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Summary

Nearly-simultaneous-source (blended) acquisition differs from conventional acqui-
sition in that seismic wavefields originating from different sources are allowed to
overlap in the recorded seismic traces. This allows more flexibility in deciding the
number of shots, the shot density and the effective acquisition time of a survey, but
it adds the complication of having to handle blended wavefields.

This thesis explores an inversion-based deblending method for wavefield separa-
tion in the marine setting. As deblending is usually an underdetermined problem,
extra information in the form of additional constraints and regularization is needed
to obtain a unique solution with minimal blending-noise leakage. To this end, the
proposed method uses the focal transform in combination with sparsity-promoting
regularization to discriminate against solutions to the blending equation that are
valid, but contain excessive amounts of blending noise. The focusing operation pro-
vided by the focal transform will tend to focus the coherent signal to be extracted
but will not focus equally well incoherent blending noise. Sparse solutions will tend
to retain the high-amplitude focused events but not the lower-amplitude blending
noise. A key feature that makes sparse solutions possible is the ability to describe
curved events in a subsurface-consistent manner, using few focal domain coefficients.

The focal transform can be defined in multiple ways, using one-way or two-way
wavefield propagation operators. In the implementations described in this thesis,
I use a crude velocity model, based on picked normal-moveout (NMO) stacking
velocities, to construct focal operators that can focus surface data onto a set of
depth levels where significant reflectors are found. This choice of velocity model
is suboptimal for focusing purposes, but is a pragmatic compromise, given that a
more detailed velocity model may not be available at the deblending phase of the
processing workflow.

In principle the focusing and defocusing operations involve the entire dataset,
which makes the focal transform computationally expensive to evaluate. An inves-
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tigated remedy is to use acquisition-specific subsets of the input data to split the
problem in smaller chunks, combined with a suitable flavor of the focal transform
and focal grid. Another method extension that I discuss is that of using a focal-
curvelet hybrid transform for deblending. The main advantage is that events with
linear moveout tend to be more sparsely represented in a curvelet basis. However,
this comes at the cost of extra computational effort and some difficulty in balancing
the contribution of the two transforms to the final solution.

I test these approaches on both synthetic and field data, with examples on towed
streamer and ocean-bottom-node acquisitions. While in most cases a perceptible
amount of blending-noise leakage remains present in the results, a significant amount
of blending noise is suppressed. In some cases the deblending process is able to
uncover weak events previously masked by strong blending noise. When the hybrid
transform is used, the results show a better recovery of events that are filtered out
when the focal transform is used alone. Curved near offset events are in some cases
also recovered with higher fidelity compared to using the curvelet transform alone.

A significant challenge is the sometimes limited focusing for field data and syn-
thetics as a result of trying to approximate the kinematics of complex 3D velocity
models with flat-layered models and stacking velocities. The computational cost
of the method is also a challenge. While working with data and focal domain
subsets helps, additional measures are needed before applying focal deblending on
realistically-sized field data. I make several suggestions for modifications of the
method and propose extensions for future research.



Samenvatting

Seismische acquisitie met bijna-simultane bronnen (of ‘blended acquisition’) verschilt
van conventionele acquisitie in die zin dat seismische golfvelden afkomstig van ver-
schillende bronnen elkaar mogen overlappen in de opgenomen seismische metingen.
Dit biedt meer flexibiliteit bij het bepalen van het aantal opnamen, de opnamedicht-
heid en de effectieve acquisitietijd van een seismische campagne, maar het voegt de
complicatie toe van het omgaan met overlappende (‘blended’) golfvelden.

Deze dissertatie onderzoekt een op inversie gebaseerde ‘deblending’-methode voor
golfveldscheiding in seismische data opgenomen op zee. Aangezien deblending ge-
woonlijk een ondergedetermineerd probleem is, is extra informatie in de vorm van
additionele beperkingen en regularisatie nodig om een unieke oplossing te verkrijgen
met een minimaal verlies van informatie. Daartoe gebruikt de voorgestelde methode
de focale transformatie in combinatie met een spaarzaamheidsbevorderende regu-
larisatie om oplossingen van de datavergelijking die geldig zijn, maar een te grote
hoeveelheid mengruis bevatten, te discrimineren. De door de focale transformatie
verschafte focussering zal ertoe leiden dat het te extraheren coherente signaal wordt
gelokaliseerd, hetgeen niet geldt voor de incoherente mengruis. Spaarzame oplos-
singen zullen de gefocuste metingen met een hoge amplitude behouden, maar niet
de mengruis met een lagere amplitude. Een belangrijk kenmerk dat spaarzame op-
lossingen mogelijk maakt, is de mogelijkheid om seismische aankomsten met sterke
kromming te beschrijven op een ondergrond-consistente manier, met gebruikmaking
van weinig coëfficiënten van het focale domein.

De focale transformatie kan op verschillende manieren worden gedefinieerd, met
gebruikmaking van een- of tweerichtings- golfveldvoortplantingsoperatoren. In de
in dit proefschrift beschreven implementaties gebruiken we een ruw snelheidsmodel,
gebaseerd op gekozen zogenaamde ‘normal-moveout’ (NMO) snelheden, om focale
operatoren te construeren die oppervlaktegegevens kunnen focussen op een reeks
dieptes waar significante reflectoren worden verwacht. Deze keuze van het snelheids-
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model is suboptimaal voor focusseringsdoeleinden, maar is een pragmatisch compro-
mis, aangezien een meer gedetailleerd snelheidsmodel mogelijk niet beschikbaar is in
de deblendingfase van het seismische verwerkingsproces.

In principe hebben de focus- en defocusoperaties betrekking op de gehele data-
set, waardoor de evaluatie van de focale transformatie computationeel duur wordt.
Een onderzochte remedie is het gebruik van acquisitiespecifieke subsets van de in-
put data om het probleem in kleinere brokken op te splitsen, gecombineerd met een
geschikte variatie van de focale transformatie en het gekozen focale raster. Een an-
dere methode-uitbreiding die besproken wordt is het gebruik van een focale-curvelet
hybride transformatie voor deblending. Het belangrijkste voordeel is dat seismische
reflecties met lineaire tijd-afstand aankomsten doorgaans spaarzamer worden weer-
gegeven in een curveletbasis. Dit gaat echter ten koste van extra rekenwerk en enige
moeite om de bijdrage van de twee transformaties aan de uiteindelijke oplossing in
evenwicht te brengen.

Deze benaderingen worden op zowel synthetische als veldmetingen getest, met
voorbeelden van opnamen via gesleepte streamers en via oceaanbodem-sensors. Hoe-
wel in de meeste gevallen een merkbare hoeveelheid mengruis in de resultaten aan-
wezig blijft, wordt een aanzienlijke hoeveelheid mengruis onderdrukt. In sommige
gevallen kan het deblendingproces zwakke seismische reflecties reconstrueren die in
de ruwe data door sterke mengruis werden gemaskeerd. Wanneer de hybride trans-
formatie wordt gebruikt, laten de resultaten een beter herstel zien van seismische
reflecties die worden weg gefilterd wanneer de focale transformatie alleen wordt ge-
bruikt. Gekromde seismische reflecties bij de kleine bron-ontvanger afstanden wor-
den in sommige gevallen hersteld door de hybride transformatie met een hogere
nauwkeurigheid dan wanneer alleen de curvelet-transformatie wordt gebruikt.

Een belangrijke uitdaging is de soms beperkte focus voor gesimuleerde en veldme-
tingen als gevolg van pogingen om de kinematica van complexe 3D-snelheidsmodellen
te benaderen met vlakke gelaagde modellen en NMO-snelheden. Ook de rekenkosten
van de methode vormen een uitdaging. Hoewel het werken met slimme subsets van
de data en van focale domeinen helpt, zullen aanvullende maatregelen nodig zijn al-
vorens focale deblending toe te passen op veldmetingen van realistische omvang. Ik
doe verschillende suggesties voor wijzigingen van de methode en stel uitbreidingen
voor toekomstig onderzoek voor.
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Introduction

1.1 The seismic experiment

A number of human activities present to us the challenging problem of measuring
material properties of the subsurface. They sometimes take the form of prospecting,
e.g. for mining sites, hydrocarbon reservoirs, suitable sites for geothermal energy
extraction and near-surface investigation for construction purposes, for example for
windfarm installations. In other cases the objective is to monitor an ongoing pro-
cess, such as changes in hydrocarbon reservoirs, absorption of carbon dioxide in
underground-sequestration efforts and hydrogen storage. What these applications
have in common is that they require information about the subsurface over an area.
Although it may be technically feasible to drill and recover samples for direct in-
spection, drilling can be very expensive and is generally used very sparingly. It
provides us with high quality information, yet that information is very localized at
the drilling location. On its own, drilling is often not capable of giving us the big
picture.

Fortunately, we can infer lots of information about the subsurface indirectly. For
example, gravimetry [Toushmalani and Saibi, 2015] and gravitational gradiometry
[Pawlowski, 1998] measurements can be used to extract information about variations
in the Earth’s density, by measuring the Earth’s gravitational field or variations in
gravitational acceleration, respectively. Controlled-source electromagnetic (CSEM)
and transient electromagnetic (TEM) methods can be used to infer an electric resis-
tivity model of the subsurface [Anderson et al., 2008]. Seismic methods are popular
when it comes to hydrocarbon prospecting but are also used for other applications
such as assessing the shallow subsurface for geotechnical projects and monitoring
carbon capture. Seismic methods rely on elastic wave propagation to recover in-
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formation such as compressional/shear wave velocities and the location of reflecting
layer boundaries [Telford et al., 1990]. Note that, generally, the quantities we would
like to know (e.g. coordinates of water-oil contacts) are not usually the ones we ac-
tually measure (e.g. pressure and particle velocities): the former have to be inferred
from the latter, using a mathematical model that describes their relationship. Of-
ten this is done in multiple stages, using a chain of models and intermediate model
parameters. Therefore, the quality of our inferred measurements will depend on the
quality of each one of the mathematical models in the chain, in addition to the qual-
ity of what we directly measure. This is a price we have to pay for the convenience
of measuring by proxy.

For the rest of this thesis we will turn our attention to reflection seismology using
active sources, one of the multiple ways of using mechanical waves for subsurface
exploration. To conduct a reflection seismology survey over an area of interest,
two types of devices are needed, at the very least: a seismic source for producing
mechanical waves and a seismic receiver1 for detecting them. In active surveys the
source is human-controlled, in contrast to passive sources, where we rely on natural
seismic activity to act as a source.

Sources will typically be vibrating plates coupled to the ground, for land acquisition,
or airguns, for marine acquisition. The receivers usually take the form of geophones
or hydrophones. Geophones measure one or more vector components of particle
velocity2. Geophones will be used for land acquisition and for some types of marine
acquisition. Hydrophones measure pressure and are used in marine acquisition. An
overview of different types of sources and receivers can be found in Telford et al.
[1990, chapter 4.5].

The basic idea behind reflection seismology, as the name suggests, is to exploit the
natural phenomenon of wave reflection. A seismic source is used to generate a me-
chanical wave that propagates towards the interior of the Earth. At the boundaries,
where parts of the subsurface with different acoustic impedance meet, part of the
propagating wavefield will reflect and part of it will refract into the next layer. Even-
tually, after a series of refraction and reflection steps, a portion of the wavefield will
travel toward the surface, where it will be recorded by the receivers. The process is
repeated after moving the sources and/or receivers to different locations [Telford et
al., 1990]. A schematic depiction of the process can be seen in figure 1.1.

The recorded seismic data can provide us with a host of information about the sub-
surface. For example, seismic migration can be used to map the wavefield recorded
at the surface to a set of reflectors in the subsurface. These reflectors will be located
at the boundaries of structures with different material properties. Using migration,
we can therefore extract structural knowledge about the interior of the earth. Seis-
mic migration has been studied extensively and is still a very active topic of research.

1The term ‘detector’ is often used in literature instead of ‘receiver’.
2There exist geophones based on MEMS technology that measure particle acceleration instead

of particle velocity [Wei, 2013].



1.2 Conventional vs blended acquisition 3

Figure 1.1: Schematic depiction of a seismic experiment in reflection seismology in a marine
environment. Red stars and black triangles represent sources and receivers, respectively.
Only primary reflections are depicted in this example.

As a result, there exist many methods for migrating seismic data, ranging from the
very simple to the very sophisticated. The reader may refer to Bednar [2005]; Biondi
[2006]; Robein [2010] for more information on seismic migration methods. Note that
an important prerequisite step for migration is the estimation of the wave propa-
gation velocities of the various subsurface layers, using methods like full waveform
inversion (FWI) [Gauthier et al., 1986; Virieux and Operto, 2009], migration velocity
analysis (MVA) [Stork and Clayton, 1991], or tomography [Farra and Madariaga,
1988; Zhang and Toksöz, 1998; Billette and Lambaré, 1998]

The journey rarely ends at reflectivity and velocity, which are wave-related prop-
erties. In the context of hydrocarbon exploration and production, carbon dioxide
injection and geothermal exploration what we are usually interested in is rock-related
properties, such as porosity and fluid saturation. There exist several models that
map rock properties to wave-related properties [Mavko et al., 2009], making it pos-
sible to get petrophysical information out of seismic data. The presence of hydro-
carbons in an area can be then assessed, as well as good candidate drilling locations.
Seismic surveys have also applications in already producing fields, were they are used
to monitor changes at the reservoir level [Lumley, 2001].

1.2 Conventional vs blended acquisition

When a seismic acquisition is taking place, a series of shots is fired in succession,
generating wavefields that get recorded by the receivers. The receivers may start
recording whenever a source is activated, or they may be recording continuously,
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depending on the acquisition type. An important decision made at the planning
phase is at which time instant each of the shots should be fired. Or, equivalently,
how much time one must wait between each two successive shots, a quantity I will
refer to as shot time interval. The answer will usually depend on other parameters
of the acquisition. For example, in a marine streamer survey the shot time interval
will be determined by the boat speed, the airgun recharge time and the desired shot
density. For land acquisitions that use a vibratory source, the sweep time will place
a lower bound on the shot time interval, etc.

Whenever a shot is fired, a propagating wavefield is generated at the shot location.
In conventional acquisition, the shot time interval is chosen to be large enough, such
that when recording the wavefield from one shot, there will be at most minimal
crosstalk (i.e. below noise level) from the wavefields generated by the preceding
and following shots, for the duration of the shot record. Essentially, the objective
is to record the wavefield due to each shot separately from those due to the other
shots. A seismic acquisition adhering to this non-interference condition is called an
unblended acquisition. An acquisition where this condition is violated, i.e. where
the receivers record a superposition of wavefields generated by different shots, is
referred to as blended acquisition [Berkhout, 2008], also known as simultaneous, or
near-simultaneous, acquisition [Beasley, 2008; Howe et al., 2008]. Its purpose is to
increase the efficiency of acquisition without sacrificing too much accuracy in the
final processing results [Abma and Foster, 2020].

Planning a blended acquisition requires making a few decisions regarding the sources.
More specifically, the location, activation time, and signature of the source must be
decided for each shot. The combination of these parameters defines the blending
code used for the acquisition. Knowledge of the blending code is almost always a
prerequisite for further processing blended data. This is especially true when the
overlapping wavefields are to be explicitly separated before further processing, a
process usually referred to as deblending, or source separation [Abma and Foster,
2020]. I will return to the important subjects of the blending code and deblending
in chapter 2.

Figure 1.2 shows a small example of data from an unblended and a blended acqui-
sition. This is an example using synthetic data, generated using a 2D slice from
a modified version of the SEG/EAGE overthrust velocity model [Fred Aminzadeh,
1997]. In both kinds of acquisition the objective is to record the wavefield generated
by a shot at x = 4 km and a second shot at x = 6 km, for a duration of approximately
2 s. The wavefield is recorded at the surface of the model, by receivers forming a
total aperture of 3 km. Figure 1.2a displays the unblended data. Each column of
pixels denotes a seismic trace recorded by a receiver in time, the pixel intensity corre-
sponding to a pressure measurement. Because a sufficiently large shot time interval
was used, it is possible to separately record the wavefield created by each of the
sources. The situation changes, however, in figure 1.2b. Here the shot time interval
was 0.3 s, which is not enough for recording the two wavefields independently. This
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a)

b)
D

el
ay

Figure 1.2: a) Two unblended shot gathers recorded using conventional acquisition; b) The
same shot gathers as one blended gather.
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makes the data blended, and the acquisition a blended acquisition.

A snapshot of the total wavefield inside the medium at t = 1.0 s can be seen in figure
1.3. Here the wavefield is frozen in time, its values in space shown superimposed on
the velocity model. Figure 1.3a shows the wavefield as it is when only one source is
activated, as is the case in conventional acquisition. In figure 1.3b a second source
is activated shortly after the first, leading to a superposition of two wavefields. Note
that in actual acquisition, unlike the synthetic case shown here, we do not have
access to the pressure values everywhere in the subsurface, but only on a limited
number of locations where receivers are placed. Another complication that is to be
found in real data but is absent from the example in figure 1.3 is the presence of
surface-related multiples. In realistic processing scenarios these cannot be removed
prior to deblending.

a)

b)

Figure 1.3: Total wavefield at t = 1 s when using a) conventional and b) blended acquisition.

Because crosstalk is kept to a minimum, unblended acquisition will yield data that
present fewer risks, such as crosstalk noise masking important weak events. For this
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Figure 1.4: Number of shots vs acquisition time for conventional and blended acquisition.
Any point within the orange-colored area represents a blended acquisition with a different
tradeoff between acquisition time and number of shots.

reason it is still the norm. It has, however, an important drawback: the relationship
between the number of shots and acquisition time is inflexible. There is a maximum
number of shots that can be fired in a given amount of time, determined by the shot
time interval. It is not possible to exceed this number, because that would necessarily
introduce crosstalk. Avoiding crosstalk often comes at the price of reduced shot
density. Beasley [2008] gives an example of a complex marine acquisition scenario,
where multiple vessels are used. To avoid crosstalk, only one vessel can fire its source
at any time, while the others wait. This implies a coarser shot spatial interval, which
leads to aliasing problems that need to be treated in processing, or to a longer survey
duration due to lower vessel speed, which makes the survey more expensive.

By allowing crosstalk, blended acquisition allows for a more decoupled relationship
between number of shots and total acquisition time. Figure 1.4 demonstrates this re-
lationship. The slanted line represents conventional unblended acquisition, its slope
determined by the shot time interval. The orange area contains the combinations of
acquisition time and number of shots that become possible in a blended acquisition.

Blended acquisition offers several advantages over conventional acquisition:

• More flexibility in deciding the number of shots, the shot density and the
effective acquisition time of a survey [Abma and Foster, 2020]. Multiple ac-
quisition geometries can benefit from this. Using a synthetic example, Gulati
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et al. [2011] show that blending is a viable option for getting vertical seismic
profile (VSP) data faster. Beasley et al. [2012] test a blended variant of the
narrow azimuth (NAZ) geometry, with positive initial results. Moldoveanu et
al. [2012] demonstrate the viability of blended multivessel coil shooting, using
synthetics. Higher efficiency is also reported in Walker et al. [2013] for the
ocean bottom seismic (OBS) geometry. Long et al. [2013] propose the simul-
taneous long offset (SLO) acquisition, a blended form of the continuous long
offset (CLO) geometry that decreases the spatial interval between two shot
locations [van Mastrigt et al., 2002].

• Reduced cost per trace, due to the reduction in acquisition time for the same
number of traces. Note that although reduced acquisition time may lead to
savings in certain areas such as labor cost and fuel consumption, it is not
always a given that the total cost of the acquisition is reduced significantly,
see e.g. Krupovnickas et al. [2012].

• Increased signal-to-background-noise ratio [Moore et al., 2013; Berkhout and
Blacquière, 2013]: This happens because the amount of background noise
recorded depends only on the effective survey time and not on the blending
process. If the number of shots is kept constant, a blended survey takes less
time than an unblended one, so the amount of background noise is reduced. If
the acquisition time is kept constant, a blended survey will record more shots.
Then, the amount of background noise would be the same for both conven-
tional and blended surveys, but the blended one will contain more signal. This
makes blended acquisition beneficial for areas with high background noise.

• Better illumination of the subsurface [Berkhout et al., 2010; Abma and Foster,
2020], owing to denser sampling in the source dimension and/or wider aper-
ture. This leads to a more complete angle coverage of subsurface grid points
[Blacquière et al., 2012].

• Easier survey scheduling and compliance with environmental regulations. Sche-
duling a lengthy survey can be difficult in crowded areas, where exploration
efforts are very active. Another example is exploration in the Arctic region,
where the long winters and short summers may place additional constraints
on survey scheduling. Reduced acquisition time means that a suitable time
window for conducting the survey is more likely to be found.

The popularity of blended acquisition for field surveys differs for the land and marine
cases. Its adoption for land surveys happened much earlier than it did for the
marine case. There are two main reasons for this, that have to do with seismic
source technology and the ease of adding more sources in the acquisition. Vibratory
sources, such as those used for land acquisition, are much more flexible in the kind
of source signatures they can generate, something that can be used to the advantage
of blended acquisition [Howe et al., 2008]. Impulsive sources, on the other hand,



1.3 Deblending in the literature 9

are much more limited in this aspect [Beasley et al., 2012]. Also, extra sources are
cheaper and easier to accommodate in a land survey than in a marine one. Despite
this fact, the advantages of blended acquisition have prompted a number of marine
field trials [Abma et al., 2012; Zhang et al., 2013a; Makhorin et al., 2013; Henin et
al., 2015; Walker et al., 2017; Crosby et al., 2022].

Perhaps the ultimate test for blended acquisition is whether the acquired data are
suitable for reservoir characterization and monitoring applications. Reservoir charac-
terization requires that amplitudes preserve amplitude-vs-offset/angle (AVO/AVA)
effects. Also, the very weak reflection events originating from the reservoir level
must be as noise-free as possible. There have been some encouraging results on that
front. An AVO analysis on blended OBC data from Trinidad showed good agreement
with predictions based on well data [Paramo et al., 2013]. Li et al. [2019] compared
processing results from a conventional and a blended marine survey carried out over
the same area. After deblending, Li et al. [2019] show that the AVO responses from
the blended survey are nearly identical to those from the conventional one.

For reservoir monitoring/timelapse acquisition, amplitude fidelity is even more im-
portant, as we are interested in recovering changes at the reservoir level that might
have a very minute imprint on the recorded seismics. Naturally, one would be very
sceptical about using a blended survey for such applications, for fear of excessive con-
tamination of the signal with blending noise. Interestingly, initial feasibility studies
on reservoir characterization show positive results. In Krupovnickas et al. [2012], the
authors mention positive results for shallower horizons, but extracting a 4D signal
from deeper horizons was challenging with their processing setup. Shipilova et al.
[2016] also report positive timelapse results from blended data.

At the time of writing, both blended and conventional seismic acquisition is gener-
ally done using multiple identical broadband sources. Owing to advances in seismic
source technology, it is possible that in the future broadband sources will be replaced
by multiple narrowband sources, each one optimized for a different part of the spec-
trum. This concept, referred to as dispersed source arrays (DSA), can be combined
with blended acquisition. The result is a new form of blending [Berkhout, 2012],
where the blending code is extended to specify individual frequency bands. The
combination of DSA and blended acquisition paves the way for automated, decen-
tralized acquisition [Berkhout, 2013]. DSA field trials and associated data processing
are discussed in Tsingas et al. [2016, 2020]; Jeong et al. [2022].

1.3 Deblending in the literature

The advantages of blended acquisition come at the cost of additional noise, in the
form of crosstalk, that must be dealt with in the seismic data processing chain. I
will refer to this crosstalk as blending noise, to differentiate it from other sources
of noise present in the seismic signal. There are, generally speaking, three distinct
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approaches in how blending noise can be handled. The first approach is to deblend
the data, i.e. to separate the overlapping wavefields such that each constituent
wavefield is associated with one particular source. The second approach is to simply
disregard the presence of blending noise and use the blended data as direct input
for other types of processing, e.g. for migration. The third approach is applicable
to inversion-based processing in which the seismic data is present in the misfit term
of the objective function. An example is full waveform inversion. In such cases it is
possible to incorporate blending within the objective function and use the blended
data directly as input.

In many cases, especially for marine blended data, the blending code on its own
cannot provide sufficient suppression of blending noise. In those cases, deblending
may need to be applied as an extra processing step. Many deblending algorithms
have been proposed in literature for this purpose, and they can be generally divided
in two categories. Algorithms of the first category rely on denoising tools to remove
blending noise. Algorithms of the second category pose deblending as a constrained
inversion problem. Methods from each of these two categories are increasingly in-
corporating deep learning techniques to achieve better wavefield separation.

1.3.1 Blending codes

The blending code itself can be turned into a very effective tool for preprocessing
blended data. Much research has been devoted to studying the performance of
existing source coding schemes, as well as to developing new ones. The main goal of
a blending code is to define groups of shots fired (near) simultaneously, and assign a
code to each of the sources in the group that is as orthogonal as possible to the codes
of the other sources in the group. Then, the wavefield associated with each source is
partially distinguished from the rest of the wavefields, by using the fact that it was
coded differently. This can already provide a first level of separation. As a concept,
it has similarities with a code division multiple access (CDMA) scheme, as used in
cellular telecommunications, where concurrent transmissions by different users are
also separated by means of orthogonal codes [Rao and Dianat, 2005, Chapter 3].

As mentioned earlier, vibratory sources are more flexible when it comes to the gen-
erated wavelet, i.e. the waveform they generate. Consequently, coding schemes
tailored to them have been studied for a longer time than schemes for impulsive
sources. Codes proposed in the literature use techniques such as complementary se-
ries with sweep polarity switching [Silverman, 1979; Garotta, 1983; Pritchett, 1991],
sweeps with different phase offsets [Landrum, 1987; Sallas et al., 1998], modified
Gold codes [Sallas et al., 2008; Dean, 2012] and m-sequences [Wong, 2013; Wong
and Langton, 2014, 2015]. Although these approaches are used in land acquisition,
there is an ongoing effort to produce better vibratory sources for the marine envi-
ronment [Pramik et al., 2015; Schostak and Jenkerson, 2015; Dellinger et al., 2016].
This means that these, or variations of these techniques may become practical for
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marine surveys in the future.

Although blending codes for impulsive sources have not been researched as intensely
as those for vibratory sources, this is changing, as marine blended acquisitions be-
come more popular. A first type of code exploited the spatial distance between
the shots, to facilitate separation via dip discrimination [Beasley, 2008]. Another
approach assigns time delays to different sources. These time delays are most often
(but not always) random [De Kok and Gillespie, 2002]. An advantage of random
time delays is that blending noise has then an impulsive and incoherent character
and can be treated with denoising tools. A special form of random time delay is
to add jittering to regular shot times [Moore et al., 2008], which can be combined
with spatial jittering of the shot location [Wason and Herrmann, 2013]. In an effort
to make codes for impulsive sources more orthogonal, more shots can be fired per
location [Mueller et al., 2015; Wu et al., 2015; Mueller et al., 2016].

Time delays can also be deterministic; Poole et al. [2014] describe a firing pattern
that uses two sources that fire one after the other, with a constant time interval
between their respective activation. The order in which the sources fire alternates
after each shot. The authors propose a deblending algorithm that takes advantage
of this firing pattern. Robertsson et al. [2016a,b] propose a different pattern, named
‘seismic apparition’, that employs constant time delays. There, the second source
alternates every shot between firing simultaneously with the first source, or after a
constant time interval. Using this blending code, perfect separation is possible in
the frequency-wavenumber (FK) domain, up to a certain frequency determined by
the shot spacing. Zu et al. [2016b] investigate periodically varying delays and show
an example where they lead to a better deblending result than random time delays.

