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SUMMARY
The Josephson effect is a quintessential topic of condensed matter physics. It has stimu-
lated decades of fundamental research, leading to a plethora of applications from metrol-
ogy to outer space. In addition, it is set to play a crucial role in the development of quan-
tum computers, forming the dissipationless non-linear inductance that lies at the core
of superconducting qubits.

While they are traditionally realized using oxide based tunnel barriers, in this thesis
we construct Josephson junctions from non-insulating materials such as semiconduct-
ing nanowires and quantum dots. We investigate how their highly nontrivial interplay
with superconductivity can lead to new effects, both of fundamental interest and of rele-
vance for quantum applications. To study these effects we make use the exhaustive tool-
box available for superconducting circuits, allowing us to probe the junction behavior to
beyond what is possible with conventional transport techniques.

The first experimental chapter of this thesis examines the behaviour of a transmon
that hosts a highly transparent semiconducting weak-link as the Josephson junction. In
this system we find spectroscopic evidence for the predicted vanishing of Coulomb ef-
fects in open superconducting islands, in accordance with theoretical predictions from
1999.

In the second experiment we deterministically place a quantum dot inside the junc-
tion of a transmon circuit. We then demonstrate that by using microwave spectroscopy
we are able to accurately probe the energy-phase relationship of the Josephson junction
over a vast regime of parameter space. This reveals the remnants of a quantum phase
transition, and allows us to probe the time dynamics of the junction parity.

We subsequently use the same type of device to reveal the predicted spin-splitting
of the Andreev bound states in a quantum dot with superconducting leads, as brought
about by the spin-orbit interaction. When combined with a magnetic field, this is shown
to result in the anomalous Josephson effect. Furthermore, we demonstrate that transi-
tions between the spin-split quantum dot states can be directly driven with microwaves.

This motivated the investigation of a novel superconducting spin qubit, performed
in the fourth experiment. Here we demonstrate rapid, all-electric qubit manipulation
in addition to detailed coherence characterization. We ultimately show signatures of
strong coherent coupling between the superconducting spin qubit and the transmon
into which it is embedded, setting the stage for future research of this nascent qubit
platform.

In the fifth and final experiment, we utilize a different approach compared to the
preceding chapters. While we once-more construct transmons based on semiconduct-
ing weak-links, we now do so to leverage the intrinsic magnetic field resilience of semi-
conducting nanowires. This allows us to use a single device to study the mitigation of
phonon-induced quasiparticle losses by trapping the phonons using both super and
normal-state conductors.

This thesis concludes by discussing several ideas and proposals that aim to leverage
the alternative Josephson junctions studied in this thesis. Combined with the results of

vii



viii SUMMARY

the preceding chapters, this shows that hybrid superconducting circuits can be used to
obtain deep insights into the fundamental physics governing their constituent junctions,
and opens avenues towards building better qubits.



SAMENVATTING
Het Josephson-effect is een paradigmatisch fenomeen uit de vastestoffysica. Het stim-
uleert al decennia lang fundamenteel onderzoek, en heeft tot toepassingen geleid die
reiken van metrologie tot in de ruimte. Bovendien belooft het een cruciale rol te spelen
in de ontwikkeling van kwantumcomputers, waarbij het als een dissipatieloze en niet-
lineaire spoel fungeert die de kern van supergeleidende qubits vormt.

Hoewel ze traditioneel worden vervaardigd uit op oxide gebaseerde barrières, maken
we in dit proefschrift Josephson-juncties van elementen zoals halfgeleidende nanodraden
en kwantumdots. We tonen aan dat de complexe interacties van deze systemen met su-
pergeleiding tot nieuwe effecten kunnen leiden die zowel van fundamenteel belang zijn
evenals relevant voor kwantumtoepassingen. Om deze effecten te bestuderen maken
we bovendien gebruik van het uitgebreide instrumentarium van supergeleidende cir-
cuits. Daardoor kunnen we het gedrag van de juncties nauwkeuriger onderzoeken dan
mogelijk is met conventionele transporttechnieken.

Het eerste experimentele hoofdstuk van dit proefschrift gaat over het gedrag van een
transmon-circuit gevormd uit een zeer transparante, halfgeleidende junctie. In dit sys-
teem vinden we spectroscopisch bewijs voor het verdwijnen van Coulomb-effecten in
open supergeleidende eilanden, in overeenstemming met theoretische voorspellingen
uit 1999.

In het tweede experiment plaatsten we bewust een kwantumdot binnenin de junctie
van een transmon-circuit. Vervolgens hebben we kunnen aantonen dat we met behulp
van microgolven de energie-faserelatie van de Josephson-junctie nauwkeurig kunnen
onderzoeken. Dit maakt het mogelijk om de restanten van een kwantumfaseovergang te
meten, en stelt ons in staat de dynamica van de junctie pariteit te onderzoeken.

We gebruiken hetzelfde type experiment om de voorspelde spin-splitsing van de Andreev-
toestanden in een kwantumdot met supergeleidende elektrodes aan te tonen, veroorza-
akt door spin-baankoppeling. We laten vervolgens zien dat het zogenaamde anomale
Josephson-effect optreedt wanneer dit systeem wordt gecombineerd met een magnetisch
veld. Daarnaast tonen we aan dat overgangen tussen de spin-gesplitste kwantumdot-
toestanden direct kunnen worden aangestuurd met microgolven.

Dit motiveert het onderzoek naar een nieuwe supergeleidende spin-qubit, uitgevo-
erd in het vierde experiment. We laten snelle, volledig elektrisch gecontroleerde qubit-
manipulatie zien, evenals gedetailleerde karakterisering van de coherentie eigenschap-
pen. Ten slotte tonen we sterke coherente koppeling aan tussen de supergeleidende
spin-qubit en de transmon waarin deze zich bevindt. Deze resultaten maken de weg
vrij voor toekomstig onderzoek van dit opkomende qubit-platform.

In het vijfde en laatste experiment hebben we een andere benadering gebruikt dan
in de voorgaande. We hebben opnieuw transmons gemaakt op basis van halfgeleidende
juncties, maar nu om gebruik te maken van de intrinsieke veldbestendigheid van halfgelei-
dende nanodraden. Dit stelt ons in staat om de vermindering van fonon-geïnduceerde
quasideeltjesverliezen te bestuderen, door op dezelfde chip de fononen op te vangen
met zowel supergeleidende als normale geleiders.
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x SAMENVATTING

Dit proefschrift besluit met een bespreking van verschillende ideeën en voorstellen
die tot doel hebben de bestudeerde alternatieve Josephson-juncties te benutten. In com-
binatie met de resultaten van de voorgaande hoofdstukken wordt aangetoond dat hy-
bride supergeleidende circuits gebruikt kunnen worden om dieper inzicht te krijgen in
de fundamentele fysica van hun onderliggende juncties, en uiteindelijk om betere qubits
te bouwen.



1
INTRODUCTION

Where men build on false grounds, the more they build, the greater is the ruin.

Thomas Hobbes, Leviathan

1.1. PREFACE
The central topic of this thesis is the study of the Josephson effect, which is largely mo-
tivated by the plethora of applications the Josephson effect enables. Indeed, it lies at the
core of some of the most accurate measurements of the constants of nature, allows for
the construction of highly sensitive detectors which find applications from biology to
mining and even outer space, and is poised to play a crucial role in the development of
quantum computers [40].1 We will expand on these concepts in the sections that follow.

Before doing so, however, we allow ourselves to wax somewhat poetic and remark
that the topic of this thesis is also the study of fundamental physics. This perhaps does
not match its traditional interpretation, in which fundamental physics is often seen as
the study of the laws of nature obeyed by one, two, or maybe ten elementary particles.
Instead, we adopt the point of view argued by Philip W. Anderson, put forward in his
celebrated article titled “More is different” [10]. Published in Science in 1972,2 in a time-
period where the largest scientific budgets were reserved for high energy physicists and
astronomers, it is an insightful exposition on the nature of fundamental science that re-
mains just as relevant today. The central message is essentially that scientists (and in

1A quantum computer is a type of computer based on the peculiar features of quantum physics, such as super-
positon and entanglement. The core conjecture is that such a device is able to perform tasks that traditional
computers cannot efficiently do, because it makes use of a different set of rules. See Ref. [258] by John Preskill
for a recent discussion.

2In celebration of the 50 year anniversary, Nature recently published a viewpoint in which scientists discuss
“emergent phenomena” in their respective fields [305].

1
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particular physicists) tend to conflate reductionism and constructionism. Here reduc-
tionism refers to the hypothesis that all matter obeys certain fundamental laws of na-
ture, such as those of electromagnetism and gravity. So far we have no strong reason to
believe that this is not the case.3 Constructionism is the hypothesis that one can start
from those fundamental laws and reconstruct the universe. While perhaps theoretically
possible, this is practically unfeasible in almost all many-particle scenarios, as modern
physics has shown time and again. From the universal frequency response of dielectric
materials to the quantized plateaus of the fractional quantum Hall effect, it appears that
whenever we change scale (be it temporal or spatial), entirely new properties and phe-
nomena appear. These “emergent phenomena” often require their own novel framework
in order to be understood, even though the very same fundamental laws apply to their
constituents. This thesis focuses on the study of such an emergent phenomenon, the
Josephson effect.

We return to the physics underlying this phenomenon in the next section. Before
we do so, we find it instructive to examine a case closer to our everyday life, in which
constructionism appears to fail just as spectacularly. Let us start with life itself. Most
would agree that a human cell is alive, but that its parts are not. A commonly held belief
is then that life is somehow encoded in these parts, such as in the approximately 3×109

DNA base pairs that make up the human genome, or perhaps a little more accurately,
in the 105 or so relevant proteins that they encode.4 It was once thought that mapping
out the genome would provide “the book of life”[230]; not unlike the standard model of
particle physics, it was to be a complete blueprint of all we need to explain the higher
lying levels of functioning, from calcium pumps to heart rhythms. This is essentially
what the human genome project set out to do; one of the largest collaborative biology
projects undertaken to date, its goal was to determine all of the base pairs that make up
human DNA, and to sequence the entire human genome. The mapping was recently
completed,5 both from a physical and functional standpoint; an unquestionable marvel
of molecular biology. But from our everyday lives it is of course evident that the central
research questions of human physiology, let alone psychology or sociology, remain un-
solved. Instead, the appreciation for the complexity of interactions that form above the
protein level has given rise to a whole new field of study. Known as systems biology, it
aims to model and understand the emergent properties of biological systems, not unlike
how modern condensed matter physics is often centered around the emergent proper-
ties of physical systems. This is of course not to say “higher” lying domains do not benefit
from research done “below”; certainly genetic testing is invaluable in identifying predis-
positions to a variety of illnesses, and high energy physics remains as important as ever
in furthering our understanding of the universe. The point is, however, that it is all fun-
damental science. At each level, entirely new laws emerge, for which new concepts and
generalizations are required, demanding just as much creativity and hard work. And, as
we will see, this process of discovery is not unidirectional. It often even provides novel

3Eugene Wigner once dubbed the existence of the laws of nature as “one of two miracles”, with the other being
the human mind’s capacity to divine them [336].

4The analogy with the fundamental laws of physics is not entirely apt, however, as the genome is not static,
while the laws of nature appear to be.

5Although it was declared complete already in 2003, the final gapless assembly of the genome was made only
last year in January 2022.



1.2. SUPERCONDUCTIVITY

1

3

insight into the lower lying levels.

1.2. SUPERCONDUCTIVITY
Let us now briefly examine such an emergent phenomenon that lies at the core of this
thesis: superconductivity. As we expand on below, superconductivity is a many-body
quantum effect that generally takes place in cold metals, and is able to persist even at
everyday “macroscopic” length and timescales. It is one of the central examples in
Anderson’s article; while the phenomenon of vanishing resistivity, one of the hallmarks
of superconductivity, was first detected by Heike Kamerlingh Onnes in 1911, Anderson
points out that it took until the 1950’s for it to be theoretically understood. It was only
then that the phenomenological Ginzburg-Landau (GL) theory and the microscopic
Bardeen-Cooper-Schrieffer (BCS) theory were formulated, even though the
traditionally-fundamental laws of nature required to understand this phenomenon had
been put forward by the mid-1920s.6 Examining how these theories came about is a
humbling exposition of how the behavior of a large aggregate of many particles could
not be understood as a simple extrapolation of the properties of just a few particles,
instead requiring entirely novel ideas and ansatzes.

Succinctly stating what exactly superconductivity entails is somewhat challenging, as
it is a phenomenon with many different faces. As put forward (in approximately chrono-
logical order) in Ref. [96], superconductivity can be characterized as

• A state of matter that, when cooled below a critical temperature Tc, exhibits perfect
conductivity (zero resistance flow of electrical current) as well as perfect diamag-
netism (the absence of magnetic permeability). These are among the prime physi-
cal observables detected in experiments. The first effect was discovered by Kamer-
lingh Onnes in 1911, while the second was discovered by Meissner and Ochsenfeld
in 1933.

• Almost a Bose-Einstein condensate (BEC) of charged particles. This is how one can
interpret the constitutive relations put forward by the London brothers in 1935, as
later remarked by older brother Fritz in a discussion on superfluidity [198]. We
use the word almost here to emphasize that the effective bosons that give rise to
superconductivity are composite particles with a spatial extent of many lattice pe-
riods. They are essentially bound in momentum-space rather than in real-space,
and are thus not simply combined together into diatomic molecules consisting of
two fermions.7

• A second order phase transition driven by spontaneous U(1) → Z2

gauge-symmetry breaking. While the implications of this statement are
somewhat contentious when taken literally (see Refs. [111, 254] for a detailed
discussion), it is a crucial insight that informed both the GL and the BCS theories.
Indeed, the first line of the seminal BCS paper states that “the main facts which a

6With this we do not do justice to the contribution of the London brothers, whose constitutive equations put
forward in 1935 offered the first explanation of the perfect diagmagnetism observed by Meissner and Ochsen-
feld.

7As stated by Bardeen “the idea of paired electrons, though not fully accurate, captures the sense of it.” [20]
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theory of superconductivity must explain are (1) a second-order phase transition
at the critical temperature, . . . ” [21]

• An emergent quantum phenomenon described by a complex order parameter
field ψ(r ) = |ψ(r )|e iϕ(r ), where the quantity |ψ(r )|2 is a measure of the local
density of charge carriers. This is the core of the Ginzburg-Landau theory
published in 1950 [103], a phenomenological model which brings together
Landau’s theory of second order phase transitions with what Gor’kov later
showed to essentially be a macroscopic wavefunction describing the collective
many-body state of the superconductor [109].

• A phenomenon where the phonon-mediated attractive interaction known as
Cooper pairing transmutes fermionic electrons into a condensate of bosonic
pairs, separated from excitations by an energy gap. This is the central idea of the
theory of Bardeen, Cooper, and Schrieffer published in 1957 [21]. We examine
these concepts in more detail in Sec. 2.1.

• . . . a phenomenon encompassing several more concepts we will not expand on,
such as a phase of matter with topological defects known as Abrikosov vortices, an
instance of the Anderson-Higgs phenomenon which gives the photon field a mass,
or as put forward in recent years, a topologically ordered state of matter in and of
itself [117].

Given the above description, which is by no means exhaustive, it is safe to say that su-
perconductivity is a highly complex, fundamental-in-the-Anderson-sense phenomenon
that has kept physicists busy for most of the past century. Even today there are still var-
ious open questions, in particular with regard to so-called unconventional supercon-
ductors, which can display peculiar pairing symmetries and surprisingly large critical
temperatures.

1.3. THE JOSEPHSON EFFECT
Ever since their discovery (and indeed even before they were properly understood), su-
perconducting materials have found a plethora of applications. Superconducting mag-
nets, for example, are electromagnets that rely on the fact that superconductors can
conduct very large electric currents with negligible heat dissipation, producing some of
mankind’s most powerful magnetic fields. They enable a broad range of measurement
techniques and apparatuses, from the (almost) everyday MRI machine and the magnetic
levitation train to the more traditionally-fundamental fusion reactor and the particle ac-
celerator.

Another broad class of applications results from the effects that occur when two
superconductors are brought into close proximity, traditionally separated only by a thin
and insulating barrier. Schematically depicted in Fig. 1.1, this system is known as
superconductor-insulator-superconductor (SIS) junction or the tunnel junction. It is
essentially this geometry that Brian Josephson considered in his seminal work of 1962,
in which he put forward the eponymous effect that would later earn him the Nobel prize
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Bo�om electrode
Top electrode

∼ 1 nm

∼ 0.1 − 10 μm

Figure 1.1: The Josephson tunnel junction at different levels of abstraction. At the surface level, the Josephson
tunnel junction consists of superconducting bottom and top electrodes separated by a thin oxide layer (not
shown), all of which can be a rather disordered collections of grains and boundaries. This is modeled as an
idealized, uniform junction, leading to the Josephson relations. At the highest level of abstraction, the junction
can then finally be decomposed into an electrical circuit containing the nonlinear Josephson inductance (cross
element) in parallel to a linear capacitance. Image adapted from [81].

of 1973 [142].8 Josephson was originally motivated by finding observable signatures of a
type of symmetry breaking he learned about during his lectures on superconductivity
by Anderson.9,10 As the symmetry breaking related to the phase ϕ of a superconductor,
known to be unobservable in isolation, he postulated that two superconductors
brought into close proximity could exchange single electrons via quantum tunneling
events in a fashion that would be dependent on the phase difference φ = ϕ1 −ϕ2.
Instead, what he ended up with was two novel effects governed by the tunneling of
electron pairs, previously thought to be a process with too small of a probability to be of
physical relevance. He derived what became known as the two Josephson equations:

I (t ) = Ic sin
(
φ(t )

)
(1.1)

V (t ) = ħ
2e

∂φ

∂t
(1.2)

where V (t ) and I (t ) are the voltage across and current through the Josephson junction,
ħ is the reduced Planck constant, e is the elementary unit of charge, and Ic is known as
the critical current, governing the maximal amount of charge that can be transferred per
unit of time.11

Taking φ(t ) = φ to be independent of time leads to what what is known as the DC
Josephson effect; the voltage across the junction is zero by virtue of the second relation,
but the current can still be finite by virtue of the first: I = Ic sinφ. Counter to intuition,
this results in a non-Ohmic and disipationless current of electron pairs flowing across
the junction. Known as supercurrent, it is dependent only on the phase difference φ,
with Ic fixed by choice of materials and geometry. The existence of this effect was ex-

8This is not an entirely accurate reconstruction; Josephson initially considered a metallic weak link as the
junction, but oxide based devices turned out to be easier to realize [251].

9Note that the symmetry breaking Josephson had in mind was that found in Anderson’s pseudo-spin formula-
tion of BCS theory [8, 251].

10We suggest reading Anderson’s first-hand account of the discovery, whose reconstruction of Josephson’s
derivation gives appreciable historic context [9].

11When Ic is exceeded, a resistive current instead flows across the junction. For reasons made clear in chapters
2 and 8, this also occurs when the applied voltage exceeds a certain threshold |eV | ≥ |2∆|.
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perimentally verified only a year later by Anderson and Rowell, showing that indeed the
superconducting phase ϕ is more than a mathematical curiosity [11].12

As implied by the naming convention, there is also an AC Josephson effect. This deals
with the case in which a fixed voltage V (t ) = VDC is applied across the junction, which
causes the phase difference φ(t ) to vary linearly with time, producing a sinusoidal AC
current of amplitude Ic and frequency 2e

h VDC. The Josephson junction is thus a voltage-
to-frequency converter. The inverse also holds: radiation at angular frequency ω inci-
dent on the junction can induce quantized DC voltages VDC = n ħ

2eω across the junction,
making the Josephson junction a frequency-to-voltage converter. These effects were first
verified by Shapiro, also in 1963 [289].

The fact that such constants of nature appear in the behavior of a device involving
a very large number of atoms was unique at the time, and has earned the Josephson
effect the name of macroscopic quantum phenomenon [81]. After the verification of
the Josephson relations, initial thoughts of applications predominantly focused on the
AC Josephson effect [9]. As frequency can be defined both accurately and practically
through the so-called caesium standard, the AC Josephson effect has since been put to
use to provide the standard representation of the volt, a method known as the Joseph-
son voltage standard. When combined with independent measurement of the integer
quantum Hall effect, the AC Josephson effect can furthermore be used to accurately de-
termine the value of the elementary charge e.13 This essentially provides a corollary to
Anderson’s argument: macroscopic phenomena can provide highly accurate details of
the fundamental constants of nature.

In this thesis, however, we primarily concern ourselves with the DC Josephson ef-
fect, which also has a plethora of applications. One such application is in supercon-
ducting quantum interference devices (SQUIDs), which contain one or multiple Joseph-
son junctions in a loop. Enabled by the connection between the allowed values of the
phase difference φ and screening currents, these devices transduce flux to current, and
form some of the most sensitive magnetic field detectors available.14 Such SQUIDs will
also make an appearance throughout this thesis, albeit for a different purpose. However,
the main application of the DC Josephson effect employed in this thesis is its recasting
as a dissipation-free, nonlinear inductance.15 To understand why such a recasting can
be done, we recall that an inductance L is defined through its constitutive relation as
V = L d I

d t . By manipulating the Josephson equations, one can show that they result in

V = ħ
2eIc cos

(
φ

) ∂I

∂t
→ L(φ) = ħ

2eIc cos(φ)
. (1.3)

We emphasize that the analogy to a traditional inductor does not mean that in a Joseph-
son junction energy is stored in a magnetic field, however. It is instead stored in the

12Note that phase-dependent supercurrents had likely already been experimentally observed in 1960 by Gi-
aever [101] as well as by Nicol, Shapiro, and Smith [229], however the authors had not recognized them as
such.

13The AC Josephson effect is proportional to 2e/h, while the integer quantum hall effect results in resistance
proportional to h/e2.

14Implicit in this relation between phase and flux is the somewhat technical gauge-invariant nature of φ, for
which we refer to e.g. Ref. [81].

15Tunnel junctions typically also include a linear capacitance in parallel to the nonlinear inductance.
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kinetic energy of the electron pairs, and is given by

E(φ) =−ħIc

2e
cosφ=−EJ cosφ, (1.4)

where EJ is known as the Josephson energy, a characteristic energy scale we will fre-
quently return to.16

The fact that both the effective inductance and energy are non-linear functions of
φ can have profound consequences. For example, if one were to create an effective LC
circuit containing such a nonlinear inductor, the resulting energy spectrum is not that of
the constant-spacing harmonic oscillator. Instead, it forms a non-linear ladder of levels
that can be used to encode quantum bits, or qubits, the constituent elements of a quan-
tum computer. In passing we further remark that implicit in such a circuit description
is that we can (and must) treat φ not as a classical but as a quantum mechanical vari-
able. This rather profound subject was discussed by Anderson already in 1964 [7]. He
put forward that since the superconducting phase is essentially the sum of the phases
of all individual electrons in the condensate, it must therefore also be conjugate to the
electric charge of the condensed particles.

The specific implementation of a Josephson junction-based nonlinear LC oscillator
is colloquially known as the transmon [162], and it is discussed in detail in Sec. 2.4. It
has been a highly popular topic of research for the past two decades, filling numerous
PhD theses, and has given rise to some of the most advanced quantum computing de-
vices made to date [13, 133]. The construction of transmons out of Josephson junctions
is in fact also the main research methodology of this thesis. However, this is not with
the (immediate) goal of building a well-performing qubit, with long lifetimes and high
gate fidelities. Rather than using the established properties of the SIS junction to build
highly coherent and predictable qubits, we invert the construction; we use the exhaus-
tive toolbox available for transmon measurements to probe the behavior of alternative
Josephson junctions, embedded within the qubits. These junctions are based on barriers
made out of non-insulating materials, such as semiconducting nanowires and quantum
dots. Their highly nontrivial interplay with superconductivity is predicted to lead to new
effects distinct from those of SIS junctions, expected to be both of fundamental interest
and relevant for various quantum computing applications.

We finally note that Josephson junctions based on semiconducting nanostructures
can and have previously been studied without transmons, e.g. using low-frequency
transport techniques. While such techniques have proven to be invaluable for initial
exploration, their resolving abilities are typically limited to timescales of many
milliseconds (a result of 1/ f noise), as well as to energy scales of several µeV (bounded
by thermal fluctuations of size kBT ). They are therefore unsuitable for validation of a
range of predicted phenomena, particularly when rapid dynamics of the junction are
involved. It is in these scenarios that the value of the transmon is most clear; through
decades of research, its circuit parameters can be engineered with percent-level
accuracy, the transition frequencies can be probed down to neV-level accuracy17, and

16The physically equivalent expression E(φ) = EJ
(
1−cosφ

)
is often employed as well.

17In this thesis we will often use energy and frequency interchangeably, as implied by the Planck relation E =
h f .
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the state of the system can be manipulated and read out on nanosecond timescales.
And ultimately, because the conventional Josephson effect is such a well-understood
and thoroughly studied phenomenon, any deviation from SIS-like behaviour can be
readily quantified.

1.4. THESIS OUTLINE
We now provide an outline for the remainder of this thesis.

• Chapter 2 reviews the theoretical concepts pertinent to the experiments
performed: superconducing islands, Andreev bound states in semiconducting
weak-links, quantum dots with superconducting leads, and finally transmons.

• Chapter 3 discusses the details of the material platform used to host our Josephson
junctions: InAs-Al nanowires. We furthermore discuss the nanofabrication of the
samples measured in this thesis, and specify details regarding the experimental
setup, such as nuances in cryogenics and shielding.

• Chapter 4 contains our results on a transmon that hosts a highly transparent semi-
conducting weak-link as the Josephson junction. In this system we probe and re-
solve the predicted vanishing of Coulomb effects in superconducting islands as
the junction transparency approaches unity, in accordance with theoretical pre-
dictions from 1999.

• Chapter 5 demonstrates how a SQUID-based transmon is able to accurately probe
the energy-phase relationship of quantum dots with superconducting leads. This
reveals the finite temperature remnants of a quantum phase transition, which is
explored over a vast range of device parameters and found to be in agreement with
numerical calculations. We furthermore probe the time dynamics of the junction
parity across the phase transition.

• Chapter 6 uses the same techniques as chapter 5 to study the predicted
spin-splitting of the Andreev bound states in a quantum dot with
superconducting leads, as brought about by spin-orbit interaction. When
combined with a magnetic field, this is shown to result in the anomalous
Josephson effect, for which supercurrent can flow even in the absence of a phase
difference, i.e. at φ = 0. Furthermore, we demonstrate that direct transitions
between the spin-split quantum dot states can be driven with microwaves,
motivating the investigation of a novel superconducting spin qubit.

• Chapter 7 details the investigation of the aforementioned superconducting spin
qubit. We read out its state by embedding it in the junction of a transmon, and
demonstrate rapid, all-electric qubit manipulation in addition to detailed coher-
ence characterization. We ultimately show signatures of strong coherent coupling
between the superconducting spin qubit and the transmon into which it is em-
bedded.

• Chapter 8 utilizes a different approach compared to the preceding chapters. Here
we once-more construct transmons based on semiconducting weak-links, but this
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time not to probe the properties of the junction. Instead, we leverage the intrinsic
magnetic field resilience of semiconducting nanowires to study the mitigation of
phonon-induced quasiparticle losses by trapping the phonons using both super
and normal-state conductors.

• Chapter 9 contains reflections on the results of each chapter, and additionally puts
forward several ideas and proposals that aim to leverage the alternative Josephson
junctions studied in this thesis. This is both with the goal of gaining deeper in-
sight into the physics governing the constituent materials, as well as to build better
qubits.





2
THEORY

Nothing new comes out of rigor, and in fact, we cannot recall a single great theory in
physics which is rigorous.

Condensed Matter Theory Center, Twitter

Throughout this thesis various theoretical concepts come together, from superconduc-
tivity to Coulomb repulsion, and from Andreev bound states to quantum information
processing. Each of these topics is (at the bare minimum) deserving of its own thesis,
and in fact, has already been extensively reported on. Instead, the novelty of our work
lies in the experimental examination of the combination of these topics, as detailed in
the next chapters. In this chapter we therefore repeat only the pertinent theoretical con-
cepts and ideas, explicitly referring the reader to other works for derivations and more
elaborate discussion.

11
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2.1. SUPERCONDUCTING ISLANDS
In the theses of experimental PhD candidates that study topics similar to those discussed
in this work, an introduction to the theory of superconductivity tends to start by consid-
ering electrons freely propagating as plane waves, present in an ideal and translationally-
invariant medium. In this case the electron spectrum is continuous, and the density of
states is a function of energy. The theses by Breathau [43] and Hays [121] are excellent
expositions that take this approach, which we recommend reading. Foreshadowing a
connection to the sections that come later, however, we will instead follow the example
of a recent review by Glazman and Catelani [105], which studies superconductivity in a
confined medium. This is the guiding reference of this section, and should be referred
to for detailed derivations.

As in their work, we start by considering electrons confined to some large (in units of
Fermi wavelength), galvanically isolated box: an island. On such an island, confinement
to the box renders the electron spectrum discrete, albeit closely-spaced. Indeed, the
islands studied in this thesis are generally large enough that the spacing is a small energy
scale, δϵ∼ 1µK ≪ kBT , even at millikelvin temperatures. Furthermore, in the absence of
magnetic effects, we make the assumption that each of these discrete levels is doubly-
degenerate, formed by a pair of spin-up and spin-down electrons.1 The Hamiltonian for
such an island then takes on the generic, second-quantized form

H = ∑
n,σ=↑,↓

ξnc†
nσcnσ+Hint (2.1)

where the operators c†
nσ and cnσ create and annihilate electrons with spin σ and en-

ergy ξn , as measured from the Fermi level. In turn, Hint governs the interactions be-
tween these electrons. Although various interactions can be taken into account, for our
purposes it will be sufficient to consider two primary contributions. First, the electro-
static potential arising from the distribution of charge carriers endows the island with a
charging energy Ec, the electrostatic cost of adding an additional electron to the island.
Second, we incorporate the phenomena of superconductivity by including an attractive
interaction between electrons of opposite spin and energies that are within some range
|ξn | < ħωD. While the underlying mechanism is not crucial for the derivation, such an
interaction is typcally phonon-mediated, with ωD is of the order of the materials’ Debye
frequency. This is the basis of the Bardeen-Cooper-Schrieffer (BCS) theory of supercon-
ductivity, briefly touched upon in Sec. 1.2. Under these assumptions, the interaction
term takes the form

Hint = Ec
(
N e −Ng

)2 + (λδϵ)O†O. (2.2)

Here N e =∑
n,σ c†

nσcnσ is the number operator counting the number of electrons on the
island, and Ng is a polarization charge, which for an isolated island only affects the value
from which the energies are measured. In turn, λ is a dimensionless interaction con-
stant, while the operator O =∑

|ξn |<ħωD
cn↓cn↑ captures the salient features of BCS super-

1Additional accidental degeneracies between levels can be removed by considering scattering with randomly-
placed non-magnetic impurities on the island [105]. The fact that superconductivity is robust with respect to
such impurities is known as Anderson’s theorem.
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conductivity.2 Indeed, the term O†O is the counterpart of the BCS interaction term that
is typically written in the basis of plane waves. It describes an attractive interaction that
couples spin-singlet pairs of electrons to ∼ ħωD/δϵ of other pairs, which is typically a
very large number.

The fact that such a large number of pairs is coupled to one-another suggests that
there will be non-negligible correlations between the electrons. While it is a notion of
appreciable subtlety,3 this motivates applying a mean-field treatment to simplify the
quartic-in-c-operators Hamiltonian of Eq. (2.2) such that one can then study e.g. its
ground-state properties. To do so, we examine Eqs. (2.1) and (2.2) for a fixed, even num-
ber of electrons N e , so that the charging energy results in a constant offset which for now
can be ignored. In a procedure that is essentially equivalent to that employed for a bulk
superconductor, we substitute in the average

∆= (λδϵ)〈O〉 = (λδϵ)
∑

|ξm |<ħωD

〈cm↓cm↑〉 (2.3)

while omitting small fluctuations around this average, resulting in a Hamiltonian that is
bilinear in electron operators rather than quartic:

HBCS =
∑
n,σ

ξnc†
nσcnσ+∆∗ ∑

|ξm |<ħωD

cm↓cm↑+∆
∑

|ξm |<ħωD

c†
m↑c†

m↓+const. (2.4)

Here ∆ = |∆|e iϕ is a complex-valued quantity that can evaluated self-consistently after
diagonalizing the Hamiltonian. The latter step proceeds via the celebrated Bogoliubov
transformation

cn↑ = u∗
nγn↑+ vnγ

†
n↓ (2.5)

cn↓ =−v∗
nγn↑+unγ

†
n↓ (2.6)

where γ†
nσ and γnσ are creation and annihilation operators for Bogoliubov quasiparti-

cles.4 The result is that the Hamiltonian of Eq. (2.4) is transformed into a Hamiltonian
for quasiparticle excitations:

HBCS → Hqp = ∑
n,σ

ϵnγ
†
nσγnσ. (2.7)

Here ϵn =
√
ξ2

n +|∆|2 is the quasiparticle excitation energy. It is separated from the Fermi
level by an energy gap of at least |∆|, such that |∆| is often referred to as the superconduct-
ing gap. We further note that both the ground-state energy and the excitation spectrum
are independent of ϕ.5

2In this thesis we generally do not make use of the notation where quantum operators such as O are written
with hats as Ô; the particular meanings of the symbols are intended to be clear from context.

3Much discussion arises from the fact that the mean-field treatment only approximately conserves the number
of electrons. For a more intricate derivation that nevertheless conserves electron number throughout, we
have been advised to refer to the textbook by Leggett [189].

4While various quasiparticles exist in condensed matter physics, these Bogolyubov quasiparticles are the ones
we will refer to when we talk about quasiparticles throughout this thesis.

5At this stage the physical relevance of the ϕ degree of freedom is not obvious. As we treat in the next section,
we require a second island to have a reference for the phase as well as a Josephson junction between both
superconductors in order to physically detect a relative difference in the phases. This is somewhat like the
difference between the concept of a voltage and a voltage-drop.
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We point out that the diagonlization procedure described above also fixes the magni-
tude of Bogolyubov coefficients un and vn ; governed by the canonical (anti)commutation
relations of the electron operators, their magnitudes are constrained to obey |vn |2 =
1 − |un |2 = 1

2

(
1− ξn

ϵn

)
. In turn, their phase depends on the phase of ∆, for which one

can take un = u∗
n and vn = |vn |e iϕ for convenience. With this in mind, inverting Eq. (2.5)

is also instructive: these relations imply that a quasiparticle excitation is not simply a
charge eigenstate, but rather an energy-dependent, coherent superposition of both elec-
tron creation and annihilation operators. In other words, a quasiparticle is a superpo-
sition of both electrons and holes, and for ξn = 0 this is an equal superposition. This
remarkable “particle-hole coherence” property of superconductors is essentially what
underlies the microscopic description of the Josephson effect, which is discussed in the
next section.

We now examine the ground state of Eq. (2.4), for which we adopt what is known as
the excitation picture of superconductivity; the ground state is the zero-energy state de-
fined by the condition γnσ |ψ〉 = 0, i.e. it is the state devoid of quasiparticle excitations.6

It can be shown that this condition is satisfied by the celebrated BCS wave function

|ψϕ〉 =
∏
n

(
un + vnc†

n↑c†
n↓

)
|0〉 , (2.8)

where |0〉 is the vacuum of electronic excitations, and the subscript ϕ is there to remind
us that the coefficients u and v depend on the phase of ∆. While this state is devoid of
quasiparticles, it is not empty; indeed, upon closer inspection we see that this equation
describes a large ensemble of levels combined in a coherent superposition of |0〉 and |2〉
states.

The attentive reader will note that such a state constitutes a violation of the superse-
lection rule for charge, or alternatively, that the number of electron pairs on the galvan-
ically isolated island is not well-defined. This can be construed as problematic, given
that in principle we should be able to count the number of charges on the isolated is-
land both before and after the normal-to-superconducting phase transition. As such, the
BCS wavefunction does not offer an entirely physical description of a superconducting
island. It remains widely useful however, given that exact particle-number conservation
is often not crucial for macroscopic samples. Nevertheless, if one desires to remedy this
situation we can make use of the fact that both the ground state energy and the exci-
tation spectrum are independent of ϕ, so that we can construct a new state which is a
linear combination of |ψϕ〉 states; known as the Anderson projection, this state is given
by

|ψN 〉 =
∫ 2π

0

dϕ

2π
e−i Nϕ |ψϕ〉 . (2.9)

This state does correspond to a definite number of electron pairs N , which from now
on we will refer to as Cooper pairs, for it was Cooper that first envisioned them [63].
This state then constitutes our approximation to the ground state of Eq. (2.4), a valid
description for islands with a small level spacing.

Even if the ϕ representation is nonphysical for an isolated island, it remains a highly
convenient tool even for a different reason than approximate validity for macroscopic

6We return to a different picture of superconductivity, known as the one-particle picture, in the next section.
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samples. Indeed, the |ψϕ〉 and |ψN 〉 wavefunctions essentially form two bases in the
Hilbert space of Cooper pairs, such that the N and ϕ representations are dual, similar
to position and momentum in single-particle mechanics.7 The related operators satisfy
the canonical commutation relation

[
N ,e−iϕ

]= e−iϕ, which will be of importance when
we connect several islands together.8

Before we move on, we first examine a re-introduction of electrostatic interactions
into the quasiparticle Hamiltonian. In principle this can lead to a complex interplay
between superconductivity and Coulomb effects, a topic that has recently regained ex-
perimental and theoretical interest [239, 271]. However, at the surface level intuition can
already be gained by simply adding back the charging energy term to Eq. (2.7) and mak-
ing the assumption that an even occupation of the island always corresponds to zero
quasiparticle excitations, with all electrons paired up into Cooper pairs. In turn, we as-
sume that odd occupation corresponds to a single, non-interacting quasiparticle which
has the minimal excitation energy ϵ= |∆|. This allows us to write down a minimal Hamil-
tonian that captures the salient features of several of our experiments:

Hisl = Ec
(
N e −Ng

)2 +
{

0 even

|∆| odd.
(2.10)

The energy spectrum of this Hamiltonian for different electron occupations is shown in
Fig. 2.1, both for the case |∆| > Ec (panel a) and |∆| < Ec (panel b). As the islands studied
in this thesis all fall firmly into the former range, with |∆|

Ec
≫ 1 and often even exceeding

100, the figure illustrates that the ground state of the system should always corresponds
to an even number of electrons, for any Ng.

In principle this situation is relaxed at finite temperatures, where ionization of Cooper
pairs results in a higher number of quasiparticles on the island. This effect can be quan-
tified through the partition functions of even and odd electron occupation [105], which
govern the ratio xqp, denoting the ratio between the density of quasiparticles and the
density of Cooper pairs on the island

xqp =
√

2πT /|∆|exp(−|∆|/T ). (2.11)

The actual number of quasiparticles on the island is then an increasing function of the
volume of the island. However, this number is still expected to be very small for the
devices studied in this thesis, given that we operate them at cryogenic temperatures of
tens of mK (see Sec. 3.3). For example, for an aluminium island of volume 10−2 µm3

one expects xqp ∼ 10−23 at T = 40mK [105]. In stark contrast to this, experiments on
superconducting islands (including our own) tend to find xqp in the range 10−7 to 10−5,
corresponding to an effective temperature in the range 120 to 210mK [285]. Yet recent
measurements that probe the energy distribution of these quasiparticles has made it
clear that this excess density cannot simply be explained by poor thermalization of the
devices [287]. It must rather be of a different, non-thermal origin, primary candidates

7A difference with the position and momentum space representation is that ϕ ∈ [0,2π) is a compact variable,
rendering N discrete.

8This is an instance where leaving out the hat notation leads to ambiguity, as the result of a commutator can

be a number rather than an operator. For clarity,
[

N̂ ,e−i ϕ̂
]
= e−i ϕ̂.
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Figure 2.1: Energy versus induced charge of a superconducting island. Panel (a) shows the case of Ec = 0.75|∆|,
panel (b) shows the case of Ec = 1.5|∆|. Blue colors indicate even island parity, green colors indicate odd island
parity. Note that the number of charges n are labeled up to an even offset.

for which are ionizing events due to cosmic rays and ambient radioactivity [214], as well
as photon-assisted tunneling events due to stray infrared radiation coming down the
control lines [286]. There is much recent interest in the elucidation and mitigation of
these mechanisms, which primarily stems from the fact that excess quasiparticles can
induce dissipation and thereby limit qubit coherence.9 In particular, the mitigation of
increased quasiparticle densities following cosmic ray impacts is the primary topic of
chapter 8.

CONNECTING THE ISLANDS
Once-more following [105], we now consider what happens when two superconduct-
ing islands are connected together using a coupling element that allows Cooper pairs to
move from one island to the next. Such a coupling element has already been discussed
in chapter 1, and in fact is part of the title of this thesis; this is the Josephson junction.
In what follows we provide a brief phenomenological motivation for its constituent rela-
tions, while we perform a microscopic examination in the next section.

Following the notation established above, a generic process that moves charges be-
tween two superconducting islands at energies below |∆| cannot make use of quasipar-
ticle excitations. It must instead do so via transfer of the Cooper pairs that make up the
ground state, and thus takes on the general form [105]

HJ =
∞∑

n=1

(
CnT †n

R T n
L +C∗

n T †n
L T n

R

)
+const. (2.12)

Here each term in the sum corresponds to the transfer of n Cooper pairs, mediated by
the operator TL,R =∑

N |N +1〉〈N | which increases the number of Cooper pairs N on the
corresponding island by one. Cn is then the complex-valued coefficient for this process.
For now we will assume to be dealing with a weak coupling element, such that only terms
of order n = 1 have a significant contribution. Furthermore, we assume that the coupling
element to obeys time-reversal symmetry, which enforces Cn =C∗

n . Using the conjugate
relationship between N and ϕ, one can furthermore show that T j = e−iϕ j [105]. When

9As long as quasiparticles do not tunnel between different islands, their presence generally does not affect the
dynamics of the qubit degree of freedom [105].
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combined, we obtain the phase basis representation of the (simplified) coupling Hamil-
tonian:

HJ =−EJ cosφ+const, (2.13)

where φ = ϕR −ϕL, and EJ = −C1 is the Josephson energy. Here the sign is motivated
by considering that at φ = 0 connecting the islands constrains the motion of Cooper
pairs less than on isolated islands, so that the transfer term should reduce the ground
state energy of the system. We thus see that by connecting the islands and enforcing
the innate relationship between φ and N we have recovered the SIS Josephson junction
behaviour discussed in chapter 1.

2.2. ANDREEV BOUND STATES
Having discussed a motivation in terms of the allowed tunneling events, we now exam-
ine the microscopic origin of the Josephson effect. That this is nontrivial might not be
obvious at first sight; for the case of a very thin oxide separating two superconductors
(as considered in chapter 1) one can argue that Cooper pair transfer simply proceeds
via direct quantum tunneling.10 However, this type of reasoning cannot hold for ev-
ery type of Josephson junction, which exist in various different sandwiches of the type
superconductor-X-superconductor. Here X does not have to be thin nor insulating; it
can for example be a normal metal, a semiconductor, or even a spinful quantum dot.
We refer the reader to Ref. [108] by Golubov et al. for a an elaborate review of a plethora
of different junctions, but in what follows we restrict ourselves to the aforementioned
types.

Given that each of these materials X can impart their own properties on the Joseph-
son effect, one might instead worry that a unified microscopic description is simply not
feasible. What is common across various junctions, however, is that much of their prop-
erties can be recast as a spatial variation in ∆, and in turn, a variation in the Bogolyubov
amplitudes un and vn [276]. The latter implies that the electron-hole character of quasi-
particles is modified in the vicinity of the junction. As we show below, this generally gives
rise to a special kind of reflection at the junction’s interfaces. Known as Andreev reflec-
tion, it leads to the formation of Andreev bound states, and ultimately to the Josephson
effect. We motivate this below; for their description we refer to the theses of Bretheau
[43] and Hays [121], which contain extensive calculations and derivations using what is
known as the Bogoliubov-de Gennes formalism for inhomogeneous superconductors.11

To illustrate of Andreev bound states, we first consider a junction of the superconductor-
normal metal-superconductor (SNS) type. The problem is then essentially that of par-
ticles (electrons and holes) confined in a normal-state metallic box with superconduct-
ing walls. As before, this confinement renders the energy spectrum discrete, while the
energy levels themselves can be found e.g. by enforcing that the wavefunctions (and
their derivatives) of the particles match what is imposed by the boundary conditions.

10We note that the direct tunneling of a Cooper pair is still of appreciable subtlety, as one has to realize that the
wave-functions of the electrons in the pair are phase-coherent. The electrons thus do not tunnel indepen-
dently, but rather as if they were single particle, so that the tunneling probability is comparable to that of a
single electron [251].

11The recent thesis of Metzger also contains a wealth of information on these topics, but was not yet available
at the time of writing [220].
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What sets this box apart is the type of boundary condition imposed by a superconduc-
tor. Take a rightward traveling electron with an energy smaller than |∆|, which imparts on
the normal-superconducting interface on one side of the box. As it does not have have
enough energy to enter the superconductor, it must be reflected backwards. However,
rather than reflecting specularly from a right-moving electron into a left-moving elec-
tron, it can instead undergo “branch conversion scattering”; better known as Andreev
reflection (AR), the right-moving electron becomes a left-moving hole. As electrons and
holes carry opposite charge, this has important ramifications: the Andreev reflection of
an electron into a hole is additionally accompanied by the creation of a Cooper pair in
the superconductor. This process is schematically depicted in Fig. 2.2(a).

The figure furthermore illustrates how multiple of such Andreev reflections can to-
gether give rise to the Josephson effect. When the resulting hole has traversed the junc-
tion in the opposite direction the reverse process can take place, where the hole Andreev
reflects into an electron. This removes a Cooper pair in the other superconductor, and
one cycle of these events thus transfers a Cooper pair between the superconductors.12

It is constructive interference of many of these cycles that leads to the formation of the
aforementioned ABS; spatially localized near the Josephson junction, they are the states
that are ultimately responsible for carrying the supercurrent of the DC Josephson effect.

Up to now we have only considered Andreev reflection at the normal-superconducting
interface, but the properties of the normal metal and the quality of the interface also im-
pact the Andreev bound states. To simplify matters, we consider junctions that are short
compared to the superconducting coherence length, so that the properties of the metal
have no appreciable contribution. This is known as the short junction limit.13 We do
allow for the junction and its interfaces to have some degree of disorder, such that elec-
trons (holes) moving to the right can also scatter into electrons (holes) moving to the

12we note that at φ = 0 a time-reversed trajectory of Cooper pair transfer exists, such that there is no net
current, in line with Eq. (1.3).

13A description of long SNS junctions is beyond the scope of this thesis, for which we refer the reader to
Refs. [121] and [220].

Figure 2.2: Andreev bound state formation in an SNS junction without (a) and with (b) scattering. Each panel
depicts two loops of Cooper pair transfer mediated by electrons and holes, made possible by Andreev reflec-
tion. The top (bottom) loop shows right-moving (left-moving) electrons. Panel (b) additionally includes the
effect of scattering in the normal section (gray arrows), coupling left and right-moving electrons as well as left
and right-moving holes. The image adapted from Ref. [121], and we additionally note that the colors used in
this figure do not imply a connection to the figures that come before or after.
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Figure 2.3: Andreev bound state energy spectra in the excitation picture (a) and in the one-particle picture (c).
ABS levels are evaluated for D = 0.9. (b,d) Junction occupation diagram in the excitation (b) and one-particle
(d) pictures, showing the even ground state |g 〉 (orange), the spin-degenerate odd excited states |↑,↓〉 (purple),
and the even excited state |e〉 (green). Note that in the latter the |↑,↓〉 designation is arbitrary.

left, without transferring a Cooper pair.14 This is schematically depicted in Fig. 2.2(b).
Mathematically, this scenario is well-described by assigning the transmission process
a certain tunneling amplitude t , or a junction transparency D = |t |2. Under these as-
sumptions, one finds that the interference process of multiple reflections gives rise to
two spin-degenerate Andreev bound states, with their excitation energy given by [26]

E e
A = |∆|

√
1−D sin2

(
φ/2

)
. (2.14)

The resulting energy spectrum is shown in Fig. 2.3(a), from which we see that for finiteφ,
populating an Andreev bound state in the junction has an energy cost that can be lower
than |∆|. Indeed, for D = 1 this energy cost even goes down to 0 at φ= π, at which point
there is no longer an energy cost associated with a quasiparticle excitation. Andreev
bound states are therefore also known as subgap states, a concept we will encounter
again in Sec. 2.3.

We furthermore note that, given that there are two spin-degenerate ABS, one can
consider up to four different junction occupations; see Fig. 2.3(b). There are the states
occupied by zero or two quasiparticles, which have an even parity of quasiparticles and
no net spin, and are therefore known as singlet states. In addition, there are also two
degenerate states with an odd parity and spin-1/2, known as doublet states. As proposed
in Refs. [59, 234, 348] and experimentally probed in [122, 123, 136], one can therefore
build qubits out of both the singlet and doublet subspaces.

14Specular reflection might also take place in the absence of disorder if the chemical potential of the junction
is smaller than |∆|; this is known as a violation of the Andreev approximation [300].
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PICTURES OF SUPERCONDUCTIVITY
At this stage we make a subtle but important remark. As touched upon in the previous
section, we have thus far employed what is known as the excitation picture of super-
conductivity. We defined the ground state to be the vacuum state devoid of excitations,
formed by a large coherent superposition of |0〉 and |2〉 states on top of which Bogolyubov
quasiparticles can be added. This is a useful description when one wants to emphasize
the spinful nature of these excitations, as done above. However, such a picture obfus-
cates any potential parameter dependence of e.g. the ground state energy, which is es-
sentially taken to be a constant energy reference. While this procedure has little impact
for the case of e.g. an isolated superconducting island, it is of consequence for the case
of Andreev bound states.

To see this, we change our frame of reference to that known as the one-particle pic-
ture of superconductivity. Similar to the method often employed for the free electron
gas or for Fermi liquids, in this picture one defines the ground state to be a highly ex-
cited “sea” of quasiparticle states, here occupied up to an energy −|∆| below the Fermi
energy (for which we take E = 0). In this formalism one defines separate fermion oper-
ators that act on states above or below the Fermi level, a procedure which removes the
spin-degeneracy of positive-energy excitations and instead results in particle-hole sym-
metry; each state with energy E has a counter-part at energy −E . Within this picture, the
Andreev spectrum is thus instead given by [26]

E s
A =±|∆|

√
1−D sin2

(
φ/2

)
, (2.15)

which is depicted in Fig. 2.3(c). In contrast to the excitation picture, the ground state
now corresponds to a quasi-continuum of levels filled up to −|∆|, together with a single
phase-dependent and discrete state with energy −E e

A. Additionally, what we previously
interpreted as the state of a single excitation can now be seen as the state in which either
zero or two ABS are occupied, both with energy E = 0; see Fig. 2.3(d).

While initially counter-intuitive, we emphasize that the two pictures are complemen-
tary. They highlight different properties of the same system, as is shown more rigorously
in e.g. Sec. 6.7 of Ref. [121]. Indeed, while in the one-particle picture the spinful nature
of the states is obfuscated, the current-carrying character of the ground state is clearly
revealed; from the conjugate relation between N and φ one finds the current across the

junction to be given by IA = 1
φ0

dEA
dφ (withφ0 =ħ/2e, the reduced flux quantum), such that

the ground state carries a current15

IA = |∆|
4φ0

D sin
(
φ

)√
1−D sin2

(
φ/2

) . (2.16)

The latter is clearly non-zero for φ ̸= 0,π, in line with expectation from the Josephson
equations discussed in chapter 1. In contrast, for the junction occupation with E = 0 the
current is zero for any φ, so that spinful occupation of the junction generally does not
carry any current.16

15Here we neglect the contribution from the states in the continuum. This is a good approximation in the short
junction limit, but does not generally hold.

16The ability for the spinful states to carry current is recovered in Sec. 2.3.
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SIS JUNCTIONS AND SEMICONDUCTING WEAK-LINKS
With this subtle but important distinction between pictures of superconductivity eluci-
dated, we now continue with the one-particle picture and investigate two different limits
of Eq. (2.15), each of which govern a different type of Josephson junction. We first con-
sider a junction hosting many independent channels n, each of which has a very small
transparency Dn ≪ 1.17 According to the Landauer formalism, we can describe their
collective behaviour by summing up the contribution of the individual channels. If we
furthermore perform a series expansion in the small parameters Dn , the Josephson po-
tential and current can be approximated as

HSIS = |∆|
4

∑
n

Dn(1−cosφ) (2.17)

ISIS = |∆|
4φ0

∑
n

Dn sinφ. (2.18)

Identifying EJ = |∆|
4

∑
n Dn , we recover the form of the phenomenological Josephson Hamil-

tonian of Eq. (2.13) (up to an irrelevant constant), as well as the zero-voltage expression
for the current given by the first Josephson relation of Eq. (1.3). Indeed, a valid picture for
the SIS junction considered in chapter 1 is that of a weak connection containing many in-
dependent and low transparency channels. Interesting to note is that through the sheer
number of modes involved they are in principle able to overcome the smallness in Dn

and achieve a large effective E J , which can even be comparable to |∆| [105].
The second limit we consider is that of a junction consisting of a few or even a single

channel, now with a potentially large transparency. Such is the case for the semiconduct-
ing weak-links studied in chapters 4 and 8, which utilize a Josephson junction of the form
superconductor-semiconductor-superconductor (see Sec. 3.1 for details on the material
platform of choice). For the purposes of this section these junctions can be thought of
in the same way as an SNS junction, except that the number of relevant transport chan-
nels and their transparencies can now be tuned with a nearby gate electrode through the
field effect [83]. They are therefore often still referred to as SNS junctions, and Eq. 2.15
is an appropriate description of their physics, up to a few nuances. For example, such
a junction can no longer simply be treated as a low transparency element that transfers
single Cooper pairs, which can be motivated as follows. As EA is an even function of φ, it
can be written in terms of a cosine decomposition

E cos
A =±∑

n
E n

J cos(nφ) (2.19)

with components

E n
J = 2|∆|

π

∫ π

0
dφ

√
1−D sin2 (φ/2)cos(nφ). (2.20)

Taking into account the conjugate relationship between the phase difference φ and the
number of Cooper pairs N that have been transferred across the junction, each term
cos(nφ) in this expansion corresponds to the transfer of n Cooper pairs. As shown in

17While the underlying system might contain various 3D modes that are mixed by disorder, the resulting eigen-
states can generally still be treated as separate 1D systems [121].
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Figure 2.4: High transparency behaviour of Andreev bound states. (a) Absolute value of the Fourier coefficients
of Eq. (2.20). The panel shows coefficients n from 1 to 6, for which the magnitude decreases monotonically
with n, while the sign alternates with n. Dashed gray line shows the low transparency limit of a single channel
EJ = |∆|D/4. (b) ABS energy spectra for values of D from 0.2 to 1 in steps of 0.2, where the opacity of the line
increases with D .

