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Safety Assessment of the Interaction
Between an Automated Vehicle
and a Cyclist: A Controlled Field Test

Maria Oskina1 , Haneen Farah2 , Peter Morsink1 ,
Riender Happee2 , and Bart van Arem2

Abstract
The operation of automated vehicles (AVs) on shared roads requires attention concerning their interactions with vulnerable
road users (VRUs), such as cyclists. This study investigates the safety of cyclists when they interact with an AV and compares
it with their interaction with a conventional vehicle. Overall, 29 cyclists participated in a controlled field experiment consist-
ing of interaction scenarios in which a vehicle approached the cyclist from behind. Four interaction scenarios were included:
manual and automated following and manual and automated overtaking of the cyclist. The vehicle operated in all scenarios in
a manual mode for safety reasons. However, before each ride, participants received information about the vehicle’s operation
mode (automated or manual). The following attributes were considered: overtaking speed, overtaking lateral distance, fol-
lowing distance, and roadside objects. The objective and the subjective risks were evaluated in each scenario. The objective
risk was assessed using the probabilistic driving risk field, and the subjective risk was assessed based on the cyclists’ self-
reported risk values, cycling behavior, and their trust in AVs. The results show that automated and manual following have sim-
ilar objective and subjective risks, while automated overtaking has a higher level of objective and subjective risks than manual
overtaking. The results also show that a longer interaction time leads to an increase in cycling speed and a decrease in the lat-
eral distance of the cyclist to the curb. Thus, we conclude that automated following is a safer option for short traveling dis-
tances, while for longer traveling distances, manual overtaking is preferred. Additionally, a short lateral distance from the
cyclist when overtaking increases the subjective and objective risks.
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The operation of automated vehicles (AVs) on shared
roads is expected to result in frequent interactions with
other road users. These road users mostly use implicit
communication channels (1), which AVs do not yet fully
recognize. To prevent misunderstanding in communica-
tion between AVs and cyclists, some current AVs are
programmed to follow the cyclist at the rider speed (2).
Such a behavioral approach is not efficient for traffic
operation performance. Also, cyclists might feel unsafe
when being followed by a vehicle (3). Therefore, pro-
gramming the interactions with vulnerable road users
(VRUs), such as pedestrians and cyclists, requires special
attention in AV motion control.

Previous field test studies investigating the interac-
tions between AVs and VRUs mainly focused on the

interactions of AVs with pedestrians. Several studies
show that pedestrians generally reported feeling less safe
and behaved more cautiously when interacting with AVs
(1, 4–7). It was also found that the most influencing fac-
tors are the speed of the vehicle and its distance to the
pedestrian (8–12). There are very few studies focusing on
the interactions between cyclists and AVs, and there are
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no studies in the literature, to the best of our knowledge,
that focus on AVs’ interactions with cyclists based on
field tests. Rodrı́guez Palmeiro et al. (10) conducted a
photo experiment study. The purpose was to investigate
if cyclists’ expectations and behavioral intentions would
differ when interacting with AVs compared with inter-
acting with manually driven vehicles. The researchers
found that the participants were not confident that AVs
would notice them (13). Nuñez Velasco et al. (14) used a
virtual reality method to determine the main factors
influencing cyclists’ intentions to cross when interacting
with an AV as compared with a conventional vehicle.
The results showed that the gap size and right of way
were the primary factors affecting the crossing intentions
of cyclists, while the vehicle type (AV versus conven-
tional vehicle) and vehicle speed did not have a signifi-
cant effect on the crossing intentions.