1.3.2 Denoising methods

A crucial function of the blending code is to make blending noise incoherent. This
is usually done by sorting in a domain other than common shot, e.g. common
receiver, common offset or common midpoint. Since the signal, in general, will be
coherent, the blending code can help us differentiate between signal and noise, as
long as we have a way to filter out the incoherent part (figure 1.5). After sorting,
the blending noise will have an impulsive character in space, under the effect of the
blending code. It is possible then to do deblending by leveraging traditional tools
used for impulsive noise removal, such as median filters. Median filters are non-linear
filters that are robust against data outliers. Careful application of median filtering
can suppress impulsive blending noise, which often behaves as an outlier within a
small data window, by having significantly different amplitude than the neighboring
samples [Liu et al., 2009; Huo et al., 2012; Zhang et al., 2013b; Chen, 2014; Liu et
al., 2014; Gan et al., 2015; Zhan et al., 2015]. [Baardman and van Borselen, 2012;
Chen et al., 2015] apply a median filter after normal moveout (NMO) correction. By
removing curvature from seismic events, NMO correction can protect parts of the
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Figure 1.5: Example of a common receiver gather of pseudo-deblended data from an OBN
dataset. The signal to be extracted is coherent (green arrow), appearing as events that have
continuity. Due to the blending code, blending noise (red arrow) is not coherent and is
sometimes treated using methods designed to remove high-amplitude outlier samples from
seismic traces.

signal that may erroneously be removed as noise by the median filter. Chen et al.
[2015]; Peng et al. [2013] use an additional FK filter as a coherency pass filter, for
further noise suppression. [Yu et al., 2017] combine NMO correction with filtering in
the wavelet domain for blending noise suppression. Spitz et al. [2008] use prediction
error filters to remove blending noise, drawing inspiration from methods used for
removing seismic events related to multiple scattering. Andersson et al. [2016] pair a
seismic apparition blending code with a dealiasing algorithm to deblend. [Sun et al.,
2020, 2022] trained convolutional neural networks (CNN) to map data contaminated
with blending noise to clean, denoised data.

1.3.3 Inversion-based methods

A different approach to deblending is to pose it as an inversion problem. Deblending
then becomes a problem of finding a dataset that, when blended with the same
code as the one used in the field, the result matches the recorded blended data.
The inversion problem is ill-posed: there exist an infinite number of solutions that
will match the recorded blended data after applying the blending code to them.
The inversion must be constrained, such that the recovered solutions have minimal
blending noise leakage as well as minimal signal harm.
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Wapenaar et al. [2012] propose a separation method that involves calculating a mod-
ified, band-limited pseudo-inverse of the blending operator. This is possible when
the source dimension is sampled densely enough and the group of sources partici-
pating in the blended experiment are spatially close. The most common approach is
to base the separation on some form of coherency-based noise suppression during it-
erative inversion. For this purpose, Ayeni et al. [2009] use non-stationary dip filters.
Doulgeris et al. [2010]; Mahdad et al. [2011]; Doulgeris et al. [2012b] use a flexible
combination of thresholding and FK coherency pass filters to progressively estimate
and remove blending noise. Zu et al. [2017] use plane wave destruction filtering
[Fomel, 2002] in a combination with least-squares inversion to achieve separation.
Leader and Biondi [2014] extend the imaging condition of reverse time migration
(RTM) and use RTM as a deblending tool. Beasley et al. [2016]; Moore et al. [2016,
2017] suggest replacing the inner product operation with a robust version that dis-
criminates against outliers such as impulsive blending noise, guiding the inversion
process to a more favorable solution.

The deblended solution is expected to represent a sampled seismic wavefield and
must, therefore, have the structure of one. This is extra information that can be
used to constrain the solution, as long as there is a way to mathematically describe
this structure. Perhaps the most intuitive way to do so is to express the deblended
solution as a linear combination of simpler structures, such as plane waves, that act
as building blocks. Borrowing terms from compressive sensing, we will refer to these
building blocks as atoms, that collectively form a dictionary. Ideally, the dictionary
should be selected such that most of the signal is expressed as a linear combination
of few atoms, i.e. such that the deblended solution has a sparse representation in
that dictionary. By placing sparsity constraints or using sparsity-promoting regu-
larization in the optimization, a solution with minimal noise leakage is potentially
reached, under the assumption that a solution containing noise is less sparse than a
noise-free one.

Perhaps the most crucial choice that needs to be made for such a sparsity-based
method is that of the dictionary. Usually the dictionary is chosen to be the basis
or frame of a mathematical transform, with all the attractive properties that this
entails, such as computationally fast implementations and quick convergence rates.
Transforms used for sparsity-based deblending include Fourier [Sen et al., 2014;
Abma et al., 2015], seislets [Chen et al., 2014; Chen, 2015; Gan et al., 2015], curvelets
[Zu et al., 2016a], the Radon family [Akerberg et al., 2008; Ayeni et al., 2011; Trad
et al., 2012; Ibrahim and Sacchi, 2013, 2015] and multifrequency array steering [Ji
et al., 2012]. Transform combinations are also possible; Peng and Meng [2016] use
both a linear Radon and a wavelet transform in their deblending process. Instead on
basing their dictionary on mathematical transforms, Zhou et al. [2013] use dictionary
learning to extract it from seismic data.

Another way to attack the ill-posed nature of the deblending problem is to assume
that the deblended solution will be low-rank, i.e. few singular values will have
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significant magnitude when calculating a singular value decomposition. This can be
viewed as an alternative form of sparsity that operates on singular values. This form
of sparsity provides us an extra avenue for constraining the deblending problem. An
attractive feature of rank reduction methods is that they do not require choosing
a dictionary. They do, however, require sorting the elements of the solution into
a matrix (or higher-order array) that exhibits the low-rank property. A popular
choice is to form a Hankel matrix out of monochromatic frequency slices of data in
the frequency-space domain [Maraschini et al., 2012; Cheng and Sacchi, 2013, 2015;
Chen et al., 2016]. Another approach is to sort the data based on midpoint/half offset
coordinates and construct a hierarchically semi-separable matrix from frequency
slices [Wason et al., 2014; Kumar et al., 2015]. Properly resorted time domain slices
are also an option, as demonstrated by Kumar et al. [2016]. Since calculating large
singular value decompositions is expensive, computationally cheaper alternatives are
sometimes preferred. For this reason, Cheng and Sacchi [2016] replace singular value
decompositions with randomized QR decompositions.

Iterative, inversion-based deblending is sometimes combined with deep learning so-
lutions. Zu et al. [2020] use an iterative inversion similar to that of Mahdad et al.
[2011], but with deblended data estimates generated by a combination of convolu-
tional and deconvolutional neural network layers. Wang et al. [2022a] use iterative
inversion and a multi-resolution U-Net to take advantage of the multiscale nature of
seismic data. Neural networks can take the form of deep preconditioners that can
be used to steer the deblending inversion [Xu et al., 2022]. A typical requirement
of neural network-based methods is the availability of training data. For deblend-
ing in particular, this means that either unblended or adequately deblended data
must be available for training. Luiken et al. [2022] propose a method that obviates
this requirement by combining the alternating method of multipliers (ADMM) with
a self-supervised denoiser. Wang et al. [2022b] repurpose the blind-spot training
technique, initially devised for image denoising, to perform deblending within an
iterative inversion scheme.

1.3.4 Using blended data directly

Instead of deblending the data as an explicit process, one can choose the alternative
route of using the blended data as an input to processing algorithms3 [Berkhout,
2008; Hampson et al., 2008; Verschuur and Berkhout, 2009; Berkhout et al., 2009].
When it comes to migration, the extra flexibility in the acquisition comes at a price
of extra noise in the migration result. Jiang and Abma [2010]; Schuster et al. [2010]
investigated the amount of crosstalk noise added to the image due to blending. [da
Silva et al., 2012] studied the effect of applying different imaging conditions. A
number of schemes are able to mitigate this type of noise. Tang and Biondi [2009]
apply an ℓ2-norm regularization on the inversion process. Dai et al. [2011] use a

3Pseudo-deblending will be usually required as a first step in the workflow in this case.
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deblurring filter as a preconditioner in least-squares migration. Ferner and Sacchi
[2014]; Castellanos et al. [2016] use M-estimators and a robust version of the imaging
condition respectively, leveraging ideas from robust statistics. Li and Zhao [2015];
Li et al. [2016]; Chen et al. [2017] demonstrate the application of rank reduction
techniques for crosstalk mitigation in RTM.

A technique sometimes employed for speeding up the migration of pre-stack un-
blended data is to numerically blend it beforehand and carry out the migration using
the blended result. From the point of view of the migration algorithm, whether the
data is blended in the acquisition phase or numerically on the computer does not
make a difference. There are, however, some practical differences with respect to
the blending code used in each case, as well as the behavior of random noise present
in the records. When blending is done numerically, there are very few restrictions
regarding the blending code to be used, which means that one can use highly orthog-
onal codes. For more information on the kinds of codes that are possible, the reader
can refer to Godwin and Sava [2010, 2011]; Hu et al. [2011]; Schmidt et al. [2013];
Schleicher et al. [2013]. As we saw earlier, when blending happens at the acquisition
phase, the choice of blending code is limited by the seismic source hardware and
other acquisition-related restrictions. When it comes to random noise, there is an
advantage in doing blending in the field rather than numerically, as demonstrated
by Berkhout and Blacquière [2013].

FWI is sometimes sped up through similar numerical blending techniques [Ben-
Hadj-Ali et al., 2009; Krebs et al., 2009; Boonyasiriwat and Schuster, 2010; Gao et
al., 2010; Li et al., 2012]. As in migration, using the blended wavefield for FWI
introduces artifacts in the result [Lee et al., 2012], which can be partially avoided
by using a more robust objective function [Son et al., 2012]. The same technique
can be also applied to speed up the generation of synthetic seismic data [Herrmann
et al., 2009; Neelamani et al., 2010].

Two other processing steps that are commonly applied to marine seismic data prior
to migration are surface-related multiple removal and source deghosting. The pur-
pose of surface-related multiple removal is to remove reflection events that have
reflected at least one time at the sea-air interface. This step is needed for suppress-
ing imaging artifacts when the migration algorithm expects primary reflection-only
datasets as an input. Doulgeris et al. [2012a] propose integrating deblending and
multiple removal, the added benefit being that multiples do not have to be removed
in an additional step. The objective of source deghosting is to remove the ‘ghost
effect’, i.e. additional events that are generated by a ‘ghost source’ that manifests
from the reflection of the direct wave at the sea-air interface. It can be thought
of as a natural kind of blending [Berkhout and Blacquière, 2014] and, therefore,
a properly modified deblending algorithm can handle deghosting as well, showing
notch infill [Wu et al., 2016]. An alternative is to migrate blended data without prior
removal of the surface-related multiples. Verschuur and Berkhout [2011] show that
better illumination of the subsurface can be achieved in this way, and it removes the
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need for an extra surface-related multiple elimination step, making blending-aware
a preexisting approach to seismic imaging [Whitmore et al., 2010].

1.4 Thesis objective

The main objective of this thesis is to study the feasibility of deblending marine seis-
mic data using an inversion-type algorithm based on the focal transform. Moreover,
I investigate two variants of the method: a hybrid focal-curvelet extension, as well
as a modification to the focal transform aimed at reducing its computational cost.

The focal transform uses an approximate velocity model of the subsurface and wave-
field extrapolation to transform a dataset recorded at the surface into a collection of
datasets focused at chosen depth levels of the velocity model. The building blocks
of the focal transform are events with hyperbolic moveout, translated in space and
time. Due to the hyperbolic moveout they exhibit curvature near the apex, unlike
other transforms that use plane waves, curvelets or seislet atoms. There are three
main reasons that make the focal transform potentially attractive for deblending:

• The different behavior of signal and blending noise under the focusing op-
eration. This property is used to discriminate signal from blending noise,
achieving a deblended result. Sparsity constraints are be a key component to
this.

• It enables us to bring prior information about the subsurface into the problem
in order to constrain it.

• Kutscha and Verschuur [2012] demonstrated its effectiveness on the related
problem of seismic data interpolation.

Focal deblending has some similarities with other deblending methods proposed in
the literature. The apex-shifted hyperbolic Radon transform used by Ibrahim and
Sacchi [2013, 2015] is similar to the single-sided focal transform acting on common
receiver gathers. The two transforms are similar in that they both incorporate hyper-
bolic moveouts, the difference being that the focal transform uses wavefield extrap-
olators. In principle both methods could be modified to also handle non-hyperbolic
moveouts. A significant difference exists when comparing with the double-sided fo-
cal transform, which unlike the hyperbolic Radon transform, uses both the source
and receiver dimensions of the data simultaneously.

Leader and Biondi [2014] propose using a closed-loop process based on migration
and demigration steps for deblending. The focusing and defocusing operations of
focal deblending are conceptually very similar. The main difference between the
two methods is that focal deblending is based on downward continuation and simple
NMO velocity models. Leader and Biondi [2014] instead use RTM and more accurate
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velocity models. A similarity is that Leader and Biondi [2014] use an extended image
domain, which is necessary for handling velocity inaccuracies. This is analogous to
the local-offset dimension of focal subdomains.

1.5 Thesis outline

The thesis is organized as follows:

• Chapter 2: Formulation of blending and deblending. I first define the data
cube structure and several operations associated with it. The data cube is
used to sort 5D seismic data samples into a 3D array. I then describe the
blending operator, using a formulation that is suitable for implementing many
kinds of blending codes that are realistic for field acquisition. I examine more
closely the specific case of random time delay codes. The adjoint operation,
pseudo-deblending, is also introduced. Finally, I discuss a generic formulation
of deblending as an optimization problem.

• Chapter 3: Focal deblending. The two variants of the focal transform are
introduced. Although the aim of both transforms is to focus surface seismic
data, they do so in a different manner. A comparison of the two transforms fol-
lows: each of the two transforms is suitable for different acquisition geometries,
which will be important for chapter 4. I then present the effect of focusing
on blending noise. As the extrapolation operators used for focusing act as FK
filters, there are restrictions on what kind of events each operator can explain.
I study this effect, with further discussion about it in chapter 5. Finally, I
discuss the link between sparsity in the transform domain and blending noise
leakage is.

• Chapter 4: Dealing with 3D acquisition using smart subsets. Seismic wave-
fields are rarely well-sampled in all dimensions. Even with the inevitable sub-
sampling that stems from the requirements of practical acquisition, the total
blended dataset might be quite large. As a way to partially overcome sampling
and computational cost issues, this chapter introduces the idea of deblending
suitable subsets of the dataset independently. I redefine focal deblending using
subsets of the multi-streamer and the OBN acquisition geometries.

• Chapter 5: Hybrid deblending solutions. In this chapter I use the focal and
curvelet transforms jointly for deblending. I discuss the advantages and disad-
vantages of using this hybrid transform and I present comparisons on synthetic
data.

• Chapter 6: Field data examples. This chapter shows a number of deblending
examples, using numerically blended field data. The examples are related to
the deblending methods proposed in the previous chapters.
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• Chapter 7: Conclusions and discussion. In this final chapter I present key
conclusions followed by proposals for further research.

• Appendix A: Focal deblending as a BPDN problem. In this appendix I recast
the focal deblending formulation as a canonical basis pursuit denoising (BPDN)
problem, as defined by [van den Berg and Friedlander, 2008].

• Appendix B: SPGL1 for focal deblending. This appendix contains a brief
discussion of the SPGL1 solver, used to generate the deblending results shown
in this thesis.

• Appendix C: The blending noise operator. In the last appendix I define the
blending noise operator and discuss some of its properties. When applied
to unblended data, the blending noise operator produces the blending noise
component found in the pseudo-deblended data.

Original contributions found in this work are listed below:

• The formulation of focal deblending (section 3.5).

• The concept of deblending subsets of seismic data using focal transforms and
grids tailored to the type of acquisition, for towed streamer acquisitions (sec-
tion 4.2) and OBN acquisitions (section 4.3).

• The hybrid focal-curvelet deblending strategy (5.3) and associated examples
on synthetic data (5.4).

• The demonstrations with field data examples (chapter 6).

Chapters and sections not mentioned in this list are prior work sourced from the cited
references, included in this thesis for completeness and as an aid to the reader.
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Formulation of blending and deblending

2.1 The data cube and notation conventions

For the purposes of this thesis I adopt the convention of representing recorded seismic
data as a data cube, i.e. a 3D array of numbers, following closely the conventions
introduced in Berkhout [1982]. Let ptrue(r, s; t) be the value of a pressure field,
generated by a source at coordinates s = (xs, ys, zs) and recorded by a receiver at
coordinates r = (xr, yr, zr), at time instant t. In a practical acquisition ptrue(r, s;
t) is not known everywhere, but only at specific coordinates that are determined by
the acquisition geometry. Four useful sets can be defined:

• The set of all unique coordinates where sources were placed, S = {s1, s2, . . . ,
sns
}, where ns = |S| is the number of unique source (or source array) coordi-

nates.

• The set of all unique coordinates where receivers were placed, R = {r1, r2, . . . ,
rnr
}, where nr = |R| is the number of unique receiver (or receiver array)

coordinates.

• The acquisition set A of all source-receiver ordered pairs (r, s) that were re-
alized in the acquisition.

• The sampling time set T = {0δt, 1δt, 2δt, . . . , (nt − 1)δt}, where δt is the
time sampling interval and nt = |T | is the number of samples recorded at
every source-receiver location pair. The assumption is that δt and nt remain
constant for all the acquisition.
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More often than not, A ̸= R×S, because not all possible pairs of chosen source and
receiver coordinates are realized in the actual acquisition.

Using the sets defined above, we can define a new pressure field,

p(r, s; t) =

{

ptrue(r, s; t), if (r, s) ∈ A and t ∈ T ,
0, otherwise.

(2.1.1)

This effectively means that field values that were not recorded are treated as if they
have the value zero. By sampling p(r, s; t), time slices of the data cube can be
constructed. For simplicity I assume that the sources and receivers lie on x − y
planes at constant depths zs and zr, respectively. Then the time slice at time t ∈ T
is given by

P(zr, zs; t) =










p(r1, s1; t) p(r1, s2; t) · · · p(r1, sns
; t)

p(r2, s1; t) p(r2, s2; t)
...

... . . . ...
p(rnr

, s1; t) · · · · · · p(rnr
, sns

; t)










, (2.1.2)

with
rm = (xrm , yrm , zr), rm ∈ R, m = 0, 1, . . . , nr,

sn = (xsn , ysn , zs), sn ∈ S, n = 0, 1, . . . , ns.

Note that I construct each time slice by evaluating p(r, s; t) at every coordinate
combination in R×S. Because of the way p(r, s; t) was defined in equation (2.1.1),
P(zr, zs; t) contains zeros for source-receiver combinations that were not realized in
the field. P(zr, zs; t) can accomodate sources and receivers on an x − y plane (3D
seismic data), as well as the special case where sources and receivers lie on a line in
that plane (2D seismic data). A convention for sorting the samples into P(zr, zs; t)
is to sort first over the y coordinate and then, for each location with the same y
coordinate, the samples are sorted over the x coordinate [Kinneging et al., 1989]. A
schematic example is shown in figure 2.1.

Many operations on the data cube, such as blending or focusing, will involve convo-
lutions along the time axis. It is computationally advantageous to carry out those
operations in the frequency-space (FX), rather than the time-space (TX) domain.
In the FX domain the data cube consists of monochromatic frequency slices rather
than time slices. A data cube in the TX domain can be easily converted to the FX
domain by calculating the discrete Fourier transform (DFT) of each of the traces:

P(zr, zs; ω) =

nt−1∑

n=0

P(zr, zs; t)e
−jωnδt, (2.1.3)
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P(zr, zs; t) =

Figure 2.1: Sorting data samples into a time slice, when the acquisition is done on x − y

planes. When the acquisition is on a line, P(zr, zs; t) consists only of the submatrix yr = 0
m and ys = 0 m (in green), assuming that we have rotated coordinates such that the
acquisition line lies on the x-axis.

with j =
√
−1, ω ∈ Ω,

Ω = {lδω : lmin ≤ l ≤ lmax} ,
lmin = −⌊(nt − 1)/2⌋ ,
lmax = ⌊nt/2⌋ , (2.1.4)

l integer and δω = 2π(ntδt)
−1. The DFT is evaluated at a total of nt discrete

frequencies, equal to the number of time slices. The cube can be transformed back
to the TX domain via the inverse DFT,

P(zr, zs; t) =
1

nt

lmax∑

l=lmin

P(zr, zs; ω)e
jlδωt. (2.1.5)

Often, there is a need to refer to the data cube as a whole, rather than to specific
time or frequency slices. To refer to the whole (nr×ns×nt) cube, I use the following
notation:

• P̂(zr, zs) for a data cube that is a concatenation of time slices and

• P(zr, zs) for a data cube that is a concatenation of frequency slices.
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Several operations can be defined on a data cube. First, I define an additional set
of coordinates U , on the plane z = zu, with nu = |U|, and four auxiliary data cubes:

Individual Set of Set of Data cube
Data cube element receivers sources dimensions
F1(zr, zs) f1(r, s; ω) R S (nr × ns × nt)

F2(zr, zs) f2(r, s; ω) R S (nr × ns × nt)

F3(zr, zu) f3(r, u; ω) R U (nr × nu × nt)

F4(zu, zs) f4(u, s; ω) U S (nu × ns × nt)

The auxiliary data cubes F1 to F4 may represent different sets of recorded data
or linear operators (e.g. focusing and blending) and focal subdomains, to be intro-
duced later on. For simplicity I am using sets R and S to construct the ‘source’
and ‘receiver’ dimensions of the cubes in the following examples. Other coordinate
sets may play that role too on occasion, depending on what the cube represents,
which should be clear from context. An example would be sets of focal gridpoint
coordinates acting as the ‘source’ and ‘receiver’ dimension in a focal-subdomain data
cube.

I list a number of mathematical operations on data cubes, and the condition that
must be held for each element f ′(r, s; ω) of the resulting data cube F′(zr, zs), for
every r, s, ω.

Conjugation:

F′(zr, zs) = F1(zr, zs)
∗ ⇒ f ′(r, s; ω) = f1(r, s; ω)

∗.

Transposition of frequency slices:

F′(zs, zr) = F1(zr, zs)
T ⇒ f ′(s, r; ω) = f1(r, s; ω).

Conjugate (Hermitian) transposition of frequency slices:

F′(zs, zr) = F1(zr, zs)
H ⇒ f ′(s, r; ω) = f1(r, s; ω)

∗.

Addition:

F′(zr, zs) = F1(zr, zs) + F2(zr, zs)⇒
f ′(r, s; ω) = f1(r, s; ω) + f2(r, s; ω).

Multiplication with a scalar β:

F′(zr, zs) = βF1(zr, zs)⇒
f ′(r, s; ω) = βf1(r, s; ω).
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Slice-by-slice multiplication:

F′(zr, zs) = F3(zr, zu)F4(zu, zs)⇒
f ′(r, s; ω) =

∑

u

f3(r, u; ω)f4(u, s; ω).

I also define two norms that will be frequently used in the following chapters, namely
the Frobenius norm,

||F(zr, zs)||F =

√
∑

r

∑

s

∑

ω

|f(r, s; ω)|2,

and the sum norm,

||F(zr, zs)||S =
∑

r

∑

s

∑

ω

|f(r, s; ω)| .

The Frobenius and sum norms corresponds to the ℓ2- and ℓ1-norm of the vectorized
data cube, respectively. The operations and norms listed above are defined in an
analogous way for data cubes in the TX domain.

P(zr, zs; t) is built with a certain structure, because of the way its elements are
organized. As can be seen in equation (2.1.2), each column of a slice is associated
with a unique source coordinate; each row with a unique receiver coordinate and
each element with a pair of unique source-receiver coordinates. Below I define a few
data cube subsets that I use often in the discussions in this thesis.

• The trace: a trace is formed by extracting the element pertaining to the source-
receiver pair (rm, sn) from all time slices, and then concatenating the individ-
ual elements into a vector (figure 2.2a).

• The common shot gather: a common shot gather is formed by extracting the
column pertaining to a source at sn from all time slices, and then concatenating
the individual columns into a matrix (figure 2.2b).

• The common receiver gather: a common receiver gather is formed by extracting
the row pertaining to a receiver at rm from all time slices, and then concate-
nating the individual rows into a matrix (figure 2.2c). For towed streamer
acquisition a complication arises due to the fact that the receivers are not
stationary and their locations are not repeatable exactly. This can lead to
common receiver gathers with very few traces. A partial remedy is to treat
receivers within a small radius as having the same location, at the cost of
introducing traveltime errors.
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Figure 2.2: Examples of data data cube subsets; a) a seismic trace, b) a common shot gather,
c) a common receiver gather, d) a time slice.
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2.2 Blending

As described in chapter 1, we refer to the situation where multiple sources fire within
the same recording window as blending. Mathematically, blending can be seen as
a two-step process. The first step is to encode each shot gather with the code
associated with the corresponding source. The second step is to create blended shot
gathers, by stacking (summing) encoded common shot gathers. Some parameters of
the code may not be predetermined, e.g. when using a random time delay code, the
actual time delays may be known only after the acquisition has taken place. What
is important is that, after acquisition, all parameters of the blending code should be
known as accurately as possible. This is especially true for inversion-based methods,
such as the one discussed in this thesis.

The code may assume many different forms, but due to acquisition limitations, not
all of them are physically realizable for field acquisition. Here I restrict the discussion
to codes that are (circularly)1 convolutional in time, i.e. an encoded trace is created
by (circularly) convolving an unencoded trace with a coding signal. Most practical
blending codes belong to this category.

The convolution theorem for the DFT, then, dictates that encoding can be carried
out in the FX domain by elementwise multiplying each trace with the transformed
coding signal. Let γ(s, b; ω) be a frequency sample of the code used to encode a
shot at s when that shot is used for generating the blended shot gather b. Then, the
blended trace sample at angular frequency ω recorded by a receiver at r is given by

pbl(r, b; ω) =
∑

s

p(r, s; ω)γ(s, b; ω). (2.2.6)

The sum runs over all shot locations, but we can easily exclude shots from blended
gathers by setting γ(s, b; ω) = 0 for the corresponding combinations of s and b.
Also note that pbl(r, b; ω) is not associated with any single shot coordinate any-
more; to highlight this I replace the shot coordinate with an integer b ∈ B, with
B = {1, 2, . . . , nbl}, that simply indexes the blended shot gather. The number of
recorded blended shot gathers is given by nbl. Note that for pbl(r, b; t) to be purely
real for every t ∈ T ,

γ(s, b; ω) = γ(s, b; −ω)∗, ω ∈ Ω, (2.2.7)

when nt is odd. When nt is even and the Nyquist frequency is present,

γ(s, b; ω) = γ(s, b; −ω)∗ ω ∈ Ω\{⌊nt/2⌋δω},
γ(s, b; ω) = γ(s, b; ω)∗ ω = ⌊nt/2⌋δω, (2.2.8)

1Circular convolution can be converted to linear convolution by zero-padding traces, circularly
convolving them, and truncating the result.
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or, in other words, the Nyquist component must not have an imaginary part, if
present. When conditions (2.2.7) or (2.2.8) are met, γ(s, b; ω) satisfies the conjugate
symmetry of the DFT.

A number of familiar codes can be implemented by defining γ(s, b; ω) in different
ways:

• Shot repetition codes: these are codes where a shot is repeated nrep times,
nrep > 1. Then,

γ(s, b; ω) =

nrep∑

i=1

γi(s, b; ω),

where each repeated shot i is assigned code γi(s, b; ω). Usually, γi(s, b; ω)
takes the form of a delay code (discussed below), where the delays are optimized
for code orthogonality.

• Amplitude-phase codes: these codes are parameterized by the amplitude of the
source, a(s, b), and a phase function, ϕ(s, b; ω), such that

γ(s, b; ω) = a(s, b)ejφ(s, b;ω).

All the codes listed below are special cases of the amplitude-phase code.

• Frequency sweep codes: a specialization of amplitude-phase codes where the
instantaneous frequency changes according to a pattern. An example of this
is the tapered linear frequency sweep code with

a(s, b) =







α0(s,b)
2δt

√
2πTsw(s,b)

ω2(s,b)−ω1(s,b)
,

if the shot s is present in
blended gather b,

0, otherwise,

ϕ(s, b; ω) = −Tsw(s, b)

2

ω2 − ω2
1(s, b)

ω2(s, b)− ω1(s, b)
.

Tsw(s, b) is the sweep length, ω1(s, b) is the starting frequency, ω2(s, b) is the
ending frequency and α0(s, b) the source amplitude [Meunier, 2011].

