimum turning radius is 4 m.

The trajectory pairs (each pair using the same color)
under various β4B are shown in Figure 5. Overall, with
the increase in the weight of the safety cost (β4B), the
vehicles make a long detour. As a result, they do more
by changing the path and speed to avoid conflict,
which is consistent with intuition. To avoid conflict,
vehicles should make a tradeoff between changing the
path and the velocity, which is a combinational result
of different terms of the cost.

Furthermore, the order of vehicles crossing the conflict
point is an important feature for the crossing maneuver.
It depends on the initial states and the driving behaviors
of the interacting vehicles. When the driving behaviors
of the interacting vehicles are comparable, the one that
can arrive at the conflict point first crosses first. The

Figure 3. (Color online) Comparison Between Algorithm
Results and Analytical Solutions

Table 1. Numerical Errors Analysis Under the Fastest Trajectory Condition

Scenario Movement Initial state Terminal state

RMSE

Path (x, y), m Pace (p), s/m

A U-turn [0, 0, 0, 1/8] [0, 10, π] 2.230E−03 3.969E−05
B Left-turn [2, 10, 9π/10] 2.247E−03 3.385E−05
C Left-turn [4, 10, 4π/5] 2.154E−03 3.168E−05
D Left-turn [6, 10, 7π/10] 1.989E−03 3.228E−05
E Left-turn [8, 10, 3π/5] 1.764E−03 3.540E−05
F Left-turn [10, 10, π/2] 1.509E−03 4.101E−05
G Left-turn [10, 8, 3π/8] 1.358E−03 3.067E−05
H Left-turn [10, 6, π/4] 1.159E−03 2.343E−05
I Left-turn [10, 4, π/8] 1.097E−03 1.858E−05
J Through [10, 2, 0] 5.517E−04 1.808E−05
K Through [10, 0, 0] 7.347E−11 1.489E−05
L Through [10, −2, 0] 7.727E−04 1.581E−05
M Right-turn [10, −4, −π/8] 1.101E−03 1.858E−05
N Right-turn [10, −6, −π/4] 1.666E−03 2.343E−05
O Right-turn [8, −6, −3π/8] 1.043E−03 1.839E−05
P Right-turn [6, −6, −π/2] 2.233E−03 1.125E−05
Average 1.430E−03 2.544E−05
Maximum 2.247E−03 4.101E−05
Minimum 7.347E−11 1.125E−05
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order of vehicles crossing the conflict point under vari-
ous initial states of the vehicles is shown in Figure 6(a)
under the condition that β1i,β2i,β3i, and β4i are set to be
1, 0:01s5=m3,0:01s5=m3, and 0:01s2=m, respectively,
for both two vehicles. One can find that, although the
conflict point is much closer to vehicle A, the order can
be changed when vehicle B has a high initial speed.

The order of vehicles crossing the conflict point also
switches under various β4i values, as shown in Figure
6(b). The initial velocity of vehicle A v0A( ) and B v0B( )
are 2:5m=s and 8m=s, respectively. In this case, the
two vehicles arrive at the conflict point almost at the
same time if neglecting the interaction between them.
As we expected, the vehicle with the lower β4i (con-
cerning less on safety cost) crosses the conflict point
first. Therefore, the β4i can indicate the priority of the
vehicle or the aggressiveness of the driver. The lower
β4i, the more aggressive the driver is.

3.2.2. Merging Maneuver. A symmetric merging sce-
nario is used. There are two vehicles A and B. Vehicle A
drives from (x0A,y0A) � (0, 0)m to (xfA,yfA) � (10, 15)m:
Its initial heading angle θ0A( ) is 0 rad, initial velocity
v0A( ) is 8m=s, and terminal heading angle (θfA) is π=2

rad. Vehicle B drives from (x0B,y0B) � (20, 0)m to (xfB,
yfB) � (10, 15)m. Its initial heading angle θ0B( ) is π rad,
initial velocity v0B( ) is 8m=s, and terminal heading angle
(θfB) is π=2 rad. The weights of the travel time cost (β1),
turning cost (β2), and acceleration cost (β3) are set to be 1,
0.01 s5=m3, and0.01 s5=m3, respectively, for bothvehicles.
Theweights of the safety cost of two vehicles are changed
from 0.01 s2=m to 10 s2=m. The other parameters remain
the same.