Fig. 2.4(a), the corrections from higher order terms n > 1 are small for low D , but this is
not true when D approaches 1. In this regime substantial modifications with respect to
Eq. (2.18) can be expected in the observables of the system, some potential applications
of which are outlined in chapter 9.

While the Fourier decomposition is a useful tool for modeling the junction behaviour
for moderate to large transparency, we note that it breaks down in the limiting case of
D = 1, where one requires an infinite number of terms to produce the predicted EA =
±|∆| · |cos(φ/2)|. However, as discussed by Ivanov and Feigel’man, this expression is in
any case not a valid description of the system [134]. To evaluate the behavior of the
ABS in this regime, they show that one should instead obtain the energies ±EA as the
eigenvalues of the Hamiltonian

Hqpc = |∆|
(

cos φ
2

p
1−D sin φ

2p
1−D sin φ

2 −cos φ
2 ,

)
(2.21)

which governs the two-dimensional subspace of the coupled left and right-moving An-
dreev bound states. For D < 1 its eigenvalues agree with those of Eq. 2.15, while for D = 1
one instead obtains the 4π-periodic relation EA = ±|∆|cos(φ/2); see Fig. 2.4(b).18 We
note, however, that the vast majority of experiments are performed for junction trans-
parencies away D = 1, such that this 4π periodicity is not frequently discussed in the
context of the (conventional) Josephson effect. Indeed, to the best of our knowledge the
first proposal to reveal these nuances experimentally was put forth in Ref. [14] in 1999,
and its verification had not been demonstrated up until the experiments reported in
chapter 4, published simultaneously with the work of Kringhøj et al [169].

18The Hamiltonian of Eq. (2.21) is valid for π≈ π, where the relevant physics takes place away from the upper
continuum of excitations. A more complete solution for D = 1 instead predicts the potential to be aperiodic
rather than 4πperiodic [14]. This can be understood from the fact that when the upper Andreev state touches
the upper continuum, it will pass to the vacant levels of the continuum [134].
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2.3. QUANTUM DOTS WITH SUPERCONDUCTING LEADS
In this section we turn to yet another kind of Josephson junction. It is of the type superconductor-
quantum dot-superconductor, which we will refer to as a quantum dot with supercon-
ducting leads. In what follows we show that this junction gives rise to a plethora of phe-
nomena (beyond those of SNS junctions) that are of fundamental interest, and we addi-
tionally motivate the implementation of novel qubits based on such junctions. For this
we loosely rely on the reviews of Ref. [209, 215].

Before we can appreciate the combination of superconductivity and quantum dots,
we should first briefly examine the quantum dot in isolation. The study of quantum dots
encompasses an entire field of research, with a history spanning several decades. Semi-
conductor quantum dots in particular enable the construction of qubits out of both spin
and charge degrees of freedom, and additionally allow for sensitive and rapid detection
schemes of these quantities. A full overview is thus beyond the scope of this thesis; we
refer the reader to the review of Ref. [116] and the recent PhD thesis of Lawrie [184] for
works that discuss their properties at length.

For the purpose of this thesis, however, a quantum dot can essentially be consid-
ered as quantum confinement taken to its very limits. We take a quantum dot to be
a box that can be filled with electrons (from a single one to many) for which all three
spatial dimensions are of the order of the Fermi wavelength, such that it is effectively
zero-dimensional. Since at this stage the details of the quantum dot eigenstates are not
important, it suffices to say that the wave-functions are highly localized in space, and
that the energy spectrum is discrete, with a level spacing that is large compared to all
relevant energy scales. Its electronic structure is thus quantized into separate orbitals,
each of which can each host up to two electrons of opposite spin. The latter is not yet
dissimilar from the Andreev bound states hosted by the junctions discussed in the previ-
ous section. However, in contrast to the junctions discussed thus far, quantum dots also
involve strong electrostatic interactions in the form of Coulomb repulsion. The energy
cost of occupying a level with two spins is therefore not equal to the sum of the individ-
ual energy costs 2ϵ, but rather given by 2ϵ+Uee , where Uee is known the quantum dot’s
charging energy. As such the system is governed by the Hamiltonian

HQD =∑
σ
ϵσd †

σdσ+Uee n↑n↓, (2.22)

where σ indicates spin, and where for now we only consider only a single orbital; see
Fig. 2.5(a) for an energy level diagram. Furthermore, d †

σ (dσ) creates (destroys) an elec-
tron with spin σ and energy ϵσ = ϵ∓EZ, with EZ a Zeeman energy term, and with nσ =
d †
σdσ. We note that the origin of Uee is the same as the charging energy Ec of a supercon-

ducting island. However, we employ a distinct notation both for clarity and to convey
that, in this thesis, these quantities are of a very different energy scale. Indeed, whereas
we previously discussed that for the typical island studied in this thesis |∆|/Ec ≥ 100, we
find that |∆|/Uee ∼ 0.1 for the quantum dots studied in chapter 5. It is thus not unex-
pected that Uee is an important energy scale in the physics that follows.

Quantum dots can be constructed out of various different materials, but we choose
to construct them out of semiconducting nanowires. This choice has the advantage that
nearby electrostatic gate electrodes can be used to define the dot’s confinement poten-
tial and to tune the number of occupied orbitals, both of which can be modified in-situ.
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Figure 2.5: (a) Energy diagram of a single-level quantum dot, showing the energies of the different occupations
and how they evolve in the presence of a Zeeman term EZ. (b) Diagram showing a single-level quantum dot
with superconducting leads. Nearby gate electrodes tune the tunnel rates ΓL,R and the relative level ϵ.

Yet this choice of material has another advantage: as discussed in Sec. 3.1, semiconduct-
ing nanowires are readily combined with superconductors, allowing for strongly coupled
hybrid structures of the form superconductor-quantum dot-superconductor, illustrated
in Fig. 2.5(b). The physics of this hybrid Josephson junction (for as we will see, it is
also a Josephson junction) is once-more governed by the formation of Andreev bound
states. However, in this section we discuss how the bound states can now be of a dif-
ferent character. In this junction superconductivity, which acts to pair up electrons into
Cooper pairs, has to compete with the large Coulomb repulsion, which would favor hav-
ing the junction empty or singly-occupied. When different parameters of the system are
modified, this competition gives rise to a first-order quantum phase transition (at zero
temperature), where the ground state of the junction changes from singlet (spin-zero) to
doublet (spin-1/2) and vice-versa. Given that various quantum dot parameters are tune-
able in-situ, thanks to the choice for a semiconducting platform, the finite-temperature
remnants of this quantum phase transition can be experimentally investigated. This is
the topic of chapter 5. Furthermore, we emphasize the difference between this tune-
able ground state and the case of the non-interacting ABS in SNS junctions, where the
doublet configuration is generally an excited state or at most degenerate with the singlet
state [c.f. Fig. 2.3].19 As encoding a qubit in low-energy states is generally preferable to
an encoding that uses only excited states, this tunability motivates that a quantum dot
with superconducting leads could be a suitable platform for a doublet-based qubit [234].
This is investigated in chapter 7.

RESONANT LEVELS

As we will discuss in more detail, a full theoretical description of the quantum dot with
superconducting leads is not analytically tractable, instead requiring advanced numeri-
cal techniques. We therefore choose to build up our understanding in steps, first exam-
ining the case of a non-interacting quantum dot level: Uee = 0. This system is described
by a single spin-degenerate level with an energy ϵ with respect to the Fermi level of the
superconducting leads, both of which are assumed to have an identical gap |∆| and a
phase difference φ between them. The level is then separated from those leads by two

19In non-interacting SNS junctions the doublet configuration can become the ground state in the presence of
a magnetic field, but this is not considered in Sec. 2.2.
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Figure 2.6: (a) Andreev bound state energies of the resonant level model in the single-particle picture. Solid
lines show the case of ϵ = 0, ΓL = ΓR = 0.4, dotted lines show ϵ = 0.4 while keeping ΓL = ΓR = 0.4, and dashed
lines show ΓL = 6ΓR = 6 while keeping ϵ= 0, with all energies in units of |∆|. (b) Minimal energy gap between
the ABS and the continuum as a function of Γ= ΓL +ΓR for δΓ,ϵ= 0.

tunnel barriers, the coupling across which is described by tunnel rates ΓL,R. This system
was first studied by Beenakker and van Houten [27], who derived a transcendental equa-
tion for the ABS energies of this system. More recently, Ref. [177] derived an approximate
but convenient closed-form solution for the ABS energies20

E res
A =± |∆|

|∆|+Γ
√
ϵ2 +|γ|2, γ= Γcos(φ/2)+ iδΓsin(φ/2), (2.23)

where Γ = ΓL +ΓR and δΓ = ΓL −ΓR. As shown in Fig. 2.6(a), these energies essentially
correspond to those of a short SNS junction, with only minor modifications. First, the
effective transparency D̃ is now a function of ϵ and δΓ, and is equal to one when these
terms are zero, akin to a resonant tunneling processes. This implies that D̃ can be fine-
tuned towards one with nearby gate electrodes, an important tuning knob that enables
the results of chapter 4. Second, in the resonant level model the ABS are generally de-
tached from the continuum of states, such that they can lie deep inside the supercon-
ducting gap even for low transparencies and at φ= 0. Indeed, as illustrated in Fig. 2.6(b),
the ABS only approach the zero-phase energy of ±|∆| once Γ becomes much larger than
|∆|. In essence this effect can be interpreted as the junction having a reduced local su-
perconducting gap E res

A (0) = ∆̃, a result of induced superconductivity being obstructed
by the tunnel barriers.21

ATOMIC LIMIT

To gain insight into the physics of Uee > 0, we now first consider the limit of |∆| ≫Uee .
Specifically, we study the so-called atomic limit, for which |∆| → ∞ [25, 217]. As dis-
cussed previously, this is not the limit realized in the systems studied in this thesis, for
which |∆| ∼ 0.1Uee . However, it allows for closed-form analytical solutions, from which

20During final editing we became aware of an even more recent work by Vakhtel and van Heck which revisits
this model and includes also the imaginary-time Landau-Zener tunneling physics crucial to the physics of
chapter 4 [314].

21An additional consequence of the detachment from the continuum of states is that for D̃ = 1 the ABS of the
resonant level model are truly 4π periodic rather than aperiodic.
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Figure 2.7: (a) Andreev bound state energies in the atomic limit and in the single-particle picture, shown for
ΓL = ΓR =Uee /2 and ξ=Uee /4. We note that the levels are far sub-gap, as the model is evaluated for |∆| →∞.
(b) Phase diagram in the atomic limit for φ= 0.

much intuition can already be gained. Foregoing the details of the derivation, one finds
that the spin-singlet ABS states are now governed by

E atom
A = ξ±

√
ξ2 +4Γ2 cos2φ/2, (2.24)

where we introduce ξ= ϵ+Uee /2 and set EZ, δΓ= 0 for simplicity. The energies are not
unlike those of the ABS found for SNS junctions, and the states themselves are bonding
and antibonding superpositions of zero and two electrons in the quantum dot, similar
to what we encountered for the BCS ground state.

However, in contrast to the case of an SNS junction, a level crossing between the
singlet and the spin-degenerate doublet states (which are at energy ϵ = ξ−Uee /2) can
now be enacted by varying the model parameters; the doublet occupation can thus be-
come the unique ground state of the junction.22 Indeed, solving for EA = ξ−Uee /2, we
obtain the boundary of the aforementioned quantum phase transition between singlet
and doublet ground states

ξ2 +4Γ2 cos2φ/2 =U 2
ee /4. (2.25)

Fig. 2.7(a) shows how this level crossing can occur versus phase difference φ, with the
doublet being the ground state aroundφ=π. In turn, panel (b) shows a “phase diagram”
for φ= 0, depicting regions of singlet and doublet ground states separated by the phase
transition boundary. While this boundary does not quantitatively match the numerically
exact solution of the model (discussed further below), it still encompasses the relevant
physics governing the phase transition. At Γ = 0, the quantum dot is fully decoupled
from the leads, and the doublet region has the width of a typical Coulomb diamond:
ξ ∈ [−Uee /2,Uee /2]. However, for increasing Γ, the coupling to the superconductors es-
sentially induces superconductivity in the quantum dot, as was the case for the resonant
level. This eventually overcomes the (weak) Coulomb repulsion, reducing the size of the
diamond until the ground state is a singlet for all ξ.

22Taken at face value, a level crossing between singlet and doublet ABS appears to also be possible in the
resonant level model for very negative values of ϵ. However, in this regime the approximations underlying
Eq.(2.23) no longer hold; no crossing develops as long as Uee = 0 [82].
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YU-SHIBA-RUSINOV STATES
We now briefly consider the opposite limit of the system, that of Uee ≫ |∆|. In this case,
BCS-like superpositions of zero and two electrons become prohibitively expensive to
support, as the latter occupation comes at a significant energy penalty. However, this
does not mean that the ground state of the junction is always an unpaired doublet.
For appropriate parameters a different, non-BCS-like singlet ground state can still form.
This is a Yu-Shiba-Rusinov-like (YSR) superposition between the spinful, singly occu-
pied state of the quantum dot and a screening cloud of quasiparticles in the supercon-
ducting leads, see Fig. 2.8 [241]. These states are the superconducting counterparts of
the well-known Kondo singlets, where the exchange interaction between quasiparticles
in the leads and the spin on the dot can essentially outweigh the energy cost of having
unpaired quasiparticles.

As the name implies, YSR states were first considered (independently) by Yu, Shiba,
and Rusinov in the study of spinful impurities coupled to superconductors [269, 291,
292, 344]. As BCS superconductivity relies on the formation of Cooper pairs of opposite
spin, scattering off of such impurities necessarily affects superconductivity, which they
showed leads to the formation of bound states with energies located (potentially deep)
inside the superconducting gap. However, as YSR considered bulk systems with embed-
ded spin-1/2 impurities, the notion of a phase difference φ across the impurity had no
meaning. Furthermore the quantum nature of the spins was initially neglected due to its
complexity, so that Kondo screening also did not play a role. Approximate descriptions
that take these concepts into account now do exist, such as e.g. mean-field slave-boson
techniques [30] or so-called Kondo models [130, 158], where the latter reveals a striking
universal behavior for the boundary between singlet and doublet ground states [144].
W choose not explicitly discuss these models here and refer to the reference material
for further details. Instead, we reserve the rest of this section for the numerically exact
solution of the model, which fully captures both the quantum nature of spin and charge.

Before we do so, we make a final remark. Recent work [352] highlights not only the
formation of a modified singlet, but also of a modified doublet state in the Uee , Γ≫ |∆|
regime of the quantum dot Josephson junction. In this case, one finds that the doublet
state does not just correspond to an unpaired spin on the quantum dot (as was the case
for the atomic limit), but is instead an over-screened spinful entity with coherent corre-
lations to quasiparticles in both leads, also depicted in Fig. 2.8. Such states are a recent
topic of interest [271], as they imply the formation of highly sought-after triplet corre-
lations between the quasiparticles in the two leads, which can in principle be extended
over long length scales. We hypothesize that this regime of over-screened doublets might
be relevant inside the “chimney” of Fig. 5.5(b), although the experiments of that chapter
did not allow for probing of the predicted correlations.

SINGLE IMPURITY ANDERSON MODEL WITH SUPERCONDUCTING LEADS
Having discussed the qualitative behavior of quantum dots with superconducting leads
in different limits, we now turn to a numerically exact solution to the problem. So far, we
have implicitly been considering what is known as the single impurity Anderson model
(SIAM) with superconducting leads. It consists of a Hamiltonian of the form

H = HQD +Hleads +HT, (2.26)
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Figure 2.8: Schematic depictions of sub-gap states for large values of Uee , Γ compared to |∆|. Left: Singlet
state formed by an even superposition of two YSR-like singlets, where the local moment is distributed between
the quantum dot and the left and right superonducting leads. Right: Overscreened doublet state in which
an additional local moment is attached to the L-R singlet, forming a doublet state in which the spin on the
quantum dot is strongly correlated with the spins in the superconducting leads. Image adapted from Ref. [271].

where HQD is given by the single-level Hamiltonian of Eq. (2.22) and the second term
describes two superconducting reservoirs, given by the BCS Hamiltonian of Eq. (2.4) (al-
beit typically written in the basis of plane waves). For simplicity we again assume both
superconductors to have identical gaps |∆| as well as a density of states ρ, and we once-
more take them to have a phase difference φ=ϕL −ϕR between them. The third term is
then the tunneling Hamiltonian that couples the dot and the leads,

HT = ∑
i kσ

(
ti c†

i kσdσ+h.c.
)

, (2.27)

where i = L,R labels the left and right leads, k labels spin-degenerate single-particle
states, and ti are the dot-lead tunnel coupling strengths. For simplicity, we choose the
latter to be independent of k and spin; the consequences of this choice are addressed in
the next section. Within this approximation, the tunneling rate across each barrier takes
on the simple form Γi =πρ|ti |2.

As briefly mentioned to in the previous sections, the eigenvalues of this Hamiltonian
are not analytically tractable for arbitrary parameter values. It can, however, be solved
numerically using e.g. the numerical renormalization group (NRG) method. A thorough
description of the NRG method is beyond the scope of this chapter; several details can be
found in Sec. 5.8, and we recommend the review of Ref. [47] for an exhaustive introduc-
tion to the topic. In short, the NRG method is an iterative procedure for solving quantum
impurity problems that involve one or several localized levels coupled to a continuum
of electrons (which can possess some correlations, such as the case for a superconduc-
tor). The procedure consists of several steps: discretization of the continuum parts of
the Hamiltonian in a way that emphasizes states near the Fermi level (the so-called loga-
rithmic discretization), unitary transformation of the resulting discretized Hamiltonian
to a linear tight-binding chain representation (the Wilson chain), and finally iterative
diagonalization in which the Wilson chain sites are taken into account consecutively
[47, 172, 274, 338, 343].

Although the growth of the Hilbert space is controlled by the truncation parame-
ters that set the number of states retained after each step of the iteration, the NRG ap-
proach is computationally expensive and can generally not be performed on a personal
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Figure 2.9: (a) Phase diagram of the SIAM with superconducting leads, computed via NRG for ξ,δΓ,φ= 0 and
adapted from Ref. [144]. (b) Phase dependence of the Josephson potential of the quantum dot junction in the
singlet (S = 0, orange) and doublet (S = 1/2, purple) state, computed via NRG for Uee = 5, ξ= 0.25, Γ= 0.2 and
δΓ,EZ = 0. Energies are given in units of |∆| and the potentials are given relative to the minimum of the singlet
state.

computer. However, during the work of chapter 5 our collaborator dr. Rok Žitko gen-
erated a vast amount of NRG data for various parameter regimes, freely available at
DOI 10.5281/zenodo.5874832 [350]. Through interpolation one can use this to calculate
the energies of the lowest-lying singlet and doublet states for virtually any combination
of the model parameters. In turn, this allows us to construct highly accurate, multi-
dimensional quantum phase transition diagrams that depend on the relative size of up
to seven parameters: Γ, δΓ, φ, ξ, EZ, |∆|, and Uee . In chapter 5 we realize a device that is
well-described by this model, and in which all but the latter two parameters are tuneable
in-situ. We refer to that chapter for several phase transition diagrams and their physical
interpretation; see e.g. Fig. 5.8.

However, not every regime is easily accessible experimentally. An example of such
a difficult-to-measure phase diagram is shown in Fig. 2.9(a), which shows the boundary
between singlet and doublet phases as the parameter hierarchy between Γ,∆, and Uee

are varied, where in particular the latter two parameters are generally fixed in an exper-
iment. Additionally, the approximate position of the BCS-like and the YSR-like singlet
regimes considered in the previous subsections are also indicated, illustrating that there
is a large cross-over between the two types of behavior. We invite the interested reader to
use the publicly available NRG data for further investigation [350], and simultaneously
point out Ref. [144], which contains approximate but insightful analytical boundaries
that help build intuition.

PHASE DISPERSION OF THE DOUBLET STATE

Before we continue, we must address a crucial short-coming of the discussion thus far;
in all the expressions that came before, spin-doublet occupation of the junction was al-
ways independent of phase, and therefore did not carry supercurrent. This is, however,
generally not correct. By virtue of fourth-order co-tunneling processes, Cooper pairs can
be transferred through the quantum dot even when it is occupied by a single spin, and
the doublet state can therefore acquire a non-trivial energy-phase relation [104]. While
not present in the resonant level and in the |∆| →∞ limit discussed above, this effect is

https://zenodo.org/record/5874832
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readily captured in the NRG treatment of the model. This is shown in Fig. 2.9(b), where
we implicitly assume that projection onto the lowest-energy states in each parity sec-
tor is sufficient to capture the salient features of the Josephson potential. Strikingly, one
finds that the energy-phase relation of the doublet state is opposite to that of the singlet
state; whereas the latter follows a sinusoidal potential with its energy minimum at φ= 0,
the former has an energy minimum atφ=π.23 Due to this distinctive feature the doublet
state of the quantum dot with superconducting leads is often referred to as a π-junction,
and the singlet-doublet quantum phase transition is also known as the 0−π transition.

The origin of the π shift can be understood on the basis of the allowed co-tunneling
sequences for different dot occupations, which are restricted by the combination of Coulomb
blockade and Pauli exclusion (see Fig. 2.10) [298, 316]. When a Cooper pair is transferred
through a doublet configuration [panel (b)] the order in which the spins of a Cooper
pair are annihilated in one lead is opposite to the order in which they are created in the
other lead, which necessarily involves a permutation in the spin-ordering of a Cooper
pair. As the constituent particles of a Cooper pair obey Fermi-Dirac statistics, this ex-
change implies that the wavefunction should acquire a minus sign, and in turn, moves
the minimum of the 2π periodic energy-phase relation from φ = 0 to π, producing the
π-shift.

BEYOND THE SIAM
While the SIAM with superconducting leads is already of substantial complexity and is
able to describe a multitude of experimental results, there are still various extensions
that one can consider to make the model more realistic. Perhaps the primary candi-
date to address is the single-level nature of the quantum dot assumed thus far. In real
devices, it is not always possible to take confinement to the extreme, and the quantum
dot level spacing could thus be comparable to other relevant energy scales (such as |∆|
and Uee ). In this case co-tunneling can proceed through multiple quantum dot levels,
each with their own ξn and Γn

L,R. Clearly this leads to a rapid growth of the parameter

space, which quickly makes the NRG approach unfeasible.24 At the same time, the inclu-
sion of additional levels can lead to important corrections: as discussed in Ref. [316], the
Cooper-pair permutation argument that explains the π-junction behaviour is no longer
the complete story when multiple quantum dot levels contribute to the co-tunneling se-
quence, as the parity of the orbital wavefunctions must also be taken into account. As a
consequence, in a multi-level system the energy-phase relation of a singlet state can also
have a π shift, while that of the doublets can be without one.

Additional effects are also expected when the leads can no longer be well-approximated
by transitionally invariant and non-interacting BCS Hamiltonians, in which case they
can acquire non-trivial level structures and complex dispersion relations. In this regime
analytical solutions are even more sparse to come by, and NRG is no longer the appro-
priate language in which to express the problem. Here one instead has to rely on the

23While not discussed here, we note that a simplified model based on the Hartree-Fock approximation can
also produce analytically tractable π-junction behavior for the doublet state, from which much intuition can
be gained [321].

24In chapter 6 we instead consider a simplified extension in which off-resonant levels are summed up into a
direct lead-lead tunneling term ΓLR.
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Figure 2.10: (a-b) Schematic depiction of two fourth-order co-tunneling sequences that transfer a Cooper pair
through a doubly (S = 0, a) and singly (S = 1/2, b) occupied single-level quantum dot with superconducting
leads. The first and last column show the initial and final states, while the middle columns show one of the
possible intermediate virtual states. In panel (a), the order in which the spins of a Cooper pair are annihilated
in the left superconductor is identical to the order in which they are created in the right superconductor. Note
that the same holds for an empty dot level. However, in panel (b) the order of the spins is reversed during
Cooper pair annihilation and creation. Panels adapted from Ref. [316].
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density matrix renormalization group or dynamical mean-field theory methods, which
are generally of even higher computational complexity [239]. While these scenarios are
not explicitly encountered in this thesis, their largely unexplored physics should already
be experimentally realizable, as briefly discussed in chapter 9.

In chapters 6 and 7 we furthermore encounter the need for modifying a different
model assumption, namely that the dot-reservoir tunnel coupling strengths ti are inde-
pendent of k and spin. This is not a valid assumption in systems with strong spin-orbit
interaction (SOI) (either in the leads or in the quantum dot), which essentially makes it
so that spin does not have to be conserved during single electron tunneling events. The
effect of SOI on the SIAM is typically incorporated by splitting the resulting tunneling
rates into spin-conserving rates ΓL,R and spin-flipping rates γL,R [234]. In and of itself
this splitting of terms does not have strong consequences for the Josephson physics of
the system; indeed, since the SOI does not break time reversal symmetry, one may ex-
pect that it will not affect the Josephson effect at all [77]. But when present in conjunction
with multiple quantum dot orbitals, SOI can in fact give rise to profound interference ef-
fects. Ref. [234] proposes that even in the absence of a Zeeman term, the combination
of these ingredients can lead to non-degenerate energy-phase relations for the doublet
states |↑,↓〉, splitting the spins and thereby producing a spin-dependent supercurrent.
Ref. [347] in turn shows that the combination of SOI and a Zeeman term can give rise
to the anomalous Josephson effect, in which the minimum of the doublet state energy-
phase relation is at φ0 ̸= 0,π. Both of these effects are of fundamental interest, as well as
promising for applications in the field of superconducting spintronics [196].

We experimentally study these predictions in chapter 6, and we refer to its Supple-
mentary Materials in Sec. 6.7 for an extended SIAM that examines their origin, both using
analytical and numerical methods. In practice, however, we find that the physics of this
regime is well-described by a simple phenomenological model for the potential of the
doublet state [234]:

U (φ) = E0 cos
(
φ

)−ESO n⃗ · σ⃗ sin
(
φ

)+ E⃗Z

2
· σ⃗ . (2.28)

Here σ⃗ is the spin operator, n⃗ is a unit vector along the polarization direction set by
the SOI, and ESO and E0 are the spin-dependent and spin-independent contributions to
Cooper pair tunneling across the quantum dot junction.25 Note that the term propor-
tional to E0 has a minimum at φ = π by assumption, but we again emphasize that this
does not have to be the case for a multi-level scenario.

The energy spectrum that results from diagonalizing this Hamiltonian at E⃗Z = 0⃗ is
shown in Fig. 2.11(a), which reveals two states of opposite energy-phase dispersion.
These essentially correspond to the two (quasi)spin flavors of the quantum dot dou-
blet states.26 The zero-field Josephson potential of the doublet occupation is thus spin-
dependent, a feature not found within the standard SIAM nor in the short junction limit
of SNS devices. At E⃗Z = 0⃗, this spin dependence is fully governed by the at-first-sight

25The product ESO n⃗ · σ⃗ sin
(
φ

)
is colloquially referred to as an effective magnetic field B⃗SO due to its similarity

to a Zeeman term.
26(The doublet is now technically a Kramer’s doublet rather than a spin doublet due to the inclusion of the

spin-orbit interaction.
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Figure 2.11: Phase dependence of the Josephson potential of the quantum dot junction in the extended SIAM,
showing the singlet (S = 0) state (orange) and the two doublet (S = 1/2) states (blue, red). The potentials are
computed via NRG for three different Zeeman fields, with Uee = 15, ξ = 0.1, Γ = 0.2, γ = 0.4, ΓLR = 0.1 and
δΓ= 0, given in units of |∆|. The potentials are plotted relative to the minimum of the doublet states at EZ = 0.
Details of the calculation can be found in Sec. 6.7.

peculiar sine term of Eq.(2.28). At the surface level, we emphasize that its inclusion is ex-
plicitly allowed by Kramer’s theorem, for which the relation U (φ, σ⃗) =U (−φ,−σ⃗) should
be obeyed. As discussed in detail in chapter 6, the microscopic origin of the term is an in-
terference effect between co-tunneling trajectories that either include or do not include
spin-flipping events, facilitated by the presence of multiple quantum dot orbitals and a
finite phase difference.

We further note that at zero field the Josephson potential is on average governed by
an equal weight of both spin occupations, given that there is no preferential spin direc-
tion; as such its time-averaged behavior is still like that of a π-junction. This changes in
the presence of a Zeeman field E∥

Z applied parallel to the direction of the SOI. As shown
in Fig. 2.11(b), in this regime one of the spin states becomes the unique ground state. As
its minimum is displaced fromφ= 0,π by the sine term, this directly realizes the anoma-
lous Josephson effect, be it instantaneous or time-averaged. For completeness we also
illustrate the effect of a Zeeman field E⊥

Z perpendicular to the SOI direction. As shown
in panel (c), small values of E⊥

Z cause a hybridization between the spin states, open-
ing up avoided crossings at φ = 0,π and producing multiple potential minima within a
2π-wide interval. This is not dissimilar from the physics of high transparency SNS junc-
tions discussed in Sec. 2.2, where finite D results in a small avoided crossing between the
ABS and produces multiple potential minima in a 4π-wide interval. The non-adiabatic
phase evolution explored for high transparency SNS junctions in chapter 4 is therefore
likely to be of relevance in this perpendicular field regime as well, although its conse-
quences currently remain unexplored. Finally, we observe that at larger values of E⊥

Z the
avoided crossings eventually out-compete the splitting governed by the SOI, lifting the
anomalous Josephson effect.

2.4. TRANSMONS
In Sec. 2.1 we introduced isolated superconducting islands, which combine supercon-
ductivity with electrostatic interactions. We then discussed what occurs when two such
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islands are connected via a Josephson junction in Sec. 2.2, allowing for disipationless
transfer of Cooper pairs between them. Here we emphasized the role of Andreev bound
states, which underpin the energy-phase relations and thereby the observables of the
junction. We explored how their exact nature depends on the type of junction involved,
with extra emphasis on the quantum dot with superconducting leads in Sec. 2.3.

In these discussions, however, we have neglected the electrostatic interactions of the
islands. Indeed, as the transfer of a Cooper pair implies the transfer of a charge of 2e, it
also creates a charge dipole. A proper description of coupled superconducting islands
must include the electrostatic energy corresponding to this transfer process, given by

Hd = 4Ec
(
N −Ng

)2 = 4Ec

(
−i

d

dφ
−Ng

)2

(2.29)

where we used the conjugate relation between the number of Cooper pairs N that have
crossed the junction and the phase difference φ to write two equivalent expressions. We
note that this equation is similar to, but different from, the single-island expression of
Eq. (2.2). The factor of 4 accounts for the fact that we now deal with the transfer of pairs of

electrons, and the charging energy Ec = e2

2CΣ
encompasses all relevant capacitances of the

system (e.g. an intrinsic capacitance across the junction). Furthermore, Ng is now a real-
valued, generally time-fluctuating offset charge, which can be induced by for example
a nearby gate electrode, background charges, or unpaired electrons. Combining this
expression with that of a Josephson junction results in a generic Hamiltonian

Htmon = Hd +UJ(φ), (2.30)

where UJ(φ) is the Josephson potential, which can take on the form of e.g. an SIS junction
[Eq. (2.18)], an SNS junction [Eq. (2.21)] or even be governed by the physics of a quan-
tum dot with superconducting lead [Sec. 2.3]. At the surface level, each of these choices
gives rise to qualitatively comparable behaviour: the resulting energy spectrum is dis-
crete by virtue of the compact variable φ, and it is generally non-equidistant by virtue of
the non-linear Josephson term.27 In a sense the energy spectrum thus appears qualita-
tively similar to the electronic states of e.g. the hydrogen atom, such that the system is
often referred to as an artificial atom. As we will see, however, the details of this atom
depend sensitively on UJ(φ).

The Hamiltonian of Eq. (2.30) can be conveniently represented by the diagram of
Fig. 2.12, and its description falls into the realm of circuit quantum electrodynamics
(cQED): the study of light-matter interaction in superconducting circuits. In fact, the be-
haviour of this specific circuit has been studied for several decades already, most promi-
nently for the case of an SIS junction. Depending on the parameter regime, it is known
as the Cooper pair box [38], or as the transmon [162]. In what follows we present an
overview of the circuits’ properties, for which we make use of numerical techniques to
diagonalize the Hamiltonian (c.f. Sec. 5.8). For further reading on both the specific cir-
cuit and cQED in general, we recommend the recent review by Blais et al. of Ref. [34].

For simplicity we will assume an SIS Josephson potential of the form UJ(φ) = EJ(1−
cosφ), such that behavior of the circuit is largely governed by the ratio of just two param-
eters: EJ and Ec. We then first examine the regime of small Josephson energy, EJ/Ec = 1,

27See Ref. [81] for a detailed discussion on the compact nature of φ.
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Figure 2.12: Circuit model of a floating transmon. Dashed lines denote the inclusion of an additional junction,
forming a SQUID through which an external fluxΦext can be threaded.

known as the Cooper pair box regime. Here one recovers behavior somewhat compara-
ble to that of the superconducting island; as shown in Fig. 2.13(a), the energy spectrum is
indeed discrete, with levels that mostly follow the shapes of charge parabola’s.28 A major
difference, however, is that the parabola’s no longer cross: the Josephson effect allows the
islands to exchange Cooper pairs, resulting in an avoided crossing ∼ EJ between states
that differ by one Cooper pair (and a smaller avoided crossing between states that dif-
fer by two Cooper pairs). The position and relative spacing of the energy levels are thus
strong functions of the offset charge Ng, which tunes the levels in and out of regions of
avoided crossings. We refer to the variation of the level position with Ng as the charge
dispersion δEn = |En(0.5)−En(0)|, which is also a measure of how sensitive the system
is to noise in the offset charge. The relative spacing between levels is instead captured
by the so called anharmonicity α= E12−E01, where Emn denotes the difference En −Em .
This quantity essentially governs how close the energy level spacing of the circuit is to
that of a harmonic oscillator, in which the non-linear Josephson junction is replaced by
a linear inductor such that α = 0. The anharmonicity is a crucial parameter for con-
structing a qubit out of e.g. the n = 0 and n = 1 levels, for which one needs to be able to
selectively address the E01 transition with fast (and thus spectrally broad) control pulses.

The behaviour in the Cooper pair box regime can be further understood by examin-
ing the wavefunctions for a given offset charge. Shown in panel (d) is the case of Ng = 0,
expressed in the so-called number basis of Cooper pairs. This reveals that the ground
state is reasonably well-described by N = 0 Cooper pairs, given that the offset charge is
set away from an avoided crossing. However, the excited states have significant weight
among both N = ±1 Cooper pairs transferred across the junction. Indeed, the eigen-
states of circuit are no longer states of a well-defined number of transferred Cooper pairs,
but instead form superpositions. Albeit less intuitive in this regime, we can also exam-
ine the wavefunctions in the dual basis, the phase basis, shown in panel (g). This shows

28Note that a second, decoupled copy of the spectrum exists for islands that host an odd number of electrons,
horizontally offset by Ng = 0.5. At T = 0 this is energy spectrum is vertically offset by an energy close to |∆|,
however as discussed at the end of Sec. 2.1, in practice this energy gap is generally not present due to finite
non-equilibrium quasiparticle densities. See e.g. Fig. 4.2 for such a doubled spectrum, which has an offset
charge periodicity of 1e rather than 2e.



2

36 2. THEORY

that each level is distributed over a broad range ofφ, and not particularly confined to the
Josephson potential well. At the cost of some mathematical rigor (the Cooper pair box
states are not minimum uncertainty states), this can essentially be understood from N
andφ being conjugate variables, such that a narrow distribution in N implies a wide dis-
tribution inφ. In this parameter range it is therefore most intuitive to analyse the system
in the number basis.

The behaviour of the system changes drastically when EJ/Ec ≫ 1, for which one en-
ters the transmon regime. Shown in panel (c) is the case of EJ/Ec = 50; here the remnants
of the charge parabola’s are no longer visible, having been replaced by energies that are
nominally insensitive to the offset charge. The charge dispersion δEn has thus been
strongly suppressed, and the anharmonicity is now essentially constant as a function of
Ng. This behaviour can once-more be understood from the wavefunctions. Examining
their form in the number basis [panel (f)], the eigenstates of the system now all span sev-
eral different Cooper pairs, rather than just one or two. In this regime the number basis
is thus a less convenient framework for building intuition. Instead, analysis in the phase
basis [panel (i)] reveals that the transmon eigenstates can be better understood from the
perspective of a “phase particle”, confined in the well set by the Josephson potential.

It is also from this basis that one can motivate the suppression of the charge dis-
persion, starting from Bloch’s theorem. Given that one has a periodic potential UJ(φ) =
UJ(φ+ 2π), a tight-binding treatment of the problem results in a state that is approxi-
mately a superposition of wavefunctions localized at φ= 0,±2π,±4π, . . . As in crystalline
solids this gives rise to “Bloch bands”, where the amount of band bending (here the
charge dispersion) depends on how much adjacent wavefunctions overlap. That this
overlap decreases with EJ/Ec is made intuitive by recasting the problem into that of a
particle with mass 1/Ec tunneling between potential minima separated by barriers of
height EJ. In this case larger ratio’s of EJ/Ec exponentially reduce the tunneling proba-
bility, and thus the charge dispersion.

In Fig. 2.14 we further quantify the evolution of the eigenstates with the ratio EJ/Ec.
Starting with the energy levels themselves, one finds that both En and the level spac-
ing Emn are an increasing function of EJ; see panel (a). In particular, one can show that
E01 ≈ √

8EJEc −Ec in the limit of large EJ/Ec, while the spacing to the other levels is a
function of the anharmonicity α, which we return to below. Panel (b) then depicts the
evolution of the charge dispersion of the energy levels, which is indeed exponentially
suppressed in

√
EJ/Ec. The panel also shows how higher lying levels retain more charge

dispersion; being higher in energy, they are less confined by the potential well.29 In turn,
panel (c) shows the evolution of the anharmonicity α. As we remarked earlier, for low
EJ/Ec it starts off as a highly dependent function of Ng, but at higher ratio’s it converges
to a single value, approximately given by α ≈ −Ec. The fact that the evolution of α is
algebraic rather than exponential in EJ/Ec is one of the central concepts that makes the
transmon such a successful qubit platform; sensitivity to charge noise can be strongly
suppressed while retaining the ability to address individual transitions. Nevertheless,

29The exponential suppression of the charge dispersion does not imply that the wavefunctions are exponen-
tially spread out (localized) in the number (phase) basis. The standard deviation of these distributions rather

proceeds (inversely) proportional to
(
EJ/Ec

)1/4, so that even in the transmon regimes the Cooper pair fluc-
tuations are only of order one to two [162].
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Figure 2.13: The transition from the Cooper pair box regime to the transmon regime. (a-c) Offset charge
dependence of the energy levels En governed by Eq. (2.30) for the case of an SIS potential. Panel (a) shows the
case of EJ = 0 in gray dashed lines. Energies are normalized by the energy difference E01 = E1 −E0 and given
with respect to the lowest energy value of the ground state. (d-f) Real part of the wavefunction for the first
three levels, expressed in the Cooper pair number basis. Levels are offset for clarity and evaluated for Ng = 0.
(g-i) Same as (d-f) in the phase basis. The wavefunctions are now offset by their energy value with respect
to the bottom of the Josephson potential, normalized by the Josephson energy. In addition, the normalized
Josephson potential is plotted in black. In all panels, Ec/h = 1GHz.
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the smallness of α does limit the rate at which the transmon states can be manipulated
without unwanted excitation of other states [332]. This has prompted investigation of
alternative superconducting circuits for qubit applications, which we briefly return to in
chapter 9. Finally, albeit not illustrated in the figures, another core feature of the trans-
mon is that the transition matrix element connecting the ground and the first excited
state via the charge operator does not decrease but instead increases in the ratio EJ/Ec

[162]. In other words, while the response to DC charge offsets is suppressed in the trans-
mon regime, the response to AC oscillating electric fields is in fact enhanced. It is this
important property that facilitates strong coupling to e.g. readout circuits.

Given that the charge dispersion is suppressed for large EJ/Ec, the resulting energy
levels can no longer be conveniently tuned in-situ using Ng. To regain the ability to
tune the energy levels, one can replace the single Josephson junction with two junc-
tions in parallel, forming a superconducting quantum interference device (SQUID) [c.f.
Fig. 2.12]. In a SQUID, the phase drop across the first junction (φ) and across the sec-
ond junction (δ) are connected according to φ−δ = φext through the quantization of
flux, where φext = (2e/ħ)Φext is the phase difference resulting from the externally ap-
plied magnetic flux through the SQUID loop,Φext [76]. This results in an effectively flux-
tunable Josephson energy, at the cost of introducing flux noise sensitivity [see Fig. 2.14(d)].
Crucially, the range of tunability depends strongly on the ratio of the Josephson energies.
For identical junctions, the range is maximal, essentially from 0 to EJ1+EJ2, and the phase
drop is divided across both junctions. In contrast, for EJ1 ≫ EJ2 the value of φ remains
close to zero while δ is close to φext. The large junction essentially provides a “reference”
Josephson energy, on top of which the now flux-dependent potential of the other junc-
tion is added. This lies at the core of the spectroscopy performed in chapters 5 and 6,
where it is employed to explicitly resolve the energy-phase relationship of quantum dots
with superconducting leads.

BEYOND SIS JUNCTIONS

The discussion thus far focused on the case of an SIS junction. This is in part due to
the simplicity of the description, which also captures many of the salient features of SNS
junction based transmons, and because the SIS implementation makes up the vast ma-
jority of the transmon literature. Indeed, since its conception, almost every transmon
has been modeled with a perfectly sinusoidal potential, and has been fabricated using
well-studied junctions that accurately implement this potential. The decade-long col-
laboration between theory and experiment that followed has been hugely successful,
enabling a wide range of highly advanced protocols and tools: transmon circuit param-
eters can now be engineered with percent-level accuracy, the transition frequency dif-
ference between levels can be readily probed below the MHz scale, and the state of the
system can be manipulated and read out on nanosecond timescales [34, 99].

Nevertheless, one can create a transmon circuit out of virtually any Josephson junc-
tion, which is in fact the core methodology of this thesis. Rather than use the well-known
properties of the SIS junction to build highly coherent and predictable qubits, we invert
the construction and use the exhaustive toolbox available for transmon measurement
to probe the behavior of the SNS and quantum dot Josephson junctions discussed in
the preceding sections. Their properties are then revealed by the measurement of the
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Figure 2.14: Evolution of circuit properties with increasing EJ/Ec. Panel (a) shows the evolution of the first
three energy levels as evaluated at Ng = 0.25, while panel (b) shows the evolution of their charge dispersion.
Panel (c) shows the evolution of the anharmonicity at three different values of offset charge. Panel (d) shows
the evolution of the E01 transition energy versus the external flux in the presence of a second SIS junction with
variable EJ2. In all panels Ec/h = 0.25GHz.

transmon circuit, for which any deviation from SIS-like behaviour can be readily quan-
tified. Take for example the anharmonicity of a transmon with an SNS junction, which
for D → 1 approaches −Ec/4 rather than −Ec [167]. Rather than illustrating how a trans-
mon circuit can reveal the junction properties of interest through further calculations,
however, we instead refer to the experimental results contained in the remainder of this
thesis. As put forward in the outline of chapter 1, but now with the relevant theoret-
ica concepts discussed, chapter 4 details work on an offset-charge sensitive transmon
(EJ/Ec ≈ 5) containing an SNS junction. Using this system we are able to probe the rapid
suppression of charge dispersion when the junction transparency D → 1, a consequence
of the evolution from a 2π to a 4π periodic potential. In chapters 5 and 6 we use the
aforementioned asymmetric SQUID construction to accurately probe the energy-phase
relationship of quantum dots with superconducting leads, revealing the singlet-doublet
transition, the spin-orbit induced spin-splitting of the doublet state, and ultimately the
anomalous Josephson effect. In chapter 7 we then take the dependence of the circuit on
its junction even further, creating a novel superconducting spin qubit out of the doublet
state inside a quantum dot Josephson junction, while using the transmon to read out its
state.

To conclude this section, we emphasize that the transmons studied in this thesis are
essentially spectrometers, and not a direct attempt to build a better transmon qubit. In-
deed, the qubit coherence properties are generally far from state of the art transmons.
This does not mean that such devices are of no value to the general transmon commu-
nity, however. In chapter 8 for example we again construct transmons based on SNS
junctions, whose intrinsic magnetic field resilience (see Sec. 3.1) allows us to study quasi-
particle mitigation methods in regimes not conveniently accessible using conventional
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SIS junctions, while the results contained in this chapter are directly applicable to any
type of transmon. Furthermore, several ideas and proposals exist that aim to leverage
SNS and SQDS junctions to build better qubits [3], some of which are outlined in chap-
ter 9.



3
EXPERIMENTAL METHODS

Of course it is exhausting, having to reason all the time in a universe which wasn’t meant
to be reasonable.

Kilgore Trout, Breakfast of Champions

The quality of our experiments relies on two equally important elements: the materials
that constitute the device we measure, and the apparatus we use to do the measure-
ments. In this chapter we provide an overview of those used throughout this thesis, and
focus on the parts that received extra care.

41
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3.1. INAS-AL NANOWIRES
In each of the following chapters we make use of the same material platform to host
our Josephson junctions, both for semiconducting weak links (chapters 4 and 8) and for
quantum dots with superconducting leads (chapters 5-7). This material platform is that
of InAs-Al nanowires: quasi one-dimensional nanostructures consisting of a semicon-
ducting core with a hexagonal cross-section, covered on several facets by a thin super-
conducting shell. The methods used to grow the wires are detailed in [173]; in short, the
InAs cores are grown using molecular beam epitaxy, and the aluminium is grown epitax-
ially onto several of the cores’ facets, without breaking vacuum. The aluminium is then
also exposed to oxygen in-situ, in order to form a stable oxide with uniform coverage.
Using this growth method, many tens of thousands of wires are grown simultaneously
on a single growth chip, examples of which are shown in Fig. 3.1(a-b). Following growth
these wires are generally stored in a vacuum environment to prevent further oxidation
from occurring over longer periods of time.

In this thesis we make use of wires from two different growth chips, both sourced
from the Niels Bohr Institute at the University of Copenhagen. The first batch we use,
labeled “Qdev758”, contains wires of nominal length (7± 2)µm, diameter (80± 5) nm,
and a shell of thickness 6 nm, covering two facets of the hexagonal core.1 These wires are
used in chapter 4. In chapters 5 through 8 we make use of batch “Qdev1042”, with wires
of nominal length (10± 1)µm, diameter (111± 5) nm, and shell thickness 6 nm, again
covering two facets. For our purposes these are rather similar wire-batches, with the
main difference being that longer wires are easier to pick up and place using a micro-
manipulator (see Sec. 3.2). Additionally, the larger diameter of the second wire-batch
could be of relevance for the multi-level effects underlying chapters 6 and 7, potentially
a result of the reduced lateral confinement.

The choice for this specific material platform stems from several considerations. InAs
nanowires are known to have a large spin-orbit coupling [90, 192] as well as a sizeable
Landé g-factor [64, 283], essential for chapters 6 and 7. Combining the nanowires with
a thin epitaxial Al shell [173] has furthermore been shown to produce large and hard
induced superconducting gaps [53], persisting for magnetic fields above 1 T without un-
desirable in-gap states [78]. Crucially, Josephson junctions are readily patterned into the
hybrid nanowires by selectively removing part of the Al shell using relatively straightfor-
ward wet-etching techniques; see Sec. 3.2.2 This results in junctions with characteris-
tics that are readily tunable through the field effect. The critical currents (and thus the
Josephson energies) can be tuned-in situ with a nearby gate electrode, and can range
from effectively zero to hundreds of nanoamperes [83, 296]. They can furthermore be
described by just a single to several highly transparent Andreev bound states [118, 296],
essential for the experiments in chapter 4. Thanks to these material properties, InAs-Al
(as well as bare InAs) wires have an extensive history of successful integration into quan-
tum dot experiments [54, 227, 316] and nanowire-based transmon qubits [182, 203], sev-
eral of which underpin the experiments performed in this thesis.

1The quoted shell thickness is after in-situ oxidation.
2As shown in Fig. 3.1(d) the employed wet-etching recipe leaves behind oxide residuals, which can potentially

deteriorate the electronic transport properties of the junction. Recently InAs-Al nanowire Josephson junc-
tions were grown using in-situ shadow evaporation, through which one can circumvent this problem [157].
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5 μm 200 nm

1 μm

100 nm

(a) (c)
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(b)

Figure 3.1: (a) Scanning electron micrograph (SEM) of an array of InAs-Al nanowires present on wirebatch
Qdev1042. (b) SEM the top part of a nanowire taken from (a), revealing the boundary of the Al shell. (c) SEM
of an etched and contacted nanowire placed on a device with the same layout as employed in chapter 5. (d)
Zoom in of the junctions present in (c). This image further reveals that two wires were simultaneously placed
down by accident.

The aforementioned qualities make InAs-Al nanowires an excellent platform. How-
ever, we would be remiss not to mention several viable alternative materials with compa-
rable qualities. These are InSb-Al nanowires [37, 125], as well as InAs-Al and InSbAs-Al
based two-dimensional electron gasses [160, 224, 288]. In recent years these have de-
veloped into mature hybrid material platforms, and for future experiments they could
offer certain benefits, facilitating complex device layouts and improved junction char-
acteristics. However, these materials require more advanced (and at times simply more
involved) nanofabrication than InAs-Al based Josephson junctions, where the latter is
the subject of the next section. Finally, we note that Josephson junctions based on mate-
rials that are not III-V semiconductors also hold promise for future experiments, among
which candidates are isotopically purified germanium and lead telluride [128, 138, 277,
279, 311]

3.2. SAMPLE FABRICATION
The devices measured in this thesis are all fabricated in the cleanroom at the Kavli Nanolab
Delft. While the general fabrication method is the same, each device differs slightly in its
details, as over time parameters fluctuate and incremental optimizations are performed.
We therefore do not provide an explicit recipe, but instead describe the procedure used
to construct the device measured in chapters 6 and 7, which serves as a baseline for the
development of similar devices. For brevity we furthermore do not include the various
cleaning, spin-coating, baking and stripping steps, nor do we list the specific doses used
in electron-beam lithography (EBL). A generic recipe is listed below, while a comparable
but more exhaustive recipe is listed in appendix A of Ref. [68]:

1. Start with a commercially available 525µm thick high-resistivity silicon wafer

2. Deposit a 100 nm layer of low-stress LPCVD SiN on both sides of the full wafer
(performed at the Else Kooi Laboratory)
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3. Sputter a 20 nm layer of NbTiN onto the front of the full wafer

4. Evaporate Pt/Pd EBL alignment markers, patterned with EBL

5. Dice wafer into coupons of 10 by 11.5 mm, proceeding with individual coupons

6. Define base-layer structures into NbTiN with SF6/O2 reactive ion etching, pat-
terned with EBL

7. Deposit a 25–30 nm local PECVD SiN layer as gate dielectric, patterned with EBL
and a buffered oxide etch

8. Deposit InAs-Al nanowires using a micromanipulator

9. Chemically etch away sections of Al shell with MF-321 developer (containing TMAH),
patterned with EBL

10. Deposit 120 nm thick NbTiN to contact nanowires to base-layer, patterned with
EBL and preceded by Ar milling

11. Dice coupons into 2 by 7 mm devices

12. Glue device to copper block and wire-bond to custom printed circuit board (PCB).

3.3. MEASUREMENT SETUP

CRYOGENIC SETUP
The devices studied in this thesis are measured at cryogenic temperatures. We do so
in part to cool the devices far below their superconducting transition temperature Tc,
where the superconductors are expected to be nominally quasi-particle free (see Sec. 2.1).
As Tc is approximately 8–12 K for the NbTiN films and 1.2–1.6 K for the nanowires, this
sets an initial requirement on the operating temperature. While the Tc of Al is already
colder than outer space, such temperatures can be readily achieved through evaporative
cooling using liquid 4He or 3He (down to around 1 K or 300 mK respectively, enabled by
vacuum pumping). However, in order to maintain the coherence of our quantum de-
vices we furthermore require thermal fluctuations of order kBT to be suppressed below
the energy scales relevant in the experiment. As these can be as small as hundreds of
MHz, corresponding to temperatures of tens of millikelvin, we require techniques be-
yond evaporative cooling. To this end we rely on commercially available, cryogen-free
dilution refrigerators, capable of maintaining base temperatures of 10–20 mK over time-
periods up to several years with substantial cooling power. In particular, all experiments
performed in this thesis are measured in an Oxford Instruments Triton 200 system.

A detailed discussion of the workings of a modern dilution refrigerator are beyond
the scope of this thesis; we refer to Ref. [354] for an elaborate review, and recommend
the guide by Oxford Instruments for a concise introduction [24]. In short, a dilution re-
frigerator makes use of the unique properties of a 3He− 4He mixture. The 4He atoms in
the mixture are Bose particles, and they condense into a superfluid at cryogenic tem-
peratures. The lighter 3He atoms instead are fermions, which obey the Pauli exclusion
principle and do not condense as easily (although, counter to intuition, superfluid 3He
does exist). The key working principle is that a mixture of these two substances cooled
below 0.87 K undergoes a phase separation, separating into a concentrated 3He phase
floating on top of a more dense, dilute mixture, where a small percentage of the 3He is
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dissolved in a superfluid 4He background. This finite solubility persists to 0 K, which
is key: it is the enhanced enthalpy of 3He dissolved in 4He compared to pure 3He that
makes the process of moving 3He through the phase boundary endothermic. Enabled
by distilling the 3He from the mixture, this process endows the dilution refrigerator with
its spectacular base temperature and cooling power.