In addition to the operational mode of the vehicle
(automated or manual), the characteristics of the cyclist
and the road environment could also affect these interac-
tions. Several studies, such as Llorca et al. (12), Rubie
et al. (15), Beck (16), and Rasch et al. (17) have shown
that cyclists’ subjective risk is influenced by the lateral
distance when a vehicle passes a cyclist, and also the
speed and the size of the overtaking vehicle. Chuang
et al. (18) found that a longer passing time influences
the observed increase in steering wheel angle and speed
of the cyclist. Studies also show that the gender of a
cyclist affects the distance of overtaking. Drivers of
conventional cars prefer to keep more distance from
female cyclists than from male cyclists, according to
Chuang et al. (18), and likewise if the cyclist appears to
be female (19).

The literature review highlights a gap in the knowl-
edge about cyclists’ behavior when interacting with AVs.
To minimize the risk when AVs interact with cyclists,
investigating the subjective and objective risks of differ-
ent maneuvers and driving modes of AVs during these
interactions is required. It is also essential to investigate
the potential changes in the behavior (i.e., behavioral
adaptation) of cyclists depending on the type of vehicle
they are interacting with (manual versus automated) and
the duration of the interaction. Therefore, the main
research question of this study is: Which interaction sce-
nario minimizes the subjective and objective risks when
an AV approaches a cyclist from behind?

Research Methodology

This section is structured as follows. First, the controlled
field test setup is explained, followed by the data
collection method, the experiment procedure, and the
analysis method. The research steps are further detailed
in Figure 1.

This study analyzed the behavior of participants who
were riding an instrumented bicycle while they were fol-
lowed or passed by a vehicle. The participants were
informed that the vehicle would be operated in manual
or automated mode (while the vehicle was always oper-
ated in manual mode).

Controlled Field Experiment

This sub-section describes the field test location, recruit-
ment of participants, the experiment instrumentation,
and the interaction scenarios.

Figure 1. Research steps.
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Field Test Location. The experiment took place on a quiet
minor street located at the Delft University of
Technology campus at Heertjeslaan. The straight road
section of 200m in length consists of one lane per direc-
tion for driving cars and two bicycle lanes (see Figure 2).
The complete street was closed to any other traffic dur-
ing the experiment.

Participants. Twenty-five participants (13 males and 12
females) from the same age group (mean=25.4 years;
standard deviation=1.3 years) took part in the experi-
ment. Only participants who had experience in cycling
were invited to the experiment.

Experiment Instrumentation. An equipped bicycle and an
equipped vehicle were used for the experiment (see
Figure 3).

The bicycle was equipped with three-point LIDAR,
two cameras, GPS, and an accelerometer. A Toyota
Prius vehicle was instrumented with a GPS, an acceler-
ometer, and a video camera. The LIDAR and GPS col-
lected data at a resolution of five measurements per
second.

Each participant completed a questionnaire on their
personal characteristics and their basic trust in technolo-
gies. Trust in technology was assessed using a question-
naire developed by Körber (20). The questionnaire has
four underlying dimensions: reliability and propensity to
trust, predictability, familiarity, and trust in automation.
Answers on each of the 19 questions were collected with
a Likert scale ranging from 1 ‘‘strongly disagree’’ to 5
‘‘strongly agree.’’

After each interaction, the participants were also
asked about their level of experienced risk (i.e., subjective
risk). The subjective risk level was self-reported on a

scale of 100 degrees, with steps of five degrees and with
higher scores representing a higher risk level.