The path pairs (each pair using the same color)
under various β4 are shown in Figure 7(a). The solid
lines are those with the constant weight of the safety
cost of vehicle B (β4B � 1s2=m), whereas the dotted
lines are those with the constant weight of the safety
cost of vehicle A (β4A � 1s2=m). In other words, the β4
for vehicles A and B are switched between solid lines
and dotted lines. One can find that the paths are sym-
metric when the weights of the safety cost are symmet-
ric, for example, the solid line under β4A � 0:01s2=m
and β4B � 1s2=m versus the dotted line under β4A �
1s2=m and β4B � 0:01s2=m. This symmetric phenom-
enon can be further confirmed by Figure 7(b). The veloc-
ity curves are overlapped with each other when the
weights of the safety cost are symmetric.

Table 2. Input Parameters of Vehicles for Descriptive Power Validation

Input parameters

Vehicle

A B C D

Initial position (x0, y0), m (0, 0) (5, 15) (15, 10) (10, 0)
Initial heading angle θ0, rad 0 −π=2 π π=2
Initial pace p0, s/m 1/8 1/8 1/8 1/8
Terminal position (xf, yf), m (10, 15) (15, 0) (0, 10) (0, 10)
Terminal heading angle θf, rad π=2 0 π π

Weight of cost β1 1 1 1 1
β2, s5=m3 0.01 0.01 0.01 0.01
β3, s5=m3 0.01 0.01 0.01 0.01
β3, s2=m 1 1 1 1
Maximum speed vmax, m/s 15 15 15 15
Boundary of acceleration [amin, amax], m2=s [−5, 5] [−5, 5] [−5, 5] [−5, 5]
Minimum turning radius rmin, m 4 4 4 4

Figure 4. (Color online) Trajectories with Various Number of Vehicles

(a) (b) (c)

Notes. (a) Two vehicles (A and B). (b) Three vehicles (A, B, and C). (b) Four vehicles (A, B, C, and D).
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Moreover, the order of vehicles passing the conflict
point switches under different initial states and driv-
ing behaviors of conflicting vehicles, as shown in
Figure 8. The weights of the costs are constant in
Figure 8(a), whereas the initial velocities are constant
in Figure 8(b). As expected, the order of vehicles pass-
ing the conflict point is also symmetric.

3.2.3. Car-Following Maneuver. The two vehicles A
and B are considered. Vehicle A drives from x0A,(
y0A)� (0, 0)m to (xfA,yfA) � (15, 15)m: Its initial head-
ing angle θ0A( ) is 0 rad, initial velocity v0A( ) is 8m=s,
and terminal heading angle (θfA) is π=2 rad. Vehicle B
drives from x0B,y0B

( ) � (−5, 0)m to (xfB,yfB) � (15,
15)m. Its initial heading angle θ0B( ) is 0 rad, initial
velocity v0B( ) is 8m=s, and terminal heading angle
(θfB) is π=2 rad. The weight of the safety cost of
vehicle B (β4B) is changed in the range of 0.01 s2=m
and 10 s2=m, whereas the safety cost of vehicle A (β4A)
is constant to be 0.01 s2=m. The other parameters

remain the same. The path (x, y) and the velocity (v)
are analyzed, as illustrated in Figure 9. Vehicle B
adjusts its trajectory under various safety costs. How-
ever, the change is slighter than the change for the
crossing maneuver. It can be understood because
human drivers do not adjust their paths too much
under the car-following scenario. They rely mainly on
speed adjustment to maintain safety.

4. Validation Methodology
Apart from the model formulation, validation is essen-
tial to ensure the quality of the model. Up to now, a
generic methodology to microscopically validate a
model describing interactions between vehicles is lack-
ing. Therefore, this paper develops so in this section. We
first present existing methods for validation (Section 4.1)
and then propose a generic methodology for validating
models with interacting vehicles (Section 4.2). The tail-
ored validation method for the current model and the
results are presented in Section 5.

Figure 6. Crossing Order Analysis

(a) (b)

Notes. (a) Crossing order under various initial velocity. (b) Crossing order under various safety cost.