PULSE TUBE NOISE
In the “dry” cryogen-free dilution refrigerator we use, no large baths of cryogens such as
liquid nitrogen and helium are needed to cool down the system to the low-temperature
regime where phase separation takes place. Instead, the system makes use of a pulse
tube (PT) cooler: a sophisticated cryocooler capable of cooling down the lower stages
of the refrigerator to 4 K by periodically compressing and expanding helium gas. While
this strongly simplifies operation and automation compared to “wet” refrigerators, the
usage of a PT comes at the cost of mechanical vibrations, which originate as follows (see
Fig. 3.2). In our setup, the back-and-forth motion of gas inside the PT is driven by a he-
lium compressor, whose high and low pressure lines are connected to the PT by a rotary
valve. The valve has an internal disk that is incremented at a frequency of 140 Hz, with
a full rotation frequency of 1.4 Hz, such that each half rotation switches the connection
between the low and high pressure lines. While the helium compressor is located at a
distance of several meters from the cryostat, the rotary valve itself is positioned on top of
the frame of the cryostat, and its micro-stepping can be a tangible source of mechanical
vibrations at 140 Hz. The dynamics of the helium gas inside the PT, propagating all the
way down to the coldhead, instead result in acoustic vibrations at a frequency of 1.4 Hz.
Note however that the latter should be interpreted as a pulse repetition frequency; it is
the rate at which the aforementioned switches between compressor lines are repeated,
while the actual frequency content generated by the dynamics of the gas can be at much
higher frequencies. Indeed, the dominant spectral content of the acoustic vibrations was
previously found to be in the 5–10 kHz range [147].

Care is taken by the manufacturer to dampen these noise channels inside the dilu-
tion refrigerator by using copper braids to decouple the PT from the experimental plates
in addition to building a stiff support structure. However, our initial experiments us-
ing offset-charge sensitive transmons (such as those used in chapters 4 and 8) were still
strongly hindered by these vibrations. As shown in Fig. 3.3(a), we found that the charge
dispersion, that is, the offset-charge dependence of the transmon transition frequency,
was fully smeared out during standard operation. Turning the pulse tube off for several
seconds caused this effect to disappear, and the charge dispersion to be fully recovered.3

This finding was further substantiated by the time dependence of the measured signal:
estimating the power spectral density of the readout channel at a fixed frequency and
gate point, we identify distinct peaks at multiples of 1.4 Hz, the rate at which the rotary
disk makes a full rotation [see Fig. 3.3(b)]. These peaks completely disappear when the
PT is turned off. As no peaks are found at 140 Hz, the vibrations originating from the
rotary valve itself do not appear to be the source of the noise. This suggests that it is
instead the acoustic vibrations resulting from the dynamics of the helium gas that cou-
ple into the sample, effectively modulating the qubit frequency by scrambling the offset

3The system remains at base temperature for at least 60 seconds with the PT turned off.



3

46 3. EXPERIMENTAL METHODS

charge, and thereby obfuscating the intended charge-sensitive measurements.

Compressor (external)

Rotary valve

He reservoirs

60 K

4 K

700 mK

100 mK

10 mK

Copper braids

DC & RF lines

Sample puck

PT cooler

Figure 3.2: Schematic depiction of the connection between the cryogen-free dilution refrigerator and the rel-
evant elements of the pulse tube (PT) cooler. Various other parts of the setup are omitted, including radiation
shields, the superconducting magnet, and the entire dilution unit. Image adapted from Ref. [147].

Interestingly, we found that the PT noise was particularly strong in one specific setup.
Cooling down the same device (together with its entire enclosure, see Sec. 3.3) in a sec-
ond, nominally identical dilution refrigerator resulted in no measurable PT noise, while
the noise reappeared upon returning the sample to the first setup. This indicated that
it was not a fundamental limitation of the type of cryostat, but unique to the specific
setup employed. We spent significant effort investigating how to mitigate the “pulse
tube noise” in this setup, involving over 14 cooldowns of the device during a period of
7 months. While most attempts did not lead to improvement, we hope that a detailed
account of the methods employed can be of use for future users encountering similar
problems.

Before we detail our investigation, we note that to us it was not obvious how vibra-
tions are converted to electrical noise affecting the induced charge on the transmon is-
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land. One candidate mechanism is through microphonics, where acoustic vibrations
cause fluctuations in the (intended or spurious) capacitance of the various elements
present in the setup, in turn resulting in time-fluctuating voltages. An alternative is the
triboelectric effect, where electrostatic charges build up when materials are brought in
and out of contact (such as encountered when rubbing balloons against your sweater),
during which charges move from one material to the other and create a net charge imbal-
ance. Yet another possibility is vibration-induced, spatially-varying oscillations of mag-
netic fields, which couple to electrical conductors through Faraday’s law of induction.

Given no prior knowledge of the exact conversion mechanism taking place, our ini-
tial effort was focused on minimizing the vibrations. We began our modifications outside
the cryostat, where changes can be made without requiring a full warm-up and cool-
down of the system. We first verified that (with the PT turned off) similar degradation in
charge dispersion could be achieved by gently and periodically perturbing the cryostat
mounting frame with a hammer, showing that vibrations at the level of the frame are al-
ready problematic. This prompted us to weigh down the frame with an additional 200 kg.
We then rerouted the room-temperature tubes and hoses connected to the PT, bending
them into various shapes and angles. The tubes and helium gas reservoirs were also
held in place with additional straps, as well as left fully floating. Finally, we replaced the
driver that generates the 140 Hz electrical signal incrementing the rotary valve with a lin-
ear ramp driver from Precision Motion Controls, which is intended to result in smoother
micro-stepping. While such measures led to improvements in previous experiments, we
did not detect significant changes.

A second round of mechanical changes took place inside of the cryostat. We tried
both strongly strapped down and fully (physically) floating DC lines, we made new brack-
ets for tighter mounting of control line filters, and had a service engineer from Oxford
Instruments re-fasten all relevant bolts and screws, making sure all elements were made
out of molybdenum to avoid thermal contraction and expansion. Additionally, experi-
ments were performed both with the large three-axis vector magnet inside and outside
of the cryostat (see the next section). None of these efforts led to changes in the observed
behaviour of the device, whose smeared out charge dispersion was the guiding metric.

After having exhausted these options of mechanical isolation, effort was taken to re-
duce electrical noise in the channels that could affect the transmon island. Considering
only its capacitive coupling to various elements [see Fig. 3.3(c)], we speculated the noise
had to originate from (i) the gate voltage used to control the offset charge, (ii) the ground
potential, or (iii) spurious coupling to the feedline used to send signals in and out of
the device. The latter appeared to be a likely candidate, as the coaxial line used to in-
put RF signals had previously been identified as the main channel for PT noise in a spin
qubit device [147]. They found that when coaxial lines are cooled down to cryogenic
temperatures, thermal contraction of the dielectric causes it to be squeezed around the
inner conductor, forming a gap between inner and outer conductor. Vibrations can then
lead to both microphonic and triboelectric effects. While a plausible mechanism, plac-
ing high-pass filters with a cut-off frequency beyond tens of MHz on both the input and
output ports of the device did not lead to appreciable changes, which should have effec-
tively suppressed this noise channel. A thorough investigation and modification of the
cryostat grounding was also fruitless, with no appreciable changes for various grounding
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Figure 3.3: Pulse tube noise in an offset-charge-sensitive transmon qubit. (a) Two-tone spectroscopy mea-
surement of the transmon qubit frequency versus the plunger gate voltage, which tunes the offset charge on
the island. Data is shown both with the pulse tube (PT) cooler turned on and off. (b) Power spectral density of
the readout resonator signal at a fixed readout frequency. The data is acquired over 120 seconds with a band-
width of 100 Hz, with the PT turned on. Orange dots indicate multiples of 1.4 Hz. When the PT is turned off, the
spectrum is featureless. (c) Circuit model of the offset-charge sensitive transmon and its readout and control
elements.

schemes. This included a mode of operation in which gate voltages were applied with
respect to the “cold” PCB ground in order to circumvent thermoelectric effects. The DC
lines that are used to tune the offset charge of the island were the last candidate we inves-
tigated. We use cryogenic ribbon cables (“looms”) containing polyethurane-coated Cu
(down to 4K) and NbTi wires (down to mK) to route the DC voltages from room tempera-
ture to the device. We tried incorporating second order RC filters with a cutoff frequency
at 100 Hz (down from the 10 kHz filters typically employed throughout this thesis) into
this signal path, in order to filter out the high frequency content produced by the gas
dynamics. Again no changes were detected. We do note that we did not investigate fil-
ters with cut-off frequencies lower than the 1.4 Hz pulse repetition frequency. Although
highly impractical for generic measurements, in hindsight this would have been a viable
option for debugging. Nevertheless, the 1.4 Hz voltage noise that could be found on the
DC lines using the techniques of Ref. [147] was below the single micro-volt level, which
seemed too small to explain the detected smearing of the charge dispersion.

This left us with no remaining avenues of investigation. However, a potential ad-
vance was encountered by chance in preparation for chapter 8, where initial characteri-
zation experiments were performed with a metal layer deposited on the backside of the
chip. In an attempt to ground the metal backside of the device, we chose not to secure
the chip onto its copper mounting block using electrically insulating Apiezon N vacuum
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grease, as had been done in all previous experiments. Instead we used Electrolube sil-
ver conductive paint, an electrically conductive epoxy. This led to a device with stable,
untarnished charge dispersion, and no signs of noise at 1.4 Hz. We initially attributed
this to a change in the chip design; the device consisted of various modifications with
respect to the chip that originally showed the PT noise. However, at a later stage the
actual device used in chapter 8 was cooled down. Given that the metal layer was now
on the front-side of the chip, we did not see the need for a conductive epoxy, such that
we secured the chip using GE varnish, which is an insulating glue used for cryogenic an-
choring. We found that the PT noise had returned, similar to our past experiments. Upon
identifying this we re-glued the same device with silver epoxy, and the charge dispersion
was once-more restored [See Fig. 8.7(b-c)]. While no definitive conclusions can be made
from these correlations, we speculate that the source of the noise might have been due to
charge buildup in the nominally insulating silicon substrate. Indeed, while we make use
of high-resistivity silicon wafers (≥10000Ωcm), we later found out that this specific type
is N-doped with phosphorous, suggesting that a small concentration of charge carriers
might still be present. Future experiments with intrinsic silicon wafers could confirm
these speculations. Nevertheless, the exact nature of the mechanism and why this prob-
lem would be particularly strong in one specific setup remains unknown.

RADIATIVE SHIELDING

The devices measured in this thesis make use of magnetic fields in the range of 1 mT
to 1 T, enabled by a large, three-axis 6-1-1 vector magnet mounted at the 4 K stage of
the dilution refrigerator. Compared to conventional dilution refrigerators, the mass of
the magnet significantly adds to the overall cool down time of the system, extending it
to several days. To overcome this disadvantage, the system is equipped with a bottom
loading mechanism, through which a demountable “puck” that houses the device under
test can be loaded though a series of baffles, attaching directly to the mixing chamber
plate with a bolted contact. With this in place, an exchange between measurement de-
vices operated at base temperature can be enacted within twelve hours and by a single
user. However, the cost of this modification is a concession in radiative shielding: due
to geometry constraints from the magnet and the loading mechanism, the coldest shield
surrounding the device is thermalized at the still plate, with a temperature of approxi-
mately 700 mK. Given that the aluminium nanowire shells used in this thesis have a crit-
ical temperature that can be as low as 1.2 K, this shield forms a radiative environment
that remains modestly capable of exciting non-equilibrium quasiparticles, detrimental
for device performance. The baffles through which the puck is inserted are potentially
also not fully light-tight, letting in radiation from even higher temperature stages. To
combat this, we adopt a box-in-a-box approach to house our devices, designed with the
help of dr. Olaf Benningshof and machined by Nico Alberts. It’s composition is detailed
in the follow paragraph.

As discussed above and depicted in Fig. 3.4, the chips hosting the devices to be mea-
sured are first mounted onto a copper block and connected to a PCB via wirebonds, after
which a first lid is placed onto the block. This block is then screwed into a larger enclo-
sure, which is nominally light tight, with the exception of venting ports on its side that
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are included for achieving a good vacuum.4 Although it is not shown in the figure, the
outside of the enclosure is painted with a mixture of 1 mm large silicon carbide grains,
Stycast 2850FT, and carbon black powder [23]. This mixture is specifically designed to
absorb in the EHF and THF frequency ranges, at the lower end of which common IR ab-
sorbers are ineffective. The enclosure is then finally mounted inside the puck, which is
filled with microwave absorbing Eccosorb foam to dampen spurious modes. We further
note that the enclosure is designed such that the center of the chip aligns with the center
of the fields produced by the magnet.

Performing measurements with and without the enclosure, we find a marked reduc-
tion in the density of non-equilibrium quasiparticles inside the device; following the
method of Ref. [287] we estimate an effective device temperature of 90 mK with the lid in
place, down from 190 mK [313] [c.f. Eq. (2.11)]. This resulted in a strong increase in the
time between quasiparticle-induced parity switches measured in offset charge sensitive
transmon devices, from tens of microseconds to several milliseconds, and likely helped
facilitate the long parity lifetimes of the quantum dot devices measured in chapters 5
to 7. Further improvements at the level of the setup could potentially be made through
more elaborate filtering of the RF lines used to send signals into and out of the device
[286], which we did not explore in detail.

EXTENDED INFORMATION
Of course the quality of our experiments also relies on various other elements. At a global
level, the wiring of the cryostat is done according to the philosophy of Ref. [171], while
the microwave measurement techniques and calibration procedures are as detailed in
the reviews of Refs.[34, 99]. Further details about the experimental methods are also
given in the supplementary sections of the chapters that follow. This includes fabrica-
tion procedures, wiring diagrams, the measurement equipment used, and both scanning
electron microscope and optical images of the devices studied.

4The ideal trade-off between an IR-free environment and high vacuum at the chip level remains to be investi-
gated.
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Figure 3.4: Overview of custom device shielding. (a) The chip (not shown) is glued onto a copper block and
wirebonded to a custom designed printed circuit board, hosting 24 DC lines connected via an FFC connector
and 6 RF lines connected via SMP connectors. (b-e) A lid is then placed onto the assembled block, which
is screwed into a second, larger enclosure. (f-g) The enclosure is subsequently connected to flexible RF and
DC lines, and embedded into the puck. Not shown are various SMP connectors, the flexible DC cable, and
the infrared absorbing paint on the outside of the rectangular enclosure (see text). The components of the
enclosure are made from gold-plated, high-purity, annealed copper.
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OBSERVATION OF VANISHING CHARGE

DISPERSION OF A NEARLY-OPEN

SUPERCONDUCTING ISLAND

Isolation from the environment determines the extent to which charge is confined on an
island, which manifests as Coulomb oscillations such as charge dispersion. We investi-
gate the charge dispersion of a nanowire transmon hosting a quantum dot in the junc-
tion. We observe rapid suppression of the charge dispersion with increasing junction
transparency, consistent with the predicted scaling law which incorporates two branches
of the Josephson potential. We find improved qubit coherence times at the point of high-
est suppression, suggesting novel approaches for building charge-insensitive qubits.

The work in this chapter has been published as: A. Bargerbos, W. Uilhoorn, C. K. Yang, P. Krogstrup, L. P.
Kouwenhoven, G. de Lange, B. van Heck, and A. Kou, Observation of vanishing charge dispersion of a nearly-
open superconducting island, Physical Review Letters 124, 246802 (2020).

53

https://doi.org/10.1103/PhysRevLett.124.246802


4

54
4. OBSERVATION OF VANISHING CHARGE DISPERSION OF A NEARLY-OPEN

SUPERCONDUCTING ISLAND

4.1. INTRODUCTION
The manipulation of single charge carriers has been one of the most important advances
in condensed matter physics, enabling a wide range of nanoelectronic technology in ar-
eas such as detection, thermometry, and metrology [163, 194, 201, 218, 243]. The control
of single charge carriers is made possible by the quantization of charge on mesoscopic
islands well-isolated from the environment. Charge quantization manifests as Coulomb
oscillations: periodic dependence of the system’s observables reflecting the energy cost
of adding an additional charge to the system. As the coupling strength to the environ-
ment increases, quantum fluctuations progressively delocalize the charge, suppressing
Coulomb oscillations. In normal state conductors, it is well-known that this suppression
occurs through single-electron tunneling [5, 92, 137, 143, 166, 212, 225, 228, 345].

In the case of superconducting islands, the coupling to the environment instead oc-
curs via coherent Cooper pair tunneling. In conventional tunnel junctions, the latter
is mediated by a large number of weakly transmitting transport channels, character-
ized by the Josephson energy EJ. In this case, the size of the charge dispersion depends
only on the ratio between the charging energy Ec and EJ, as illustrated by the Cooper
pair box (EJ/Ec ≈ 1) [38] and the transmon (EJ/Ec ≫ 1) [162]. The Cooper pair box has
large charge dispersion, whereas for the transmon charge dispersion is exponentially
suppressed in the ratio EJ/Ec [15, 162]. This behaviour originates from quantum tun-
neling of the superconducting phase difference φ below the Josephson potential barrier
connecting two energy minima at φ= 0,2π.

The situation becomes more interesting if the Cooper pair tunneling is mediated by
a single transport channel with high transparency [14]. In this limit, the energy spec-
trum of the Josephson junction is characterized by a narrowly avoided level crossing
at φ = π, and imaginary-time Landau-Zener (ITLZ) tunneling [14, 245] acts to prevent
quantum tunneling trajectories from reaching the energy minimum at 2π. The charge
dispersion of the superconducting island then vanishes completely as the transparency
approaches unity. While some weak suppression of Coulomb oscillations has been ob-
served in weak-links [199, 260], the effect of ITLZ tunneling on charging effects has eluded
experimental verification because of the stringent requirements for ballistic Josephson
junctions. However, recent advances in nanofabrication and nanowire growth [173] have
enabled the development of superconductor-semiconductor-superconductor junctions
with a small number of highly transmitting modes [106, 320]. Experiments in such de-
vices have detected a single mode with nearly perfect transmission, attributed to reso-
nant tunneling through an accidental quantum dot in the junction [118, 296]. Charge-
sensitive devices connected to reservoirs via quantum-dot-based junctions are thus ideal
for the investigation of near-ballistic Josephson junction behaviour.

In this Letter, we experimentally investigate the charge dispersion of a superconduct-
ing island connected to a reservoir via a semiconducting weak-link hosting a quantum
dot. The device constitutes an offset-charge-sensitive (OCS) nanowire transmon, also
known as a gatemon [70, 167, 182, 286]. By in-situ tuning of the transparency of the
weak-link using an electrostatic gate, we observe its charge dispersion decrease by al-
most two decades in frequency at a rate far exceeding exponential suppression in EJ/Ec.
The observed gate dependence of the charge dispersion is modeled by tunneling through
a resonant level, incorporating the effect of ITLZ tunneling. This model agrees well with
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Figure 4.1: (a) False-color optical microscope image of the qubit. It consists of an island (purple) capacitively
coupled to the ground plane (grey) and a CPW resonator (yellow). (b) Scanning electron micrograph (SEM)
of the InAs-Al nanowire connecting the island (left) to the ground plane (right). Its weak-link is tuned by the
junction gate (red), while the island gate (green) tunes ng on the island. The unused gate is left uncolored. (c)
False-color SEM of the nanowire before deposition of the top gates, showing the InAs core (orange) and the
aluminum shell (blue). (d) Effective circuit diagram of the qubit. The weak-link with Josephson potential U (φ)
is shunted by the island capacitance Cs, Vg tunes ng, and Vj tunes the transparancy of the junction.

the measured suppression of charge dispersion, suggesting near-unity junction trans-
parency. Finally, we observe improved qubit coherence times T ∗

2 and T echo
2 in regions of

vanishing charge dispersion, which reflects the strong reduction in the charge sensitivity
of the qubit.

4.2. EXPERIMENTAL SETUP & METHOD
The measured gatemon is shown in Fig. 4.1. The details of the device and experimental
setup are provided in Ref. [313] so we highlight only the relevant features here. The de-
vice consists of a superconducting island coupled to ground via an Al/InAs/Al weak-link
[70, 173, 182]. The weak-link (shown in Fig.4.1c) is defined by etching away ∼ 100 nm
of the aluminum covering the InAs nanowire. A quantum dot is formed in the junction
due to band-bending or disorder [53, 79]. The junction is shunted by the island capac-
itance Cs, which predominantly sets the charging energy Ec ≈ 750 MHz. Electrostatic
gates tune both the transparency of the junction and the dimensionless offset charge
ng =CgVg/2e on the island. The gatemon is capacitively coupled to a NbTiN λ/2 copla-
nar waveguide resonator [174] in order to excite and readout the system using standard
dispersive readout techniques [32].

We measure the dependence of qubit’s ground to first excited state transition fre-
quency on the offset charge on the island [ f01(ng)] using two-tone spectroscopy as shown
in Fig. 4.2a. Each measurement results in two sinusoidal curves shifted by half a period,
belonging to qubit transitions for even and odd island parity. Their simultaneous de-
tection is due to quasiparticle poisoning on timescales faster than the measurements1

[282]. We define the qubit frequency f01 as the point of charge degeneracy between even
and odd island parity and the charge dispersion δ f01 as the maximal frequency differ-
ence between the two parity states, reflecting the maximal energy cost of charging the
island with an additional electron.

Figure 4.2a also demonstrates the behavior of { f01,δ f01} at different Vj near full deple-

1Measurements are integrated for 50 ms while quasiparticle poisoning takes place on a timescale of ∼ 100 µs
[313]
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Figure 4.2: Evolution of the qubit frequency and charge dispersion as a function of Vj. (a) Normalized two-
tone spectroscopy measurements of the 0 → 1 transition versus the offset charge tuned by Vg, measured at
three successive values of Vj (bottom to top): 211.2, 213.8, and 214.7 mV. (b) Extracted f01 (markers) and δ f01
(shading and marker size) versus Vj. Open markers indicate the positions of panel (a).

tion of the junction. In the lowest panel, we observe f01 = 3.539 GHz and δ f01 = 679 MHz
at Vj = 211.2 mV. As Vj is increased, in the middle and top panel of Fig. 4.2a, f01 increases
to 4.629 GHz while δ f01 decreases to 39 MHz. Figure 4.2b summarizes the dependence
of f01 and δ f01 as a function of Vj. We observe that the qubit frequency exhibits a peak,
increasing by a factor of 1.35 before decreasing again. The rise in f01 is accompanied by
a strong decrease in δ f01, suppressing by almost two orders of magnitude at the peak.
This behaviour is consistent with the presence of a quantum dot in the junction, which
has been linked to peaks in the critical current that coincide with transparencies close to
unity [118, 296].

Due to finite stray capacitance, the transparency of the junction can also be tuned
using the island gate. As shown in Fig. 4.3a, we observe suppression of the charge dis-
persion by tuning the island gate voltage Vg with Vj fixed at a value where the charge
dispersion is already close to the qubit linewidth γ01 ≈ 10 MHz2 . We note that δ f01 can
no longer be discerned below γ01 since the two parity transitions start to overlap.

We can probe the suppression of Coulomb oscillations to below the limit set by γ01 by
measuring the charge dispersion of higher-order qubit transitions, which have a rapidly
increasing charge dispersion δ f0n [14, 162]. We repeat the measurement for increased
driving powers in order to excite higher order qubit transitions. As shown in Fig. 4.3b-
c, the 0 → 2 and 0 → 3 multi-photon transitions indeed exhibit larger charge disper-
sion than the 0 → 1 transition. Even these larger charge dispersions vanish down to the
linewidth γ0n , indicating a particularly strong suppression.

Beyond the remarkable suppression of the charge dispersion, we note that δ f01 does
not depend monotonically on f01. The charge dispersion of the 0 → 1 transition is sup-
pressed down to the linewidth over several periods, while the qubit frequency slowly in-

2These measurements are performed in a different cooldown of the same device.
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Figure 4.3: Island gate dependence of the charge dispersion. (a) Normalized two-tone spectroscopy mea-
surement of the 0 → 1 transition over a range of Vg encompassing many periods in offset charge. The charge
dispersion suppresses down to the linewidth and subsequently recovers, while the qubit frequency increases
over the entire gate range. (b)-(c) Multi-photon transitions 0 → 2 and 0 → 3, excited with increased driving
powers. The transitions follow the same trends as panel (a), exhibiting an increased charge dispersion that still
suppresses down to the linewidth at its minimum. Powers listed are at the sample input.

creases over the entire range of Vg. Such a dependence cannot occur for superconduct-
ing tunnel junctions or a single mode superconducting quantum point contact (SQPC)
[28], where larger larger qubit frequencies always result in lower charge dispersions [14,
162]. This behavior is the result of the quantum dot in the junction, in which case the
charge dispersion need not be a monotonic function of the qubit frequency, as we ex-
plain below.

4.3. MODELING & RESULTS

We develop a quantitative understanding of the device using a simplified model of a
quantum dot between two superconducting leads known as the resonant level model
[27, 82, 104, 108]. As shown in Fig. 4.4a, we consider the presence of a single spin-
degenerate level in the junction. The level has an energy ϵ0 relative to the Fermi level, and
is coupled to two identical superconductors with superconducting gap ∆ via the (spin-
degenerate) tunnel rates Γl and Γr. Our simple model does not include the electron-
electron interactions of the quantum dot. The potential of the junction U (φ) is deter-
mined by the energies of a single pair of spin degenerate ABS (shown in Fig. 4.4b). Their
energies have to be calculated numerically for general parameter values but can be ex-
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pressed analytically in certain limits [82, 108]:

E±(φ) =±∆̃
√

1− D̃ sin2φ/2, D̃ = 4ΓlΓr

ϵ2
0 +Γ2

,

∆̃=
{
∆, if Γ≫∆,ϵ0

Γ if Γ≪∆ and ϵ0 = 0,

(4.1)

where Γ = Γl +Γr. Here the ABS take on the same functional form as for an SQPC [26]
but with an effective superconducting gap ∆̃ < ∆. The form of the effective junction
transparency D̃ also explicitly reflects a Breit-Wigner type resonant tunneling process,
maximized for equal tunnel rates (δΓ= |Γl−Γr| = 0) and particle-hole symmetry (ϵ0 = 0).

2∆
ε0

ΓrΓl

Figure 4.4: Suppression of charge dispersion mediated by a resonant level. (a) Schematic depiction of a res-
onant level coupled to two identical superconducting leads. (b) Calculated energy-phase dependence of the
ABS in the resonant level model for D̃ = 0.9 (solid) and D̃ = 1 (dashed) with Γ = ∆. Arrows indicate the avail-
able quantum tunneling trajectories for the two cases. (c) Extracted qubit frequency versus charge dispersion
measured in Fig. 4.2 by varying Vj. Solid lines show fits using three models of U (φ): a sinusoidal potential, the
negative energy ABS branch of the resonant level model, and a potential considering ITLZ tunneling between
both ABS branches. (d) Extracted qubit frequency and charge dispersion of the first three transmon transitions
measured as a function of Vg shown in Fig. 4.3. The solid line shows a fit of the 0 → 1 transition with the ITLZ
model, and the dashed and dotted lines show the resulting 0 → 2 and 0 → 3 transitions respectively. Open
markers denote an upper bound on the charge dispersion based on the linewidth when δ f0n ≤ γ0n and are
not included in the fits.

We now discuss the expected behavior of charge dispersion within this model. Un-
der the typical assumptions of low to moderate values of D̃ and ∆̃≫ Ec,kB T , only the
ground state of the junction is occupied so that charge transfer occurs through E−. In
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this regime, charge dispersion is exponentially suppressed in ∆̃D̃/Ec, comparable to the
case of tunnel junctions and governed by tunneling of the phase under the potential
barrier of E− [15, 162]. As D̃ → 1, however, the energy gap between the ABS vanishes.
Due to ITLZ tunneling, the probability amplitude for the quantum tunneling trajectory

to stay in the lower ABS branch vanishes linearly with the reflection amplitude
√

1− D̃
[14, 134]. As a consequence 2π-tunneling processes are suppressed, and so is the charge
dispersion. When D̃ = 1, the charge dispersion eventually saturates to a small value set
by tunneling through a 4π-wide potential barrier given by ∆̃cosφ/2.

Based on the discussion above, we fit the measured dependence of { f0n ,δ f0n} using
three junction models: a sinusoidal potential, a potential considering only the E− ABS
branch of the resonant level model, and a potential including ITLZ tunneling. The nu-
merical details of the procedure are described in the supplementary information (see
Sec. 4.5). In Fig. 4.4c, we plot the measured data for the dependence of δ f01 on f01 while
Vj is changed. In order to fit the data we assume that Vj tunes only ϵ0 while Γl = Γr are
held constant. Furthermore, we fix ∆ = 53 GHz based on DC transport experiments on
similar nanowires [79]. The model based on a sinusoidal potential, which describes a
tunnel junction with many low-transmission channels, is completely inconsistent with
our data. Including only the presence of E− results in a fit that matches the initial de-
crease in δ f01 but is unable to capture the rapid suppression of the charge dispersion at
the peak in qubit frequency. The model including ITLZ tunneling accurately describes
the full range of data, requiring transparencies close to unity as shown in Fig. 4.9. We
find that Γ = 23 GHz, which gives an effective gap ∆̃ = 16 GHz at the point of maximal
suppression. The data and fit clearly demonstrate reaching the diabatic regime of ITLZ
tunneling.

We additionally use the model including ITLZ tunneling to fit the Vg dependence of
{ f0n ,δ f0n} in Fig. 4.4d. Based on the position of the island gate to the left of the junc-
tion as well as screening by the junction gate, we assume that Vg tunes only Γl with all
other parameters held constant. The resulting fit matches the characteristic shape of
the data, showing strong suppression when δΓ= 0 and reproducing the non-monotonic
relationship between qubit frequency and dispersion. The measurements also show
that the anharmonicity α = f12 − f01 remains finite for all D̃ , essential for operation as
a qubit. While the fit is excellent for the 0 → 1 transition, it requires a significantly
lower superconducting gap∆= 18.6 GHz. Additionally, the predicted qubit anharmonic-
ities (indicated by the lines in Fig. 4.4d) are lower than the measured anharmonicities,
while the shapes of the curves remain accurate. This systematic deviation indicates that
the underlying junction potential might be shallower than captured by our model. We
speculate that the discrepancies in ∆ and the anharmonicities could be due to omit-
ting the electron-electron interactions of the quantum dot, which has previously been
found to suppress the critical current and alter the energy-phase dependence of the ABS
[118, 195, 209, 321].

Finally, we investigate the qubit’s relaxation and coherence times in the presence and
absence of resonant tunneling. Shown in Fig. 4.5, we compare two cases: strong ITLZ
tunneling with vanishing charge dispersion, and essentially adiabatic behaviour with
δ f01 ≈ 200 MHz. We leverage the non-monotonic { f01,δ f01} dependence encoded by
Vg to make this comparison at nominally equal transition frequency in the same device.
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Figure 4.5: Time-resolved qubit measurements for D̃ → 1 (purple) and D̃ ≈ 0.8 (green) in the junction mea-
sured at equal qubit frequency. (a) Two-tone spectroscopy measurements for the two cases. The remaining
panels show measurements of T1 (b), T∗

2 (c) and T echo
2 (d).

We find that the suppression leads to a moderately enhanced T1. However, we do not ex-
pect charging effects to have a large effect on T1 since the measurements are performed
at ng = 0.5 where relaxation processes should be mostly charge-insensitive. We find,
however, that both T ∗

2 and T echo
2 improve considerably for the case of vanishing charge

dispersion, reflecting the drastic reduction in sensitivity to charge noise. This is similar
to the situation in conventional transmon qubits, where the exponential suppression of
charge dispersion in EJ/Ec is also accompanied by a strong increase in coherence times
[162]. However, in order to achieve the same level of δ f01 suppression in a conventional
transmon for the Ec of this device one would require EJ/Ec ≥ 30 , whereas we are op-
erating at an effective EJ/Ec ≈ 5. Even in the limit of full suppression, however, both
relaxation and coherence times are short compared to results achieved in other gate-
mons [203]. We attribute these lower coherence times to ineffective radiation shielding
and the quality of dielectrics used, which can be improved in future devices.

4.4. CONCLUSIONS

In summary, we measure the suppression of charge dispersion in an OCS gatemon with a
highly transparent junction. We develop a model of tunneling through a resonant level in
the junction that agrees with the dependence of the charge dispersion on both gates and
indicates that, through tuning the parameters of our resonant level properly, we reach
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near-unity transparencies in our device. Furthermore, the observed rate of suppression
of the charge dispersion obeys the scaling law dictated by ITLZ tunneling between ABS.
Finally we demonstrate that the suppression improves the qubit’s coherence, reflecting
the strong decrease in charge sensitivity.

The vanishing of charging effects investigated here has implications for the design of
hybrid circuits incorporating ballistic Josephson junctions [44, 55, 122, 242, 312, 327].
In particular, this vanishing may have positive implications for future gatemons [70,
167, 182, 203, 286]. The guaranteed vanishing of charge sensitivity for D̃ → 1 while
the anharmonicity remains finite places much less stringent requirements on Ec com-
pared to other transmon implementations, allowing for faster qubit manipulation and
strongly reducing the qubit’s physical footprint. The natural magnetic field compatibil-
ity of S-QD-S transmons also sets the stage for detecting and manipulating Majorana
zero modes [102, 120, 245]. Finally, independent research reports similar results on the
charge dispersion of a full-shell nanowire gatemon with a DC transport lead [169].

4.5. SUPPLEMENTARY INFORMATION

DATA EXTRACTION

At each gate setting we measure the qubit transition frequency over at least one period
in offset charge ng . From this we extract the qubit frequency f0n and charge dispersion
δ f0n by applying a peak-finding algorithm to the raw two-tone spectroscopy data. The
algorithm first smooths the data in frequency axis in order to combat noise, after which
peaks are identified and fit with Lorentzian lineshapes in order to obtain their center
frequency. For the gate voltage ranges in which two peaks are identified we take δ f0n to
be the local maximum in peak separation. Conversely, f0n is obtained from the regions
where only a single peak is identified. In the regions of parameter space where δ f0n is
smaller than the qubit linewidth γ0n such that only a single peak can be discerned for
any ng (open markers in Fig. 4 of the main text), we take the center frequency to be f0n

and use the extracted linewidth of the Lorentzian lineshape as an upper bound for δ f0n .

MODELLING OF THE QUBIT

In order to model the measured data we study the Hamiltonian of a capacitively shunted
junction given by

Ĥ = 4Ec
(
n̂ −ng

)2 +U (φ̂) (4.2)

where U (φ̂) is the junction potential, Ec is the charging energy, n̂ is the number of Cooper
pairs that have traversed the junction, ng is a dimensionless offset charge and φ̂ is the
phase difference between the superconductors on either side of the junction. We obtain
the qubit energy levels En(ng ) and the corresponding qubit transitions fi j (ng ) = E j (ng )−
Ei (ng ) through numerical diagonalization of the Hamiltonian, from which f0n and δ f0n

are calculated by evaluating the transitions at the appropriate offset charges.
We perform this procedure for three possible models for the junction potential: a

sinusoidal potential as encountered in tunnel junctions, a potential considering only
occupation of the E− ABS branch of the resonant level model, and a potential including
ITLZ tunneling between the ABS of the resonant level model. In the case of the sinusoidal
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Figure 4.6: Qubit frequency (a) and charge dispersion (b) evaluated for three different models: a sinusoidal
potential, the negative energy ABS branch of the resonant level model, and a potential considering ITLZ tun-
neling between both ABS branches. All models are evaluated for fixed parameter values ∆̃ = 14 GHz and
Ec = 715 MHz. The dashed line indicates the crossover value 1−Ec /∆̃. Inset of (b): Zoom in of the behaviour
near D = 1, where the ITLZ model exhibits rapid suppression in charge dispersion down to a small value set by
tunneling through a potential barrier ∆̃cosφ/2.

model we take U (φ̂) =−EJ cos φ̂, where we define an effective EJ ≡ ∆̃D̃/4 in order to com-
pare the models on equal footing. For the model including only the E−(φ̂) ABS branch

we use U (φ̂) =−∆̃
√

1− D̃ sin2 φ̂/2, while in order to include ITLZ tunneling between the

E±(φ̂) branches we follow the work of Ivanov and Feigel’man [135] and approximate the
many-body superconducting system by an effective two-level system. This results in a
junction potential given by

U (φ̂) = ∆̃
 cos φ̂

2

√
1− D̃ sin φ̂

2√
1− D̃ sin φ̂

2 −cos φ̂
2

 (4.3)

In the above ∆̃ and D̃ are effective parameters resulting from the underlying quantum
dot parameters discussed in section 4.5.

The results of this procedure are demonstrated in Fig. 4.6, which shows how f01 and
δ f01 depend on D̃ for the three models. The sinusoidal model reproduces the expected
results of the conventional tunnel junction transmon, exhibiting exponential suppres-
sion of δ f01 for large values of D̃ and thus EJ/Ec. The E−(φ) model exhibits similar be-
haviour up to moderate values of D̃ , after which an enhanced suppression of δ f01 takes
place due to the increased height of the potential compared to the sinusoidal model. Fi-
nally, the model including ITLZ tunneling shows comparable behaviour to E−(φ) up to
large values of D̃ , after which a much more rapid decrease in charge dispersion takes
place. This reproduces the scaling law predicted for ballistic Josephson junctions [14].
We note that the cross-over value of D̃ between the adiabatic regime well-described
by only E− and the diabatic regime including ITLZ tunneling is approximately given by
D̃ = 1−Ec /∆̃, where the rate of phase evolution becomes comparable to the energy gap
between the ABS [135].
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Figure 4.7: Comparison between the exact and approximate solutions for the ABS of the resonant level model.
Top half shows the explicit energy levels for both solutions while the bottom half shows the relative error of the
approximate model. (a) shows the comparison in the regime of weak coupling (Γ≪ ∆) on resonance (ϵ0 = 0)
with symmetric barriers (δΓ = 0). (b) shows the regime of moderate coupling in which Γl = Γr = ∆ and where
the level is off-resonant (ϵ0 ̸= 0). (b) shows the regime of far off-resonant strong coupling with asymmetric
tunneling rates, in which Γ,ϵ0 ≫∆ and δΓ ̸= 0.

RESONANT LEVEL MODEL
In order to develop a quantitative understanding of our device we study a simplified
model of a quantum dot between two superconducting leads known as the resonant
level model [27]. Depicted in Fig. 4a of the main text, it considers the presence of a sin-
gle spin-degenerate level in the junction with an energy ϵ0 relative to the Fermi level,
coupled to two identical superconductors with superconducting gap ∆ via the spin-
degenerate tunnel rates Γl and Γr. Its discrete energy spectrum follows from the solu-
tions ϵ ∈ (0,∆) of the equation(

∆2 −ϵ2)(ϵ2 −ϵ2
0 −Γ2)+4∆2ΓlΓr sin 2(φ/2)+2Γϵ2(∆2 −ϵ2)1/2 = 0 (4.4)

where Γ= Γl+Γr. This equation can be solved numerically for general parameter values,
resulting in a single pair of spin degenerate ABS E±(φ). Furthermore, in certain limits its
solution can be recovered analytically (given in Eq. 1 of the main text), which coincides
with the eigenvalues of Eq. 4.3. However, we found these limits too constraining for the
model to accurately describe our data. We therefore construct an approximate solution
to Eq. 4.4 based on the ABS energies E±(φ) and transparency D̃ given by Eq. 1 of the
main text, whereas for ∆̃ we do not use the limiting values but instead solve Eq. 4.4
for the bound state energy at φ = 0. Shown in Fig. 4.7, we tested the validity of this
approximation for a wide range of parameters by explicit comparison to the solutions of
Eq. 4.4. The effective spectrum closely resembles the exact solutions over a wide range
of parameters, with relative errors on the order of a few percent even in the regime Γ≈∆.
We therefore argue that the effective model of Eq. 4.3 should accurately describe the
phenomenology of the resonant level junction. A more detailed description of the model
and its derivation can be found in [169].
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Figure 4.8: Effective junction and qubit parameters as a function of resonant level parameters. Panel a (b)
shows how D̃ and ∆̃ ( f01 andδ f01) behave as a function of ϵ0 forδΓ= 0, panel c (d) shows how these parameters
behave as a function of Γl for ϵ0 = 0 and δΓ ̸= 0.

Having constructed the effective parameters D̃ and ∆̃, we now show how the ITLZ
model introduced in section 4.5 behaves as a function of the underlying quantum dot
parameters. We do this for the parameter values that resulted in the best fits to the mea-
sured data, shown in Fig. 4 of the main text. In Fig. 4.8 we study the effect of varying
ϵ0 at Γl = Γr. It results in a weak dependence of ∆̃, which is minimal when ϵ0 = 0. This
coincides coincides with a maximum in D̃ , as given by Eq. 1 of the main text. Shown
in (b) this translates into a qubit frequency that is maximal at ϵ0 = 0, coinciding with a
minimum in charge dispersion. Panels (c-d) in turn show the dependence on Γl at fixed
Γr with ϵ0 = 0. We find that ∆̃ is a monotonically increasing function of Γl, whereas D̃
is maximal when the asymmetry δΓ = |Γl −Γr| is minimized. Panel (d) shows that the
relative rapidity at which ∆̃ and D̃ change around δΓ= 0 can result in a situation where
the maximal qubit frequency does not coincide with minimal charge dispersion. We be-
lieve this effect to be the origin of the non-monotonic dependence between the qubit
frequency and the charge dispersion seen in figures 3 and 4d of the main text.

FITTING ROUTINE

We fit the measured relationships between { f0n ,δ f0n} using the models developed in sec-
tion 4.5. For the data measured as a function of Vj, shown in Fig. 4c of the main text, we
assume that only ϵ0 is varied. The remaining remaining parameters ∆, Ec, Γl, and Γr are
taken to be independent. Additionally, we fix ∆= 53 GHz based on DC transport exper-
iments on similar nanowires [79] and we assume that Γl = Γr. We then apply a fitting
routine in which for each set of parameter values a range of {∆̃,D̃} is generated from the
effective resonant level ABS potential for a large range of ϵ0. These effective parameters
are then used in the three different junction potentials of section 4.5, resulting in a set of
calculated values for { f01,δ f01} that can be compared to the measured values. The best
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fit to the data for each model is obtained through the standard method of least-squares.
For the extracted relationships between { f0n ,δ f0n} as a function of Vg, shown in Fig.

4d of the main text, this procedure is slightly modified. We now assume that only Γl is a
function of Vg, with∆, Ec, ϵ0, and Γr taken to be independent. For simplicity we fix ϵ0 = 0.
We note that, in order to obtain a good fit for the data versus Vg, ∆ needed to enter as a
free parameter. In addition, a good fit could not be found simultaneously for all three
measured transitions with a single set of parameters. Instead we only fit the { f01,δ f01}
data to the model, resulting in a qualitatively satisfying fit for the 01 transition. However,
the fit suggests a value of superconducting gap ∆ = 18.6 GHz, much smaller than the
value measured in DC experiments [79]. Moreover, the fit does not manage to capture
the position of the higher order transitions. As discussed in the main text, we attribute
this parameter discrepancy as well as the inability to fit all three transitions to possible
modifications in the shape of the potential originating from the lack of electron-electron
interactions in the model.

ESTIMATING TRANSPARENCIES

An estimate for the transparencies D̃ realized the in the experiment can be obtained
from the fits to the data. As illustrated in Fig. 4.8, each numerically calculated value of
δ f0n corresponds to a value of D̃ , and one can therefore infer the values of D̃ by match-
ing the measured values of δ f0n to the numerical values. We emphasize that these values
are model and parameter dependent, and are therefore only an estimate. Shown in Fig.
4.9a, we find that by varying Vj transparencies between 0.5 and 1 are attained, with the
largest transparency based on a distinguishable charge dispersion (filled markers) be-
ing 0.998 and the largest value based on the qubit linewidth γ01 (open markers) being
0.9996. Finally in panel (b) we show the asymptotic probability p of the ABS remaining
in the ground state as calculated from the extracted D̃ and ∆̃ [14]. This illustrates that
the suppression of charge dispersion coincides with the vanishing of p. Furthermore, it
shows that sizeable ITLZ probabilities are obtained over a wide range of the measured
values, robust to small changes in fit parameters. We do not repeat this procedure for
the data obtained by varying Vg, given the unsatisfactory fit to the data.
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Figure 4.9: (a) Extracted D̃ for the values of δ f01 measured as a function of Vj, with the inset showing the

behaviour near D̃ = 1. (b) Asymptotic probability for the ABS to remain in the E− branch as calculated from
the extracted D̃ and ∆̃.



5
SINGLET-DOUBLET TRANSITIONS OF A

QUANTUM DOT JOSEPHSON JUNCTION

DETECTED IN A TRANSMON CIRCUIT

We realize a hybrid superconductor-semiconductor transmon device in which the
Josephson effect is controlled by a gate-defined quantum dot in an InAs/Al nanowire.
Microwave spectroscopy of the transmon’s transition spectrum allows us to probe the
ground state parity of the quantum dot as a function of gate voltages, external magnetic
flux, and magnetic field applied parallel to the nanowire. The measured parity phase
diagram is in agreement with that predicted by a single-impurity Anderson model with
superconducting leads. Through continuous time monitoring of the circuit we
furthermore resolve the quasiparticle dynamics of the quantum dot Josephson
junction across the phase boundaries. Our results can facilitate the realization of
semiconductor-based 0−π qubits and Andreev qubits.

The work in this chapter has been published as: A. Bargerbos∗, M. Pita-Vidal∗, R. Žitko, J. Ávila, L.J. Splitthoff,
L. Grünhaupt, J.J. Wesdorp, C.K. Andersen, Y. Liu, P. Krogstrup, L.P. Kouwenhoven, R. Aguado, A. Kou, and B.
van Heck, Singlet-doublet transitions of a quantum dot Josephson junction revealed in a transmon circuit, PRX
Quantum 3, 030311 (2022). The asterisk indicates authors that contributed equally to this work.
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5.1. INTRODUCTION
Superconducting pairing and charging energy are two fundamental interactions that de-
termine the behavior of mesoscopic devices. Notably, when a quantum dot (QD) is cou-
pled to a superconductor, they compete to determine its ground state. A large charging
energy favors single-electron doublet occupancy of the dot and thus a spin-1/2 ground
state, while a strong coupling to the superconducting leads favors double occupancy
in a singlet configuration with zero spin. A quantum phase transition between the sin-
glet and doublet ground state can occur as system parameters such as the dot energy
level and the coupling strength are varied. The latter also controls the nature of the sin-
glet ground state, which can be either of the Bardeen-Cooper-Schrieffer (BCS) type or of
the Kondo type. The rich phase diagram of the system, as well as its transport proper-
ties, are theoretically well captured by an Anderson model with superconducting leads
[58, 104, 144, 153, 202, 209, 215, 232, 309, 343].

Quantum dots coupled to superconductors have been studied experimentally over
the last two decades. Signatures of the singlet-doublet transition have been detected
in tunneling spectroscopy measurements of N-QD-S devices (where N is a normal lead,
and S is a superconducting one) via the observation of Fermi-level crossings [54, 73, 185,
187, 191, 249, 250, 315, 335]. Additionally, they have been detected in switching current
measurements of S-QD-S devices via π-phase shifts in the current-phase relation of the
resulting quantum dot Josephson junction [61, 74, 75, 86, 100, 140, 141, 176, 186, 213,
308, 316, 335].

Recent experiments [123, 124, 136] on Andreev pair and spin qubits [59, 234, 241,
348] have renewed the interest in quantum dot junctions due to the possibility of tun-
ing the ground state of the system to be in addressable spin states. Knowledge of the
phase diagram of the quantum dot junction is also beneficial for realizing proposals for
a quantum-dot-based readout of topological qubits [155, 253, 294].

These developments have highlighted the need for a better fundamental understand-
ing of the quantum dot junction and its dynamics, requiring tools which are not limited
by the long integration times of low-frequency measurements nor by the invasiveness of
transport probes. To address this need, we have embedded a fully controllable quantum
dot in a microwave superconducting circuit. This experimental choice is motivated by
the success of circuit quantum electrodynamics (QED) techniques in the investigation
of mesoscopic effects in Josephson junctions [51, 70, 122–124, 136, 169, 182, 312, 313],
which stems from its enhanced energy and time resolution compared to low-frequency
transport techniques. In this context, the microwave response of a quantum dot junction
has attracted recent theoretical [130, 177] and experimental [91] attention.

The core of our experiment is a transmon circuit formed by an island with charg-
ing energy Ec, coupled to ground via a superconducting quantum interference device
(SQUID) formed by a parallel combination of a junction with a known Josephson energy
EJ and a quantum dot junction (Fig. 5.1(a-c)). The energy-phase relation of the quantum
dot junction depends on whether it is in a singlet or doublet state, with a characteristicπ-
phase shift between the two relations (Fig. 5.1(d)) [298]. The two energy-phase relations
of the junctions add up together in the SQUID. Depending on whether the quantum dot
junction is in the singlet or doublet state, as well as on the external flux, this results in
a higher or lower curvature of the total potential around its minimum with respect to
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Figure 5.1: (a) Schematic diagram of a quantum dot junction incorporated into a transmon circuit. The trans-
mon island with charging energy Ec is connected to ground by a SQUID formed by the parallel combination
of a quantum dot junction and a reference junction. In this panel φ and δ denote the superconducting phase
difference across the quantum dot and reference junctions respectively. Φext is the externally applied mag-
netic flux through the SQUID loop. (b) Model diagram of the quantum dot junction in the excitation picture.
Two s-wave superconductors are connected via tunnel barriers to a single level quantum dot. (c) Level dia-
gram of the quantum dot hosting 0, 1, or 2 electrons when disconnected from the leads (ΓL = ΓR = 0). (d)
Phase dependence of the Josephson potential of the quantum dot junction in the singlet (orange) and doublet
(purple) state. (e) Josephson potential of the reference junction. (f) Josephson potential of the DC SQUID for
φext = (2e/ħ)Φext = 0, with the quantum dot junction in the singlet (orange) and doublet (purple) state. The
dashed lines represented the two lowest transmon energy levels in each branch of the Josephson potential,
with the arrow denoting the resulting transition frequency, which can differ for the two quantum dot junction
states (orange and purple arrows for singlet and doublet, respectively).

that of the reference junction. Therefore, the two branches of the spectrum give rise to
two distinct transition frequencies of the transmon circuit, which can be detected and
distinguished via standard circuit QED techniques [35]. As a result, a transition from a
singlet to a doublet state will appear as a discontinuous jump in a measurement of the
transmon frequency spectrum.

Using this method, we have detected the singlet-doublet transition and reconstructed
the phase diagram of a quantum dot junction as a function of all experimentally con-
trolled parameters in a single device: the energy level of the dot, the tunnel couplings to
the superconducting leads, the superconducting phase difference across the quantum
dot junction, and also an external Zeeman field. The measured phase boundaries are in
agreement with the single-impurity Anderson model with superconducting leads as cal-
culated via the numerical renormalization group (NRG) [47, 274, 338, 343] methods, and
include parameter regimes that have experimentally not been explored before. Finally,
we have investigated the rates at which the quantum dot switches between doublet and
singlet occupation via real-time monitoring of the transmon circuit, allowing us to de-
termine the switching time-scales of the quantum dot junction parity across the phase
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transition.

5.2. DEVICE OVERVIEW
The quantum dot junction under investigation is formed in a 10µm-long epitaxial superconductor-
semiconductor nanowire with a 100 nm-wide hexagonal InAs core and a 6 nm-thick Al
shell covering two of its facets [173]. The quantum dot junction is located in a 200 nm-
long uncovered section of the nanowire where the Al has been etched away, where it is
electrostatically defined by three bottom gate electrodes (Fig. 5.2(d)). As shown in the
circuit of Fig. 5.2(a), this quantum dot junction is placed in parallel to a second Joseph-
son junction, hereafter referred to as the “reference junction”, to form a SQUID. The refer-
ence junction consists of a second 110 nm-long uncovered segment of InAs on the same
nanowire as the quantum dot junction. Its Josephson energy E J can be tuned with a
single gate electrode via the field effect.

The SQUID connects a superconducting island to ground, resulting in a transmon
circuit [162] governed by the Hamiltonian

H =−4Ec∂
2
φ+V (φ), (5.1)

where Ec = e2/2CΣ, with CΣ the total capacitance of the island to ground. The Josephson
potential V (φ) is determined by the phase-dependent energies of the reference junction,
Vj(δ) = EJ(1−cosδ), and of the quantum dot junction, Vs,d(φ):

V (φ) = EJ
[
1−cos(φ−φext)

]+{
Vs(φ) singlet

Vd(φ) doublet .
(5.2)

Here, the phase drops across the quantum dot junction (φ) and across the reference
junction (δ) are connected according toφ−δ=φext, whereφext = (2e/ħ)Φext is the phase
difference resulting from the externally applied magnetic flux through the SQUID loop,
Φext.

The presence of the reference junction serves several purposes. First, it allows us
to tune the phase difference at the quantum dot junction by changing Φext with the By

component of the magnetic field [see Sec. 5.8]. We generally operate the device in a
regime where the reference junction has a Josephson energy that is larger than that of
the quantum dot by more than an order of magnitude. This ensures that δ is close to
zero, while φ is close to φext [76]. Second, the ability to tune EJ independently of the
quantum dot junction ensures that the transition frequencies of the transmon circuit re-
main inside the measurement bandwidth for all parameter regimes of the quantum dot
junction. Finally, the Josephson energy of the reference junction is such that EJ/Ec > 25,
suppressing unwanted sensitivity to fluctuating charges in the environment and justify-
ing the absence of an offset charge in the Hamiltonian of Eq. (5.1) [162].

In order to perform microwave spectroscopy measurements, the transmon is capac-
itively coupled to a readout resonator which is in turn coupled to a transmission line.
This allows us to measure the circuit’s complex microwave transmission S21 through the
transmission line’s input (1) and output (2) ports.