Scenarios. The controlled field test concerns a situation
where the vehicle is approaching the cyclist from behind.
In such a case, two sub-scenarios emerge: the first is when
the vehicle continues to follow the cyclist, and the second
is when the vehicle overtakes the cyclist. As mentioned in
the literature (3–7), pedestrians generally reported feeling
less safe and behaved more cautiously when interacting
with AVs, thus this research aimed to investigate the
behavioral adaptation of cyclists when interacting with
an AV compared with interacting with a conventional
vehicle. Thus, the study included four scenarios: auto-
mated following, automated overtaking, manual follow-
ing, and manual overtaking. The order of rides for
cyclists was counterbalanced. A sticker with the words
‘‘self-driving’’ was placed on the side of the vehicle in sce-
narios with automated mode. In practice, in all scenarios,
the vehicle operated in a manual mode for safety reasons.
However, before each ride, the participants received
information about the vehicle’s operation mode (auto-
mated/manual). At the end of each ride, the participants
were asked whether they interacted with an AV or a man-
ual vehicle. Even though the participants received this
information explicitly at the start, it was still necessary to
check whether the participants believed that they inter-
acted with an AV. In two instances, the participants men-
tioned that the vehicle was operated in an automated
mode when they were told before the ride that the vehicle
would operate in a manual mode. Therefore, we analyzed
the data from these two rides as automated driving mode
data, as it is important to consider what the cyclists
thought. In addition to the operation mode of the vehicle
(automated or manual) and the exact type of maneuver
(following or overtaking), the study considered the char-
acteristics of the AV driving behavior, the features of the
cyclist (gender and age), and the road environment based
on insights from previous studies. Therefore, the follow-
ing attributes were considered: overtaking lateral distance
(1.5m; 3.5m, correspondingly related to the narrow
street and wide street overtaking scenarios), overtaking
vehicle speed (cyclist speed +5km/h; cyclist speed
+10km/h), and type of right-hand side objects (curb
with a brick-paved surface; curb with grass, see Figure 4).
During the overtaking maneuver, the vehicle followed
the participant for 20 s and then proceeded to overtake
the cyclist at the specified lateral distance in that scenario
(1.5m; 3.5m). The driver was instructed to keep the pre-
defined distance (1.5m; 3.5m); two white lines were
drawn on the carriageway to help drivers navigate.
Cyclists had the freedom to adjust their distance to the
vehicle. The following distance was always 3m behind
the cyclist.

Figure 2. Controlled field test location from Google Earth (51�
59’23.29’’ N 4� 23’15.70’’ E).
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Figure 3. Placement of sensors on the bicycle (a) and the instrumented bicycle (b); placement of sensors on the vehicle (c) and the
instrumented vehicle (d).

Figure 4. Roadside type: (a) grass and (b) brick-paved path.
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Experiment Procedure. The experiment procedure included
an initial pilot experiment followed by the main experi-
ment. The pilot experiment included four cyclists and
was used to verify the experiment procedure. Before the
field experiment, the participants were asked to complete
the personal characteristics questionnaire and their basic
level of trust in AV technologies. During the experiment,
each participant completed 10 rides of 200m each. First,
the participant completed two rides without any interac-
tion with the vehicle for familiarization with the bicycle.
After that, the participant completed an additional eight
rides in which they interacted with the vehicle. After each
ride, the participants were asked to complete the trust
questionnaire, report the level of risk they had experi-
enced during the ride and the attributes influencing their
evaluation, and answer whether the vehicle was operated
manually or automatically.

Data Collection

Table 1 summarizes the data collected during the experi-
ment. The numbers in the table represent the number of
rides for each scenario and attribute. The theoretical
total number of rides would have been 250 (25 partici-
pants, each did eight scenario rides and two familiariza-
tion rides). However, different reasons led to data loss;
thus, the total number of rides is less than 250 rides.

Trust and subjective risk levels were reported at the
end of each ride. The lateral and longitudinal position of
the vehicle relative to the cyclist and the speed of the
vehicle and cyclist were recorded at a resolution of five
measurements per second. These data were used as an
input to calculate the objective risk. Additionally, the
LIDAR installed on the bicycle captured the distance of
the cyclist to the curb. The mean objective risk was then
calculated for each ride and as well separately for the

beginning, middle, and end of each ride, as illustrated in
Figure 5.

For the following maneuver, the beginning, middle,
and ending parts of the route were selected to equal their
ride duration.

Analysis Method

The analysis included the objective risk assessment, the
subjective risk assessment and self-reported trust, and the
subjective and objective risk modeling.

