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Summary
Multi-Agent Systems have become a fascinating subject of study from the perspective of
robotics and control, motivated by the parallel advances in computation and simulation
power, and in hardware and microprocessor capacity. These have enabled the application
of game-theoretical concepts to complex robotic and learning agents. Besides facing the
same challenges as single-agent systems, the distributed nature of complex multi-agent
systems sparks many questions and problems revolving around the constraints imposed
by communication. The idea that multi-agent systems require communication to access
information, to coordinate or simply to sense the environment they are acting on is some-
times overlooked when thinking of (and solving) emerging theoretical challenges. How-
ever, research problems related to communication in Cyber-Physical Systems have been
a prevalent target for network control research for decades. In particular, we take inspira-
tion on Event Triggered Control to study how communication affects performance, safety
and robustness in multi-agent systems, through the following premise: If a system is ro-
bust enough, one does not need to update continuously a feedback controller, and it may
be enough instead to update (i.e. communicate measurements, control actions, coordina-
tion signals...) the controller whenever a certain safety condition is triggered, allowing for
sparsity in communication over control networks.

The work presented in this dissertation sits in the intersection between Network Con-
trol Systems, Robotics and (Multi-Agent) Reinforcement Learning. The general goal across
the work presented in this dissertation is the following:

Understand how communication influences behaviour in multi-agent systems.

We begin by looking into a class of biologically inspired systems: Stigmergy-inspired
robotic swarms. Stigmergy is a mechanism throughwhich agents communicate with each-
other via environment-based indirect signals. This is the case for ants, where they deploy
pheromones as they move that others can then use to navigate unknown environments.
Stigmergy methods have been used in recent years for swarm robotic control and coor-
dination, and they present a very simple communication and coordination structure that
constitutes a useful starting point for our work. We analyse how the agents converge
to stationary (but unknown) distributions, and we study the evolution of the pheromone
fields created by the agents. To be able to formally verify properties of stationary dis-
tributions, we propose mean field approximations of ant-inspired swarms. A mean field
approximation considers the dynamics of a given multi-agent system when the number
of agents is taken to infinity, generally allowing to de-couple agent trajectories, eliminate
stochasticity and obtain closed form solutions for otherwise un-solvable dynamics.

We draw then a direct connection between ant-inspired swarms and multi-agent rein-
forcement learning systems. Through this abstraction, we propose first an event-triggered
scheme to safely reduce communication needed in a distributed reinforcement learning



xii Summary

scenario which is directly inspired by the considered swarm problems. This allows us
to retain value iteration convergence guarantees while allowing agents to use trajectory
dependent decision functions to determine when to share information with a common
environment. From this, we consider a more general multi-agent reinforcement learn-
ing problem: A setting where agents must share information with each other to be able
to act according to learned controllers. This setting emerges whenever we aim to apply
multi-agent reinforcement learning schemes to control real systems, and we want agents
to use some degree of global information. We propose a solution that involves learning
robustness indicators: Functions that tell agents, for a given joint state, how sensitive the
problem at hand is to observation errors or delays. This allows agents to solve the con-
verse problem: Use these functions to decide when is it necessary to send information to
others.

In the last chapter of this dissertationwe take a step back and look into robustness as an
inherent problem to model free reinforcement learning systems. When trying to evaluate
the impact of communicating (or not communicating) in complex multi-agent systems
where controllers are learned from data, a recurrent problem is the limitations agents
have to estimate the impact of acting under uncertain information. When we do not have
dynamical models of a system (only learned policies), not only one cannot estimate future
states or trajectories, but one does not even have tools to know if the observations that are
being received by agents are being disturbed by some unknown signal. We propose then
to approach this problem from an alternative perspective. If we need to learn controllers
that are then deployed in possibly uncertain environments, wemaywant tomake sure that
“robustifying” the controller does not decrease (excessively) the capacity of the controller
to successfully solve a given problem without uncertainty.

The work presented through this dissertation covers different problems and jumps
between overlapping fields, but the methods and techniques proposed share a common
principle: As complex multi-agent systems become more applicable to engineering prob-
lems, the need for understanding (and simplifying) communication rules is increasingly
motivated by safety. Therefore, the problems and solutions considered aim to advance
towards a formal understanding and design of communication logic in complex, model
free multi-agent systems. Safety and explainability are relatively recent concerns in Arti-
ficial Intelligence, and sometimes overlooked in favour of empirical results. We argue here
that this tendency will have to be inverted if we aim to solve human existential problems
through these techniques.
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Samenvatting
Multi-Agent Systemen zijn een fascinerend onderwerp van studie vanuit het perspectief
van robotica en controle, gemotiveerd door de parallelle vooruitgang in berekening en si-
mulatiekracht, en in hardware en microprocessor capaciteit. Hierdoor is het mogelijk om
spel-theoretische concepten toe te passen op complexe robotica en leersystemen. Naast
dezelfde uitdagingen als enkelvoudige agent systemen, roept de gedistribueerde aard van
complexe multi-agent systemen veel vragen en problemen op die draaien om de beperkin-
gen die worden opgelegd door communicatie. Het idee dat multi-agent systemen commu-
nicatie nodig hebben om informatie te verkrijgen, te coördineren of gewoon om de omge-
ving waarin ze actief zijn te kunnen waarnemen, wordt soms over het hoofd gezien bij het
bedenken (en oplossen) van opkomende theoretische uitdagingen. Onderzoek naar com-
municatieproblemen in Cyber-Physical Systems is echter al tientallen jaren een belangrijk
onderwerp voor netwerkcontroleonderzoek. In het bijzonder laten we ons inspireren door
Event Triggered Control om te bestuderen hoe communicatie prestaties, veiligheid en ro-
buustheid beïnvloedt in multi-agent systemen, via de volgende premisse: als een systeem
robuust genoeg is, hoeft men niet voortdurend een feedbackcontroller bij te werken, en
kan het voldoende zijn om in plaats daarvan de controller (d.w.z. communicatiemetingen,
controlehandelingen, coördinatiesignalen...) bij te werken wanneer een bepaalde veilig-
heidsvoorwaarde wordt geactiveerd, wat zorgt voor spaarzaamheid in communicatie over
controle netwerken.

Het werk gepresenteerd in deze dissertatie bevindt zich op het snijvlak van Network
Control Systems, Robotica en (Multi-Agent) Reinforcement Learning. Het algemene doel
van het werk gepresenteerd in deze dissertatie is als volgt:

Begrijpen hoe communicatie het gedrag beïnvloedt in multi-agent systemen.