Figure 5. (Color online) Trajectory Analysis for CrossingManeuver

(a) (b)

Notes. (a) Path. (b) Velocity.
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4.1. Existing Validation Techniques
The traditional procedure to validate a traffic flow
model contains two steps: first, the model parameters
are calibrated using the collected field data (i.e., find
the best fitting parameters), and then the quality of
the model with these parameters is tested on another
data set, which is the validation step (Treiber and
Kesting 2012, Daamen, Buisson, and Hoogendoorn
2014, Spiliopoulou et al. 2014, Treiber and Kesting
2014, Punzo and Montanino 2016, Jin et al. 2018, Mari-
otte et al. 2020). In calibration and validation, the mac-
roscopic performance indicators are commonly used
to measure the overall performance of the system,
such as the traffic flow (Xie, Nie, and Liu 2017, Tang
et al. 2020), flow rate (Jiang et al. 2017, Yuan, Knoop,
and Hoogendoorn 2017), speed (Chiu, Zhou, and
Song 2010, Tian et al. 2017), density (Ma, Dong, and
Zhang 2007, Sayegh, Connors, and Tate 2018), queue
length (Zhang et al. 2020), travel times (Hollander and

Liu 2008), and their combinations (Kim and Mahmas-
sani 2011, Ni et al. 2016, Han et al. 2017, Kontorinaki
et al. 2017, Spiliopoulou et al. 2017). One may notice
that, although calibration of the model can involve
finding individual vehicle parameters (Treiber and
Kesting 2013), in validation often aggregate variables
are used (Treiber and Kesting 2012).

In our earlier 2020 model (Zhao, Knoop, and Wang
2020), the traditional validation technique mentioned
previously is used. In this study, the proposed model
describing microscopic properties (trajectories) of
vehicles is a stochastic model, in which the parameters
representing the driving behavior are stochastic. The
calibrated parameter set can be obtained by empirical
data collection. However, the validation is an issue for
stochastic models. Selecting a random set of parame-
ters for each vehicle will hence most likely provide a
wrong set of trajectories, but this is indeed not the
goal of the model. Trying the best of all trajectories,

Figure 7. (Color online) Trajectory Analysis for MergingManeuver

(a) (b)

Notes. (a) Path. (b) Velocity.

Figure 8. Merging Order Analysis

(a) (b)

Notes. (a) Merging order under various initial velocity. (b) Merging order under various safety cost.
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which is the method used in our previous study (Zhao,
Knoop, and Wang 2020), involves a second calibration
and will overestimate the quality of the model. There-
fore, it is essential to propose a new generic validation
method for models with interacting vehicles.

4.2. Clustered Validation Method
In this paper, we propose a three-step approach to
validation that accounts for interdriver variations. The
essential step in this is to cluster drivers into various
distinct groups. The method basically entails creating
representative drivers from the calibration and test-
ing whether any of the representative drivers fit the
observed validation data set. The process contains
three steps: model calibration, parameter clustering,
and model validation, which is as follows. Please
note that this is a generic methodology for validating
models. It is suitable for models with interacting
vehicles, but also single-vehicle models.

The first step is to set the goal for the calibration.
This should be a microscopic goal, for instance, the
difference between the predicted and measured trajec-
tory, or individual speeds. Then, the model should be
calibrated for each individual vehicle or vehicle pair.
This step will yield a set of optimized parameters for
each driver/vehicle.

The second step is to cluster the parameters from
the results of the calibration to create representative
drivers. It is the key step in the proposed validation
method. Different parameter values reflect the inter-
driver variations. Although various drivers have dif-
ferent driving behavior, they can be grouped into
several styles, such as aggressive, moderate, and con-
servative (van Erp, Knoop, and Hoogendoorn 2017,
Li, Wang, and Roetting 2018, Huang et al. 2019). The
clustering techniques, such as the K-means clustering
technique, can be used applied for this.

The third step is to validate the model by checking
how well the model fits the observed validation data
set using the parameters of one of these representative
drivers. In this way, we can identify how well the
model works when considering a limited number of
driving styles instead of considering the driving be-
havior of each driver as an independent case. In an
example of a case with five classes, the trajectory is
simulated five times, and the best is chosen. The
rationale is that the observed driver can be of any
class, and we do not know which. However, once put
into the class, the result should be accurate. If the
model describes interacting vehicles, the number of
possible cases increase. For instance, the model we
have at hand describes the actions between two inter-
acting vehicles. That means that we should have both
drivers into the correct class, which means (in the case
of five classes) trying out all 5 × 5 classes for combina-
tions of types of drivers. Then, the best of these combi-
nations is chosen. Again, the rationale is that we aim
to check whether the predicted movement is correct
once we know the class a driver belongs to.