The objective risk was assessed using the probabilistic
driving risk field (PDRF) safety approach (21), and was
calculated every 0.2 s. The PDRF has severity and prob-
ability components. The severity component can capture
differences in risks between a collision with a highly rigid
object and an object of low rigidity. The probability com-
ponent captures differences in probabilities of collisions
between two objects, for example, the difference between
two objects moving in parallel versus two objects moving
in perpendicular. The PDRF has a benefit over other
surrogate safety measures in that it can consider

Table 1. Number of Rides per Scenario and Attribute

Self-reported
trust

Subjective
risk (%)

Objective risk
level (Joules)

Distance to
curb (m) Speed (m/s)

Overall number of rides 194 194 80 176 80
Automated following 49 49 20 44 20
Automated overtaking 51 51 20 45 20

Speed +5 (m/s), lateral distance 1.5 m 14 14 7 13 7
Speed +5 (m/s), lateral distance 3.5 m 11 11 7 10 7
Speed +10 (m/s), lateral distance 1.5 m 12 12 3 11 3
Speed +10 (m/s), lateral distance 3.5 m 12 12 3 11 3

Manual following 47 47 20 44 20
Manual overtaking 47 47 20 43 20

Speed +5 (m/s), lateral distance 1.5 m 11 11 3 10 3
Speed +5 (m/s), lateral distance 3.5 m 12 12 3 11 3
Speed +10 (m/s), lateral distance 1.5 m 11 11 7 10 7
Speed +10 (m/s), lateral distance 3.5 m 13 13 7 12 7

Figure 5. Definition of beginning, middle, and ending of an
overtaking maneuver.
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simultaneously the risks of collision with static (e.g.,
guardrail) and kinetic (e.g., moving vehicles) objects.

The potential risk field is associated with threats from
static road objects while the kinetic risk field is associated
with threats from moving road objects. The total risk is
equal to the risks posed by multiple road objects based
on the superposition property of fields (21).

The potential risk field can be calculated using
Equation 1:

Rb, s = 0:5kM(Vs, b)
2 �max(e

� rs, bj j
D , 0:001) ð1Þ

The crash severity is represented by the term
0:5kM(Vs, b)

2. The severity is the magnitude of the crash
energy that appears in an accident between objects S and
B. The unit of measurement of the crash severity is

Joules. The term e
� rs, bj j

D defines the crash probability,
which ranges between 0 and 1.
In Equation 1,
s = a dynamic object experiencing influence from a static
object b;
b = a static object influencing a dynamic object s;
k = the parameter of the rigidity of the road boundary
object with a range from 0 to 1. In this study, we used
k = 0:61 for the side of the road with a curb with a brick-
paved surface and k = 0:55 for a road with a curb and
grass side (22);
M = the mass of the dynamic object s;
Vs, b = the velocity of the dynamic object s along rs, b;
rs, b = the vector of the shortest distance between
dynamic object s and static object b;
D = the steepness of descent of the potential risk field. In
this study D= W

14
, where W is the width of the object s.

The collision probability reaches a value of 0.001 in the
center of the lane.

The kinetic risk field can be calculated using Equation
2. The unit of measurement of the kinetic risk field is
Joules.

Rn, s = 0:5Msb
2 DVs, n

2
�
�

�
� � p(n, s) ð2Þ

where
s = a dynamic object that is experiencing risk from
another dynamic object;
n = a dynamic object that influences the considering
object S;
Ms = mass of the dynamic object S;
Mn = mass of the dynamic object N.
b= Mn

Ms +Mn
represents the mass ratio of the interacting

objects. DVs, n =Vs � Vn denotes the counteracting velocity
between dynamic objects s and n. p(n, s) is the probability
of a collision (spatial overlap) that ranges from 0 to 1.

The collision probability likelihood is related to the
probability distribution of road users’ acceleration. We

know the trajectory of s and can predict the course of n.
As the trajectory of n is unknown, the acceleration is
treated as a random variable. The variability of accelera-
tion is represented as normal distribution and is equal to
the relative likelihood of occurrence.