• Time delay codes: a specialization of amplitude-phase codes, with

a(s, b) =

{

1, if the shot s is present in blended gather b,
0, otherwise,

ϕ(s, b; ω) = −ωτd(s, b), (2.2.9)

τd(s, b) being a time delay. This code shifts traces in time because phase is
proportional to frequency.

• Random time delay codes: time delay codes where τd(s, b) is random.
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• Apparition codes: time delay codes where τd(s, b) follows a pattern that alter-
nates between fixed delay values. The periodic pattern modulates the blending
noise such that part of it can be perfectly removed [Robertsson et al., 2016a].
Apparition codes are also possible to implement using amplitude modulation.

This thesis will focus mostly on random time delay codes, with the additional con-
straint that each shot should participate in only one blended shot gather; therefore

∑

b

a(s, b) = 1, ∀s ∈ S, (2.2.10)

keeping in mind that a(s, b) ∈ {0, 1} for purely delay-based codes. This extra
constraint in code structure will be there to make blending codes more realistic, as
it is rather unlikely that the same common shot gather will be acquired more than
once so that it can contribute to more than one blended gathers. This is especially
true for marine acquisition, where the sources are in constant motion.

Blending, as defined in equation (2.2.6) is a linear operation that can be implemented
as multiplication of frequency slices of the unblended data with a blending operator
Γ(zs) [Berkhout, 2008], that has the same form as a data cube. Using the notation
for slice-by-slice multiplication,

Pbl(zr, zs) = P(zr, zs)Γ(zs), (2.2.11)

with slices

Pbl(zr, zs; ω) =










pbl(r1, 1; ω) pbl(r1, 2; ω) · · · pbl(r1, nbl; ω)

pbl(r2, 1; ω) pbl(r2, 2; ω)
...

... . . . ...
pbl(rnr

, 1; ω) · · · · · · pbl(rnr
, nbl; ω)










,

and

Γ(zs; ω) =










γ(s1, 1; ω) γ(s1, 2; ω) · · · γ(s1, nbl; ω)

γ(s2, 1; ω) γ(s2, 2; ω)
...

... . . . ...
γ(sns

, 1; ω) · · · · · · γ(sns
, nbl; ω)










, (2.2.12)

Any solution of the deblending problem must satisfy equation (2.2.11). The blending
operation for monochromatic frequency slices is depicted in figure 2.3, for the case
where each blended record is formed by summing two unblended shot records.

For a blended dataset, we can make the following observations regarding the co-
herency of seismic events when random time delay codes are used:
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Figure 2.3: Schematic representation of the blending operation for a single monochromatic
frequency slice. Six common shot gathers are blended to produce three blended shot gathers.
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Figure 2.4: Two gathers extracted from a blended dataset. a) A blended shot gather, b) a
blended common receiver gather. A time delay code was used for blending.

- In blended shot gathers (figure 2.4a), all events are coherent. This happens
because all traces of each contributing unblended gather have been shifted in
time by the same amount.

- In blended common receiver gathers (figure 2.4b), there is no event coherency.
Every blended trace is the sum of traces related to different sources, which will
be assigned different time shifts, in general.
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Figure 2.5: Schematic representation of the pseudo-deblending operation for a single
monochromatic frequency slice. Three blended shot gathers expand into six pseudo-deblended
common shot gathers.

2.3 Pseudo-deblending

Pseudo-deblending is the adjoint of the blending operation. Mathematically, it is
also implemented as a matrix-matrix multiplication of frequency slices of the blended
data and the Hermitian of the blending operator,

Pps(zr, zs) = Pbl(zr, zs)Γ(zs)
H

= P(zr, zs)Γ(zs)Γ(zs)
H. (2.3.13)

Pseudo-deblending can be also viewed as a two-step process. The first step is to
generate as many copies of a blended shot gather as the number of sources that
are blended in it (figure 2.5). This step expands each (nr × nbl) frequency slice
into a (nr × ns) pseudo-deblended frequency slice, that has the same dimensions as
unblended data. The second step is decoding, in which every common shot gather
is multiplied with the complex conjugate of the coding signal associated with the
source.

Several useful remarks can be made about the behavior of the chosen code, by
examining the relationship of a trace of unblended data, with the corresponding
pseudo-deblended trace. From equation (2.3.13) we get

pps(r, s; ω) =
∑

b

pbl(r, b; ω)γ(s, b; ω)
∗. (2.3.14)

for an individual frequency sample of a trace. Plugging equation (2.2.6) into (2.3.14)
we get

pps(r, s; ω) =
∑

b




∑

s′

p(r, s′; ω)γ(s′, b; ω)



 γ(s, b; ω)∗ (2.3.15)

=
∑

s′

p(r, s′; ω)
∑

b

γ(s′, b; ω)γ(s, b; ω)∗, (2.3.16)
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with s′ ∈ S. Separating the shot at s from the sum yields

pps(r, s; ω) = p(r, s; ω)
∑

b

|γ(s, b; ω)|2+

+
∑

s′ ̸= s

p(r, s′; ω)
∑

b

γ(s′, b; ω)γ(s, b; ω)∗

= p(r, s; ω)c(s, s; ω)
︸ ︷︷ ︸

Signal (scaled)

+
∑

s′ ̸= s

p(r, s′; ω)c(s′, s; ω)

︸ ︷︷ ︸

Blending noise (scaled)

,

(2.3.17)

where

• c(s, s; ω) =
∑

b |γ(s, b; ω)|2 is a frequency sample from the sum of the auto-
correlations of the coding signals associated with shot location s and

• c(s′, s; ω) =
∑

b γ(s
′, b; ω)γ(s, b; ω)∗ is a frequency sample from the sum of

the crosscorrelations of the coding signals associated with shot locations s and
s′.

Assuming |c(s, s; ω)| ̸= 0, we can normalize pps(r, s; ω) such that the signal part is
at the same scale as the unblended data,

1

c(s, s; ω)
pps(r, s; ω) = p(r, s; ω)

︸ ︷︷ ︸

Signal

+
∑

s′ ̸= s

p(r, s′; ω)
c(s′, s; ω)

c(s, s; ω)
︸ ︷︷ ︸

Blending noise (scaled)

. (2.3.18)

The ratio c(s′, s; ω)/c(s, s; ω), which depends solely on the blending code, controls
the amount of contamination present in the pseudo-deblended sample pps(r, s; ω). A
desirable property of a blending code is to keep this ratio as close to zero as possible.
When the ratio is low for all samples, most of the blending noise vanishes just by
applying the pseudo-deblending operation. When designing the code, the case |c(s,
s; ω)| = 0 should be avoided, as it has the effect of removing frequency components
from the spectrum of the corresponding trace.

Since a random time delay code will be used for most of the examples in this thesis,
it is interesting to see how it fares with respect to blending noise suppression. Using
γ(s, b; ω) = a(s, b)e−jωτd(s, b) we get

c(s′, s; ω)

c(s, s; ω)
=

∑

b a(s
′, b)a(s, b)e−jω(τd(s

′, b)−τd(s, b))

∑

b a(s, b)
2

. (2.3.19)

Using the assumption that each shot gather contributes to only one blended shot
gather, equation (2.2.10) holds for both s and s′. This means that there can be
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at most one element b′ ∈ B for which a(s′, b′) = a(s, b′) = 1. Also, because both
a(s, b) ∈ {0, 1} and equation (2.2.10) hold,

∑

b a(s, b)
2 =

∑

b a(s, b) = 1. Given
these,

c(s′, s; ω)

c(s, s; ω)
=

{

e−jω(τd(s
′, b)−τd(s, b)), when b = b′

0, otherwise.
(2.3.20)

The magnitude of the ratio is then

|c(s′, s; ω)|
|c(s, s; ω)| =

{

1, when b = b′

0, otherwise.
(2.3.21)

Two important conclusions about delay codes can be drawn from this analysis.

- There will be blending noise present in the pseudo-deblended data cube. The
noise traces will be time-shifted by an amount dictated by the residual delays
τd(s

′, b)− τd(s, b). This is a consequence of equations (2.3.18) and (2.3.20).

- Pseudo-deblending will not attenuate blending noise, for simple delay codes.
This, in turn, means that the only help a deblending algorithm gets from this
type of code are the residual delays. This is a consequence of equation (2.3.21).

Signal and noise in pseudo-deblended data have different properties in different seis-
mic gathers, when a random time delay code is used.

- In common shot gathers (figures 2.6a-c), both signal and blending noise are
coherent.The signal part will exhibit zero time delay and the noise part a time
delay that is constant for all traces.

- In common receiver gathers (figures 2.6d-f), the signal is coherent, but blending
noise is not.

In general, the signal will be coherent in all types of gathers, because all time delay
has been removed by the pseudo-deblending operation. Noise, on the other hand, will
have a different residual time delay for each source, therefore, it will be incoherent for
all types of gathers, except the common shot gather. This incoherency introduced
by the code will be exploited later in the deblending process.

The code can have a very big influence in the amount of effort that needs to be
spent on deblending. This will be shown using a blending code that, while entirely
unrealistic for seismic data acquisition purposes, is illustrative of what is possible, at
least mathematically. For this blending scheme, pairs of shot gathers will be blended
together. The two shot gathers in the pair will be encoded using Gold codes g1, g2,
respectively, with
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Figure 2.6: Comparison of unblended and pseudo-deblended data. Upper row: common
shot gather of a) pseudo-deblended data, b) unblended data, c) blending noise. Lower row:
common receiver gather of d) pseudo-deblended data, e) unblended data, f) blending noise.
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g1 = [− 1,−1,−1,−1,−1,−1,−1,+1,−1,−1,−1,+1,+1,−1,+1,+1,

− 1,−1,−1,−1,+1,+1,−1,−1,+1,+1,+1,−1,−1,+1,+1]T,

g2 = [ + 1,+1,−1,−1,−1,+1,+1,+1,+1,+1,+1,+1,−1,−1,−1,+1,

− 1,−1,−1,+1,+1,+1,+1,−1,−1,−1,+1,−1,+1,−1,−1]T.

Such codes are commonly used in telecommunications to distinguish the transmis-
sions of individual users broadcasting on the same channel [Rao and Dianat, 2005].
Here blending will be done in a different manner than what has been described so
far in this chapter. In this case it is easier to describe the blending process in terms
of each individual sample, rather than for the data cube as a whole. Blending two
samples p(r, s1; t) and p(r, s2; t) yields a vector of samples

pbl(r, b; t) = p(r, s1; t)g1 + p(r, s2; t)g2.

Pseudo-deblending a sample can be done by calculating an inner product of the
corresponding Gold code and the blended vector of samples

pps(r, s1; t) = gT
1 pbl(r, b; t) = p(r, s1; t)g

T
1 g1 + p(r, s2; t)g

T
1 g2.

Scaling the pseudo-deblended sample by 1/gT
1 g1 yields

1

gT
1 g1

pps(r, s1; t) = p(r, s1; t) + p(r, s2; t)
gT
1 g2

gT
1 g1

.

It is easy to verify that gT
1 g2/g

T
1 g1 = 1/31, therefore the blending noise will be

attenuated by a factor of 31, simply by applying the pseudo-deblending operation
(figures 2.7a-c). Depending on the amount of blending noise that can be tolerated for
the next stages of processing, the pseudo-deblended data may not need any further
deblending. This was a toy example, but it demonstrates the important effect that
the blending code can have on the deblending effort.

2.4 Deblending as an inverse problem

In the ideal situation, a deblended data cube Pdebl(zr, zs) should satisfy the blending
equation (2.2.11), therefore

Pbl(zr, zs) = Pdebl(zr, zs)Γ(zs) (2.4.22)

should hold. Solving for the deblended data cube is usually casted as an optimization
problem of the general form

Pdebl(zr, zs) = argmin
P(zr, zs)

{dist (Pbl(zr, zs), P(zr, zs)Γ(zs))} , (2.4.23)
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Figure 2.7: Comparison of unblended and pseudo-deblended data (using Gold codes for
blending). Common shot gather of a) the (scaled) pseudo-deblended data, b) the unblended
data, c) the blending noise.

where dist (·, ·) is a chosen distance function. The main difficulty of solving (2.4.23)
is that the solution is non-unique when nbl < ns. We can associate a null space with
the blending operation, i.e. the set

N (Γ(zs)) = {Pnull(zr, zs) : Pnull(zr, zs)Γ(zs) = 0nr×nbl×nt
}, (2.4.24)

where 0nr×nbl×nt
is a (nr × nbl × nt) data cube of zeros. If nbl = ns and each

frequency slice of Γ(zs) is full rank, Pnull(zr, zs) = 0nr×nbl×nt
and there is a unique

solution. In this hypothetical scenario each frequency slice of Γ(zs) is invertible and
deblending amounts to applying the inverse to the corresponding frequency slice of
the blended data. For a realistic blended acquisition, however, what would have been
two or more independent shot gathers in the corresponding unblended acquisition,
contract into one blended shot gather. Therefore, for field blending, nbl < ns. This
implies that there exist infinite nonzero data cubes Pnull(zr, zs) ∈ N (Γ(zs)) for
which Pdebl(zr, zs) + Pnull(zr, zs) is a valid solution to (2.4.23), if Pdebl(zr, zs) is
also a valid solution. It is worth noting that, for phase-only codes where each source
participates in only one blended gather, a scaled version of Pps(zr, zs), is part of
the solution set as well [Mahdad et al., 2011].

The purpose of deblending is to recover Pdebl(zr, zs) = Pideal(zr, zs). Pideal(zr, zs)
is the ‘ground truth’, or, in other words, the data that would have been recorded in
the ideal case of no blending. Clearly, when nbl < ns, knowledge of the blended data
and the blending code alone does not suffice to guarantee recovery of Pideal(zr, zs).
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Restricting the set of solutions can be done by adding constraints to (2.4.23), and/or
by using some form of regularization. This is a way to bring additional information
into the problem, that hopefully steers the optimization to a solution that contains
minimal blending noise leakage. What separates the different inversion-based meth-
ods is the choice of the distance function and the extra constraints or regularization
terms they introduce into the optimization problem.

For numerical blending experiments, P̂ideal(zr, zs) is known beforehand, which makes
it possible to quantify the quality of the deblended result. For this purpose, I adopt
the metric

QdB = 10 log10

∣
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3

Focal deblending

An integral part of focal deblending is the focal transform. The focal transform
uses an approximate velocity model of the subsurface and wavefield redatuming
to transform a dataset recorded at the surface into a collection of datasets approxi-
mately focused at chosen depth levels. The focusing operation allows us to implicitly
take advantage of the coherency of the signal to be extracted and, with the help of
a sparsity-promoting objective function, discriminate against incoherent blending
noise. The focusing process is based on an NMO velocity model.

In this chapter two variants of the transform are examined. The first is the double
focal transform, in which scattering and propagation are separated. Berkhout and
Verschuur [2010] used this version of the transform for data denoising. Kutscha
and Verschuur [2012] later paired it with parsimonious optimization for seismic data
interpolation. The single-sided focal transform is the second variant. It uses two-
way operators that combine both scattering and propagation. It is based on an
earlier definition of the focal transform by Berkhout and Verschuur [2006] used for
denoising prestack data.

Both variants of the focal transform are conceptually linked to a simplified ver-
sion of WRW1 modeling, commonly used for implementing the demigration step in
least-squares prestack depth migration. In the first part of this chapter the two vari-
ants of the focal transform are derived from acoustic WRW modeling of primaries.
Deblending will enter the picture again in the last part of this chapter.

1The name WRW modeling stems from the fact that seismic data is modeled by a composition
of propagation and reflection operators, the former usually denoted by some variant of the letter
W and the latter by a variant of R. The process is discussed later in the chapter.
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3.1 WRW modeling

The WRW modeling that will be discussed here is based on wavefield extrapolation
using the Rayleigh II integral [Berkhout, 1982]. The basic concept behind this
form of modeling is to separately handle propagation and scattering. This makes
it different from other popular modeling strategies that do not decouple scattering
and propagation, such as finite difference/finite element methods working directly
with the wave equation (see e.g. Kelly et al. [1976]). Decoupling scattering and
propagation allows us to parameterize modeling in terms of a reflectivity model (for
the scattering part) and a velocity model (for the propagation part).

I assume that a velocity model is available as a priori knowledge and first consider
the simplest case, which is modeling a single reflection event. A seismic source, or
array of sources, located at the surface z = z0, generates a wavefield, using a known
wavelet. This wavefield propagates downwards until it reaches the plane z = zm,
which contains some scaterrers. A portion of the wavefield is then scattered and
starts propagating upwards. When it reaches the surface it is recorded either by
individual receivers, or by receiver arrays. The source then moves to a different
location and the same procedure is repeated. Towards the end of this section this
simple model will be expanded to generate primary reflection events for more than
one depth level.

This modeling scheme could be further extended to include all orders of surface-
related and internal multiple scattering [Berkhout, 2014; Davydenko and Verschuur,
2018]. It can also be extended to handle elastic models [Wapenaar, 1984] and
anisotropy [Alshuhail et al., 2014], each extension making the modeled wavefield
more realistic. These more advanced features can be important for processes such
as migration and velocity model inversion, but the simple, primary-only version for
acoustic media will suffice for the focal transform. Therefore, such further extensions
will not be discussed.

The single-reflector modeling scenario described above is comprised of five steps:

[1] Wavefield generation

[2] Downward extrapolation

[3] Reflection

[4] Upward extrapolation

[5] Wavefield detection/recording

We will now explore each of these steps in more detail.
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3.1.1 Step 1: Wavefield generation

For the wavefield generation step I define the set of source locations S = {s1, s2, . . . ,
sns
}. All these sources lie on the surface, i.e. si = (xsi, ysi, z0). For point sources,

each si represents a physical source location. For source arrays si is an “effective”
location of the source array, usually taken to be its midpoint. The assumption that
all sources are located at the surface is a convention, chosen for convenience. We
could substitute the surface with a different datum if that were more convenient.

A source (or source array) si generates an incident, downgoing wavefield s+(s′j ,
si; ω), its value known at locations S ′ = {s′1, s′2, . . . , s′n′

s
}. These lie on a plane

z = z′0, which is parallel to, and placed slightly below the surface plane, i.e. s′j =
(xs′

j
, ys′

j
, z′0). No sources should be present on the plane z = z′0 or below, a re-

quirement when using the Rayleigh II integral in the next step. For each frequency
component ω ∈ Ω we can store the incident wavefield into frequency slices of a cube
S+(z0). Each frequency slice has dimensions (n′

s × ns) and has s+(s′j , si; ω) as its
(j, i)-th element.

There are a couple useful remarks regarding the structure of S+(z0). The first is that
each column represents a separate incident wavefield generated by a source (array)
located at one of the points in S. Each column can be thought of as the source
wavefield for a different modeling experiment, in each of which the source is placed
at a different location. The second remark is that although in general S+(z0) is a full
matrix, there is a particular case of interest where it is sparse. When the source is a
dipole point source and z′0 ≈ z0 then s+(s′j , si; ω) = 0 when j ̸= i. In other words,
each column of S+(z0) has a single nonzero element and S+(z0) as a whole, has a
diagonal structure (figure 3.1). For arrays of point dipole sources, each column has a
number of nonzero elements equal to the number of array elements. For a monopole
source the full matrix has nonzero values, with the diagonal elements having the
strongest amplitudes.

3.1.2 Step 2: Downward extrapolation

For the second step we will make use of wavefield extrapolation, which allows us
to use known wavefield values to predict wavefield values at locations further away
from the source. In our case, the known wavefield values are those of the incident
wavefield at z = z′0. The goal is to generate the wavefield at depth level z = zm,
with zm > z′0. Another way to think about the procedure is as a way to generate
the wavefield that would have been recorded by virtual receivers at locations in the
set Uzm = {u1,u2, . . . ,unu

}, with uk = (xuk
, yuk

, zm). In the context of the focal
transform, coordinates Uzm will be referred to as the focal grid points and the term
focal grid will be used for the set Uzm .

The extrapolation step can be carried out via means of the one-way version of the
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Figure 3.1: A dipole source at s generates an incident wavefield. The incident wavefield has
a nonzero value only at location s

′=s and is stored as the highlighted column of S+(z0).

Rayleigh II integral, which can be viewed as a specialized variant of the Kirchhoff
integral, applicable for extrapolation between planes. The Rayleigh II integral is
given by [Wapenaar, 1984, Chapter 5.5.1]

p+(uk, si; ω) =

+∞∫

−∞

+∞∫

−∞

2
∂G+(uk, s

′; ω)

∂z
s+(s′, si; ω)dxs′dys′ , (3.1.1)

where s′ = (xs′ , ys′ , z
′
0), p+(uk, si; ω) is the downgoing wavefield at a grid point

uk. G+(uk, s
′; ω) is a one-way Green’s function from s′ to uk. Equation (3.1.1)

implies that the incident wavefield should be known everywhere on the infinite plane
z = z′0. For practical applications the incident wavefield will be only known at a finite
number of discrete locations S ′, therefore the integral will have to be numerically
approximated and truncated to a finite aperture:

p+(uk, si; ω) ≈
ns′∑

j=1

2
∂G+(uk, s

′
j ; ω)

∂z
s+(s′j , si; ω)∆s′j =

ns′∑

j=1

w+(uk, s
′
j ; ω)s

+(s′j , si; ω), (3.1.2)

with
w+(uk, s

′
j ; ω) = 2

∂G+(uk, s
′
j ; ω)

∂z
∆s′j .

The term ∆s′j scales s+(s′j , si; ω) to account for the sampling density around s′j . Its
value will depend on the integration scheme used.

Since the modeling scheme treats propagation and scattering independently, the
Green’s function used in equation (3.1.2) should not generate any reflection events.
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In this sense I refer to it as a one-way Green’s function. For homogeneous media this
no-reflection condition is automatically fulfilled, as there is no impedance contrast
present. In this case, we may say that the two-way and one-way Green’s function are
identical. The two differ, however, when the medium between z′0 and zm is inhomo-
geneous. Inhomogeneous media will generally have impedance contrasts, giving rise
to reflection events and internal multiples related to those events. These events will
be present in a true Green’s function. Additionally, a true Green’s function linking
s′j and uk will contain all orders of surface-related multiples as well.

In order to retain the separation of propagation and scattering, an approximate
one-way Green’s function will be needed. The requirements are that it should not
contain scattering, but should have accurate kinematics. These are constructed using
a number of approaches, such as raytracing [Červený and Hron, 1980], Gaussian
beams [Červený et al., 1982] and finite-differences [Kelly et al., 1976; Operto et al.,
2007] for a smooth version of the inhomogeneous medium. For laterally invariant or
smoothly varying media, a convenient option is recursive extrapolation [Berkhout,
1982; Gazdag and Sguazzero, 1984; Thorbecke et al., 2004]. In the special case of
a medium varying only along the z-axis, the Green’s function between s′j and uk

depends only on their distance, i.e., w+(uk, s
′
j ; ω) = w+(uk − s′j , 0; ω) [Wapenaar,

1984, Chapter 5.5.1]. Then, equation (3.1.2) becomes a spatial convolution in the
frequency-space domain, or element-by-element multiplication with a phase-shift
operator in the frequency-wavenumber domain [Berkhout, 1982].

For media with homogeneous velocity, analytic expressions can be derived for w+(uk,
s′j ; ω). Table 3.1 lists formulae for two- and three-dimensional media. The deriva-
tions of these expressions can be found in Gisolf and Verschuur [2010].

Space 3D dipole 2D dipole

Exact solution zm(1+jωτ)
∆r3 e−jωτ −jωπ zm

c∆rH
(2)
1 (ωτ)

Far field approximation jω zm
c∆r2 e

−jωτ zm

√
2πjω
∆r3 e

−jωτ

∆r = ||s′j − uk||2, τ = ∆r/c

Table 3.1: Analytic expressions for the vertical derivative of the Green’s function from s
′
j to

uk of a medium with homogeneous velocity c. Here H
(2)
1 (·) is a first order Hankel function

of the second kind.

For each frequency ω we can construct a frequency slice of W+
m(zm, z0), by placing

w+(uk, s
′
j ; ω) as the (k, j)-th element of the slice. Each slice then has dimensions

(nu × n′
s). The downgoing wavefield that is generated by the extrapolation for all



42 Focal deblending

z0z0′

zm

sr

s′

u

























W
+
m(zm, z0)

T
o

gr
id

po
in

t
u

Extrapolate from location s′

Figure 3.2: The downgoing wavefield is extrapolated from z′0 to zm. This is carried out by
W

+
m(zm, z0). Shown here is the contribution of the highlighted column of W+
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straight red lines demonstrate extrapolation schematically and are not meant to represent
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sources can be also placed into a (nu × ns) data cube P+(zm, z0), using p+(uk, si;
ω) as the (k, i)-th element. The two are linked by

P+(zm, z0) = W+
m(zm, z0)S

+(z0). (3.1.3)

Each column of P+(zm, z0) contains the downgoing wavefield generated by sources
at different locations. A depiction of the extrapolation process can be seen in figure
3.2. For the purposes of focal deblending as described later on I approximate the
kinematics of propagation between z0 and zm using a homogeneous velocity model
and construct W+

m(zm, z0) using the exact analytic expressions found in table 3.1.

3.1.3 Step 3: Reflection

Up to this point the wavefield has been traveling from z0 to zm without encountering
any scattering, and therefore it has been purely downgoing. In the third step, this
changes as the wavefield now encounters scatterers present on the z = zm plane.
The scatterers partially convert the downgoing wavefield into a reflected, upgoing
wavefield (figure 3.3). The amplitude of the reflected wavefield at a scatterer location
is determined by the reflectivity of that scatterer, which is a function of the acoustic
impedance contrast between the scatterer and the background medium, as well as
the angle of incidence of the downgoing wavefield [Berkhout, 1982; de Bruin et al.,
1990]. The downgoing wavefield can be thought of as a superposition of plane waves,
each of which has a well defined angle of incidence with respect to the normal at the
scatterer location. Each of these plane waves is then scaled by a different reflectivity
coefficient, depending on its angle. The superposition of the reflected plane waves
is the total upgoing wavefield. Here the combination of plane-wave decomposition,
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Figure 3.3: The downgoing wavefield at zm (red arrows), is converted into an upgoing wave-
field (green arrow for the fourth focal grid point) by R(zm, zm). The operation is nonlocal;
each upgoing field sample is given as an inner product of the downgoing wavefield at each fo-
cal grid point with a reflection operator (here corresponding to the fourth row of R(zm, zm)).
The off-diagonal elements of R(zm, zm) give rise to angle-dependent reflectivity.

angle-based scaling, and plane-wave superposition is carried out as one single step
in the space domain by means of a non-stationary convolution.

In order to capture the angle-dependent nature of the reflectivity, each scatterer at
grid point u′

l ∈ Uzm is replaced by an effective group of point scatterers, that is given
by a subset of Uzm that is spatially close to u′

l. For each pair (u′
l,uk) and frequency

ω we define a reflectivity coefficient2 r(u′
l, uk; ω) with r(u′

l, uk; ω) = 0 for those
grid points uk that do not contribute in explaining the angle-dependent reflectivity
at u′

l. Then,

p−(u′
l, si; ω) =

nu∑

k=1

r(u′
l, uk; ω)p

+(uk, si; ω). (3.1.4)

Note that in a laterally homogeneous medium the operators r(u′
l, uk; ω) only depend

on the distance ||u′
l − uk||2 due to translational invariance. This is no longer the case

for laterally inhomogeneous media, however. As before, we place p−(u′
l, si; ω) and

r(u′
l, uk; ω) in cubes P−(zm, z0) and R(zm, zm), respectively. Each monochromatic

frequency slice of P−(zm, z0) has dimensions (nu×ns) and each slice of R(zm, zm)
(nu × nu). This yields

P−(zm, z0) = R(zm, zm)P+(zm, z0). (3.1.5)

For the special case of locally reacting media, r(u′
l, uk; ω) = 0 for u′

l ̸= uk, each
frequency slice of R(zm, zm) becomes a diagonal matrix. For focal subdomains,

2While possible to derive from medium parameters, in practice the values r(u′
l
, uk; ω) would be

estimated by migration, as the WRW modeling described here serves primarily as a demigration
process.



44 Focal deblending

which play a role analogous to R(zm, zm), no specific structure is imposed and in
principle every element could have a nonzero value.