We beginnen met het onderzoeken van een klasse van biologisch geïnspireerde sys-
temen: Stigmergy-geïnspireerde robotzwermen. Stigmergy is een mechanisme waarmee
agenten via omgevingsgebaseerde indirecte signalen met elkaar communiceren. Dit is het
geval bij mieren, die feromonen verspreiden terwijl ze bewegen die anderen kunnen ge-
bruiken om onbekende omgevingen te navigeren. Stigmergy-methoden zijn de afgelopen
jaren gebruikt voor zwermrobotbesturing en -coördinatie, en ze presenteren een zeer een-
voudige communicatie- en coördinatiestructuur die een nuttig startpunt vormt voor ons
werk. We analyseren hoe de agenten convergeren naar stationaire (maar onbekende) ver-
delingen, en we bestuderen de evolutie van de feromoonvelden gecreëerd door de agenten.
Om eigenschappen van stationaire verdelingen formeel te kunnen verifiëren, stellen we
mean field approximaties van mier-geïnspireerde zwermen voor. Een mean field approxi-
matie overweegt de dynamiek van een gegeven multi-agent systeem wanneer het aantal
agenten tot oneindig wordt genomen, waardoor agenttrajecten ontkoppeld kunnen wor-
den, stochastiek geëlimineerd kan worden en gesloten vormoplossingen kunnen worden
verkregen voor anders onoplosbare dynamiek.
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We leggen dan een direct verband tussen mier-geïnspireerde zwermen en multi-agent
reinforcement learning systemen. Door deze abstractie voor te stellen, stellen we eerst
een event-gedreven schema voor om veilig de communicatie te verminderen die nodig
is in een gedistribueerd versterkend leer scenario, dat rechtstreeks is geïnspireerd door
de overwogen zwermproblemen. Dit stelt ons in staat om convergentiegaranties voor de
waardeiteratie te behouden terwijl we agenten in staat stellen trajectafhankelijke beslis-
singsfuncties te gebruiken om te bepalen wanneer ze informatie moeten delen met een
gemeenschappelijke omgeving. Van daaruit overwegen we een meer algemeen probleem
van multi-agent reinforcement learning: een omgeving waarin agenten informatie met el-
kaar moeten delen om volgens geleerde controllers te kunnen handelen. Deze omgeving
ontstaat wanneer we multi-agent reinforcement learning-schema’s willen toepassen om
echte systemen te controleren en we willen dat agenten enige mate van wereldwijde infor-
matie gebruiken. We stellen een oplossing voor die inhoudt dat we “robuuste indicatoren”
leren: functies die agenten vertellen, voor een gegeven gezamenlijke toestand, hoe gevoe-
lig het probleem is voor observatiefouten of -vertragingen. Dit stelt agenten in staat om
het omgekeerde probleem op te lossen: deze functies gebruiken om te beslissen wanneer
het nodig is om informatie naar anderen te sturen.

In het laatste hoofdstuk van deze dissertatie nemenwe een stap terug en kijkenwe naar
robuustheid als een inherente probleem voor modelvrije reinforcement learning systemen.
Bij het proberen de impact van communicatie (of het niet communiceren) te evalueren
in complexe multi-agent systemen waar controllers worden geleerd uit gegevens, is een
terugkerend probleem de beperkingen van agenten om de impact van handelen onder
onzekerheid in te schatten. Als we geen dynamische modellen hebben van een systeem
(alleen geleerde “beleidsregels”), kan men niet alleen toekomstige toestanden of trajecten
schatten, maar men heeft ook geen tools om te weten of de observaties die door agenten
worden ontvangen, worden verstoord door een onbekend signaal. We stellen dan voor
om dit probleem vanuit een alternatieve perspectief aan te pakken. Als we controllers
moeten leren die vervolgens in mogelijk onzekere omgevingen worden ingezet, willen we
er misschien voor zorgen dat het “robuuster” maken van de controller de capaciteit van
de controller om een gegeven probleem succesvol op te lossen zonder onzekerheid niet
(teveel) vermindert.

Het werk dat in deze dissertatie wordt gepresenteerd behandelt verschillende proble-
men en springt tussen overlappende vakgebieden, maar de voorgesteldemethoden en tech-
nieken delen een gemeenschappelijk principe: naarmate complexe multi-agent systemen
meer toepasbaar worden op engineeringproblemen, wordt de behoefte aan begrip (en ver-
eenvoudiging) van communicatieregels steeds meer gemotiveerd door veiligheid. Daarom
richten de behandelde problemen en oplossingen zich op een formeel begrip en ontwerp
van communicatielogica in complexe, modelvrije multi-agent systemen. Veiligheid en ver-
klaringsmogelijkheden zijn relatief recente zorgen binnen Artificial Intelligence en wor-
den soms over het hoofd gezien ten gunste van empirische resultaten. We betogen hier
dat deze tendens moet worden omgekeerd als wemenselijke existentiële problemenwillen
oplossen door middel van deze technieken.
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1
Introduction

We can classify the challenges in the research and development of dynamical systems into
just two classes: perception and control. Multi-agent systems are in essence no different,
but the constrains that are naturally imposed in such systems give rise to a third class
of problems spanning across the other two: communication. A multi-agent system can
always be abstracted to a single agent with enough communication. If the problem is
that of distributed perception, the multi-agent nature vanishes if we have (fast, regular,
powerful enough) communication of information between the agents. Otherwise, if the
problem is related to distributed control, communication allowing coordination can relax
the multi-agent constraints.

In real-world systems these limit scenarios are not generally feasible. The challenge
then lies in solving the communication-constrained problems, since these constraints can
induce several types of complexities: Introduction of uncertainty, switched or hybrid dy-
namics, need for coordination strategies, etc. Additionally, in large multi-agent networked
systems one may want to design the constraints themselves; under the premise that more
communication (data) is desirable, one then needs to design systems that make the most
efficient use of the communication resources. These resources are of different nature: En-
ergy, network bandwidth or capacity, data storage, processing power.

The problems emerging from these constrains and requirements in communication
have been the subject of study in control theory for years, in particular in the context of
networked control [1–5], and for example in Event-Triggered Control [6] with the goal
of making networked control systems more efficient. However, many of these problems
are not well understood when considering multi-agent (or multi-robot) systems, and espe-
cially when these systems are designedmodel free. Without a model to estimate the impact
of communication-related uncertainty in the dynamics of a system, one needs to devise
different strategies to first investigate the robustness of complex multi-agent systems, and
then to safely reduce the communication in such systems. Additionally, communication
can take different forms: sampled data, coordination signals, sensed information, etc., and
all of these have different implications and generate different challenges when looked at
from an event-triggered perspective. This sits at the core of themotivation for this doctoral
dissertation.
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2 1 Introduction

1.1 Aim and Goals
Throughout this work we try to address the following sequence of problems.

GOALS
1) To better understand the impact of communication in the dynamics of model-

free multi-agent systems, and specifically in stability and optimality proper-
ties, starting with ant-inspired swarms and moving towards more general re-
inforcement learning systems.

2) To use this understanding to propose formal strategies one can use to reduce
the communication required in such systems inspired by Event Triggered Con-
trol.

3) To abstract the reasoning and look into robustness problems in model free
systems, and in particular robustness required to deal with communication
sparsity, delays or general lack of noiseless information.

We expect these lines of work to have an impact in both theoretical and practical chal-
lenges. First, from a theoretical perspective, in advancing towards a deeper understanding
of how communication patterns affect behaviour and dynamics of complex multi-agent
systems, and allowing for the design of more efficient adaptive systems. Data-driven con-
trol, either model-based or model-free. Second, on the practical impact, we argue that
as network systems grow more complex, there will be an increasing need to have effi-
cient communication protocols to be able to maintain feasible infrastructure architectures.
Reducing communication would first increase the overall efficiency of the system, and
second allow for larger systems to be deployed. Additionally, with the recent progress on
simulation-based learning for robotic control, we hope some of the work in this disserta-
tion will help improve how well these learned models and controllers can adapt to real
world settings.