The subjective (i.e., perceived) risk was captured by a
risk scale of 100 degrees, with higher scores representing
a higher risk level.

Failures appear if users misuse automation by over-
trusting the system or if users disuse the automation sys-
tem by under-trusting it (22). Trust is not directly
observable—people can still cooperate with an auto-
mated system even without trusting it (20, 23). Data
from sensors that collect skin response and heart rate
cannot give valuable insights on trust, as the level of risk
in the field experiment is similar to daily stress (5).
Therefore, the trust was assessed using the questionnaire
on trust in technologies (20). We asked the cyclists to fill
in the questionnaires on the trust level directly after each
ride.

The subjective and objective risk modeling were con-
ducted using generalized linear mixed models (GLMM).
As each participant completed several scenarios, the
observations from the different scenarios of each partici-
pant are correlated (24). Therefore, GLMMs (with the
unstructured covariance matrix) (25) were applied with
fixed and random effects to account for the correlations
among the different observations at the participant level.
The developed models were estimated using the Mixed
Effect Model command in SPSS 22 (26). The fixed effects
stand for variables that include all possible study design
levels (24, 27). Random effects are variables whose values
in the data file can be considered a random sample from
a larger population of values. These are variables that
have an effect that varies by subject and by item. By-sub-
ject variation is originated from the participants’ basic
features of character and by-item variation accounts for
differences in the conditions of each level of each inde-
pendent variable. To account for variations per partici-
pant, a random intercept was assumed. The general form
of the GLMM can be written as follows:

y=Xb+Zm+ e ð3Þ

where y is a N 3 1 column vector, the outcome variable;
X is a N 3p matrix of the p predictor variables; b is a
p3 1 column vector of the fixed-effects regression coeffi-
cients (the b s); Z is the N 3q design matrix for the q
random effects; m is a q3 1 vector of the random effects;
and e is a N 3 1 column vector of the residuals.

Results

First, we present descriptive statistics of the objective
and subjective risk assessment, followed by the GLMM
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results and a graphical analysis of the cyclists’ behavioral
change.

Descriptive Statistics of the Objective and Subjective
Risk by Cyclists’ Personal Characteristics

Figure 6a shows that male cyclists have lower subjective
risk levels compared with female cyclists and with lower
variability. Figure 6b shows that male cyclists have higher
trust levels in automation than female cyclists. These
results might explain the higher levels of objective risk
for male cyclists (Figure 6c). As male cyclists perceive the
interactions to be less risky and have higher trust in the
vehicle, they tend to be less cautious and ride closer to
the car and with higher speeds.

Descriptive Statistics and Graphical Analysis of the
Objective and Subjective Risks

The objective risk during the manual overtaking man-
euver was higher than during the manual following
maneuver (Friedman test x2= 10.80, p\ 0.001).
Similarly, the subjective risk during the automated

overtaking maneuver was higher than during the auto-
mated following maneuver (Friedman test x2= 5.333,
p\ 0.021).

However, while evaluating the risk of interaction, it is
important to look at the experienced risk and the dura-
tion of time when this risk was applicable. With a longer
duration of risky situations, the probability of an acci-
dent increases. Figure 7 presents a graph of the objective
risk changes along the route. In the case of the following
maneuver, the risk stays at the same level along the whole
route, while in case of an overtaking maneuver, there are
two short peaks at the phase of approaching to overtake
and returning to the lane.

There is statistical evidence that the subjective risk
of the cyclist when the vehicle overtakes with a lateral
distance of 3.5m is lower than the subjective risk when
overtaking with a lateral distance of 1.5m in both auto-
mated and manual driving modes (Friedman test
x2= 5.762, p\ 0.016; T-test t(62)= 3.054, p\ 0.003,
respectively). However, there was no statistical evi-
dence that cyclists changed their mean distance to the
curb when they interact with vehicles in different driv-
ing modes.