3.1.4 Step 4: Upward extrapolation

The reflected portion of the wavefield starts traveling upwards until it reaches the
receivers at the surface. Generating the wavefield at z = z0 knowing its values at
z = zm, is a second forward extrapolation problem, similar to that of step 2. The
difference is that now the scatterers act as virtual sources and the receivers are now
located at the surface, away from the scatterers. For this extrapolation step we need
one-way Green’s functions from u′

l to point-receivers r′o. The discretized Rayleigh
II integral for this scenario then is given by

p−(r′o, si; ω) ≈
nu∑

l=1

2
∂G−(r′o, ul; ω)

∂z
s+(ul, si; ω)∆ul =

nu∑

l=1

w−(r′o, ul; ω)s
+(s′j , si; ω), (3.1.6)

with
w−(r′o, ul; ω) = 2

∂G−(r′o, u
′
l; ω)

∂z
∆u′

l. (3.1.7)

After placing all values p−(r′o, si; ω) in the data cube P−(z0, z0) and w−(r′o, ul; ω)
in W−

m(z0, zm) enables us to rewrite (3.1.6) as

P−(z0, z0) = W−
m(z0, zm)P−(zm, z0). (3.1.8)

For homogeneous media w−(x1, x2; ω) = w+(x2, x1; ω) for two points x1, x2 and,
therefore, W−

m(z0, zm) = [W+
0 (z0, zm)]T.

3.1.5 Step 5: Wavefield detection/recording

In the previous step the reflected wavefield was extrapolated to the surface at lo-
cations of the individual receivers. Often that is the end of modeling, however in
some cases it might be desirable to also emulate the effect of receiver arrays on the
data and/or apply receiver frequency responses. Receiver arrays can be easily incor-
porated in the modeling scheme by taking linear combinations of the recordings of
groups of receivers, i.e.,

p(rq, si; ω) =

nr∑

o=1

d(rq, r
′
o; ω)p

−(r′o, si; ω). (3.1.9)

Here rq ∈ R = {r1, r2, . . . , rnr
} is the effective location of the array and r′o the

location of an individual receiver. For receivers r′o not part of the array at rq, d(rq,
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Figure 3.4: The upgoing wavefield at zm is extrapolated to z0. Schematically depicted here is
the contribution of the highlighted row of W−

m(z0, zm). The straight red lines demonstrate
extrapolation schematically and are not meant to represent accurate raypaths.

r′o; ω) = 0. For those that are part of the array, d(rq, r
′
o; ω) takes the form of a

complex value that is the frequency response at ω of the receiver placed at r′o. When
a flat frequency response is desired, usually d(rq, r

′
o; ω) = 1. Using the data cube

notation,
P(z0, z0) = D(z0)P

−(z0, z0), (3.1.10)

where P(z0, z0) and D(z0) are formed from p(rq, si; ω) and d(rq, r
′
o; ω), in a manner

analogous to the previous steps. When no array-forming takes place, D(z0) has one
nonzero element per row.

3.1.6 Multi-level modeling and migration

Combining equations (3.1.3), (3.1.5), (3.1.6) and (3.1.10) we arrive at

P(z0, z0) = D(z0)[W
−
m(z0, zm)R(zm, zm)W+

m(zm, z0)]S
+(z0), (3.1.11)

which combines all the modeling steps discussed previously. Modeling primary
reflections from M > 1 depth levels can be done by repeating these steps and
summing the reflection data produced at each depth level. Let zm = m∆z with
m = 1, 2, . . . ,M . The total wavefield at the surface then becomes,

P(z0, z0) = D(z0)

M∑

m=1

[W−
m(z0, zm)R(zm, zm)W+

m(zm, z0)]S
+(z0). (3.1.12)

Transmission effects are neglected here. Here 3.1.12 is used in the forward sense,
mapping R(zm, zm), m = 1, 2, . . . ,M to P(z0, z0), assuming a known velocity
model. The inverse process assumes that observed data Pobs(z0, z0) and the veloc-
ity model are given and aims to recover R(zm, zm), m = 1, 2, . . . ,M . This process
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is commonly referred to as migration. Often the additional requirement of consis-
tency with the observed data is placed on migration. Perhaps the most common
way to enforce consistency is to find Rmigr(zm, zm), m = 1, 2, . . . ,M , that minimize
the ℓ2-distance of the modeled and observed data, yielding a form of least-squares
migration:

Rmigr(zm, zm) = argmin
R(zm, zm),
m=1,2,...,M

{
∑

ω

||Pobs(z0, z0)−

D(z0)

M∑

m=1

[W−
m(z0, zm)R(zm, zm)W+

m(zm, z0)]S
+(z0)||F}. (3.1.13)

It is possible to place additional constraints on the structure of each R(zm, zm),
depending on whether the recovered reflectivity is to be angle-dependent. Figure
3.5 shows a subsurface image after migrating 20 shot gathers of synthetic data us-
ing inverse extrapolation. The m-th row of the image is given by the diagonal of
R̂(zm, zm) at t = 0 s. Note that Berkhout [2014] describes a process in which, using
the same building blocks, multiple scattering can also be included. However, for
our purpose this is not relevant. In the context of focal deblending multiples will
generally be explained as fictitious primary events.

3.2 Inverse extrapolation and focusing

The WRW modeling engine described in the previous section uses two forward ex-
trapolation steps (figure 3.6, left). The first extrapolates the wavefield further away
from the source, towards the interior of the medium. The second extrapolates the
reflected, upgoing wavefield away from the reflector.

At the heart of migration, redatuming and the focal transform, is the ability to
carry out the inverse process, known as inverse extrapolation. This operation ex-
trapolates a wavefield closer to its source (figure 3.6, right). In the ideal case inverse
extrapolation would consist of applying operators W+

i (zi, z0)
−1 and W−

i (z0, zi)
−1.

A well-documented problem of this approach is that it exponentially amplifies the
evanescent part of the wavefield, attempting to reverse the exponential decay it ex-
periences during forward extrapolation. The recorded wavefield typically has a very
low signal-to-noise ratio in the evanescent part of the frequency-wavenumber spec-
trum, as it is recorded many wavelengths away from the reflectors. The amplification
then, ends up amplifying mostly noise. Additionally, W+

i (zi, z0) and W−
i (z0, zi)

are badly-conditioned, making the process of constructing their inverses instable
[Berkhout, 1982; Wapenaar, 1984].

A practical approach that overcomes these difficulties of inverse extrapolation is to
have the inverse extrapolation operators take the form of the Hermitian of the corre-
sponding forward propagation operators, i.e. W+

i (zi, z0)
H and W−

i (z0, zi)
H. These
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Figure 3.5: Left: a synthetic, prestack shot gather. Right: the image after migration. The
migration process (red arrow) maps a prestack data cube to a reflectivity image. Demigra-
tion, e.g. WRW modeling, maps a reflectivity image to surface data.
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Figure 3.6: Left: forward extrapolation. Right: inverse extrapolation. Blue arrows denote
the direction of the wavefield propagation and black arrows the direction of the extrapolation.

operators remove propagation effects, without attempting to recover the evanescent
wavefield. When applied to P(z0, z0), they remove transient propagation effects
up to depth level zi. Provided that the operators are kinematically accurate, this
action focuses that component of the dataset which is the result of reflection that
occured at depth level zi. This focusing is visible in the time/subsurface-offset do-
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main. This action brings the entire reflector into focus, provided that one exists at zi
and that the velocity model is sufficiently accurate. As was the case for the forward
extrapolation operators, these inverse extrapolation operators are scattering-free.

Given a dataset P(z0, z0), focusing at zi takes the form

XXXD
i (zi, zi) = W−

i (z0, zi)
H P(z0, z0)W

+
i (zi, z0)

H

= W−
i (z0, zi)

H
[

D(z0)

M∑

m=1

W−
m(z0, zm)R(zm, zm)×

×W+
m(zm, z0)S

+(z0)
]

W+
i (zi, z0)

H

= W−
i (z0, zi)

H
[

I

M∑

m=1

W−
m(z0, zm)R(zm, zm)×

×W+
m(zm, z0)

(
S(ω)I

)]

W+
i (zi, z0)

H

= W−
i (z0, zi)

H
[ M∑

m=1

W−
m(z0, zm)

(
S(ω)R(zm, zm)

)
×

×W+
m(zm, z0)

]

W+
i (zi, z0)

H.

Note that here I have assumed that S+(z0) = S(ω)I and D(z0) = I, i.e. no
source/receiver arrays and the same source signature S(ω) for all shots. These
assumptions will be also part of the definition of the focal transform later on. In
particular, source wavelets are not assumed to be known and an average wavelet will
be imprinted onto the focal subdomains to compensate. Moving W−

i (z0, zi)
H and

W+
i (zi, z0)

H inside the sum yields

XXXD
i (zi, zi) =

M∑

m=1

[
W−

i (z0, zi)
HW−

m(z0, zm)
][
S(ω)R(zm, zm)

]
×

×
[
W+

m(zm, z0)W
+
i (zi, z0)

H
]

=

M∑

m=1

Q−(zi, zm)
[
S(ω)R(zm, zm)

]
Q+(zm, zi), (3.2.14)

where

Q−(zi, zm) = W−
i (z0, zi)

HW−
m(z0, zm),

Q+(zm, zi) = W+
m(zm, z0)W

+
i (zi, z0)

H.

Equation (3.2.14) can be split into a contribution from the reflector at zi and a
contribution from the rest of the reflectors,
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XXXD
i (zi, zi) =

M∑

m=1

Q−(zi, zm)
[
S(ω)R(zm, zm)

]
Q+(zm, zi)

= Q−(zi, zi)
[
S(ω)R(zm, zm)

]
Q+(zi, zi)

︸ ︷︷ ︸

Focused event

+

+

M∑

m=1
m ̸=i

Q−(zi, zm)
[
S(ω)R(zm, zm)

]
Q+(zm, zi)

︸ ︷︷ ︸

Unfocused events

.

An example slice of XXXD
i (zi, zi) corresponding to one lateral position x is shown in

figure 3.7, where we consider the response of a 5-reflector medium. We can clearly see
the difference in character between the two contributing components. The dataset
shown in figure 3.7 was focused at z3. It was modeled using the WRW modeling
described previously, and accurate extrapolation operators were used for the focusing
process. Unlike the other four events, the reflection from z3 has been focused at time
zero and offset zero. The time slice at time zero can be thought of as a migrated
image sampled at depth zi.
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Figure 3.7: Left: a gather with five events, modeled using WRW modeling. Right: a gather
from the same dataset, focused at the reflector producing the third primary event. The
numbers match events with their counterparts in the focused gather.

Several practical limitations prevent the focusing operation from exposing the true
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reflectivity operator. The first is that, due to the lack of the evanescent part,
Q−(zi, zi) ̸= I and Q+(zi, zi) ̸= I. The combined effect of Q−(zi, zi) and Q+(zi, zi)
acts as a point spread function that distorts the reflectivity operator3. Together with
the presence of S(ω), the point spread function places an upper limit on the spatial
and temporal resolution ofXXXD

i (zi, zi). An additional limitation is the finite aperture
of the acquisition. For field data, aliasing often is an issue, as sampling is rarely fine
enough in all dimensions. Despite these shortcomings, it is clear from figure 3.7 that
the primary event has a significant reduction in spatial and temporal extent when
focused. We will make use of this property for deblending later on.

3.3 The multi-level double focal transform

Building on the material of the previous chapter we can now define the double focal
transform. The basis for defining the transform is WRW modeling, with a few
adjustments:

• The focal transform uses K depth levels, zk, k = 1, 2, . . . ,K, with K ≪ M .
Unlike in migration, these are generally few, not equispaced and zk+1 − zk is
larger than what would be typically used in a migration scheme. It is also
possible to use non-flat levels zk(x, y).

• The reflectivity cube is replaced by a focal subdomain XD
k (zk, zk), asssoci-

ated with depth zk. The important difference is that, unlike a reflectivity
cube, a focal subdomain is not restricted to have any other particular struc-
ture. XD

k (zk, zk) differs from XXXD
k (zk, zk) introduced earlier. The latter is the

result of applying a single inverse extrapolation step, whereas the former is
used for the results of inversion, or when synthesizing surface data from focal
subdomains.

• The extrapolation operators W−
k (z0, zk) and W+

k (zk, z0) are constructed as-
suming a homogeneous, isotropic acoustic medium with acoustic velocity ck.
This velocity can be thought of as an average velocity of the subsurface layers
between z0 and zk. I will refer to these as focal operators. These velocities are
considered prior knowledge. It is possible to use an inhomogeneous velocity
model as well, but in any case the velocity model is not assumed to be ac-
curate. If a layered velocity model is available, then more accurate operators
W+

k (zk, z0) and W−
k (z0, zk) can be constructed by composing operators for

each homogeneous layer, e.g. W+
k (zk, z0) =

∏k
i=1 W

+(zi, zi−1).

• For the double focal transform discussed here, D(z0) = I and S+(z0) = I, i.e.
we do not assume prior knowledge of the source and receiver characteristics.

3An analytic expression for homogeneous acoustic media is derived in Wapenaar [1984].
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These adjustments come from practical considerations. The main idea behind the
focal transform is to have a data preprocessing tool that leverages, to some extent,
the physics of wave propagation. At the first stages of processing information such
as detailed velocity models and wavelet shapes are generally not available, so I opt
not to use such information.

On the other hand, when such extra information is available it can be incorporated
in the formulation of the transform. This can happen, for example, in the case of
a 4D monitor survey, where much information will be available from processing the
base survey. At the limit, when using the exact velocity model and densely sampled
depth levels, the focal transform becomes a migration/modeling algorithm that has
been repurposed.

3.3.1 The inverse transform

Applying the above adjustments to (3.1.12) gives us the inverse focal transform:

P(z0, z0) =
K∑

k=1

W−
k (z0, zk)X

D
k (zk, zk)W

+
k (zk, z0). (3.3.15)

Since (3.3.15) takes us from the transform domain, that is the content of XD
k (zk, zk),

k = 1, 2, . . . ,K, to the data domain, which here is P(z0, z0), I define it as the inverse
transform, in analogy to other transforms, such as Fourier, wavelet, etc. Note that
(3.3.15) is a simplified version of forward modeling.

3.3.2 The forward transform

Calculating the forward focal transform presents a difficulty, when focusing on mul-
tiple depth levels. Focal subdomains usually have a size comparable to the original
data. When multiple subdomains are used, the forward focal transform tends to
become an underdetermined problem. For the purposes of this thesis I define the
forward focal transform as the following optimization problem:

{

X̂D
rec,1(z1, z1), X̂

D
rec,2(z2, z2), . . . , X̂

D
rec,K(zK , zK)

}

=

argmin
X̂D

k (zk, zk)
k=1,...,K

{
∑

t

K∑

k=1

∣
∣
∣

∣
∣
∣X̂

D
k (zk, zk)

∣
∣
∣

∣
∣
∣
S

}

subject to

∑

ω

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
P(z0, z0)−

K∑

k=1

W−
k (z0, zk)X

D
k (zk, zk)W

+
k (zk, z0)

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
F

≤ σ. (3.3.16)

Note that the hat diacritic means that X̂D
rec,k(zk, zk) is in the time domain. The

optimization problem (3.3.16) yields focal subdomains X̂D
rec,k(zk, zk) with the small-



52 Focal deblending

est total sum norm, such that the total reconstruction misfit is bounded by σ. The
total reconstruction misfit is the constraint in (3.3.16) and uses the Frobenius norm
as a measure of distance.

It should be mentioned that defining the forward focal transform as in (3.3.16) is
not the only possibility. In fact, any definition that fulfills the following criterion
could be a candidate:

dist

(

P(z0, z0),

K∑

k=1

W−
k (z0, zk)X

D
k (zk, zk)W

+
k (zk, z0)

)

≤ µ <∞, (3.3.17)

for some choice of distance function dist (·, ·). Any number of additional constraints
may be placed on XD

k (zk, zk). The choice of the distance function, the value of µ
and additional constraints on the solution space are influenced by the application
for which the focal transform is to be used. Practical considerations, such as the
availability and computational cost of numerical solvers for the optimization problem
may also play a role in the decision.

The formulation (3.3.16) poses the forward focal transform as a basis pursuit de-
noising (BPDN) problem. It can be shown that after vectorization, (3.3.16) can be
rewritten in the form

xrec = argmin
x

{||x||1} subject to ||p−Φx||2 ≤ σ, (3.3.18)

which is an alternative formulation of the BPDN problem4 [van den Berg and Fried-
lander, 2008]. Here p and x are vectorizations of the data and focal subdomains,
respectively, in the time domain. Φ is a time-domain implementation of the inverse
focal transform. The proof can be found in Appendix A.

Basis pursuit denoising is a popular tool for signal processing applications [Chen
and Donoho, 1998; Sardy et al., 2001; Zhang et al., 2015]. Given measured data p

that is in some way non-ideal, e.g. corrupted by noise, undersampled etc. BPDN
produces an estimate

prec = Φxrec, (3.3.19)
that approximates the ideal version of the data,

pideal = Φxideal. (3.3.20)

The key assumption that BPDN makes is that for the chosen Φ

||xideal||1 < ||x||1 , ∀ x ̸= xideal, (3.3.21)

i.e. the ideal solution will have the smallest ℓ1-norm. The ℓ1-norm is used here as a
4The BPDN problem was introduced by Chen et al. [2001] in the form xopt =

argmin
x

{

||p−Φx||2 + λ ||x||1
}

. Here, I follow van den Berg and Friedlander [2008] and define
BPDN as in (3.3.18).
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Figure 3.8: Top row: focal subdomains when minimizing the sum-norm, a) first, b) second,
c) third focal subdomain. Bottom row: focal subdomains when minimizing the Frobenius-
norm, d) first, e) second, f) third focal subdomain. Using the sum-norm leads to a sparser
representation in the focal domain.

convex approximation to the ℓ0-pseudonorm5 [Donoho, 2006]. Both have the effect
of promoting sparse solutions [Foucart and Rauhut, 2017, Chapter 3.1], but solving

min
x
{||x||0} subject to ||p−Φx||2 ≤ σ, (3.3.22)

is known to be an NP-hard, combinatorial problem [Donoho, 2006], hence it is im-
practical for problems where x has many elements.

5The ℓ0-pseudonorm counts the nonzero elements of vector. Strictly speaking, it cannot be
called a norm, since ||ax||0 ̸= |a| ||x||0, when a ̸= 0, i.e. the absolute homogeneity property of a
norm is violated.
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Figure 3.9: Top row: a) original data, b) reconstructed data by minimizing the sum-norm,
c) difference between a) and b). Lower row: d) reconstructed data by minimizing the
Frobenius-norm, e) difference between a) and d). The original data is explained in both
cases.

Sparsity gives us a different way to interpret (3.3.21). Loosely speaking, it implies
that pideal can be composed by scaling and summing a few columns of Φ, unlike
corrupted versions p, which will require more. Thus, the ideal solution is assumed
to exist in a small subspace of the column space of Φ. The basis pursuit algorithm
discovers this subspace, which motivates its name. By restricting the subspace, it
discriminates against vectors

{x : ||p−Φx||2 < σ}, (3.3.23)
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i.e. solutions for x that explain the data with the required fidelity, but which are
less sparse and hence more likely to be corrupted. The parameter σ controls the
data misfit, for cases when it is not desirable to perfectly fit the input data p, e.g.
when p contains noise.

When strictly considering the problem of explaining P(z0, z0) in the focal domain, in
principle σ = 0 and there is no clear motivation for minimizing the sum-norm of the
focal subdomains, as in principle any solution is equally good, sparse or not. Figure
3.8 depicts slices of focal subdomains that where acquired by solving (3.3.16), as well
as a version of (3.3.16) where the sum-norm has been replaced with the Frobenius
norm. The sum-norm solution is indeed sparser, yet both solutions explain P(z0, z0)
equally well, as demonstrated in figure 3.9.

The preference for a sparsity promoting functional becomes more clearly motivated
when dealing with a corrupted version of P(z0, z0). The BPDN approach was pro-
posed by Kutscha [2014], with the objective of seismic data interpolation. In the
interpolation problem, the ideal data is corrupted by undersampling. The sum-
norm helps suppress aliasing artifacts in the focal subdomain, yielding an interpo-
lated result where aliasing effects are reduced. Similarly in the deblending problem,
unblended data is corrupted by blending and the sum-norm is instrumental in sup-
pressing blending noise in the focal domain. Section 3.5 discusses focal deblending
in more depth.

For solving (3.3.16) the spectral projected gradient L1 (SPGL1) solver is used [van den
Berg and Friedlander, 2007]. A summary of the algorithm can be found in appendix
B. An alternative formulation of focal deblending that uses a greedy solver can be
found in Cao et al. [2019]. Using a greedy solver was more efficient when it came to
number of iterations, at the cost of a slightly worse deblending result.

3.4 The multilevel single-sided focal transform

The double focal transform, as presented earlier, uses two one-way operators to
handle upgoing and downgoing wavefield extrapolation, from the surface to each
chosen depth level. Another possibility, which I explore here, is to use one two-way
operator that extrapolates from the surface to some depth level zk and back to the
surface. This implies that this new extrapolation operator must include scattering
in some form, unlike the case of the one-way operators. The concept of using two-
way operators is along the thinking found in Berkhout and Verschuur [2006] and an
application on focal deblending is described in Kontakis et al. [2016].
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3.4.1 The inverse transform

We begin again from WRW modeling:

P(z0, z0) = D(z0)

M∑

m=1

[W−
m(z0, zm)R(zm, zm)W+

m(zm, z0)]S
+(z0).

Setting D(z0) = I, R(zm, zm) = I and S+(z0) = XS
k (z0) for K depth levels we get

P(z0, z0) =

K∑

k=1

[W−
k (z0, zk)W

+
k (zk, z0)]X

S
k (z0)

=

K∑

k=1

W±
k (z0, z0)X

S
k (z0). (3.4.24)

W±
k (z0, z0) is perhaps the simplest possible two-way operator. It models propaga-

tion through a homogeneous halfspace, defined by a locally-reacting flat reflector at
zk with unit reflectivity everywhere. XS

k (z0) can be understood as a virtual source
array that generates a signal that propagates in the halfspace medium and gener-
ates a component of P(z0, z0). Apart from having a separate two-way operator, each
depth level is associated with a different virtual source array. The total P(z0, z0) is
given by summing all components. I shall refer to this form of the single-sided focal
transform as the source-side focal transform, since the subdomains XS

k (z0) take the
place of the source.

Choosing D(z0) = XR
k (z0), R(zm, zm) = I and S+(z0) = I yields another form of

single-sided focal transform,

P(z0, z0) =
K∑

k=1

XR
k (z0)[W

−
k (z0, zk)W

+
k (zk, z0)]

=

K∑

k=1

XR
k (z0)W

±
k (z0, z0). (3.4.25)

The two-way operator stays the same, but the virtual source array has been replaced
by impulses at the surface. The upgoing wavefield that arrives at the surface from
zk encounters a virtual receiver array XR

k (z0) that produces a wavefield component,
which when stacked with the other K − 1 components yields P(z0, z0). Using the
same naming convention, (3.4.25) will be referred to as the receiver-side single focal
transform.

The three focal subdomains aim to explain the components of P(z0, z0) from differ-
ent points of view (figure 3.10). In the double focal transform the subdomains explain
the signal via means of scattering, possibly in combination with residual propaga-
tion (for unfocused events). In other words, they encode action that conceptually
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Figure 3.10: Schematic representation of the different focal transforms, a) double focal
transform, b) single focal transform (source-side), c) single-focal transform (receiver side).
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takes place in the subsurface. On the contrary, both variants of the single-sided
focal transform encode action that conceptually happens at the surface. Due to
this reason, the content of focal subdomains may look quite different, depending on
which type was chosen. This can be illustrated by comparing the case of focusing
a flat-layer-reflection event (figure 3.11) with that of focusing a wavefield originat-
ing from a point diffractor (figure 3.12). For the case of the flat reflector focused
by accurate operators, the focal domains look similar (compare figures 3.11d-f with
3.11g-i). This is because the event recorded at the surface can be interpreted equally
well as a collection of individual diffractors placed at the same depth level (double
focal transform), or as the result of a point source at each shot location generating a
wavefield that reflects from a flat reflector, the scattering itself contained within the
transform operator (single-sided focal transform). The situation, however, changes
when it comes to focusing a single diffraction event. In this case the difference be-
tween the two transforms becomes apparent in the focal domain content (compare
figures 3.12d-f with 3.12g-i). As expected, the double focal transform focuses to a
single point, from which the diffraction is generated, as implied by figures 3.12d-f.
The content of the single-sided focal transform, shown in figures 3.12g-i, indicates
that an array of virtual sources is needed at the surface. Each source ‘emits’ its
estimated signature at a different time, synthesizing the diffraction event. These
two examples are stylized, but highlight the fact that the interpretation of the focal
domain content is different for the various definitions of the focal transform, despite
the fact that in certain cases the focal subdmains may look similar in appearance.

The focusing operation, which amounts to applying the adjoint operator W±
k (z0, z0)

H,
i.e.,

XXXS
k (z0) = W±

k (z0, z0)
HP(z0, z0) (3.4.26)

and

XXXR
k (z0) = P(z0, z0)W

±
k (z0, z0)

H (3.4.27)

reveals another important difference. In (3.4.26) the focusing operation is applied on
independent common shot gathers, that is columns of P(z0, z0). In (3.4.27) on the
other hand, it acts on independent common receiver gathers, i.e. rows of P(z0, z0).
Contrasting both of these cases, focusing under the double focal transform, as de-
scribed in the previous section,

XXXD
k (zk, zk) = W−

k (z0, zk)
HP(z0, z0)W

+
k (zk, z0)

H, (3.4.28)

involves both the columns and rows of P(z0, z0). The capability of independently
treating common shot and common receiver gathers is the basis behind the smart
subsets idea discussed in chapter 4.
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Figure 3.11: A reflection event from a flat layer and its representation in different focal
transforms. Top row: event to be focused; a) common shot gather, b) common receiver
gather, c) zero offset gather. Middle row: focal subdomain, double focal transform; d)
common focal grid point gather, e) common local offset gather, f) subsurface zero offset
gather. Bottom row: focal subdomain, single-sided focal transform (source-side); g) common
virtual shot gather, h) common receiver gather, i) zero offset gather.
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Figure 3.12: A diffraction event and its representation in different focal transforms. Top
row: diffraction to be focused; a) common shot gather, b) common receiver gather, c) zero
offset gather. Middle row: focal subdomain, double focal transform; d) common focal grid
point gather, e) common local offset gather, f) subsurface zero offset gather. Bottom row:
focal subdomain, single-sided focal transform (source-side); g) common virtual shot gather,
h) common receiver gather, i) zero offset gather.



3.5 Formulation of focal deblending 61

3.4.2 The forward transform

The forward transform is again given by solving an optimization problem. For the
source-side transform, the focal subdomains are given by

{

X̂S
rec,1(z1), X̂

S
rec,2(z2), . . . , X̂

S
rec,K(zK)
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≤ σ. (3.4.29)

For the receiver-side transform it predictably becomes,
{

X̂R
rec,1(z1), X̂

R
rec,2(z2), . . . , X̂

R
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}
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≤ σ. (3.4.30)

This concludes the discussion on the various forms of the focal transform, leading
to the next topic of applying the tools discussed so far for deblending purposes.

3.5 Formulation of focal deblending

Focal deblending [Kontakis and Verschuur, 2014] combines the blending equation,
introduced in chapter 2, with the focal transforms introduced earlier in this chapter.
The blending equation (2.2.11), rewritten for zr = zs = z0, becomes

Pbl(z0, z0) = P(z0, z0)Γ(z0). (3.5.31)

We assume that there exists a set of K focal subdomains XD
k (zk, zk), such that,

using the double focal transform,

P(z0, z0) =

K∑

k=1

W−
k (z0, zk)X

D
k (zk, zk)W

+
k (zk, z0). (3.5.32)

Plugging this into (3.5.31) yields

Pbl(z0, z0) =

K∑

k=1

[
W−

k (z0, zk)X
D
k (zk, zk)W

+
k (zk, z0)

]
Γ(z0). (3.5.33)
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Deblending then becomes a problem of solving for the focal subdomains XD
k (zk, zk),

rather than for P(z0, z0) directly. The purpose of this detour is to leverage focusing
and the sparse representation of seismic events in the focal domain to discriminate
against solutions that contain blending noise. The assumption being made here is
that solutions X̂D

debl,k(zk, zk) that are free of blending noise are sparser than those
that include it. We promote such sparse solutions by solving the BPDN problem
{

X̂D
debl,1(z1, z1), X̂

D
debl,2(z2, z2), . . . , X̂

D
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}
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∣
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∣
F

≤ σ. (3.5.34)

Extracting the deblended wavefield amounts to inverse transforming the focal sub-
domains, i.e.