This is a generic methodology for validating models
with stochastic behavior. However, the limitations lie
in that it is a data-dependent method. First, enough
data should be collected for the calibration to ensure
the parameters from the results of the calibration can
reflect the overall distribution of driver behavior. Sec-
ond, representative drivers should be rightly created
in the clustering step to establish a good foundation
for the validation. The K-means clustering technique
we used has some known drawbacks, such as the
determination of K and not performing well if the ini-
tial centroids of the groups are significantly different
from the actual ones. It should be carefully checked in
actual clustering. The elbow method and the visual
check of the sample distribution can be used to relieve
these issues (Thorndike 1953, Aldenderfer and Blashfield

Figure 9. (Color online) Trajectory Analysis for Car-FollowingManeuver

(a) (b)

Notes. (a) Path. (b) Velocity.
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1984). Although we propose using a K-means clustering
technique in the study, alternative clustering techniques
would also be suitable.

5. Model Performance on Real-World
Data

The proposed model is validated using empirical data
in this section. Section 5.1 first presents the tailored
validation method for the proposed model. Then, the
validation process is presented in this order: Section
5.2, empirical data; Section 5.3, parameter calibration;
Section 5.4, the clustering; and Section 5.5, the valida-
tion results.

5.1. Validation and Calibration: Choices and
Implementation

This section will explain how the validation method is
applied to the model formulated in Section 4. The
model has four parameters per vehicle/driver, which
we will denote as bi � β1i,β2i,β3i,β4i

{ }
. Because the

cost can, in principle, be scaled up or down with an
arbitrary factor, we can use this to reduce the degrees
of freedom in the parameter calibration. In our
approach, we choose to let β4i a degree of freedom be
calibrated. This allows fixing β1i. Alternatively, we
could have fixed β4i to one (i.e., it disappears) and let
β1i to β3i vary. We choose to make β4i a variable to
explicitly show that drivers might have a different
attitude toward each other, and give all drivers a fixed
β1i in line with our previous paper. For validation and
calibration, the most accurate parameter calibration
for multivehicle combination is to set only one para-
meter as one. Then, there are seven parameters to
be calibrated for the combination of an interacting
vehicle pair. However, it is meaningless to obtain the
parameter combination of interacting vehicles because
any vehicles with different driving behaviors may be
combined in practice. It is more meaningful to cali-
brate the driving behavior parameters of each vehicle,
which is conducive to the application of the model.
Therefore, β1i is set to one. The actual number of
parameters to be calibrated for each vehicle is three.
Hence, for each pair of interacting vehicles, we have
six parameters to calibrate: B � bA,bB{ } � β2A,β3A,

{
β4A,β2B,β3B,β4B}. Note that B indicates the combina-
tion of parameters of both drivers. The number of
parameters, six, is a reasonable number for which an
optimum can be found. Along the same line as the
method proposed in Section 4.2, the specific validation
method for the current model is shown as follows.

First, parameters in the proposed model (bi) are
calibrated via an optimization program. The decision
variables of the optimization model for calibration are
the weights of costs of the two interacting vehicles
(B � bA,bB{ }). The objective of the optimization model

for calibration is to minimize RMSE of the Euclidean
distance between the planned trajectory and the real
trajectory at all time steps, as shown in Equation (23).
The Euclidean distance at each time step is the trajec-
tory error between the planned trajectory and the real
trajectory, as shown in Equation (24). The trajectory
error is spatiotemporal. It includes the error in space
and the error in speed because we compare the posi-
tions at the same timestamp pairwise:

B∗ � arg min
B

RMSEd( ) � arg min
B

���������∑n
t�1d2t
n

√
, (23)

where d denotes the Euclidean distance between the
planned trajectory and the real trajectory, in meters;
RMSEd denotes the root-mean-square error of d, in
meters; dt denotes the Euclidean distance between the
planned trajectory and the real trajectory at timestamp
t, in meters; and n is the total number of timestamps:

dt �
���������������������������
xpt − xrt
( )2 + ypt − yrt

( )2√
, (24)

where xpt ,y
p
t

( )
is the coordinates of the planned trajec-

tory at timestamp t; and xrt ,y
r
t

( )
is the coordinates of

the real trajectory at timestamp t.
Second, the calibrated bi for individual drivers are

clustered into a discrete number of clusters. The
K-means clustering algorithm is used (Han, Pei, and
Kamber 2011). The estimation error (RMSE) of each
vehicle pair can be calculated using the clustered bi.
Please note there is a tradeoff between number of
clusters and performance. Increasing the number of
clusters (K) will decrease the estimation error but
increase the computational cost in the following vali-
dation step. To find the optimal K, the change ten-
dency (curve) of the mean RMSE of these vehicle pairs
against K can be explored. The optimal K can be
selected by searching for a kink in the curve.