Figure 6. (a) Objective risk, (b) subjective risk and (c) trust level for the different interaction scenarios by gender.

1144 Transportation Research Record 2677(2)



Modeling the Objective and Subjective Risks

To understand the variables that can explain the subjec-
tive and objective risks, the GLMM was applied. Table 2
presents the results.

According to the GLMM model for the subjective
risk dependency on the independent variables (Table 3),
the trust improvement in one unit reduces predicted sub-
jective risk in 26.690. Furthermore, the model shows a
statistically significant (p=0.042 and p=0.039) rela-
tionship between interaction scenarios and subjective
risk. The magnitude of the automated following is equal
to 5.521, while the magnitude of the automated overtak-
ing is 5.930. A pairwise comparison shows a statistically
significant (p=0.033) relationship between automated
overtaking and manual following with a magnitude of
2.744.Figure 7. Objective risk along the route.

Table 2. Fixed Effects of the Generalized Linear Mixed Model for the Subjective and Objective Risks

Subjective risk Objective risk

Coefficient Standard error t-Value Coefficient Standard error t-Value

Intercept 39.942 8.677 4.603** 10.085 1.721 5.861**
Trust 26.690 1.379 24.852** na na —
Automated following 5.521 2.671 2.067* 24.550 0.516 28.816**
Automated overtaking 5.930 2.825 2.099* 0.636 0.300 2.119*
Manual following 3.186 2.790 1.142 24.870 0.526 29.252**
Manual overtaking 4.265 2.844 1.499 0 na na
No interaction with the vehicle 0 na na na na
Relative distance na na na 20.426 0.033 213.026**
Max. cyclist speed 20.213 0.912 20.234 20.486 0.199 22.435*
ROADSIDE = curb with a brick-paved surface 20.539 0.825 20.654 21 0.194 25.146**
ROADSIDE = curb with grass 0 na na 0 na na

Note: Max. = maximum.
*p\0.05; **p\0.01; na - not applicable.

Table 3. Fixed Effects of the Generalized Linear Mixed Model for Trust

Trust

Coefficient Standard error t-Value

Intercept 3.520 0.459 7.662**
Automated following 0.628 0.118 5.307**
Automated overtaking 0.478 0.139 3.436**
Manual following 0.629 0.123 5.098**
Manual overtaking 0.536 0.141 3.797**
No interaction with the vehicle 0 na na
Subjective risk level 20.024 0.005 24.672**
Max. objective risk 0.004 0.002 2.125*
Mean distance to the curb 20.792 0.366 22.225*
Max. cyclist speed 0.131 0.054 2.414*

Note: Max. = maximum.
*p\0.05; **p\0.01; na - not applicable.
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The GLMM model for the objective risk dependency
on the independent variables (Table 3) showed that there
is a statistically significant (p\ 0.0001) relationship
between right-hand side object and objective risk. The
curb side with a brick-paved surface has one Joule objec-
tive risk less than the curb with the grass side. Objective
risk and the cyclist speed has a statistically significant
(p=0.015) relationship. With the increase of cyclist
speed of 1m/s, the objective risk declines by 0.486 Joules.
The relationship between relative distance and objective
risk is also statistically significant (p\ 0.0001). With an
increase of the distance between the vehicle and cyclists
of 1m, the objective risk reduces by 0.426 Joules. A sta-
tistically significant relationship exists between the

interaction scenarios and objective risk level. Overall, the
lowest objective risk in comparison with the manual
overtaking is found in manual following. In contrast,
automated following has a slightly higher risk level, and
the highest risk level out of all interaction scenarios has
automated overtaking.