The experimental implementation of the circuit (Fig. 5.2(b-d)) differs from conven-
tional circuit QED geometries in several ways [34], in order to allow the application of
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Figure 5.2: Device overview. (a) Diagram of the microwave circuit. A coplanar waveguide transmission line
(green center conductor) is capacitively coupled to a grounded LC resonator. The resonator consists of an is-
land (yellow) capacitively and inductively (pink) shunted to ground (blue). The resonator is in turn capacitively
coupled to a transmon island (red), which is shunted to ground capacitively as well as via two parallel Joseph-
son junctions. (b) False-colored optical microscope image of device A showing the qubit island, the resonator
island, the resonator inductor, the transmission line, the electrostatic gates and ground. (c) False-colored scan-
ning electron micrograph (SEM) of the transmon’s Josephson junctions, showing the InAs/Al nanowire into
which the junctions are defined. The By component of the magnetic field is used to tune Φext. Bz is the mag-
netic field component parallel to the nanowire. (d) False-colored SEM of the quantum dot junction in which
the quantum dot is gate defined. The three bottom gates have a width and spacing of 40 nm, although this is
obfuscated by the dielectric layer placed on top.

magnetic fields in excess of 100 mT. Apart from the Josephson junctions, all circuit el-
ements are made out of field compatible 20 nm-thick NbTiN films [203]. We addition-
ally incorporate vortex pinning sites in the ground plane, the transmission line, the res-
onator island and the transmon island [174]. We use a lumped element readout res-
onator, which has previously been successfully utilized in flux-sensitive devices up to
1 T [252]. Its capacitance is formed by an interdigitated capacitor to ground, while its in-
ductance is formed by a 200 nm wide NbTiN nanowire, which has a kinetic inductance of
15 pH/□. This design localizes the regions of high current density at the narrow inductor
where vortices are less likely to nucleate due to its reduced width [272]. For the transmon
circuit the SQUID loop area is chosen to be small, ∼ 5µm2, in order to suppress flux noise
from misalignment in large parallel magnetic fields. Finally, InAs/Al nanowires, in which
both junctions are defined, have been shown to support sizeable Josephson energies in
fields in excess of 1 T [252, 313]. Further details about device fabrication as well as the
cryogenic and room temperature measurement setup can be found in the Supplemen-
tary Information of Sec. 5.8.
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5.3. ANDERSON MODEL FOR A QUANTUM DOT JUNCTION
As we will show, the quantum dot junction can be described by a single Anderson impu-
rity tunnel-coupled to two superconducting leads. We review its most important prop-
erties to facilitate the discussion of the experimental results that follow. In particular, we
discuss here the important parameters and concepts that are required to interpret the
experimental results, deferring to the Supplementary Information of Sec. 5.8 for a tech-
nical description of the Hamiltonian and of the numerical methods used to produce the
theoretical results.

The model contains a single-level quantum dot coupled to two superconducting
leads via tunnel barriers, schematically depicted in Fig. 5.1(b). The superconducting
leads have a pairing gap ∆ and a phase difference φ, and the barriers are characterized
by single-electron tunneling rates ΓL and ΓR. The energy diagram for the isolated quan-
tum dot is shown in Fig. 5.1(c). The quantum dot is modeled as an Anderson impurity
with single-occupancy energy ϵ, measured with respect to the Fermi level in the leads,
and a repulsive Coulomb interaction U , which penalizes the double occupancy of the
dot energy level.

The quantum dot is spin-degenerate at zero magnetic field. An external magnetic
field B splits the degeneracy by a Zeeman energy EZ = gµBB , where g is the effective g-
factor of the level and µB is the Bohr magneton. In the experiment we choose the B-field
direction to be parallel to the nanowire, since this is the direction that suppresses the
superconductivity in the Al nanowire shell the least.

The energy levels of Fig. 5.1(c) are divided in two sectors, corresponding to their
fermion parity, or equivalently, to their total spin S. The singlet sector includes the states
of even parity: the empty state |0〉 and the pair state |2〉. These states have S = 0 and
are therefore insensitive to the magnetic field B . The doublet sector includes the states
of odd parity, |↑〉 and |↓〉, which have S = 1/2. It is convenient to introduce the energy
ξ = ϵ+U /2, corresponding to half of the energy gap in the singlet sector, so that ξ = 0
corresponds to the electron-hole symmetry point, where |0〉 and |2〉 are degenerate in
energy. The ground state of the isolated dot (that is, ΓL = ΓR = 0) belongs to the doublet
sector for |ξ| < 1

2U .
A salient feature of the model is that a quantum phase transition between doublet

and singlet ground state can occur upon changing several experimentally-tunable pa-
rameters. The dot energy level ξ and the coupling strengths ΓL,R (all experimentally tun-
able via the bottom electrostatic gates), as well as the superconducting phase difference
φ and the magnetic field B , all act to shift the relative positions of the potentials Vs and
Vd and to cause an energy crossing between the ground states of the two sectors. In the
measurements reported in Sec. 5.4 and 5.5, we vary all these parameters and compare
the extracted phase boundaries to theory.

For the theoretical comparison we use the NRG method [323, 338, 349] to compute
the lowest-lying eigenvalues in the singlet and doublet spin sectors as a function of the
phase difference φ 1. This results in the Josephson potentials Vs(φ) and Vd(φ), which are
then used as input to the model of Eq. (5.2) to calculate the transmon transition frequen-

1Note that the notion of singlet and doublet sectors, introduced for the isolated quantum dot, extends naturally
to the coupled quantum dot, provided that the spin S is now regarded as the total spin of the system, including
that of quasi-particles in the reservoirs
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cies [see Sec. 5.8]. The projection onto the lowest-energy state of the Josephson junction
in each sector is enough to capture the salient features of our experiment, although the
inclusion of excited Andreev states of the quantum dot junction in the circuit model is
theoretically possible [16, 17, 156, 177, 348].

Experimentally, the observation of the phase transition is facilitated by the pres-
ence of a π-phase shift between Vs(φ) and Vd(φ). The phase shift arises because the
sequence of single-electron tunneling events that leads to the transport of a Cooper pair
between the two leads depends on whether the quantum dot is initially in the singlet or
the doublet sector. In particular, if the dot is initially in the doublet state, a permutation
of spin-up and spin-down electrons is required in order to complete the tunneling se-
quence [298], leading to a π phase shift due to Fermi-Dirac statistics. Thus, while Vs(φ)
has a minimum at φ = 0, as encountered for conventional Josephson junctions, Vd(φ)
has a minimum at φ=π (Fig. 5.1(d)). A quantum dot junction in a doublet state is often
denominated as a π-junction, and the singlet-doublet transition is also referred to as the
0-π transition. In the following sections we will use the presence or absence of such a
π-phase shift to identify regions with a singlet or a doublet ground state 2.

5.4. TRANSMON SPECTROSCOPY OF THE QUANTUM DOT
To perform spectroscopy of the resonator, we monitor the microwave transmission S21

across the transmission line while varying the frequency of a single continuous microwave
tone, fr. This results in a dip with Lorentzian lineshape around the resonance frequency
of the lumped-element resonator. Two-tone spectroscopy is subsequently performed by
fixing the frequency of this first tone, fr, at the minimum of the transmission amplitude,
|S21|, while varying the frequency of a second tone, ft, also sent through the transmission
line. When the second tone matches the frequency of the ground to first excited trans-
mon transition, ft = f01, a peak in |S21| is observed due to the transmon-state-dependent
dispersive shift of the resonator [35]. This gives us access to the transmon transition fre-
quency.

We are interested in the behavior of the device when a single level of the quantum
dot provides the dominant contribution to the Josephson effect. To find such a regime,
we search for an isolated resonance in the gate dependence of the frequency spectrum.
Isolated resonances often occur when the gate voltages controlling the quantum dot are
set close to their pinch-off values (see Ref. [169] and chapter 4), here operationally de-
fined as the voltage values below which the quantum dot junction does not contribute
appreciably to the transmon’s transition frequency. In order to identify the right gate
configuration, we perform the following sequence of calibration measurements. First,
we characterize the reference junction with the quantum dot pinched-off; second, we
explore the sizeable parameter space governed by the three quantum dot gates; third,
we identify the relation between By and φext through the transmon frequency’s SQUID
oscillations and find that 2.2 mT corresponds to one flux quantum through the loop; and

2Our assumption that regimes with 0-junction andπ-junction behaviour correspond to the quantum dot junc-
tion being in a singlet or doublet state, respectively, is only valid in the single-level regime, where the level
spacing of the quantum dot is significantly larger than ∆ and U . In the multi-level regime, where excited
states of the quantum dot are involved, the presence or absence of the π offset also depends on the character
of the orbital wavefunctions in addition to the fermion parity [316].
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Figure 5.3: Resonator and transmon spectroscopy. (a) VP dependence of single-tone spectroscopy forφext = 0,
showing the resonator’s transition frequency. VP is a virtual gate voltage defined as a linear combination of
VC and VR (see text). (b) Zoom-in of (a) in the plunger gate range indicated with dashed lines in (a). (c) Same
as (b) but for φext = π. (d) VP dependence of two-tone spectroscopy for φext = 0, showing the transmon’s tran-
sition frequency. For each frequency trace, |S21|− ¯|S21| is the magnitude of the transmission minus its average.
The black arrow indicates f 0

01, the transmon frequency set by the reference junction when the quantum dot is
pinched off. (e) Same as panel (d) but for φext = π. For panels (a-e) VT = 182 mV and VL = 470 mV. (f) Theo-
retical estimates of the singlet (orange), doublet (purple) and reference junction-only (dotted, grey) transmon
frequencies as ξ is varied forφext =0. Solid (dashed) lines indicate which quantum dot occupation corresponds
to the ground (excited) state. (g) Same as panel (f) but for φext = π. For panels (f-g) ∆/h = 46GHz, U /∆= 12.2,
ΓL/∆ = 1.05 and ΓR/∆ = 1.12. ft and f01 denote, respectively, the frequency of the second tone in two-tone
spectroscopy and the first transmon transition frequency (see text).

finally we define appropriate gate coordinates to account for cross-couplings. These
calibration measurements are detailed in the Supplementary Material of Sec. 5.8. As a
result of this procedure, the gate voltage of the reference junction VJ is fixed such that
the transmon frequency when the quantum dot junction is pinched-off is f 0

01 ≈ 4.4GHz.
Furthermore, we fix VL = 470 mV and introduce virtual plunger (VP) and right tunnel (VT)
gates as a linear combination of VC and VR, such that, in what follows, the single-particle
energy level ξ is mostly independent of VT.

We then move on to study the quantum dot junction. We first monitor the resonator
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frequency for φext = 0 while the plunger gate voltage VP is varied (Fig. 5.3(a)). This re-
veals a resonant shape which is discontinuously interrupted near its peak at VP = 395 mV,
followed by other discontinuous jumps in the resonator frequency. A zoom into the res-
onance is shown in Fig. 5.3(b) and the corresponding transmon transition frequency,
exhibiting the same discontinuity as the resonator, is shown in Fig. 5.3(d). We identify
regions in VP where the transmon frequency f01 is larger and smaller than the reference
frequency f 0

01. This hierarchy is reversed upon changing the applied flux to φext = π, as
shown in Figs. 5.3(c, e).

These observed discontinuities in frequency are a signature of a singlet-doublet tran-
sition. The change of the ground state of the quantum dot junction determines a sudden
switch in the branch of the Josephson potential of Eq. (5.2) (from Vs to Vd or vice-versa)
and, thus, a sudden change in the transmon frequency. This is illustrated numerically in
Figs. 5.3(f-g), which show the expected evolution of the transmon frequencies as a func-
tion of the single-particle energy level ξ. Here, the transition occurs as ξ is tuned toward
the electron-hole symmetry point ξ= 0, where the doublet ground state is energetically
favorable.

The occurrence of the singlet-doublet transition requires a change of the fermion
parity of the quantum dot junction. In the S-QD-S setup, this is possible in the presence
of a population of excited quasiparticles in the superconducting leads, providing the re-
quired fermion parity reservoir. The presence of these quasiparticles should further re-
sult in a finite occupation of both the singlet and doublet states when their energy differ-
ence is small compared to the effective temperature of the quasiparticle bath, namely in
the vicinity of the transition. Indeed, upon closer inspection of the data of Figs. 5.3(b-c),
both branches of the spectrum are visible in a small frequency window surrounding each
discontinuous jump. This is because these transition spectra are obtained by averaging
over many subsequent frequency sweeps, thus reflecting the occupation statistics of the
junction. This feature is further discussed in the next Section.

In Figs. 5.3(d-e), the fact that the frequency shift of the transmon has the opposite
sign for the singlet and doublet sectors is a consequence of the π-phase shift in the
Josephson potential between the two sectors. For the case φext = 0, the singlet poten-
tial interferes constructively with the reference junction potential, while the doublet po-
tential interferes destructively, resulting in f01 > f 0

01 for the singlet and f01 < f 0
01 for the

doublet. This behaviour is reversed when φext = π, and thus serves as a method for iden-
tifying the quantum dot junction state.

5.5. SINGLET-DOUBLET TRANSITION BOUNDARIES
Having established a method for identifying singlet and doublet states by transmon spec-
troscopy, we now experimentally investigate the phase diagrams of the quantum dot
junction. We focus on the behaviour around VP = 395 mV and monitor singlet-doublet
transitions versus multiple different control parameters.

PLUNGER GATE AND FLUX

We first study the singlet-doublet phase map in VP and φext space. Fig. 5.4(a) shows the
transmon frequency offset with respect to the frequency set by the reference junction,
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Figure 5.4: Flux and plunger gate dependence. (a) Transmon frequency shift with respect to the frequency
set by the reference junction, ∆ f01 = f01 − f 0

01, versus VP and φext as extracted from two-tone spectroscopy.
The dashed line is a sinusoidal guide for the eye, denoting the transition boundary in line with the theoretical
expectation. (b)-(d) Three linecuts of f01 versus φext at representative VP values, indicated in panel (a) and
Fig. 5.3(b-e). The dotted line indicates f 0

01. For all panels VT = 182 mV.

∆ f01 = f01− f 0
01, as a function of VP andφext. As discussed in the previous Section, positive

values of ∆ f01 result from constructive interference between the two junctions, while
negative ∆ f01 values result from destructive interference. Going from left to right, three
distinct plunger regions can be observed, with a sudden flux offset of exactly π between
them (Fig. 5.4(b,d)). We identify the outer two regions as phases with a singlet ground
state and the inner region as a doublet ground state. We note that the change in contrast
between the two singlet regions suggests that VP also weakly tunes ΓL,R in addition to ξ.

For values of VP close to the singlet-doublet transition we also observe a sinusoidal
dependence of the transition boundary on the external flux, resulting in an enhanced
region of doublet occupation around φext = π with respect to φext = 0. This comes about
from interference between tunneling processes involving the two superconducting leads
of the quantum dot junction [74, 232], as further discussed in Sec. 5.5. At a value of
VP fixed near this boundary one thus also observes a singlet-doublet transition versus
the external flux (Fig. 5.4(c)).

In Fig. 5.4 and subsequent figures, the transition boundary between the singlet and
doublet phase appears to be sharp and not affected by the thermal broadening typical of
transport experiments [61, 74, 75, 141, 308, 316]. The sharpness is a result of a selective
spectroscopy technique. As shown in Fig. 5.23, in the vicinity of a transition two reso-
nant dips appear in single-tone spectroscopy, one for the singlet and one for the doublet.
In this circumstance, the center frequency of either dip can be chosen as the readout
frequency for the subsequent two-tone spectroscopy measurement. This binary choice
selects the transmon transition frequency belonging to the corresponding quantum dot
junction state. It is reasonable to assume that the most prominent dip corresponds to the
state of the quantum dot junction which is more prominently occupied, and thus lower
in energy. If this is the case, the extracted phase boundaries are a close approximation of
the zero-temperature phase diagram of the quantum dot junction. We note that when
the occupations of singlet and doublet states are almost equally probable, the selective
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spectroscopy method is affected by selection errors, which leads to the pixelation effects
visible in Fig. 5.4 near the phase boundaries. In Sec. 5.6, we will explicitly measure the
lifetimes of the quantum dot in the singlet and doublet states, substantiating the latter
statements.

TUNNEL GATE

Next, we explore the singlet-doublet transition in plunger and tunnel gate space, where
the tunnel gate is expected to control the tunnel rates between the quantum dot and the
leads, ΓL,R. Fig. 5.5(a) shows ∆ f01 versus plunger and tunnel gates at φext = 0. The region
of doublet occupancy (∆ f01 < 0) takes the shape of a dome, similar to the one coarsely
seen in flux-insensitive tunneling spectroscopy experiments [185, 187]. This shape is in
accordance with theoretical expectations for the boundary in the ξ−Γ plane. Its physical
origin depends on the parameter regime [144]. For U ≪ ∆ it arises due to an increase
in induced superconductivity on the dot with increasing values of Γ, favoring BCS-like
singlet occupation. For U ≫∆ it instead comes about from increased anti-ferromagnetic
Kondo exchange interactions between the spin on the dot and the quasiparticles in the
leads, favoring a Yu-Shiba-Rusinov (YSR)-like singlet occupation. In both regimes the
singlets compete with doublets, ultimately determining the transition to a singlet ground
state at large enough Γ= ΓL +ΓR.

We investigate the same plunger and tunnel gate dependence at an external flux
φext = π, see Fig. 5.5(b). We find that the doublet phase is enhanced considerably com-
pared to φext = 0, due to the previously mentioned interference between tunneling pro-
cesses to the superconducting leads. Notably, rather than a dome-like shape, the phase
boundary takes a characteristic “chimney” shape that was theoretically predicted [232]
but, to our knowledge, not yet confirmed experimentally before these measurements.
Unlike the dome, the chimney does not close for any VT. In an extended gate range, it
is seen to connect to another doublet region of the parameter space which was discon-
nected from the dome of Fig. 5.5(a) at φext = 0 [see Sec. 5.8].

The chimney atφext =π is much less thoroughly researched than the dome atφext = 0.
The open questions include that of the exact nature of the doublet states as a function
of the U /∆ and Γ/U ratios, and the role of the flux bias [89, 145, 158, 346]. In particu-
lar, when U ≫∆, the doublet state for small Γ is a decoupled doublet state with a single
local moment in the quantum dot. On the other hand, in the same limit but at large
Γ (i.e. in the neck of the chimney), the strong exchange interaction with both super-
conductors is expected to lead to some mixing with the doublet states that involve one
Bogoliubov quasiparticle from each lead [351], causing an overscreening of the local mo-
ment in the quantum dot. The role of the exchange interaction is more pronounced at
φext = π also because the anomalous component of the hybridisation (describing the
proximity effect) is suppressed due to the cancellation of contributions from the left and
right leads [346], where the cancellation is exact when ΓL = ΓR. This further stabilizes
the spin-doublet states. The experimental observation of the chimney calls for more
thorough theoretical studies of this parameter regime of the model.

We compare the results at both values of external flux to the expected transition fre-
quencies obtained from NRG calculations. We assume that ξ = 0 occurs at VP = 395 mV
since this is the symmetry point of the experimental data. At this point, by requiring
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Figure 5.5: Tunnel gate dependence. (a) ∆ f01 versus VP and VT at φext = 0, where VT is a virtual gate voltage
defined as a linear combination of VCand VR(see text). The blue region corresponds to a negative supercurrent
contribution from the quantum dot junction, while the red region corresponds to a positive contribution. (b)
The same measurement as (a) repeated for φext = π. (c) Linecuts of (a) and (b) at VP = 395 mV overlayed
with best-fits based on NRG calculations. (d) Extracted dependence of ΓL,R on VT. (e) Calculated transmon
frequencies based on NRG calculations at φext = 0 as matched to the measured data, with the VT axis as given
in figure (d). The color bar is shared with panel (a). (f) Same as (e) but for φext = π, with the same color bar as
(b). For the NRG calculations in panels (c-f) we fix ∆/h = 46GHz and U /∆= 12.2.
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used to re-calibrate the flux axis after varying Bz [see Sec. 5.8]. (c) ∆ f01 versus Bz and φext, measured at the
gate point indicated in (a) and (b) with a green marker. The sinusoidal dashed line serves as a guide for the eye,
in line with the transition boundary expect from theory.

simultaneous agreement between experiment and theory for both values of external
flux (Fig. 5.5(c)), we are able to extract several of the model parameters. We find that
∆/h = 46GHz (190µeV), close to the bulk value of Al. We furthermore extract U /∆= 12.2,
corresponding to a sizeable charging energy of 2.3meV. It places the nature of the sin-
glets near ξ= 0 in the strongly correlated regime, with a YSR-like character rather than a
BCS-like one. By matching values of ΓL,R to VT we then find that Γ/U varies between 0.05
and 0.4, while ΓR/ΓL ≈ 0.75−1 in the range of gates explored (Fig. 5.5(d)). The details of
the numerical procedure as well as error estimation can be found in the Supplementary
Information (Section I.C), including estimates based on an alternative potential shape
for the reference junction [see Sec. 5.8].

The extracted set of parameters is consistent with the observed dome shape atφext = 0,
as shown in Fig. 5.5(e). Additionally, as a result of the ratio ΓR/ΓL remaining close to
1, the extracted parameters also match the observed diverging behaviour at φext = π

(Fig. 5.5(f)), which was not enforced in the parameter extraction. In these panels we did
not map VP to ξ beyond identifying VP = 395 mV with ξ = 0 as a unique mapping could
not be constructed due to the unintended dependence of Γ on VP. We speculate that this
causes the remaining discrepancies between the measured and calculated boundaries in
the horizontal direction.

MAGNETIC FIELD PARALLEL TO THE NANOWIRE

Finally, we investigate the effect of a magnetic field applied parallel to the nanowire
on the phase transition boundaries. Here, we expect a magnetic-field induced singlet-
doublet transition to occur [185, 315, 335]. As Bz increases, the doublet sector separates
into spin species that are aligned and anti-aligned with respect to the magnetic field,
dispersing in opposite energy directions. The singlet ground state energy, on the other
hand, is approximately independent of magnetic field. Given an appropriate zero-field
energy level configuration, for some Bz value the energy of one of the two doublet states
will thus become lower than that of the singlet, and become the ground state instead
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(see Fig. 5.1(c)).
Such a transition will only occur for specific configurations of VP and VT in the exper-

imentally accessible range of magnetic fields. We therefore start by applying Bz = 200 mT
parallel to the nanowire axis, a sizeable magnetic field, yet one for which the EJ of the ref-
erence junction is not yet substantially suppressed [see Sec. 5.8]. At this field we investi-
gate the effect on the VP and VT phase map. The result, shown in Figs. 5.6(a-b), reveals
an expansion of the doublet region for both φext = 0 and φext = π. We can classify differ-
ent regions in the parameter space by comparing the phase boundaries at Bz = 10 mT
and Bz = 200 mT. There are regions in which a singlet ground state remains a singlet
ground state, independent of the flux and the magnetic field, as well as regions where a
singlet-doublet transition occurs depending on the value of the flux. However there is
also a region that starts off as a singlet ground state and ends up as a doublet ground
state at high field, for all values of the flux. Thus, fixing VP and VT in this region, we ex-
pect to observe a transition with Bz for any value of φext. A measurement of ∆ f01 versus
φext and Bz (Fig. 5.6(c)) indeed reveals such a transition, occurring at a different mag-
netic field depending on the external flux value. For details about the data analysis and
identification of the flux axis we refer to the Supplementary Information of Sec. 5.8.

5.6. DYNAMICS OF THE SINGLET-DOUBLET TRANSITION
In the preceding sections we made use of selective spectroscopy to reconstruct the phase
transition boundaries. We now turn to time-resolved spectroscopy techniques to study
the parity dynamics of the quantum dot junction close to the transition, aiming to char-
acterize the lifetimes of singlet (even parity) and doublet (odd parity) states. These meth-
ods have previously been used to study quasiparticle dynamics in superconducting qubits [286,
313], and recently also applied to a nanowire junction to study the poisoning of Andreev
bound states [122, 124, 334].

To resolve individual switching events we use a second device (device B) with a larger
signal-to-noise ratio (SNR) than the device used for the preceding sections (device A),
enabling the use of short acquisition times. Device B is nearly identical to device A, ex-
cept for two features meant to increase the SNR: (1) a stronger coupling between the res-
onator and the transmission line; (2) an additional capacitor at its input port, which in-
creases the directionality of the outgoing signal [126]. On device B we perform measure-
ments on microsecond timescales by directly monitoring changes in the outgoing signal
at a fixed readout frequency. A continuous measurement of the outgoing microwave
field then reveals a random telegraph signal between two different levels, a consequence
of the switches in the quantum dot junction parity (Fig. 5.7(a-b)). Owing to the increased
temporal resolution of the detection method, even short-lived excited state occupation
can now be detected. The characteristic time scales of the telegraph signal reflect the un-
derlying lifetimes of the singlet and doublet states, Ts and Td, or equivalently their decay
rates, Γs = 1/Ts and Γd = 1/Td. These quantities can be extracted via a spectral analysis
of the time traces, as described in Sec. 5.8.

To investigate the switching dynamics we tune device B to a regime similar to that
of Sec. 5.5 studied in device A. By measuring S21 with single-tone spectroscopy we once-
more find ground state transitions between singlet and doublet as a function of VP (Fig. 5.7(c)).
The discontinuous resonant shape, akin to that of Fig. 5.3(b), is symmetric around VP = 546



5.6. DYNAMICS OF THE SINGLET-DOUBLET TRANSITION

5

81

55 60 65 70
time (ms)

10

0

X/

(a)

0 500
counts/

(b) 2

x

SNR = | x|
2

6.10

6.15

f r 
(G

Hz
) (c) ext = 0

540 550
VP (mV)

10 2

10 1

100

T s
,d

 (m
s)

(d) ext = 0

Td Ts

540 550
Vp (mV)

/2

0

/2

3 /2
ext

(e)
25 0|S21| (dB)                           

0 4SNR 2 0 2
log10(Td/Ts)

Figure 5.7: Dependence of parity lifetimes on VP and φext for device B. (a) A 18 ms cut of a continuously
measured time trace integrated in time bins of tint = 11.4µs, revealing jumps between two distinct states. X is
the common axis onto which the quadratures of the outgoing microwave field are rotated to obtain the highest
SNR, which takes a value of 3.3 in this panel. (b) 1D histogram of the response in (a) (black) and the best fit
of a double Gaussian line-shape (gray). The separation of their centers δx and their width σ together define
the SNR. The ratio of their amplitudes determines the ratio of the lifetimes. For panels (a-b) VP = 551.4 mV
and φext = 0. (c) VP dependence of |S21| at φext = 0. (d) VP dependence of the extracted lifetimes at φext = 0.
Markers indicate the mean while error bars indicate the maximum and minimum values of 10 consecutive 2 s
time traces. The SNR is shown in greyscale in the background. For points where SNR < 1, the extracted lifetimes
are discarded. (e) 2D map of log10(Td/Ts) versus VP and φext, extracted from a 2 s time trace for each pixel.
White pixels indicate points at which SNR < 1, while grey regions indicate where the resonator frequencies of
singlet and doublet states overlap and thus cannot be distinguished.

mV, which we identify with ξ = 0. The singlet and doublet resonant frequencies are
simultaneously visible close to the discontinuity at the transition. The time-resolved
measurements over the same gate voltage range reveal a smooth but strong evolution
of the parity lifetimes with VP (Fig. 5.7(d)). The hierarchy of lifetimes inverts as VP is
tuned across the phase transition, reflecting the change in the ground state parity. Away
from the transition, in either the singlet or doublet phase, we observe the lifetime in the
ground state sector to be on the order of several milliseconds, exceeding that of the ex-
cited state by more than an order of magnitude. These numbers are very favorable for
the implementation of Andreev pair qubits [136] as well as Andreev spin qubits [122–
124], whose control has so far been limited by microsecond parity lifetimes.

We further explore the evolution of the relative lifetimes versus VP andφext. Fig. 5.7(e)
shows a two-dimensional map of log10(Td/Ts), which is a measure of the lifetime asym-
metry. We find behaviour similar to that previously seen in Fig. 5.4, with a sinusoidal
boundary of equal rates, indicative of the singlet-doublet transition. Furthermore, we
observe a strong polarization of the junction parity inside the doublet phase (Td ≫ Ts),
where the signal-to-noise ratio (SNR) eventually becomes limited by our ability to re-
solve the rare and short-lived switches out of the ground state. Additionally, we find a
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modulation of Td with flux, with longer lifetimes at φext = π [see Sec. 5.8]. This flux de-
pendence likely originates from the oscillation of the singlet-doublet energy gap with
flux, but might also be indicative of a coherent suppression of the tunneling rates.The
polarization of the junction parity also occurs inside the singlet phase, where Ts ≫ Td

for VP values away from the transition (Fig. 5.7(d)).
Strong parity polarization may not be surprising for a system in thermal equilib-

rium at temperatures below 100 mK, typical of these experiments, corresponding to a
thermal energy small compared to the singlet-doublet energy difference away from the
transition. However, parity lifetimes in superconducting circuits are seldom determined
by thermal fluctuations, but rather by highly energetic non-equilibrium quasiparticles
[105]. While such non-equilibrium quasiparticles are most likely also present in our de-
vice, we believe that their influence is suppressed by the large charging energy of the
quantum dot junction.

Finally, we observe a non-monotonic variation of the rate asymmetry inside both the
singlet and doublet phase, forming apparent contours of fixed lifetimes (Fig. 5.7(e)). We
hypothesize two possible reasons behind this structure in the data: it could be caused
by parity pumping mechanisms where the readout tone is resonant with the energy dif-
ference between singlet and doublet [334], as well as by the spectral density of the non-
equilibrium quasiparticles present in the environment [287]. Further investigation of the
tunnel gate, power, and temperature dependence of the rate asymmetry can be found at
the end of 5.8; we leave a more detailed study for future work.

5.7. CONCLUSIONS
We have demonstrated the use of a transmon circuit to sensitively detect the ground
state parity of a quantum dot Josephson junction. The transition frequency of the trans-
mon exhibits a discontinuity if the ground state of the device changes from a singlet to
a doublet, due to the presence of a π-phase shift in the Josephson potential of the junc-
tion. This allowed us to accurately reconstruct the occurrence of the singlet-doublet
transition as a function of all control parameters available in a single device, matching
them to those expected from NRG calculations of an Anderson impurity model. In par-
ticular, we have observed the flux-induced enhancement of the doublet phase, in the
form of the striking transformation of a dome-shaped phase boundary at φext = 0 into a
chimney-shaped phase boundary at φext =π (Fig. 5.5).

In future research, this singlet-doublet tuning capability could become beneficial for
several applications. First, it can be used to define and control Andreev pair and spin
qubits, and to couple them to conventional superconducting qubits. Second, tuning the
dot to the doublet phase is a robust way to induce a π phase shift, which could be ex-
ploited to define a hybrid 0−π qubit that does not rely on the fine-tuning of the applied
flux [181]. Third, it can facilitate the bottom-up realization of a topological supercon-
ductor from a chain of proximitized quantum dots [97, 275, 302]. Finally, fast gate or
flux-based switching between the 0 and π shift of the dot can also be of interest for ap-
plications in Josephson magnetic random access memory (JMRAM) technologies [67].

We have subsequently used continuous time-domain monitoring of the transmon
resonant frequency to determine the lifetimes of singlet and doublet states. We find that
the time between switching events is strongly enhanced when the quantum dot is tuned
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away from the phase transition. Since our estimates indicate that U ≫∆ in our devices,
we attribute this effect to the large energy difference associated with charging the quan-
tum dot. These findings are encouraging for Andreev qubits, which benefit from long
parity lifetimes, and suggest that large-U quantum dots could be effective as filters for
high-energy quasiparticles. However, further work is required to understand the full de-
pendence of parity lifetimes on U .

In this work we have focused on the study of a single-level quantum dot by tuning
our junction very close to pinch-off. Looking forward, there is much left to explore in
the parameter space of such a device. To begin with, it would be interesting to under-
stand whether the crossover from the BCS-like to the YSR-like singlet has any signature
in the microwave response of the system. Second, opening the junction further brings
the quantum dot into a multi-level regime, not captured by the single impurity Anderson
model, and still largely unexplored. Finally, while we have primarily studied the ground
state properties of the quantum dot junction, microwave spectroscopy should allow one
to study its excitations, as e.g. recently demonstrated in Refs. [51, 91], particularly at
φext =π.

Further work will also aim at elucidating the role of spin-orbit coupling in the quan-
tum dot junction. It is well known that, when time-reversal invariance is broken, spin-
orbit coupling can induce a spin-splitting of energy levels in the doublet sector [59, 234,
312], essential for Andreev spin qubits. While this effect could have been expected to oc-
cur in the measurements presented here, it was not detected; we speculate that the level
spacing in the dot was too large to result in a significant splitting [234].

Important extensions of our work could arise if the hybrid nanowire in our microwave
circuit was driven into the Majorana topological phase [16, 17, 102, 156], which is cur-
rently challenging because of a large parameter space [246] and because of demand-
ing disorder requirements [4]. Including a quantum dot in a Josephson junction be-
tween two topological superconductors could be beneficial for the detection of the 4π
Josephson effect: as we have seen, it mitigates quasiparticle poisoning, although it would
not resolve [284] the problem of distinguishing Majorana zero modes from trivial zero-
energy Andreev bound states [256]. Finally, the manipulation of quantum dots coupled
to superconducting leads is an essential ingredient of scalable proposals for topological
quantum computation [155].

5.8. SUPPLEMENTARY INFORMATION

NUMERICAL MODELING

ANDERSON MODEL WITH SUPERCONDUCTING LEADS

As discussed in the main text, we model the quantum dot junction as a single Anderson
impurity coupled to two superconducting leads. The Hamiltonian of the model takes the
form

H = Hdot +Hleads +HT. (5.3)

The first term describes a single-level quantum dot,

Hdot =
∑
σ=↑,↓

ϵσd †
σdσ+Un↑n↓ . (5.4)
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Here, ϵ↑,↓ = ϵ±EZ/2 gives the single-particle energies: ϵ is the dot energy level measured
with respect to the Fermi level in the leads, and EZ = gµBB is the Zeeman energy. In
the latter, g is the effective g-factor of the level, µB is the Bohr magneton, and B is the
magnetic field strength. Finally, U > 0 is the repulsive Coulomb interaction between
the electrons, which disfavors the double occupancy of the impurity, while nσ = d †

σdσ
are number operators for the dot level, with dσ (d †

σ) the electron annihilation (creation)
operators.

The many-particle energy levels of Eq. (5.4) are divided in two sectors, correspond-
ing to their fermion parity, or equivalently, to their total spin S. The singlet sector in-
cludes the states of even parity, which have S = 0: the empty state |0〉 and the pair
state |2〉 = d †

↑d †
↓ |0〉. The doublet sector includes the states of odd parity, which have

S = 1/2: |↑〉 = d †
↑ |0〉 and |↓〉 = d †

↓ |0〉. It is convenient to introduce the energy ξ= ϵ+U /2,
corresponding to half of the energy gap in the singlet sector, so that ξ = 0 corresponds
to the electron-hole symmetry point, where |0〉 and |2〉 are degenerate in energy. The
ground state of Hdot belongs to the doublet sector for |ξ/U | < 1/2.

The second term in Eq. (5.3) describes two superconducting reservoirs,

Hleads =
∑
i ,k
ϵk ni ,k +

∑
i ,k

(
∆e−iφi c†

i ,k↑c†
i ,k↓+h.c.

)
(5.5)

where i = L,R labels the left and right leads, k labels spin-degenerate single-particle
states, ∆e−iφi is the s-wave pairing potential in each reservoir, and ci ,kσ (c†

i ,kσ) are the
electron annihilation (creation) operators in the leads. The gauge-invariant phase dif-
ference between them is φ = φL −φR. We assume the reservoirs to have identical gap ∆
and density of states ρ; this assumption should be reasonable since in the experiment
the two leads are made out of a single hybrid nanowire. We further take the g-factor
of the reservoirs to be zero, capturing the magnetic field dependence of the combined
system in the effective quantum dot g-factor of Eq. (5.4).

Finally, the third term is the tunneling Hamiltonian coupling the dot and the reser-
voirs,

HT = ∑
i ,k,σ

(
ti c†

i ,k,σdσ+h.c.
)

, (5.6)

where ti are the dot-reservoir tunnel coupling strengths, which, for simplicity, we choose
to be independent of k and spin. The tunneling rate across each barrier is given by Γi =
πρ |ti |2. The tunneling terms in HT break the conservation of the parity and spin in the
quantum dot. Nevertheless, the notion of singlet and doublet sectors introduced for the
dot Hamiltonian of Eq. (5.4) is inherited by the total Hamiltonian of Eq. (5.3), provided
that the spin S is now regarded as the total spin of the system, including that of quasi-
particles in the reservoirs. The same holds for parity, which must be redefined as the
parity of the total number of electrons in the system.

Over the years, the model of Eq. (5.3) (or immediate extensions of it) has become
paradigmatic to describe quantum dots coupled to superconducting leads. It has been
studied in different limits and using a variety of numerical methods, often requiring ad-
vanced many-body methods such as the numerical renormalization group (NRG) and
quantum Monte Carlo for full quantitative descriptions [215]. In the present work, we
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used NRG methods to extract the energies of the singlet and doublet states for any com-
bination of the model parameters. These energies are then incorporated in a DC SQUID
transmon Hamiltonian which is used to match the experimental data and extract esti-
mates of the model parameters. These procedures are detailed in the remainder of this
Section.

NRG CALCULATION

The NRG method is an iterative procedure for solving quantum impurity problems in-
volving a localized few-level system coupled to a continuum of itinerant electrons (fermionic
bath, normal-state or mean-field BCS superconductor). It consists of several steps: 1)
discretization of the continuum parts of the Hamiltonian using a geometric-progression
mesh with an accumulation point at the Fermi level (the so-called logarithmic discretiza-
tion), 2) unitary transformation of the resulting discretized Hamiltonian from the star-
geometry (impurity coupling to each representative mesh point) to a linear tight-binding
chain representation (the so-called Wilson chain), 3) iterative diagonalization in which
the Wilson chain sites are taken into account consecutively [47, 172, 274, 338, 343]. The
discretization is controlled by the discretization parameter Λ > 1 which controls the
coarseness of the grid. When the discretization is coarse, the results can be improved by
twist averaging, which consists of performing the same calculation for several different
discretization grids and averaging the results [47, 323]. The growth of the Hilbert space
is controlled by the truncation parameters which control the number of states retained
after each step of the iteration.

The calculations in this work have been performed with the NRG Ljubljana code
[349]. Since the main quantities of interest are the ground state energies in each spin
sector, very high quality results can be obtained even with coarse discretization (Λ = 8)
and keeping no more than 3000 states (spin multiplets) in the truncation. We have ver-
ified that the twist averaging is not required. The BCS gap was chosen to be ∆ = 0.1D ,
where D is the half-bandwidth. The calculations were performed for a problem with
symmetric hybridisations, ΓL = ΓR. This is sufficient, because the results for an arbitrary
coupling asymmetry can be obtained from the following mapping [145]:

φS (φ, a) = 2arccos

√
1− 4a

(a +1)2 sin2(φ/2), (5.7)

where a = ΓL/ΓR is the asymmetry,φ is the BCS phase difference in the asymmetric prob-
lem, and φS is the effective BCS phase difference in the effective symmetric problem.

Such calculations were performed for a set of values of the interaction strength U
(from very low values U = 0.1∆ that correspond to ABS-like subgap states, up to U = 30∆
that correspond to YSR-like subgap states). In every value of U , a grid of ξ and Γ param-
eters was set up, and a sweep of φ between 0 and π (50 points) has been performed for
each (ξ, Γ) pair. The ground state energies are obtained as the sum of all energy shifts
[172] performed during the NRG evolution, which has been shown to produce extremely
accurate results [323]. Some calculations have also been performed in the presence of a
small Zeeman splitting. The results have been collected, documented, and made avail-
able on a public repository [349]. The full set of input files and scripts is provided for
running the calculations for different parameters or for different Hamiltonians.
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Having developed the NRG calculation, we can gain insight into the expected bound-
aries between singlet and doublet occupation. In Fig. 5.8(a), we show the phase diagram
for the symmetric configuration ΓL = ΓR at fixed φ = 0 and U /∆ = 5. In the (ξ,Γ) plane,
the phase diagram takes a dome-like shape with the transition value of Γ being the high-
est at the electron-hole symmetry point ξ = 0. At this point, the transition value of Γ
diverges if the phase difference between the reservoirs is changed to φ = π, because in
this case a destructive interference between tunneling events to the left or right occurs.
This causes the “dome” in the (ξ,Γ) plane to turn into the “chimney” shown in Fig. 5.8(b).
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Figure 5.8: Boundaries between singlet and doublet ground states extracted from NRG calculations. (a)
Boundary in the ξ−Γ plane at φ = 0 for ΓL = ΓR. (b) Same as (a) for φ = π. (c) Boundary in the ξ−φ plane at
Γ= 0.2U. (d) Boundary in the EZ −φ plane for ξ= 0.47U. All panels are for U /∆= 5.

As mentioned above, at Γ= 0 the ground state is in the doublet sector for |ξ/U | < 1/2.
Upon increasing Γ, the Kondo coupling favours the binding of a Bogoliubov quasiparti-
cle in the superconductor to the impurity local moment (“Yu-Shiba-Rusinov" screening),
ultimately determining the transition to a singlet ground state at a value Γc . The value of
Γc depends on ξ, φ, U and ∆, as well as on the asymmetry between ΓL and ΓR. This im-
plies that the singlet-doublet transition can be observed varying any of these parameters
individually. Since in the experiment the values of U and ∆ are fixed, being determined
by the materials and the geometry of the physical device, we focus here on variations in
ξ, φ, ΓL and ΓR.

In Fig. 5.8(c), we show the singlet-doublet transition boundary in the ξ−φ plane.
The interference effect is modulated continuously by the value of the phase differenceφ,
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resulting in periodic oscillations of the boundary. The average position of the oscillating
boundary is determined by Γ. In Fig. 5.8(d), we show the effect of a Zeeman energy EZ

in the case when the ground state is singlet at B = 0. As mentioned in the main text, a
singlet-doublet transition is induced at finite EZ due to the spin-splitting of energy levels
in the doublet sector.

TRANSMON DIAGONALIZATION

Having established how to calculate singlet and doublet potentials using the NRG method,
we now turn to their inclusion in the Hamiltonian of the transmon circuit [main text
Eq. (5.1)]. To numerically solve the Hamiltonian for an arbitrary potential term V (φ) we
make use of the Fourier decomposition (note that the potential can include an external
flux φext):

V (φ) = EJ,0 +
∑
n

E cos
J,n cos

(
nφ

)+∑
n

E sin
J,n sin

(
nφ

)
(5.8)

with the components

EJ,0 = 1

2π

∫ π

−π
V (φ)dφ (5.9a)

E cos
J,n = 1

π

∫ π

−π
V (φ)cos

(
nφ

)
dφ (5.9b)

E sin
J,n = 1

π

∫ π

−π
V (φ)sin

(
nφ

)
dφ (5.9c)

where we assume the potential to be a real-valued 2π-periodic function. We can then
express the full Hamiltonian in the charge basis as

H = 4Ec N̂ 2 +EJ,0 +
∑
n

1
2 EJ,n N̂ n

+ +h.c. (5.10)

with EJ,n = E cos
J,n − i E sin

J,n , N̂ the charge operator and N̂ n+ |N〉 = |N +n〉.
Upon substituting the potential of main text Eq. (5.2) into Eq. (5.10) and diagonaliz-

ing the Hamiltonian, we find the eigenvalues and obtain the energy levels of the com-
bined reference junction and quantum dot junction system. Their difference then re-
sults in the transmon’s transition frequencies. To numerically compute the eigenvalues
we truncate the number of charge states and Fourier coefficients to N = 35 for all cal-
culations [162]. We verify that this leads to good convergence for the eigenvalues. We
further note that while the presence of the potential offset EJ,0 does not affect the trans-
mon transition frequencies, its inclusion is crucial: it plays a large role in determining
whether the ground state of the combined system corresponds to singlet or doublet oc-
cupation for a given set of quantum dot junction parameters.

PARAMETER MATCHING ROUTINE

To match the numerical model to the experimental data we have to overcome several
complications. First, the mapping between experimental control parameters and those
present in the model is not always trivial. As discussed in the main text, Vp appears
to not only tune ξ but also ΓL,R. In turn Vt is constructed in such a way that (to first
approximation) it does not tune ξ, but it does act on both tunnel rates simultaneously



5

88
5. SINGLET-DOUBLET TRANSITIONS OF A QUANTUM DOT JOSEPHSON JUNCTION

DETECTED IN A TRANSMON CIRCUIT

5 10 15
U/

0

1

2

3

L/

(a)

5 10 15
U/

0

1

2

3

L/

(b)

0 1 2
L/

35

45

55

 (G
Hz

)

(c)

5 10 15
U/

35

45

55

 (G
Hz

)

(d)

0 4R/
0.0 0.5

| f01| (GHz)

Figure 5.9: Numerical matching of model parameters (a) Calculation of the value of ΓR that leads to a singlet-
doublet transition with other model parameters held fixed. Here we fix φext = 0 and ξ = 0. A value of zero
indicates that no such transition occurs. (b) Calculation Eq. (5.11) in the U −ΓL plane evaluated at∆= 46GHz.
(c) Same as (b) in the ∆−ΓL plane for U /∆= 12.2. (d) Same as (b) in the U −∆ plane for ΓL/∆= 1.19.

with different, unknown lever arms. For mapping the magnetic field axis to the Zeeman
energy the challenge lies in determination of the effective g-factor of the quantum dot,
known to be a strongly gate and angle-dependent quantity [283]. Only the flux axis allows
for a simpler identification, in particular if one assumes that in the singlet configuration
the combined DC SQUID Josephson potential takes its minimal (maximal) values at 0
(π), which should hold for even modest SQUID asymmetry. A separate challenge comes
from the large number of parameters of the model: ∆, U , ξ, ΓL, ΓR, and φext. With 6
potentially correlated parameters to match one has to carefully assess whether the fit is
under-determined.

Given these considerations, we identify a specific gate point in the experimental data
that could result in a well-constrained situation: the top of the dome shape of Fig. 5.5(a)
in the main text. Here we have access to three measured quantities at a known flux φext:
the singlet and doublet qubit frequencies f s

01(0) and f d
01(0) measured at the boundary

of the transition, and also the doublet qubit frequency f d
01(π). We furthermore know

that here Es ≈ Ed for φext = 0, since the data lies on the boundary of a singlet-doublet
transition versus tunnel gate. Finally, based on the symmetry of the dome shape we
identify that this VP should correspond to ξ ≈ 0. We can therefore eliminate two of the
model parameters (ξ and φext) and are left to determine ∆, U , ΓL and ΓR.
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Figure 5.10: Numerical matching in ΓL −U plane (a) Difference in the calculated and measured singlet qubit
frequency at φext = 0 evaluated at ∆ = 46GHz. (b) Same as (a) for the doublet qubit frequency at φext = 0. (c)
Same as (a) for the doublet qubit frequency at φext =π. (d) The absolute sum of the differences in panels (a-c).
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In a first step we tackle the condition of a singlet-doublet transition occurring versus
tunnel gate. For each value of ∆, U and ΓL we numerically diagonalize the Hamiltonian
of Eq. (5.10) to determine the lowest energy level of the total circuit for both the singlet
and doublet states and find the value of ΓR for which these energies are equal. For this
we use a reference junction potential Vj = EJ(1− cosφ) with EJ = 12.8 GHz and Ec/h =
210MHz as determined later in this section. Shown in Fig. 5.9(a), this results in a U -
dependent range of ΓL for which there is indeed a value of ΓR that leads to a singlet-
doublet transition. Outside of this range ΓL is so large that the ground state is always a
singlet.

Having determined these possible values of ΓR we calculate the three relevant trans-
mon frequencies f s

01(0), f d
01(0), and f d

01(π). These are then compared to the measured
values, and an optimal solution is sought that minimizes the sum of the absolute differ-
ence between calculation and measurement of all three quantities

Σ|∆ f01| = | f s,exp.
01 (0)− f s,calc.

01 (0)|+ | f d,exp.
01 (0)− f d,calc.

01 (0)|+ | f d,exp.
01 (π)− f d,calc.

01 (π)|. (5.11)

In Figs. 5.9(b-d) we plot a sample of this three-dimensional optimization, while Fig. 5.10
shows how each panel is constructed from the individual singlet and doublet qubit fre-
quencies. Other than the trivial symmetry between ΓL,R, it appears that there is in-
deed a single region of parameters matching our data. At its global minimum we find
∆/h = 46GHz (190µeV), U = 12.2∆, ΓL = 1.19∆ and ΓR = 1.47∆, which results in a precise
match to the measured qubit frequencies.

Having determined ∆, U , ΓL, and ΓR at this single point in gate space, we attempt to
match the model to the VT axis of the data. To do so we fix ∆ and U to the determined
values and for each value of VT find the best set of ΓL,R to match the data. To deter-
mine these two parameters we have two measured quantities: up to the transition we
have f d

01(0) and f d
01(π), and after the transition we have f s

01(0) and f d
01(π). This proce-

dure results in good correspondence to the experimental results, as shown in main text
Fig. 5.5(c,d). We note that by construction this captures all the granularity and measure-
ment uncertainty of the experimental data, even though the underlying quantities might
have been more smooth. A subsequent procedure that attempts to match VP to ξ did not
turn out to be unique, as VP appears to also act on ΓL,R. We therefore leave this mapping
undetermined.

The uncertainty in the extracted quantities is affected by several factors. The first is
the measurement accuracy; we measure the qubit frequency with MHz-scale precision.
Based on numerical evaluation of the model, this precision in qubit frequency should
limit the extracted parameter accuracy to several GHz. A more substantial uncertainty
comes from the determination of the transmon island charging energy Ec, which is typ-
ically determined from the transmon transition anharmonicity α = f12 − f01. While the
anharmonicity can be measured to high precision, a complication arises from the us-
age of a nanowire based Josephson junction as the reference junction. Up to now we
have assumed its potential to take the form V (δ) = EJ(1− cosδ); that of a conventional
superconductor-insulator-superconductor (SIS) tunnel junction governed by many weakly
transparent channels. In this case we find that Ec/h = 210MHz, resulting in the pa-
rameter estimates given above. However, previous work has found that nanowire-based
Josephson junctions are better described by several or even a single transport channel,
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such that V (δ) = −∑
n∆

√
1−Tn sin2δ/2. This change in potential shape can lead to a

strong reduction in the anharmonicity, and thus an underestimation of Ec when using
the SIS potential [167]. We therefore also match our reference junction dependence to
a single transport channel, which is the most extreme case for a reduction in the anhar-
monicity, finding good agreement with a single transport channel of T = 0.58. This in
turn leads to an extracted Ec/h = 306MHz, resulting in a different set of extracted quan-
tum dot parameters. In particular, we now find ∆= 30.5GHz and U = 17.3∆. This value
of the induced gap in the InAs-Al nanowire is on the low end of what is typically found in
DC transport experiments, which might hint at a reduced proximity effect in the ungated
leads [12, 339].

Capacitance simulations of the full circuit do not provide an unambiguous answer
for which of the two limits is more appropriate, as the circuit was designed to target
Ec/h = 250MHz which falls in the center of the estimated range. As it stands we therefore
do not have to uniquely determine the experimentally realized Ec and thereby resolve
the uncertainty in the extracted quantities. However, future works could make use of
additional circuit QED compatible quantum dot probes such as direct DC access [168]
or dispersive gate-sensing techniques [69] to independently characterize several model
parameters and further constrain the matching.

CALCULATED 2D MAPS

Having established how to match the model parameters to the data, we now turn to the
reconstruction of the full 2D dependencies measured in the experiment (Fig. 5.11). For
the plunger versus tunnel gate dependence, we calculate both the singlet and doublet
qubit frequencies for all values of ΓL,R encoded by VT for a range of ξ at both φext = 0
and π. We subsequently mask the data according to the ground state of the combined
transmon Hamiltonian, and obtain a result that closely approximates the measured data
(main text Fig. 5.5). Using the same set of quantum dot junction parameters, we also
perform a similar procedure for the 2D map of plunger gate and external flux, resulting
good correspondence with main text Fig. 5.4.

STATE POPULATION

We now turn to the singlet and doublet lifetimes determined in device B. For this device
we could not identify a measurement point where a unique set of parameters matched
the measured data, and can therefore not make a quantitative comparison to the numer-
ics. Instead, we attempt to gain some intuition about the obtained results based on the
parameters of device A.

In main text Fig. 5.7 we extract log10 (Td/Ts), the ratio of the lifetimes of singlet and
doublet occupation. If the system was in thermal equilibrium with a bath of tempera-
ture T , one would naively expect that the relative lifetimes should follow the state popu-
lations Ps,d as described by a Maxwell-Boltzmann distribution:

Pi = 1

Z
gi exp(−Ei /kBT ) (5.12)

where gi is the degeneracy of the state, Es,d are the singlet and doublet energies, and
kB is the Boltzmann constant. We take Z = 2exp(−Ed/kBT )+exp(−Es/kBT ), where we
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Figure 5.11: Numerically calculated transmon frequency maps (a,e,i) Boundaries between singlet and dou-
blet ground states extracted from NRG calculations for φext = 0, φext = π, and ΓR = 1.23ΓL respectively. Panels
(b-d), (f-h), (j-l) show how the singlet qubit frequency, the doublet qubit frequency, and the combined result
conditioned on the ground state of panels (a,e,i) respectively depend on the parameters. Each row shares the
same color map. This leads to saturation of the color map in the panels corresponding to the unconditioned
singlet and doublet qubit frequencies, but facilitates comparison to the experimental results. For all panels
U /∆= 12.2 and ∆= 46GHz.

neglect potential other many-body states which should be unoccupied at the experi-
mentally relevant temperatures. In Fig. 5.12(a) we then plot log10 (Pd/Ps), choosing a
bath temperature of 400mK. Qualitatively this follows the same trend as observed ex-
perimentally, with a sharp boundary at the phase transition and a saturated population
imbalance away from that. We stress once-more that this is not a quantitative compari-
son. However, the need for a temperature far in excess of the refrigerator’s base tempera-
ture of 20mK could hint at a non-thermal origin such as non-equilibrium quasiparticles
[105].