Third, the planned trajectories using the clustered
bi are compared with the observed ones. Similar to
calibration, we also use the RMSE of the Euclidean
distance between the planned trajectory and the real
trajectory as the comparison metrics. We can find the
optimal combination with the lowest RMSE and check
whether it fits well. Also, we will consider whether
the model will correctly describe the order of crossing
for the crossing vehicles.

5.2. Empirical Data
The data used in this section are collected at six intersec-
tions in Shanghai, China, by the unmanned aerial
vehicle, as shown in Figure 10. The real vehicular trajec-
tory can be obtained by extracting the position of each
vehicle at each frame using a specially developed video
recognition software. The geometric centre of the vehicle
is collected to compute the distances/velocities/angles
because all the videos are photographed from above.
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The time resolution is 1/24 seconds. The average meas-
urement error associated with the extraction process is
0.2 m.

The interacting vehicle pairs were selected for the
hereafter analysis, for example, the through vehicle
and the opposing left-turn vehicle pairs under the per-
mitted left-turn phase. The data selection criterion are
that the direct interaction vehicle pairs, that is, the two
vehicles passing the conflict area successively, are
selected to avoid the confusion of the choice of the
interacting vehicles. The surveyed data were divided

into two nonoverlapping sets. Thirty vehicle pairs col-
lected from three intersections are used for model cali-
bration (calibration data set), whereas 30 vehicle pairs
collected from another three intersections are used for
model validation (validation data set).

5.3. Calibration Results
For model calibration, 30 vehicle pairs are calibrated,
including crossing, merging, and car-following maneu-
vers. The results of model calibration show that the
mean, maximum, and minimum RMSE of trajectory

Figure 10. (Color online) Surveyed Intersections

Notes. Intersections in the calibration data set: (a) Zhangyang Road-Gushan Road and (b) Gaokezhong Road-ZhangDong Road. Intersections in
the validation data set: (c) Yushan Road-Nanyangjing Road, (d) Yangtai Road-Zhentai Road, (e) Zuchongzhi Road-Gaosi Road, and (f) Youyi
Road-Tieli Road.
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are 1.049, 2.235, and 0.206 meters, respectively. It indi-
cates the distance between the planned trajectory and
the real trajectory at each timestamp is approximately 1
meter.

Moreover, the running orders of interacting vehicle
pairs are also checked. They are all correctly estimated in
all the crossing andmerging cases. Therefore, the interac-
tion between manual driving vehicles at intersections
can be well represented by the proposed model. With
the consideration of the computational time and to pre-
vent the algorithm from falling into local minima with
unreasonable values (Kim and Mahmassani 2011), the
boundary of bi is set to be [0:001, 1] based on calibration
results from our previous work (Zhao, Knoop, and
Wang 2020). The distributions of the parameter values
are shown in Figure 11. The parameters β2, β3, and β4
obey the exponential distribution (R2�0.876), exponen-
tial distribution (R2�0.935), and uniform distribution
(R2�0.964), respectively. The Pearson correlation test is
conducted to test the correlations between the three
parameters. The results are shown in Table 3. The corre-
lations of β2-β3 and β2-β4 are significant. It indicates that
drivers concerned more about vehicular lateral accelera-
tion are likely to be more concerned about longitudinal
acceleration and traffic safety.

5.4. Clustering Results
For the parameter clustering, the calibrated bi is clus-
tered into several classes. The K-means cluster analy-
sis tool in SPSS is used. The maximum iterations
number is set to be 20. The convergence criterion is set
to be zero. We enumerate the cluster numbers from 2
to 10. The change tendency of the mean RMSE of tra-
jectory as a function of the number of clusters (K) is

shown in Figure 12. One can find that the curve flat-
tens after the number of clusters, K, equals five.
According to the elbow method, the calibrated bi is
clustered into five classes, which can be regarded as
five representative driver types. The standard param-
eter values for the vehicles per cluster are shown in
Table 4. The cumulative probability curves of the
parameters for the vehicles in each cluster are com-
pared, as illustrated in Figure 13.

Let us consider the classification of the drivers in
each of the classes, and the behavioral interpretation
thereof. Figure 13 shows the distribution of parameter
values for each of the classes. The parameters obey
the uniform distribution (R2 ∈ [0:807,0:974], average
R2 � 0:908) within the same cluster. The drivers in
cluster 1 have low values of β2, low values of β3, but
high values of β4: They care much more about safety
than turning and acceleration costs. The drivers in
cluster 2 have a high β2, high β3, and medium β4:
They care more about turning and acceleration com-
fort. The drivers in cluster 3 have a medium β2, high
β3, and high β4: They care more about safety and
acceleration comfort comparing to turning comfort.
The drivers in cluster 4 have a high β2, low β3, and
low β4: Opposite to cluster 3, they care more about
turning comfort than safety and acceleration comfort.