Modeling of the Trust Level

For the GLMM model of the dependency of trust level
on the independent variables (Table 3), the random
effect of the subjective risk level was significant.
However, the best model fit was the model with the ran-
dom intercept (Akaike corrected criterion=115.354;
Bayesian=139.3). In comparison with the no vehicle
interaction scenario, the highest level of trust was found
with automated following (p\ 0.0001, magnitude=
0.628) and manual following (p\ 0.0001, magnitude=
0.629). Manual overtaking has a lower trust (p\ 0.0001,
magnitude=0.536) and automated overtaking has the
lowest trust (p=0.001, magnitude=0.478). There is a
statistically significant (p\ 0.0001) relationship between
subjective risk level and trust level. With an increase of
the trust of one unit, the subjective risk level decreases
by 0.024. There is a statistically significant (p=0.036)
relationship between maximum objective risk and trust
level. With an increase of trust level of one unit, the
maximum objective risk increases by 0.004. The mean
distance to the curb decreases with the increase of
trust level (p=0.029). Two participants with a differ-
ence of one unit of trust will have a difference in mean
distance to the curb of 0.792m. Maximum cyclist speed
increases by 0.131 with a one unit increase in trust level
(p=0.018).

Descriptive Statistics and Graphical Analysis of the
Cyclists’ Behavior

Figures 8 and 9 show that in the overtaking scenario,
during the passing stage, cyclists start cycling closer to
the curb, slightly increasing speed, then revert to the orig-
inal distance and speed after the vehicle returns to the
lane in front of the cyclist. The distance to the curb has
slightly lower values for the automated driving mode
than for the manual driving mode. The speed has higher
values for the manual overtaking scenarios compared
with the automated overtaking scenarios, as the trust
level for manual driving is higher than for automated
driving. Thus the basic speed was consistently higher for
manual driving than for automated driving.

In the after-experiment interview, the participants
reported the attributes that influenced their subjective
risk level. For automated overtaking, manual overtak-
ing, and manual following scenarios the most influencing

Figure 8. Objective risk and distance to the curb along the route
(mean distance at approaching and steering = 0.77 m; passing:
0.76 m; returning: 0.78 m; maximum distance at approaching and
steering = 1.04 m; passing: 0.96 m; returning: 1.12 m).

Figure 9. Objective risk and cyclists’ speeds along the route
(mean speed at approaching and steering = 4.96 m/s; passing:
4.99 m/s; returning: 5.0 m/s).
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attributes are the distance to the vehicle, the vehicle char-
acteristics (size/noise), and the speed of the vehicle. For
the automated following scenario, additional importance
was given to the vehicle having an automated driving
mode. Table 4 shows the attributes reported as influen-
cing factors across all interaction scenarios (all modes
and maneuvers) in descending order.

Discussion and Conclusion

The research investigates which AV behavior, following
or overtaking, results in the lowest subjective and objec-
tive risks of interaction when approaching a cyclist from
behind. Additionally, the study provides information on
the changes in cyclists’ behavior when interacting with
AVs compared with interacting with conventional vehi-
cles. This section discusses the results and compares them
with the results obtained in other relevant studies, and
finally concludes the paper.

In this research, we found that the participating
cyclists felt less safe, increased their cycling speed, and
reduced the distance to the curb when being overtaken
by an AV. However, there was no difference in the
cycling behavior and risk perception between automated
and manual scenarios when the vehicle followed the
cyclist. These findings are in line with previous studies of
road users’ interactions with AVs (2–5, 10) which showed
that pedestrians generally feel less safe and behave more
cautiously when interacting with AVs.

The analysis shows that female participants experience
lower trust and higher subjective risk and tend to cycle
closer to the curb during overtaking maneuvers. Yannis
et al. (9) reported that the gender of participants influ-
ences their trust in interaction with AVs.

Cyclist’s speed was found to increase during overtak-
ing scenarios. In a follow-up interview with the cyclists
at the end of the experiment, the cyclists mentioned that
they prefer a shorter passing time of the vehicle. Chuang
et al. (19) confirmed this result, as they found that longer
passing time led to an observed increase in cyclist’s
speed.