In the main text we also speculate that non-thermal effects lie at the origin of the ex-
perimentally observed contours of fixed lifetime ratio’s. We corroborate this in Fig. 5.12(b),
where we plot the energy difference between singlet and doublet occupation of the quan-
tum dot junction. This quantity exhibits distinct contours of equal energy difference
that qualitatively match those found in the experiment. If the environment has spectral
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components resonant with these specific energies, one could expect these to modify the
dynamics.
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Figure 5.12: State population versus ξ and φext (a) Ratio of the expected state population as calculated from
Eq. (5.12) for a temperature of 400mK. The colormap is saturated to facilitate comparison to main text Fig. 5.7.
(b) Difference between doublet and singlet energy. Each contour indicates a boundary of equal energy differ-
ence. Parameters are the same as that of Fig. 5.11.
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DEVICE AND EXPERIMENTAL SETUP

NANOFABRICATION DETAILS

The device fabrication occurs in several steps using standard nanofabrication techniques,
and it is identical for device A and B. The substrate consists of 525µm-thick high-resistivity
silicon, covered in 100 nm of low pressure chemical vapor deposited Si3N4. On top of
this a 20 nm thick NbTiN film is sputtered, into which the gate electrodes and circuit
elements are patterned using an electron-beam lithography mask and SF6/O2 reactive
ion etching. Subsequently, 30 nm of Si3N4 dielectric is deposited on top of the gate elec-
trodes using plasma enhanced chemical vapor deposition and then etched with buffered
oxide etchant. The nanowire is then deterministically placed on top of the dielectric us-
ing a nanomanipulator and an optical microscope. For this we use an approximately
10 um-long vapour-liquid-solid (VLS) hexagonal InAs nanowire with a diameter of 100 nm
and a 6 nm-thick epitaxial Al shell covering two facets [173]. After placement, two sec-
tions of the aluminium shell are removed by wet etching with MF-321 developer. These
sections form the quantum dot junction and the reference junction, with lengths 200 nm
and 110 nm respectively. A zoom-in of the the quantum dot junction is shown in Fig. 5.2(d)
of the main text. The reference junction is controlled by a single 110 nm-wide electro-
static gate, set at a DC voltage VJ. The quantum dot junction is defined by three 40 nm-
wide gates separated from each other by 40 nm, set at DC voltages VL, VC and VR. Note
that in Fig. 5.2(d) the gates appear wider (and the gaps between gates appear smaller)
than stated due to distortion by the Si3N4 layer; the given dimensions are therefore de-
termined from a scanning electron microscopy image taken before the deposition of
the dielectric. After the junction etch the nanowire is contacted to the transmon island
and to ground by an argon milling step followed by the deposition of 150 nm-thick sput-
tered NbTiN. Finally, the chip is diced into 2 by 7 millimeters, glued onto a solid copper
block with silver epoxy, and connected to a custom-made printed circuit board using
aluminium wirebonds.

GENERAL CHIP OVERVIEW

Optical microscope images of the chips containing devices A and B are shown in Figs. 5.13(a)
and (b), respectively. Each chip, 7 mm long and 2 mm wide, consists of four devices cou-
pled to the same transmission line. For the chip containing device A, only one device was
functional. Out of the other three, one did not have a nanowire, another contained three
nanowires stuck together, and for the third device a gate electrode showed no response.
The chip of device B includes an on-chip capacitor on the input port of the transmis-
sion line to increase the signal-to-noise ratio. For this chip only two of the devices were
bonded: device B, which was functional, and another device that did not show any re-
sponse to the electrostatic gates. The two unbonded devices were dismissed based on
prior optical inspection, containing two and no nanowires respectively.

FLUX CONTROL WITH IN-PLANE MAGNETIC FIELD

In all measurements we control the external flux φext with the in-plane component of
the magnetic field perpendicular to the nanowire, By , as illustrated in Fig. 5.14 [334], for
which one flux quantum corresponds to 2.2 mT. This is done since flux tuning with the
out-of-plane magnetic field Bx led to strong hysteric behaviour in the resonator as well as
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Figure 5.13: Chip design. (a) The chip of device A, containing four nearly identical devices coupled to the same
transmission line. The image is taken after wire-bonding onto a PCB. (b) The chip of device B, incorporating
an input capacitor in the transmission line (enlarged in inset). The image is taken before wire-bonding onto a
PCB.

flux jumps in the SQUID loop. We attribute these effects to Abrikosov vortex generation
and the presence of superconducting loops on the chip, causing screening currents.

InAs/Al nanowire

SiNx

NbTiN

Figure 5.14: Flux control with By. The nanowire is elevated with respect to the NbTiN plane due to the gate
dielectric. This defines a loop area perpendicular to By . By can therefore be used to control the flux through
the SQUID loop while keeping the out-of-plane field component (Bx ) fixed, reducing the occurance of external
flux jumps.

FLUX JUMPS IN DEVICE A WHEN |B | < 9 mT
For all measurements of device A, the value of the applied magnetic field is kept above
10 mT to prevent flux jumps observed when |B | < 9 mT. In particular, for Figs. 5.3 to
5.5 in the main text, Bz = 10 mT. The reason for this is purely technical. Device A
contains various on-chip aluminium wire-bonds connecting separate sections of the
ground plane together. Below the critical magnetic field of aluminium (∼10 mT [203])
these wire bonds create superconducting loops close to the device region, and have a
significant cross-section perpendicular to the chip plane. In this regime, the application
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of an in-plane magnetic field By generates unwanted currents across these supercon-
ducting loops, which in turn result in multiple jumps observed in the flux through the
SQUID loop (Fig. 5.15), making it impossible to reliably control φext. Applying a field
|B | > 9 mT turns the aluminium wire bonds normal and prevents the unwanted flux
jumps, as shown in Fig. 5.15(a). As this magnetic field is small compared to other en-
ergy scales involved, it should not affect the physics under study. We further note that
the absence of superconducting loops containing wire-bonds in device B made it possi-
ble to measure this device at Bz = 0 mT without suffering from similar flux jumps.
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Figure 5.15: Flux jumps under |B|= 9 mT for device A. Multiple flux jumps and a distorted periodicity observed
at low magnetic fields disappear when |B | > 9 mT. Here, Bz = Bx = 0
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CRYOGENIC AND ROOM TEMPERATURE MEASUREMENT SETUP

Both devices are measured in the same Triton dilution refrigerator with a base temper-
ature of 20 mK. As shown in Fig. 5.16, it contains an input RF line, an output RF line
and multiple DC gate lines. The DC gate lines are filtered at base temperature with mul-
tiple low-pass filters connected in series. The input RF line contains attenuators and
low-pass filters at different temperature stages, as indicated. The output RF line con-
tains a travelling wave parametric amplifier (TWPA) at the 20 mK temperature stage, a
high-electron-mobility transistor (HEMT) amplifier at the 4 K stage, and an additional
amplifier at room temperature. A three-axis vector magnet (x-axis not shown) is ther-
mally anchored to the 4 K temperature stage, with the device under study mounted at
its center. The Bz component of the magnetic field is controlled with a MercuryiPS cur-
rent source while the Bx and By axes are controlled with Yokogawa GS200 and GS610
current sources respectively. At room temperature a vector network analyzer (VNA) is
connected to the input and output RF lines for spectroscopy at frequency fr. On the
input line, this signal is then combined with the qubit drive tone at frequency ft for two-
tone spectroscopy. A separate tone at fr only used for time-domain measurements is
also combined onto this line. For time-domain measurements the output signal is addi-
tionally split off into a separate branch and down-converted to 25 MHz to be measured
with a Zurich Instruments ultra-high frequency lock-in amplifier.

BASIC CHARACTERIZATION AND TUNE UP OF DEVICE A
REFERENCE JUNCTION CHARACTERIZATION

In this section we investigate the basic behaviour of the reference junction versus junc-
tion gate voltage VJ and magnetic field Bz when the quantum dot junction is completely
closed. This information is used to choose a VJ set-point, VJ = 640 mV, which maintains
a good SQUID asymmetry in all regimes of interest. Figs. 5.17(a) and (b) show the VJ de-
pendencies of the resonator and transmon frequencies, respectively. As VJ is varied, dif-
ferent junction channels open sequentially [118, 296], with transparencies that increase
non-monotonically due to mesoscopic fluctuations at the junction. This in turn affects
the transmon’s EJ and results in the observed fluctuations of its frequency.

The Bz dependencies of f01 and f02/2 at VJ = 640 mV are shown in Fig. 5.17(e). From
this we estimate both the transmon island charging energy Ec (not to be confused with
U , the charging energy of the quantum dot junction) and the parameters of reference
junction potential used in this section to match the measurements to the numerical cal-
culations. Illustrated in this figure is a fit of the data with a Josephson potential gov-

erned by a single Andreev level at the junction V (B ,δ) =−∆(B)
√

1−T sin2 δ
2 . Here∆(B) =

∆
√

1− (B/Bc)2 is the field dependent superconducting gap [203], ∆ is the supercon-
ducting gap at zero field, Bc is the critical magnetic field and T is the transparency
of the junction. As the fit is not constrained well enough to provide a unique solu-
tion, we fix ∆/h = 60 GHz based on recent experiments on the same nanowires [299].
We obtain Ec/h = 306 MHz, T = 0.58, and Bc = 413 mT, resulting in an effective EJ ∼
∆T /4 = 8.7 GHz. A similar procedure is then performed for Vj = EJ(1−cosδ), resulting in
Ec/h = 210MHz and EJ/h = 12.8 GHz.

We can use these parameters to estimate the experimentally-realized SQUID asym-
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metry αS = EJ/EJ,QD where EJ,QD denotes the effective quantum dot junction Josephson
energy. To do so we estimate EJ,QD from the calculated qubit frequencies of the singlet
and doublet obtained through the relation ħω01 ≈ √

8EJ,QDEc −Ec [162]. We find that
αS > 10 for almost all of the parameter range, exceeding 30 for low values of Vt. The
asymmetry is at its smallest for the upper values of Vt in the vicinity of ξ = 0, where we
find a minimum asymmetry αS = 4. We note that the effects of these variations in asym-
metry are fully captured by the numerical model; its effects are predominantly on the
modulation of the qubit transition frequency with flux and not on the position of the
singlet-doublet transition boundaries.

QUANTUM DOT JUNCTION CHARACTERIZATION

In this section we show the basic behaviour of the quantum dot gates when the refer-
ence junction is closed. Fig. 5.18 shows effective pinch-off curves for all three quantum
dot gates ramped together (a) and for each of them separately, when the other two are
kept at 1250 mV (b-d). This shows that each of the three quantum dot gates can inde-
pendently pinch off the quantum dot junction even if the other gates are in the open
regime, signifying strong lever arms and good gate alignment. We note that these are not
pinch-off curves as encountered in conventional tunnel spectroscopy. They reflect the
voltages at which there is no longer a measurable transmon transition frequency medi-
ated by the quantum dot junction, which could either be due to low tunneling rates or a
full depletion of the quantum dot.

We further note that the gate setpoint chosen for the measurements shown in the
main text should not be directly compared to the individual pinch-off curves shown here.
In panels (b-d) the non-varying quantum dot gates are kept fully open at 1250 mV which,
due to cross coupling between gates, results in lower pinch-off values than those at the
gate setpoint used for the measurements in the main text.

DEVICE TUNE UP

This section describes the process of tuning up the quantum dot gates to the setpoint
used for the main text figures. We start by closing the reference junction (VJ = −200 mV)
and going to a point in quantum dot gate voltages near pinchoff (VC = 100 mV, VL = 250 mV
and VR = 400 mV, see Fig. 5.18). Monitoring the frequency of the resonator while varying
one of the gates reveals small shifts away from its bare frequency which resemble the
shape expected for quantum dot resonances (Fig. 5.19(a)). Fixing the readout frequency
fr at the bare frequency of the resonator, one can map out the regions where these shifts
happen on a two-dimensional map versus the left and right gates (Fig. 5.19(b)). In such
maps, a pixel with a dark color indicates the resonator is not shifted from its bare fre-
quency while a bright pixel indicates a shift of the resonator frequency, which we can
use to identify potential regions of interest.

After identifying such a region in VL-VR space, we open the reference junction to its
set-point VJ = 640 mV, which lifts the reference transmon frequency to f 0

01 = 4.4GHz,
closer to the bare resonator frequency. This magnifies the dispersive shift of the res-
onator and, furthermore, brings the external flux into the picture. As shown in Fig. 5.19(e),
the asymmetric SQUID behaves as expected for different quantum dot gate setpoints.
The reference junction sets the reference value for the transmon frequency, f 0

01, and the
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quantum dot contributes with small variations above or below this setpoint due to con-
structive or destructive interference, respectively.

Fixing φext = 0 and repeating the initial measurement versus VR with the reference
junction open reveals much stronger deviations of the resonant frequency than before
(Fig. 5.19(c)). Importantly, the observed resonant frequency is now discontinuous, which,
as detailed in the main text, is a signature of a singlet-doublet transition of the quantum
dot junction. We tentatively identify the regions for which the resonator frequency is
shifted to lower values as doublet regions and perform single frequency readout versus
VR and VL, now with fr fixed at the resonator frequency corresponding to doublet re-
gions (Fig. 5.19(d)). The resulting two-dimensional map reveals regions for which the
transmission amplitude signal is low (dark regions in Fig. 5.19(d)) which we identify as
potential regions with a doublet ground state.

The next step for tuning up is identifying an isolated region where the quantum dot
is in a doublet ground state and exploring the behaviour versus the central quantum dot
gate. This is shown in Fig. 5.20. As VC is varied at φext = 0 (Fig. 5.20(c)), the resonator
first shows a displacement towards higher frequencies to then abruptly drop to a lower
frequency, to then finally go back to the higher frequencies once-more. As detailed in the
main text, we identify this behaviour with a singlet-doublet transition as the relative level
of the quantum dot ξ is being varied. Figs. 5.20(a) and (b) show how this central dou-
blet ground state region varies with each of the two lateral quantum dot gates. In both
cases we observe a dome shape, resembling the behaviour we would expect when vary-
ing the tunnel coupling between quantum dot and leads. However, these dome shapes
are rotated in VC-VR and VC-VL space. This is understood as the result of cross coupling
between the different quantum dot gates.

After identifying the cross coupling effect between different quantum dot gates, we
define a new set of virtual gates in an attempt to tune the model parameters indepen-
dently. We fix VL =470 mV (set-point kept for all results shown in the main text) and focus
on VR-VC space. Fig. 5.21(b) shows the dome shape previously identified in VR-VC space.
We identify a line along the dome (indicated with a dashed line) for which the quantum
dot level appears to be fixed and define new plunger virtual gate (VP, perpendicular to
this line) and right tunnel virtual gate (VT, along this line) (see Fig. 5.21(d)). This rotated
gate frame is the one used for the main text. Note that this routine does not guarantee
that VP does not affect the tunneling rates. It rather ensures that VT does not (strongly)
affect the quantum dot level ξ.

LARGER TUNNEL VOLTAGE RANGE

In Fig. 5.22 we show the behaviour of the singlet and doublet regions beyond the VT range
investigated in Fig. 5.5 of the main text. At φext = π we do not observe the doublet phase
boundary fully closing for any VT. According to theory, this should only occur if ξ ≈ 0
and ΓL ≈ ΓR are maintained at each gate setting in the experiment. That this condi-
tion would remain satisfied for any VT is implausible given the cross-coupling present
in the system. We instead speculate that at higher gate voltages the tunnel rates cease
to be a monotonically increasing function, which is substantiated by the tunnel gate de-
pendence at φext = 0. Here we observe a temporary recovery of the doublet region at
higher VT, which should not occur for increasing values of Γ. We further speculate that
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in this regime of increasingly large Γ/U the dot can eventually be tuned to a different
charge configuration, involving energy levels not captured by the single-level model.

We note that for these measurements only single tone spectroscopy was performed.
We therefore plot ∆ fr = fres − f 0

res, where f 0
res denotes the resonator frequency with the

quantum dot junction pinched off. Its qualitative interpretation is the same as that of
∆ f01 used in the main text.

STATE SELECTIVE SPECTROSCOPY

For the measurements performed close to singlet-doublet transitions, single-tone spec-
troscopy simultaneously shows two resonances whose relative depth varies with the dis-
tance from the transition. This is once more illustrated in Fig. 5.23, which shows single-
tone spectroscopy at several different VP regions while φext is varied. It corresponds to
the measurements of Fig. 5.4 of the main text. In panels (a) and (d) we observe only a
single resonance; at these plunger gate values the quantum dot junction is sufficiently
deep in the singlet and doublet parity sector respectively that only one state is occupied.
However, at the plunger gate values between these two regimes (panels (c-d)) the be-
haviour is more complex. We simultaneously observe two resonances and their depth
becomes a function of flux.

For the two-tone spectroscopy measurements in the main text we make use of the av-
eraged occupation of the states captured in the single-tone spectroscopy measurement
to identify most occupied state. This can be inferred from the relative depth of the reso-
nances: for example in Fig. 5.23(e) the most occupied state is the singlet, albeit by a small
margin. This in turn allows us to do state selective two-tone spectroscopy, revealing the
transmon transition that corresponds to the most occupied state of the system. To do
so we fix the frequency of the first tone fr at the bottom of the deepest resonance, cor-
responding to the most populated sector of the system. We illustrate this in Figs. 5.23(f)
and (g), where by fixing fr at the bottom of the resonance corresponding to the singlet
(doublet) state we observe a peak only when ft is equal to the transmon frequency cor-
responding to the singlet (doublet) state. It is this peak position that we report as f01.

MAGNETIC FIELD DEPENDENCE OF DEVICE A
In this section we elaborate on the analysis of the data shown in Fig. 5.6(c) in the main
text. When varying both φext and Bz in a measurement, one has to consider the possi-
bility of an unwanted misalignment of the magnetic field with respect to the nanowire
axis. This, in combination with the multiple orders of magnitude difference between the
applied Bz (hundreds of mT) and the Bx (less than 1µT) or By (several mT) needed to
thread a flux quantum through the SQUID loop, can result in big changes of the φext = 0
point for different values of Bz . Therefore, one has to re-calibrate the value of By that
corresponds to φext = 0 for each Bz value. To do so, we use the flux dependence of f01 at
a gate point for which the quantum dot junction ground state remains a singlet for the
whole Bz range as a reference for identifying φext = 0. This gate point is indicated with a
grey cross in Fig. 5.24(a).

The measurement shown in Fig. 6(c) is therefore performed as follows:

for each Bz value do
apply Bz
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for each By value do
apply By

measure f01 at the grey gate point
measure f01 at the green gate point

end for
end for

For each Bz value we then reconstruct the By dependence ofφext through the depen-
dence of the reference gate point (grey). Furthermore, we use this method to identify
points in By where flux jumps happen and correct for them. While they almost never
occur for small magnetic fields, and none of the other data required such a correction,
we found that at increasing Bz jumps would occur more often. We believe this is due
to a small misalignment between Bz and the plane of the chip. The resulting corrected
φext reference is shown in Fig. 5.24(b), while Fig. 5.24(d) shows several linecuts.

PARITY LIFETIME EXTRACTION PROCEDURE
In this section we elaborate on the analysis method for extracting the characteristic life-
times of the singlet and doublet states, Ts and Td. We start with a continuous measure-
ment at a fixed readout frequency where we monitor the demodulated output signal
integrated in time bins of tint = 2.3µs. This reveals a complex random telegraph sig-
nal jumping between two states in the (I,Q)-plane. The histogram of the acquired (I,Q)
points shows two states (Fig. 5.25(a)) whose centers define an axis X. A segment of the
measured telegraph signal, projected onto this X axis, is shown in Fig. 5.25(c). Taking the
histogram along this axis results in a double Gaussian distribution (Fig. 5.25(d)) that is
well-described by

g (x) = A1p
2πσ2

e
−(x−x1)2

2σ2 + A2p
2πσ2

e
−(x−x2)2

2σ2 (5.13)

Here, A1,2 are the relative populations of singlet and doublet occupation, x1,2 are the cen-
ters of each Gaussian and σ is their standard deviation. For the data shown in Fig. 5.25,
the fit results in A1 = 2169σ, A2 = 506σ, x1 = 0.37σ and x2 = −6.19σ, from which we
determine the SNR = |x1 −x2|/2σ= 3.28.

From the time domain information of the signal we construct its power spectral den-
sity (PSD), which is its squared discrete Fourier transform (Fig. 5.25(b))

SX ( f ) = ∆t

Nπ

∣∣∣∣∣ N∑
n=1

X (n∆t )e−i 2π f n∆t

∣∣∣∣∣
2

(5.14)

where X (t ) is the measured signal (as projected onto the previously defined X-axis),∆t =
2.3µs is the discrete time bin in which the data is measured, N = T

∆t is the number of
points and T is the total signal length. In practice we use Welch’s method with a Hanning
window [328] to calculate the power spectral density, dividing the trace into 50 sections
of length 40 ms that overlap by 20 ms and averaging the power spectral density of all
segments. This results in a spectrum that is well fit by a single Lorentzian of the form

S( f ) = A
4Γ

(2Γ)2 + (2π f )2 +B , (5.15)
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from which we obtain 1/Γ= 0.337 ms, A = 5.75 ·10−5 and B = 1.65 ·10−10 Hz−1.
Combining the amplitude ratio R = A1/A2 obtained from the Gaussian fit of the two

quadratures and the Γ value obtained from the Lorentzian fit of the PSD, we calculate

Ts = 1/Γs = 1+R

2ΓR
(5.16)

Td = 1/Γd = 1+R

2Γ
(5.17)

to obtain Ts = 0.89 ms, Td = 0.21 ms.

EXTENDED PARITY LIFETIME DATA

PARITY LIFETIMES LINECUT VERSUS FLUX

Fig. 5.26 shows the flux dependence of the lifetimes of the singlet and doublet states
at VP = 554.4 mV, which accompanies main text Fig. 5.7. We find that both singlet and
doublet lifetimes show an approximate sinusoidal dependence on the applied flux. As
discussed in the main text, this flux dependence most likely originates from the oscilla-
tion of the singlet-doublet energy gap with flux. However it could also be indicative of a
coherent suppression of the tunneling rates [255]. We further note that the sudden drops
in SNR are due to crossings of the transmon frequencies of the singlet and doublet states.
At these points both resonator frequencies become indistinguishable and their lifetimes
can not be measured.

POWER AND TEMPERATURE DEPENDENCE OF PARITY LIFETIMES

Here we present additional data on the readout power and temperature dependence of
the parity lifetimes shown in Fig. 5.7 of the main text. The power dependence at four
selected points across a phase boundary is shown in Figs. 5.27(c-f). Away from the tran-
sition (purple) and right on top of the transition (green) the readout power does not have
a strong effect on the extracted lifetimes in the investigated range. For plunger gate val-
ues VP closer to the transition, however, the asymmetry of the lifetimes decreases with
power (blue). Although the origin of this dependence is not clear, we conjecture it is
related to parity pumping effects [334].

Temperature dependencies at the same gate points, measured at a readout power of
-22 dBm at the fridge input, are shown in Figs. 5.27(g-j). Here the mixing chamber tem-
perature of the dilution refrigerator is measured with a ruthenium oxide resistance ther-
mometer and increased in a controlled step-wise fashion with a variable-output heater
mounted on the mixing chamber plate. We observe different effects of temperature for
each of the gate points. In general, there is a temperature independent regime at low
temperatures, followed by a temperature dependent drop above a certain characteris-
tic temperature, which varies over tens of mK for different gate points. For some of the
gate points, however, the temperature independent contribution is absent and the ef-
fect of increased mixing chamber temperature starts immediately at base temperature
(Fig. 5.27(i)). These results are indicative of non-equilibrium effects playing a role in the
physics of the devices under study, their exact behaviour dependent on the energy level
configuration of the quantum dot junction.
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PARITY LIFETIMES VERSUS TUNNEL GATE

To complement the data shown in Fig. 5.7 of the main text, taken at VT = −60 mV, we also
show the VT dependence of the parity lifetimes atφext = 0 in Fig. 5.28. As for device A, the
doublet ground state region exhibits a dome shape in VP and VT space, and at the tran-
sition between singlet and doublet ground states the lifetimes for both states become
equal. Away from the transition, the lifetime asymmetry increases and the lifetimes dif-
fer by more than one order of magnitude. We note that the gate compensation of device
B was not ideal, resulting in a small tilt of the dome.

Similarly to the behaviour shown in the main text for φext and VP, in this case we
also observe contours of equal ratio where the lifetime asymmetry abruptly increases
or decreases. For higher readout power these contours become accentuated, as shown
in Fig. 5.28(c). Furthermore, for higher power the region with similar lifetimes around
the ground state transition becomes wider. This is due to the parity lifetimes having a
different dependence on power for different regions in gate space. For most regions in
gate space there is again almost no dependence on readout power in the range explored
(Fig. 5.28(e,f)). However, on special gate regions, such as close to ground state transitions
(Fig. 5.28(g)) and on top of the observed contours (Fig. 5.28(d)), the lifetime asymmetry
decreases rapidly with power, similar to the effect shown in Fig. 5.27.
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Figure 5.16: Measurement setup at cryogenic and room temperatures.
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Figure 5.17: Reference junction characterization for device A. (a) VJ dependence of single-tone spectroscopy
when the quantum dot junction is pinched-off (VC = 52.4 mV, VL = 470 mV, VR = 373 mV). At low VJ values the
reference junction is pinched-off and EJ ∼ 0, thus the resonator is at its bare resonance frequency. As VJ in-
creases, the resonator frequency increases non-monotonically due to mesoscopic fluctuations of the overall
increasing transmission of different junction channels. (b) VJ-dependence of two-tone spectroscopy for the
VJ range indicated in (a) with a dashed line rectangle. The black lines in (a) and (b) indicate the VJ = 640 mV
set-point which sets the transmon frequency to its set-point used for the main text figures, f01 = f 0

01 = 4.4GHz.
(c) Line-cut of (a) at the VJ set-point, showing a resonance. (d) Line-cut of (b) at the VJ set-point, showing two
peaks. The highest peak, at higher frequency, appears when the second tone frequency matches the transmon
frequency ( ft = f 0

01). The lower peak corresponds to f02/2 and shows the anharmonicity of the transmon. For
(d), the first tone frequency fr is fixed at the bottom of the resonance, indicated with a grey arrow in (c). (e) Bz
evolution of f 0

01 and f02/2 at VJ = 640 mV.
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Figure 5.18: Quantum dot gates characterization for device A. (a) Gate voltage dependence
(VL = VC = VR = Vgate) of single-tone spectroscopy, showing how the quantum dot junction is pinched
off at Vgate values lower than 300 mV. (b-d) VC, VL and VR dependence, respectively of single-tone spec-
troscopy. In each panel, the two unused gates are kept at 1250 mV. This shows how each of the three quantum
dot gates can independently pinch off the quantum dot junction. For all panels, the reference junction is
closed (VJ = −200 mV). The black line in (b) indicates the value of VC = 100 mV at which Fig. 5.19 is taken. The
red line in (c) indicates the fixed value of VL = 470 mV at which all main text figures are taken.
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Figure 5.19: Quantum dot tune up for device A. (a) Single-tone spectroscopy measured at VL = 250 mV, ex-
hibiting two small resonances. Here the reference junction is fully closed (VJ = -200 mV). The red line indicates
the readout frequency used in panel (b). (b) Single frequency readout of the resonator. Bright colors indicate
a shift in the resonance frequency, marking the onset of supercurrent through the dot. The red line indicates
the VL value of panel (a). (c) Same as panel (a) but with the reference junction opened to the VJ = 640 mV
setpoint used throughout the manuscript. The two junctions in parallel form a SQUID, increasing the qubit
frequency and in turn the resonance frequency. Measured at φext = 0. (d) Same as panel (b) but with the ref-
erence junction set to VJ = 640 mV and φext = 0, measured at the frequency indicated with a red line in (c).
For (a-d), VC = 100 mV (close to pinchoff), indicated with a black line in Fig. 5.18. (e) f01 versus φext at fixed
VJ = 640 mV, for three quantum dot gates setpoints corresponding to a quantum dot junction which is fully
closed (grey), slightly open (violet) or very open (blue) showing the DC SQUID behaviour of the two parallel
Josephson junctions.
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Figure 5.20: Quantum dot gate dependence for device A. (a) Single frequency readout of the resonator at the
frequency indicated in Fig. 5.19(c) with a red line, performed versus VC and VR for fixed VL = 470 mV. (b) Same
as (a) but versus VC and VL and for fixed VR = 425 mV. (c) Single-tone spectroscopy versus VC, measured at
VL = 470 mV and VR = 425 mV, revealing a quantum dot resonance. For all panels φext = 0.
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Figure 5.21: Gate compensation for device A. (a) Single-tone spectroscopy versus VCat VR = 427 mV. (b) Single
frequency readout of the resonator measured versus the central (VC) and right (VR) quantum dot gate voltages,
performed at a at fixed VL 470 mV. The red line indicates the VR value of panel (a). (c) Resonator spectroscopy
versus VP at VT = 180 mV. (d) Same as (b) but in the transformed coordinate frame, measured vs. the virtual
plunger (VP) and right tunnel (VT) gate voltages. In (a) and (c), the red lines indicate the readout frequencies
used in panels (b) and (d), respectively. For all panels φext = 0.
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Figure 5.22: Extended VT dependence. (a)∆ fr versus VP and VT atφext = 0, revealing singlet (red) and doublet
(blue) ground state regions separated by sharp transitions. (b) Same as (a) but for φext = π. We note that
the plunger gate axis is shifted by about 5 mV with respect to (a) and the data shown in the main text, which
we speculate is due to an irreproducible gate jump. Dashed rectangles indicate the gate ranges in which the
measurements of Fig. 5.5 of the main text are taken.
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Figure 5.23: State selective spectroscopy. (a-d) φext dependence of single-tone spectroscopy at four represen-
tative VP values, indicated in Fig. 5.3 in the main text. Traces at intermediate VP values show two resonances
simultaneously due to switches on timescales faster than the integration time. (e) Linecut of (c) at φext = 0, in-
dicated by a black line in (c). (f) Two-tone spectroscopy at the same settings as in (e), with the first tone at the
frequency of the singlet resonance. The measurement shows a peak at the transmon frequency of the singlet
state. (g) Same as (f) but with the readout frequency corresponding to the doublet resonance, which shows a
peak at the transmon frequency of the doublet state.
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Figure 5.24: Data analysis for magnetic field dependence of device A. (a) and (b) show ∆ f01 versus Bz and
φext, measured the two gate points indicated in Fig. 5.6 with grey and green markers, respectively. In (a), the
singlet is the ground state for all Bz . This gate point is used to identify a flux reference for each Bz . For (b),
there is a singlet-doublet ground state transition with Bz , where the sinusoidal dashed line serves as a guide
for the eye. (c) f01 versus φext for the three Bz values indicated in (a) and (b). The dotted line indicates f 0

01,
which decreases with Bz as shown in Fig. 5.17(e).
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Figure 5.25: Parity lifetime analysis. (a) Logarithmic-scale histogram of the resonator response in the (I,Q)-
plane after integrating a 2 s time trace with time bins of tint = 11.4µs. It exhibits two separate Gaussian distri-
butions whose centers define an axis, X, indicated with a dashed line. (b) Power spectral density (black) of an
unintegrated 2 s time trace projected onto the X axis. In grey, best fit of a Lorentzian lineshape with a white
noise background (Eq. (5.14)). (c) 18 ms cut of the integrated response projected onto the X axis, revealing
jumps between two distinct states. (d) 1D histogram of the response in (a) projected onto the X axis (black)
and the best fit of a double Gaussian line-shape (grey, Eq. (5.13)). For all panels VL = 325 mV, VT = −60 mV,
VP = 551.4 mV, Bz = 0 and φext = 0.
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Figure 5.26: Flux dependence of parity lifetimes (a) φext dependence of single-tone spectroscopy at
VP = 551.4 mV. (b) φext dependence of the parity lifetimes extracted following the analysis in Fig. 5.25 at
VP = 551.4 mV. Markers indicate the mean and error bars indicate the maximum and minimum values of 10

consecutive 2 s time traces. SNR = |δx|
2σ is shown in greyscale in the background. For points where SNR < 1,

the extracted parity lifetimes are not shown as we do not consider them reliable. Measured at the same VT ,
VL and Bz as for Fig. 5.25.
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Figure 5.27: Power and temperature dependence of parity lifetimes across the singlet-doublet transition
(a) 2D map of log10(Td/Ts) versus VP and φext, extracted from a 2 s time trace for each pixel. This is the
same panel as Fig. 5.7(e) in the main text. (b) VP dependence of single-tone spectroscopy at φext = 0, across a
singlet/doublet transition. For (a) and (b), the mixing chamber temperature is 18 mK and the readout power
is −22 dBm. (c-f) Readout power dependence at 18 mK of the extracted parity lifetimes at the plunger points
indicated in (a) and (b). Markers indicate the mean and error bars indicate the maximum and minimum values
of 10 consecutive 2 s time traces. The SNR is shown in greyscale in the background. For points where SNR <
1, the extracted parity lifetimes are discarded. (g-j) Same as (c-d) but versus temperature and at a power of
−22 dBm. All powers are given at the fridge input.
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Figure 5.28: Tunnel, plunger and power dependence of parity lifetimes (a) ∆ fr = fres − f 0
res versus VP and

VT measured at φext = 0. It shows a regions of constructive and destructive interference, separated by sharp
dome-like boundary. (b) Two-dimensional map of log10(Td/Ts) versus VP and VT, measured at a power of
−22 dBm. (c) Same as (b) but for a power of −14 dBm. (d-e) Power dependence of the extracted parity lifetimes
at the gate points indicated in (a-c). All powers are given at the fridge input.
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SPECTROSCOPY OF SPIN-SPLIT ANDREEV

LEVELS IN A QUANTUM DOT WITH

SUPERCONDUCTING LEADS

We use a hybrid superconductor-semiconductor transmon device to perform
spectroscopy of a quantum dot Josephson junction tuned to be in a spin-1/2 ground
state with an unpaired quasiparticle. Due to spin-orbit coupling, we resolve two
flux-sensitive branches in the transmon spectrum, depending on the spin of the
quasi-particle. A finite magnetic field shifts the two branches in energy, favoring one
spin state and resulting in the anomalous Josephson effect. We demonstrate the
excitation of the direct spin-flip transition using all-electrical control. Manipulation
and control of the spin-flip transition enable the future implementation of charging
energy protected Andreev spin qubits.

The work in this chapter has been published as: A. Bargerbos∗, M. Pita-Vidal∗, R. Žitko, L.J. Splitthoff, L. Grün-
haupt, J.J. Wesdorp, Y. Liu, L.P. Kouwenhoven, R. Aguado, C.K. Andersen, A. Kou, and B. van Heck, Spectroscopy
of spin-split Andreev levels in a quantum dot with superconducting leads, arXiv e-prints 2208.09314 (2022).
The asterisk indicates authors that contributed equally to this work.
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6.1. INTRODUCTION
In the confined geometry of a Josephson junction, the Andreev reflection of an electron
into a hole at a normal-superconducting interface results in discrete Andreev bound
states (ABS) [18, 26, 44, 98, 175, 276]. ABS are of fundamental importance from the
perspective of mesoscopic superconductivity and are also at the basis of several qubit
proposals [59, 80, 234, 348]. In particular, when an ABS is populated by a single quasi-
particle, the trapped quasi-particle can serve as the superconducting version of a spin
qubit. In the presence of spin-orbit coupling, the Josephson phase difference φ may
break the spin degeneracy, coupling the spin degree of freedom to the supercurrent
across the junction [31, 59] and allowing for direct integration of spin qubits into su-
perconducting circuits for remote communication, transduction, or hybrid qubit plat-
forms [3, 183, 297].

Experimental work on InAs/Al nanowire Josephson junctions has shown the pres-
ence of the predicted spin-split ABS [124, 221, 312], culminating in the first demonstra-
tion of coherent Andreev spin qubit manipulation [123]. These remarkable experiments
were operated in a regime in which the spin-1/2 junction states were an excited mani-
fold and were thus susceptible to qubit leakage via quasiparticle escape or recombina-
tion, bringing the junction back into its spin-zero ground state. Furthermore, the direct
manipulation of the spin states proved unfeasible, likely due to the smallness of relevant
matrix elements [237], requiring complex excitation schemes involving auxiliary levels
[52, 123].

In chapter 5 we showed that embedding a gate-controlled quantum dot in the InAs/Al
Josephson junction makes it possible to tune its ground state to be an odd-parity spin-
1/2 state. In this doublet phase, the lifetime of the trapped quasi-particle can exceed
1 ms, likely benefiting from the large charging energy of the quantum dot suppressing
quasiparticle poisoning events.

In this Letter, employing the same transmon techniques as in chapter 5, we report the
detection of the spin-orbit-induced spin-splitting of the doublet states of a quantum dot
Josephson junction. The energy difference between spin states is smaller than the elec-
tron temperature, which would make it difficult to detect in transport measurements.
We also demonstrate that the spin-split states populations, as well as the spin-selective
transmon frequencies, can be controlled via external magnetic fields smaller than 40 mT.
In the presence of magnetic field, we furthermore observe the anomalous Josephson ef-
fect: a shift of the minimum of the energy-phase relation to a value φ0 which is neither
0 nor π or, equivalently, the presence of a non-zero equilibrium supercurrent at φ = 0
[46, 308, 342, 347]. Finally, we show that the spin states can be directly manipulated
by applying microwaves to a bottom gate, via the electric dipole spin resonance (EDSR)
[94, 107, 227, 231, 263, 317]. Our experiment is directly comparable to, and inspired by,
the theoretical proposal of Ref. [234], which we use to model the data, combined with
further understanding based on a modified single-impurity Anderson model (SIAM).

6.2. DEVICE & CONCEPTUAL OVERVIEW
At the core of our experiment lies the quantum dot Josephson junction, which is hosted
in a nominally 10µm-long InAs/Al superconductor-semiconductor nanowire with a 110 nm-
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S = 1/2 S = 0

200 nm

InAs/AlInAs

Figure 6.1: (a) False-colored scanning electron micrograph of the quantum dot junction. (b) Conceptual dia-
gram of the quantum dot junction with multiple energy levels. Black and blue-to-red arrows denote the spin-
conserving and spin-flipping tunnel couplings, respectively. (c) Josephson potential U versus the supercon-
ducting phase difference between the leads φ, shown for different quantum dot junction states: the singlet
state in orange, and the two doublet states in red and blue. The dotted gray line indicates the potential of the
doublet states in the absence of the ESO term. (d) Circuit model for a transmon with charging energy Ec and
a grounded SQUID formed by the parallel combination of a quantum dot junction and a reference Josephson
junction with Josephson energy EJ. δ denotes the phase difference across the reference junction, and Φext
is the external magnetic flux through the SQUID loop. (e) Level diagram of the joint transmon-quantum dot
junction system. The transmon transition frequencies |g 〉 ↔ |e〉 (vertical arrows) depend on the quantum dot
junction state. Coherent microwave transitions between singlet and doublet are forbidden. However, intra-
doublet spin-flip transitions are possible (diagonal arrows).
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wide hexagonal core and a 6 nm-thick shell covering two facets [173]. The quantum dot
is electrostatically defined in a 200nm-long wet-etched InAs section using three bottom
gate electrodes with voltages VL, VC and VR, and its superconducting leads are formed by
the flanking InAs/Al sections [Fig. 6.1(a)]. The bottom gates can be used to control the
occupation of the quantum dot and its coupling to the superconducting electrodes. This
results in two possible ground states of the quantum dot junction: either a spin-zero or
a spin-1/2 state. We are particularly interested in the latter case [Fig. 6.1(b)], where the
ground state manifold is spanned by the two components, |↓〉 and |↑〉, of a Kramers dou-
blet, and a minimal model for the potential energy of the quantum dot junction is given
by [234]

U (φ) = E0 cos
(
φ

)−ESO σ⃗ · n⃗ sin
(
φ

)+ 1

2
E⃗Z · σ⃗ . (6.1)

Here, σ⃗ is the spin operator, n⃗ is a unit vector along the spin-polarization direction set by
the spin-orbit interaction, and ESO and E0 are the spin-dependent and spin-independent
Cooper pair tunneling rates across the quantum dot junction. Note that the term pro-
portional to E0 has a minimum at φ=π. This π-shift originates from the odd occupancy
of the junction [104, 298] and distinguishes the Josephson energy from that of a conven-
tional tunnel junction. Finally, E⃗Z is a Zeeman field arising in the presence of an external
magnetic field.

The energy scales E0 and ESO can be understood as follows [234]: Cooper pair tunnel-
ing occurs via a sequence of single-electron co-tunneling processes through the quan-
tum dot energy levels. The spin-independent component E0 arises from those sequences
in which both electrons co-tunnel through the same energy level. The amplitude for
these sequences is the same whether the initial state of the quantum dot junction is |↓〉
or |↑〉. On the other hand, ESO arises from tunneling processes in which one electron co-
tunnels through the singly-occupied level, involving a spin rotation, while the second
one co-tunnels through a different level. Since in the presence of spin-orbit coupling
the single-electron tunneling amplitudes can be spin-dependent, for these processes the
pair tunneling amplitude may depend on the spin of the initial state.

The two potential energy branches of the doublet states at E⃗Z = 0⃗, E↓,↑ = E0 cosφ±
ESO sinφ, are sinusoidals with an amplitude of

√
E 2

0 +E 2
SO and minima at a phase φ0

of π± arctan(ESO/E0), see Fig. 6.1(c). If ESO = 0, the potential energy reduces to the
well-known π-junction behavior without spin-splitting. At non-zero ESO, the shift of
the minima away from φ = 0,π is a precursor [234] to the anomalous Josephson effect
[46, 347]; while at φ = 0 there will be instantaneous supercurrents on timescales short
compared to the spin lifetime, the time-averaged current will be zero due to thermal
fluctuations. For completeness, in Fig. 6.1(c) we also show the potential energy Es of the
lowest-energy singlet state |0〉, with a minimum at φ= 0, as expected for a conventional
Josephson junction.

We can derive the occurrence of both E0 and ESO within a minimally-extended SIAM
with superconducting leads. The SIAM is a simple model widely used to understand
quantum dot junctions, containing a single energy level coupled to the leads via spin-
conserving tunneling events [58, 104, 144, 153, 202, 209, 215, 232, 309, 343]. Only two
extensions to the SIAM are required to generate the spin-splitting term ESO: (i) spin-
flipping single-electron tunneling between the leads and the energy level [19, 66, 234,
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Figure 6.2: Comparison of singlet and spin-split doublet ground states in transmon two-tone spectroscopy. (a)
Transmitted microwave signal versus external flux,φext, and transmon drive frequency ft,drive for the quantum
dot junction in the singlet state. (b) Same as (a) for the doublet state, at gate setpoint A, revealing the spin-
splitting of the doublet state. The two ground states occur for two different gate voltage settings, as detailed in
chapter 5 and Sec. 6.7. Solid lines show fits to a transmon circuit model containing Eq. (6.1).

297] and (ii) inter-lead tunneling, resulting from integrating out the additional quantum
dot energy levels. These results are derived in Sec. 6.7 of the Supplementary Material,
together with a validation based on numerical renormalization group calculations (See
Sec. 6.7). In view of the strong spin-orbit coupling in InAs [90, 192] and the confinement
on the order of 100 nm [54, 316, 318], we expect both spin-flipping and spin-conserving
tunneling, as well as additional quantum dot levels, to be present in our device. Note
that within this model, the energy E0 in Eq. (6.1) may have either sign depending on
the relative strength of the two terms. While both situations may occur at different gate
settings in the same device, the tuning procedure to find a doublet ground state relies on
the detection of a π-shift (see chapter 5). Thus, our experiment naturally selects the case
E0 > 0, justifying the sign choice in Eq. (6.1).

To resolve the predicted spin-splitting we follow the method introduced in chapter
5 and incorporate the quantum dot junction into the superconducting quantum inter-
ference device (SQUID) of a transmon circuit [Fig. 6.1(d)] [162]. The different potential
energies corresponding to the states |0〉, |↓〉, or |↑〉 give rise to distinct transition frequen-
cies of the transmon circuit [Fig. 6.1(e)], which can be detected and distinguished via
standard circuit quantum electrodynamics techniques [34, 35]. We refer to the Supple-
mentary Materials for further details on the device implementation (Sec. 6.7).

6.3. TRANSMON BASED SPIN SPECTROSCOPY

To study the system in the regime of interest, we tune the quantum dot junction to a
spin-1/2 ground state, as detailed in Sec. 6.7, where we refer to this setpoint as gate set-
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point A 1. This is followed by a two-tone spectroscopy measurement for which we apply
both tones through the feedline and detect the transmon transition frequency as a func-
tion of the applied flux Φext. The flux is tuned with a small in-plane external magnetic
field applied perpendicular to the wire [333], requiring a 1.8 mT field for adding one flux
quantum through the SQUID. We note that, since the reference junction is tuned to have
a Josephson energy EJ/h = 12.5 GHz, much higher than that of the quantum dot junc-
tion, the phase difference across the latter is well approximated by φext = 2eΦext/ħ.

In Fig. 6.2(a), we show the typical flux dispersion observed in two-tone spectroscopy
when the gate voltages are such that the ground state is a singlet, with the maximum
frequency occurring at φext = 0. In fact, this measurement serves as a calibration of the
applied flux, which is assumed to be an integer multiple of the flux quantum when the
transmon frequency is maximal. In contrast, when the ground state is electrostatically
set to be a doublet, the transition spectrum displays two shifted frequency branches,
with maxima at φext = φ0 ̸= 0,π [Fig. 6.2(b)]. The measured spectrum is in good agree-
ment with that predicted by a transmon circuit model with the potential energy of Eq. (6.1),
with E0/h = 190MHz and ESO/h = 300MHz. The latter corresponds to a temperature
scale of 14 mK, indicating that transmon-based spectroscopy can experimentally resolve
the spin-orbit splitting of the doublet state well below the thermal broadening that typ-
ically limits tunneling spectroscopy experiments. Furthermore, the simultaneous ob-
servation of both transmon branches is indicative of a large thermal occupation of the
excited spin state, which prevents the splitting from being observable in switching cur-
rent measurements as the two contributions to the current cancel out.

We note that tuning the junction to a spin-1/2 ground state is not a sufficient con-
dition to observe the spin-splitting in the transition spectrum. By tuning the quantum
dot to different resonances, corresponding to a quasi-particle trapped to different lev-
els of the quantum dot, we frequently find instances of doublets without the predicted
splitting, such as the one studied in detail in chapter 5. There are also doublet states that
show a small, MHz-size spin-splitting comparable to the transmon linewidth, as well as
doublet states with larger splittings than shown in Fig. 6.2(b). This range of behaviours
is shown in the Supplementary Materials . We attribute this variability to mesoscopic
fluctuations [234], due to factors outside of our experimental control, such as disorder
and confinement effects on the quantum dot wave functions.

6.4. MAGNETIC FIELD DEPENDENCE
The transition spectrum is affected by magnetic field through the Zeeman interaction
and depends sensitively on the field direction with respect to the spin-orbit direction
n⃗. This is shown in Fig. 6.3, which shows the behaviour for two limiting cases: B∥, the
direction along n⃗, and B⊥, the direction perpendicular to n⃗ and in the chip plane. The
evolution for intermediate directions and the procedure used to infer n⃗ are discussed
in Supplementary Materials. The flux dispersion of the transition frequencies is only
weakly affected by increasing B∥ 2. Moreover, one of the two spin branches gradually

1Precise gate voltage values for different gate configurations are reported in the Supplementary Materials of
Sec. 6.7.

2We attribute the field-dependent change in flux dispersion to the renormalization of the impurity g -factor by
coupling to the leads, known as the impurity Knight shift [240].
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Figure 6.3: Magnetic field dependence of the doublet states for gate setpoint A. (a-d) Transmon spectroscopy
versus φext for a magnetic field applied either parallel (a,b) or perpendicular (c,d) to the inferred spin-orbit
direction n⃗. The vertical dashed lines indicate φext = π. (e-f) Numerically calculated φ-dependence of the
Josephson potential for the two doublet states, obtained by diagonalizing the model in Eq. (6.1), in the presence
of parallel (e-f) and perpendicular (g-h) Zeeman field. Blue and red colors denote |↓〉 and |↑〉 spin polarization,
respectively, with a blend of the two indicating mixing of the states. Panels (e-h) are not fits to the data of (a-d).
Instead, together with the contribution from the reference junction, constitute the potentials that determine
the transmon energy levels and serve to build a qualitative understanding (see text).

disappears [Fig. 6.3(a)] until at B∥ ≳ 23 mT only a single spectroscopic line remains vis-
ible [Fig. 6.3(b)]. In this regime, the minimum transmon transition frequency of the
single-valued dispersion is shifted by φ0 away from φext = 0. This is a consequence of
a φ0-shift of the maximum of the energy-phase relation away from φ = 0, as the trans-
mon transition frequency is given by the Josephson inductance, the second derivative
of the energy-phase relationship. This observation therefore demonstrates the presence
of the anomalous Josephson effect [46, 290, 308, 342, 347]. In contrast, increasing the
magnetic field along the B⊥ direction appears to couple the two spectroscopic lines,
leading to branches with two minima per flux period [Fig. 6.3(c)]. At even higher fields
this behaviour is lifted, and once-more only one of the two transmon branches persists
[Fig. 6.3(d)]. In this case, however, the φ0-offset has strongly decreased.

The observed behaviour can be qualitatively understood from Eq. (6.1) by consid-
ering the cases in which the Zeeman field is respectively parallel or perpendicular to
the spin-orbit direction. A parallel field E∥

Z separates the doublet potentials in energy
without distorting their phase dependence [Fig. 6.3(e-f)]. As the energy separation in-
creases, the thermal population of the higher-energy state decreases and, with it, so
does the visibility of the corresponding transmon frequency branch. As the transmon
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Figure 6.4: Direct spin-flip spectroscopy for gate setpoint B. (a-c) Measured flux dependence of the direct
|g ,↓〉 ↔ |g ,↑〉 transition frequency for no (a), parallel (b), and perpendicular (c) magnetic field relative to n⃗.
(d-f) Numerically calculated flux dependence of the |g ,↓〉 ↔ |g ,↑〉 transition frequency for no (d), parallel (e),
and perpendicular (f) Zeeman fields relative to n⃗.

frequency is insensitive to overall shifts in the energy-phase relation, it remains largely
unaffected by the φ-independent field-induced energy shift. A Zeeman term E⊥

Z per-
pendicular to the spin-orbit direction instead couples the two states and opens up an
avoided crossing in the Josephson potential [Fig. 6.3(g)]. This results in the peculiar flux
dependence seen in spectroscopy for moderate fields [Fig. 6.3(c)]. Finally, when E⊥

Z be-
comes much larger than ESO, the doublet states instead polarize along the applied field
direction [Fig. 6.3(h)], suppressing the φ0-offset [308, 347].

We note that, at this gate setpoint, the n⃗ direction does not appear to be directly re-
lated to the orientation of the nanowire, as it points 13 degrees away from the nanowire
axis. Moreover, this direction is found to be unique to each region in gate space, as dis-
cussed in the Supplementary Materials. This behavior differs from that of long single-
gated semiconducting Josephson junctions, where the n⃗ direction is perpendicular to
the nanowire axis [304, 312]. We attribute this variability to mesoscopic fluctuations of
the junction wavefunctions and of the direction of the electrostatic field when the gate
setpoint is changed [115].

6.5. DIRECT DRIVING OF SPIN FLIP TRANSITIONS
In order to use the doublet states as a superconducting spin qubit [59, 234], the ability
to drive transitions between the doublet states is crucial. Encouragingly, a recent work
by our group indicates that spin-flip transitions of ABS are possible in the presence of an
external magnetic field [333]. Further motivated by all-electrical microwave excitation
of spins in quantum dots via EDSR [227, 231], we apply a microwave tone directly to the
central gate to excite the doublet states. For this, we tune the transmon frequency close
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to the resonator frequency, enhancing its dispersive shift. In addition, we tune away
from the gate setpoint investigated so far (gate setpoint A) to a parameter regime with a
larger spin-splitting ESO/h = 560MHz (gate setpoint B) to maximize the visibility of the
doublet splitting (See Supplementary Materials).

Applying a microwave drive to the central gate electrode, we find that a low-frequency
transition of up to 1 GHz can be detected for a vanishing applied magnetic field 3, as also
shown in Ref. [221] [Fig. 6.4(a)]. Its poor visibility is potentially due to the lack of mag-
netic field, which reduces the efficacy of EDSR [94, 107], as well as to the large thermal
population of the excited state, which reduces the achievable change in dispersive shift.
This large thermal population can be expected from the fact that the spin-flip transition
energy corresponds to an effective temperature range of 0 to 50 mK, below the typical
electron temperatures found in transport and transmon [139] experiments, 35–100 mK.
At elevated B∥ the transition frequency rises and becomes well-resolved [Fig. 6.4(b)]. For
an applied perpendicular field the transition frequency increases more slowly, and its
flux periodicity is half that of the transition in the parallel field direction [Fig. 6.4(c)].
Note that the n⃗ direction found for gate setpoint B (72 degrees away from the nanowire
axis) differs from that of gate setpoint A, and that therefore B∥ and B⊥ in Fig. 6.4 point in
different directions than in Fig. 6.3.

The observed behaviour is consistent with the expected transitions between the dou-
blet states [Fig. 6.4(d-f)], with the period-halving in perpendicular field being a result of
the avoided crossings between the spin branches [c.f. Fig. 6.3(g)]. The comparison to the
model furthermore allows us to estimate the effective Landé g-factors in the parallel and
perpendicular directions, g∥ = 11 and g⊥ = 3.8 respectively. We note that the value and
the anisotropy of the g-factor depend strongly on the gate voltages (see Supplementar
Materials), likely tied to an interplay of spin-orbit coupling and confinement, beyond
the scope of the model considered here [64, 159, 283, 340].

6.6. CONCLUSIONS

To conclude, our microwave measurements have revealed the rich spin structure of en-
ergy levels in a quantum dot Josephson junction and the occurrence of the anoma-
lous Josephson effect. These findings are promising for applications in superconducting
spintronics [196, 293]. The ability to directly drive spin-flip transitions between the dou-
blet states has strong implications for the nascent field of Andreev spin qubits [59, 234],
since so far their coherent manipulation relied on fine-tuned Raman transitions through
auxiliary levels [52, 123]. Having direct, all-electrical access to these transitions promises
simpler and faster qubit manipulation [227, 317]. Furthermore, the polarization of the
doublet states at elevated magnetic fields eliminates the unwanted excited state popula-
tion observed in previous investigations [123, 124]. Finally, the demonstrated tunability
of the transition frequency, enabled by both flux and magnetic field, is a necessary in-
gredient for scalable networks of such qubits [297].

3The tuning of the external flux requires a small magnetic field, which for the data in Fig. 6.4(a) ranges from
−1.5 mT to 0.7 mT.
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6.7. SUPPLEMENTARY INFORMATION

THEORY
To solidify our understanding of the results and of the mechanisms that govern the size of
the spin splitting, we set up a minimal model that is able to reproduce the qualitative fea-
tures observed experimentally. Our starting point is an extension of the single-impurity
Anderson model (SIAM) for a quantum dot (QD) attached to two superconducting leads
[215], see Fig. 6.5. Compared to the standard SIAM, our model also contains spin-flip
tunneling between the impurity and the leads due to the presence of spin-orbit coupling,
as well as an additional direct tunneling term between the leads. The non-interacting
part of the Hamiltonian is

H0 =
∑
σ
ϵd †

σdσ+Ex Sx +Ey Sy +Ez Sz

+ ∑
i ,kσ

ϵk c†
i ,kσci ,kσ+

∑
i ,k
∆i

(
e iφi c†

i ,k↑c†
i ,k↓+H.c.