Figure 11. Cumulative Probability Curve of Parameters of the Calibrated Vehicles

Table 3. Correlation Test

Test statistics β2-β3 β2-β4 β3-β4

Correlation coefficient 0.384a −0.320b −0.186
Significance 0.002 0.013 0.154
aCorrelation is significant at the 0.01 level (two-tailed).
bCorrelation is significant at the 0.05 level (two-tailed).

Figure 12. Mean RMSE vs. Number of Clusters
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The drivers in cluster 5 have a low β2, medium β3,
and low β4: They mainly care about travel time.

Whether the cluster that a vehicle belongs to is the
most suitable one is further checked. In the clustering
method mentioned previously, the two vehicles in a
vehicle pair have been assigned to a cluster, after
which the values of the cluster have been determined.
It could be identified whether this is indeed the best
combination or there is a better one if we try all 25
possible combinations. For 49 of the 60 vehicles (82%),
there is no better cluster available.

We also check by much of the goodness of fit
reduces due to the clustering. This information is use-
ful when assessing the quality of the validation later.
First, by clustering, the mean RMSE goes up from
1.049 to 1.735 meters, increasing by 0.686 meters. This
can be reduced by freely choosing a cluster; in RMSE,
it reduces by 1.735 to 1.585 meters by selecting the
optimal cluster. The comparison of the performance
(RMSE) of the calibration, clustered calibration, and
best cluster are shown in Figure 14 (the first, second,
and third bar, respectively). The figure splits the
results for the various situations (crossing, merging,
and car-following); they are similar. As expected, the
performance of the planned trajectories is better if
the values are fully free to be optimized. However,
the performance loss by putting them into a cluster is
limited, and the results are still very good for trajec-
tory planning.

5.5. Validation Results
According to the five driver types created in Section
5.4, we can validate the proposed model using these
representative drivers’ parameters. Thirty vehicle
pairs are used for model validation. The results of the
model validation show a mean RMSE of 1.453 meters,
using vehicle classes from the cluster (Table 4). As
illustrated in Figure 14, the mean RMSE of the valida-
tion data set (the fourth bar) is comparable to the
result of the calibration data set (the third bar). Also, a
visual inspection of the trajectories (Figure 15) shows
that trajectories in validation are almost as close as in
calibration, and both are close to the real-world tra-
jectory. It indicates the proposed model can describe
the trajectories of interacting vehicles with the mean

Table 4. Results of Parameter Clustering

Clusters

Cluster center

Proportionβ2, s
5=m3 β3, s

5=m3 β4, s
2=m

1 0.085 0.093 0.790 35.00%
2 0.869 0.824 0.309 16.67%
3 0.437 0.751 0.689 11.67%
4 0.906 0.134 0.229 15.00%
5 0.103 0.294 0.094 21.66%

Figure 13. (Color online) Cumulative Probability Curves of Parameters for Various Clusters

Figure 14. Comparison of RMSE of Calibration and Valida-
tion Data Sets
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trajectory error of 1.5 meters using the parameters of
the five representative driver types.

We believe errors in the order of 1.5 meters is
acceptable. The reasons are threefold. (1) The pro-
posed model is a traffic flow model instead of a short
time trajectory prediction model. The full trajectories
of the interacting vehicles passing through the inter-
section are described by only giving the initial and ter-
minal states. Considering drivers can choose among
an infinite number of alternative travelling paths and
speeds and the complex interacting effects between
vehicles, the speed change will lead to a meter off
easily at a specific time (about five seconds to pass an
intersection). Because the positions at the same time
are compared, a one-second delay at the same path
will yield a 10-meter error under the speed of 10 m/s;

1.5 meters off is hence good. (2) Only four parameters
and five representative driver types are used for each
vehicle. It ensures that the proposed model is not too
complex for the traffic flow analysis. (3) The running
orders of interacting vehicle pairs are all correctly
given in all the crossing and merging cases. It is
important for the traffic flow analysis of conflicting
vehicles. This means that overall, the proposed model
performs very well in describing vehicle movements
in the inner area of an intersection.