Pdebl(z0, z0) =

K∑

k=1

W−
k (z0, zk)X

D
debl,k(zk, zk)W

+
k (zk, z0). (3.5.35)

Unlike the case of the forward focal transform as defined in (3.3.16), the motiva-
tion for using a sparsifying functional such as the sum-norm is clear here, as it is
what enables blending noise suppression. This can be easily demonstrated with an
example, shown in figure 3.13. When the Frobenius norm is used in the objective
function (figure 3.13b), blending noise is not suppressed effectively in the focal do-
main, which means that it will be inevitably present in the deblended result. On
the other hand, the sum-norm solution (figure 3.13c) effectively suppresses most of
the blending noise in the focal domain, leading to a cleaner result.

The vectorized form of (3.5.34) is given by

xdebl = argmin
x

{||x||1} subject to ||pbl −ΨΦx||2 ≤ σ, (3.5.36)

where pbl and xdebl are the vectorized blended data and deblended focal subdomain
data cubes. Ψ is a matrix that carries out the blending operation. This form of
the problem highlights the compressive sensing nature of the problem, where Ψ acts
as a measurement matrix, the inner product of each row with y = Φx generating
a blended sample. As before, Φ plays the role of a sparsifying dictionary. The
relationship between (3.5.34) and (3.5.36) is explored in more detail in appendix A.

Deblending results can be often improved by taking advantage of the structure found
in the focal subdomains. Focused events tend to have the majority of their amplitude
concentrated near the origin in a time and offset coordinate system. Content away
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Figure 3.13: Comparison of deblending results when using different norms in the objective
function of problem (3.5.34); a) unblended data, b) deblended result when using the Frobenius
norm, c) deblended result when using the sum-norm, d) pseudo-deblended data, e) difference
between unblended data and the Frobenius result, f) difference between unblended data and
the sum-norm result. The sum-norm suppresses most of the blending noise. A modified
version of the SEAM overthrust model discussed in section 4.1 was used to generate the
synthetic data for this example.
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from the origin is more likely to represent blending noise, or uncompressed events
to be handled in other focal subdomains. By penalizing amplitudes away from the
origin, more blending noise can be suppressed in the solution.

A straightforward way to include such a penalizing scheme is to replace the sum-
norm in (3.5.34) with a weighted sum-norm, i.e. ||X̂D

k (zk, zk)||S is replaced by
||L̂k ⊙ X̂D

k (zk, zk)||S. L̂k is the cube array of weights to be applied to the k-th focal
subdomain and ⊙ is the Hadamard product (element-by-element multiplication).
For the vectorized form of the problem, ||x||1 in problem (3.5.36) is replaced by
||Λx||1, where Λ is a diagonal matrix that holds the weights.

-0.6 -0.4 -0.2 0 0.2 0.4

x
1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

x
2

Figure 3.14: Using a weighted ℓ1-norm in a BPDN problem may lead to a more desired
solution.

The goal of BPDN is to find a solution with minimal ℓ1-norm. This is equivalent
to finding the ℓ1-ball with minimal radius which touches the translated nullspace
of ΨΦ. An example with two variables is given in figure 3.14. The weights di-
late/contract the shape of the ℓ1-ball along the various dimensions, which leads to
different solutions that may be more preferrable. These weights provide an addi-
tional way to bring in prior knowledge about the desired solution. An example is
illustrated in figure 3.15. The same dataset as the one used in figure 3.13 was blended
with a blending factor equal to 4. Two deblended results were calculated, the first
using the unweighted sum-norm and the second using a weighted sum norm with
radially increasing penalty centered at zero time/zero local offset. The weights can
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Figure 3.15: a) Pseudo-deblended data, b) deblended using the unweighted sum-norm, c)
deblended using the weighted sum-norm, d) the weights used for the sum-norm (darker
color denotes higher penalty), e) difference of b) from the ideal result (clipped), f) difference
of c) from the ideal result (clipped).
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be seen in figure 3.15d. Comparing the difference of the deblended results from the
ideal unblended data shows less blending noise leakage when the weighted sum-norm
is used. The downside of using weighting is that it can have the opposite effect of
hampering the result when the assumptions about the structure of signal and noise
in the focal domain are not met.

3.6 Sparsity and blending noise leakage

The deblending process is usually not perfect, leading to separated wavefields that
suffer from various degrees of blending noise leakage. This raises two important
questions, namely what are the causes of imperfect separation and under which
conditions is the deblending result perfect. In this section I discuss two main sources
of separation errors. The first is related to the limited range of the focal operators.
The second is related to the sparsity assumption used in the deblending process.

3.6.1 Blending noise leakage due to the limited range of focal operators

When using a dictionary Φ, writing

p = Φx (3.6.37)

implies that the unblended data p can be expressed as a linear combination of the
atoms of the dictionary Φ. Or, in other words, we assume that p is in the range
of Φ. If Φ forms a frame or basis for all possible p, then (3.6.37) will always hold.
It is possible, however, that Φ does not span the entire space of possible p vectors.
In that case, there does not exist an x such that (3.6.37) holds and one can only
hope for an acceptable approximation. It will be shown below that this can create
the additional problem of blending noise leakage. This will be demonstrated in two
steps. The first step is to show that when Φ implements the focal transform, there
exist p that cannot be fully reconstructed. The second step is to show that the
component of p that cannot be reconstructed may become the source of blending
noise contamination in a deblending problem.

For the first step, I begin with a continuous form of the inverse double focal trans-
form. As was the case previously, I assume M focal operators that represent one-way
extrapolation in a homogeneous, acoustic, isotropic medium between the surface and
a flat layer in the subsurface. Then, the value of the field at r by a source at s at
frequency ω, is given by

p(r, s;ω) =
M∑

m=1

+∞∫∫

−∞

w−
m(r,u′;ω)xm(u′,u, ω)w+

m(u, s;ω)du′du, (3.6.38)
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where w∓
m(r,u′;ω) are the focal operators and xm(u′,u, ω) is the focal subdomain.

Since the value of the focal operators depends only on the differences r − u′ and
u − s, (3.6.38) is in fact a linear convolution,

p(r, s;ω) =

M∑

m=1

+∞∫∫

−∞

w−
m(r − u′;ω)xm(u′,u, ω)w+

m(u − s;ω)du′du. (3.6.39)

Applying the Fourier transform with respect to the spatial coordinates and using
the convolution theorem for the Fourier transform gives equation (3.6.39) in the FK
domain,

p̌(kr,ks;ω) =

M∑

m=1

w̌−
m(kr;ω)x̌m(kr,ks;ω)w̌

+
m(ks;ω), (3.6.40)

where kr and ks are wavevectors with ||kr||2 = ||ks||2 = ω/cm, cm being the acoustic
velocity of the m-th propagator. The quantities w̌∓

m(k{r,s};ω) and x̌m(kr,ks;ω) are
the Fourier-transformed versions of w∓

m({r, s};ω) and xm(u′,u, ω) respectively:

w̌−
m(kr;ω) =

+∞∫

−∞

w−
m(r;ω)ejkr·rdr, (3.6.41)

w̌+
m(ks;ω) =

+∞∫

−∞

w+
m(r;ω)ejks·sds, (3.6.42)

x̌m(kr,ks;ω) =

+∞∫∫

−∞

xm(u′,u, ω)ej(kr·r+ks·s)du′du. (3.6.43)

Let
k{r,s},z =

√

ω2/c2m − k2{r,s},x − k2{r,s},y (3.6.44)

be the vertical z-component of k{r,s} and

k{r,s} = [k{r,s},x, k{r,s},y, k{r,s},z]
T, (3.6.45)

for 3D propagation. In the 2D case either the x- or y-component vanishes. For a
homogeneous acoustic medium,

w̌∓
m(kr;ω) = e−jk{r,s},z|zm−z0|. (3.6.46)

Using (3.6.44), (3.6.46) and (3.6.40),

p̌(kr,ks;ω) =

M∑

m=1

e−jkr,z|zm−z0|e−jks,zzx̌k(kr,ks;ω)
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=
M∑

m=1

e−j
√

(ω/cm)2−(k2
r,x+k2

r,y)|zm−z0|

× e−j
√

(ω/cm)2−(k2
s,x+k2

s,y)|zm−z0|x̌m(kr,ks;ω). (3.6.47)
Note that when either k2r,x + k2r,y > ω2/c2m or k2s,x + k2s,y > ω2/c2m, the exponent
becomes a negative real number. For wavenumbers above a cutoff given by ω/cm,
the focal operator becomes evanescent. Plane waves with associated wavenumbers
above the cutoff are not extrapolated by the operator. They are exponentially at-
tenuated instead, the rate depending on zm and ω. Figure 3.16 shows an example

Wavenumber k
x
 (m

−1
)

F
re

q
u

e
n

c
y
 (

H
z
)

−0.4 −0.2 0 0.2 0.4

0

20

40

60

−0.4 −0.2 0 0.2 0.4
0

2

4

6

8

Wavenumber k
x
 (m

−1
)

M
a

g
n

it
u

d
e

1 1

2

1 1

2

Figure 3.16: Left: Magnitude of the FK spectrum of a focal operator for different values of
frequency and wavenumber kx. Right: The magnitude of the operator at 20 Hz. The marks
1 and 2 denote the evanescent and propagating parts of the spectrum, respectively.

of a 2D focal operator for z = 30 m and c = 1500 m s−1. As can be clearly seen,
the magnitude of the operator tends quickly to 0 after the cutoff wavenumber. Al-
though the magnitude technically never becomes zero except at infinity, in practice
the value quickly becomes too small to be represented with finite precision arith-
metic. Essentially the focal operator acts as a lowpass filter in the FK domain, the
evanescent part acting as the stopband of the filter. This gives the focal operators
a nullspace: any seismic event composed of plane waves with wavenumbers kw that
satisfy

kw > ω/min{{c1, c2, . . . , cM}}, (3.6.48)
is not in the span of the focal operators. In other words, the span of the focal
transform as a whole is limited by the focal operator with the lowest velocity.

If care is not taken, this bandwidth limitation can affect the reconstruction of certain
events, such as slow direct waves. Figure 3.17 shows such an example. Figures
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3.17a and 3.17b show the same synthetic data in the TX and the FK domain.
Reconstructed data using erroneous velocities for the focal operators are shown in
figures 3.17c and 3.17d. Figures 3.17e and 3.17f show the differences. Because the
velocity used for the ‘slowest’ focal operator was higher than that of the direct wave,
the direct wave was not reconstructed.

Apart from inability to reconstruct certain seismic events, the limited range of the
focal operators can pose an additional problem when used in a deblending setting,
which leads us to the second part of the discussion. Here the assumption is made
that Γ(z0) implements a random time delay code, that every shot participates in
one blended shot gather and that each blended shot gather is the result of blending
at least two shot gathers. I also define the blending-noise operator,

N(z0) ≡ (Γ(z0)Γ(z0)
H − I)Λ(z0), (3.6.49)

a modified version of the pseudo-deblending operator, Γ(z0)Γ(z0)
H. Due to the

fact that the diagonal elements of N(z0) are equal to zero for every frequency slice,
the product P(z0, z0)N(z0) produces only the blending noise component. This is
unlike pseudo-deblending, which produces a mixture of both data and blending noise.
Each frequency slice of Λ(z0) is the same diagonal matrix. Its purpose is to apply a
normalization on the columns of Γ(z0)Γ(z0)H − I that accounts for the potentially
different number of unblended shot gathers summed to produce a given blended shot
gather. The proper definition of Λ(z0) can be found in appendix C. An important
property of N(z0) as defined above is that

N(z0)Γ(z0) = Γ(z0). (3.6.50)

The proof of this property is also contained in appendix C.

For a given unblended data P(z0, z0) and a definition of the focal transform, we can
split P(z0, z0) as the sum of two components,

P(z0, z0) = PR(z0, z0) +PR̄(z0, z0). (3.6.51)

PR(z0, z0) is the component which is in the range of the focal transform and
PR̄(z0, z0) is the component which isn’t. Although by assumption PR̄(z0, z0) itself
cannot be reconstructed by the focal transform, it could be that the blending noise
associated with it, PR̄(z0, z0)N(z0) is in the range of the focal transform. When
that is the case, there exist XD

R,0(z0, z0) and XD
N,m(zm, zm) such that

PR(z0, z0) =

M∑

m=1

W−
m(z0, zm)XD

R,m(zm, zm)W+
m(zm, z0),

PR̄(z0, z0)N(z0) =

M∑

m=1

W−
m(z0, zm)XD

N,m(zm, zm)W+
m(zm, z0). (3.6.52)
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Figure 3.17: Reconstruction using the focal transform: the original synthetic data in the a)
TX domain, b) FK domain; the reconstructed data in the c) TX domain, d) FK domain; the
difference of the original from the reconstructed data in the e) TX domain, f) FK domain.
Indicated with red arrows is the part of the direct wave that has not been reconstructed.
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I also define

P′(z0, z0) = PR(z0, z0) +PR̄(z0, z0)N(z0). (3.6.53)

Note that because N(z0) ̸= I, P′(z0, z0) ̸= P(z0, z0). It is now easy to show that
P′(z0, z0) also satisfies the blending equation,

P′(z0, z0)Γ(z0) = [PR(z0, z0) +PR̄(z0, z0)N(z0)]Γ(z0)

= PR(z0, z0)Γ(z0) +PR̄(z0, z0)N(z0)Γ(z0)

= PR(z0, z0)Γ(z0) +PR̄(z0, z0)Γ(z0)

= [PR(z0, z0) +PR̄(z0, z0)]Γ(z0)

= P(z0, z0)Γ(z0)

= Pbl(z0, z0). (3.6.54)

The above discussion can be summarized as follows. When using the focal transform,
the deblended answer can never be the desired P(z0, z0), assuming PR̄(z0, z0) ̸= 0.
This is because in that case Pbl(z0, z0) ̸= PR(z0, z0)Γ(z0). On the contrary, the
noise-containing P′(z0, z0) does satisfy the blending equation, and as such is a can-
didate solution as long as a) PR̄(z0, z0)N(z0) is in the range of the focal transform
and b) additional constraints do not prohibit it. From these we can conclude that
PR̄(z0, z0) can only be explained as blending noise. Due to the wideband nature
of blending noise in the FK domain, usually only part of PR̄(z0, z0)N(z0) will be
within the range of the focal operators. In that case, only the part that is within
the range will be explained and the rest will stay in the residual, i.e. the difference
between the observed blended data and the reblended inversion result.

This type of blending noise leakage is not particular to focal deblending. In principle
it can occur in any method that cannot fully explain the unblended data. That being
said, the filtering action of the focal operators also has a positive effect: any blending
noise which is outside of the ‘propagation cone’ of the focal operator cannot be part
of the solution, therefore, it can only be explained as signal or stay in the residual.

Figure 3.18 shows an example of blending noise leakage. The input data and focal
operators used are the same as those of the reconstruction experiment discussed
earlier. The blended data can be seen in the TX and FK domains in figures 3.18a
and 3.18b. The deblending result shown in figures 3.18c and 3.18d shows a positive
consequence of the filtering effect of the focal transform. Blending noise outside
that falls in the evanescent region of the operator does not become part of the
deblended result. On the other hand though, the deblended result is not completely
noise-free, as can be witnessed in figures 3.18e and 3.18f. This noise is within the
propagating part of the focal operator and corresponds to part of the blending noise
representation of the direct wave. As the direct wave cannot be reconstructed, the
only way to remove its contribution to the residual is to explain it as blending noise,
which leads to the bandpass-filtered blending noise seen in figure 3.18f.
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Figure 3.18: Deblending using the focal transform: blended synthetic data in the a) TX
domain, b) FK domain; the deblended data in the c) TX domain, d) FK domain; the
difference of the deblended and unblended data in the e) TX domain, f) FK domain. The
red arrows point at blending noise leakage.
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If the inability to explain the direct wave is the sole reason blending noise leaks into
the result shown in figures 3.18c,d, we would expect that absence of the direct wave
would lead to absence of blending noise in the result. To verify this, the deblending
experiment is repeated with a small modification: the data is blended after filtering
out the direct wave. The same blending code is used as well as the same deblending
parameters. The blended data and their FK spectrum are shown in figure 3.19a and
3.19b. The deblended result in 3.19c,d shows hardly any visible blending noise, a
fact that is verified by the difference plots in figures 3.19e,f. In this particular case,
it was possible to achieve good separation as long as all data could be explained
by our choice of transform domain. This is not always possible, however, as good
separation will depend on how sparse is the focal domain representation of the result.
This source of blending noise leakage is explored in the following section.

3.6.2 Blending noise leakage and the sparsity assumption

By casting deblending as a BPDN problem, I have made the assumption that out of
all possible solutions to the blending equation, the one that is free of blending noise
will have the minimum ℓ1-norm. The ℓ1-norm was used as a convex approximation
to the ℓ0-norm to make the optimization problem computationally tractable. In this
sense, the value of the ℓ1-norm of the solution is used as a proxy for measuring the
sparsity of the solution. One may wonder whether the ideal result having minimum
ℓ1-norm is a property that is affected by how sparsely this ideal deblended result is
expressed in terms of atoms of Φ.

To get a feeling for the answer, the following numerical experiment is performed.
First, the forward focal transform of a dataset is calculated. The focal subdomain
is then thresholded such that all elements of the focal domain are set to zero except
the N elements with the highest magnitude. The thresholded focal domain is then
inverse transformed, yielding our new input data, and the result is blended and
deblended. The quality of the result is measured using the metric (2.4.25). The
process is repeated for successively larger values of N .

Figure 3.20a shows the deblending quality versus the ratio of nonzero focal domain
elements to the number of blended samples. The quality is over 30dB for a ratio of up
to approximately 10% and gradually drops as the ratio becomes bigger. Clearly the
deblended result is closer to ideal unblended result the more sparsely the ideal result
can be represented in the focal domain. Figure 3.20b shows a comparison between
the ℓ1-norm of the ideal solution and the ℓ1-norm of the deblended solution. As
the ratio of nonzero focal domain elements to number to blended samples increases,
the ℓ1-norm of the deblended solution starts becoming noticeably lower than that of
the ideal solution. Progressively, the assumption of minimum ℓ1-norm for the ideal
solution becomes less realistic and the recovered solution moves further away from
the ideal one.
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Figure 3.19: Deblending experiment when the direct wave is filtered out: blended synthetic
data in the a) TX domain, b) FK domain; the deblended data in the c) TX domain, d) FK
domain; the difference of the deblended and unblended data in the e) TX domain, f) FK
domain. As the direct wave is absent, so is the blending noise leakage associated with it.
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Figure 3.20: a) Deblending quality versus decreasing sparsity, b) comparison of the ℓ1-norm
of the deblended focal domain against the ℓ1-norm of the ideal result

A question that arises naturally then, is under which conditions can we expect exact
recovery of unblended data, when using basis pursuit methods. This problem has
been studied extensively and multiple criteria for exact recovery have been proposed.
They link certain properties of A to the maximum number of nonzero elements a
solution x can have (i.e. ||x||0) and still be perfectly recovered. Examples of such
properties are matrix coherence [Donoho and Elad, 2003; Gribonval et al., 2008],
the restricted isometry property [Candès and Tao, 2005, 2006] and the nullspace
property [Cohen et al., 2009]. Using such criteria to provide perfect separation
guarantees for focal deblending is, unfortunately, not a very fruitful approach. To
demonstrate this, I focus on the low matrix coherency criterion for exact recovery.

The coherence µ(A) of a matrix A is defined as follows [Donoho and Elad, 2003;
Tropp, 2004]:

µ(A) = max
1≤i ̸=j≤N

{ |aH
i aj |

||ai||2 ||aj ||2

}

. (3.6.55)

In other words, it is the maximum off-diagonal element of |ĀHĀ|, where Ā is A
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with its columns scaled such that they have unit ℓ2-norm. The coherence criterion
for exact recovery is given by [Donoho and Elad, 2003; Tropp, 2004]

||x||0 <
1

2

(
1 + µ(A)−1

)
. (3.6.56)

As long as the representation of the ideal unblended data in the focal domain sat-
isfies (3.6.56), it is a unique solution and basis pursuit should find it. Matrices A

with lower coherence are preferable, as they allow for exact recovery of less sparse
solutions. It should be noted that (3.6.56) guarantees recovery of any n-sparse so-
lution (n = ||x||0), without imposing any particular structure on nonzero elements
of x.

Calculating µ(A) for focal deblending can be a daunting task as it entails calculating
the inner product of all unique combinations of two atoms, from a dictionary of
millions of atoms. For our purposes it suffices to examine a small subset of atoms.
I extract a two sets of atoms. The first atom of the first set is generated by setting
a focal subdomain equal to a Kronecker delta function, taking the inverse focal
transform and blending the result. For the rest of the atoms of the first set, the
Kronecker delta is shifted in time in steps of δt = 4 ms and the same process
is repeated. For the second set of atoms, the Kronecker delta is shifted in space
instead, in steps of δx = 2.5 m. Note that these shifts are related to the focal
domain sampling in time and space and not to blending shifts and source/receiver
spacing. In both cases, I calculate the inner product of the first atom of each set with
the rest of the elements of the same set. The single-sided focal transform (source
side) was used, defined by one focal subdomain with velocity c = 1489 m s−1 and
depth z = 410 m. The results can be seen in figure 3.21.

The first value in both plots is equal to 1, as it is the inner product of an atom with
itself. These are not taken into account when calculating µ(A). For the rest of the
values, the is a noticeable difference between the time and the space case, the latter
tapering off much slower than the first. This implies that the atoms of the space set
are closer to being collinear with the first atom of the second set. From a geometrical
point of view, it is easy to see why this is the case. Two spatially proximal points
in the focal domain generate events with almost coinciding traveltimes, especially
around the apex location. These events are then blended, which produces the atoms
of the dictionary. These atoms will be almost identical and hence have a large inner
product. Two nearby points in time, on the other hand, will lead to atoms that
are also shifted in time relative to each other. Owing to the high bandwidth of the
generated events, the overlap between two atoms is very little, even for small shifts,
leading to low values for the inner product.

The largest value for the inner product of two different atoms in figure 3.21 is 0.93.
Plugging into (3.6.56) we get that

||x||0 < 1.037. (3.6.57)
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Figure 3.21: a) Normalized inner products of atoms that correspond to focal domain elements
close in time, b) normalized inner products of atoms that correspond to focal domain
elements close in space.

must hold for exact recovery. Essentially this means that there are no practical
guarantees regarding exact recovery, due to the high coherence of A that stems
from the physics of wave propagation. That being said, a deblending result can be
useful even if the wavefield separation is not perfect and a basis pursuit approach
can still be very effective in blending noise removal, as will be seen in the field data
examples of chapter 6. It is interesting to note that exact recovery criteria have
been used to aid acquisition design, by exploiting the fact that there is often some
freedom in designing the measurement matrix Ψ. The design can be optimized to
maximize signal recoverability, given a known Φ. Such an approach was proposed
in Campman et al. [2017].
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4

Dealing with 3D acquisition using smart
subsets

4.1 Motivation

The forward double focal transform, as introduced in chapter 3.3, maps the en-
tire data cube P(z0, z0) to its focal representation. In principle, every trace is in-
volved in the calculation. For the ideal, aliasing-noise-free case, the wavefield stored
in P(z0, z0) should be well-sampled in both source and receiver (x, y)-dimensions,
which implies carpet coverage of the acquisition area with sources and receivers.
Although having such a densely sampled wavefield available is desirable from a pro-
cessing point of view, the associated data acquisition costs are prohibitive, at least
for exploration purposes. What happens in practice is that one of the source or
receiver dimensions is subsampled compared to the other, as a result of a tradeoff
between acquisition cost, processing requirements. In some cases terrain difficulties
(e.g., presence of offshore platforms), or limitations of the acquisition setup (e.g.,
maximum cable length in streamer acquisition) place limits on how the wavefield is
to be sampled. In cases of severe undersampling of the source or receiver dimen-
sion, one of the single-sided variants of the focal transform may be better suited for
deblending.

In this chapter I investigate the idea of deblending independently subsets of the 3D
data. The subsets and type of focal transform are tailored to the type of acquisi-
tion. Here I discuss the cases of towed streamer [Kontakis and Verschuur, 2016] and
OBN acquisition [Kontakis and Verschuur, 2017a]. The synthetic data used in the
examples were produced using 3D acoustic finite-difference modeling on a 5 km×5
km×2.5 km volume extracted from the SEAM overthrust model, on which a 300
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m water layer was prepended. The density model was generated from the velocity
model using Gardner’s relation. Two slices of the velocity model are shown in figure
4.1.
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Figure 4.1: Two slices of the compressional velocity model used for the synthetic examples
shown in this chapter. a) A y-slice of the velocity model at y = 2.7 km; b) an x-slice of the
velocity model at x = 2 km.

4.2 The streamer case

Multi-streamer acquisitions, such as the one shown in figure 4.2, are 3D and are char-
acterized by a combination of relatively a well-sampled inline direction and a more
coarsely-sampled crossline direction. Depending on how deblending is performed,
the crossline dimension may require on-the-fly interpolation to combat undersam-
pling. Even when interpolation can be avoided, processing all the data jointly can be
a considerable computational burden, given the amount of convolution/correlation
operations involved in carrying out the focusing/defocusing steps. Fortunately, we
can take advantage of good inline sampling, by treating the full 3D problem as a
set of pseudo-2D problems, each involving a single streamer and multiple vessels
shooting in a blended fashion.

This modification converts the problem into a pseudo-2D problem, in which every
streamer is handled independently. The receivers on a particular streamer along
with the shot locations define a set of midpoints that can be used to construct a
set of focal grid points. For the acquisition in figure 4.2, two separate grids are
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Figure 4.2: Wide azimuth streamer acquisition. The red x symbols represent shots carried
out by two vessels, marked 1 and 2, respectively. Streamers are depicted as black lines. The
streamer indicated by the blue arrow together with the shots from the two vessels forms the
subset that will be deblended. The points in green define two focal grids.

used, each with their own associated focal subdomains and focal operators, centered
around the subset midpoints. The purpose of each focal subdomain is to explain the
wavefield created by each of the sources. Confining the grids to lie around midpoints
reduces the number of arithmetic operations needed for applying the focal operators,
but comes at the cost of reduced focusing for reflections that do not originate from
locations close to the midpoints at each chosen depth level. This happens because
the moveout of the focusing operators will not match as closely the moveout of events
away from the focusing points, due to cross-line variations in the medium.

In general, when using ngr grids, the deblending problem for each of the streamer
subsets becomes

min
X̂D

k,j(zk, zk)

k=1,...,K
j=1,...,ngr
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t
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∑

ω
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∣
∣
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bl (z0, z0)−
[
P1(z0, z0), . . . , Pngr(z0, z0)

]
Γstr(z0)

∣
∣
∣
∣
F
≤ σ, (4.2.1)

with

Pj(z0, z0) =

K∑

k=1

W−
k,j(z0, zk)X

D
k,j(zk, zj)W

+
k,j(zk, z0). (4.2.2)
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Here Pstr
bl (z0, z0) is the blended data recorded by the selected streamer and Γstr(z0)

the part of the blending operator that produces it from unblended data. Pj(z0, z0)
is the data synthesized by defocusing the focal subdomains associated with the j-th
grid, XD

k,j(zk, zj), k = 1, 2, . . . ,K, followed by stacking the defocused data cubes.
The j-th grid also has related focal operators W−/+

k,j (z0, zk) for each of the K depth
levels.