The danger of over-trust in automated systems was
mentioned by Lee and See (28). The current study

included participants with different levels of trust.
Participants with higher trust levels cycled at a much
higher speed than cyclists with lower trust. However, the
correlation between trust level and cycling experience is
still not fully understood.

From the post-experiment interview it was found that
the factors having most influence on the cyclists’ trust
levels are the vehicle’s speed and distance. The same
results were highlighted by several scientific studies (8–
10, 12, 17, 18, 29). The second most influencing factor
was the vehicle characteristics, which stand for the size
of the vehicle and the noise it makes. This finding is in
line with results from Llorca et al. (12)

There is clear evidence that the overtaking scenario
resulted in higher subjective and objective risk levels than
the following scenario. However, the time of the interac-
tion also has a significant impact on the cyclist’s beha-
vior. Toward the end of the following scenarios cyclists
increased their cycling speed. They started looking over
their shoulder to see the following vehicle, leading to loss
of balance and a closer distance to the curb. In the over-
taking scenarios, during the passing stage, the cyclists
reduced their distance to the curb and increased their
cycling speed, which resulted in a higher objective risk.
The interaction time was lower in the overtaking scenar-
ios than in the following scenarios. Thus, we can con-
clude that, for short distances, the following scenario is a
safer option. Besides the exact vehicle maneuver, opera-
tion modes also influence the risk levels. For the follow-
ing scenario, there is no apparent difference between the
automated and manual modes. For the overtaking sce-
narios, the automated mode has higher subjective and
objective risk levels than the manual driving mode.

The available relative lateral distance influences the
risk of the interaction scenario. The greater the lateral
distance, the lower the risk. For the street broader than
3m, the overtaking scenarios had the same subjective risk
as the following scenarios. In comparison, for the road
narrower than 1.5m, the overtaking scenarios had higher
subjective risk than the following scenarios. Besides over-
taking with a greater relative lateral distance, another
point of attention could be the overtaking speed (this
study assessed speeds below 40 km/h). With a higher but
still safe speed, the interaction time is reduced.

The study results provide insights for vehicle manufac-
turers to improve the behavior of AVs. Driver licensing
authorities can use this study’s insights to increase driv-
ers’ awareness about the nature of potential risks when
interacting with cyclists.

Despite the promising results, this study has some lim-
itations. In future research, we advise using a naturalistic
experiment with an AV to eliminate changes in partici-
pants’ behavior arising from the design of the investiga-
tion. A naturalistic experiment will also help collect

Table 4. Share of Attributes That Affect the Subjective Risk Level
for all Maneuvers and Modes

Attribute Share (%)

Distance to the vehicle 31
Vehicle characteristics (size/noise) 24
Speed of the vehicle 20
Vehicle driving mode (automated/manual) 15
Attentiveness of the driver 5
Objects on the right-hand side (curb) 5
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more realistic estimations of the subjective risk, as parti-
cipants will evaluate subjective risk more realistically
outside the clear experiment setups. Another limitation
stems from the discrete nature of the subjective risk.
Values were collected one time per ride, and we do not
know exactly which point of time in a ride reflects the
reported amount of risk. In the current study, the vehicle
was always manually driven (we instructed the drivers
how much distance to keep from the cyclist). Therefore,
a limitation of this study is that the results reflect how
cyclists respond to AVs which are programmed to drive
in the same way as human drivers. If the driving style of
future AVs were to be different from average human
driving style, the reaction of cyclists and their subjective
risk could differ from those observed in this research.

It is also recommended that future research should
recruit participants with different ages and experience
levels. Participants with a lower experience levels could
have different behavior. We included only experienced
cyclists in the current research to maintain a good safety
level. With bigger samples of participants, it would also
be possible to investigate the reactions of cyclists from
different age groups.

Another interesting consideration for future research
could be not to inform cyclists in advance about the
vehicle’s driving mode (automated/manual) but to ask
cyclists at the end of the ride what the vehicle’s driving
mode was.
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