We also tried the modeling method that the vehicle
only considers its own cost (i.e., noncooperative be-
havior). The objective function turns (Equation (15)) to
be minU

(∫ 1

0
Lisfidζ

)
. Other formulations remain the

same. The full trajectories of conflicting vehicles
can be generated by repeating trajectory planning

Figure 15. (Color online) Examples of the Trajectories of the Vehicle Pairs
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alternately considering the changing state of conflict-
ing vehicles. The mean RMSE of the noncooperative
model reaches 2.1 meters using the same 30 vehicle
pairs, which is 40% higher than that of the proposed
cooperative model. This implies that drivers account
for the cost of other drivers as well, and the weights
associated with the interaction cost reflect how selfish
or considerate drivers are.

To use the model in assessing a road design, the
clustering method is not needed per se. First, numer-
ous real vehicular trajectories can be collected to find
the distribution of the parameters bi( ): Then, the
model can be run where vehicles are generated based
on the distributions of the parameters. Because this
process is stochastic, the model should be run many
times, each time with another parameter set bi for
each of the vehicles.

5.6. Macroscopic Analysis Extension
Although the main function of the proposed model is
to describe the microscopic trajectories of vehicles, the
macroscopic traffic performance can be evaluated
through simulation. Because the full trajectories of
conflicting vehicles can be obtained according to the
proposed model, we can get the travel times and
delays of vehicles. Here, we perform a sensitivity
analysis to explore the relationship between delay and
traffic flow for the left turn and through conflict. The
drivers’ parameters of vehicles are randomly assigned
using the five driver types and their proportion cre-
ated in Section 5.4. The desired speeds of the left turn

and through vehicles are set to be 20 and 30 km/h,
respectively.

We first test the traffic flow scenario at the six sur-
veyed intersections. The arrival times of vehicles are
set to be the same as the empirical data. The delay of
the left turn and through movement are calculated
and compared with the empirical data, as shown in
Table 5. Only the delay caused by the conflicting
vehicles is included. One can find that the model
results are in accord with the measured ones. The
absolute error for each left turn and through conflict
pair is no more than 4 s/vehicle. The result of the
paired-samples t test shows that there is no significant
difference between the calculated and the measured
results (significance � 0.649 > 0.05).

Then, we performed a sensitivity analysis to explore
the relationship between delay and traffic flow for the
left turn and through conflict with various traffic vol-
ume and left-turn proportion conditions. Vehicle arrival
adopts Poisson distribution. The total traffic volume
changes from 100 to 2,000 vehicles/h, whereas the pro-
portion of left-turn traffic volume changes from 10% to
50%. Figure 16 shows the results. In general, the growth
rate of the vehicular delay increases with the increase
of the volume and the left-turn (LT) proportion. When
the volume is low (under 500 vehicles/h), the increase
of the vehicular delay is flat, and the vehicular delay is
not more than 5 s/vehicles. It is because the conflict of
the left turn and through movement rarely happened
and can almost be ignored. The vehicular delay reaches
30 s/vehicle when the volume reaches 1,450, 1,150, and

Table 5. Comparison of Vehicular Delay

Intersection Conflicting pair
Traffic volume
(vehicles/h)

Left-turn
proportion

Measured delay
(s/vehicle)

Model predicted
delay (s/vehicle)

Absolute error
(s/vehicle)

Zhangyang Road-
Gushan Road

SBLT-NBTH 176 44.83% 3.09 1.83 1.26
NBLT-SBTH 103 31.03% 4.00 1.39 2.61

Gaokezhong Road-
ZhangDong
Road

WBLT-EBTH 407 34.43% 2.01 2.92 0.91
EBLT-WBTH 760 23.68% 7.61 5.73 1.88

Yushan Road-
Nanyangjing
Road

SBLT-NBTH 187 36.36% 3.43 1.76 1.67
NBLT-SBTH 263 19.35% 2.81 1.75 1.06
EBLT-WBTH 391 15.22% 0.86 2.10 1.24
WBLT-EBTH 340 20.00% 2.30 2.05 0.26

Yangtai Road-
Zhentai Road

EBLT-WBTH 243 3.45% 0.47 1.41 0.95
WBLT-EBTH 243 48.28% 2.59 2.25 0.33
NBLT-SBTH 503 43.33% 1.06 4.25 3.19
SBLT-NBTH 461 45.45% 1.71 3.90 2.19

Zuchongzhi Road-
Gaosi Road

NBLT-SBTH 250 65.38% 0.62 2.65 2.03
SBLT-NBTH 337 22.86% 0.33 2.12 1.79

Youyi Road-Tieli
Road

NBLT-SBTH 141 12.50% 0.53 1.32 0.79
SBLT-NBTH 188 87.50% 3.41 2.52 0.90

Average 1.44
Maximum 3.19
Minimum 0.26

Notes. SB, NB, EB, and WB indicate southbound, northbound, eastbound, and westbound, respectively. LT and TH indicate left turn and
throughmovement, respectively.
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1,050 under the LT proportion of 10%, 30%, and 50%,
respectively.