1.2 Previous Work
We cover next the main lines of existing work that span across the topics covered in this
dissertation.

1.2.1 Ant-Inspired Robotics
In recent years, Ant Colony (AC) algorithms have been used widely as inspiration for the
design of swarm robotic control methods. AC Algorithms are biologically inspired algo-
rithms that reproduce the pheromone-based communication that occurs in ant colonies.
This communication principle is referred to as stigmergy: the agents communicate through
indirect signals in the environment. in this case pheromones [7–9]. The agents modify the
environment by adding pheromones, and make decisions on how to act as a function of
the pheromones they sense. This sparked a whole branch of stochastic optimization algo-
rithms: Ant Colony Optimization [7, 9]. Ant-inspired swarm coordination has also been
applied to foraging problems in distributed robotic systems. Authors in [10] propose a
stochastic ant-inspired approach to distribute swarm agents among different target re-
gions. In [11] the authors present some early experiments on how robots can lay and
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Figure 1.1: Pheromone-based swarm on a foraging problem.

follow pheromones to explore a space and collect targets, and [12–16] have presented sim-
ilar robotic systems, either by using a digital pheromone field [14–16], using real chemicals
[13], or fluorescent floors [12] (see also [17–19]). The authors in [20] use an ant-inspired
swarm to solve a foraging problem on a 2D space by assuming a connected line-of-sight
communication network, and having agents flood this network with their estimation of
their relative position and angle at every time step. In [19, 21], authors use a combina-
tion of agents and beacon devices to guide navigation and store pheromone values. Au-
thors treat pheromones as utility estimates for environmental states, and agents rely on
line-of-sight communication and relative distances to the beacons to generate foraging
trajectories.

In [22] the authors design a systemwhere robots communicatewith each other via LED
signalling to indicate trails or vector fields pointing towards a given target, and provide
empirical results on a wide number of scenarios. In [23, 24] the authors use a virtual-
reality approach to implement the pheromone field, allowing the robots to have access to
this virtual pheromone from a central controller, enabling effective foraging. It is worth
noting that [17, 20, 22] assume agents in the swarm communicate directly with other
agents, while [19, 21] de-couples this and proposes an environment-based interactions
where agents only write and read data into locally reachable beacons.

1.2.2 Mean Field Approximations
To study the behaviour of stochastic systems of interacting agents and their asymptotic
properties, a prolific approach that emerged from particle and fluid physics is based on
so-called mean field models, where the number of interacting agents is taken to infinity to
build continuous variable approximations of discrete stochastic systems. Mean field mod-
els have been extensively used in fluid mechanics and particle physics, and more recently
in game theory and control [25–27], to derive mean-field based control approaches for
networked systems [28].

The premise of mean field control is that, to find a control law for the state of an
agent that has to interact with (a possibly large number of) other agents, one can do so by
taking the limit scenario where the number of agents tends to infinity. This allows one to
represent the networked system aggregatively, and consider the mean of the interactions.
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In practice, this allows us to approximate stochastic differential (or difference) equations
by a partial differential equation [29], usually easier to deal with and solve for feedback
control. In recent years mean field formulations of large multi-agent systems or swarms
have gained increased popularity [30–32] (see also an extensive survey in [33]) as these
models abstract away the stochasticity in systems where the number of interacting agents
becomes very large.

1.2.3 Event-Triggered Control and Learning
With the advances of computational power, processor size and communication infrastruc-
ture, much of the focus in control theory research has shifted in the last decades towards
Network Control Systems [2, 3]. From the deployment of sensors and actuators over net-
works emerged the need to analyse the impact of more efficient control schemes. In partic-
ular, Event-Triggered Control (ETC) allows sensor and actuator to estimate, through trig-
ger functions, when is it necessary to communicate state measurements or update control
actions [6, 34, 35]. These ideas inspired many different lines of work addressing the gen-
eral problem of efficient communication and control of systems. For example, for efficient
distributed stochastic algorithms [36], or to learn parameters of linear [37, 38] and non-
linear [39, 40]. In multi-agent settings, they have also been investigated for distributed
control of linear [41] and non-linear [42] systems, to reduce the number of interactions
between agents [43], or to speed up distributed policy gradient methods [44, 45].

1.2.4 Communication in Multi-Agent Systems
A number of Chapters in this doctoral dissertation address the problem of how to devise
efficient communication strategies in complex multi-agent systems. There have been mul-
tiple examples of work studying different types of communication from a Multi-Agent
Reinforcement Learning (MARL) and what problems arise from it [46–49]. In this line,
in [50] actor coordination minimization is addressed and in [51, 52] authors allow agents
to choose a communication action and receive a reward when this improves the policies
of other agents. In [53] multi agent policy gradient methods are proposed with conver-
gence guarantees where agents communicate gradients based on some trigger conditions,
and in [44] agents are allowed to communicate a simplified form of the parameters that
determine their value function.

Having non-reliable communication leads to severe disruptions in the robustness of
the distributed policies’ performance. The authors in [54] demonstrated experimentally
howvery small adversarial disruptions in state variable communications leads to a collapse
of the performance of general collaborative MARL systems. In this regard, [55] proposes
learning an “adviser” model to fall back onwhen agents have toomuch uncertainty in their
state measurements, and more recently in [56] the authors enable agents to run simulated
copies of the environment to compensate for a disruption in the communication of state
variables, and in [57] agents are trained using adversarial algorithms to achieve more
robust policies.

1.2.5 Robustness in Reinforcement Learning
This lack of robustness in communicative multi-agent learning presents difficulties when
trying to design efficient systems where the goal is to communicate less often. On this
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regard, the body of literature that deals with robustness problems in Reinforcement Learn-
ing [58] is extensive. Robustness in Reinforcement Learning (RL) can be looked at from
different perspectives [59]: distributional shifts in the training data with respect to the
deployment stage [60–63]; uncertainty in the model or observations [64, 65]; adversarial
attacks against actions [66, 67]; and (4) sensitivity of neural networks (used as policy or
value function approximators) towards input disturbances [68, 69].

In robustness againstmodel uncertainty, the MDPmay have noisy or uncertain reward
signals or transition probabilities, as well as possible resulting distributional shifts in the
training data [61, 63, 70–73], which connects to ideas on distributionally robust optimisa-
tion [74, 75]. One of the first examples is [61], where the author proposes using minimax
approaches to learn 𝑄 functions that minimise the worst case total discounted cost in a
general MDP setting. [76] propose a Bayesian approach to deal with uncertainty in the
transitions. Another robustness sub-problem is studied in the form of adversarial attacks
or disturbances by considering adversarial attacks on policies or action selection in RL
agents [77–82]. Recently, [77] propose the idea that instead of modifying observations,
one could attack RL agents by swapping the policy for an adversarial one at given times,
and prove the existence of such policies in a zero-sum game framework. For a detailed
review on Robust RL see [83].