)
+ ∑

i ,kσ

(
Vi ,k c†

i ,kσdσ+H.c.
)
+ ∑

i ,kσ

(
iWi ,k c†

i ,kσdσ̄+H.c.
)

+ ∑
k,k ′,σ

(
tc†

L,kσcR,k ′σ+H.c.
)

.

(6.2)

The first line describes the QD level ϵ closest to the Fermi level (the “resonant” level),
subject to an external magnetic field E⃗Z with the components Ex , Ey and Ez expressed

in units of energy (i.e., as Zeeman energy contributions). The operator d †
σ is the creation

operator for an electron in the resonant level, and Sx , Sy , Sz are impurity spin operators.
The second line describes two superconductors with the dispersion relation ϵk and order
parameters ∆i exp(iφi ). The operator c†

i ,kσ is the creation operator for an electron in
the left (i = L) or right (i = R) superconductor, in level k and with spin σ. The third
line describes the QD-superconductor hybridisation; we include both spin-preserving
and spin-flipping processes with amplitudes Vi ,k and Wi ,k , respectively. The notation σ̄
denotes spin inversion, ↑̄ =↓, ↓̄ =↑. Alternatively, we may characterize the tunnel barriers
via tunneling rates ΓL = πρ|VL,kF |2 or ΓR = πρ|VR,kF |2 for spin-preserving processes, and
γL = πρ|WL,kF |2 or γR = πρ|WR,kF |2 for spin-flip tunneling. Here ρ is the normal-state
density of states and we took the matrix elements at the Fermi level, hence at k = kF .
Finally, the last line accounts for the presence of all other (“non-resonant”) levels in the
QD: the electron can also cotunnel through the QD via those high-lying levels, which
provides another conduction pathway through the dot. Formally, we may consider this
term to arise from integrating out all other levels in the QD, so that

t = ∑
l ,k,k ′

V ∗
L,k;l VR,k ′;l

∆ϵl
, (6.3)

where we sum over all “non-resonant” levels, VL/R,k;l are the corresponding tunneling
amplitude, while ∆ϵl are the energy levels. (For simplicity, we are disregarding interac-
tions and spin-flip processes.) The inter-lead hopping term makes the model resemble
those for a QD embedded in a nanoscopic Aharonov-Bohm ring [152]. The model breaks
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ee

Figure 6.5: Model diagram of the quantum dot junction. Two s-wave superconductors are connected via tun-
nelling rates to a single level quantum dot. ΓL,R and γL,R denote, respectively, the spin-conserving and spin-
flipping tunneling rates between the superconducting leads and quantum dot. ΓLR denotes a spin-conserving
effective tunneling rate between the superconducting leads via all remaining energy levels, with ΓLR =πρ|t |2.

down if the level spacing is too small (less than the scale of ΓL/R): in that case one should
use a multi-orbital Anderson impurity model instead.

In addition to this last term, we could also include the spin-flip tunneling through
high-lying levels, however this brings about no new qualitative effect. As we will show, for
what follows, the important element is that the ratio of spin-flip to spin-preserving tun-
neling rate is different for the resonant level and for the aggregate tunneling rate through
all remaining non-resonant levels. This generic situation is expected to hold in most cir-
cumstances due to mesoscopic variability of tunneling matrix elements for different QD
levels. The hopping elements, Vi ,k , Wi ,k and t , are in general complex-valued (“direc-
tional”): if we reverse the electron flow direction, the amplitude needs to be complex
conjugated.

The interacting part of the Hamiltonian is standard:

Hint =Uee n↑n↓, (6.4)

where Uee is the electron-electron repulsion on the QD and nσ = d †
σdσ is the occupancy

operator.
The model is analytically tractable in the regime ∆L,∆R ≫ Uee (the “superconduct-

ing atomic limit”[2, 153, 217, 232, 268, 309, 321]) and in the regime ΓL,ΓR ≪ Uee (the
perturbative limit). We find that it is particularly instructive to integrate out the super-
conducting electrons and compute the hybridization matrix for this Hamiltonian. This
leads to relatively simple closed-form expressions that can be used to construct a highly
simplified model. Such a model nevertheless seems to be sufficient to account for the
full range of the observed behaviors. The analytic calculations may be verified with ex-
plicit calculations using the numerical renormalization group (NRG) techniques, prob-
ing their validity over a wide range of parameters.

ANALYTICS

We work in the 4×4 Nambu representation with

d †
a =

(
d †
↑ d↓ d †

↓ d↑
)

. (6.5)

Similar notation is used for the ck operators in the superconducting leads. We will use
indexes from the beginning of the alphabet, a,b, . . ., to denote the Nambu-space index
1,2,3,4. We define the Green’s function (GF) matrices Gab(z) = 〈〈da ;d †

b〉〉z and Fab,i k (z) =
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〈〈da ;c†
i k,b〉〉z ; here 〈〈A;B〉〉z denotes the Laplace transform of the Green’s function, 〈〈A;B〉〉z =∫ ∞

0 e i zt 〈〈A;B〉〉t dt , where 〈〈A;B〉〉t =−iΘ(t )〈{A(t ),B(0)}〉 is the retarded GF. In this nota-
tion, the equations of motion (EOMs) take the form z〈〈A;B〉〉z = 〈{A,B}〉+〈〈A; [H ,B ]〉〉z .
The EOM for the QD take the form

zG(z) =I +G(z)H0 +
∑
i ,k

Fi k (z)Vi k +U(z). (6.6)

Here the argument z = ω+ iδ is complex frequency, I is the identity matrix, H0 corre-
sponds to the Nambu matrix representation of the non-interacting part of the impurity
Hamiltonian:

H0 =


ϵ+Ez /2 0 (Ex − i Ey )/2 0

0 −ϵ+Ez /2 0 −(Ex − i Ey )/2
(Ex + i Ey )/2 0 ϵ−Ez /2 0

0 −(Ex + i Ey )/2 0 −ϵ−Ez /2

 , (6.7)

Vi k contains the hopping matrix elements:

Vi k =


Vi ,k 0 iWi ,k 0

0 −V ∗
i ,k 0 iW ∗

i ,k
iWi ,k 0 Vi ,k 0

0 iW ∗
i ,k 0 −V ∗

i ,k

 , (6.8)

and U(z) contains the contributions of the interacting part of the Hamiltonian, Hint. The
EOMs for mixed GFs Fi k (dropping the frequency argument z in GFs for clarity) may be
written as

FLk [zI −HLk ] = GV†
Lk +FRT∗,

FRk [zI −HRk ] = GV†
Lk +FLT,

(6.9)

with

Hi k =


ϵk e+iφi∆i 0 0

e−iφi∆i −ϵk 0 0
0 0 ϵk −e iφ1∆1

0 0 −e−iφ1∆1 −ϵk

 , (6.10)

T =


t 0 0 0
0 −t∗ 0 0
0 0 t 0
0 0 0 −t∗

 , (6.11)

and
Fi =

∑
k

Fi k . (6.12)

Using the lead propagator Gi k = [zI −Hi k ]−1, this may be rewritten as

FLk = GV†
Lk GLk +FRT∗GLk ,

FRk = GV†
Rk GRk +FLTGRk .

(6.13)
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We now assume that Vi k and Wi k do not depend on k, i.e., Vi k ≡Vi and Wi k ≡Wi ; this is
a reasonable approximation for the relevant bath levels in the vicinity of the Fermi level.
We define Gi =∑

k Gi k and we sum the EOMs over k:

FL = GV†
LGL +FRT∗GL,

FR = GV†
RGR +FLTGR.

(6.14)

or (
FL FR

)( I −TGR

−T∗GL I

)
= G

(
V†

LGL V†
RGR

)
. (6.15)

The important observation here is that Fi are proportional to G. This means that the
third term in the EOM (6.6) can be written as∑

i k
Fi k (z)Vi k = G(z)∆(z), (6.16)

where ∆(z) is the hybridization matrix which describes the renormalization of the QD
level due to electron excursions in the superconducting leads. Eq. (6.15) can be solved
for each Fi individually, but the expressions are very lengthy and not very informative.
Instead, we proceed with calculating the hybridization matrix ∆(z) = [G(z)]−1 ∑

i Fi Vi .
We furthermore assume that t is real and introduce the dimensionless quantity t̃ =πρt .
We also set φL =φ/2 and φR =−φ/2. Finally, we take the large-∆ limit of the lead propa-
gator

Gi k = 1

z2 − (∆2
i +ϵ2

k )


z +ϵk e iφ1∆i 0 0

e−iφi∆i z −ϵk 0 0
0 0 z +ϵk −e iφi∆i

0 0 −e−iφi∆i z −ϵk

 (6.17)

to obtain

Gi =
∑
k

Gi k =−πρ


0 e iφi 0 0

e−iφi 0 0 0
0 0 0 −e iφi

0 0 −e−iφi 0

 . (6.18)

With these assumptions and simplifications in place, the hybridisation matrix can be
written as

∆(z) = πρ

1+2t̃ 2 cosφ+ t̃ 4


−2a b −2c 0
b∗ 2a 0 2c
−2c 0 −2a −b

0 2c −b∗ 2a

 , (6.19)

where we introduced the following notation

a = (VLVR +WLWR)t̃ (t̃ 2 +cosφ),

bi =V 2
i +W 2

i ,

b = e−iφ/2(bR + t̃ 2bL)+e+iφ/2(bL +bR t̃ 2),

c = (VRWL −VLWR)t̃ sinφ.

(6.20)
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The key feature of this expression is that this matrix includes terms in the out-of-diagonal
2× 2 blocks. These correspond to the presence of an effective magnetic field in the x
direction that induces the spin polarization along this same direction. The particular di-
rection (x) results from the assumed form of the spin-orbit-coupling terms in Eq. (6.2)
and from assuming real VL,R, WL,R and t . In terms of second quantization operators, the
hybridisation matrix corresponds to the following form:

∆hyb = πρ

1+2t̃ 2 cosφ+ t̃ 4

(
−2a

∑
σ

d †
σdσ−4cSx +bd †

↑d †
↓ +b∗d↓d↑+const.

)
. (6.21)

Not all terms contribute in both spin sectors. The pairing terms proportional to b are
only relevant in the spin-singlet sector, while the effective spin-splitting terms propor-
tional to c are only relevant in the spin-doublet sector. The potential term proportional
to a contributes in both subspaces. Since we are interested only in the S = 1/2 subspace,
in the following we concentrate on this particular 2×2 subspace. We find that the effec-
tive Hamiltonian of the doublet sector in the ↑,↓-basis is given by

Heff =
(

ϵ+Ez /2
(
Ex − i Ey

)
/2(

Ex + i Ey
)

/2 ϵ−Ez /2

)
− 2πρ

1+2t̃ 2 cosφ+ t̃ 4

(
a c
c a

)
. (6.22)

This model is exact in the double limit Uee → 0,∆L,R →∞. In general, one expects correc-
tion factors to parameters that depend on both ∆L,R and Uee , which control the energy
cost of charge fluctuations from the doublet state. These corrections can be accurately
computed using the NRG method. Nevertheless, the general form remains the same, as
confirmed by numerical calculations, see below. Most importantly, the conditions for
the matrix element c to be non-zero, as revealed in this calculation, hold fully generally,
and are the following: a) the presence of additional QD levels (i.e., nonzero parameter t
in the generalized SIAM), b) the presence of both spin-preserving and spin-flip tunnel-
ing (so that the combination VRWL−VLWR is non-zero, which is expected to be generally
true except in cases of accidental cancellation), c) finite phase bias φ.

We need to note that in the superconducting atomic limit the doublet state in the
standard superconducting-SIAM model does not depend on the phase bias φ, as can be
checked by taking the limit WL,R → 0 and t → 0 in Eq. (6.22). However, away from the
superconducting atomic limit an additional diagonal term ED cos(φ) arises, with ED > 0.
This term is generated by fourth-order processing in hopping (second order in hybridi-
sation) and has a minimum at φ = π [298], as typical for Josephson junctions with an
odd-parity ground state.

Assuming VL = VR ≡ V , WL = −WR ≡ W (note that this sign for Wi choice merely re-
flects the sign convention in the Hamiltonian and actually corresponds to the symmetric
situation with the same amplitude for the left SC to QD and for the QD to right SC spin-
flip tunneling), and defining

ΓV =πρV 2, ΓW =πρW 2,

the second term of Eq. (6.22) can be written as

2t̃

1+2t̃ 2 cosφ+ t̃ 4

(
(ΓV −ΓW )

(
t̃ 2 +cosφ

)
2
p
ΓV ΓW sinφ

2
p
ΓV ΓW sinφ (ΓV −ΓW )

(
t̃ 2 +cosφ

)) . (6.23)
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Assuming that t̃ ≪ 1, we can simplify the model further by performing a series expansion
to obtain

2t̃

(
(ΓV −ΓW )cosφ 2

p
ΓV ΓW sinφ

2
p
ΓV ΓW sinφ (ΓV −ΓW )cosφ

)
. (6.24)

Defining
Et = 2t̃ (ΓV −ΓW ) , ESO = 4t̃

√
ΓV ΓW , (6.25)

we find the approximate small t̃ Hamiltonian given by (up to a constant):

Heff =
(

Ez /2
(
Ex − i Ey

)
/2(

Ex + i Ey
)

/2 −Ez /2

)
−

(
Et cosφ ESO sinφ

ESO sinφ Et cosφ

)
. (6.26)

This expression takes the form of the phenomenological potential for the transmon cir-
cuit given by main text Eq. (6.1). Given that there is a potential cancellation of the Et

term, it is prudent to include in the model an addition term of the form ED cos(φ) from
processes that are higher-order in hybridisation. This term will combine with −Et cos(φ)
to produce the +E0 cos(φ) potential with E0 = ED −Et in Eq. (6.1). Note that E0 can take
either a positive or negative sign.

Within the limit considered here, we find that ESO depends on each of the three types
of coupling in the model: spin-conserving, spin-flipping, and direct lead-lead tunneling.
All three have to be present for the spin-splitting to occur. Furthermore, it may happen
that the cosine term drops out if the prefactors of all contributions add up to zero, result-
ing in a Josephson potential shifted byπ/2 compared to the singlet state. This fine-tuned
situation is indeed encountered in the experiment as discussed later in the Supplemen-
tary Materials.

It is instructive to evaluate the eigenvalues of the isolated quantum dot junction. In
the simplified model of Eq. (6.1) these are given by

E↑,↓ = E0 cosφ± 1

2

√
E 2

y +E 2
z +

(
Ex −2ESO sinφ

)2. (6.27)

For Ey = Ez = 0, this simplifies to

E↑,↓ = E0 cosφ± (
Ex /2−ESO sinφ

)
(6.28)

The Zeeman field parallel to ESO enters as a constant offset, which does not change the
curvature of the potential and does not affect the transmon frequency. Furthermore, this
results in the spin-flip transition frequency given by

E↑−E↓ = Ex −2ESO sinφ (6.29)

which is linear in the applied Zeeman field. Setting Ex = Ey = 0 instead, we find

E↑,↓ = E0 cosφ± 1

2

√
E 2

z +4E 2
SO sin2φ (6.30)

Here the Ez term does enter the curvature of the potential, thus affecting the transmon
frequency. Furthermore, the resulting in the spin-flip qubit transition frequency is given
by

E↑−E↓ =
√

E 2
z +4E 2

SO sin2φ (6.31)
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The presence of the sin2φ term results in the doubling in periodicity we observe in the
perpendicular field dependence of main text Fig. 6.4(c) compared to the parallel field
dependence of Fig. 6.4(b).

NRG CALCULATIONS

The proposed model has very little symmetry: the spin-orbit coupling fully breaks the
rotational SU(2) spin symmetry, and the BCS mean-field approximation breaks the U(1)
charge conservation. The only remaining symmetry is Z2 fermionic number parity (even
or odd total number of electrons in the system). Furthermore, the Hamiltonian has
complex-valued matrix elements. Nevertheless, the quantum impurity problem can
still be solved using the conventional impurity solver, the numerical renormalization
group (NRG), albeit at quite significant computational cost. The NRG method consists
of discretizing the continua (two superconducting baths), their transformation into Wil-
son tight-binding chains, and an iterative diagonalization of the resulting chain/ladder
Hamiltonian. We performed a very coarse discretization with the discretization param-
eter Λ = 8; nonetheless, for the purposes of computing energy splitting, this remains
a surprisingly good approximation. We retain up to 3000 states in each NRG step. On
8 cores of an AMD EPYC 7452 processor, such NRG calculations take approximately 15
minutes for each parameter set. The band is assumed to have a constant density of states
in the interval [−D : D]. In the following, all model parameters will be given in units of
half-bandwidth D .

We first verify the findings from the analytics, specifically the spin splitting induced
by the combination of the spin-flip scattering, the presence of multiple levels in the QD
(represented by the interdot tunneling term t ), and finite superconducting phase dif-
ference between the two SC contacts, as described by the ESO sinφ terms in the effective
Hamilotinian with ESO = 4t̃

p
ΓV ΓW = 4t̃ΓV

p
ΓW /ΓV , see Eqs. (6.25) and (6.25). In Fig. 6.6

we plot the dependence of the splitting E↑−E↓ as a function of key parameters. We in-
deed observe that the splitting is linear in the hybridisation Γ for fixed ΓW /ΓV ratio, in
the ratio W /V = p

ΓW /ΓV and in the hopping t . Finally, we also ascertain the sin(φ)
dependence of the splitting. We have thus confirmed that the splitting is linear in t , Γ,
W /V , and φ for small parameter values.

The dependence on other model parameters, in particular Uee and ∆, is not sim-
ple. The parameters Uee and ∆ control the energy cost of charge fluctuations, and the
behavior depends not only on their ratio, but also on their values compared to the hy-
bridisation Γ as well as the bandwidth D . The simplest case is the linear regime of small
parameter Γ, where the splitting is simply inversely proportional to 1/(Uee /2+∆) to a
good approximation, see Fig. 6.7(a). For larger Γ, we observe deviations from this simple
form, see Fig. 6.7(b). It is also instructive to consider the dependence on ∆ at fixed Uee .
The limit of small Uee is merely of academic interest, because the doublet state is then a
(highly) excited state: we find a roughly linear dependence on∆, see Fig. 6.7(c). For large
Uee , however, we find a complex dependence that furthermore depends on the value of
Γ, showing a cross-over from quadratic dependence for∆≪ Γ to a roughly linear depen-
dence for ∆≳ Γ, see Fig. 6.7(d). From these plots we conclude that the dependence on
Uee , ∆ and Γ (when Γ is not small) is highly non-trivial and should in general be com-
puted numerically (e.g. using the NRG method).
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Figure 6.6: Scaling of the induced spin splitting in the doublet state with parameters ΓV , ΓW , and t , as well as
the φ-dependence. Unless stated otherwise, the parameter set is Uee = 1, ϵ=−Uee /2, ΓV = 0.02, ΓW = ΓV /5,
t = 0.1, ∆ = 0.01, φ = π/4. (a) ΓV -dependence, demonstrating the linearity of splitting as a function of the
hybridisation strength, with small non-linear corrections for large ΓV . (b) ΓW /ΓV -dependence, demonstrat-
ing the linearity of splitting as a function of the ratio of spin-flip over spin-preserving tunneling processes to
the impurity orbital in resonance. (c) t-dependence, demonstrating the linearity of splitting as a function of
cotunneling through non-resonant impurity levels. (d)φ-dependence, showing a very clean sin(φ) behavior of
the spin-splitting, as predicted by the reduced analytical model.

In Fig. 6.8 we explore the three contributions to the doublet potential: the conven-
tional doublet ED cos(φ) potential with the minima at φ = ±π, the ESO sin(φ) potential
due to spin-flip scattering with minima at φ = ±π/2, as well as the −Et cos(φ) potential
due to cotunneling though the multiple levels of the QD with minimum at φ = 0, see
Fig. 6.8. We plot the results for a range of t starting from zero; this case serves as a ref-
erence from which we extract the standard ED part. With increasing t , both ESO as well
as Et increase. This displaces the minima in the effective potential from φ=±π towards
φ = ±π/2. When Et becomes equal to ED , the cos(φ) part of the potential cancels out.
For Et > ED , the minima move past φ=±π/2 and tend toward φ= 0.

A major time-saving procedure is to incorporate the effects of the external magnetic
field as a perturbation to the results of an NRG calculation for a Hamiltonian without
any field terms. This ploy rests on the observation that the impurity spin operators are
exactly marginal (in the renormalization-group sense): their matrix elements remain of
the same order of magnitude throughout the NRG iteration, i.e., they neither blow up
nor decay to zero. The method may hence be dubbed the “marginal-operator trick”. The
idea is to perform the NRG iteration of spin operators Sx , Sy , Sz through unitary trans-
formations to find the effective spin operators in the NRG eigenbasis in the low-energy
sector. These are then added to the effective Hamiltonian with bare Zeeman energies Ex ,
Ey , Ez :

Heff =
∑
w

E(w) |w〉〈w |+Ex S̃x +Ey S̃y +Ez S̃z . (6.32)

Here w indexes the eigenstates |w〉 with eigenenergies E(w), while S̃i are the trans-
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Figure 6.7: Scaling of the induced spin splitting in the doublet state with parameters Uee and ∆. Other pa-
rameters as in Fig. 6.6. (a) Uee -dependence at ΓV = 0.002 showing the cross-over from the Uee ≪ ∆ regime
to the Uee ≫ ∆ regime. (b) Same as a, but for stronger hybridisation ΓV = 0.02, showing the more complex
behavior away from the low-ΓV limit. (c) ∆-dependence at ΓV = 0.02, showing that the splitting is roughly
proportional to ∆ in the Uee ≫ Γ,∆ regime. (d) Same as (c), but for ΓV = 0.002 and much smaller Uee = 10−5

(non-interacting limit), showing quadratic scaling for ∆≪ Γ that crosses over into linear scaling for ∆≫ Γ.

formed spin matrices in this same basis. The basis can be truncated to a small number
of levels; in many cases it is sufficient to retain solely the subgap states. This effective
Hamiltonian may then be diagonalized at negligible numerical cost for arbitrary values
of Ex , Ey and Ez . In case where only two (subgap) states are retained one can even
write down closed-form expressions for eigenenergies and eigenstates. The marginal-
operator trick is a good approximation up to Zeeman energies comparable to the BCS
energy gap ∆, as it has been ascertained by comparisons with the NRG calculations with
the Zeeman terms included from the outset, see Fig. 6.9. This method is clearly very
generally applicable to any problem involving marginal operators in the Hamiltonian,
obviating the need for costly parameter sweeps in multidimensional spaces.

TRANSMON DIAGONALIZATION

Having established how to calculate an effective potential in the doublet sector, we now
turn to its inclusion in the Hamiltonian of the encompassing transmon circuit [162]:

H =−4Ec∂
2
φ+EJ(1−cosδ)+U (φ), (6.33)

where Ec and EJ denote the charging energy of the transmon island and the Josephson
energy of the reference junction, respectively, and U (φ) denotes the effective doublet
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Figure 6.8: Decomposition of the doublet potential energy into its components. We show the results for various
values of t , as indicated for each panel. All plots have the same axis ranges in order to permit direct comparison
of magnitudes. (a-e) Total potential for the two spin states. (f-g) ED cos(φ) potential, common to all cases
(black), −Et cos(φ) (green) and ESO sin(φ) (grey) contributions. We find ED = 4.3310−3 (same for all t ) and the
Et /ED and ESO/ED ratios indicated for each panel. Other model parameters are Uee = 1, ϵ=−Uee /2, ∆= 0.1,
ΓV = 0.2, ΓW /ΓV = 1/5.

potential of main text Eq. (6.1). The two phase drops across the quantum dot junction
(φ) and across the reference junction (δ) are connected according to φ−δ=φext, where
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Figure 6.9: Comparison of the energies of the doublet subgap states as a function of the phase bias computed
using the standard NRG procedure (solid lines) and using the “marginal-operator trick” approximation (dis-
continuous lines). Vertical scale is the same for all panels. Model parameters are Uee = 1.5, ΓL = ΓR ≡ Γ= 0.2,
γL = γR = 0.2Γ, t = 0.1, ϵ= 0.1−Uee /2, ∆= 0.1.

φext = (2e/ħ)Φext is the phase difference resulting from the externally applied magnetic
flux through the SQUID loop,Φext [Fig. 6.1(d)].

Following Ref. [169] and chapter 4, we numerically diagonalize (6.33) in the phase
basis. This results in the energy levels En as well as the associated transition frequencies
fnm = (Em −En)/h, capturing both the transmon and the spin-flip transitions. Having
calculated the transition frequencies, fits can be made to the data. This is done to ob-
tain the estimates for the effective model parameters found in the main text and in the
next sections, using Ec/h = 284MHz and EJ/h = 12.4−−12.7GHz as reference junction
parameters. Note that the reference junction gate voltage is generally held fixed in the
experiment, and that the range in EJ is the result of cross-coupling between the quantum
dot and reference junction gate lines.

Here we note that the sinusoidal reference junction potential used in Eq. (6.33) is that
of a conventional superconductor-insulator-superconductor (SIS) tunnel junction, gov-
erned by many weakly transparent channels. Previous work has found that nanowire-
based Josephson junctions are more accurately described by several or even a single
transport channel, leading to a more skewed potential shape [167]. This can result in
a reduction of the the qubit anharmonicity, and thus an underestimation of Ec when
using the SIS potential. However, the inclusion of a more involved potential introduces
additional fitting parameters, and obtaining unique solutions is not guaranteed. This
holds in particular because the reference junction is operated far from its pinchoff volt-
age, such that several channels are expected to contribute to the potential. We therefore
choose to use the SIS potential throughout the Letter. In practice, this choice affects the
value of Ec that is extracted from the fit, which in turn rescales the extracted values of E0

and ESO.
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DEVICE AND EXPERIMENTAL SETUP

DEVICE OVERVIEW

The physical implementation of the device studied is shown in Fig. 5.2. It is analogous to
that of chapter 5, repeated here for convenience. The chip, 7 mm long and 2 mm wide,
consists of four devices coupled to a single transmission line with an input capacitor
to increase the directionality of the outgoing signal [Fig. 5.2(b)]. For the experiments
performed in this Letter only two of the devices were wire-bonded: the device measured
in the main text, and a second device, which was not functional.

For each device, a lumped element readout resonator is capacitively coupled to the
feedline [Fig. 6.10(c)]. The resonator is additionally capacitively coupled to the trans-
mon island, which is connected to ground via a SQUID loop formed by the reference
and quantum dot junctions [Fig. 6.10(d)]. Both junctions are implemented on a sin-
gle 10 um-long epitaxial superconductor-semiconductor nanowire with a 110 nm-wide
hexagonal InAs core and a 6 nm-thick Al shell covering two of its facets, in turn covered
by a thin layer of aluminium oxide. The growth conditions were almost identical to those
detailed in Ref. [173], with the only two differences being that this time the As/In ratio
is 12, smaller than in Ref. [173], and that the oxidation of the Al shell is now performed
in-situ, for better control, reproducibility and homogeneity of the oxide layer covering
the shell. Inspection of the nanowire batch, performed under a scanning electron mi-
croscope directly after growth, indicated an average wire length of 9.93± 0.92µm and an
average wire diameter of 111±5 nm. For the device investigated here, the two facets of
the aluminum shell are situated on the top part of the nanowire. The two junctions are
defined in two uncovered nanowire sections (110 nm-long for the reference junction and
200 nm-long for the quantum dot junction). A zoom-in of the the quantum dot junction
is shown in Fig. 6.10(e). The reference junction is controlled by a single 110 nm-wide
electrostatic gate, set at a DC voltage VJ. The quantum dot junction is defined by three
40 nm-wide gates separated from each other by 40 nm. We note that in Fig. 6.1(e) the
gates appear wider (and the gaps between gates appear smaller) than stated due to dis-
tortion by the gate dielectric layer. The outer two gates are set at DC voltages VL and
VR. The central gate is connected to a bias-tee formed by a 100 kΩ resistor and a 100 pF
capacitor. This permits the simultaneous application of a DC signal VC to control the
level of the quantum dot junction and a microwave tone fs,drive to drive the spin-flip
transition.

NANOFABRICATION DETAILS

The device fabrication occurs in several steps using standard nanofabrication techniques.
It is identical to that described in chapter 5, and repeated here for the sake of complete-
ness. The substrate consists of 525µm-thick high-resistivity silicon, covered in 100 nm
of low pressure chemical vapor deposited Si3N4. On top of this, a 20 nm thick NbTiN
film is sputtered, into which the gate electrodes and circuit elements are patterned us-
ing an electron-beam lithography mask and SF6/O2 reactive ion etching. Subsequently,
30 nm of Si3N4 dielectric is deposited on top of the gate electrodes using plasma en-
hanced chemical vapor deposition and then etched with a buffered oxide etchant. The
nanowire is then deterministically placed on top of the dielectric using a nanomanipu-
lator and an optical microscope. After placement, two sections of the aluminium shell
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Figure 6.10: Device overview. (a) Diagram of the microwave circuit. A coplanar waveguide transmission line
with an input capacitor (green center conductor) is capacitively coupled to a grounded LC resonator. The
resonator consists of an island (yellow) capacitively and inductively (pink) shunted to ground (blue). The res-
onator is in turn capacitively coupled to a transmon island (red), which is shunted to ground capacitively as
well as via two parallel Josephson junctions. (b) Chip containing four nearly identical devices coupled to the
same transmission line, which has an input capacitor, enlarged in inset. (c) False-colored optical microscope
image of the device showing the qubit island, the resonator island, the resonator inductor, the transmission
line, the electrostatic gates and ground. (d) False-colored scanning electron micrograph (SEM) of the mea-
sured device, showing the InAs/Al nanowire into which the junctions are defined. The By component of the
magnetic field is used to tune Φext [334]. Bz is the magnetic field component parallel to the nanowire. (e)
False-colored SEM of the measured device, showing the quantum dot junction in which the quantum dot is
gate defined. The three bottom gates have a width and spacing of 40 nm, although this is obfuscated by the
dielectric layer placed on top.

are selectively removed by wet etching with MF-321 developer. These sections form the
quantum dot junction and the reference junction, with lengths 200 nm and 110 nm re-
spectively. After the junction etch, the nanowire is contacted to the transmon island
and to ground by an argon milling step followed by the deposition of 150 nm-thick sput-
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tered NbTiN. Finally, the chip is diced into 2 by 7 millimeters, glued onto a solid copper
block with silver epoxy, and connected to a custom-made printed circuit board using
aluminium wirebonds.
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CRYOGENIC AND ROOM TEMPERATURE MEASUREMENT SETUP

The device was measured in a Triton dilution refrigerator with a base temperature of
20 mK. As shown in Fig. 6.11, the setup contains an input RF line, an output RF line, an
additional RF line for driving the spin-flip transition, and multiple DC gate lines. The
DC gate lines are filtered at base temperature with multiple low-pass filters connected
in series. The input and drive RF lines contain attenuators and low-pass filters at dif-
ferent temperature stages, as indicated. The output RF line contains a traveling wave
parametric amplifier (TWPA) at the 20 mK temperature stage, a high-electron-mobility
transistor (HEMT) amplifier at the 4 K stage, and an additional amplifier at room tem-
perature. A three-axis vector magnet (x-axis not shown) is thermally anchored to the 4 K
temperature stage, with the device under study mounted at its center. The three mag-
net coils are controlled with Yokogawa GS610 current sources. At room temperature, a
vector network analyzer (VNA) is connected to the input and output RF lines for spec-
troscopy at frequency fr. On the input line, this signal is then combined with the trans-
mon drive tone at frequency ft,drive, for two-tone spectroscopy. The spin-flip drive tone
at frequency fs,drive is sent through the additional RF line.

BASIC CHARACTERIZATION AND TUNE UP

This section describes how the device is tuned to its gate setpoints.

We start by characterizing the effect of the electrostatic gates, which control each
of the two Josephson junctions. Fig. 6.12(a) shows the basic behaviour of the reference
junction versus junction gate voltage VJ when the quantum dot junction is completely
closed. As VJ is varied, different junction channels open sequentially [118, 296], with
transparencies that increase non-monotonically due to mesoscopic fluctuations. This
in turn affects the EJ of the transmon, allowing for in-situ tunability of its frequency,
and the transmon then affects the resonator through its dispersive shift [35], resulting
in the observed change in resonator frequency. We use this to choose a VJ set-point
which maintains a good SQUID asymmetry in all regimes of interest. The black line in
Fig. 6.12(a) indicates VJ = 3860 mV, the setpoint used in Figs. 6.3(a-b) in the main text.
After a small non-reproducible gate jump in the reference junction the setpoint was re-
tuned to VJ = 4064.5 mV, which was used for all other data shown in the main text. For
all resonances explored, we maintained EJ/Ec > 40.

We start by characterizing the effect of the electrostatic gates, which control each
of the two Josephson junctions. Fig. 6.12(a) shows the basic behaviour of the reference
junction versus junction gate voltage VJ when the quantum dot junction is completely
closed. As VJ is varied, different junction channels open sequentially [118, 296], with
transparencies that increase non-monotonically due to mesoscopic fluctuations. This
in turn affects the EJ of the transmon, allowing for in-situ tunability of its frequency,
and the transmon then affects the resonator through its dispersive shift [35], resulting
in the observed change in resonator frequency. We use this to choose a VJ set-point
which maintains a good SQUID asymmetry in all regimes of interest. The black line in
Fig. 6.12(a) indicates VJ = 3860 mV, the setpoint used in Figs. 6.3(a-b) in the main text,
which fixes the transmon frequency at ft = 4.7 GHz. After changing the quantum dot
junction from gate setpoint A to gate setpoint B and due to cross-coupling between the
quantum dot and reference gates, the reference junction started exhibiting poisoning
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Figure 6.11: Measurement setup at cryogenic and room temperatures.

behavior. Therefore, its setpoint was then set to VJ = 4064.5 mV, fixing the transmon
frequency at ft = 4.95 GHz, which was used for all other data shown in the main text.
Fig. 6.12(b) shows a measurement taken at the moment when the VJ value was changed
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from its VJ = 3860 mV to its VJ = 4064.5 mV setpoint, both indicated with black lines. For
all resonances explored, we maintained EJ/Ec > 40.

In Figs. 6.12(c-f) we show analogous measurements where we vary the quantum dot
gate voltages when the reference junction is closed. We first measure an effective pinch-
off curve for all three quantum dot gates ramped together [Fig. 6.12(c)], before sweeping
each gate separately, with the other two quantum dot gates kept at 2000 mV [Figs. 6.12(d-
f)]. This shows that each of the three quantum dot gates can independently pinch off the
quantum dot junction, even if the other gates are in the open regime, signifying strong
lever arms and good gate alignment. Note that these are not pinch-off curves as encoun-
tered in conventional tunnel spectroscopy; they reflect the voltages at which there is no
longer a measurable transmon transition frequency mediated by the quantum dot junc-
tion, which could either be due to low tunneling rates or a full depletion of the quantum
dot.

The subsequent tuning procedure for finding an isolated quantum dot resonance is
discussed in detail in chapter 5, summarized here for the specific resonances used in
the main text. First we close the reference junction and go to a point in quantum dot
gate voltages near pinchoff. Fixing the readout frequency fr at the bare frequency of
the resonator, one can then map out the regions where dispersive shifts occur on a two-
dimensional map versus the left and right quantum dot gates, with the central gate held
fixed. This signifies regions in which there is a supercurrent flowing through the quan-
tum dot junction. After identifying such a region in VL-VR space, we subsequently open
the reference junction, which lifts the reference transmon frequency closer to the bare
resonator frequency. This magnifies the dispersive shift of the resonator and, further-
more, brings the external flux into the picture. Fixing φext = 0 and repeating the initial
measurement then reveals much stronger deviations of the resonant frequency due to
the enhanced dispersive shift.

Using this approach we identify isolated quantum dot resonances, and subsequently
explore their evolution versus the central quantum dot gate. This is shown in Fig. 6.13,
where we furthermore account for cross coupling between the different quantum dot
gates by defining a new set of virtual gates. For simplicity we fix VL and focus on the
rotated VR-VC space, denoted as the VP-VT-space. Note that this compensation scheme
is unique for each isolated region we explore. Fixing φext = 0 and varying the central
dot gate, the resonator first shows a displacement towards higher frequencies to then
abruptly drop to a lower frequency, to then finally go back to the higher frequencies
once-more [Fig. 6.13(a,c)]. This behaviour is reversed for φext = π [Fig. 6.13(b,d)], and
can be identified as a singlet-doublet transition resulting from the relative level of the
quantum dot is being varied by VP. We note that in the VT direction we do not always
find the expected dome shape characteristic of singlet-doublet transitions; while such a
shape does develop for resonance B [Fig. 6.13(c-d)], the doublet phase of resonance A
[Fig. 6.13(a-b)] remains open even at elevated tunnel gate voltages. This is potentially a
result of a non-monotonic dependence of tunnel rates on the gate voltage.
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Figure 6.12: Electrostatic gates characterization. Transmission amplitude as a function of frequency of a
single tone fr and gate voltage. For each panel, the inset indicates which gate is being varied (orange) and
which ones are set to a value above (light grey) or below (dark grey) their pinch-off value.
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Figure 6.13: (a,c) Shift of the resonator resonance frequency with respect to its value when the quantum dot
junction is fully closed, ∆ fr, versus VP and VT at φext = 0, revealing singlet (red) and doublet (blue) ground
state regions separated by sharp transitions for resonance A (a) and resonance B (c). (b,d) Same as (a,c) but for
φext = π.
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EXTENDED DATA

SPIN-ORBIT SPLITTING AT DIFFERENT RESONANCES

As discussed in the main text, we find a wide variety of phase-dependent splittings de-
pending on the quantum dot resonance studied. This is shown in Fig. 6.14, portraying a
range of resonances all the way from an even phase dependence with no splitting (panel
d) to resonances that have a fully odd phase dependence (panel b). By Fitting the po-
tentials with the transmon Hamiltonian, we extract a set of effective parameters for each
resonance, tabulated in Table 6.1.
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Figure 6.14: Spin-splitting energies at different resonances. Flux dependence of transmon spectroscopy
taken at different points in quantum dot gate space, indicated in Table 6.1. In all cases, the quantum dot junc-
tion is in a doublet state. Different panels show different spin-splitting energies. (a) and (b) are gate setpoints
A and B of the main text, respectively.
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Table 6.1: Quantum dot junction gate voltage set points and extracted model parameters for the five panels in
Fig. 6.14.

VL (mV) VC (mV) VR (mV) E0/h (GHz) ESO/h (GHz)
A 79.0 1020.0 363.0 0.18 0.28
B 430.0 531.0 635.2 0.00 0.56
C 430.0 520.0 652.0 0.11 0.56
D 430.0 614.8 335.0 0.50 0.00
E 430.0 655.2 305.2 0.23 0.05

SPIN-ORBIT SPLITTING WITHIN THE SAME RESONANCE

Within the extended SIAM model, ESO and E0 are expected to depend on ΓV , ΓW , and
t̃ (see Sec. 6.7). One would therefore expect that these quantities can also vary within a
single resonance, as the gate voltages tune the relative energy levels as well as the tunnel
barriers of the quantum dot. This is indeed observed in the experiment: as shown in
Fig. 6.15(a,b) for resonance A, we find that both effective doublet parameters vary with
the rotated plunger and tunnel gates. In particular, both E0 and ESO show an increase
towards the boundary of the singlet doublet transition, i.e. towards the edges of the
Coulomb diamond. This is in line with the predictions of Ref. [234], as in the middle of
the Coulomb diamond the energy cost of adding an electron to the quantum dot is max-
imal and the high energy of the intermediate states reduces the probability of Cooper
pair tunneling. Additionally, contrary to initial expectation, the magnitude of the effec-
tive parameters appears to decrease for larger tunnel gate values. While the tunnel gate
is expected to increase the tunnel rates, and thus the effective parameters, we note that
in practice the situation is highly complex; there are up to three gate voltages that control
five model parameters (ΓL,R

V ,W , t̃ ), with potentially non-monotonic dependencies as well
as cross-coupling. A full understanding of such a system will require a more detailed
study of such dependencies, which we leave for future work. At this stage we instead
emphasize the gate-tunability of these quantities, allowing for in-situ fine-tuning of the
model parameters

Furthermore, we also find that the effective Landé g-factor g∗ depends on gate volt-
age [Fig. 6.15(c)], in line with previous results on quantum dots in InAs nanowires, demon-
strating its electric gate tunability [64]. This could be of relevance for qubit applications,
as the tunability can be used to rapidly drive spin states in and out of resonance with a
static magnetic field induced electron spin resonance condition. Finally, we note that
the observed gate dependence of g∗ is distinct from that of ESO and E0, supporting the
assertion that its origin is tied to a complex interplay of spin-orbit coupling and confine-
ment, beyond the model considered here [159, 283, 340].

MAGNETIC FIELD ANGLE DEPENDENCE AND DETERMINATION OF THE SPIN-SPLITTING DI-
RECTION

In this Section we detail the method used to determine the direction of the spin-orbit in-
teraction at a fixed gate point. This is done by comparing the angle dependence of trans-
mon and spin-flip spectroscopy to the predictions of the model discussed in Sec. 6.7. For
this it is useful to define a coordinate space determined by the nanowire direction, Z , the
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Figure 6.15: Gate dependence within resonance A. (a) Magnitude of E0 extracted from transmon qubit spec-
troscopy at φext = 0,π versus rotated plunger and tunnel gate voltages, at a magnetic field of 18 mT applied
parallel to the nanowire. (b) Same as (a) for ESO, extracted from spin-flip spectroscopy at φext = π/2,3π/2. (c)
Same as (b) for g∗, extracted from the same measurement as (b).

on-chip direction perpendicular to the nanowire, Y , and the direction perpendicular to
the chip, X . We then define θ ∈ [0,180) as the polar angle with respect to the Z direction
and φ ∈ [0,360) as the azimuthal angle [see Fig. 6.16], such that Bx = Br cos(φ)sin(θ),
By = Br sin(φ)sin(θ) and Bz = Br cos(θ). Note that the cartesian field directions Bx , By

and Bx set a frame of reference and should not be confused with the directions B∥ and
B⊥ presented in the main text, which are specific for each gate setpoint. With this con-
vention, φ = 90 is the plane of the chip, while φ = 0 is the plane perpendicular to the
chip containing the nanowire. In each of these two planes, we first fix the magnitude
of the applied magnetic field, Br , and measure the evolution of transmon and spin-flip
spectroscopy while varying θ in steps of two degrees. For each plane we determine the
angle for which the applied field is perpendicular to the spin-splitting direction, θ⊥,0 and
θ⊥,90, by comparison to the theory model. The cross product of these two directions de-
termines the direction parallel to the spin-splitting term.

Representative data of such a measurement for resonance A is shown in Fig. 6.16(a-
b), where we fixφ= 90 and find θ⊥,90 = 78. Performing an analogous measurement in the
φ= 0 plane, we determine θ⊥,0 = 86. From these two, we obtain (θs,φs) = (167,72) as the
spin-splitting direction of resonance A. This is 13 degrees away from the nanowire axis.
Furthermore, we generally find that the measured spin-split direction varies depending
on which quantum dot resonance is studied; for resonance B of the main text we obtain
a spin-splitting direction of (θs,φs) = (72,45), which is 84 degrees away from the spin-
splitting direction of resonance A.

We can furthermore estimate the effective Landé g-factor from the evolution of the
spin-flip transition frequency versus the angle of the magnetic field. Shown in Fig. 6.16(c)
for resonance A, the effective g-factor varies from 3 to 11 depending on the angle, min-
imal for magnetic fields perpendicular to the spin-orbit direction. The measured be-
haviour is well-described by a simple cosine, in line with previous results on quantum
dots in InAs nanowires [283].
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SPIN-FLIP SPECTROSCOPY ENABLED BY SPIN-ORBIT SPLITTING

As discussed in the main text, we do not rely on driving transitions of the transmon cir-
cuit to perform spectroscopy of the junction’s excitation spectrum. While in principle
possible by using three microwave tones, this could result in limitations due to the finite
transmon lifetime as well as undesired mixing processes between the different tones. In-
stead, we use the dispersive shift from the transmon’s ground state to induce a doublet-
state-dependent shift on the resonator, similar to how the island parity of offset-charge
sensitive transmon qubits can be distinguished [286, 313]. As the difference between
the transmon frequencies of both doublet states is small, inducing a sizeable dispersive
shift larger than the resonator’s linewidth requires us to tune the spin-dependent trans-
mon qubit frequency close to that of the resonator [Fig. 6.10(a-b)]. Having done so, we
can observe the spin-flip transition directly with conventional two-tone spectroscopy,
where the first tone is applied at the frequency of the readout resonator, and the sec-
ond tone at the spin-flip frequency [Fig. 6.10(c)]. The transmon, off-resonant from both
tones, remains in its ground state during the measurement.
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Figure 6.16: Magnetic field angle dependence of resonance A. (a-b) Flux dependence of transmon (left col-
umn) and spin-flip (right column) transitions for different magnetic field directions, for a fixed total magnetic
field Br = 12 mT. Each row corresponds to a different magnetic field orientation on the chip plane, φ = 90,
determined by the angle θ with respect to the nanowire direction (see diagram at the top). All panels share
the same color bar. (c) Effective Landé g-factor g∗ versus θ. Markers show data extracted from spin-flip spec-
troscopy at 12 mT, and the solid line shows a fit with a cosine.
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Figure 6.17: Spin-flip two-tone spectroscopy. (a) Flux dependence of single-tone spectroscopy showing the
resonator frequency. Each of the two visible branches corresponds to a different spin state of the quantum dot
junction. (b) Flux dependence of two-tone spectroscopy showing the transmon frequency. The continuous
lines denote the two transmon branches corresponding to the two possible spin states of the quantum dot
junction. They are the result from the same fit as in Fig. 6.14. (c) Flux dependence of two-tone spectroscopy
showing the spin-flip frequency. The continuous line denotes the spin-flip transition frequency obtained from
the same fit as in Fig. 6.14.
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Spin qubits in semiconductors are currently one of the most promising architectures
for quantum computing. However, they face challenges in realizing multi-qubit inter-
actions over extended distances. Superconducting spin qubits provide a promising al-
ternative by encoding a qubit in the spin degree of freedom of an Andreev level. Such
an Andreev spin qubit could leverage the advantages of circuit quantum electrodynam-
ics, enabled by an intrinsic spin-supercurrent coupling. The first realization of an An-
dreev spin qubit encoded the qubit in the excited states of a semiconducting weak-link,
leading to frequent decay out of the computational subspace. Additionally, rapid qubit
manipulation was hindered by the need for indirect Raman transitions. Here, we exploit
an electrostatically-defined quantum dot Josephson junction with large charging energy,
which leads to a spin-split doublet ground state. Additionally, we use a magnetic field to
tune the qubit frequency over a frequency range of 10 GHz and to investigate the qubit
performance using direct spin manipulation. Using an all-electric microwave drive we
achieve Rabi frequencies exceeding 200 MHz. We furthermore embed the Andreev spin
qubit in a superconducting transmon qubit, demonstrating strong coherent qubit-qubit
coupling. These results are a crucial step towards a hybrid architecture that combines
the beneficial aspects of both superconducting and semiconductor qubits.

The work in this chapter has been published as: M. Pita-Vidal∗, A. Bargerbos∗, R. Žitko, L.J. Splitthoff, L. Grün-
haupt, J.J. Wesdorp, Y. Liu, L.P. Kouwenhoven, R. Aguado, B. van Heck, A. Kou, and C.K. Andersen, Direct ma-
nipulation of a superconducting spin qubit strongly coupled to a transmon qubit, arXiv e-prints 2208.10094
(2022). The asterisk indicates authors that contributed equally to this work.
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7.1. INTRODUCTION
Spin qubits in semiconductors [116, 200] and transmon qubits in superconducting cir-
cuits [162] are currently two of the most promising platforms for quantum computing.
Spin qubits are promising from a scalability standpoint due to their small footprint and
compatibility with industrial semiconductor processing [356]. However, despite encour-
aging progress in recent years [36, 119, 179, 222, 273], spin qubit architectures face chal-
lenges in realizing multi-qubit interactions over extended distances. Transmon-based
circuits currently boast some of the largest numbers of qubits on a single device [13, 133],
and are readily controlled, read out, and coupled over long distances due to the use of
circuit quantum electrodynamics (QED) techniques [33, 35, 324]. However, transmon
qubits have a small anharmonicity, limiting the speed of qubit operations, and they are
relatively large (typically 0.01 to 1mm2 per qubit), which leads to large chip sizes and
makes transmons susceptible to cross-coupling with distant control elements.

A potential route to leverage the benefits of both superconducting qubits and spin
qubits is to encode a qubit in the spin degree of freedom of a quasi-particle occupying an
Andreev bound state in a Josephson junction [59, 234]. These states are confined by An-
dreev reflections at the superconducting interfaces and, thus, are localized in a small and
well-defined region, similarly to conventional spin qubits. Furthermore, in the presence
of spin-orbit interaction (SOI), the supercurrent across the Josephson junction becomes
spin-dependent [31, 59], which allows for interfacing with superconducting circuit ele-
ments. Such a superconducting spin qubit has recently been realized in the weak link of a
superconductor-semiconductor hybrid nanowire [123], where it was named the Andreev
spin qubit (ASQ). This first implementation showed that an ASQ can be efficiently read
out using standard circuit QED techniques. However, qubit control was hindered by fre-
quent leakage out of the computational subspace of the qubit, formed by higher energy
Andreev levels of the junction. Additionally, due to the selection rules of the system in
the absence of a magnetic field [237], direct driving of the ASQ is partly suppressed [221]
and qubit manipulation may require virtual driving of auxiliary states to induce qubit
transitions [123].

In this work, we utilize previous insights from semiconducting spin-orbit qubits (SOQ)
[227, 231] to construct an ASQ using a quantum dot within a Josephson junction, build-
ing on the work of chapters 5 and 6. To enhance the confinement of the quantum dot, we
implement it in a Josephson junction shorter than that from Ref. [123] and we use three
electrostatic bottom gates. These two features lead to an enhanced charging energy of
the dot compared to that in previous implementations of Andreev spin qubits, such that
it can be exploited to deterministically prepare the quantum dot into a doublet phase
with well-defined spin-split states; see chapter 6. As a consequence, the computational
subspace of the qubit is now formed by the lowest energy states of the junction in the
doublet phase. Moreover, this charging energy enhances the parity lifetime of the dou-
blet subspace to the millisecond regime, therefore providing protection against leakage
resulting from parity switches of the junction [234]. Furthermore, this design allows for
fast and direct qubit control through spin-orbit mediated electric dipole spin resonance
(EDSR) [107, 227, 231, 317]. We additionally demonstrate the magnetic field tunability
of the qubit transition frequency over a frequency range of more than 10 GHz, pushing
the device into a parameter regime inaccessible to previous experiments, which allows
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us to investigate the origin of dephasing. At elevated qubit frequencies, this moreover
results in a suppression of the population of the excited state, facilitating qubit manip-
ulation and readout without any additional steps needed for initialization of the qubit
beyond the qubit relaxation. Finally, the intrinsic coupling between the spin degree of
freedom and the supercurrent facilitates strong coherent coupling between the ASQ and
a transmon qubit.

7.2. ANDREEV SPIN QUBIT
We implement the ASQ in a quantum dot Josephson junction formed in a hybrid InAs/Al
semiconducting-superconducting nanowire, see Fig. 7.1(a). The quantum dot is elec-
trostatically defined by three gate electrodes under an uncovered InAs section of the
nanowire and tunnel-coupled to the superconducting segments (see chapter 5). In the
limit of weak coupling between the superconducting part of the nanowire and the quan-
tum dot, and in the presence of a magnetic field, the ASQ can be described by the effec-
tive Hamiltonian

Hs = E0 cos
(
φ

)−ESO σ⃗ · n⃗ sin
(
φ

)+ 1

2
E⃗Z · σ⃗, (7.1)

where φ is the phase difference across the junction, σ⃗ is the spin operator, n⃗ is a unit
vector along the zero-field spin-polarization direction, set by the SOI, and E⃗Z is a Zee-
man field arising in the presence of an external magnetic field. E0 denotes the effective
Josephson energy of the quantum dot junction, common for both spin states. We note
that the the term proportional to E0 has a minimum at φ = π, originating from the odd
occupancy of the junction. In turn, ESO denotes the spin-dependent contribution to
the energy of the junction. It originates from the occurrence of electron co-tunneling
accompanied by a spin flip, and it is finite only if SOI is present and multiple levels of
the quantum dot are involved in the co-tunneling sequence [234]. The difference be-
tween the energies of the |↓〉 and |↑〉 eigenstates of Eq. (7.1) determines the ASQ qubit
frequency fs = E↑ −E↓, as depicted in Fig. 7.1(b). For readout and control, we embed
the ASQ into a superconducting transmon circuit, as illustrated in Fig. 7.1(c). The trans-
mon circuit consists of a capacitor, with charging energy Ec, shunting a superconduct-
ing quantum interference device (SQUID) formed by the parallel combination of a gate-
tunable Josephson junction with Josephson energy EJ, and the quantum dot Josephson

junction hosting the ASQ. We operate in the regime EJ/
√

E 2
0 +E 2

SO > 20 so that the phase

difference φ across the quantum dot Josephson junction can be controlled through the
magnetic flux through the SQUID loop Φext =φextΦ0/(2π), where Φ0 = h/2e is the mag-
netic flux quantum. Due to the presence of the ESO term, the transmon frequency ft

becomes spin-dependent. We exploit this fact to readout the ASQ state by capacitively
coupling the transmon circuit to a readout resonator. Due to the transmon-resonator
dispersive coupling, the resonator frequency in turn becomes spin-dependent and prob-
ing the readout resonator therefore leads to a spin-dependent response. Spectroscopy
of the spinful Andreev levels can, thus, be performed using standard two-tone circuit
QED techniques (see Fig. 6.17). Finally, the spin-flipping qubit transition can be directly
driven, while maintaining the transmon in its ground state, by applying a microwave
tone on the central quantum dot gate [221, 333]. Such microwave drive allows for all-
electrical manipulation through EDSR [227, 231]. For further details about the device
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Figure 7.1: (a) Schematic depiction of an Andreev spin qubit in a hybrid superconductor-semiconductor
nanowire. The qubit is formed in a gate-defined quantum dot with an odd number of electrons and is cou-
pled to superconducting leads. The dashed line is a sketch of the potential landscape created by the gates. (b)
Eigenenergies of the Andreev spin qubit levels as a function of the phase difference φ, as described by the ef-
fective model of Eq. 7.1. The frequency of the qubit spin-flip transition |↓〉↔ |↑〉 is denoted by fs. In this panel

the component of the Zeeman energy parallel to the zero-field spin-polarization direction is E∥
Z = 2.9GHz.