6. Discussion and Conclusions
This study proposes a 2D traffic flow model to
describe vehicle maneuvers of human-driven vehicles
inside intersections. The travel time cost, turning cost,
acceleration cost, and safety cost are considered in the
proposed model. The activity of a driver is a tradeoff
between the utilities of time, comfort, and safety. The
model performs well in describing the observed
vehicle trajectories in reality. Besides the accurate tra-
jectories, it also predicts the order of crossing vehicles
correctly. With the model, the traffic flow at intersec-
tions can be simulated more realistically, which is
important for the geometric design, signal control,
and traffic management at intersections.

The model prescribes costs for vehicles being close
to each other. The model gives a good result (mean
trajectory error is 1.5 meters) if the trajectories of inter-
acting vehicles are jointly planned, that is, if one
driver accounts for the cost of the other vehicle during
its trajectory planning.

The model has a set of parameters for each driver/
vehicle combination. The paper presents a generic
“calibration-clustering-validation” methodological for
validating models with interacting vehicles. Its basis
is to create classes of vehicles/drivers with the same
behavior. The method can be used to classify behavior
and is essential for the microscopic validation of mod-
els with stochastic behavior.

Regarding further research, the current paper iden-
tified five different vehicle/driver classes. It remains
interesting to see whether similar groups of behavior
can be identified in other driver models in future
research. That can even be the case with a completely
different model and different mathematical descrip-
tion, but the driver types might be similar. Moreover,

to reflect the uncertainties of drivers’ decisions, ran-
dom parameters can be added when setting the cost
weight parameters. Then, the probability distribution
of the vehicle trajectories can be obtained through
multiple trajectory planning. Another direction for
future research is to represent/simulate the opera-
tional condition of the entire inner area of the intersec-
tion, in which the criteria of choice of interacting
vehicles should be one of the critical factors.
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Wächter A, Biegler LT (2006) On the implementation of an interior-
point filter line-search algorithm for large-scale nonlinear pro-
gramming. Math. Programming 106(1):25–57.

Wang M, Hoogendoorn SP, Daamen W, Hoogendoorn R, van Arem
B (2012) Driver support and cooperative systems control de-
sign: Framework and preliminary results. Proc. Amer. Control
Conf. (IEEE, New York), 5751–5756.

Wang M, Hoogendoorn SP, Daamen W, van Arem B, Happee R
(2015) Game theoretic approach for predictive lane-changing
and car-following control. Transporation Res., Part C Emerging
Tech. 58:73–92.

Wang M, Hoogendoorn S, Daamen W, van Arem B, Shyrokau B,
Happee R (2018) Delay-compensating strategy to enhance str-
ing stability of adaptive cruise controlled vehicles. Transport-
metrica B Transport Dynamics 6:211–229.

Wang Y, Li X, Tian J, Jiang R (2020) Stability analysis of stochastic
linear car-following models. Transportation Sci. 54(1):274–297.

Xie J, Nie YM, Liu X (2017) Testing the proportionality condition
with taxi trajectory data. Transportation Res. Part B: Methodologi-
cal 104:583–601.

Xiong B, Jiang R, Tian J (2019) Improving two-dimensional intelli-
gent driver models to overcome overly high deceleration in
car-following. Phys. A 534:122313.

Yang D, Zhou X, Su G, Liu S (2019) Model and simulation of the
heterogeneous traffic flow of the urban signalized intersection
with an island work zone. IEEE Trans. Intelligent Transportation
Systems 20(5):1719–1727.

Yu C, Sun W, Liu HX, Yang X (2019) Managing connected and
automated vehicles at isolated intersections: From reservation-
to optimization-based methods. Transportation Res. Part B: Meth-
odological 122:416–435.

Yu S, Shi Z (2015) Analysis of car-following behaviors considering
the green signal countdown device. Nonlinear Dynamics 82(1-2):
731–740.

Yuan K, Knoop VL, Hoogendoorn SP (2017) A microscopic
investigation into the capacity drop: Impacts of longitudi-
nal behavior on the queue discharge rate. Transportation Sci.
51(3):852–862.
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