For the example in figure 4.2, the sail line consists of 11 streamers, with a crossline
spacing of 100 m. Each streamer has 50 receivers with 25 m inline spacing, for a
total streamer length of 1.25 km. A total of 50 blended shot gathers are acquired,
approximately every 25 m. The airguns fire with random time delays ranging from
0 s to 0.5 s, in a blended fashion. Three common receiver gathers of unblended and
pseudo-deblended data can be seen in figure 4.3a and 4.3b, respectively.

Deblending is done using the two focal grids depicted in figure 4.2. The spacing
used is 25 m along both the inline and crossline axes. Each grid covers an area of
approximately 300 m×5350 m. Local subsurface offsets extend from -3 km to +3
km along the axis parallel to the streamers. Seven focal operators were constructed
with velocities ranging from 1493 m s−1 to 1621 m s−1, and depths ranging from 300
m to 2023 m. The number maximum number of SPGL1 iterations was set to 1000.
Three deblended common receiver gathers and the difference from the unblended
data can be seen in figures 4.4a and 4.4b, respectively. The gathers correspond to
those of figure 4.3. Traces from the first, third and fifth focal subdomain are shown
in figures 4.5a-c. While some amount of compression can be observed, it is likely
that the focal grids do not have enough extent, or are not optimally placed, to be
able to adequately explain the strong seabed multiples that dominate the input data.
This can then lead to the increased amount of blending-noise leakage seen in this
result.

Since in this particular case the residual was nonzero, it was pseudo-deblended and
added back to the deblended result,

Pstr
debl+res(z0, z0) = Pstr

debl(z0, z0) +Pstr
res(z0, z0)Γ

str(z0)
H, (4.2.3)

where

Pstr
res(z0, z0) = Pstr

bl (z0, z0)−Pstr
debl(z0, z0)Γ

str(z0) (4.2.4)

is the residual. This is a commonly used method to add back coherent energy that
may have remained in the residual, usually at the cost of also increasing the amount
of blending noise in the result. This can be partially mitigated by also doing some
extra denoising before adding back. For the result shown here, the signal-to-blending
noise ratio after deblending and adding back the residual becomes 17.9dB.
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Figure 4.3: Three common receiver gathers showing a) unblended and b) pseudo-deblended
data. The shots originate from the airgun of vessel 1 (left side) and vessel 2 (right side),
respectively.
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Figure 4.4: Three common receiver gathers showing a) deblended data, b) difference of
deblended from unblended data. The shots originate from the airgun of vessel 1 (left side)
and vessel 2 (right side), respectively.
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Figure 4.5: Traces from a) the first, b) the third, c) the fifth focal subdomain. The traces on
the left (right) side correspond to points and local offsets of the first (second) focal grid.
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4.3 The OBN case

In OBN acquisitions the few receiver nodes are installed at the seabed, usually in a
sparse arrangement. One or more sources are towed by a vessel and are activated at
regular intervals. Source sampling is typically much denser than receiver sampling.
The relatively small number of receivers means that when applying focusing using
the double focal transform, the receiver dimension does not contribute significantly,
and will produce strong aliasing artifacts. Instead of applying a version of focal
deblending that operates on the entire dataset, an alternative idea is to deblend
each common receiver gather independently and use the single-sided focal transform
(3.4.24). Parallelization with respect to receiver gathers becomes then trivial and a
smaller problem has to be solved for each gather. No modification to the blending
operator is needed, since it acts on independent receiver gathers. The deblending
problem for each individual receiver at location r becomes

min
X̂S

k (z0)
k=1,...,K

{
∑

t

K∑

k=1

∣
∣
∣

∣
∣
∣X̂

S
k (z0)

∣
∣
∣

∣
∣
∣
S

}

subject to

∑

ω

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
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k=1

w±
r,k(zsb, z0)X

S
k (z0)Γ(z0)

∣
∣
∣
∣
∣

∣
∣
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∣
∣
F

≤ σ. (4.3.5)

Here zsb is the depth of the seabed, pr(zsb, z0) is the common receiver gather for
the receiver at r (i.e. a row vector) and w±

r,k(zsb, z0) (also a row vector) is a two-
way propagator that generates the upgoing wavefield recorded by the receiver, after
reflection of the downgoing wavefield (produced by each virtual source in XS

k (z0))
by flat reflector at zk. The lowercase forms pr(zsb, z0) and w±

r,k(zsb, z0) are used
here to highlight that the data misfit is over a single common receiver gather.

For this example, a racetrack-type OBN acquisition is simulated using the model
described in chapter 4.1. The scenario that is simulated is that of two vessels that
carry sources that are activated independently. The trajectories of the two vessels
and the shot locations are depicted in figure 4.6. Each boat moves at an average
speed of 2.5 m s−1 and fires a shot every 10 s with an additional random time delay
between 0 s and 2 s. The average spacing between shots is 27.5 m and the inter-
racetrack spacing is approximately 25 m. Using two boats may increase the overall
cost of the acquisition but it speeds it up by a factor of 2, which may be desirable
when there is a very small time window for the acquisition to take place, e.g., when
an area is very busy or when weather conditions are not favorable.

Figure 4.7a shows 500 traces of common receiver data modeled for the receiver at
(2km, 2.7km), marked by a green inverted triangle in figure 4.6. The corresponding
pseudo-deblended data is shown in figure 4.7b.

For the deblending procedure a focal grid must be defined. For this example, a
rectangular grid is used, with a spacing of 25 m both in the x- and y-dimensions. The
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Figure 4.6: Racetrack acquisition at the surface. Blue (red) dots represent shots carried
out by the first (second) boat. Inverted triangles denote receiver nodes. The green triangle
defines the data subset to be deblended. The magenta points denote the focal grid.

grid covers the acquisition area covered by the first vessel, which is approximately 3.4
km×4 km. Four focal operators are used, with velocities in the range from 1500 m
s−1 to 2250 m s−1 and depths from 450 m to 1000 m. These were designed with the
purpose of approximately focusing the seabed reflection and the strongest associated
surface-related multiples. Figure 4.9 shows part of the focal domain content. Using
the single-sided focal transform changes the nature of the focal domain, which then
functions more as a collection of source arrays.

The deblending result and the corresponding difference from the unblended data are
shown in figures 4.8a and 4.8b, respectively. The incoherence of the blending noise in
common receiver gathers allows the suppression of most of the blending noise, even
when treating receivers separately. The separation is not perfect however; this is
likely a combination of insufficient focusing and the focal operator range limitations
of the focal operators discussed in chapter 3.6. Insufficient focusing, in particular,
can be the result of the approximate velocity model used, but also of the fact that
in this example only a subset of the data contributes in the focusing calculations.
The signal-to-blending-noise ratio after deblending for this example is 20dB.
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Figure 4.7: a) Data modeled at the receiver location marked in green in figure 4.6, b) the
corresponding pseudo-deblended data.
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Figure 4.8: a) Deblended data, b) difference from corresponding unblended data.
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Figure 4.9: Traces from a) the first, b) the second, c) the fourth focal subdomain. Note
that the focal subdomains here exhibit a different character compared to those of from the
streamer example. This is due to the fact that a different kind of focal transform was used
for this example.



5

Hybrid deblending solutions

5.1 Motivation

In section 3.6.1 I identified a potential challenge for focal deblending. Focal operators
are linear operators that in practice have a limited span. As I demonstrated in
section 3.6.1, this can lead to additional blending noise leakage into the deblended
wavefields. In this chapter I investigate a possible remedy for this problem, which is
to combine the focal transform with the fast discrete curvelet transform [Kontakis
and Verschuur, 2017b]. A similar approach using the linear Radon transform can
be found in Kontakis and Verschuur [2015]. The crucially important property of the
particular flavor of curvelet transform used here is that, unlike the focal transform,
it is a unitary isometry. Although this property alone does not guarantee perfect
deblending, it at least guarantees that the whole wavefield can be explained. The two
transforms have atoms with different shapes and act in a complementary fashion. As
the atoms of the focal transform have a hyperbolic shape, describing a linear event,
such as a direct wave, needs a superposition of many individual atoms. Curvelets,
on the other hand, can describe such events more efficiently. The advantages and
disadvantages of a hybrid approach are further discussed in this chapter.

5.2 The curvelet transform

The curvelet transform borrows from multiscale analysis the idea of representing a
signal as a combination of features that manifest themselves at different scales. Its
second major characteristic is that most curvelet elements have have a well-defined
orientation in 2D or 3D space. They were first introduced by Candes and Donoho
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[2000], and since then a family of variants and different numerical implementations
has emerged. The variant used here for the focal-curvelet hybrid deblending algo-
rithm is the fast discrete curvelet transform (FDCT) through frequency wrapping,
which is the second implementation discussed by Candès et al. [2006]. The authors
mention a list of properties of the transform, of which the following are of particular
interest for our application:

• The frequency wrapping-based FDCT is a unitary transform, implying that
the adjoint transform is also the inverse. Loosely speaking, there is no ‘infor-
mation loss’ when transforming to and from the curvelet domain, which is not
guaranteed in the case of the focal transform.

• Square-integrable functions over R2 can be expanded as a series of curvelets.
In our case the role of the function is played by a common receiver gather
where the first dimension is time and the second dimension is space. This
property is used to remedy the range difficulties of the focal transform.

• Curvelets are very efficient in explaining shapes with edges, which makes them
a good candidate for seismic data processing and compression. This is due to
the shape of the individual elements, which are localized both in space and
frequency. This can be seen in the examples shown in figure 5.1. Except for
the coarsest scale, atoms have a specific orientation.

• Curvelets are well-suited for solving certain very ill-posed problems. Candès et
al. [2006] mention medical imaging applications, however since then a plethora
of publications have established its efficacy in seismic processing applications
as well, especially for interpolation and deblending problems. Several examples
are mentioned below.

Curvelets were quickly adopted for seismic data processing and have been used in
almost every major step of the processing worflow. Examples include denoising
[Candès et al., 2006], groundroll attenuation [Naghizadeh and Sacchi, 2018], regu-
larization/interpolation [Hennenfent et al., 2010], deblending [Kumar et al., 2015; Zu
et al., 2016b], migration [Douma and de Hoop, 2007; Chauris and Nguyen, 2008], and
surface multiple estimation/removal [Herrmann et al., 2008; Donno et al., 2010].

5.3 The hybrid focal-curvelet transform

A relatively straightforward way to extend focal deblending to its focal-curvelet
hybrid form is to redefine the deblending optimization problem 3.5.36 as

xfc,debl = argmin
xfc

{
||xfc||1

}
subject to ||pbl −ΨΦfcxfc||2 ≤ σ, (5.3.1)
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a) b) c)

d) e) f)

Figure 5.1: Three curvelet elements in the TX and FK domains: a) first scale, TX domain;
b) second scale, sixth orientation, TX domain; c) third scale, first orientation, TX domain;
d-f) FK transform of the curvelet elements related to a-c). The red lines demarcate the
area occupied by each curvelet element.

with

Φfc = [Φf |Φc] and xfc =

[

xf

xc

]

. (5.3.2)

Here I have again used the vectorized form of the problem to keep the mathematical
expressions concise. Φf and Φc are linear operators representing the focal (for all
depths) and the curvelet transform, respectively. The curvelet transform used is
the 2D version applied onto common receiver gathers, to take advantage of blending
noise incoherence. The vectors xf and xc hold the corresponding transform do-
main coefficients. The difference between this and formulation (3.5.36) from chapter
3.5 is the dictionary: Φfc is formed by concatenating the atoms of two different
dictionaries. This approach has some advantages:

• We now have an extended dictionary, with a subset of its atoms forming a
basis.
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• Because there is a greater variety of atoms with different ‘shapes’, features
of the signal that would need a linear combination of many atoms of one of
the transforms, may sometimes be explained using only a few atoms of the
extended dictionary, leading to a sparser representation.

It is, however, a solution with its own challenges:

• The overall coherence of the total dictionary goes up, as we are concatenating
the atoms of the curvelet dictionary, which on their own form a basis, with
the focal dictionary. This increases the sparsity requirements for guaranteed
prefect recovery (see discussion in section 3.6.1).

• The relative scaling of the atoms becomes important. If the atoms are not
normalized, one of the two transforms might end up having more high ampli-
tude components in xfc, purely due to scaling reasons. This may leave the
other transform contributing very little to the solution. A possible remedy is
to ensure that all atoms have unit norm by prescaling them:

Φfc = [ΦfΛf |λcΦcΛc] , (5.3.3)

where Λf and Λc are diagonal matrices that scale the atoms of the two trans-
forms to unit norm. The tuning parameter λc controls the overall ‘importance’
of the curvelet transform relative to the focal transform in the optimization.
In cases where the dictionaries are given in explicit matrix form, this scaling
needs to be applied only once to the matrix as a preparation step. However,
if the transforms are implemented as matrix-free operators, this scaling has
to be applied as a separate operation every time the forward or adjoint are
calculated. Both transforms in our case have matrix-free implementations.

• The computational cost increases as two transforms have to be applied every
time the forward or adjoint operation is used in the optimization scheme.

Instead of concatenating two dictionaries, as in (5.3.2), it is possible to compose
them, i.e. Φfc = ΦfΦc. In this way the focal representation of the data could
be further compressed by the curvelet transform. This approach has two main
drawbacks. The first is the increased computational cost, as the curvelet transform
would have to be applied on the focal representation of the data, which can be
several times the size of the observed data. The second important drawback is that
the curvelet transform would not be able to help overcome the range limitations of
the focal transform.

Another formulation that could be useful in certain situations is to set

Φfc = [MfΦf |McΦc] . (5.3.4)
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Both Mf and Mc are diagonal matrices that act as windows that split the seismic
data in separate regions, possibly with an overlap to reduce edge effects. Each
transform then is tasked with explaining a different part of the data, e.g. the focal
transform could handle the near-offset part and leave the far-offset part for curvelets.
This can be a way to deal with the scaling issues mentioned previously, but it may
reintroduce range-related problems for the part handled by the focal transform,
similar to the composition approach mentioned above. In the following examples we
have opted for (5.3.2) rather than (5.3.4).

5.4 Examples on synthetic data

We now revisit the example shown in section 3.6.1. The problem there was that the
focal operators filtered out a large part of the direct wave. We first examine the
reconstruction case, i.e. no blending is performed and Ψ = I in (5.3.1). For the
curvelet transform I used 8 scales and 32 angles for the second scale. The number of
angles increases by a factor of 2 per each two higher scales, ending at 256 angles for
the eighth scale. Figure 5.2 shows that the hybrid transform is now able to explain
the direct wave. This is also clearly seen when comparing FK spectra (figures 5.3c
and 5.3e).

While the reconstruction example is promising in that it shows that the full dataset
can be now explained, the more important question is whether this capability leads
to a better deblending result. Another thing to consider is whether using the hybrid
transform is any better than just using curvelets alone. To investigate this question,
I deblend the data shown in figure 3.18 using i) only the focal transform, ii) the
hybrid focal-curvelet transform with λc = 0.07 and iii) only the curvelet transform.
The results are shown in figure 5.4. Although not perfect, the results of the hybrid
transform are noticeably better than using any of the transforms alone. The focal
transform seems to handle the more curved near-offset part better, whereas curvelets
handle better the far-offset part, where the moveout of the seismic events is more
linear. It also handles the direct wave. This is possible due to the shape of the
curvelet atoms, which resemble small packets of linear-moveout events translated
and rotated (here) in a 2D space. This example demonstrates that dealing with
range-related limitations can affect significantly the deblending quality.

The relative scaling between the two transforms has an effect on how much each
transform contributes to the final deblended solution, but also on how blending-
noise leakage manifests itself in the end result. Comparing figures 5.4c and 5.4g it
is evident that each of the two transforms leads to blending-noise leakage occuring
at different locations. In figure 5.5 the time-domain contribution of each of the two
transforms is illustrated, as well as the difference between the deblended and the
unblended gather, for three different values of the relative scaling parameter λc.
The total deblended result is the sum of the contributions of each transform.



96 Hybrid deblending solutions

0

1

2

3

4

T
im

e
 (

s
)

50 100 150 200 250
Source number

50 100 150 200 250
Source number

50 100 150 200 250
Source number

50 100 150 200 250
Source number

50 100 150 200 250
Source number

a) b) c)

d) e)

Figure 5.2: Reconstruction comparison (TX domain): a) the original synthetic dataset, b)
the reconstructed dataset (focal transform only), c) difference between reconstructed and
original dataset (focal transform only), d) the reconstructed dataset (hybrid transform), e)
difference between reconstructed and original dataset (hybrid transform).
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Figure 5.3: Reconstruction comparison (FK domain): a) the original synthetic dataset, b)
the reconstructed dataset (focal transform only), c) difference between reconstructed and
original dataset (focal transform only), d) the reconstructed dataset (hybrid transform), e)
difference between reconstructed and original dataset (hybrid transform).
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Figure 5.4: Deblending comparison (TX domain): a) unblended gather, b) deblended gather
(focal transform only), c) difference between the unblended and the deblended gather (focal
transform only), d) deblended gather (hybrid transform), e) difference between the unblended
and the deblended gather (hybrid transform), f) deblended gather (curvelet transform only),
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Figure 5.5: Effect of the relative scaling λc on transform contribution balance and noise
leakage: a) Focal contribution for λc = 1; b) Curvelet contribution for λc = 1; c) Difference
from unblended data for λc = 1; d) Focal contribution for λc = 0.33; e) Curvelet contribution
for λc = 0.33; f) Difference from unblended data for λc = 0.33; g) Focal contribution for
λc = 0.07; h) Curvelet contribution for λc = 0.07; i) Difference from unblended data for
λc = 0.07. The red arrow points at curvelet-associated blending noise leakage.



100 Hybrid deblending solutions

As λc becomes progressively smaller, the curvelet transform is further restricted to
explaining mostly linear events using few atoms. The blending-noise leakage pointed
at by the red arrow in figures 5.5c, 5.5f and 5.5i enters the solution via the curvelet
transform. Reducing λc, therefore, will tend to reduce curvelet-associated leakage
too. The noise-leakage tradeoff between the transforms can be controlled via λc,
potentially leading to better-quality results. The difficulty here, however, is that
choosing a value for λc is not straightforward, as the presence of blending noise will
not be always easy to detect in order to judge which value for λc is optimal. The
blending equation will not be of help, since for λc > 0 each result after convergence
will practically satisfy it. For strong, recognizable blending noise remaining in the
result, varying λc can lead to effective noise attenuation.



6

Field data examples

The main goals of the previous chapters were to describe the focal deblending method
as well as the hybrid and smart subset extensions. In this chapter, the methods
developed so far are applied on field data. Focal deblending as described in chapter
3 is applied on streamer data provided by Equinor. The smart subset extension
is then tested under two different acquisition scenarios. The streamer acquisition
case is examined first, on data provided by CGG. The OBN case follows, using data
provided by TEEC. The hybrid transform approach is then tested using the CGG
dataset. For the last example, focal deblending is applied on streamer data provided
by TGS. Unlike the preceding examples, in which the blending was done numerically,
the TGS dataset was already recorded in the field with some amount of wavefield
overlap.

6.1 Single line 2D data

The first field data example is based on a marine streamer dataset acquired in the
North Sea by SAGA Petroleum A.S, currently part of Equinor. The dataset consists
of 151 sources and receivers in a fixed-spread configuration, after some preprocessing
as explained later, with a source/receiver spacing of 25 m. The maximum offset is
3750 m. The time sampling interval is 8 ms. Some preprocessing had already been
performed on the dataset in order to mimic a 2D line, namely Radon interpolation
to fill in the near offsets [Kabir and Verschuur, 1995] and data duplication using the
reciprocity principle to generate negative offsets. Moreover, surface-related multiples
had been already removed using SRME [Verschuur et al., 1992]. Three common shot
and common receiver gathers can be seen in figure 6.1.
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Figure 6.1: 2D line example, unblended a) common shot gathers, b) common receiver gathers.
Note that due to the applied reciprocity, the figures are identical.
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The split-spread dataset was blended with blending factor 2, using a random time
delay code. The delays were in the range of 0.1 s to 0.5 s and can be seen in figure
6.2 for each blended shot. Shot 1 was blended with with shot 77, shot 2 with shot
78 and so on. Pseudo-deblended common shot/receiver gathers can be seen in figure
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Figure 6.2: The blending code for the 2D line example. Each column contains the delay
times for a particular blended shot record. Red and black dots represent the first and second
shot, respectively.

6.3. These correspond to the unblended gathers of figure 6.1.

Before the data can be deblended, a set of focal operators must be defined. Using
NMO analysis, the 13 velocities and zero-offset traveltimes shown in table 6.1 were
picked. Each velocity–zero-offset traveltime pair defines a flat reflector depth via the
relationship z = ct0/2, where z is the depth, c the velocity and t0 the traveltime.
Focal operators are constructed using the velocity–depth pairs and the expressions
found in table 3.1. The focal grid for each operator is also a 2D line at each depth
level below the acquisition, with a spacing of 25 m. For each point of the focal
grid, the negative and positive local subsurface offset is arranged such that the total
aperture is aligned with the acquisition and is 3750 m in length.

The deblending results after 500 SPGL1 iterations can be seen in figure 6.4. A
first break mask was used in the inversion, a tool which can be very effective in
suppressing blending noise above the early events. Additionally, events away from
zero-offset/zero-time were penalized using a weighted version of the ℓ1-norm, as
described in chapter 3.5. Its effect is clearly visible in figures 6.6a-c as ellipsoid-
shaped clusters of high-magnitude samples.

From the difference panels shown in figure 6.5, it can be seen that the blending noise
leakage is relatively minimal for this example and the seismic events present in the
data have been properly reconstructed. Most of the blending noise leakage seems to
be related to aliasing. The signal-to-blending noise ratio for the result is 16.79dB.
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Figure 6.3: 2D line example, pseudo-deblended a) common shot gathers, b) common receiver
gathers.
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Figure 6.4: 2D line example, deblended a) common shot gathers, b) common receiver gathers.
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Figure 6.5: 2D line example, difference between unblended and deblended data, a) common
shot gathers, b) common receiver gathers.
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Table 6.1: Velocities and corresponding zero-offset traveltimes/depths for the focal operators
for the 2D line example.

Operator # Velocity (m s−1) Traveltime (s) Depth (m)
1 1550 0.3440 267
2 1600 0.4182 335
3 1680 0.5630 473
4 1700 0.6264 532
5 1720 0.6500 559
6 1720 0.7228 622
7 1740 0.7951 692
8 1810 0.9370 848
9 1840 1.0440 960

10 1860 1.1400 1060
11 1860 1.2130 1128
12 1880 1.2910 1214
13 1880 1.4460 1359

Figure 6.6 depicts a part of three focal subdomains. The focusing effect is clearly
visible in this example, with most energy clustering around t = 0 s for each of the
subdomains.
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Figure 6.6: 2D line example, part of the a) first, b) fifth, c) ninth focal subdomain.
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6.2 Smart subsets: Streamer data

The next example explores the idea of processing subsets of the blended acquisition
separately, a concept discussed in more detail in chapter 4.2. This makes paralleliza-
tion of the deblending procedure easier, and reduces its computational effort. This
happens because only a subset of the data is involved when the focusing/defocusing
operators are applied. Here we take a look at an example on streamer data. Each
each streamer can be thought of as an independent dataset and in this case the
blending/pseudo-deblending can be applied entirely independently as well.

The dataset used here was provided by CGG. The streamer configuration can be
seen in figure 6.7. I extracted a single streamer with 300 receivers, for 96 shots.
The receiver spacing in the dataset was 12.5 m, for a total of 3750 m maximum
offset/streamer length. The shot spacing was 18.75 m.

0 2000 4000 6000 8000
x (m)

0

500

y
 (

m
)

Figure 6.7: Part of the acquisition used in the streamer deblending experiment, in rotated
coordinates. Red crosses: shot locations; Black triangles: receivers on streamers; Purple
triangles: receivers on the streamer participating in the experiment; Green dots: focal grid.

The data was numerically blended using delays ranging from 2.1 s to 2.5 s. The exact
delays can be seen in figure 6.8, each column representing a blended shot gather and
each color the delay of an individual shot. The blending code was arranged such
that there is overlap of at most three shots. The chosen range of delays means that
in principle the early events of one shot gather will tend to overlap with the late
events of another. Three shot gathers from the unblended data can be seen in figure
6.9a. The same three shots after pseudo-deblending are shown in figure 6.9b.

The double focal transform is used as well for this deblending example. The velocities
and depths used for defining the operators can be seen in table 6.2. The focal grid
is a single straight line, approximately parallel to the streamer, as marked in figure
6.7. 539 grid points with a spacing of 12.5 m were used. For each grid point, local
subsurface offset points up to 2 km were calculated by the focal operator, using a
spacing of 12.5 m. The local offset points also lie on the same line as the focal grid.

As mentioned earlier, the delay range of the blending code leads to early events with
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Figure 6.8: The blending code for the streamer example. Each column contains the delay
times for a particular blended shot record. Red, black and green dots represent the first,
second and third shot respectively.

Table 6.2: Velocities and corresponding zero-offset traveltimes/depths for the focal operators
used in the streamer example.

Operator # Velocity (m s−1) Traveltime (s) Depth (m)
1 1511 1.438 1086
2 1652 1.953 1613
3 1869 2.580 2411
4 1946 2.927 2848
5 1570 2.898 2275
6 2180 3.490 3804

relatively large amplitude being superimposed on later, weaker events. In this situ-
ation separation becomes more challenging. The deblended result and its difference
from the unblended data, after 300 SPGL1 iterations, is shown in figures 6.10a and
6.10b. The separation was not perfect, as the imprint of the sea-bottom reflection
and nearby events can still be seen after deblending. A positive observation, how-
ever, is that late events masked by strong blending noise have become visible again
after separation. The signal-to-blending noise ratio of the result for this example is
21dB.

Figures 6.11a-c show a part of the focal subdomains. The lack of negative offsets in
the streamer data leads to focal subdomains that look more asymmetrical than cases
where negative offsets are present in the blended data, compare e.g. with figure 6.6.
This is particularly visible for the energetic early events with amplitude variations
along the offset dimension. Deeper events are more concentrated in subsurface offset
and the highest magnitudes cluster near the zero time mark as expected.
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Figure 6.9: Streamer example, a) unblended data, b) pseudo-deblended data.
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Figure 6.10: Streamer example, a) deblended data, b) difference between unblended and
deblended data. Red arrows indicate blending noise leakage, green arrows indicate recovered
events previously masked by blending noise.
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Figure 6.11: Streamer example, part of the a) first, b) third, c) sixth focal subdomain.
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6.3 Smart subsets: OBN data

The next example also explores the idea of dividing the dataset into subsets before
applying focal deblending, this time for OBN data [Kontakis and Verschuur, 2017a],
acquired by GEOMAR and provided by TEEC. Figure 6.12 depicts the so-called
race-track shooting acquisition layout. From the total acquisition, I extracted two
shot lines of 700 locations each, the corresponding traces all associated with a par-
ticular receiver node. The selected receiver node and shot lines are marked with
green and red color, respectively, in figure 6.12. For the OBN case, each common
receiver gather naturally forms an independent subset. The survey was carried out
with a dense shot sampling of 6.25 m, on average. Note that I subsampled traces
by a factor of 3 for plotting purposes in the figures mentioned below.
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Figure 6.12: Acquisition layout for the ocean bottom node example. The black triangles
and black lines indicate the nodes and source trajectories, respectively. The extracted shot
locations appear in red and the associated receiver node in green. The used focal grid is
shown in magenta.
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The acquisition was done conventionally, without blending. To create a blended
dataset, I assume that there are two source vessels, each of which takes care of its
own part of the source locations. Each shot was assigned a random time delay code
with delays ranging from 0.1 s to 0.4 s. The delays for each blended shot gather
can be seen in figure 6.13. The original, unblended data as well as the data after

0.1

0.3

0.5

S
h
o
t 
d
e
la

y
 (

s
)

0 100 200 300 400 500 600 700
Blended shot number

Figure 6.13: The blending code for the OBN example. Each column contains the delay times
for a particular blended shot record. Red and black dots represent the first and second shot
respectively.

pseudo-deblending are shown in figures 6.14a and 6.14b. The time sampling interval
was 4 ms and 3 s of data are kept.