(c) Circuit model of the Andreev spin qubit embedded in a transmon circuit. The spin state is manipulated
by a microwave drive, at frequency fdrive, applied to the central gate electrode. The transmon island, with
charging energy Ec, is connected to ground by a SQUID formed by the parallel combination of the ASQ and a
reference Josephson junction. Here, φ denotes the superconducting phase difference across the quantum dot
junction, whileΦext is the externally applied magnetic flux through the SQUID loop. (d) Transmission through
the readout circuit as a function of the external flux and the applied drive frequency, measured at a magnetic
field Bz = 17mT parallel to the nanowire (see Fig. 7.5). (e) Extracted qubit frequency fs versus Bz (markers),
measured atφext = 3π/2. The data is fitted with a linear dependence (solid line), resulting in an effective Landé
g -factor of g∗ = 12.7±0.2. Horizontal dashed lines denote the first and second transmon frequencies, as well
as the readout resonator frequency.

implementation and setup, see the Supplementary Information in Sec. 7.6.
Following the gate-tuning strategy described in chapter 5, we prepare the quantum

dot junction in a regime where it is occupied by an odd number of electrons, with E0/h =
211MHz and ESO/h = 305MHz and with a parity lifetime of 2.8 ms. In this regime, the
qubit states |↑〉 and |↓〉 are the lowest energy levels of the system, and the qubit subspace
is separated from higher lying states by a frequency gap of at least 20 GHz (see Supple-
mentary Materials). After fixing the gate voltages of the quantum dot, we investigate the
tunability of the spin-flip transition fs by applying a microwave tone at frequency fdrive

and performing dispersive readout of the transmon qubit. As shown in Fig. 6.1(d), we
can finely control fs by applying a magnetic flux through the SQUID loop 1, although

1We attribute the shift of the minima and maxima of the spin-flip frequency away from π/2 and 3π/2 to the
phase-dependent renormalization of the impurity g -factor by coupling to the leads, known as the impurity
Knight shift [240].
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the visibility of the measurement signal is reduced around φext = 0,π, where the spin-
dependent transmon frequencies are degenerate. By applying an external magnetic field
along the nanowire Bz of up to 65 mT, the qubit frequency can be varied from 250 MHz
to 12 GHz, see Fig. 6.1(e). The magnetic field direction is chosen to maximize the mag-
netic field compatibility of the Al shell of the nanowire and is generally not aligned with
the spin-orbit direction n⃗ [115].

7.3. QUBIT COHERENCE
To perform coherent manipulation of the spin states we fix Bz = 65 mT and φext = 3π/2,
setting fs = 11.5GHz, where the residual population of the excited state is suppressed
to less than 5 %, facilitating qubit manipulation and readout (see Fig. 7.10). We ob-
serve Rabi oscillations between the qubit states |↑〉 and |↓〉 by applying a Gaussian mi-
crowave pulse with a carrier frequency at the spin-flip transition frequency fdrive = fs,
see Fig. 7.2. Here, the Gaussian pulses are truncated so that the total pulse length is 2.5
times the Gaussian full width at half maximum (FWHM). As shown in Fig. 7.2(a), we re-
solve up to 10 oscillations by varying the amplitude and duration of the pulse envelope.
The population transfer between the spin states, as measured by the dispersive readout
scheme, follows the expected time-dependence of a standard Rabi oscillation, as shown
in Fig. 7.2(b), from which we extract the Rabi frequency for each pulse amplitude. For
a fixed Rabi frequency, we calibrate the FWHM needed for π and π/2 pulses for single
qubit manipulation.

In contrast to previous approaches to implementing Andreev spin qubits, we drive
the qubit transition directly and do not rely on auxiliary energy levels in the junction [52,
123]. This is motivated by recent work by our group, indicating that spin-flip transitions
of Andreev bound states can be activated by a magnetic field; see Ref. [333] and chapter
6.

As expected for a two-level system, the Rabi frequency is linear over a wide range of
pulse amplitudes. It only starts to deviate from this linear dependence for strong drive
amplitudes, see Fig. 7.2(c). This deviation is due to saturation of the maximum power
provided by the room-temperature electronics. We measure Rabi frequencies larger than
200 MHz, exceeding the largest Rabi frequencies achieved in SOQ [317] and more than
an order of magnitude faster than previous results for the ASQ [123]. We observe that
the Rabi frequency is approaching the anharmonicity of typical transmon qubits, with
no indications of higher order levels being driven. The two-level nature of the ASQ thus
intrinsically supports faster single qubit gates than standard transmon qubits [332].

Next, we characterize the lifetime of the ASQ by applying a π pulse and reading out
the qubit state after a delay time τ. We obtain an exponential decay with a characteristic
time T1 = 24.4 ± 0.5µs at Bz = 65 mT, see Fig. 7.3(a). As a function of magnetic field,
T1 varies between 10 and 40µs for qubit frequencies above the transmon frequency. We
conjecture that the observed lifetime is limited by Purcell-like decay from coupling to
the transmon, given the short transmon lifetime of around 250 ns. For Bz closer to zero,
T1 drops down to around 1µs (see Fig. 7.13). This is in contrast to the near-zero-field
lifetimes found in previous ASQ experiments [123, 124], which were in the range of 10−
−50µs. The cause of this discrepancy is unknown, but a potential reason is an enhanced
resonant exchange with the nuclear spins in InAs due to stronger strain in the nanowire,
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Figure 7.2: Coherent manipulation of the Andreev spin qubit for fs = 11.5GHz at Bz = 65mT. (a) Rabi oscilla-
tions for a range of Gaussian pulses characterized by their amplitude A at the waveform generator output and
their full width at half maximum (FWHM), see pulse sequence. As also indicated in the pulse sequence, the
Rabi pulse is immediately followed by a readout (RO) pulse (red, not to scale). (b) Rabi oscillation correspond-
ing to A = 0.1V, fit with a cos

(
tΩR

)
exp

(
t/td

)
(solid line). The fit yields a decay time td = 27ns. (c) Extracted

Rabi frequencies versus pulse amplitude, fit with a linear equation (solid line).

which may vary for different nanowires depending on the exact growth conditions [303].
To characterize the coherence time of the qubit, we apply two π/2 pulses separated

by a delay time, after which we read out the qubit state. From this experiment we ex-
tract a Ramsey coherence time of T2R = 11 ± 1 ns, see Fig. 7.3(b), much smaller than T1,
and thus indicative of strong dephasing. Dephasing that originates from slow noise com-
pared to the spin dynamics can be partially cancelled using a Hahn-echo sequence [114],
which introduces a π pulse halfway between the two π/2 pulses. This echo sequence in-
creases the measured coherence time by more than three times, to T2E = 37 ± 4 ns, see
Fig. 7.3(c).

The coherence time of the qubit can be further enhanced by using dynamical-decoupling
pulse sequences, which serve to filter out faster environmental fluctuations. We apply
Carr–Purcell (CP) sequences [22, 48, 50], interleaving a varying number of equidistant
π pulses, nπ, in between two π/2 pulses. As nπ increases, higher frequency noise is
cancelled out, extending the decoherence times. We reach T2 times up to more than
90 ns for nπ = 7, at which stage we are most likely limited by decoherence during the π
pulses, see Fig. 7.3(d). We subsequently fit the nπ dependence of T2 with a power law
T2(nπ) ∝ nγ

π. Assuming a noise power spectral density of the form f 1/β, we expect the
relation β = γ/(1−γ) [48, 65, 216]. The observed scaling with γ = 0.47± 0.1 therefore
suggests that the decoherence is governed by noise with a 1/ f spectral density in the
frequency range 25 to 100 MHz.

There are several potential sources of dephasing that are compatible with a 1/ f noise
spectral density, such as flux noise through the SQUID loop and charge noise [41, 282].
We exclude the former, as we do not observe an increase of coherence times at the
flux sweet spots (see Fig. 7.15). Similarly, no consistent trend is observed when vary-
ing the gate voltages, nor when increasing the magnetic field strength. The latter indi-
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Figure 7.3: Coherence of the Andreev spin qubit at the same setpoint as Fig. 7.2. (a) Qubit lifetime, (b) Ramsey,
(c) Hahn-echo and (d) CPMG experiments. Solid lines indicate fits to the data. For (b-d) oscillations are intro-
duced into the decay by adding a phase proportional to the delay time for the final π/2-pulse. The data of (a-c)
is obtained using a π-pulse (π/2-pulse) of FWHM = 8ns (4ns), while for (d) this is 4 ns (2 ns). For (a-c) we plot
the normalized population inversion, where each sub-panel is individually normalized to the resulting fit.

cates that charge noise is likely not the dominant contributor to dephasing, given that
EDSR becomes more effective at coupling charge noise to the qubit at elevated fields
[107, 227, 231, 317]. Additionally, based on the evolution of the Rabi decay time with
increasing pulse amplitudes [205], the size of the charge fluctuations required to cause
the observed amount of dephasing is estimated to be 0.25 mV, significantly larger than
what is expected to originate from the gate lines (see Fig. 7.17). However, the contri-
bution of charge fluctuations originating elsewhere, such as in the dielectric material
on the device, could still be contributing to the dephasing. Given that the sensitivity to
fluctuations in environmental offset charge on the transmon island is suppressed by the
large EJ/Ec > 30 ratio, it is furthermore unlikely that the ASQ dephasing originates from
offset-charge-dependent fluctuations of the transmon frequency qubit [162].

Another potential source of dephasing originates from the dynamics of the spinful
nuclei in the nanowire, which may couple to the ASQ as a result of the hyperfine inter-
action. It has previously been shown that these dynamics can lead to longitudinal Over-
hauser field fluctuations with a 1/ f spectral density [204]. Moreover, this effect is ex-
pected to be particularly strong in InAs due to the large nuclear spin of indium (I = 9/2)
and should not be strongly affected by magnetic field in the Bz range investigated here,
which is not enough to polarize the nuclear spins. Corroborated by the fact that the
extracted T2R and T2E times are strikingly similar to those found for the weak-link InAs
ASQ [123], the InAs SOQ [227] and the InSb SOQ [317], we conjecture that the nuclear
environment provides a significant contribution to the decoherence of the ASQ.
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7.4. ASQ-TRANSMON COUPLING
One of the main characteristics of the ASQ is the intrinsic coupling between the spin
degree of freedom and the supercurrent across the quantum dot Josephson junction.
We have so far only exploited this coupling for read-out of the qubit state using circuit
QED techniques. Now, we demonstrate the observation of coherent coupling of the ASQ
with the transmon qubit.

Figure 7.4: Coherent ASQ-transmon coupling. (a) Frequency diagram of the joint ASQ-transmon circuit of
Fig. 7.1(c) at large detuning between ASQ and transmon qubit energy levels. In addition to the two spin-
conserving transmon transitions (solid red and blue) and the transmon-conserving spin qubit transition (solid
yellow), two additional transitions involving both qubits can take place in the presence of coherent coupling
between them (dashed and dotted black). (b) Two-tone spectroscopy of the joint two-qubit system at Bz = 0.
In addition to the two spin-dependent branches of the transmon qubit frequency, two additional transitions
appear. Overlaid are transition frequencies obtained from the model of Eq 7.2. (c) Frequency diagram of the
joint ASQ-transmon circuit for |e,↓〉 = |g ,↑〉. In the presence of coherent coupling, the two qubits hybridize into
states with a frequency splitting of 2J . Green arrows denote the transitions from ground to the two hybridized
states. (d) Two-tone spectroscopy versus external flux at Bz = 28mT, where fs ≈ ft. This results in avoided
crossings between the two qubit frequencies. Overlaid are the transition frequencies obtained from the model
of Eq. 7.2. Their colors denote the expectation value of the spin degree of freedom of the excited state and go
from |↓〉 (blue) for the transmon transition to |↑〉 (yellow) for the spin-flip transition. ft,drive denotes the fre-
quency of the second tone, sent through the readout resonator.

A first signature of a coherent coupling is the presence of transitions that involve
both qubits, in addition to the single-qubit transitions, see Fig. 7.4(a). At zero applied
magnetic field, we spectroscopically detect two of such transitions at ft + fs and ft − fs,
where ft is the transmon frequency, see Fig. 7.4(b). We classify them based on a fit with
the joint Hamiltonian of the total ASQ-transmon circuit of Fig. 7.1(c), given by

Htot =−4Ec∂
2
φ−EJ cos(φ−φext)+Hs(φ). (7.2)
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We identify the additional observed resonances as the double excitation |g ↓〉↔ |e ↑〉 and
the |g ↑〉↔ |e ↓〉 SWAP transitions, where |g 〉 and |e〉 denote the ground and first excited
transmon states, respectively. These transitions could be used to construct entangle-
ment and two qubit gates between the two different qubit platforms, provided the tran-
sitions can be driven at a faster rate than the decoherence rates of either qubit.

Additionally, one of the hallmarks of strong coherent coupling is the appearance of
an avoided level crossing when both qubit frequencies are made equal, ft ≈ fs. In this
case the |e,↓〉 and |g ,↑〉 states are expected to hybridize into superposition states with a
frequency splitting of 2J , see Fig. 7.4(c). At Bz = 28 mT this splitting can be readily ob-
served in the experiment. By varying the external flux φext such that the ASQ frequency
fs crosses the transmon frequency ft, we find avoided crossings with a minimum fre-
quency splitting 2J/(2π) = 2×52 MHz, as shown in Fig. 7.4(d). As J is four times larger
than the decoherence rate of the ASQ, 1/T2R ≈ 14×2πMHz and one order of magnitude
larger than the decoherence rate of the transmon, ≈ 1.2×2πMHz, the coupling between
the two qubits falls into the strong coupling regime. This result establishes the first real-
ization of a direct strong coupling between a spin qubit and a superconducting qubit, in
contrast to the results of Ref. [180], where a high-impedance bus resonator was required
to mediate the coupling between spin and transmon qubit through virtual photons.

Analytical estimates predict that the coupling J ∝ ESOφzpf sin(θ), where φzpf is the
magnitude of zero-point fluctuation of the transmon phase, and θ is the angle between
the Zeeman field and the spin-orbit direction; see Sec. 7.6. This suggests that by choosing
a resonance with a larger ESO and by aligning the magnetic field perpendicular to the
spin-orbit direction, coupling rates of hundreds of MHz can be achieved, which would
enable rapid two-qubit gates between the transmon and the ASQ and potentially allow
for the study of light-matter interactions in the ultrastrong coupling regime [95, 278].

7.5. TOWARDS NEW PLATFORMS AND MULTIPLE ASQ
We have implemented an Andreev spin qubit, where the the spin degree of freedom of
a quasi-particle in a quantum dot with superconducting leads encodes the qubit state.
The qubit subspace is stabilized by the charging energy of the quantum dot and direct
microwave driving of the transitions is possible without the requirement of auxiliary lev-
els. The qubit coherence was found to be comparable to previous results for qubits im-
plemented in InAs or InSb nanowires [123, 227, 317]. Our results suggest that the nuclear
environment contributes strongly to the ASQ decoherence, although the contribution of
charge noise can not be fully neglected. This limitation motivates future investigation of
alternative material platforms for ASQs, such as superconductor-proximitized nuclear-
spin-free semiconductors [71], e.g. isotopically purified germanium [128, 277, 311].

We furthermore observed direct strong coherent coupling between the ASQ and a
transmon qubit. Such strong coupling showcases the advantage of the intrinsic spin-
supercurrent coupling, allowing the ASQ to be readily integrated into a circuit QED archi-
tecture. Our results open avenues towards multi-qubit devices: we propose to leverage
the fact that transmon qubits can be readily coupled together using capacitive coupling,
useful for mediating interactions between multiple ASQ. Furthermore, our results are a
crucial step towards the coupling of distant Andreev spin qubits through bus resonators
or a shared inductance [234], as well as short-distance coupling through wavefunction
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overlap [297].

7.6. SUPPLEMENTARY INFORMATION

MODELING OF JOINT ASQ-TRANSMON SYSTEM

NUMERICAL DIAGONALIZATION

In order to obtain the transition frequencies of the joint ASQ-transmon system, we com-
bine the Hamiltonian of the ASQ [Eq. (7.1) in the main text] with the Hamiltonian of
the transmon, as indicated in Eq. (7.2) of the main text. This combined Hamiltonian is
numerically diagonalized in the phase basis following the procedure in Ref. [169] and
chapter 4. This results in the transmon and ASQ energy levels En , as well as the associ-
ated transition frequencies fnm = (Em −En)/h. These frequencies are used in Figs. 6.1
and 7.4 to fit the spectroscopy measurements.

ESTIMATE OF QUBIT-QUBIT COUPLING STRENGTH

As demonstrated in Fig. 7.4, we observe avoided crossings between the transmon and
the ASQ transitions, which is indicative of strong coherent coupling. In this section we
derive how the coupling strength depends on the model parameters.

We start by combining Eq. (7.1) and (7.2) of the main text into the effective Hamilto-
nian

Htot = Htmon +HZ +Hcoupling, (7.3)

with the individual terms given as

Htmon =−4Ec∂
2
φ−EJ cos(φ)−E0 cos

(
φ−φext

)
, (7.4)

HZ = 1

2

(
E⊥

Z E∥
Z

E∥
Z −E⊥

Z

)
= |E⃗Z|

2

(
sin(θ) cos(θ)
cos(θ) −sin(θ)

)
(7.5)

Hcoupling =−ESO sin(φ−φext)σx . (7.6)

Here, σx is the x Pauli matrix and θ is the angle between the Zeeman field E⃗Z and the
spin-orbit direction, such that E∥

Z = |E⃗Z|cosθ and E⊥
Z = |E⃗Z|sinθ. Next, we write the cou-

pling term Hcoupling in the eigenbasis of HZ, which is given by the states

|v1〉 = [cos(θ/2),sin(θ/2)] , |v2〉 = [−sin(θ/2),cos(θ/2)] . (7.7)

We identify that

〈v1|σx |v2〉 = 〈v2|σx |v1〉 = cosθ (7.8)

and

〈v1|σx |v1〉 =−〈v2|σx |v2〉 = sinθ, (7.9)

such that σx becomes cos(θ)σx + sin(θ)σz in the {|v1〉 , |v2〉} spin basis.
We rewrite Hcoupling and expand to first order in φ, valid in the transmon limit EJ ≫

Ec, where 〈φ〉≪ 1, which results in

Hcoupling = ESO
[
cos

(
φ

)
sin

(
φext

)−cos
(
φext

)
sin

(
φ

)]
σx (7.10)

≈ ESO
[
sin(φext)−φcos(φext)

]
σx . (7.11)
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Therefore, in the spin eigenbasis, we obtain

Hcoupling ≈ ESO
[
sin(φext)−φcos(φext)

][
cos(θ)σx + sin(θ)σz

]
. (7.12)

This term of the Hamiltonian couples the ASQ to the transmon via the phase operator φ
of the transmon and is, thus, reminiscent of a dipole coupling. In the transmon regime,
we can express the operator φ in terms of the zero point fluctuations of the phase, φzpf,
and the bosonic creation and annihilation transmon operators, c† and c respectively:
φ=φzpf

(
c† + c

)
. Inserting this operator into Eq. (7.12), we obtain

Hcoupling ≈
[

ESO sin(φext)−ESOφzpf

(
c† + c

)
cos(φext)

][
cos(θ)σx + sin(θ)σz

]
(7.13)

= ESO sin(φext)
[
cos(θ)σx + sin(θ)σz

]+ħJx

(
c† + c

)
σx +ħJz

(
c† + c

)
σz . (7.14)

In this expression, we have the transversal and longitudinal coupling strengths

ħJx = ESO cos(φext)φzpf cos(θ), ħJz = ESO cos(φext)φzpf sin(θ). (7.15)

From fitting the spectroscopy data we find a charging energy of Ec/h = 284 MHz and
a Josephson energy of EJ/h = 13.1 GHz, which results in φzpf = [2Ec/EJ,eff(φext)]1/4 ≤ 0.46
where

EJ,eff(φext) = (EJ +E0)

√
cos2(φext)+

(
EJ −E0

EJ +E0

)2

sin2(φext). (7.16)

For ESO/h = 309 MHz, this results on a transverse coupling of up to Jx /(2π) = 145 MHz
when φext = 0 and the magnetic field is applied perpendicular to the spin-orbit direc-
tion. In the fit of Fig. 7.4 we instead find an avoided crossing of 2Jx /(2π) = 2×52 MHz,
corresponding to a Zeeman field at an angle of θ = 35.6◦ with respect to the spin-orbit
direction.
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DEVICE AND EXPERIMENTAL SETUP

DEVICE OVERVIEW

Fig. 7.5 shows an overview of the device including the different elements forming the
superconducting circuit used for readout and control of the qubits. The device under
investigation in this work is the same as the one used in chapter 6, where further details
about its physical implementation and fabrication can be found.

CRYOGENIC AND ROOM TEMPERATURE MEASUREMENT SETUP

The device was measured in a Triton dilution refrigerator with a base temperature of
≈ 20 mK. Details of the wiring at room and cryogenic temperatures are shown in Fig. 7.6.
The setup contains an input radio-frequency (RF) line, an output RF line, an extra RF
line for the spin-flip drive tone and multiple direct current (DC) lines, used to tune the
electrostatic gate voltages. The DC gate lines are filtered at base temperature with multi-
ple low-pass filters connected in series. The input and drive RF lines contain attenuators
and low-pass filters at different temperature stages, as indicated. In turn, the output
RF line contains amplifiers at different temperature stages: a travelling wave paramet-
ric amplifier (TWPA) at the mixing chamber plate (≈ 20 mK), a high-electron-mobility
transistor (HEMT) amplifier at the 4 K stage, and an additional amplifier at room tem-
perature. A three-axis vector magnet (x-axis not shown) is thermally anchored to the
4 K temperature stage, with the device under study mounted at its center. The three
magnet coils are controlled with Yokogawa GS610 current sources. At room tempera-
ture, a vector network analyzer (VNA) is connected to the input and output RF lines
for spectroscopy at frequency fr. On the input line, this signal is then combined with
the IQ-modulated transmon drive tone at frequency ft,drive. A separate IQ-modulated
tone at fr, only used for time-domain measurements, is also combined onto this line.
The IQ-modulated spin-flip drive tone at frequency fdrive is sent through the drive line.
For time-domain measurements the output signal is additionally split off into a separate
branch and down-converted to be measured with a Quantum Machines OPX.

BASIC CHARACTERIZATION AND TUNE UP

The basic characterization and tune-up of the device proceeds such as detailed in chap-
ter 5, while the specific tune-up of the quantum dot resonance investigated in this device
is detailed in the supplement of chapter 6, where it is labeled as resonance A. A brief sum-
mary is as follows: We first characterize the gate dependence of the reference junction

with the dot fully closed, and fix VJ such that EJ ≫
√

E 2
0 +E 2

SO, to ensure the phase drop

set byφext happens mostly at the quantum dot junction. Furthermore, we choose EJ such
that the transmon frequency ft is close to the readout resonator frequency ≈ 6.11 GHz to
obtain a large dispersive shift for two-tone spectroscopy and qubit readout. For the re-
sults shown in this work, we used VJ = 3860 mV. We then investigate the gate dependence
of the quantum dot junction with the reference junction fully closed, determining the
pinchoff voltages of the three quantum dot gates. Next, we open the reference junction
to its gate set-point and explore the quantum dot junction gate space at bothφext = 0 and
φext =π to identify regions that show a π-shift in phase. For a given π-shifted region, we
measure explicit φext dependence of the transmon to identify a resonance with a spin
splitting comparable to the spin-independent Josephson energy. Finally, we choose a
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Figure 7.5: Device overview. (a) Diagram of the microwave circuit. A coplanar waveguide transmission line
with an input capacitor (green center conductor) is capacitively coupled to a grounded LC resonator. The
resonator consists of an island (yellow) capacitively and inductively (pink) shunted to ground (blue). The res-
onator is in turn capacitively coupled to a transmon island (red), which is shunted to ground capacitively as
well as via two parallel Josephson junctions. (b) Chip containing four nearly identical devices coupled to the
same transmission line, which has a capacitor at its input port, enlarged in the inset. (c) False-colored opti-
cal microscope image of the device showing the qubit island, the resonator island, the resonator inductor, the
transmission line, the electrostatic gates and ground. (d) False-colored scanning electron micrograph (SEM) of
the measured device, showing the InAs/Al nanowire into which the junctions are defined. The By component
of the magnetic field is used to tune Φext [333]. Bz is the magnetic field component parallel to the nanowire.
(e) False-colored SEM of the measured device, showing the junction in which the quantum dot is gate defined.
The three bottom gates have a width and spacing of 40 nm, although this is obfuscated by the dielectric layer
placed on top.

gate set-point in the selected resonance. For the results shown here, the setpoint cho-
sen for the three quantum dot gates was VL = 363 mV, VC = 1000 mV and VC = 81 mV,
which corresponds to VT,A = −423.6 mV, VP,A = 909.5 mV in the rotated gate frame shown
in Fig. 6.13 of chapter 6.
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EXTENDED DATASET

EXTENDED TWO-TONE SPECTROSCOPY DATA

Fig. 7.7 shows extended two-tone spectroscopy measurements at the setpoint of main
text Fig. 7.4(b), performed over a range of 20 GHz. It reveals several additional transi-
tion frequencies: panels (a) and (b) contain the higher-lying transmon transitions f03

and f02, respectively, while panel (c) shows five different transitions. These are the four
transitions also shown in Fig. 7.4(b) and, above that, the resonator transition frequency.
Panel (d) exhibits two low-frequency transitions: the bright top transition is the direct
spin-flip transition with the transmon in its ground state, while the dark lower transition
results from the direct spin-flip transition with the transmon in its excited state. The
latter transition is visible as a result of a residual excited state population of the trans-
mon. No other auxiliary transitions are found between 0 and 20 GHz, nor does any tran-
sition develop for magnetic fields up to 65 mT. We further note that the measurement of
panel (d) requires a large drive power (31 dBm more than for the measurement shown
in Fig. 6.1 of the main text), and that visibility is reduced compared to panel (c), which is
expected since the matrix elements for the EDSR driving is suppressed in the absence of
an external magnetic field.

SINGLE SHOT ASSIGNMENT FIDELITY

The time domain measurements in the main text are obtained by averaging over many
shots. We now estimate the assignment fidelity of ASQ readout at the setpoint used for
the coherence measurements in the main text (Bz = 65 mT andφext = 3π/2). To do so, we
measure the IQ quadrature response of the readout resonator for the qubit prepared in
the ground state [Fig. 7.8(a)] and for the qubit prepared in the excited state [Fig. 7.8(b)],
after applying an 8-ns π-pulse. In both cases we read out for 500 ns, more than 40 times
shorter than T1, and wait for 5T1 between different measurements to let the qubit de-
cay back to its ground state. We find an assignment fidelity of F = 1− (P (↓ | ↑)−P (↑ | ↓
))/2 = 80% [Fig. 7.8(d)], where P (a|b) denotes the probability of measuring the qubit to
be in state a after preparing it in state b. The fidelity is predominantly set by assignment
errors for the excited state limited by decoherence during the excitation as the π-pulse
duration is comparable to T2. Longer readout times therefore do not significantly im-
prove the assignment fidelity. However, shorter π pulses would likely lead to improved
performance although this experiment was not performed on the current device.

PARITY LIFETIME

One of the advantages of using a quantum dot junction over a semiconducting weak link
is that the charging energy of the quantum dot allows us to select an operational setpoint
for which the doublet states are the lowest energy states of the system [234]. Therefore,
the charging energy is expected to protect against qubit leakage via quasiparticle escape
or recombination, which would take the junction outside of the computational space of
the qubit. To confirm this protection, we measure the quasiparticle poisoning times of
the junction around the gate setpoint used in the main text.

Shown in Fig. 7.9(a), two resonances are visible as the central quantum dot gate VC is
varied around its setpoint VC = 1000 mV, at φext = 0. Following the methods of chapter
5, we identify the outer two VC regions as having a singlet ground state (spin-zero) and
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the central region as having a doublet ground state (spin-1/2). For each gate point, we
subsequently monitor the transmon circuit in real time and determine the switching
time of the quantum dot junction parity. Ts and Td denote the characteristic times for
which the quantum dot maintains a singlet or doublet occupation, respectively. The
extracted times are shown in Fig. 7.9(b). Note that this measurement is performed at
φext = 0, where the |↑〉 and |↓〉 states result in equal transmon frequencies, thus becoming
indistinguishable using our readout scheme. The spin-flip times Tspin are therefore not
resolved here, as opposed to the experiments of Ref. [124].

We observe that, for the outer two regions, where the ground state is the spin-0 state,
the doublet switching time Td ranges from a few µs to hundreds of µs, but is always
much shorter than the singlet switching time Ts. Close to the singlet-doublet ground
state transition, both times become similar and of the order of 1 ms, which can be seen
in Fig. 7.9(c) for VC = 996 mV, where the histogram of a continuous time trace, integrated
in time bins of tint = 4.3µs, shows two Gaussians with equal amplitudes. In the central
region, where the doublet states are the lowest energy states, the situation is reversed
and, away from the singlet-doublet transition, Td is consistently above 1 ms. The im-
balance between average singlet and doublet occupation is shown in Fig. 7.9(d) for the
setpoint used in the main text, VC = 1000 mV. In this case we measure Ts = 59µs and
Td = 2.8 ms. The latter is much larger than that of weak-link junctions, typically found
to be in the range 10-500 µs [122–124, 136, 334], and thus demonstrates the advantage
of using a quantum dot junction. In particular, for the weak-link ASQ [123] the authors
measured a parity lifetime Tparity = 22µs and a spin-flip time Tspin = 17µs, such that the
parity lifetime was a relevant limitation to the qubit T1. In contrast, we find that Td ≫ T1

such that the lifetime of the ASQ studied in this work is not limited by parity switches.

EXCITED STATE POPULATION

Similar to what is found in previous works investigating the doublet states of SNS junc-
tions [123, 124, 333], we observe that both |↑〉 and |↓〉 of the quantum dot junction are
occupied at Bz = 0 mT, even in the absence of a drive. As such, we observe simultane-
ously both of the transmon branches corresponding to each spin state [see Fig. 7.4(b)].
We hypothesize that this residual excited state population is the result of excitations of
either thermal or non-equilibrium origin, as the maximum zero-field ASQ transition fre-
quency fs ≈ 600 MHz, when expressed in units of temperature (Teff = h fs/kB, where kB

is Boltzmann’s constant), corresponds to an effective temperature scale of Teff ≈ 30 mK,
below the typical electron temperatures found in transport and transmon [139] experi-
ments, 35–100 mK.

To investigate the residual population further, we monitor the transmon circuit in
real-time, now at φext = 3π/2 so that we are maximally sensitive to changes in the spin
state. At Bz = 0 mT, the IQ histogram of 2.5×105 sequential measurements confirms the
presence of two populated states, as shown in Fig. 7.10(a). From a double Gaussian fit,
we extract a ratio of state occupations of P (↑)/P (↓) = 0.7. Upon increasing the qubit fre-
quency fs with the magnetic field Bz , we find that the excited state population is strongly
reduced, in line with expectation [Fig. 7.10(d)]. However, the ASQ frequency first crosses
the transmon and then the resonator frequencies between 20 and 30 mT, preventing the
measurement of the spin states occupancy over a range of frequencies. Measuring again
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at Bz = 65 mT, where fs = 11.53 GHz, we find at most 4% remaining excited state pop-
ulation, see Fig. 7.10(b). Here, the remaining excited state population is expected to be
predominantly due to assignment errors, similar to those found in Fig. 7.8(a).

To extract the effective temperature of the ASQ, we subsequently fit the frequency de-
pendence of the ratio of populations to a Boltzmann distribution, P (↑)/P (↓) = exp

(−h fs/(kBTeff)
)
,

where h and kB are the Planck and Boltzmann constants, respectively. This leads to rea-
sonable agreement with the data, resulting in an effective temperature of Teff = 100± 8 mK
[see Fig. 7.10(d)].

CP DATA

In this section we provide further data for the CP measurements shown in Fig. 7.3(d) in
the main text. As discussed, the CP sequence is constructed as follows: for each nπ, we
apply a π/2-pulse, followed by nπ equidistant π-pulses and a final π/2-pulse. All pulses
are composed of a Gaussian envelope and have a FWHM of 2 ns and 4 ns for theπ/2- and
π-pulses, respectively. The separation between the centers of consecutive π-pulses is
τ/nπ and the separation between a π/2 pulse and its nearest π pulse is τ/(2nπ), resulting
in a total delay time τ between the center of the two π/2 pulses. Fig. 7.11 shows CP
measurements for nπ values ranging from 2 to 7, accompanied by a fit to the expression

a cos
(
τΩ−φ)

exp
(
− (τ/T2)d+1

)
+ c +eτ, (7.17)

from which we extract the T2(nπ) values reported in Fig. 7.3(d). Note that the maxi-
mum waveform generator output power puts a limit on the minimum delay time τ for
which the sequence can be generated, as the Gaussian pulses overlap for short delay
times compared to the pulse width. This results in the absence of data for short τ in
Fig. 7.11.

TRANSMON QUBIT COHERENCE

We characterize the transmon performance at the flux and gate bias point used in the
main text using standard time-domain techniques, see Fig. 7.12.

ASQ COHERENCE VERSUS CONTROL PARAMETERS

In this section we provide additional data showing the dependence of the ASQ lifetime
and coherence times on different control parameters. They are extracted by fitting their
respective time evolutions using the same expressions employed in Fig. 7.3 of the main
text:

T1 : a exp(t/T1)+ c (7.18)

T2R : a cos
(
tΩ−φ)

exp
(
− (t/T2R)d+1

)
+ c (7.19)

T2E : a cos
(
tΩ−φ)

exp
(
− (t/T2E)d+1

)
+ c +et (7.20)

Here, a, c, d , e, φ, Γ, T1, T2R and T2E are fit parameters. For T2R and T2E, Ω accounts for
the combination of detuning and the oscillations introduced by adding a phase propor-
tional to the delay time for the final π/2-pulse.
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ASQ LIFETIME VERSUS MAGNETIC FIELD

We start by investigating the evolution of the ASQ lifetime T1 versus magnetic fields be-
tween 0 and 65 mT. As shown in Fig. 7.13(b), the qubit lifetime varies strongly, from
around 1µs close to zero magnetic field and up to 40µs at intermediate fields, before
once-more decreasing to approximately 20µs. For intermediate magnetic fields between
15 mT and 35 mT, the measurement of the qubit lifetime is hindered by the vicinity to the
transmon and resonator transition frequencies. In this region it is not possible to drive
the ASQ independently as, due to the capacitance between the gate drive line and the
transmon island, the transmon qubit is also excited. This simultaneous driving of both
qubits impedes the distinction of the response coming from each of them.

The strong reduction of T1 at low fields is potentially due to resonant exchange with
the nuclear spins in InAs [303]; given the large g -factor of the ASQ, this process only takes
places at low magnetic fields. This is supported by the finding that at elevated magnetic
fields, in the range 45–50 mT, we find the ASQ lifetime to exceed 40µs. Further investi-
gation would be needed to determine the origin of the magnetic field dependence of T1

near zero field. At even higher fields we observe a drop of the lifetime to around 20µs.
As discussed in the main text, we conjecture the ASQ lifetime found in these regimes is
limited by Purcell-like decay from coupling to the transmon, given the short transmon
lifetime of around 250 ns [Fig. 7.12(b)].

To support the assertion that the reduction in the ASQ lifetime for qubit frequencies
in the proximity of the transmon transitions is due to Purcell-like decay, we investigate
whether the transmon lifetime is enhanced by proximity to the ASQ. Fig. 7.14 shows the
transmon lifetime T t

1 for three different detunings between transmon and ASQ. When
the qubits are detuned from each other, we measure T t

1 ≈ 250 ns. However, when the
transmon is resonant with the ASQ, its lifetime is enhanced by almost factor of two,
reaching 470 ± 5 ns. This is consistent with hybridization of the two qubits, given that
T s

1 ≫ T t
1, and supports that the lifetime of the ASQ can be decreased by vicinity to the

transmon modes. These findings furthermore compliment the the observations dis-
cussed surrounding main text Fig. 7.4, serving as an additional signature of coherent
coupling.

INDEPENDENCE OF ASQ COHERENCE ON GATE VOLTAGES, MAGNETIC FIELD AND FLUX

We investigate the effect of different sources of noise by measuring the dependence of
the T2R and T2E coherence times on gate voltage, magnetic field, and flux.

The Bz dependence of coherence times is shown in Fig. 7.15(a), for which we do
not observe a measurable dependence over the Bz range investigated. Therefore charge
noise is likely not the dominant contribution to qubit dephasing since, if it was the case,
an increase in Bz would increase the effectiveness of EDSR at coupling charge noise to
the qubit, which would result on a reduction of the decoherence times. In contrast, this
Bz -independence of coherence times is compatible with nuclear magnetic noise being a
strong contribution to qubit dephasing; due to the small magnetic moment of the nuclei
spin, a magnetic fields of 65 mT do not yet lead to a significant nuclear splitting. As a
result of this we do not reach the regime of strong nuclear spin polarization, such that
the precession of the nuclear bath in the external fields still leads to a significant Over-
hauser field for the range of fields explored. Additionally, the Overhauser field could have
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a field-independent component originating from the quadrupolar coupling of the nuclei
to electric field gradients, induced by strain in the nanowire [173, 303]. A more complete
understanding of the system will require further investigation.

Next, we consider the dependence of coherence times on the external flux φext. As
shown in Fig. 7.15(b), we again do not find a pronounced dependence of the coherence
times. In particular, we do not observe an increase of the T2 times near the sweet spots
at φext = ±π/2. From this we conclude that flux noise does not strongly contribute to
dephasing.

Finally we investigate the dependence of coherence times on the voltages applied to
the three gate electrodes situated underneath the quantum dot junction [see Fig. 7.5(e)].
As shown in Fig. 7.16, we do not find a clear correlation between T2R or T2E and the
slope of the qubit frequency versus any of the three gate voltages. This indicates that
voltage noise also does not provide a large contribution to the dephasing rate. However,
although we measure T2 in the vicinity of the available sweet spots of the individual gate
electrodes, we did not find a simultaneous sweet spot for all three quantum dot gates,
and the effect of voltage noise cannot be entirely ruled out. Further investigation of the
qubit’s susceptibility to voltage and magnetic noise based on the Rabi decay times are
discussed in the next section.

ESTIMATING THE AMPLITUDE OF CHARGE AND MAGNETIC NOISE FLUCTUATIONS

A method for estimating upper bounds on the amplitude of fluctuations originating from
different noise sources is provided in Ref. [205], where the authors study the relation be-
tween the Rabi frequency, fR = ΩR/2π, and the Rabi decay time, TR. These quantities,
respectively shown in Figs. 7.17(a) and (b), can be extracted from a fit to the Rabi signal
with the expression a cos(tΩR )exp(t/TR)+ c, where t denotes the full-width half maxi-
mum of the applied Gaussian pulse, see Fig. 7.2. We fit the extracted decay times to the
model of Ref. [205] (

1

TR

)2

=
σ4

f

4 f 2
R

+C 2 f 2
R , (7.21)

where σ f is the standard deviation of the fluctuations of the qubit frequency fs due
to noise in the control and model parameters and C is a measure of noise of the drive
field. The data is fitted up to the region where the Rabi frequency stops being linear as a
function of the pulse amplitude A, indicated with grey markers in Fig. 7.17, and extract
σ f = 39.7 MHz and C = 0.25.

If we assume that the dominating contribution toσ f originates from noise in just one
control parameter, we can obtain upper bounds on the noise amplitude for various types
of noise. Since the coherence time is mostly independent on the external flux [Fig. 7.15],
we focus only on two possible origins of decoherence: voltage noise and nuclear mag-
netic noise. We first determine the susceptibility of the qubit frequency with respect to
the external parameters (VL, VC, VR, B∥ and B⊥) at the ASQ operational setpoint, calcu-
lated as the partial derivatives of the qubit frequency with respect to each parameter.
From two-tone spectroscopy measurements, we find the susceptibilities with respect to
the left, central and right quantum dot gates of SL ≈ 0.16 GHz/mV, SC ≈ 0.07 GHz/mV
and SR ≈ 0.08 GHz/mV, respectively, and the susceptibilities to the parallel and perpen-
dicular magnetic fields of S∥ ≈ 0.18 GHz/mT and S⊥ ≈ 0.05 GHz/mT, respectively.
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We start by evaluating the contribution of voltage noise on the DC lines. Consider-
ing noise from the gate with highest susceptibility we obtain an upper bound of σL <
σ f /SL = 0.25 mV for the standard deviation of the gate voltage fluctuations. While this
agrees with the gate noise observed in Ref. [123], where the estimated standard devia-
tion of the voltage gate fluctuations was σV = 0.24 mV, we do not expect fluctuations of
this magnitude to be present in our system. Previous experiments measured in the same
experimental setup [Fig. 7.6] observed gate stability below 60µeV for similar device ge-
ometries (see chapter 4). Furthermore, the DC lines used to control the gate electrodes
are strongly filtered with a sequence of 9 kHz RC filters, 80 MHz to 5 GHz π filters and,
finally, custom made copper powder filters, all mounted at the mixing chamber stage.
and an additional set of 80 MHz π filter on the printed circuit board. The left and right
gates additionally have first order LC filters on-chip, with an expected cutoff frequency
of 200 MHz. We therefore suspect that the dominant contribution to σ f does not arise
from gate voltage fluctuations on the DC lines. However, charge fluctuations on the de-
vice, unrelated to the gate control, could still limit the coherence time.

Alternatively, the gate voltage noise could originate from the RF drive line connected
to the central gate electrode. This would result in an upper bound to gate voltage noise of
σC <σ f /SC = 0.57 mV, which corresponds to an effective power of −53 dBm at the sam-
ple. Given the −55 dB attenuation of the drive line [Fig. 7.6], this would correspond to a
noise power of 2 dBm at the fridge input, which we consider implausible. Furthermore,
the RF line is connected via both a DC block and a bias tee, providing strong high-pass
filtering.

Next, we consider the contribution of nuclear magnetic noise. We estimate upper
bounds to the longitudinal and transverse magnetic fluctuations ofσ∥ <σ f /S∥ = 0.22 mT
and σ⊥ < σ f /S⊥ = 0.80 mT, respectively. These estimates are comparable to the values
obtained for InAs and InSb spin-orbit qubits in previous works: σB = 0.66 mT [227] and
σB = 0.16 mT [317], respectively. Nuclear magnetic noise is therefore a plausible domi-
nating contribution to the dephasing observed in the ASQ. However, we emphasize that
these calculations are only an estimate and that further investigation is needed to dis-
cern between the different possible causes of dephasing.

VIRTUAL-PHOTON-MEDIATED ASQ–RESONATOR COUPLING

In this section we provide additional data showing coherent coupling between the read-
out resonator and the Andreev spin qubit. As shown in Fig. 7.18, we observe avoided
crossings between the ASQ and resonator transitions when they are on resonance, at
Bz = 36.5 mT. This coherent coupling is of note, as the ASQ and readout resonator are
not directly coupled. However, both are directly and strongly coupled to the transmon
qubit, detuned by 900 MHz in this case, which mediates a strong virtual coupling. This
effect is analogous to the work of Ref. [180] where, instead, a resonator mediated virtual
coupling between a transmon and a spin qubit.
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MITIGATION OF QUASIPARTICLE LOSS IN

SUPERCONDUCTING QUBITS BY PHONON

SCATTERING

Quantum error correction will be an essential ingredient in realizing fault-tolerant quan-
tum computing. However, most correction schemes rely on the assumption that errors
are sufficiently uncorrelated in space and time. In superconducting qubits this assump-
tion is drastically violated in the presence of ionizing radiation, which creates bursts of
high energy phonons in the substrate. These phonons can break Cooper-pairs in the
superconductor and, thus, create quasiparticles over large areas, consequently reducing
qubit coherence across the quantum device in a correlated fashion. A potential miti-
gation technique is to place large volumes of normal or superconducting metal on the
device, capable of reducing the phonon energy to below the superconducting gap of
the qubits. To investigate the effectiveness of this method we fabricate a quantum de-
vice with four nominally identical nanowire-based transmon qubits. On the device, half
of the niobium-titanium-nitride ground plane is replaced with aluminum (Al), which
has a significantly lower superconducting gap. We deterministically inject high energy
phonons into the substrate by voltage biasing a galvanically isolated Josephson junc-
tion. In the presence of the low gap material, we find a factor of 2-5 less degradation in
the injection-dependent qubit lifetimes, and observe that undesired excited qubit state
population is mitigated by a similar factor. We furthermore turn the Al normal with a
magnetic field, finding no change in the phonon-protection. This suggests that the ef-
ficacy of the protection in our device is not limited by the size of the superconducting
gap in the Al ground plane. Our results provide a promising foundation for protecting
superconducting qubit processors against correlated errors from ionizing radiation.

The work in this chapter has been published as: A. Bargerbos, L. Splitthoff, M. Pita-Vidal, J. Wesdorp, Y. Liu,
P. Krogstrup, L. Kouwenhoven, C.K. Andersen, and L. Grünhaupt, Mitigation of quasiparticle loss in supercon-
ducting qubits by phonon scattering, Physical Review Applied 19, 024014 (2023).
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8.1. INTRODUCTION

Superconducting qubits are one of the prime candidates in the global effort towards
building a quantum computer. Tremendous technological advances have been achieved
over the last decade, heralding the advent of noisy intermediate-scale quantum tech-
nologies [13, 161, 257]. In order to go beyond this intermediate scale and harness the full
potential of quantum computers, fault-tolerant quantum computing will be required.
Remarkable progress has been made in terms of implementing error detection and cor-
rection in recent years using superconducting circuits [1, 6, 57, 170, 208, 306]. A key
assumption of most quantum error correction schemes is that qubit errors are spatially
and temporally uncorrelated, however that appears to be drastically violated in large
scale superconducting qubit arrays. In [214] it has been shown that cosmic rays and am-
bient radioactivity can deposit large amounts of energy into the substrate of the device
in the form of phonons. These phonons travel over distances of centimeters, breaking up
Cooper pairs and leading to decreased qubit coherence over timescales of milliseconds,
causing correlated error events [49, 211, 214, 226, 307, 322, 337].

Several mitigation strategies have been proposed to combat these ionizing impact
events at the level of the quantum device, such as the direct trapping of quasiparti-
cles through gap engineering [235, 264, 265, 325] as well as impeding the propagation
of phonons by substrate modification [60, 150, 261, 267]. A complementary approach is
the use of so-called phonon traps [72, 129, 150, 211, 238]. Made from a normal or su-
perconducting material with a small superconducting gap, phonon traps dissipate the
phonon energy through scattering events until the resulting phonons have too little en-
ergy to break Cooper pairs in the qubit layer. A key difference of phonon traps compared
to the direct trapping of quasiparticles is that the traps target the phonons also while they
are en-route to the qubits, before error events occur. Phonon traps furthermore do not
have to be galvancially connected to the circuit, nor do they even have to be embedded
into the same plane of the chip, as long as they connect to the substrate. It is therefore
possible to design phonon traps without introducing qubit dissipation from coupling to
lossy materials [264], and with no added strain on the increasing complex task of control
line routing [42].

8.2. EXPERIMENTAL SETUP & METHOD

To date, the efficacy of phonon traps has been demonstrated for superconducting res-
onators [129, 238] and kinetic inductance detectors [150]. In this article we set out to
investigate their effectiveness in protecting superconducting qubits by fabricating a 6×
6 mm2 chip containing four nanowire transmon qubits [70, 182], one in each corner
of the device [Fig. 8.1(a)]. All transmons have identical geometries [Fig. 8.1(b)] and are
excited and read out via individual coplanar waveguide resonators coupled to a com-
mon feedline. The transmon islands, resonators and feedline are dry etched from a
20 nm thick niobium-titanium-nitride (NbTiN) thin film deposited on a 525µm thick
high-resistivity silicon substrate. We implement the phonon traps by partially removing
the NbTiN groundplane on one half of the chip, replacing it with 200 nm of aluminium
(Al) deposited by electron beam evaporation and patterned by lift-off [cf. Fig. 8.1(e)].
The Al and NbTiN layers are furthermore galvanically connected by a 20µm wide region
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of overlap between them. We leave a 290µm region of NbTiN around all qubit islands
to suppress direct quasiparticle trapping in the Al layer surrounding the qubit [264, 265].
While quasiparticle trapping can be of great use in practical qubit applications, the goal
of this study is to evaluate the effect of phonon trapping only. Finally, the full back-
side of the chip is glued to a solid copper block using thermally conductive silver epoxy.
Through the copper, the chip and surrounding enclosure are thermally anchored to the
mixing chamber of a dilution refrigerator at ∼ 20mK.

Each transmon island is connected to ground via a nominally 10µm long epitaxial
semiconductor-superconductor nanowire, consisting of a 110 nm wide hexagonal InAs
core and a 6 nm-thick Al shell covering two of its facets [173]. By selectively removing
a 100 nm long segment from the Al shell we define a semiconducting Josephson junc-
tion, whose Josephson energy can be tuned with a single bottom gate electrode via the
field effect [70, 182]. A second gate electrode is present under an InAs-Al region of the
nanowire, allowing for capacitive tuning of the island’s offset charge and aiding in the es-
timation of the qubit parameters (see Sec. 8.7). The choice for nanowire-based junctions
over conventional tunnel junctions is motivated by their magnetic field compatibility
[203, 252, 313], allowing us to study the dependence of phonon trapping efficacy on the
size of the superconducting gap in the 200 nm thick Al ground plane without strongly
affecting the qubit parameters (see Fig. 8.10).

A key feature of our device is two additional semiconducting junctions used for phonon
injection. Identical to those used for the transmons, the junctions are located at the top
and bottom of the front side of the chip, but galvanically isolated from the qubit ground
plane [see Fig. 8.1(a)]. They are connected to source and drain leads made from the
NbTiN base-layer to allow for voltage biasing and current sensing, while the resistance
of the junctions can be tuned with a bottom gate electrode (see Fig. 8.8). In this article
only the top junction is used, as the bottom junction is not functional. Given that the four
qubits can be uniquely identified based on their distance from the top junction (1.8 mm
or 4.4 mm (see Fig. 8.5) and whether their ground plane is made from Al or NbTiN, we
label them as the NearAl, NearNbTiN, FarAl, and FarNbTiN qubits in what follows.

The top junction serves to inject phonons over a broad spectral distribution up to
energies ≤ eVbias −2∆nw into the substrate of the chip, where ∆nw is the superconduct-
ing gap of the injector junction [233]. This technique originates in the investigation of
non-equilibrium phonon dynamics [87, 88, 329] and has more recently been adapted
for experiments involving superconducting quantum circuits [190, 238, 331]. The pur-
pose of the injection junction is to qualitatively reproduce the phonon spectrum present
several microseconds after a cosmic ray impact event. By virtue of the phonononic dis-
persion relation and interactions with the superconducting layers, at this stage most of
the energy will have been converted into phonons with a broad energy spectrum rang-
ing up to several meV [211], similar to the spectrum resulting from the phonon injection
by voltage biasing a Josephson junction. However, the total energy of an impact event,
ranging up to MeV scales, remains difficult to experimentally generate using Josephson
junctions [211, 233].

As the phonon injection and propagation process is central to this experiment, we
briefly discuss the operation mechanism here, which is visually represented in Fig. 8.1(f-
h). We set the junction’s bottom gate voltage such that we operate in the tunneling



8

180
8. MITIGATION OF QUASIPARTICLE LOSS IN SUPERCONDUCTING QUBITS BY PHONON

SCATTERING

Figure 8.1: False colored device overview (a-e) and sketch of the phonon mitigation process (f-h). (a) Four
nanowire transmon qubits [dashed boxes, see (b)] are coupled to individual readout resonators which in turn
are coupled to a common feedline. Two nanowire-based junctions are additionally present for phonon injec-
tion [turquoise boxes, see (c)] and are galvanically isolated from the qubit ground plane (bottom junction not
operational). All structures are patterned from NbTiN (light orange), except for the majority of the left half
of the ground plane, which is made from a thick aluminum film (red) [see device cross-section in (e), lateral
dimension not to scale]. Electrostatic gates below the junctions tune the resistance of the phonon injector (c)
and Josephson energy of the qubits [d, zoom-in of (b)], respectively. A second gate per qubit allows for inde-
pendent tuning of the qubit charge offsets. (f) Quasiparticles excited by voltage biasing the injector relax to the
superconducting gap edge and recombine, emitting phonons (black and orange arrows, respectively). (g) The
emitted phonons propagate via the substrate, and those with energies larger than twice the superconducting
gap > 2∆large induce Cooper-pair breaking, relaxation and recombination cycles, eventually exciting quasipar-
ticles in the qubits. (h) In the presence of a small gap superconductor, these cycles produce phonons of energy
≤ 2∆small instead (red arrows), which cannot break Cooper-pairs in the qubits.
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regime, where the supercurrent at bias voltage Vbias = 0 is fully suppressed (see Fig. 8.8).
For voltages Vbias < |2∆nw|/e applied between the leads of the junction there is thus no
current, where ∆nw is the superconducting gap of the InAs-Al nanowires. However, for
voltages Vbias ≥ |2∆nw|/e Cooper pairs can be broken up and a quasiparticle current will
run across the junction [see Fig. 8.2(a)]. The quasiparticles then diffuse around the vicin-
ity of the junction and its leads, scattering and relaxing to the gap edge of the supercon-
ductors, producing relaxation phonons of energies up to E = eVbias −∆nw in the process,
see Fig. 8.1(f) [233]. The now-relaxed quasiparticles can subsequently also recombine
with other quasiparticles, emitting recombination phonons of energy E = 2∆nw

1. These
phonons either break up new Cooper pairs in the metal layer, or they escape into the sub-
strate where they can rapidly travel over distances of several times the size of the chip,
scattering off the boundaries [210]. The phonons can thus end up at the qubits, creating
quasiparticles and inducing losses proportional to the excess quasiparticle density xqp

[105], see Fig. 8.1(h). However, if the phonons encounter the Al traps en-route to the
qubits, part of their energy can be dissipated in further cycles of Cooper pair breaking,
relaxation, and recombination [Fig. 8.1(g)]. The resulting phonons of energy E ≤ 2∆trap

can no longer excite quasiparticles in the qubit structures, for which the superconduct-
ing gaps of the islands ∆NbTiN ≥ 1500µeV and of the nanowires ∆nw = 270µeV are larger
than that of the traps ∆trap = 180µeV [207, 299, 319].