At last, for robustness versus observational disturbances, agents observe a disturbed
state measurement and use it as input for the policy [68, 69, 84–87]. In particular [85] con-
sider both random and adversarial state perturbations, and introduce physically plausible
generation of disturbances in the training of RL agents that make the resulting policy ro-
bust towards realistic disturbances. [86] propose a state-adversarial MDP framework, and
utilise adversarial regularising terms that can be added to different deep RL algorithms
to make the resulting policies more robust to observational disturbances, minimising the
distance bound between disturbed and undisturbed policies through convex relaxations
of neural networks to obtain robustness guarantees. In [87] the existence of optimal state-
perturbing adversaries is studied, and how using LSTM increases robustness in such set-
ting.

1.3 Main Contributions
We summarise the contributions presented in this doctoral dissertation in the following
points.
1) We provide a set of theoretical results concerning the stationary properties of a class

of ant-inspired random walks in terms of the probability distribution of agents and
the graph weights.

2) By taking the mean field limit of the stochastic system, we analyse the closed form
solutions of such probability distributions and are able to verify sub-optimality prop-
erties on these stationary distributions.

3) We abstract these systems to general Multi-Agent RL systems, and propose event-
triggered schemes to reduce the communication for both the agent→environment
and the agent→agent cases, and synthesise what type of formal guarantees still hold.

4) We propose a lexicographic optimisation based solution for obtaining robust policy
gradient algorithms that preserve sub-optimality with respect to expected rewards,
and maximise robustness against general state disturbances.
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1.4 Content Structure
The work presented in this dissertation starts by looking into convergence properties of
ant-inspired random walks, and evolves towards more general robustness problems in
model-free systems. The structure is as follows.

• Chapter 2: We provide the mathematical notation used through the dissertation, as
well as some useful concepts and auxiliary results.

• Chapter 3: We focus on ant-inspired swarms, modelled as a particular case of a
biased random walk on weighted graphs. We provide formal guarantees on the
convergence of agent distributions and graph weights, some preliminary results on
communication problems, and numerical experiments demonstrating the predicted
convergence properties.

• Chapter 4: We propose a mean field approximation of ant-inspired swarm. We
obtain closed form solutions for the stationary distributions, which allows for for-
mal verification of sub-optimality properties and to estimate the impact of hyper-
parameters in a finite agent system.

• Chapter 5: We draw a parallelism between an ant inspired swarm and a distributed
RL system. The agents build distributively a value function (pheromone field) that
then they use to decide on their actions. Under this framework, we propose a class
of trajectory dependent decision functions to allow agents to communicate experi-
ences sparsely.

• Chapter 6: Looking past the distributed value function learning, we focus on MARL
problems where agents need to communicate state measurements with each other
to be able to execute their policies in real time. We propose learning robustness
surrogate functions, that serve as trigger conditions for agents to decide when is it
necessary to share information with others.

• Chapter 7 : Following up on the robustness problem that emerges when observa-
tions are disturbed by additive noise in (Multi-Agent) RL problems, we propose an
alternative framework to deal with state-observation robustness. By casting robust-
ness as a quantifiable objective, we embed robustness in a Lexicographic approach
to achieve robust RL policies through policy gradient algorithms in a safe way: For-
mally guaranteeing that the resulting policy will be quantifiably sub-optimal with
respect to the original system.

• Chapter 8: We summarise the ideas presented through the dissertation, and provide
possible directions for future work and open problems that emerge.
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2
Mathematical Notation and

Preliminaries
We provide in this chapter an introduction to the notation and concepts used recursively
throughout this work.

2.1 Notation
We use ℝ for the set of real numbers, ℕ for the set of natural numbers. We say 𝑋 is a
set, 𝑥 ∈ 𝑋 is an element of 𝑋 and 𝒳 is a collection of sets. We use Δ(𝑋) as the space of
probability measures over 𝑋 . Subscripts are used to specify dependence, that is 𝑋𝑡 is a set
that depends on some variable 𝑡 . For two elements of a vector space we use ⟨⋅, ⋅⟩ as the
inner product. We use 0𝑛 and 1𝑛 as a column-vector of size 𝑛 that has all entries equal
to 0 or 1 respectively. Unless otherwise stated, 𝑃,𝑇 ,𝑆 are used for probability maps or
stochastic matrices: We say that 𝑆 is a 𝑛 ×𝑛 row-stochastic matrix if 𝑆𝑖𝑗 ≥ 0 and each row
of 𝑆 sums to 1. We use 𝔼[⋅] and Var[⋅] for the expected value and the variance of a random
variable, and in particular, 𝔼𝑥∼𝜇[𝑓 (𝑥)] reads as “the expectation of 𝑓 (𝑥)when 𝑥 is sampled
from some distribution 𝜇”.

The function sgn(⋅) is the sign operator, with sgn(0) = 0. We say a function 𝑓 ∶ ℝ+→ℝ+
is in the class of functions 𝒦 if 𝑓 is continuous, monotonically increasing and 𝑓 (0) = 0.
We say a function 𝑓 ∶ ℝ+ →ℝ+ is in class 𝒦∞ if 𝑓 (⋅) ∈ 𝒦 and lim𝑎→∞ 𝑓 (𝑎) = ∞.

2.2 GraphTheory
Through Chapters 3 and 4 we make use of several graph theoretic concepts, introduced in
this section.

Definition 2.1. We define a discrete time-varying weighted graph 𝐺 ≔ (𝑋 ,𝐸,𝑊𝑡 ) as a tuple
including a vertex (or state) set 𝑋 , edge set 𝐸 and weights 𝑊 ∶ ℕ+0 →ℝ|𝑋 |×|𝑋 |+ , where each
value 𝑊𝑡 (𝑖, 𝑗) is the weight assigned to edge {𝑖𝑗} ∈ 𝐸. Furthermore, the graph is connected if
for every pair 𝑖, 𝑗 ∈ 𝑋 there exists a set of edges

{{𝑖𝑢1}, {𝑢1𝑢2}, ... , {𝑢𝑛𝑗}} ⊆ 𝐸
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that connects 𝑖 and 𝑗.
We refer to an edge connecting 𝑖 to 𝑗 as {𝑖𝑗} ≡ {𝑗𝑖} if the graph is undirected, and (𝑖𝑗)

if the graph is directed. For simplicity, all concepts and definitions regarding weighted
graphs will be define using undirected notation (edge from 𝑖 to 𝑗 as {𝑖𝑗}), but will apply to
both directed and undirected graphs unless the opposite is stated.

The image of a function assigning values to edges in a graph can be written as a matrix,
and the subscript will indicate both edges and entries in the image of the function. That
is, let 𝑓 ∶ ℕ → ℝ|𝑋 |×|𝑋 |. Then, we use 𝑓𝑘(𝑖, 𝑗) as the 𝑖𝑗-th entry in the image 𝑓𝑘 , which
corresponds to the edge 𝑒 ≡ {𝑖𝑗}. We use this function class for the graph weights, and by
definition

𝑊𝑡 (𝑖, 𝑗) = 0 ∀{𝑖𝑗} ∉ 𝐸, ∀𝑡.
The degree of vertex 𝑖 is deg(𝑖) ≔ |{{𝑖𝑗} ∶ {𝑖𝑗} ∈ 𝐸, 𝑗 ∈ 𝑋}|, and weighted degree is

𝑔𝑡 (𝑖) ≔ ∑
𝑘∈𝑋

𝑊𝑡 (𝑖,𝑘).