A line passing through the chosen receiver node and parallel to the extracted part
of the survey acts as a focal grid. In total 735 grid points with a spacing of 7 m
are used, for a total of 5138 m. The points are highlighted with a magenta color in
figure 6.12. The grid points in this line define also the subsurface offset sampling.
Since this dataset involves only one receiver, the single-sided focal transform is used
for deblending. Five focal subdomains, defined by the velocities listed in table 6.3,
were used for focusing/defocusing. Note that the given depth values in table 6.3 are
only approximations based on the NMO velocities.

After 600 SPGL1 iterations, the deblended result seen in figure 6.15a is obtained.
Traces from three out of five focal subdomains are plotted in figures 6.16a-c. The
difference from the unblended data in figure 6.15b shows some leakage around the
sea bottom reflection event, however most of the blending noise has been effectively
suppressed. The remaining blending noise has a laterally inconsistent character,
which makes it unlikely to significantly affect migration. The signal-to-blending
noise ratio for this example is 19.8dB.
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Figure 6.14: OBN example, a) unblended data, b) pseudo-deblended data. The visible spatial
aliasing effect is only visual, as only one out three traces is plotted.
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Figure 6.15: OBN example, a) deblended data, b) difference between unblended and deblended
data, amplified by a factor of 5.



118 Field data examples

-1.0

-0.5

0

0.5

1.0

1.5

2.0

T
im

e
 (

s
)

50 100 150 200 250 300
Focal trace number

-1.0

-0.5

0

0.5

1.0

1.5

2.0

T
im

e
 (

s
)

50 100 150 200 250 300
Focal trace number

-1.0

-0.5

0

0.5

1.0

1.5

2.0

T
im

e
 (

s
)

50 100 150 200 250 300
Focal trace number

a)

b)

c)

Figure 6.16: OBN example, part of the a) first, b) second, c) fifth focal subdomain.
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Table 6.3: Velocities and corresponding zero-offset traveltimes/depths for the focal operators
used in the OBN example.

Operator # Velocity (m s−1) Traveltime (s) Depth (m)
1 1482 0.700 519
2 1449 0.740 536
3 1426 0.770 549
4 1593 1.000 797
5 1800 1.540 1386

6.4 Hybrid transform

The next example shifts focus to the hybrid focal-curvelet transform [Kontakis and
Verschuur, 2017b]. Part of a dataset provided by CGG is used to test the ability of
the hybrid transform to deal with parts of the wavefield that cannot be explained by
the focal transform. The dataset used in this example was already preprocessed: the
direct wave was removed, reciprocity was used to create negative offset data and the
near-offset gap was filled using parabolic Radon interpolation [Kabir and Verschuur,
1995]. A common shot gather was then extracted, consisting of 801 traces with
a receiver spacing of 12.5 m and a time sampling interval of 4 ms. The receivers
were arranged as a 2D line with 5 km of positive and 5 km of negative offset, for a
total of 10 km of aperture. The shot and receiver coordinates were then exchanged
to create a pseudo-common receiver gather. Two identical copies of the common
receiver gather were blended using random time delays in the range 0.3 s to 0.8 s
(figure 6.17). The unblended and pseudo-deblended gathers can be seen in figure
6.18. Note than in these as well as in following figures, traces have been subsampled
by a factor of 3 for plotting purposes.

The blended common-receiver gather was deblended using the focal, the hybrid and
the curvelet transform. The main idea behind this experiment is to test whether the
hybrid transform can handle problems that might arise from an unsatisfactory choice
of velocities for the focal transform part. In all the experiments 5 focal operators
were used, defined by the velocities and depths listed in table 6.4. The focal grid
was also a 2D line that was formed by translating the receiver coordinates to each
of the depth levels listed in table 6.4. As such, the spacing between focal grid points
is 12.5 m. For each of the focal grid points, the rest of the points serve to define
the local offsets at which the focal transform is evaluated. The single-sided focal
transform was used in this case. Regarding the curvelet transform parameters, the
2D version of the transform was used, with 8 scales and a maximum of 32 wedge
angles. A weighted sum-norm was used for the inversion, the weights designed such
that events away from zero time/zero offset are given less importance.

The deblended common receiver gathers after 100 SPGL1 iterations can be seen in
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Figure 6.17: The blending code for the hybrid transform example. Each column contains the
delay times for a particular blended shot record. Red and black dots represent the first and
second shot, respectively.

Table 6.4: Velocities and corresponding zero-offset traveltimes/depths for the hybrid trans-
form example.

Operator # Velocity (m s−1) Traveltime (s) Depth (m)
1 1600 1.258 1006
2 1700 1.558 1324
3 1900 1.758 1670
4 1950 1.990 1940
5 2100 2.359 2476

figure 6.19 for each of the three deblending approaches. The differences between
the unblended and deblended gathers can be seen in figure 6.20. Part of the first
and third focal subdomains are depicted in figure 6.21a and 6.21b. The effect of the
weighted ℓ1-norm is evident, with most energy in the short local subsurface offsets
and around t = 0 s. Figures 6.21c and 6.21d show the magnitude and phase content
for each of the 32 wedges in the fourth curvelet scale. These are relatively sparse,
as a result of the weights used for the focal part. What remains for the curvelet
transform to explain is the far offset part of events and local amplitude variations
not captured by the focal transform.

Comparing the focal transform result with the hybrid transform result (figures 6.20a
and 6.20b), it can be seen that the low velocity event has been deblended more
accurately when using the hybrid transform. This is expected, because the first focal
operator has a rather high velocity. The curvelet part of the hybrid transform has
dealt with this problem, yielding an improved result. An exception is the refracted
wave event at the far positive offset, that has not been reconstructed by either of
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Figure 6.18: Hybrid transform example, a) unblended common receiver gathers; b) pseudo-
deblended gather. Only one out of three traces are plotted, creating a visual aliasing effect.
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Figure 6.19: Deblended gathers for the hybrid transform example, using a) only the focal
transform, b) the hybrid transform, c) only the curvelet transform.
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Figure 6.20: Difference between the unblended and deblended gathers for the hybrid transform
example, using a) only the focal transform, b) the hybrid transform, c) only the curvelet
transform.
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Figure 6.21: The hybrid transform domain; a) part of the first focal subdomain at z = 1006
m, b) part of the third focal subdomain at z = 1670 m, c) magnitude of the wedge segments
in the fourth curvelet scale, d) phase of the wedge segments in the fourth curvelet scale.
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the transforms. This could be improved by increasing the number of iterations and
perhaps modifying the curvelet parameters.

The comparison between the hybrid and curvelet-only cases (figures 6.20b and 6.20c)
demonstrates something seen also in the synthetic example of chapter 5: although
the curvelet part performed well in explaining the low velocity event at the far offsets,
the hybrid transform generally did better in the near offset region. Now it is the
focal part of the hybrid transform that comes to aid, with its better performance at
explaining the curved near-offset part of the seismic events. The signal-to-blending
noise ratio was 8.98dB, 13.3dB and 11.6dB for the focal-only, hybrid and curvelet-
only transform cases, respectively.

6.5 Field-blended

The next deblending example is conducted on a subset of the Carlsen 3D dataset,
provided by TGS. Unlike the previous examples, in which numerical blending was
used, here the data were blended in the field, as a result of the time interval between
subsequent shots. The marine streamer geometry used in the acquisition is depicted
in figure 6.22. Three airguns were fired sequentially, the first and second activated
33 times and the third 32 times, yielding a total of 98 common shot gathers in the
subset. The average inline spacing between shots was 37.5 m. The streamer inline
spacing for the hydrophones was 12.5 m. Focal deblending was used to deblend up
to an offset of 2 km (145 traces per shot), where events exhibit most curvature and
the focal transform is most effective at deblending.

Each shot was fired on average every 5.5 s, with random time dithering in the range
of approximately -0.7 s to +0.7 s. Shot records with a length of 11 s were extracted
from the continuous recording. The extraction took place starting from the time
instant each source was activated, which then became time zero for the extracted
record. This procedure is equivalent to pseudo-deblending as defined in chapter 2.3,
followed by truncation of the pseudo-deblended records at the desired length. The
firing times of each shot participating in a pseudo-deblended shot record can be seen
in figure 6.23. As the firing times shown are relative, the shot record considered
as signal always has a relative time delay of 0 s. The shot records appearing as
blending noise have positive delays. In principle there is also blending noise from
previous shots. The assumption made here is that blending noise from previous
shots is negligible.

Three different shot gathers before preprocessing are shown in figure 6.24, each
from a different airgun. The deblending problem is challenging as strong events
overlap weak events of the previous shot. In the first half second, the direct wave
and a strong, low-frequency event dominate in amplitude. The latter is probably
related to the airgun bubble effect. These events were treated prior to deblending
through preprocessing, which consisted of using a window between the time break
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Figure 6.22: Part of the field-blended acquisition. Red crosses: shot locations; black triangles:
receivers on extracted streamer; magenta dots: focal grid points for each airgun subset. The
numbers indicate the activation pattern used by the three airguns. Note that the x-axis is
exaggerated here for plotting purposes.

of the direct wave and the sea bottom reflection. Gabor filtering was used within
this window to suppress the energetic low-frequency noise. Such events will not be
effectively focused by the focal transform and will tend to dominate the inversion
due to their high amplitude. As such, it is better to remove them before hand to
prevent additional blending-noise leakage.

To keep the numerical effort and amount of memory required at an affordable level, I
performed low-pass filtering up to 45 Hz, followed by subsampling the dataset from
4 ms to a 12 ms time sampling interval. The result of this preprocessing can be
seen in figure 6.25. Comparing with figure 6.24, the presence of the direct wave and
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Figure 6.23: The blending code for the field-blended data example. Each column contains
the delay times of each shot present in the time window of a particular pseudo-deblended
gather. The red, black and green dots correspond to shots by airgun 1, 2, and 3, respectively,
as marked in figure 6.22.

low-frequency noise is greatly reduced within the first half second. Since I applied
this processing per common shot gather with a known blending code, the events
removed by the processing are also removed from the blended gather copies, such
that the end result remains consistent with the blending equation.

The preprocessed data were given as input to focal deblending. I divided the dataset
in three subsets, each subset containing all shot gathers associated with the same
airgun. I then constructed a focal grid for each subset by sampling a linear segment
fitted using the common midpoint coordinates pertaining to each subset. The focal
grid points were spaced 5 m apart along the linear segment, the total length of
which was approximately 5 km. At each grid point the locations of all other points
on the same line within a 500 m radius were used to define local subsurface offsets.
The focal grids used are depicted in figure 6.22 as magenta points. The subset
arrangement used here is “pseudo-2D”, in the sense that it consists of a line of shots,
a line of receivers and a line grid for the focal transform, similar to what would
happen for a 2D line survey. In reality the subset deviates from being truly 2D due
to the presence of some feathering and the fact that the shot and the receiver lines
have some distance between them. Placing focal points on a line rather than a grid
reduces computational cost, but can come at the expense of less focusing for events
that originate from the same depth plane but away from focal grid line.

Each subset had an independent set of focal subdomains defined for it. The as-
sociated focal operators used the same velocities/depths for all three subsets, but
different focal grids for each subset. The list of velocities and depths for the 8 focal
operators are given in table 6.5. The moveout for a focal operator may approxi-
mately match that of a multiple rather than a primary event. This in principle is
not an issue, as long as the focal operator helps to reconstruct all events to be part
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Figure 6.24: Pseudo-deblended common shot gathers from the Carlsen 3D dataset, before
preprocessing. The number below each gather indicates the airgun number it is associated
with. The direct wave and a low frequency event, likely related to the airgun bubble, are
indicated with a blue and red arrow, respectively.
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Figure 6.25: Pseudo-deblended common shot gathers from the Carlsen 3D dataset, after
preprocessing. The number below each gather indicates the airgun number it is associated
with. The blue and red arrow indicate the locations of the removed events for the first
gather.



130 Field data examples

of the deblended data. I used the double focal transform for this inversion problem,
and a total of 2000 SPGL1 iterations.

Operator # Velocity (m s−1) Traveltime (s) Depth (m)
1 1480 0.46 339
2 1572 0.61 483
3 1677 0.76 634
4 1515 1.03 781
5 1499 1.49 1114
6 1589 1.75 1393
7 1577 6.00 4731
8 1670 8.00 6680

Table 6.5: Velocities and corresponding zero-offset traveltimes/depths for the focal operators
in the Carlsen 3D example.

The majority of the events that are responsible for most of the blending noise are
in the window from 0 s to 5 s. I took advantage of this fact to help minimize
blending-noise leakage in two ways. The first was to use data-domain weighting
and give higher weight to residuals of events occurring before 5 s. In this way they
contribute more to the ℓ2-norm of the residual, making it more likely that they will
be explained before the penalized blending noise copies appearing after 5 s. The
data-domain weights take the form of a sigmoid function having the value 1 before
5 s, transitioning to the value 0.1 after 5 s (figure 6.26a).

I also employed focal-domain penalty weights, in addition to data-domain weighting,
to discourage inclusion of events occurring away from t = 0 s in the focal domain,
where most blending noise is expected to be found. For this particular example, the
weight increased linearly in the positive and negative time direction, starting from
1 at 0 s and ending at 10 at ±5 s. Note that the focal-domain weights are used
to implement a weighted ℓ1-norm, therefore unlike in the data-domain case, higher
weights should be interpreted as higher penalty (figure 6.26b).

As a comparison the same deblending experiment was repeated using sparse curvelet
deblending. The streamer receivers were binned according to their x-coordinate,
forming bin gathers in which the blending noise was incoherent. The 2D curvelet
transform was set up to use four scales and up to 16 wedge angles. Data-domain
weights of the same form as the ones used in focal deblending were also applied in
the curvelet deblending, except that they transitioned from the value 1 to the value
0.8 after the 5 s mark. A total of 600 SPGL1 iterations where used for curvelet
deblending.

Three deblended gathers can be seen in figure 6.27 for focal deblending and fig-
ure 6.28 for curvelet deblending. These correspond to the gathers shown in figure
6.25. Despite the challenging blending problem, a lot of the blending noise has been
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Figure 6.26: a) Data domain weights; b) focal domain penalty weights. For data-domain
weighting, lower values indicate higher data-fitting penalty. For focal-domain weighting
higher weight values lead to larger penalties.

removed by focal deblending, although there is some noticeable blending-noise leak-
age. This is especially evident in the near offset traces. The linear moveout events
featured prominently from 5 s to 11 s in the deblended result are likely to be a com-
bination of blending noise and transform-related artifacts. Still, a major reduction
in blending noise is achieved and original reflection information is recovered that
was not visible before. Comparing the deblended gathers from the two methods, it
appears that the character of the leaked blending noise is different, with that from
focal deblending being lower-frequency than that from curvelet deblending.

Figure 6.29 shows a common grid point gather extracted from four focal subdomains
of the first airgun data subset. The presence of some amount of local subsurface
offset is almost always necessary to be able to faithfully reconstruct seismic event
amplitudes. This is evident from the fact that there is focal content present away
from zero offset. Extracting the zero-offset trace for each grid point allows to form
image-like gathers, as seen in figure 6.30. These can reveal subsurface structure
and help redesign the focal grid, if needed. The last traces correspond to the grid
points furthest from the shot locations. The lower amplitudes seen in this part of
the figure hint at lower subsurface illumination. This is expected, as grid points
get further away from source-receiver midpoints. For this particular example, these
extra grid points were included to be able to reconstruct weak back-scattered events
with opposite dip, present in the large offsets of the input data. From both figures
it can be seen that the focal subdomains contribute to some extent to events away
from their target depth.
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Figure 6.27: Deblended common shot gathers using focal deblending (Carlsen 3D dataset).
The number below each gather indicates the airgun number it is associated with.
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Figure 6.28: Deblended common shot gathers using curvelet deblending (Carlsen 3D dataset).
The number below each gather indicates the airgun number it is associated with.



134 Field data examples

-1

0

1

2

3

4

5

6

7

8

9

T
im

e
 (

s
)

-400 -200 0 200 400
Local offset (m)

-2

-1

0

1

2

3

4

5

6

7

8

T
im

e
 (

s
)

-400 -200 0 200 400
Local offset (m)

-3

-2

-1

0

1

2

3

4

5

6

7

T
im

e
 (

s
)

-400 -200 0 200 400
Local offset (m)

-6

-5

-4

-3

-2

-1

0

1

2

3

4

T
im

e
 (

s
)

-400 -200 0 200 400
Local offset (m)

a) b)

c) d)

Figure 6.29: Focal subdomain common grid point gather for the first airgun subset; a) first
subdomain, b) third subdomain, c) fifth subdomain, d) seventh subdomain.
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Figure 6.30: Focal subdomain zero local offset gather for the first airgun subset; a) first
subdomain, b) third subdomain, c) fifth subdomain, d) seventh subdomain. Note the different
time axes for each plot.
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Events associated with deep reflectors can be very weak and thus hard to distinguish
in prestack gathers. In order to assess the recovery of reflector-related information
after deblending in the 5 s to 11 s time window, I applied stacking after NMO-
correcting the data, for both deblending methods. The velocity model used for
NMO correction can be seen in figure 6.31a, superposed on a semblance plot used
for picking. After rotating coordinates such that they are aligned with the y-axis,
I split the dataset into CMP bins with dimensions 100 m×12.5 m. I then summed
the NMO-corrected traces within each bin to produce a stack gather. The fold for
each stacked trace can be found in figure 6.31b.
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Figure 6.31: a) Velocity profile used for NMO correction superimposed on a semblance plot;
b) fold for each CMP bin.

For comparison purposes, I repeated the same stacking procedure on the pseudo-
deblended input data. The stacked input and stacked deblended output for focal
and curvelet deblending are shown in figures 6.32a, 6.32b and 6.33b, respectively. I
applied a linear time gain to amplify the deeper events. In both cases some blending-
noise leakage is clearly visible even after deblending and is associated to the near-
offset blending noise seen relatively consistently in most deblended gathers. Due to
the low number of shots, the stacking power is not enough to reveal weak events
in the areas marked by red arrows. In the mid offsets, however, certain reflectors
that were completely masked by blending noise input become discernible. These are
indicated with green arrows in figures 6.32b and 6.33b, showing the possibility to
recover some subsurface information generating weak events even after the 5 s mark.
This can be seen more clearly in figures 6.32c and 6.33c, where linear Radon and
curvelet filtering has been applied to attenuate blending-noise leakage and transform
artifacts. Note that the better separation achieved by focal deblending has produced
reflectors that are more clearly visible in the middle part of the stack sections.
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Figure 6.32: Stacked data, focal deblending, a) before deblending, b) after deblending, c) after
applying linear Radon and curvelet filtering on the deblended stack. Red arrows indicate
areas of excessive blending noise leakage. Green arrows indicate recovered reflectors. Orange
arrows point at what are likely transform artifacts.
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Figure 6.33: Stacked data, curvelet deblending, a) before deblending, b) after deblending,
c) after applying linear Radon and curvelet filtering on the deblended stack. Red arrows
indicate areas of excessive blending noise leakage. Green arrows indicate recovered reflectors.
Orange arrows point at what are likely transform artifacts.
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Conclusions, observations and discussion

7.1 Conclusions

The main objective of this thesis was to investigate an inversion-based method for
deblending that employs the focal transform and sparsity-promoting optimization.
In the course of developing and testing this approach to deblending, I made several
observations that I discuss below. A number of these stem from the fact that the
proposed method incorporates, as part of its machinery, concepts from the field of
seismic migration. Repurposing migration-related tools for source separation opens
up opportunities, but comes with a set of challenges of its own. A few of the other
observations listed below are not tied to focal deblending in particular, but are
pertinent to deblending algorithms in general.

7.1.1 The properties of the blending code matter

Good autocorrelation/crosscorrelation characteristics mean that decoding, in the
form of pseudo-deblending, can by itself suppress a considerable amount of blending
noise. Because airguns are generally used in marine acquisition as sources, time delay
codes are the most practical to implement. They are useful in that they introduce
incoherence in the spatial coordinates, or purpose-crafted coherence [Robertsson et
al., 2016a], which a deblending algorithm can take advantage of. However, they do
not affect blending noise amplitude (i.e. no incoherence in the time direction), which
might still be rather strong after pseudo-deblending.
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7.1.2 Implications of using a migration-like scheme for deblending

An important assumption that the focal deblending method makes is that the un-
blended signal can be represented as a sum of time/space shifted diffraction events
that have propagated through a homogeneous acoustic medium. This assumption
might not always hold, especially when the actual subsurface is complex and/or the
velocities provided by the user are very inaccurate. Those events that cannot be
represented in this manner will be absent from the deblended result, which may also
lead to additional blending noise as shown in chapter 3.6.

For migration applications having a residual of unexplained signal can be tolerated.
The final arbiter is the quality of the image, which is the content of the model
domain. Deblending, on the other hand, comes relatively early in the processing
workflow, and, unlike the case of migration, it is usually important to preserve as
much of the signal as possible for the next stage of processing. What the deblended
signal looks like in the model/transform domain (i.e. the focal domain coefficients)
is less important. Therefore the range limitations of propagation/focal operators
may not be of concern when migrating, they certainly are a cause of concern when
deblending. Generally this has to be kept in mind whenever a deblending method
employs some type of seismic forward forward modeling that cannot reproduce the
entirety of the desired deblended signal. Events that are not faithfully reconstructed,
e.g. smeared direct waves in the case of the focal transform, may create crosstalk in
the deblended result that might be difficult to remove by subsequent processing.

7.1.3 Balancing transform contributions

When creating a dictionary as a concatenation of multiple transforms, the relative
ℓ2-norm of the atoms will affect the result, as it will influence transform domain
amplitudes and consequently which coefficients are kept after sparse inversion. A
first measure to combat this is to normalize all atoms to have unit ℓ2-norm. An
overall scaling might be needed for further control, but choosing an optimal value
for it is not straightforward.

7.1.4 Shape of the focal transform atoms

As discussed in chapter 3, each atom of the dictionary defined by the focal transform
has a hyperbolic moveout. This makes the focal transform good at capturing the
curved near-offset part of events as well as diffractions. It struggles, however, to
explain very local features, such as sudden changes in amplitude due to anomalies in
the gain settings of hydrophones, a situation which sometimes occurs in marine data.
These issues would need to be resolved before deblending, as a separate step. The
atoms themselves in principle extend spatially to infinity, but geometric spreading
somewhat limits in practice this extent, making the atom more localized. Still, very
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local features can be difficult to explain as the composition of few atoms. This is
an area where having a concept of scale, such as that shared by the wavelet and
curvelet family of transforms, can be beneficial. It should be noted, however, that
the capability of explaining very local features is a double-edged sword, as blending
noise from a time delay code can be also interpreted as a set of ‘very local amplitude
features’.

7.1.5 Sparse representation of seismic data

Complex seismic data can be difficult to explain with only a few atoms from a
dictionary of simple shapes. Because of this, perfect reconstruction from solving a
BPDN problem is not guaranteed. This manifests as having solutions with blending
noise that have a lower ℓ1-norm than the desired, noise-free solution. Despite this,
however, sparsity-based optimization can still be effective in suppressing the amount
of blending noise that leaks into the result, making it a useful tool for deblending.

7.1.6 Computational complexity of the focal transform

Computing the double focal transform can require significant computational effort.
Assuming a (nr×ns×nf ) data cube and two focal operator cubes of with dimensions
(ng × nr × nf ) and (ns × no × nf ), the number of complex multiplications required
for one focusing step for nx focal subdomain is given by

min{(ngnrns + ngnsno)nfnx, (ngnrno + nrnsno)nfnx} ≡
min{(nr + no)ngnsnfnx, (ng + ns)nrnonfnx}, (7.1.1)

where ns (nr) is the number of unique source (receiver) coordinates, ng is the number
of unique focal grid points, no is the number of local subsurface offset coordinates
per grid point and nf is the number of positive temporal frequencies. The reason
for taking the minimum between two numbers in (7.1.1) is that applying the double
focal transform involves two matrix multiplications per frequency slice, and the
order in which they are performed matters when counting the number of elementary
operations. Usually one of the two options is preferable. Note that complex additions
are ignored here for simplicity.

For the 2D line example in chapter 6.1, ng = no = ns = nr = n and the number of
complex multiplications becomes 2n3nfnx, which implies that if the subsurface focal
grid points and local offsets for each grid point coincide (ignoring depth) with the
surface acquisition coordinates, the number of operations scales with the third power
of the survey size. Although this estimation is rather pessimistic, as ns and nr will
differ significantly for realistic acquisitions, it indicates that the scaling with respect
to survey size can be quite steeper than linear. Focusing and defocusing operations
typically need to happen hundreds of times within the deblending inversion. The
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single-sided version of the transform involves one matrix multiplication per frequency
slice per focal subdomain, and thus needs roughly half the number of operations.

Using subsets of the data, as described in chapter 4, can help, as can limiting the
number of the local subsurface offset points. Using subsets, however, comes at the
cost of truncating the aperture of the Rayleigh integral, possibly leading to worse
focusing. Limiting the number of local offset traces too much also runs the risk of
leading to the focal transform being unable to satisfactorily explain AVO and other
amplitude effects.

7.1.7 General conclusions

Given the above observations, focal deblending as described here is best suited for
separating blended wavefields that do not contain strong out-of-plane events and
preferably originate from a relatively flat-layered subsurface. In other words, it is
best suited for surveys over a subsurface with a character that is closer to 1.5D
rather than 3D, unless a more sophisticated focusing mechanism is adopted. Han-
dling realistic survey sizes remains a challenging problem, even when working with
subsets. A potential remedy is to exploit the fact that the focal transform is mostly
advantageous in explaining the curved near-offset part of the data and limit its con-
tributions to that area. While not optimal, as mentioned earlier, it is a pragmatic
compromise. A different transform, such as windowed Fourier, Radon or curvelets
should handle the far offsets and what is left unexplained by the focal transform.
In fact, using a hybrid transform, or some other way of dealing with the range lim-
itations of the focal transform, is generally required for minimizing blending-noise
leakage in realistic datasets.

For low blending factors, the focal transform based on homogeneous velocities can
suppress most blending noise, however its ability to do so depends on how com-
pressed the representation of the ideal deblending result is in the focal domain. For
this reason, blending factors above 3 are likely to require progressively more com-
plicated propagation physics for achieving separation of acceptable quality, the bar
for acceptability being, of course, case-specific.

7.2 Suggestions for future research

7.2.1 Time-domain implementation of the focal transform

The implementation of the focal transform as discussed in this thesis is in the FX
domain. Its main advantage over the FK domain is that it does not make the
assumption of a wavefield that is uniformly sampled in the x− and y−dimensions.
Both the FX and FK domains have an advantage over the TX domain, which is that
the convolutions/correlations along the time axis implied by the Rayleigh integral
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simplify to complex number multiplications. There is a drawback, however. As
sparsity is to be exploited in the TX form of the focal subdomains, forward/inverse
FFTs need to be calculated for every trace and every inversion iteration.

A way to add more flexibility to focal deblending and reduce somewhat the com-
putational burden could be to work entirely in the TX domain. For this approach
to be less computationally expensive than working in the FX domain, applying the
blending/focal operators to data should take the form of convolutions/correlations
with short kernels. A way to achieve this is to use windowed least-squares FIR
filter design to approximate the frequency response of the operators, similar to the
techniques mentioned by Thorbecke et al. [2004], and references therein. Taking
advantage of the fact that seismic data is often relatively oversampled in the time
coordinate, the designed filters could trade accuracy in the high frequencies for filter
shortness in the time domain. Such an implementation would allow:

• Avoiding expensive FFT evaluations that otherwise need to be calculated in
every iteration.

• ‘Small’ focal subdomains that have fewer time samples than the input data.
Then, each focal subdomain could explain only a certain time portion of the
data, further reducing the amount of needed calculations. The memory re-
quirements for storing the focal subdomains would also reduce.

• Taking advantage of the impulsive nature of strong blending noise and im-
plement the Rayleigh integral using trimmed inner products or other such
nonlinear outlier-suppressing techniques [Bednar and Watt, 1984; Chen et al.,
2013]. This would yield focal subdomains, and therefore a gradient, which
would technically be inaccurate, but also less contaminated by blending noise.
Focusing is linked to gradient calculation, and a ‘cleaner’ gradient could lead
to a more desirable solution, at the cost of extra computation and possible con-
vergence difficulties due to the fact that the focal operators would effectively
change in every iteration.