We note that at cryogenic temperatures, phonons move through the silicon substrate
virtually unimpeded with a velocity of ∼ 6mmµs−1 and thus traverse the chip on µs
timescales. Additionally, we expect the scattering length of phonons in the Al film to be
comparable to the thickness of the Al trapping region, such that they have a significant
probability to escape the film without creating quasiparticles [211]. Thus, we anticipate
the phonons to be able to fully traverse the chip, with the main impediments to their
propagation coming from the probability of scattering into quasiparticles and from the
probability to escape through the silver epoxy on the backside of the sample. However,
accurate modeling of the phonon distribution in the substrate would critically rely on
phonon transfer rates through the various interfaces, the scattering lengths in the differ-
ent materials, and adequate numerical simulations of phonon propagation trajectories
(cf. [210]).

8.3. QUBIT LIFETIME VERSUS QUASIPARTICLE INJECTION
To investigate the effectiveness of the Al ground plane to protect against high energy
phonons, we perform qubit lifetime (T1) experiments on all four qubits while we apply a
constant bias to the phonon injector, which causes the T1 time to decrease as shown
in Fig. 8.2(b). For bias voltages within the gap, T1 remains essentially constant, see
Fig. 8.2(c), while T1 drastically decreases at the onset of the quasiparticle current, with a
kink at 2∆nw originating from the enhanced conductance at the gap edge. As the qubit
is over 4 mm away from the galvanically isolated injector junction, this suggests that the
losses indeed originate from phonons that traveled through the substrate [238]. We then
compare the added loss rate Γ1(Vbias) = 1/T1(Vbias)−1/T1(Vbias < |2∆nw/e|) of each qubit,

1When quasiparticles recombine they can also emit photons rather than phonons. However, as the final den-
sity of states corresponding to this process is much smaller than the density of states for phonon emission,
we neglect this effect.
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A

Figure 8.2: Added qubit loss due to phonon injection. (a) I-V characteristics of the Josephson junction used
to inject phonons measured using the circuit shown in the inset. (b) Representative qubit lifetime (T1) mea-
surements on the FarNbTiN qubit for bias voltages Vbias of 0 and 1.2 mV applied across the injector. The data
(markers) is fit with an exponential decay (solid lines), yielding lifetimes of 3.8µs and 1.3µs respectively. (c)
Qubit lifetime T1 of the FarNbTiN qubit as a function of Vbias. (d) Added qubit loss rate Γ1 as a function of
Vbias for all 4 qubits (labels apply to all panels). We define added Γ1 as the bias voltage dependent loss rate
minus the average base line value for |eVbias| < 2∆nw [cf. panel (c)]. (e) Added Γ1 as a function of the delay
time τI after a square injection pulse with a duration of 20µs and an amplitude of ≈ 3mV. The loss rates are
fit with an exponential decay (solid line), yielding recovery times of (80±9)µs (blue) and (67±5)µs (orange).
Error bars in panels (c-e) denote the standard deviation over 5 repetitions.
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where we subtract the baseline loss rate measured inside the superconducting gap. As
can be seen in Fig. 8.2(d), the FarAl qubit has up to 8 times smaller added loss rate than
the NearNbTiN qubit. However, this comparison involves both a larger separation from
the injector and the presence of phonon traps. To disentangle the two effects, we com-
pare the qubits at equal distance from the injector. The NearAl qubit has up to 2.5 times
smaller added loss rate than the NearNbTiN qubit, supporting that the presence of the Al
phonon traps leads to resilience against phonon induced losses. For the FarNbTiN and
FarAl qubits the improvement even reaches up to 5, suggesting that an increased area of
the trapping region increases the efficacy (see Fig. 8.9). We note that the improvements
are bias dependent, tending towards a constant value for bias voltages above 1.5 mV,
several times the size of ∆nw.

So far, we have focused on phonons that are continuously injected into the chip by
applying a constant bias voltage across the injector. However, in the impact events of
ionizing radiation the phonons are created in bursts. To test whether our findings still
hold under such circumstances, we repeat the same experiment using a pulsed phonon
injection scheme. We now apply a square pulse of duration 20µs at an amplitude of
approximately 3mV across the injector. This would result in an energy of ∼ 5keV if all
energy was transduced into phonons - about two orders of magnitude smaller than dur-
ing a typical high-energy particle impact, but with a spectrum similar to that some µs
after the initial impact [211, 233]. Subsequently, we measure the qubit loss as a function
of delay time after the injection event [Fig. 8.2(e)]. The recovery of added loss rate with
delay time follows an exponential form, suggesting a recovery dominated by quasipar-
ticle relaxation rather than by recombination, for which the recovery is governed by a
hyperbolic cotangent function [325]. We find that at zero delay time the FarNbTiN qubit
is affected 4 times more than the FarAl qubit, consistent with the results for continu-
ous injection. We further note that that the recovery times are approximately equal at
(80± 9)µs [(67± 5)µs] for the FarNbTiN [FarAl] qubit. We do not observe any significant
enhancement of recovery time due to the presence of the Al phonon traps, such that the
recovery time might instead be dominated by quasiparticle dynamics near the junction,
such as quasiparticle trapping and diffusion rates. The latter could be addressed with
quasiparticle traps rather than with phonon traps [264, 265]. Alternatively, the phonon
traps could have a similar effect on recovery times across the device, as the phonons can
traverse the chip on timescales of a few microseconds [211]. We note that the timescale
for phonons to leave the chip is also several microseconds, and this is therefore unlikely
to be the limiting mechanism of the observed the recovery time.

8.4. EXCITED STATE POPULATION
In the measurements of the qubit loss rates we additionally find that the qubit readout
signal becomes smaller with increasing bias voltages, requiring substantially more repe-
titions to obtain the same signal-to-noise ratio (SNR) at elevated bias. To investigate this
effect we monitor the resonator response of the FarNbTiN qubit using single-shot read-
out in the absence of any qubit excitation tones. For 0 mV bias this results in a double
Gaussian distribution of measurement outcomes, with 93% of the outcomes located in
a single Gaussian [Fig 8.3(a)]. We interpret this output as the signal corresponding to
the ground state population of the transmon qubit, indicating a residual excited state
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Figure 8.3: Increased excited state population due to phonon injection. (a) Histogram of the resonator re-
sponse for the FarNbTiN qubit at Vbias = 0mV. Each individual shot corresponds to the integrated output sig-
nal for a readout time of 500 ns. The resulting histogram (markers) is fit with a double Gaussian function (solid
line), from which we estimate a ground state population of 93%. (b) Same as (a) for Vbias = 2.5mV, from which
we estimate a ground state population of 35%. (c) Representative time-Rabi experiments on the FarNbTiN
qubit for the values of Vbias used in panels (a-b). The data (markers) is fit with an exponentially decaying co-
sine (solid line). (d) Extracted Rabi oscillation amplitude A normalized to its value at zero bias, measured as a
function of Vbias for all 4 qubits. Error bars in panel (d) denote the standard deviation over 5 repetitions.
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population of 7%. When we apply a constant bias of 2.5 mV the distribution changes
significantly: the transmon is now in the ground state only 35% of the time. This is con-
sistent with previous findings showing that non-equilibrium quasiparticles with ener-
gies in excess of 2∆nw can lead to an increased excited state population [139, 287, 331].
The fact that the ground state population is less than 50% could furthermore indicate
that the transmon now also has a sizeable population outside of the two-level qubit
subspace, and that non-equilibrium quasiparticles resulting from high energy phonons
serve to reduce the unwanted excited state population induced by the generation of non-
equilibrium quasiparticles by phonons. We note that such energetic quasiparticles are
likely only produced during the initial phase following an impact event [211, 214], while
they are constantly observed in this experiment due to the continuous injection of high
energy phonons.

To gain insight into the effectiveness of the traps in reducing unwanted excited pop-
ulation, while constrained by limited SNR, we perform a time-Rabi experiment between
the transmons’ ground and first excited state as a function of the injection bias voltage.
The amplitude of the Rabi oscillation A is proportional to the difference in the popula-
tion of the transmon states involved, and additionally decreases in the presence of qubit
leakage. The evolution of A with Vbias is thus indicative of the change in the state pop-
ulations. As shown in Fig 8.3(c), the amplitude of the oscillations for the FarNbTiN qubit
indeed decreases significantly at Vbias = 2.5mV compared to that at 0 mV. We repeat
this experiment for all qubits, normalizing the Rabi amplitude to its value at zero injec-
tion voltage. We find results comparable to those of the added qubit loss rates, with the
NearAl qubit again showing a reduction in Rabi amplitude of up to 5 times larger than
that of the FarNbTiN qubit. This difference indicates that phonon traps can thus also pro-
tect against phonon-induced excited state population.

8.5. MAGNETIC FIELD DEPENDENCE
Having established a moderate protection due to the Al traps, we investigate how the dif-
ference in superconducting gap between the trapping and qubit materials influences the
effectiveness of the trapping process. For the trapping process to be of use, the super-
conducting gap of the trap must be smaller than that of the qubit layer [cf. Fig. 8.2(f-h)].
Furthermore, as the relaxation rate of quasiparticles excited inside the trap grows with
their energy above the gap edge [149, 264], one would assume that the absolute size of
gap should also be a relevant metric. Ignoring potentially detrimental effects from elec-
tromagnetic coupling, a normal metal (with no spectral gap) might thus be particularly
suitable as a trapping material [211, 238]. We investigate this hypothesis in-situ, making
use of the inherent magnetic field compatibility of the nanowire transmon qubits and
their readout circuit, which have been shown to be operable up to parallel fields in ex-
cess of 1 T [174, 203, 252, 313]. This is in contrast to the 200 nm thick Al, which turns
normal at significantly lower fields of ≈ 30mT [see Fig. 8.4(b)] [219].

We repeat the measurements of added loss rate in the presence of a constant bias
voltage for different applied magnetic fields. Contrary to expectation, the added loss
rate does not appear to change after passing the critical parallel field of the thick Al
[Fig. ??(a)]. In fact, we do not detect any significant change as a function of magnetic
field between 0 and 70 mT, far in excess of the critical field [Fig. ??(c)]. To elucidate the
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Figure 8.4: Magnetic field independence of added qubit loss. (a) Added Γ1 as a function of Vbias for the two
qubits with an aluminum ground plane at magnetic fields B∥ of 20 and 40 mT applied in the plane of the
chip [cf. inset panel (c)]. (b) Four-point measurement of the normalized aluminum film resistance RAl as a
function of B∥. (c) Scatter plot showing the differences between the Vbias dependence of Γ1 at 0 and elevated
B∥ for the two qubits with an aluminum ground plane. Each data point represents the difference in rates δΓ1
evaluated at equal Vbias. The horizontal line indicates the mean of δΓ1 over all Vbias. Inset: direction of the
applied magnetic field with respect to the cross-section of the chip. (d) Same type of plot as (c), but showing
the difference between the NearAl and NearNbTiN qubits at 0 applied magnetic field [data shown in Fig. 8.2(d)].
This serves as a reference for the data in panel (c).
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implications of these findings, we conservatively estimate the relaxation rate of quasi-
particles at energy 2∆nw to be at least 30% faster in normal state Al than in zero-field
superconducting Al due to the reduction in gap size [264]. Given that despite this no
improvement is observed, we conclude that the the rate at which excited quasiparticles
relax inside the phonon trap is not what sets the effectiveness of our phonon traps.

We instead consider that the bottleneck for the trapping efficacy is the rate at which
phonons are able to scatter and excite quasiparticles in the trapping layer. This rate has
two primary components: the scattering rate of phonons into quasiparticles inside the
Al, and the transmission probability for phonons to cross from the silicon substrate into
the Al. The first component is predicted to moderately decrease when entering the nor-
mal state [211]; a negative change in trapping efficacy would thus have been observed
if this were the limiting factor. The second component, the transmission probability,
is not expected to be a function of field. Consequently, we hypothesize that the trap-
ping is limited by the poor interface between the substrate and the Al layer [148, 210],
making it difficult for phonons to enter the traps. In our device this is potentially exacer-
bated by the dry etching procedure used to remove the NbTiN layer before Al deposition,
which roughens the underlying silicon, reducing phonon transmission across the metal-
substrate interface. We again note that the magnetic field experiment is performed using
continuous injection rather than using pulsed injection. Potential improvements during
the phase where most phonons have been reduced to energies of 2∆nw might thus be
obfuscated by the constant influx of new high energy phonons.

8.6. CONCLUSIONS
In conclusion, we find a factor of 2-5 improvement in the protection against phonon-
induced degradation of qubit lifetimes for transmon qubits surrounded by Al phonon
traps. This level of improvement is in line with previous results on phonon trapping
for superconducting resonators [129, 238] and kinetic inductance detectors [150], here
demonstrated at the level of sensitivity of transmon qubits. Additionally, we demonstrate
that phonon traps can also be used to combat the increase in excited state population
due to the generation of energetic quasiparticles from phonons. While the obtained im-
provements are modest, we emphasize that this is a conservative estimate for realistic
multi-qubit arrays. With mean-free paths exceeding several times the size of the chip,
phonons in the silicon are able to travel vast distances, and thus it is likely that the two
NbTiN-based qubits also benefit from the presence of the Al traps. Therefore, we believe
the improvement found is a lower bound on what could be obtained when comparing
different chips with and without traps, which we choose not to do to exclude unintended
differences between devices and thermal anchoring of the respective chips. Further-
more, we deliberately thermally anchor the full backside of the chip, allowing phonons to
leave the device via the substrate. This is in contrast to most superconducting qubit im-
plementations, where the chips are mounted in a floating configuration [193, 211, 330].
In these devices the main path for the phonons to escape the device is through the wire-
bonds at the perimeter of the chip, a slow process that enhances the probability for the
phonons to interact with the traps in such devices.

During the writing of this manuscript we became aware of a similar experiment by
Iaia et al. [132]. In their work the authors compare the impact of high energy phonons



8

188
8. MITIGATION OF QUASIPARTICLE LOSS IN SUPERCONDUCTING QUBITS BY PHONON

SCATTERING

on two separate transmon chips, where one chip has a 10µm thick Cu film deposited on
its backside. For the Cu-covered device they find a reduction in phonon-induced qubit
errors by more than a factor of 20. These findings strongly complement the results of this
paper, where we instead investigate the effect of superconducting traps. Furthermore,
by comparing transmons on a single chip we provide a conservative measure of what
trapping efficacy can be achieved. Together these works show that phonon traps offer a
promising path towards reducing correlated errors to below the level required for fault-
tolerant operation.

Finally, we highlight that phonon traps are also relevant for transmons realized with
conventional Al/AlOx Josephson junctions [207], as well as for other types of super-
conducting qubits, such as fluxoniums [255] and novel protected qubit designs [113].
The enhanced rates of quasiparticle poisoning events following an impact event are
also expected to be highly detrimental for parity-based qubits such as Andreev qubits
[123, 136], as well as topologically protected Majorana qubits [154, 262]. The current gen-
eration of devices used in these qubit platforms rely on the same type of superconductor-
semiconductor nanowires as used in this experiment. Furthermore, while not directly
sensitive to superconductor-based quasiparticles, spin qubits are known to suffer phonon-
mediated back-action [110, 280] and might also suffer from correlated errors due to
phonon impacts, although to what extent remains to be investigated.

8.7. SUPPLEMENTARY INFORMATION

DEVICE AND EXPERIMENTAL SETUP

DEVICE OVERVIEW

An extended optical image of the full 6×6 mm2 chip is shown in Fig. 8.5(a). As discussed
in the main text, it contains four grounded nanowire transmon qubits coupled to indi-
vidual coplanar waveguide resonators. The coplanar waveguide resonators are coupled
to a common feedline, which contains a capacitor at its input port to improve the direc-
tionality of the signal [126]. The nanowire transmons each have two gate electrodes; the
first is used to control the Josephson potential with voltage Vj, the second to control the
offset-charge on the island with voltage Vn [Fig. 8.5(b)].

At the top and bottom of the chip there are two additional nanowire junctions that
are galvanically isolated from the rest of the ground plane [Fig. 8.5(c)]. The junctions
are connected to two leads: the source and drain. The source is connected to a pulsed
and constant voltage sources via a bias tee, while the drain is connected to a current
measurement module. An additional gate electrode is present to tune the out-of-gap
resistance of the junction via the field effect.

NANOFABRICATION DETAILS

The device fabrication is done using standard nanofabrication techniques. The sub-
strate is 525µm thick high-resistivity silicon, on top of which a 20 nm thick NbTiN film
is sputtered. From this base layer the circuit elements are patterned using an electron-
beam lithography mask and SF6/O2 reactive ion etching. In this step we also remove the
NbTiN in the places where the Al phonon traps are to be placed. Immediately before de-
position of the 200 nm thick Al by electron beam evaporation, we remove surface oxide



8.7. SUPPLEMENTARY INFORMATION

8

189

Figure 8.5: Extended device overview. (a) Optical micrograph of the device before wire-bonding. The com-
posite image is stitched together from 36 separate images. For each image the contrast is adjusted to that of
its neighboring images, but no further processing is performed. (b) Circuit diagram of the nanowire transmon
qubit coupled to junction and island gate electrodes. (c) Circuit diagram of the nanowire phonon injector cou-
pled to source and drain leads as well as an additional gate electrode.

on the substrate by a 30 s dip in 20:1 diluted buffered oxide. The Al layer is then patterned
by lift-off. After this 30 nm of Si3N4 dielectric is deposited to form the insulation of the
junction gate electrodes using plasma enhanced chemical vapor deposition, which is
patterned by wet etching with buffered oxide etch using negative electron-beam lithog-
raphy. The nanowires are then deterministically placed on top of the dielectric using a
nanomanipulator and an optical microscope. For this we use an approximately 10µm-
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long vapour-liquid-solid (VLS) hexagonal InAs nanowire with a diameter of 110 nm and
a 6 nm-thick epitaxial Al shell covering two facets [173]. After placement, a 100 nm sec-
tion of the aluminium shell is selectively removed by wet etching with MF-321 developer
to create the Josephson junctions. After the junction etch the nanowires are contacted
by an argon milling step followed by the deposition of 150 nm thick sputtered NbTiN. Fi-
nally, the chip is diced into 6×6 mm2, glued onto a solid copper block with silver epoxy,
and connected to a custom-made printed circuit board using aluminium wirebonds.

CRYOGENIC AND ROOM TEMPERATURE MEASUREMENT SETUP

The device is measured in a commercial dilution refrigerator with a base temperature of
20 mK. Shown in Fig. 8.6, the setup contains an input RF line, an output RF line, an extra
RF line for the pulsed injection, and multiple DC lines for voltage biasing, current sens-
ing, and the tuning of gate voltages. Digital-to-analog (DAC) voltage sources developed
in-house are connected to the DC gate electrode lines, which are filtered at base temper-
ature with multiple low-pass filters. The injector junction drain lead contains the same
filtering and is connected to a current measurement module also developed in-house. It
is further connected to a Keithley 2400 multimeter and a Stanford Research Instruments
SR830 Lock in amplifier (not shown). The input and pulse RF lines contain attenuators
and filters at different temperature stages, as indicated. The output RF line contains a
traveling wave parametric amplifier (TWPA) acquired from the MIT Lincoln Laboratory
at the 20 mK temperature stage, a Low Noise Factory high-electron-mobility transistor
(HEMT) amplifier at the 4 K stage, and two additional Narda-MITEQ low noise ampli-
fiers at room temperature. A three-axis vector magnet (x-axis not shown) is thermally
anchored to the 4 K temperature stage, with the device under study mounted at its cen-
ter. The three magnet coils are controlled with MercuryiPS current sources. At room tem-
perature, a vector network analyzer (VNA) is connected to the input and output RF lines
for spectroscopy at frequency fr. On the input line, this signal is then combined with the
IQ-modulated transmon drive tone at frequency ft. A separate IQ-modulated tone at fr,
only used for time-domain measurements, is also combined onto this line. The pulsed
injection signal is directly sent into the fridge at baseband frequencies. For time-domain
measurements the output signal is additionally split off into a separate branch measured
with a commercial quantum system measurement platform.
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BASIC CHARACTERIZATION

QUBITS

In this section we discuss the characterization of the four qubits at the setpoints used in
the experiments. In practice, the choice for the setpoints is governed by several factors:
the frequency dependence of the qubit lifetimes through Purcell and dielectric losses,
the suppression of offset-charge sensitivity to allow for parity-insensitive qubit manip-
ulation, and the need for inter-qubit frequency detuning to allow for individual control
of the qubits through a single feedline. Under these constraints, we empirically find the
optimal range of qubit frequencies to be in the range 3.7–4.0 GHz. The resulting read-
out resonator frequencies fr, qubit frequencies f01, and average qubit lifetimes T1 in the
absence of phonon injection are listed in Table 8.1.

However, in order to compare the effect of phonon injection on each qubit on equal
footing, we further need to consider that the interaction between the phonon-induced
quasiparticles and the qubits depends on the values of the qubit parameters. Specifi-
cally, for transmon qubits based on superconductor-insulator-superconductor (SIS) junc-
tions with a Josephson energy EJ significantly larger than the charging energy Ec, the
added qubit loss due to quasiparticles is given by [105]

Γ10 = 16EJ

ħπ

√
Ec

8EJ

√
∆

2h f01
xqp = Dxqp (8.1)

where f01 is the qubit frequency and xqp the density of quasiparticles. While the validity
of this equation for the semiconducting Josephson junctions used in this work has not
been investigated, we choose our qubit setpoints in accordance with this equation in an
attempt to ensure comparable sensitivity to quasiparticles (see the estimated values of
D in Tab. 8.1).
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Figure 8.7: Characterization of the nanowire transmon qubits. (a) Representative junction gate dependence of
the NearAl qubit near its setpoint at 1659 mV used in the main text. (b-c) Offset charge dependence of the f01
(top) and f02/2 transition frequencies of the NearAl qubit as capacitively tuned with the island gate electrode,
measured at the setpoint used in the main text. Partially overlaid are fits with Eqs. (5.1) and (8.4), used to
determine the parameters listed in Tab. 8.1.

The tuning of the qubits is performed in-situ via the field effect, making use of the
bottom gate electrode located below the qubit’s Josephson junction [70, 182]. As shown
in Fig. 8.7(a), this results in mesoscopic fluctuations of the qubit frequency as a function



8.7. SUPPLEMENTARY INFORMATION

8

193

of gate voltage, allowing for fine tuned control. When possible, we choose to place qubits
at a local maximum or minimum in gate voltage, reducing sensitivity to charge noise
[203]. Next we characterize the Hamiltonian parameters of the qubits in more detail
by fitting the measured qubit frequency. This is done by numerically diagonalizing the
transmon Hamiltonian

H =−4Ec∂
2
φ+V (φ) (8.2)

where V (φ) is the Josephson potential of the junction, dependent on the superconduct-
ing phase difference across the junction φ. For SIS junctions it takes on the simple form
V (φ) = EJ

[
1−cos(φ)

]
, allowing one to uniquely determine the transmon’s Hamiltonian

parameters through a measurement of the qubit frequency f01 and its anharmonicity
f21 − f01. However, for the semiconducting weak link Josephson junctions employed in
the experiment the situation is more complex. Here the Josephson potential is governed
by a limited number of possibly highly transparent Andreev bound states, requiring a
more complex potential strongly dependent on the microscopics of the junction [167].
In the limit where the length of the junction is much shorter than the coherence length,
one often employs a potential of the form

V (φ) =−
N∑

i=1
∆i

√
1−Ti sin2

(
φ/2

)
. (8.3)

This equation describes N non-interacting channels with normal state transmission
Ti and superconducting gap∆i [26]. For the case of a a single channel this type of expres-
sion has been shown to lead to good agreement with experiments, but when N > 1 it be-
comes highly non-trivial to uniquely determine the junction parameters from the trans-
mon spectra alone [118, 296]. In order to circumvent this problem we operate the qubits
near the pinch-off voltage of the junctions, where only a single level strongly contributes.
Nevertheless, this leads to an additional complication: near pinch-off, the behavior of
the junction is typically governed by accidental quantum dots, resulting in near-unity
transparencies due to resonant tunneling (see Ref. [169] and chapter 4). In this case the
charge dispersion of the transmon qubit can be drastically reduced beyond what is ex-
pected from its effective Josephson energy due to non-adiabatic phase dynamics. This
effect is also encountered in our experiment, and has to be included in order to accu-
rately fit the data. For this we extend the Josephson potential to include the presence of
the higher lying Andreev bound states:

V (φ) = ∆̃
(

cos φ
2

p
1−T sin φ

2p
1−T sin φ

2 −cos φ
2

)
(8.4)

Here ∆̃ is an effective gap energy of the Andreev bound states, potentially reduced be-
low that of the superconducting leads ∆nw by confinement and charging effects (see
Ref. [169] and chapter 4).

Having established the model for the nanowire transmon qubits, we now charac-
terize the qubit parameters by measuring the remaining offset-charge dependence of
the f01 and the two-photon f02/2 transition frequencies for each of the qubits. We then
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Qubit fr (GHz) f01 (GHz) T1 (µs) E eff
J /h (GHz) E eff

J /Ec D (ns−1)
NearAl 7.028 3.948 3.4 5.26 13.1 7.5
NearNbTiN 6.873 3.864 2.6 5.07 12.8 7.4
FarNbTiN 6.803 3.784 4.0 5.15 13.8 7.3
FarAl 6.762 3.892 4.5 4.92 11.7 7.5

Table 8.1: Extracted qubit parameters at zero applied magnetic field. Estimated from the qubit’s charge disper-
sion through Eqs. (8.1) and (8.4).

diagonalize the Hamiltonian of (8.2) using the potential of (8.4) and fit this to the mea-
surements, resulting in a unique set of qubit parameters. These parameters are also tab-
ulated in Table 8.1. We find that the qubits have comparable charging energies, close
to the targeted value of 400MHz. Furthermore, their effective Josephson energies E eff

J =
∆̃T /4 are again similar, resulting in comparable quasiparticle proportionally constants
D . Although the validity of Eq. (8.1) for weak link Josephson junctions is not strictly
established, these estimates indicate that the chosen qubit setpoints do not bias the
experiment towards positive effects of the phonon traps. Based on the obtained val-
ues of D and the loss rates reported in main text Fig. 2(d), we further estimate that the
phonon injection creates non-equilibrium quasiparticle densities xqp of up to 5×10−4

at the NearNbTiN qubit.

INJECTOR

We now discuss the setpoint chosen for the phonon injection junction. To start, we mea-
sure the so called ‘pinchoff curve’ of the junction by applying a constant bias voltage of
Vbias = 1mV, several times beyond the expected superconducting gap of the nanowire.
We then measure the current while varying the gate voltage applied to the junction [Fig. 8.8(a)].
For negative voltages, no current flows, until around −0.5 V where we observe an oscil-
latory onset of current. For larger gate voltages the current grows, eventually saturating
and reaching several tens of nano-amperes. The oscillatory behaviour near pinch-off
is once-more indicative of accidental quantum dots forming inside the junction region,
similar to that seen in Fig. 8.7(a).

Further insight into the behavior of the junction is obtained by measuring the bias
voltage dependent differential conductance G using lock-in amplification. As shown in
Fig. 8.8(b-c), around zero bias voltage the junction portrays a region of strongly reduced
conductance, indicative of a transport gap. The width of this region as a function of
junction gate voltage is set by the superconducting gap of the nanowire∆nw, modified by
an interplay of Coulomb effects and multiple Andreev reflection. For the setpoint used
in the experiments we fix the junction gate voltage in the regime where the size of the
transport gap is maximal, resulting in an estimated ∆nw = 270µeV [Fig. 8.8(d)]. We note
that the size of this gap could include residual effects of Coulomb blockade, however the
value extracted is comparable to results found on nanowires from the same growth batch
[299].
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Figure 8.8: Characterization of the injector Josephson junction. (a) Pinchoff curve of the measured current at
Vbias = 1mV. (b-c) 2D maps of differential conductance G as a function of the junction gate voltage and the
bias voltage, where (c) shows a higher resolution zoom-in of the region used in the experiment. (d) Differential
conductance versus bias voltage at a junction gate voltage of −251 mV, the setpoint used in the experiment.
Note that this panel is not a linecut of panel (c); it is measured simultaneously with main text Fig. 2(a,c), and
its position is slightly shifted with respect to the other panels due to hysteresis.
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EXTENDED DATA

RATIOS OF LOSS RATES

Fig. 8.9 shows different ratios of added loss rate in the presence of a constant bias voltage
across the injector junction. All six scenario’s are compared. As discussed in the main
text, this shows that the largest difference occurs between the NearNbTiN and the FarAl

qubits, reaching up to 8 times more added loss for the NearNbTiN qubit, although this is
potentially due to a combination of distance from the injector as well as the presence of
the phonon traps. On equal footing, the NearAl qubit has up to 2.5 times smaller added
loss rate than the NearNbTiN qubit, and the FarAl has up to 5 times smaller loss than the
FarNbTiN suggesting that an increased area of the trapping region increases the efficacy.
Furthermore, the FarNbTiN qubit performs up to 2 times better than the NearNbTiN. As
both qubits are not directly next to the Al phonon traps, this supports previous findings
that qubit errors are strongest close to the position where the phonons originate [211,
214, 337]. Finally, we note that the ratio of added loss rates is a function of the bias
voltage, the exact cause of which remains to be investigated.
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Figure 8.9: Ratio of added loss rates as measured for constant injection voltages at zero applied magnetic field
[c.f. Fig. 2(d)]. The colors and symbols used in this figure do not match those used to identify the qubits
throughout the text.

MAGNETIC FIELD DEPENDENCE

As discussed in the main text, we make use of the inherent magnetic field compatibility
of the nanowire transmon qubits and their readout circuit to investigate the effect of the
Al phonon traps turning normal. In previous works, nanowire-based superconducting
qubits have been shown to be operable up to parallel fields in excess of 1 T [203, 252, 313].
In Fig. 8.10 we show the evolution of the four nanowire transmon qubits used in this work
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as a function of the magnetic field. Up to 70 mT, only modest changes in qubit frequency
of less than 5% are found, leading to a negligible change in the quasiparticle proportion-
ality constant D of Eq. (8.1). This shows that the absence of changes in the added loss
rates versus magnetic field can indeed be attributed to the phonon traps having a con-
stant effect at all investigated fields, rather than to a field dependence canceled out by
changes in qubit sensitivity. Furthermore, we note that the qubits do not all have the
same field evolution; in particular the FarAl qubit appears more resilient over the range
of fields explored. We hypothesize this occurs because the magnetic field evolution of
the nanowires is governed not only by the reduction of the superconducting gap in the
Al shell, but also by orbital effects that depend on the spatial profile of the occupied
transport channels inside the nanowire [355].
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Figure 8.10: Magnetic field dependence of nanowire transmon qubit frequencies f01.
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CONCLUSION & OUTLOOK

Beware of the man who works hard to learn something, learns it, and finds himself no
wiser than before.

Bokonon, Cat’s Cradle

In this concluding chapter we summarize the key results of each experimental chapter
and discuss possible avenues of future research.
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9.1. CHAPTER 4
In this chapter, we experimentally investigate and observe the proposed vanishing of
Coulomb oscillations in a nearly-open superconducting island. To do so we measure
the charge dispersion of an island connected to ground via a semiconducting weak-
link hosting a resonant level. The device constitutes an offset-charge-sensitive nanowire
transmon, whose junction transparency is set by tunneling through the resonant level
and can be accurately tuned in-situ using an electrostatic gate. For elevated junction
transparencies, we observe rapid suppression of the charge dispersion consistent with
the proposed scaling law resulting from diabatic phase evolution of Andreev bound states.

The demonstration of junctions with near-unity transparency motivates follow-up
experiments that exploit the resulting non-standard energy-phase relationship, for ex-
ample to construct what are known as protected superconducting qubit designs. A first
instance of such a protected design, colloquially known as the cos(2φ) qubit, encodes
its qubit states in the parity of Cooper pairs [29, 45, 281, 295]. In short, this encoding
results in a strongly reduced overlap between the computational states (composed of
even and odd Cooper pair number states), suppressing transition matrix elements and
thereby enhancing the qubit lifetime [see Fig. 9.1(c)]. However, a challenge with designs
that realize an effective cos(2φ) potential using conventional circuit elements (i.e. SIS
junctions) is the need for complex circuit topologies with demanding constraints on pa-
rameter disorder [112]. These constraints can be strongly simplified through the usage of
a transparent semiconducting weak-link [see Fig. 9.1(a)] [181]. In this design the higher
harmonics of the Josephson potential that develop at large junction transparencies [c.f.
Eq. (2.20)] are combined with the destructive interference that takes place in a SQUID
at φext = π, fully canceling the leading E (1)

J cos(φ) term. This results in a circuit with the
desired Hamiltonian

H = 4Ec
(
N −Ng

)2 +E (2)
J cos(2φ), (9.1)

up to corrections from higher harmonics of the potential. A challenge with this imple-
mentation is the strong dependence on fine-tuned junction properties, which are known
to be sensitive to charge noise [203]. Additionally, achieving a large enough E (2)

J /Ec ratio
to suppress offset-charge sensitivity would require a very large capacitance, due to the
smallness of the second harmonic. Finally, at the point of maximal protection (φext =π)
conventional qubit operation poses a challenge, as the built-in protection decouples the
qubit from the environment. However, this is a challenge that many protected designs
face, for which novel schemes of qubit manipulation will have to be developed [236, 295].

An alternative follow-up experiment focuses on a direct measurement of the evo-
lution of 2π and 4π quantum phase slip rates with increasing junction transparency,
which underpin the suppression of charge dispersion investigated in this chapter. In-
deed, as was pointed out by dr. Bernard van Heck after publication, the underlying con-
nection between charge dispersion and quantum phase slips can be understood from
the Aharonov-Casher effect. At the expense of mathematical rigor, one can picture a
phase slip as a fluxon encircling the transmon island, thus “picking up” the offset charge
(similar to how a charge going around a loop “picks up” the flux in the Aharanov-Bohm
effect). The suppressed amplitude of 2π phase slips as the transparency approaches one
is thus what leads to the observed suppression in sensitivity to the offset charge, such
that charge dispersion is effectively a measure of the combined phase slip rates. We
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Figure 9.1: Protected qubit designs based on semiconducting weak-links. (a) Circuit diagram implementing
the proposed cos(2φ) qubit. A weak-link with Josephson potential USNS is tuned to the high-transparency
regime with a nearby gate-electrode and placed in parallel to an SIS junction with Josephson energy EJ. An
external fluxΦext threads the resulting SQUID loop, which is shunted by a capacitance with a charging energy
Ec. (b) Circuit diagram implementing the proposed cos(φ/2) qubit. A weak-link with Josephson potential USNS
is tuned to the high-transparency regime with a nearby gate-electrode and placed in parallel to an inductor
with inductive energy EL . An external flux Φext threads the resulting loop, which is shunted by a capacitance
with charging energy Ec. (c) Absolute value of the wavefunction for the first two levels of Eq. 9.1 expressed in
the Cooper pair number basis. (d) Absolute value of the wavefunction for the first two levels of Eq. 9.2 expressed
in the phase basis. Potential is shown in dotted/dashed lines (not to scale).

propose that a direct measurement of the phase slip rate could instead be made by em-
bedding a high transparency Josephson junction not into a transmon but into fluxonium
circuit [see Fig. 9.1(b)] [252]. In this system both the 2π and 4π phase slip rates become
explicitly observable in the transition frequency spectrum, measurable as independent
quantities through standard spectroscopy techniques [206]. A direct study of the phase
slip rate as the transparency approaches unity would allow for a deeper understanding
of the crossover between 2π and 4π periodicity that takes place in the junction.

If one is able to approach the limit of full transparency, the circuit of Fig. 9.1(b) would
furthermore allow for investigation of an additional protected qubit design. Taking the
high transparency limit of Eq. (2.21), the circuit is governed by the Hamiltonian

H = 4EcN 2 + 1

2
EL

(
φ−φext

)2 −|∆|cos(φ/2)σz . (9.2)

This idealized Hamiltonian gives rise to what is colloquially known as the cos(φ/2) qubit
or the bifluxon [146]. It is essentially the dual to the cos(2φ) qubit discussed above,
where the qubit states are now protected by the parity of fluxons rather than Cooper
pairs. Indeed, for a perfect cos(φ/2) junction 2π-phase slips are fully suppressed, such
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that the two neighboring fluxon parities are decoupled, which should once-more lead
to enhanced qubit lifetimes [see Fig. 9.1(d)]. The implementation of the bifluxon circuit
with conventional SIS junctions again places stringent requirements on the targeting
of circuit parameters [146], which would be alleviated in this nanowire-based design.
Whether a sufficient degree of protection is achievable for realistic parameter values,
however, is subject to a more detailed investigation.

9.2. CHAPTER 5
In this chapter we show that a transmon circuit can act as a sensitive probe for quan-
tum impurities, specifically of quantum dots with superconducting leads. Compared to
the vast body of experiments that preceded our measurements, we demonstrate a sig-
nificantly enhanced time and energy resolution, down to microseconds and megahertz
scales. This allows us to explore regimes of the phase diagram of the system that, to
our knowledge, have never before been accessed experimentally, and also to measure
the dynamics of quasi-particles tunneling into and out of the quantum dot in real-time.
Our use of a transmon circuit to understand a paradigmatic quantum impurity model
furthermore demonstrates that circuit-QED techniques can be applied to fundamental
questions in mesoscopic physics as well as condensed matter in general, and that in do-
ing so they can supplement conventional quantum transport experiments.

Several continuations of these experiments are put forward at the end of the chap-
ter, such as the enticing concept of creating the charging energy protected Andreev spin
qubit studied in chapter 7. An additional avenue of exploration we now put forward is
to use fast gate-based switching to implement two-qubit gates in transmon devices. At
the time of writing, large circuits containing many tens of transmon qubits [1, 133] often
make use of flux-tunable coupling, which can be turned on and off on demand using fast
pulses [see Fig. 9.2(a)] [56, 62, 301, 341]. However, such schemes necessarily involve size-
able currents running through the control lines and the ground plane of the chip, which
is problematic due to cross-coupling to other devices, and additionally produce non-
negligible dissipation [171]. An all-electric alternative coupling element would alleviate
both of these problems, as gate voltages can be applied locally and via high-impedance
electrodes. A first option is to use a semiconducting weak link, for which the Josephson
energy (and thus the coupling) can be controlled with a gate voltage [see Fig. 9.2(b)].
However, a downside of this approach is that one often requires comparatively large
voltage swings to tune the junction from pinched off to open, potentially tens to hun-
dreds of millivolts, and that the generally encountered gate-dependencies are highly
non-monotonic, see e.g. Fig. 5.17. This type of implementation is thus particularly sus-
ceptible to gate-hysteresis, and would not easily allow for net-zero pulse schemes [266].

An alternative is to use a quantum dot with superconducting leads as the tunable
element, operated close to the singlet-doublet transition [see Fig. 9.2(c)]. As demon-
strated in this chapter, in the vicinity of the singlet-doublet transition switches between
vanishing and sizable Josephson energy can be enacted with voltages on the single mil-
livolt scale, potentially with enough contrast to enable fast and high-fidelity coupling
elements. Stability and hysteresis is also not a limitation, as evidenced by the large two-
dimensional gate maps of e.g. Fig. 5.5, which show no signs of hysteresis over tens of mil-
livolts, nor any charge jumps over timescales of days. Net-zero schemes should even be
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Figure 9.2: Tunable qubit-qubit couplers. (a) Coupling element based on SIS junctions, with flux-tunable
Josephson energy by virtue of the SQUID. (b) Coupling element based on a semiconducting weak-link, with
gate-tunable Josephson energy by virtue of the field effect. (c) Coupling element based on a quantum dot with
superconducting leads, with gate-tunable Josephson energy by virtue of the singlet-doublet transition.

achievable with improved decoupling of the electostatic gates [131], as the ideal plunger
gate response is symmetric around half-filling of the dot. One can however question
whether the quasiparticle dynamics deep inside the singlet and doublet regimes are fast
enough to adjust the parity during rapid (tens of ns) gate sequences. If they are not, then
perhaps such a scheme can instead be used to probe quasiparticle dynamics beyond the
µs timescales resolved in this chapter. Finally, we note that both of these proposals re-
introduce charge sensitivity into the charge-insensitive transmon platform, the costs of
which have to be weighed against those of flux control and sensitivity [203].

Finally, as an alternative route of further exploration we note that determining the
ground state properties of a quantum dot with superconducting leads is numerically ex-
pensive. Indeed, even though the calculations in this chapter applied only to a single
quantum dot level, the NRG calculations consumed many CPU hours on a high per-
formance cluster [350]. The computations were nevertheless still tractable. This could
be made more strenuous by investigating hybrid systems containing multiple relevant
dot orbitals, chains of quantum dots, or those in which the superconducting leads are
genuine superconducting islands, both with sizable charging energy and a finite level
spacing. In this case even more computationally expensive density-matrix renormaliza-
tion group (DMRG) calculations with strongly simplified models for the leads are likely
the best that can be employed [239, 352]. If one were to add spin-orbit interaction and
Zeeman fields to this, lifting various of the model symmetries, the relevant phase di-
agrams might quickly becomes untractable. Yet in principle they remain measurable
using the techniques introduced in this chapter, with many of the parameters tune-able
in situ. Additionally, S-QD-S chains map to a variety of Hamiltonians from solid state
physics, such as finite Hubbard chains and Luttinger liquids, which are of definite inter-
est [209]. Follow up experiments investigating this direction could therefore constitute
viable near-term analog quantum simulators of computationally hard problems. One
has to admit, however, that their outcomes might also be hard to verify.
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9.3. CHAPTER 6
In this chapter we have implemented a superconducting transmon qubit with a fully
controllable quantum dot as its Josephson element to once-more exploit the high en-
ergy resolution circuit QED techniques. Thanks to our sensitive measurement circuit, we
are able to resolve the predicted spin splitting of the quantum dot’s doublet states due
to the spin-orbit interaction in InAs. Furthermore, in the presence of magnetic field we
elucidate and demonstrate the appearance of the anomalous Josephson effect. These
findings are all well-described by an analytical model, and their physical origin is un-
derstood through numerical renormalization group calculations. Moreover, we show
that the spin states can be directly manipulated by applying microwaves to a bottom
gate, which facilitates the novel and improved implementation of Andreev spin qubits in
chapter 7.

In addition to coherent manipulation of the spin states, another avenue of explo-
ration (both theoretical and experimental) became apparent in the post-analysis of the
experiments. While investigating the NRG calculations detailed in Sec. 6.7, we encoun-
tered an unanticipated effect at elevated Zeeman energies. As shown in Fig. 9.3, we find
that as the Zeeman energy is increased, the phase φ at which the spin-flip transition
takes on its minimum (maximum) value moves away from its π/2 (3π/2) baseline value
governed by the sin(φ) term underlying the spin splitting, instead moving towards π (2π)
governed by e.g. a cos(φ) term. In addition, the frequency dispersion with phase grows
as a function of Zeeman energy.1 These findings are not consistent with the minimal
model of Eq. (6.1) where the Zeeman energy enters as a phase-independent contribu-
tion. However, the observed behavior can be reproduced with a simple modification to
the Hamiltonian

1

2
E⃗Z · σ⃗→ 1

2
E⃗Z · σ⃗

[
1+κcos(φ)

]
, (9.3)

where κ is a phenomenological parameter. Indeed, setting κ = 0.22, the modified ana-
lytical model is able to reproduce the numerical results.

In recent work we have shown that this effect can be understood as the impurity
Knight shift: an energy shift resulting from the hybridization between the quantum dot
and its superconducting leads [240]. Given that the dot and the leads have a different
g-factor, their hybridization results in an effective g-factor renormalization. And as the
hybridization between the dot and the leads is phase dependent (as evidenced by e.g.
the divergent doublet phase of Fig. 5.5), this renormalized g-factor also has a phase-
dependent contribution, resulting in the observed modification to the analytical model.
This effect had not previously been reported in the literature, with the impurity Knight
shift only having been studied for N-QD and S-QD geometries, but not for the phase-
dependent S-QD-S system [223].

Calculations show that this effect is present already in the single-impurity Anderson
model, without the extensions of multi-level effects and spin-orbit coupling. It only re-
quires a difference in g-factors between the dot and its leads. This is of relevance because
the modification given in Eq. (9.3) leads to an energy shift that is both spin and phase de-
pendent, precisely the type of dependence for which Andreev spin qubits have thus far

1In this calculation the size of the superconducting gap |∆| is assumed to be constant as a function of Zeeman
energy.
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Figure 9.3: Evolution of the spin-flip transition energy versus phase difference φ as a function of a Zeeman
term parallel to the spin-orbit direction. The average, phase-independent transition energy offset is subtracted
to facilitate comparison. Open (filled) markers indicate the minimum (maximum) transition energy versus
phase. Calculations are performed for the extended SIAM model using the NRG method outlined in Sec. 6.7.

relied on spin-orbit coupling. Indeed, if the factor κ is made large (through e.g. a care-
ful tuning of the microscopic parameters of the S-QD-S system), this effect could allow
for the implementation of Andreev spin qubits in materials other than those with strong
spin-orbit coupling. While large g -factors and strong spin-orbit coupling often go to-
gether, we note that one merely requires a strong variation in g -factors between the dot
and the leads, which could potentially be achieved through strong confinement [159].
While at this stage it remains speculative, this could expand the Andreev spin qubit plat-
form towards a much broader range of materials, in particular those not plagued by the
large nuclear spin of III-V semiconductors.

9.4. CHAPTER 7
In this chapter we have made significant progress in the experimental realization of
superconducting spin qubits, also known as Andreev spin qubits (ASQ). We demon-
strate the essential requirement of stabilizing the qubit subspace by incorporating a large
Uee /|∆| quantum dot inside the Josephson junction. This establishes a fundamentally
novel approach for overcoming qubit leakage through charging energy, improving the
ASQ parity lifetime by more than two orders of magnitude. Additionally, using an ex-
ternal magnetic field, we can control the qubit frequency over a range of more than 10
GHz. We furthermore achieve direct coherent manipulation of the spin-flip transition,
resulting in qubit control more than an order of magnitude faster than in the previous re-
alization of the ASQ. We finally demonstrate that this novel qubit can be used to achieve
its main promised feature: direct qubit-qubit coupling mediated by supercurrent.

As a continuation of the experiments in this chapter, an exciting avenue of further
exploration is the coupling of the ASQ to other qubits. Our calculations in Sec. 7.6 indi-
cate that the regime of ultrastrong coupling (where the coupling is a significant fraction
of the qubit frequencies) between ASQ and transmon should already achievable through
modest modifications to the experiment, allowing one to probe the limits of light-matter
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Figure 9.4: Coherent coupling between Andreev spin qubits. (a) Circuit diagram of inductively coupled An-
dreev spin qubits, with a tunable coupling mediated by external flux and a semiconducting weak-link [234]. (b)
Schematic depiction of a spinful Andreev molecule, constructed from two closely spaced Andreev spin qubits
separated via a grounded superconductor. (c) Circuit diagram of Andreev spin qubits coupled via wavefunc-
tion overlap, with a tunable coupling tuned by external flux.

interaction beyond the rotating-wave-approximation. This is of particular interest given
the two-level nature of the ASQ. Additionally, engineering the coupling between two dif-
ferent ASQ would allow for the demonstration of two-qubit gates within this nascent
qubit platform. Two approaches for coupling have been proposed in the literature: one
can make use of inductive coupling, relying on the supercurrent carried by each qubit
[234], or one can place the ASQ in close vicinity to each other, relying on direct wave-
function overlap across a short superconducting segment [297].

The first type of coupling could be implemented as shown in Fig. 9.4(a). Here two
ASQ are defined in separate junctions, and are embedded in a double loop structure to
allow for individual control of the phases across each junction. The presence of a third,
gate-tunable junction based on a semiconducting weak-link allows for tuning of the in-
ductive coupling strength in-situ. The approach based on direct wavefunction overlap
instead builds on proposals for Andreev molecules, originally formulated for the singlet
states of the junction [164, 247, 248]. As depicted in Fig. 9.4(b), it involves two junctions
hosting ASQ that are separated by a narrow (shorter than the superconducting coher-
ence length ξ) region of superconductor, connected to ground such that the interac-
tion between the modes is not suppressed by the charging energy of the superconduc-
tor. Once-more embedding this system into a loop, coherent coupling between the ASQ
could be made visible using standard spectroscopy techniques, see Fig. 9.4(c). In this
design, motivated by experiments on a “fluxonium molecule” [165], the presence of an
additional inductor again allows for control of the phases across each individual junc-
tion with external flux. Furthermore, we note that the same geometry can be used to
study conventional (spinless) Andreev molecules, for which at the time of writing only
an implementation without external flux dependence been realized [178]. If the ASQ are
implemented using quantum dots with superconducting leads, both types of molecule
are even configurable in-situ by tuning the occupation of the dot from doublet to sin-
glet. Finally, we note a close connection between this geometry and recent experiments
on artificial Kitaev chains and triplet pairing [85, 197, 326], signatures of which might
also be accessible via microwave spectroscopy in related geometries.

A separate but related avenue of exploration is the study of double quantum dots
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with superconducting leads: an S-DQD-S junction. Such junctions essentially come in
three types.2 As illustrated in Fig. 9.5, one can consider a single quantum dot with mul-
tiple interacting orbitals, two quantum dots placed in parallel, and two quantum dots
placed in series. While in particular the latter system has seen initial experimental in-
vestigation [39, 270], much of the predicted physics remains unexplored. Of particular
interest is the presence of a singlet-triplet transition, leading to the formation of a triplet
ground state in which both levels host an aligned spin. In bulk superconductors triplet
spin pairing corresponds to orbital p-wave symmetry, which can give rise to the onset of
topological superconductivity and the appearance of Majorana zero modes [326]. The
latter holds promise for topologically protected quantum computing schemes, and in-
vestigating its building blocks in simple model systems is of great value in this active
field of research. We refer the interested reader to Ref. [93] for a recent review of the
field, whose introduction lists eight additional review articles.

Experiments aiming to investigate triplet pairing in S-DQD-S systems face two pri-
mary challenges: realizing the triplet ground state, and producing a measurable triplet
supercurrent. The first challenge depends primarily on the geometry of the DQD. Serial
DQD systems tend to exhibit antiferromagnetic super-exchange between the dots, such
that the zero-field ground state is a singlet, and the presence of a properly aligned ex-
ternal magnetic field is thus required in order to reach a triplet ground state [151]. At
the same time, in this system most of the degrees of freedom (such as tunnel couplings
and relative energy levels) are spatially separated and individually tune-able with gate
electrodes. For both a strongly interacting parallel and a multi-orbital configuration the
situation is different. Here interactions between the levels can be ferromagnetic by virtue
of Hund’s rule, and as such these geometries can exhibit a triplet ground state even in the
absence of a magnetic field, simplifying their study [188, 259]. Yet the multi-orbital case
faces the largest challenges when it comes to in-situ control of parameters, as each level
is controlled by the same gate electrodes. The case of parallel dots instead introduces the
formation of a loop, which might lead to intricate interference effects, both interesting
and challenging [310].

Figure 9.5: Three configurations of spin-triplet S-DQD-S junctions: serial (a), parallel (b), and multi-orbital
(c).

The challenge of finding a measurable supercurrent is that of overcoming Pauli spin
blockade. Indeed, when both quantum dots are occupied by the same spin, spin-conserving
cotunneling trajectories that transfer a Cooper pair tend to involve double occupancy of
one of the levels [39]. For large values of Uee this is energetically unfavorable, which
strongly suppresses the supercurrent. However, for N-DQD-N systems it is known that
the presence of SOI (among other elements) may lift spin-blockade [66], and it has since

2It could be argued that an S-QD-S-QD-S implementation of Fig.9.4(b) is a fourth type.
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been proposed that its inclusion in an S-DQD-S system would also lead to a finite triplet
supercurrent [84]. While its magnitude might still be small, it should be readily mea-
surable in the transmon geometry of chapters 5 to 7, with which picoampere sensitivity
should be attainable.

9.5. CHAPTER 8
In this chapter we experimentally investigate a recently proposed mitigation method
that serves to protect superconducting qubit processors against correlated errors from
ionizing radiation [211]. Specifically, we implement so-called phonon traps using a gal-
vanically isolated material with a small superconducting gap, and demonstrate their ef-
fectiveness in protecting transmon qubits against deterministically injected high energy
phonons. Our work shows that phonon traps are a promising candidate for mitigating
correlated errors, which can be implemented without introducing qubit dissipation from
coupling to lossy materials, and with little added strain on the increasing complex task
of control line routing.

Our results furthermore demonstrate that technology previously developed in mi-
crowave kinetic inductance detectors (MKID) can be made applicable to transmon qubits,
highlighting the potential benefits of cross-pollination between these two domains of
research. This motivates investigating other methods of phonon control pursued for
MKIDs, such as placing the phonon-sensitive elements on a thin SiN membrane [72,
150]. As the first implementations of membranes in superconducting circuits have al-
ready been demonstrated [244], such an approach should also be readily applicable to
transmon islands [see Fig. 9.6(a)]. Here one should aim to make the electric field partic-
ipation ratio of the potentially lossy membrane as small as possible, however.

Other avenues of substrate engineering have also been proposed for MKIDs, such as
phononic crystals [127, 261], and the usage of bilayer metal films with vastly different
Debye temperatures, blocking phonons by virtue of there being no modes for them to
occupy [353]. An idea that, to our knowledge, has yet to be proposed in this context, is
that of an acoustic Bragg reflector [see Fig. 9.6(b)]. By interchanging layers of insulating
material with vastly different acoustic properties, phononic stopbands could be created
that target phonons at energy 2∆qubit. We profess that such a layered approach might
be difficult to reconcile with the aforementioned sensitivity of transmon qubits to lossy
dielectric materials.

Finally we note that for all approaches which make it difficult for phonons to en-
ter the transmon island, it is imperative that the few phonons that do make it through
can be rapidly disposed of. The phonons would otherwise end up trapped in the qubit
layer, stuck in repeating cycles of Cooper pair breaking and recombination, leading to
strongly lengthened recovery times following (now infrequent) error events. This is read-
ily solved by placing galvanically connected quasiparticle traps on the qubit electrodes,
which dissipate the energy of phonons that do manage to excite quasiparticles in the
qubit [211, 264, 265].
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Figure 9.6: Phonon mitigation through substrate engineering. (a) Schematic depiction of a superconducting
circuit placed on a membrane. (b) Schematic depiction of a superconducting circuit placed on an acoustic
Bragg reflector. Panels depict device cross-sections and are not to scale.
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