Furthermore, when considering directed graphs the degree deg(𝑖) refers to the out-degree
unless the opposite is stated.

Definition 2.2 ([88]). An 𝑖 − 𝑗 path in 𝐺 is a subgraph 𝑋 ′ ⊆ 𝑋 , 𝐸′ ⊆ 𝐸
𝑋 ′ = {𝑖,𝑘, 𝑙, ..., 𝑧, 𝑗}, 𝐸′ = {{𝑖𝑘}, {𝑘𝑙}, ..., {𝑧𝑗}}

where no vertex appears twice. An 𝑖-cycle is then a closed path 𝑖 − 𝑖 starting and ending in the
same vertex 𝑖 ∈ 𝑋 .

The diameter of the graph diam(𝐺) or |𝐺| is the length of the longest path for any
𝑖, 𝑗 ∈ 𝑋 . The distance between two vertices 𝑖, 𝑗 is 𝑑(𝑖, 𝑗), and is defined as the length of the
shortest path between 𝑖 and 𝑗.

2.3 Stochastic Matrices and Random Processes
2.3.1 Random Processes
In the context of stochastic systems we use Ω as the set of outcomes in a probability space,
ℱ as the measurable algebra (set) of events, and 𝑃 as a probability measure 𝑃 ∶ℱ → [0,1].
When two (or more) random variables follow the same probability distribution and are
independent from each other we use independent and identically distributed (i.i.d.).

Definition 2.3 (Almost Sure Convergence[89]). Let Ω be a probability sample space, with
𝜔 ∈ Ω being any event. We say a sequence of random variables 𝑥0, 𝑥1, ..., 𝑥𝑡 defined on the set
of events Ω converges almost surely (a.s.) to a random variable 𝑥∞ as 𝑡 →∞ iff

Pr {𝜔 ∶ 𝑥𝑡 (𝜔)→ 𝑥∞ as 𝑡 →∞} = 1.
Theorem 2.1 (Strong Law of Large Numbers [90]). Let (Ω,ℱ ,𝑝) be a probability space
equipped with a 𝜎 -algebra of measurable subsets ofΩ. Let 𝑥𝑛 be a sequence of 𝑛 i.i.d. random
variables defined over the probability space, with expectation 𝔼[𝑥𝑖]. Let 𝑠𝑛 = 𝑥1 +𝑥2 + ... + 𝑥𝑛 .
Then,

lim𝑛→∞
𝑠𝑛
𝑛 = 𝔼[𝑥𝑖] a.s.
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Definition 2.4 ([89]). A sequence of integrable random variables 𝑥𝑡 measurable with respect
to a sequence of increasing 𝜎−algebras {ℱ𝑡 } is called a Martingale if

𝔼[𝑋𝑡+1|ℱ𝑡] = 𝑋𝑡 𝑎.𝑠. ∀𝑡 ⩾ 0,
When considering a discrete time system, {ℱ𝑡 } includes all the information until time 𝑡 .
Theorem 2.2 (Doob’s Martingale Convergence [89]). Let 𝑋𝑛 be a Martingale such that

sup
𝑛

𝔼[𝑋+𝑛 ] < ∞.

Then, 𝑋𝑛 converges a.s..

Theorem 2.3 (Stochastic Approximation with Non-Expansive Operator [91]). Let {𝜉𝑡 } be
a random sequence with 𝜉𝑡 ∈ ℝ𝑛 defined by the iteration:

𝜉𝑡+1 = 𝜉𝑡 +𝛼𝑡 (𝐹 (𝜉𝑡 ) − 𝜉𝑡 +𝑀𝑡+1),
where we assume all learning rates 𝛼𝑡 (𝑥,𝑢) ∈ [0,1] satisfy the conditions ∑∞

𝑡=1 𝛼𝑡 (𝑥,𝑢) = ∞
and ∑∞

𝑡=1 𝛼𝑡 (𝑥,𝑢)2 < ∞. Assume the following hold:
1) 𝐹 ∶ ℝ𝑛 ↦ℝ𝑛 is a ‖ ⋅ ‖∞ non-expansive map. That is, for any 𝜉1, 𝜉2 ∈ ℝ𝑛 , ‖𝐹 (𝜉1)−𝐹(𝜉2)‖∞ ≤

‖𝜉1 −𝜉2‖∞.
2) {𝑀𝑡 } is a martingale difference sequence with respect to the increasing family of 𝜎−fields

ℱ𝑡 ∶= 𝜎(𝜉0,𝑀0, 𝜉1,𝑀1, ..., 𝜉𝑡 ,𝑀𝑡 ).
Then, the sequence 𝜉𝑡 →𝜉 ∗ almost surely where 𝜉 ∗ is a fixed point such that 𝐹(𝜉 ∗) = 𝜉 ∗.

2.3.2 Stochastic Matrices
We say that 𝑆 is a 𝑛×𝑛 row (column) stochastic matrix if 𝑆𝑖𝑗 ≥ 0 and each row (column) of 𝑆
sums to 1. Their use to represent Markovian processes has been extensively studied, since
the probability transition matrix of a Markovian discrete time process can be represented
with such matrices.

Theorem 2.4 (Perron-Frobenius Theorem [92]). Let 𝑆 ∈ ℝ𝑛×𝑛≥0 be a non-negative column
stochastic irreducible matrix. Then,

• 𝜆1(𝑆) = 1, all other eigenvalues are smaller in norm.
• The eigenvector 𝑆𝑣 = 𝑣 defines a dimension 1 subspace with some basis vector having

strictly positive entries.

Let 𝕄2 be the class of all scrambling matrices (no two rows are orthogonal)[93].

Assumption 2.1 ([94]). Let 𝐴𝑡 be a discrete time dependent row stochastic matrix, with
∏𝑡=𝑘

𝑡=𝑗 𝐴𝑡 its left product from 𝑘 to 𝑗 (i.e. 𝐴𝑡𝐴𝑘−1𝐴𝑘−2...𝐴𝑗 ). Suppose the process satisfies:
1) There exists integer ℎ > 0 such that for all 𝑘 > 0:

Pr[
ℎ+𝑘
∏
𝑡=𝑘

𝐴𝑡 ∈ 𝕄2] > 0,
∞
∑
𝑖=1

Pr[
𝑘+𝑖ℎ
∏

𝑡=𝑘+(𝑖−1)ℎ
𝐴𝑡 ∈ 𝕄2] = ∞.
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2) There is a positive 𝛼 such that any 𝐴𝑡 (𝑖, 𝑗) > 𝛼 if 𝐴𝑡 (𝑖, 𝑗) > 0.

Theorem 2.5 ([94]). Under Assumption 2.1, the product of the sequence of row stochastic
matrices ∏𝑡=𝑘

𝑡=0 𝐴𝑡 converges to a random matrix of identical rows 𝐿 = 1𝜉⊤ a.s. as 𝑘 → ∞,
where 𝜉 ∈ ℝ𝑛 satisfies 𝜉⊤1 = 1.