7.2.2 Incorporate more accurate velocity models

The focal operators used in this thesis are constructed assuming propagation from
the surface to a chosen depth level in a homogeneous acoustic medium. This model
could be partially extended to handle inhomogeneities in the medium by replacing
it with a smooth version and then using that to construct traveltime tables via
the eikonal equation. These traveltimes could be used to construct more accurate
operators that achieve better focusing, at least for primary reflections. Having the
capability to use more accurate velocity models also enables a more thorough study
on the influence of velocity errors in the result. A possible drawback is that the
focal transform atoms could have a complicated moveout, raising the question of
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whether it would be possible to represent sparsely seismic events that do not match
the complicated moveout of the atoms.

7.2.3 Use concepts from artificial intelligence (AI)

The remarkable successes of AI-based techniques in various fields of science and en-
gineering has sparked intense research in using these techniques for effective seismic
data processing. Some of the problems that have been studied include first-break
picking [Yuan et al., 2018], denoising [Yu et al., 2019], removal of multiples [Li, 2020],
velocity model building [Yang and Ma, 2019; Fabien-Ouellet and Sarkar, 2020; He
and Wang, 2021] and migration [Vamaraju and Sen, 2019]. The relevant aspect of
AI techniques here is the capability of generating maps that encode complex rela-
tionships between input data and desired results, for which we either do not have
explicit models, or these models are inexact and/or computationally expensive to
use. It is possible that, in the near future, AI-based techniques will be a standard
tool of the geophysicist’s toolbox.

A possible way to borrow elements from AI methods, is to adopt a deep image
prior-type approach [Lempitsky et al., 2018] that incorporates the blending operator,
which is known exactly, i.e.,

min
θ

{∣
∣
∣
∣pps −ΨTΨd(pps, θ)

∣
∣
∣
∣
2

2

}

, (7.2.2)

where d(·, θ) is a nonlinear function implemented as an encoder/decoder neural
network (NN) with weight parameters θ. The purpose of this function is to map
pseudo-deblended data to clean, deblended data. Ψ is the deblending operator and
pps is the pseudo-deblended input data. An advantage of working with pseudo-
deblended rather than blended data is that the input and output of the denoising
function has the same size, which can make the implementation of the NN easier. It
is also often the way field blended data are stored.

Solving the optimization problem yields parameters θ such that d(pps, θ), which
produces the deblended data, satisfies the blending equation, which here serves as
the loss function. The philosophy of this approach is to retain the structure of a
usual inversion-based deblending algorithm, but replace what would be a sparsifying
transform with an encoder/decoder NN, with hidden layers that get progressively
smaller in the encoder section and which progressively expand in the decoder section.
The hope here is that the NN will extract a compressed version of the data that
explains mostly coherent signal. Then the corresponding blending noise would be
generated by the ΨTΨ operator.

Unlike many conventional approaches, including the one investigated in this thesis,
there is no prescribed dictionary of elementary atoms and determining the denoising
NN is an entirely data-driven process. Additionally, the different NN layers operate
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on progressively more ‘summarized’ versions of the data, giving scale-like qualities
to the algorithm.

Training is not explicitly mentioned here, but it could take the form of pre-fitting
parameters θ using a number of training datasets and then keeping the parameters
corresponding to the first few layers fixed during the inversion phase, when 7.2.2 is
solved. This technique is commonly referred to as transfer learning and, in this case,
it allows bringing ’knowledge’ from other datasets into the deblending process.
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A

Focal deblending as a BPDN problem

A.1 Vectorizing the problem

The objective of this appendix is to show how the focal deblending problem
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for time slices and frequency slices evaluated at

tn = nδt, n = 0, 1, . . . , nt,

ωn′ = n′δω = n′ 2π

ntδt
, n′ = 0, 1, . . . , nt, (A.1.2)

can be transformed to the canonical, vectorized form of BPDN [van den Berg and
Friedlander, 2008],

min
x
{||x||1} subject to ||pbl −Ax||2 ≤ σ. (A.1.3)

Here A = ΨΦ, i.e., the composition of an inverse focal transform operator (Φ) and
a blending operator (Ψ), which operate entirely in the time domain. The vectors
pbl and x are the time-domain vectorized blended data and concatenated focal sub-
domain data respectively. Equation (A.1.3) is the vectorized form of (3.5.34). It is
also related to (3.3.16) when Γ(z0) = I, and thus Ψ = I.
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The first step in this process is to rewrite the multiplications of frequency slices in
(A.1.1) as discrete summations. For the following discussion the notation [A]i,j will
be used for the i-th row, j-th column element of a matrix A, and [x]i for the i-th
element of a vector x. From chapters 2 and 3 we have that

pbl(rq, b; ω) = [Pbl(z0, z0)]q,b,

w−
m(rq, u

′
l; ω) = [W−

m(z0, zm)]q,l,

xD
m(u′

l, uk; ω) = [XD
m(zm, zm)]l,k,

xD
m(u′

l, uk; t) = [X̂D
m(zm, zm)]l,k,

w+
m(uk, si; ω) = [W+

m(zm, z0)]k,i,

γ(si, b; ω) = [Γ(z0)]i,b. (A.1.4)

Very often pairs of coordinates will need to be matched to corresponding traces.
For this purpose the following pair-to-flat index maps of the form (i1, i2) → κ are
introduced:

• (q, b) → ξ, from the q-th receiver in the b-th blended shot gather to the ξ-th
blended data trace.

• (l, k)→ ν, from the l-th and k-th point of the focal grid to the ν-th trace of a
focal subdomain.

• (q, i)→ µ, from the q-th receiver and i-th shot location to the µ-th unblended
data trace.

In order to simplify the summation limits, it is assumed that each of the ns unblended
shot records and each of the b blended shot records has nr traces. Similarly, for each
of the nu grid points, the focal transform will be evaluated at nu local subsurface
offsets.

Using (A.1.4) the problem (A.1.1) can be rewritten using summations over individual
elements as

min
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To make expressions more concise, the elements of the two focal operators are fused
together in

ϕm(rq,u
′
l,uk, si;ω) = w−

m(rq, u
′
l; ω)w

+
m(uk, si; ω). (A.1.6)

The next step is to transform (A.1.5) to the time domain. This can be done with
the aid of the Parseval and convolution theorems for the DFT. Then, the constraint
part of (A.1.5) can be rewritten as
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Element-by-element multiplication of frequency samples of the operators and the
data turn into circular convolutions in the time domain.

The vectorization process starts by assembling time samples pertaining to the same
blended trace into vectors p

(ξ)
bl . Similarly, time samples of focal subdomain traces

are assembled into vectors x
(ν)
m :

[

p
(ξ)
bl

]

n
= pbl(rq(ξ), b(ξ); tn),

[

x(ν)
m

]

n′′
= xD

m(u′
l(ν), uk(ν); tn′′),

n, n′′ = 0, 1, . . . , nt − 1. (A.1.8)

A matrix Φ
(µ,ν)
m is defined such that Φ

(µ,ν)
m x

(ν)
m is the contribution of the ν-th trace

of the m-th focal subdomain to the µ-th trace of the estimated deblended data. In
a similar fashion Ψ(ξ,µ) calculates the contribution of the µ-th unblended data trace
to the ξ-th blended trace. These matrices have elements given by

[

Ψ(ξ,µ)
]
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n, n′, n′′ = 0, 1, . . . , nt − 1. (A.1.9)

They are both circulant matrices. With the aid of (A.1.8) and (A.1.9), the time-
domain form (A.1.7) becomes
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The next level in the vectorization process is to concatenate the ν-th trace of each
focal subdomain one after the other, as well as the corresponding matrices Φ

(µ,ν)
m

into
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Substituting in (A.1.10) yields a yet more compact form,

min
x(ν)
m

ν=1,...,n2
u







n2
u∑

ν=1

∣
∣
∣

∣
∣
∣x

(ν)
∣
∣
∣

∣
∣
∣
1






subject to

√
√
√
√
√

nrb∑

ξ=1

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

p
(ξ)
bl −

nsnr∑

µ=1

n2
u∑

ν=1

Ψ(ξ,µ)Φ(µ,ν)x(ν)

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

2

2

≤ σ. (A.1.12)

The last step in the vectorization involves concatenating the nrb blended traces, as
well as the Mn2

u focal domain traces into vectors

pbl =

[

p
(1)
bl

T
,p

(2)
bl

T
, . . . ,p

(nsnr)
bl

T
]T

,

x =

[

x(1)T,x(2)T, . . . ,x(n2
u)

T
]T

. (A.1.13)

The final operator matrices are also formed as follows:

Φ =









Φ(1,1) Φ(1,2) . . . Φ(1,n2
u)

Φ(2,1) Φ(2,2) . . . Φ(2,n2
u)

...
... . . . ...

Φ(nsnr,1) Φ(nsnr,2) . . . Φ(nsnr,n
2
u)









,

Ψ =









Ψ(1,1) Ψ(1,2) . . . Ψ(1,nsnr)

Ψ(2,1) Ψ(2,2) . . . Ψ(2,nsnr)

...
... . . . ...

Ψ(nrb,1) Ψ(nsnr,2) . . . Ψ(nrb,nsnr)









. (A.1.14)
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Plugging into (A.1.12) yields the canonical BPDN form,

min
x
{||x||1} subject to ||pbl −ΨΦx||2 ≤ σ. (A.1.15)

A.2 Time-domain structure of the blending and focal transform oper-
ators

So far Φ and Ψ have been fairly generic. Φ encodes the double focal transform and
Ψ a blending code. By making specific choices for the kind of focal operators and
type of blending, it is possible to visualize the structure present in Φ and Ψ. The
combination of 3D focal operators and time-delay blending will be examined below.

A.2.1 The elements of Φ

For 3D operators we have from table 3.1 that

w−
m(rq, u

′
l; ω) =

zm(1 + jωτql)

∆r3ql
e−jωτql ,

w+
m(uk, si; ω) =

zm(1 + jωτki)

∆r3ki
e−jωτki . (A.2.16)

with

τql = ∆rql/cm, ∆rql = ||rq − u′
l||2,

τki = ∆rki/cm, ∆rki = ||uk − si||2,
τqlki = τql + τki. (A.2.17)

Here zm and cm are the depth and velocity associated with the m-th focal subdomain.

Given this choice, ϕm(·) in the frequency domain takes the explicit form

ϕm(rq,u
′
l,uk, si;ω) =

(

zm(1 + jωτql)

∆r3ql
e−jωτql

)(
zm(1 + jωτki)

∆r3ki
e−jωτki

)

=
z2m

∆r3ql∆r3ki

[
1 + τqlki(jω) + τqlτki(jω)

2
]
e−jωτqlki . (A.2.18)

Note that the presence of coefficients of the form (jω)k generates time derivatives of
the time-shift operator e−jωτqlki . The term that dominates is the one involving the
second derivative, as it is related to the far-field component of both focal operators.

The inverse DFT is the applied to get a time-domain expression, taking care to
enforce conjugate symmetry between positive and negative frequencies:
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ϕm(rq,u
′
l,uk, si; tn) =

1

nt

⌈nt/2⌉∑

n′=0

ϕm(rq,u
′
l,uk, si;ωn′)ejωn′ tn

+
1

nt

nt−1∑

n′=⌈nt/2⌉+1
−mod(nt,2)

ϕm(rq,u
′
l,uk, si;ωn′−nt

)ejωn′ tn . (A.2.19)

Note that presence of the Nyquist frequency when nt is even has to treated specially,
in order to ensure conjugate symmetry. The choice made here was to exclude it
from the sum, which is equivalent to forcing the operator to have a zero value at the
Nyquist frequency, i.e.

ϕm(rq,u
′
l,uk, si;ω⌈nt/2⌉) = 0 when nt is even. (A.2.20)

The operator is then less accurate, as its nullspace is modified by this change. Fortu-
nately this is not a problem in practice, as there is usually little spectral content near
the Nyquist frequency for the typical sampling rates used in seismic data acquisition.

In the time domain the operator ϕm(rq,u
′
l,uk, si; t) takes the form

ϕm(rq,u
′
l,uk, si; tn) =

z2m
∆r3ql∆r3ki

×

× [S(tn − τqlki) + τqlkiS
′(tn − τqlki) + τqlτkiS

′′(tn − τqlki)] , (A.2.21)

where SC(t), S′
C(t) and S′′

C(t) are the periodic sinc function, its first and its second
derivative, respectively. They are defined as

SC(t) = sin(αt))/(nt sin(βt)),

S′
C(t) = (α cot(αt)− β cot(βt))SC(t),

S′′
C(t) = (β2 − α2)SC(t)− 2β cot(βt)S′

C(t), (A.2.22)

for t ̸= kntδt, k ∈ Z, with

α =
(nt − 1 + mod(nt, 2))π

ntδt
and β =

π

ntδt
. (A.2.23)

For the special case t = kntδt, they take the values

SC(kntδt) =
α

βnt
, S′

C(kntδt) = 0, S′′
C(kntδt) =

α(β2 − α2)

3βnt
. (A.2.24)

These expressions are valid for both even and odd nt, when the Nyquist frequency
is excluded in the even nt case.
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An insight from (A.2.21) is that the cumulative effect of the two focal operators in
the inverse focal transform mode is to add an amount of offset-dependent periodic
time shift to each focal subdomain trace, followed by taking a linear combination
of the resulting wavefield and its first and second derivatives. The presence of time
derivatives makes the focal transform slightly different from Radon-type transforms.

A.2.2 The elements of Ψ

For a time delay blending code, we have from (2.2.9) that

γ(si, b; ω) = a(si, b)e
−jωτd(si, b), (A.2.25)

with

a(si, b) =

{

1, if the i-th shot contributes to the b-th blended gather,
0, otherwise,

τd(si, b) =







τd,i, the blending code delay associated with the i-th shot, if
that shot contributes to the b-th blended gather,

0, otherwise.

Applying the inverse DFT as before, again enforcing conjugate symmetry,

γ(si, b; tn) =
1

nt

⌈nt/2⌉∑

n′=0

γ(si, b; ωn′)ejωn′ tn

+
1

nt

nt−1∑

n′=⌈nt/2⌉+1
−mod(nt,2)

γ(si, b; ωn′−nt
)ejωn′ tn

=a(si, b)SC(tn − τd(si, b)). (A.2.26)

Here the effect of γ(·) is to simply apply a periodic shift to the trace, for calculating
its contribution to a blended trace, provided that a(si, b) = 1.

A.2.3 Φ and Ψ visualized

Given explicit expressions for ϕm(·) and γ(·), the matrices Φ and Ψ can be con-
structed as discussed previously. An example of a matrix Φ for two focal subdo-
mains, each with two focal traces can be seen in figure A.1b. It produces three
unblended traces, which can be blended by applying Ψ, seen in figure A.1a. This
produces two output traces, of which the first is blended and the second simply
time-shifted.
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Figure A.1: Visualization of a) the matrix Ψ; b) the matrix Φ; c) a blended trace produced
by carrying out the operations in the frequency (blue) and the time domain (red).

Several observations can be made regarding the structure of the matrices, the first
of which is that they consist of circulant blocks. This is to be expected, as they need
to implement circular convolutions in the time domain. A second observation is that
although the individual blocks of Φ and the nonzero blocks of Ψ are full matrices,
most significant contributions come from a shifted diagonal band. This agrees with
the intuition that time-shifting and differentiation are (in the limit δt → 0) local
operations. The ‘mostly local’ character of these operations enables the possibility
of an alternative, time domain implementation of the focal transform, which could
approximate these operators with short filters (at the expense of frequency response
fidelity) and involve time-domain denoising when deblending. This idea is discussed
in section 7.2.

Forming matrices Φ and Ψ explicitly can be useful for building intuition on how they
act on data. For an actual software implementation of focal deblending however,
constructing them explicitly is impractical and in most cases impossible, as they
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tend to be huge, even for small problems with a few thousand traces. For the
configuration examined in this appendix, their sizes are

(nsnrnt ×Mn2
unt) for Φ,

(nrntb× nsnrnt) for Ψ. (A.2.27)

Even for a modest sizes, e.g. ns = nr = nt = nu = 1000, these matrices would
have billions of rows and columns, which is prohibitive both in terms of storage and
computation. An implicit, matrix-free implementation is necessary in practice.
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B

SPGL1 for focal deblending

An integral part of the deblending method explored this thesis is sparse optimization.
More specifically, the forward focal transform (problem 3.3.18) as well as deblending
(problem 3.5.36) were formulated as BPDN problems that have the general form,

xσ = argmin
x

{||x||1} subject to ||b−Ax||2 ≤ σ. (B.0.1)

An advantage of the BPDN formulation is that its parameter σ controls the max-
imum amount of tolerated data misfit, which is usually easier to set than directly
controlling the amount of sparsity of the solution, as happens in the LASSO or OMP
formulation.

SPGL1 is matrix-free numerical solver for the BPDN problem (B.0.1), proposed by
van den Berg and Friedlander [2008]. Often matrix-vector products Ax and ArT can
be more efficiently implemented in an algorithmic fashion, exploiting some special
structure in A. SPGL1 allows us to take advantage of this. What follows in the
rest of this appendix is not original work, but a rather short description of SPGL1,
included here for convenience. The reader can refer to van den Berg and Friedlander
[2008, 2011] for a more in-depth coverage of the algorithm and its properties.

SPGL1 works by solving a series of LASSO problems

xτ = argmin
x

{||b−Ax||2} subject to ||x||1 ≤ τ, (B.0.2)

for different values of the parameter τ . Note that the LASSO and the BPDN prob-
lems are related, in the sense that what constitutes the objective function for one
becomes part of the constraint in the other. SPGL1 solver identifies the smallest
value of τ such that solving (B.0.2) yields a result xτ that satisfies ||b−Axτ ||2 ≤ σ.
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Seen from a geometric point of view, SPGL1 tries to find which is the smallest pos-
sible radius of an ℓ1-ball centered at the origin can have while touching a point in
the set {xτ : ||b−Axτ ||2 ≤ σ}.
To discover the optimal value for τ , SPGL1 samples the Pareto curve

ϕ(τ) = ||b−Axτ ||2 = ||rτ ||2 , (B.0.3)

where xτ is the solution of (B.0.2), for a given value of τ . The Pareto curve is a
manifestation of the tradeoff between ||xτ ||1 and ||rτ ||2. As one would intuitively
expect, ϕ(τ) is non-increasing, and greater value for τ will generally lead to a reduc-
tion of the residual, up to the point when either it becomes zero (and the solution
is then a basis pursuit solution), or it reaches some minimum possible value (when
b /∈ range(A)). A remarkable fact that is proven by van den Berg and Friedlander
[2008] is that evaluating ϕ(τ) by solving (B.0.2) allows one to evaluate the derivative
ϕ′(τ) at the same point as a byproduct:

ϕ′(τ) =

∣
∣
∣
∣ATrτ

∣
∣
∣
∣
∞

||rτ ||2
. (B.0.4)

It is also shown by van den Berg and Friedlander [2008] that ϕ(τ) is continuously
differentiable. These two facts allow for using the Newton root-finding method for
discovering τσ and corresponding xσ such that

ϕ(τσ) = σ. (B.0.5)

Then xσ satisfies (B.0.1), which solves the original BPDN problem. The values
τ [0], τ [1], . . . at which the Pareto curve (figure B.1) is sampled are determined by the
Newton iteration

τ [k+1] = τ [k] − ϕ(τ)− σ

ϕ′(τ)
. (B.0.6)

Note that using the Pareto curve in the manner discussed here is not only applicable
to basis pursuit, but can be generalized to handle a broader class of problems [van den
Berg and Friedlander, 2011].

SPGL1 can be conceptually divided1 in ‘outer loop iterations’, in which τ is modified
as per (B.0.6), and ‘inner loop iterations’, in which a LASSO problem is solved. For
the latter, a spectral projected gradient iterative solver is used. Pseudocode descrip-
tions of these two parts can be found in van den Berg and Friedlander [2008] and
van den Berg and Friedlander [2011] respectively. They are also listed here as algo-
rithms 1 and 2, with minor modifications to accommodate for the focal deblending
application considered in this thesis.

1The actual implementation [van den Berg and Friedlander, 2007] merges these two loops in one,
using a set of criteria to determine when the ℓ1-ball radius is to be modified.
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Figure B.1: Pareto curve for a toy example, similar to figure 2.1 in van den Berg and
Friedlander [2008]. Blue line: the Pareto curve; red line: successive estimates of the root
location via the Newton method; black line: the noise threshold σ.

The spectral projected gradient solver needs to have a way of projecting some point
c onto the ℓ1-ball of radius τ , or, in other words, a way of solving the problem

proj(c, τ) = argmin
x

{||c− x||2} subject to ||x||1 ≤ τ. (B.0.7)

An O(n log n) complexity method based on a binomial heap data structure is pro-
posed for this purpose by van den Berg and Friedlander [2008]. Although convenient
for single-core implementations, this approach is challenging to parallelize, because
of the heap structure employed. As projection is third the most expensive operation
after application of A and AT, it is important to also parallelize for large field data
processing. Fortunately, it is possible to calculate the projection in other ways, such
as by using the active set method of Michelot [1986], as is proposed by Sun and
Verschuur [2018].

The user has to provide an implementation of A and AT, which for focal deblending
breaks down to four operations:

• blend()/psdeblend(), implementing the blending operation and its adjoint,

• defocus()/focus(), implementing the inverse focal transform and its adjoint.

These operators need not be defined in explicit matrix form. For deblending,
blend(defocus(·)) and focus(psdeblend(·)) implement A and AT, respectively.
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Algorithm 1 SPGL1 solver for BPDN
Input

pbl vectorized blended data
σ target ℓ2-norm of the data misfit
δ maximum allowed duality gap
ϵ data misfit tolerance

Output
pdebl vectorized deblended data

function spgl1(pbl, σ, δ, ϵ)
x0 ← 0, r0 ← pbl, τ0 ← 0, k ← 1

while
∣
∣
∣||rk−1||22 − σ

∣
∣
∣ > ϵ do

xk, rk,gk ← spglasso(pbl,xk−1, τk−1, δ)
ϕ← ||rk||2, ϕ′ ← −||gk||∞ / ||rk||2
τk ← τk−1 − (ϕ− σ)/ϕ′

k ← k + 1
end while
return pdebl ← defocus(xk)

end function

Algorithm 2 Spectral projected gradient solver for LASSO
Input

pbl vectorized blended data
x vectorized focal subdomains, initial estimate
τ ℓ1-ball radius
δ maximum allowed duality gap

Output
xτ vectorized focal subdomains, after optimization
rτ vectorized final residual
gτ vectorized final gradient

Parameters
αmin, αmax minimum/maximum step length, 0 < αmin < αmax

α0 initial step length, α0 ∈ [αmin, αmax]
γ sufficient descent parameter, γ ∈ (0, 1)
M line search history length, M > 0
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function spglasso(pbl,x, τ, δ)
x0 ← proj(x, τ)
r0 ← pbl − blend(defocus(x0))
g0 ← −focus(psdeblend(r0))
l← 0
loop

δl ← ||rl||2 −
(
pT
blrl − τ ||gl||∞

)

if δl < δ break
α← αl

loop
x̄← proj(xl − αgl, τ)
r̄← pbl − blend(defocus(x̄))
rmax ← maxj∈[0,min{l,M−1}]{||rl−j ||22}
β̄ ← γ(x̄− xl)

Tgl

if ||r̄||22 ≤ rmax + β̄ break else α← α/2
end loop
xl+1 ← x̄

rl+1 ← r̄

gl+1 ← −focus(psdeblend(rl+1))
∆x← xl+1 − xl

∆g← gl+1 − gl

if ∆xT∆g ≤ 0 then
αl+1 ← αmax

else
αl+1 ← min

{

αmax,max
{

αmin,
∆xT∆x
∆xT∆g

}}

end if
l← l + 1

end loop
return xτ ← xl, rτ ← rl, gτ ← gl

end function
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C

The blending noise operator

For the following discussion we assume a blending operator Γ(z0) with the following
properties: a) it implements a purely random time delay code, b) each shot par-
ticipates in one blended shot gather, c) each blended shot gather is produced by
blending at least two shot gathers. For every column i of Γ(z0) we define a set Bi
that holds the indices of the shots that participate in the i-th blended shot gather,
i.e.

Bi = {j : γ(sj , i;ω) ̸= 0}, i = 1, 2, . . . , nbl, j = 1, 2, . . . , ns, (C.0.1)

where γ(sj , i;ω) is as defined in (2.2.9), sj is the j-th shot location, nbl is the number
of blended shot gathers and ns the number of shots. Property b) then means that

Bi ∩ Bj = {}, i ̸= j, i, j = 1, 2, . . . , nbl. (C.0.2)

Of course, if j /∈ Bi, it follows that γ(sj , i;ω) = 0. Property c) implies that |Bi| ≥ 2,
for all sets Bi. Given these requirements for Γ(z0), we define the blending noise
operator

N(z0) ≡ (Γ(z0)Γ(z0)
H − I)Λ(z0). (C.0.3)

When acting on a data cube from the right side, i.e. P(z0, z0)N(z0), the blending
noise operator produces a new data cube which is equal to the pseudo-deblended
data with the copy of the original data removed. The result is scaled by Λ(z0), each
frequency slice of which is a diagonal matrix with elements

λ(si, sj ;ω) =

{
1

|Bk|−1 , k : i ∈ Bk, i = j, i, j = 1, 2, . . . , ns

0 otherwise.
(C.0.4)

The purpose of Λ(z0) is to normalize for the different number of shots participating
in a blended shot gather. When a shot is not blended with any other shots, the
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corresponding diagonal element is set to 1. The individual elements of N(z0) are
given by

n(si, sj ;ω) =






γ(si, k;ω)γ(sj , k;ω)
∗λ(sj , sj ;ω), k : i ∈ Bk, j ∈ Bk, i ̸= j

(γ(sj , k;ω)γ(sj , k;ω)
∗ − 1)λ(sj , sj ;ω), k : i ∈ Bk, j ∈ Bk, i = j

0, otherwise.
(C.0.5)

Since the blending code consists of pure random time delays, it holds that

γ(sj , k;ω)γ(sj , k;ω)
∗ − 1 = ejωτjke−jωτjk − 1 = 0, (C.0.6)

therefore (C.0.5) simplifies to

n(si,sj ;ω) =
{

γ(si, k;ω)γ(sj , k;ω)
∗λ(sj , sj ;ω), k : i ∈ Bk, j ∈ Bk \ i,

0, otherwise.
(C.0.7)

An important property of N(z0) is that

Γ(z0) = N(z0)Γ(z0), (C.0.8)

or, in other words, each column of Γ(z0) is an eigenvector of N(z0). To see why
this is the case, we examine the (i, l)-th element of the product N(z0)Γ(z0) which is
given by

∑

j

n(si, sj ;ω)γ(sj , l;ω) = (C.0.9)







γ(si, k;ω)
∑

j γ(sj , k;ω)
∗γ(sj , l;ω)λ(sj , sj ;ω), k : i ∈ Bk,

j ∈ Bk \ i
0, otherwise.

We distinguish two cases. For l ̸= k, it follows from (C.0.1) and (C.0.2) that
∑

j∈Bk\i

γ(sj , k;ω)
∗γ(sj , l;ω)λ(sj , sj ;ω) = 0. (C.0.10)

For the second case, k = l,
∑

j∈Bk\i

γ(sj , k;ω)
∗γ(sj , k;ω)λ(sj , sj ;ω) =

∑

j∈Bk\i

1

|Bk| − 1
=
|Bk \ i|
|Bk| − 1

=
|Bk| − 1

|Bk| − 1
= 1. (C.0.11)
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Using (C.0.10) and (C.0.11), (C.0.9) becomes

∑

j

n(si, sj ;ω)γ(sj , l;ω) =

{

γ(si, k;ω), k : i ∈ Bk, k = l,

0, otherwise.

=

{

γ(si, l;ω), l : i ∈ Bl,
0, otherwise.

= γ(si, l;ω). (C.0.12)

Equation (C.0.12) holds for all i and j which proves (C.0.8).
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