Note that the results in Theorem 2.5 do not imply that the stochastic matrix 𝐴𝑡 con-
verges, only its product.

2.4 Reinforcement Learning
Reinforcement Learning is (assumed here to bemodel free) a controller synthesis paradigm
where we “learn” policies that map states to actions in some unknown stochastic environ-
ment, with the goal of maximising the discounted sum of rewards obtained by the action
sequence executed. The general framework considered in RL problems is a Markov Deci-
sion Process.

Definition 2.5. [Markov Decision Process] A Markov Decision Process (MDP) is a tuple
(𝑋 ,𝑈 ,𝑃,𝑅) where 𝑋 is a set of states, 𝑈 is a set of actions, 𝑃 ∶ 𝑈 ×𝑋 →Δ(𝑋) is the probabil-
ity measure of the transitions between states and 𝑅 ∶ 𝑋 ×𝑈 ×𝑋 → ℝ is the reward function.
Finally, 𝛾 is a discount rate.

In general, 𝑋,𝑈 are finite sets. We refer to 𝑥,𝑢 as the state-action pair at time 𝑡 , and
𝑥,𝑥′ or 𝑥,𝑦 as two consecutive states. Wewrite 𝑃(𝑥,𝑢,𝑦) as the probability of transitioning
from 𝑥 to 𝑦 when taking action 𝑢. We denote in this work a stochastic transition MDP as
the general MDP presented in Definition 2.5, and a deterministic transition MDP as the
particular case where the transition probabilities additionally satisfy 𝑃(𝑥,𝑢,𝑦) ∈ {0,1} (in
other words, transitions are deterministic for a pair (𝑥,𝑢)). We say that an MDP is ergodic
if for any policy the resulting Markov Chain (MC) is ergodic.

A (memoryless) policy for an agent taking actions on a MDP is a stochastic kernel
𝜋 ∶ 𝑋 → Δ(𝑈 ). For simplicity, we overload notation on 𝜋 , denoting by 𝜋(𝑥,𝑢) as the
probability of taking action 𝑢 at state 𝑥 under the stochastic policy 𝜋 in the MDP, i.e.,
𝜋(𝑥,𝑢) = Pr{𝑢 ∣ 𝑥}. In a multi-agent case, we make use of the following extension of an
MDP system.

Definition 2.6. [Multi-Agent MDP] A Multi-Agent Markov Decision Process (MMDP) is a
tuple (𝑁 ,𝑋 ,𝑈 𝑛 , 𝑃 , {𝑅𝑖}, 𝛾 )where 𝑁 is a set of 𝑛 agents, 𝑋 is a cartesian product of state spaces
𝑋 = ∏𝑖∈𝑁 𝑋𝑖 , 𝑈 𝑛 = ∏𝑖∈𝑁 𝑈𝑖 is a joint set of actions, 𝑃 ∶ 𝑋 ×𝑈 𝑛 → Δ(𝑋) is a probability
measure of the transitions between states and 𝑅𝑖 ∶ 𝑋 × 𝑈 𝑛 × 𝑋 → ℝ is a reward function
for agent 𝑖 ∈ 𝑁 . If all reward functions are the same for all agents, we say the MMDP is
cooperative. Finally, 𝛾 is a discount rate.

We refer as on-policy algorithms to those RL algorithms that optimize a policy based on
data collected from that same policy (e.g. A2C[58], PPO[95]...), and off-policy algorithms
as those algorithms where experiences can be sampled from different exploration policies,
and used to optimize a target policy (e.g. Q-Learning[96], DDPG[97]...).
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Value Based Reinforcement Learning
The value function of a policy 𝜋 , 𝑉 𝜋 ∶ 𝑋 → ℝ, and action-value function 𝑄 ∶ 𝑋 ×𝑈 → ℝ
are given by, respectively

𝑉 𝜋 (𝑥0) = 𝔼[
∞
∑
𝑡=0

𝛾 𝑡𝑅(𝑥𝑡 ,𝜋(𝑥𝑡 ),𝑥𝑡+1)] , 𝑄𝜋 (𝑥,𝑢) = 𝔼[𝑅(𝑥,𝑢,𝑦)+
∞
∑
𝑡=1

𝛾 𝑡𝑅(𝑥𝑡 ,𝜋(𝑥𝑡 ),𝑥𝑡+1)] .

It is well known that, under mild conditions [58], the optimal value function can be ob-
tained by means of the Bellman equation

𝑉 ∗(𝑥) ∶=max𝑢 ∑
𝑦∈𝑋

𝑃(𝑥,𝑢,𝑦)(𝑅(𝑥,𝑢,𝑦)+ 𝛾𝑉 ∗(𝑦)),

and an optimal policy 𝜋 ∗(𝑥) ∶= argmax𝜋 𝑉 𝜋 (𝑥) ∀𝑥 ∈ 𝑋 is guaranteed to exist. Similarly,
the optimal Q function satisfies 𝑄∗(𝑥,𝑢) ∶= ∑𝑦∈𝑋 𝑃(𝑥,𝑢,𝑦)(𝑅(𝑥,𝑢,𝑦) + 𝛾𝑉 ∗(𝑦)). We then
define the objective function as

𝐽 (𝜋) ∶= 𝔼𝑥0∼𝜇0[𝑉 𝜋 (𝑥0)]

with 𝜇0 being a distribution of initial states, and we use 𝐽 ∗ ∶= max𝜋 𝐽 (𝜋). If a policy is
parameterised by 𝜃 ∈ Θ we write 𝜋𝜃 and 𝐽 (𝜃).

When considering RL learning rates, we assume they satisfy the following assumption.

Assumption 2.2 (Learning Rates). All learning rates 𝛼𝑡 (𝑥,𝑢) ∈ [0,1] satisfy the conditions
∑∞

𝑡=1 𝛼𝑡 (𝑥,𝑢) = ∞ and ∑∞
𝑡=1 𝛼𝑡 (𝑥,𝑢)2 < ∞.

In Q-Learning [96], the Q values are initialised to some value 𝑄0(𝑥,𝑢) ∈ ℝ ∀𝑥,𝑢, and
are updated after each transition observation 𝑥 → 𝑦 with a decaying learning rate 𝛼𝑡 as

𝑄𝑡+1(𝑥,𝑢) = 𝑄𝑡 (𝑥,𝑢)+𝛼𝑡(𝑅(𝑥,𝑢,𝑦)+ 𝛾max𝑣 𝑄𝑡 (𝑦,𝑣)−𝑄𝑡 (𝑥,𝑢)), (2.1)

and 𝑅(𝑥,𝑢,𝑦) + 𝛾max𝑣 𝑄𝑡 (𝑦,𝑣) − 𝑄𝑡 (𝑥,𝑢) is the temporal difference (TD) error. The sub-
script 𝑡 represents the number of iterations in (2.1). For ease of notation we may omit the
explicit dependence of 𝛼𝑡 (𝑥,𝑢) on (𝑥,𝑢), and write 𝛼𝑡 ≡ 𝛼𝑡 (𝑥,𝑢). The iteration on (2.1) is
known to converge to the optimal 𝑄∗ function under conditions on reward boundedness
and sum convergence for the rates 𝛼𝑡 [96].

Theorem 2.6 (Q-Learning [96]). For an MDP with a bounded reward function, let the learn-
ing rate 𝛼𝑡 ∈ [0,1) satisfy

∞
∑
𝑡=1

𝛼𝑡 (𝑥,𝑢) = ∞,
∞
∑
𝑡=1

(𝛼𝑡 (𝑥,𝑢))2 < ∞.

Then, the iteration 2.1 converges 𝑄𝑡 →𝑄∗ almost surely for 𝑡 →∞.



2

12 2 Mathematical Notation and Preliminaries

Policy Based Reinforcement Learning
In policy-based reinforcement learning methods, one aims to construct a parametrised
policy that directly maximises the RL objective 𝐽 (𝜋). In general, this is formulated through
the gradient ascent scheme:

𝜋𝑡+1 = 𝜋𝑡 +𝛼𝑡∇𝐽 (𝜋𝑡 ),
or if 𝜋 is parametrised by some 𝜃 ∈ Θ, 𝜃𝑡+1 = 𝜃𝑡 +𝛼𝑡∇𝜃 𝐽 (𝜋𝑡 ). In practise, the objective 𝐽 (𝜋) is
constructed as an estimate from Monte Carlo trajectory samples, and the policy iteration
is then a stochastic gradient ascent scheme. When these estimators are learned in the form
of a value function, we refer to them as Actor-Critic Algorithms [98]. There are plenty of
PG algorithms that incorporate different heuristics to e.g. reduce variance in the objective
estimator, stabilise the iteration steps or allow for off-policy learning [95, 99, 100].

Lexicographic Reinforcement Learning
We introduce now some concepts related to multi-objective RL [101] necessary for Chap-
ter 7. A Multi-Objective MDP is an MDP with a set of reward functions {𝑅𝑖} that define
a set of discounted reward objectives {𝐽𝑖}. In this setting, Lexicographic Reinforcement
Learning [102] provides an approach to find policies that optimise each objective priori-
tised lexicographically, such that it optimizes the first 𝐽1 up to a certain 𝜖, and from those
solutions optimizes 𝐽2, etc. In particular, we introduce now Policy-Based Lexicographic
RL (PB-LRL) for an example with two objective functions. Consider a parametrised policy
𝜋𝜃 with 𝜃 ∈ Θ, and two objective functions 𝐾1 and 𝐾2. PB-LRL uses a multi-timescale op-
timisation scheme to optimise 𝜃 faster for higher-priority objectives, iteratively updating
the constraints induced by these priorities and encoding them via Lagrangian relaxation
techniques [103]. Let 𝜃′ ∈ argmax𝜃 𝐾1(𝜃). Then, PB-LRL can be used to find parameters:

𝜃″ = argmax𝜃 𝐾2(𝜃) such that 𝐾1(𝜃) ≥ 𝐾1(𝜃′) − 𝜖.
This is done through the estimated gradient ascent update:

𝜃 ← projΘ [𝜃 +∇𝜃 �̂� (𝜃)],
𝜆 ← projℝ≥0

[𝜆 +𝜂𝑡 (�̂�1 −𝜖𝑡 −𝐾1(𝜃))],
(2.2)

where �̂� (𝜃) ∶= (𝛽1𝑡 +𝜆𝛽2𝑡 ) ⋅𝐾1(𝜃)+𝛽2𝑡 ⋅𝐾2(𝜃), 𝜆 is a Langrange multiplier, 𝛽1𝑡 , 𝛽2𝑡 , 𝜂𝑡 are learn-
ing rates, and �̂�1 is an estimate of 𝐾1(𝜃′). Typically, we set 𝜖𝑡 → 0, though we can use
other tolerances too, e.g., 𝜖𝑡 = 0.9 ⋅ �̂�1. For more details on the convergence proofs and
technicalities of PB-LRL we refer the reader to [102]. The next result is the main Theorem
in [102], it establishes convergence of general policy-based RL algorithms under lexico-
graphic constraints, and it is used in Chapter 7 of this work.

Theorem 2.7 (PB-LRL Convergence[102]). Letℳ be a multi-objective MDP with objectives
𝐽𝑖 , 𝑖 ∈ {1, ...,𝑚} of the same form. Assume a policy 𝜋 is twice differentiable in parameters 𝜃 , and
if using a critic 𝑉𝑖 assume it is continuously differentiable on 𝜃𝑖 . Suppose that if PB-LRL is run
for 𝑇 steps, there exists some limit point 𝑤∗𝑖 (𝜃) when 𝜃 is held fixed under conditions𝒞 onℳ,
𝜋 and 𝑉𝑖 . If lim𝑇→∞𝔼𝑡 [𝜃] ∈ Θ𝜖1 for 𝑚 = 1, then for any 𝑚 ∈ℕ we have lim𝑇→∞𝔼𝑡 [𝜃] ∈ Θ𝜖𝑚
where 𝜖 depends on the representational power of the parametrisations of 𝜋 , 𝑉𝑖 .
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3
Convergence and Properties of Ant

Inspired Swarm Dynamics
This chapter establishes a set of asymptotic convergence results for ant-inspired randomwalks,
while providing conditions in graph structure and parameter choice. We give estimates on
convergence rates, and how they relate to problem parameters and graph topology. For this,
we first provide a formal model the agent environment as a weighted graph, where agents
add weight to the edges as they traverse them. This defines a coupling in the stochastic dy-
namics where the graph weights are modified by the agent movements, and introduces a
dependency in the system between the agent trajectories and weight sequences that give rise
to non-homogeneous Markovian processes. To derive assymptotic guarantees, we solve this
coupling by combining Martingale theory with stochastic matrix products and ergodic coeffi-
cients and obtain distributional limits for both the graph weights and agent positions.

This chapter is based onD Jarne Ornia andM. Mazo Jr, “Convergence of Ant ColonyMulti-Agent Swarms” HSCC
’20: Proceedings of the 23rd International Conference on Hybrid Systems: Computation and Control, Apr. 2020.
[104]. All proofs for technical statements can be found in Appendix A.
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3.1 Introduction
Swarms occur naturally in many insect and animal species, therefore attempting to model
these biological swarming behaviours is a big part of biomimicry research [105, 106]. In
this framework, Ant Colony (AC) algorithms are a subset of biologically inspired stochas-
tic algorithms based on the behavioural traits of ants, used commonly for optimization
problems. Their main characteristic is the use of stigmergy: the environment is the main
communication medium and information storage tool [7–9]. The agents mark the environ-
ment and make stochastic decisions based on the marks they encounter. These algorithms
can be used as a control strategy for robotic swarms, either as a path planning system
[107–110] or to directly stablish coordination in a robotic swarm [15, 111–113].

With these applications in mind, we are interested in studying the convergence proper-
ties of AC algorithms when applied to swarm coordination over graphs. These processes
result in ant inspired biased random walks: Random walks where the edge weights are
time dependent, and modified by the agents as they move. Random walks have been
largely studied [114–116], and edge-reinforced random walks on weighted graphs and its
asymptotic behaviour has been studied for continuous and discrete time [117–119]. Alter-
natively, convergence has been proven for certain kinds of AC optimization algorithms
[120–122], but the results do not apply directly to the proposed ant inspired random walk.
In most cases they require a central entity to analyse all paths the agents are generating,
and add more or less weight depending on a cost function. Furthermore, when applying
these algorithms to cyber-physical swarms, interacting with the environment translates
into some kind of data transmission. In such networks there can be communication re-
strictions (desired or undesired), under which the existing convergence proofs would not
hold. We are interested in applying these techniques to control and route real swarms,
hence the motivation to find more general convergence conditions.

3.1.1 Main Contribution
The main contributions of this chapter are two-fold.

Convergence of agent probability distributions We first show, leveraging results on
random sequences of stochastic matrices how, with mild assumptions on the ant-inspired
dynamics and underlying graphs, the probability distribution of agents converges (expo-
nentially) to a limiting distribution for fixed initial conditions.

Convergence of transition functions Then, we show that for directed graphs, the
sequence of transition functions is in fact a martingale in an ant-inspired random walk,
allowing us to verify convergence properties of the sequence of transition functions.

3.2 Ant-Inspired Biased RandomWalks
Weaimnow to formulate a general description of Ant-Inspired swarm dynamics on graphs,
which can be generalised as a biologically inspired biased random walk. These agents
follow transition probability distributions that are a function of the graph weights, and
the graph weights are then modified by the movement of the agents. We describe first the
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(a) Planar graph. (b) Expanded graph, modified edges (blue).

Figure 3.1: Graph Expansion with target set (red)

agent dynamics, then the graph weight dynamics, and at last how these are combined into
the dynamical problem to be studied in this Chapter.

3.2.1 Agent Dynamics
Let 𝐺 be a weighted connected graph as in Definition 2.1¹. Let 𝑁 = {1,2, ...,𝑛} be a set of
agents walking from vertex to vertex. The position of agent 𝑎 at time 𝑡 is 𝑥𝑎𝑡 = 𝑣, 𝑣 ∈ 𝑋 ,
and we group them in a vector 𝑥𝑡 ≔ {𝑥𝑎𝑡 ∶ 𝑎 ∈ 𝑁 }. The position of the agents will evolve
depending on some probability transition matrix 𝑃𝑡 ∶ 𝑋 ×𝑋 → [0,1]. We are interested
in getting our agents to converge to trajectories connecting a starting vertex 𝑥0 and a
target vertex 𝑥𝑔 infinitely often. First, consider all the vertices in our graph that are not
connected to 𝑥0 nor 𝑥𝑔 . In this case, the agents move by selecting adjacent vertices based
on the weight dependent probability distribution

𝑃𝑡 (𝑗, 𝑖) = Pr{𝑥𝑎𝑡+1 = 𝑗 |𝑥𝑎𝑡 = 𝑖} = 𝑊𝑡 (𝑖, 𝑗)
𝑔𝑡 (𝑖)

, 𝑎 ∈ 𝐴, 𝑖, 𝑗 ≠ 𝑥𝑔 , 𝑥0. (3.1)

This is analogous to a biased random walk in a graph. When agents are adjacent to the
target vertex 𝑥𝑔 , they should prioritise this over any other vertex choice (mimicking ants
moving towards food sources),

𝑃𝑡 (𝑗, 𝑖) = {
1 if 𝑖 = 𝑥𝑔 , 𝑥0, {𝑖𝑗} ∈ 𝐸
𝑊𝑡 (𝑖,𝑗)
𝑔𝑡 (𝑖)

else. (3.2)

Remark 3.1. In general, for foraging or path planning problems we require the agents to
turn around when finding 𝑥𝑔 (𝑥0). This can be incorporated in the graph structure without

¹We consider in this Chapter edge-weighted graphs.
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breakingMarkovian properties or considering different transitionmatrices for different agents.
This is done as in Figure 3.1b.

The agent transition dynamics translate into the following dynamics for the agent
probability distribution.

Definition 3.1. The probability distribution 𝑦𝑡 ∈ Δ(𝑋) is the probability of having an agent
in any vertex 𝑖 ∈ 𝑋 at time 𝑡 . The distribution evolves according to

𝑦𝑡+1 = 𝑃𝑡𝑦𝑡 .
That is, given a distribution 𝑦𝑡 , the product 𝑃𝑡𝑦𝑡 gives us the distribution at the next time step.
Note that 𝑃𝑡 (𝑗, 𝑖) represents then the probability of moving from 𝑖 to 𝑗, and Pr{𝑥𝑎𝑡+1 = 𝑗} is the
𝑗-th entry of 𝑦𝑡+1. The distribution is initialised to some initial distribution 𝑦0.
Remark 3.2. See that the agent distribution 𝑦𝑡 follows Markovian dynamics; the probabil-
ities at time 𝑡 + 1 are fully determined by the state at 𝑡 . However, the system is only fully
Markovian if we consider the joint set of random variables {𝑥𝑡 ,𝑀𝑡 ,𝑊𝑡 }. Additionally, the
Markov process is non-homogeneous and the evolution of the transition probabilities is it-
self stochastic, which prevents us from computing stationary distributions. This is the main
problem addressed in this chapter, and the proposed solution will become clear in further
Sections.

3.2.2 Graph Dynamics
Let us first define the following agent movement matrix.

Definition 3.2. The matrix of agent movements at time 𝑡 , 𝑀𝑡 ∶∈ ℕ|𝑋 |×|𝑋 |, has entries

𝑀𝑡+1(𝑖, 𝑗) ≔ ||{𝑎 ∈ 𝑁 ∶ 𝑥𝑎𝑡+1 = 𝑗 , 𝑥𝑎𝑡 = 𝑖}||, (3.3)

that is, the entry 𝑖, 𝑗 of the matrix 𝑀𝑡+1 is the amount of agents that were at vertex 𝑖 at time
𝑡 , and move to vertex 𝑗 at time 𝑡 + 1.

Observe that𝑀𝑡+1(𝑖, 𝑗) is a random variable, since it depends on the agent state at 𝑡 +1
and this follows a stochastic process described in Definition 3.1. With this we can write
the weight dynamics in the graph.

Definition 3.3. Let 𝑀 be an agent movement matrix. If 𝐺 is a directed graph, each time
step the graph weight matrix is updated following the dynamics

𝑊𝑡+1 = (1−𝛼)𝑊𝑡 +𝛼
𝑀𝑡+1
𝑛 ,

where 𝛼 ∈ (0,1) is a chosen evaporation factor. If 𝐺 is undirected, 𝑀𝑖𝑗 and 𝑀𝑗𝑖 act over the
same edge, and the dynamics are

𝑊𝑡+1 = (1−𝛼)𝑊𝑡 +
𝛼
𝑛 (𝑀𝑡+1 +𝑀⊤𝑡+1) .

All weights are initialised to a uniform weight distribution, 𝑊0 = 𝜔0𝐴, where 𝐴 is the adja-
cency matrix of 𝐺.
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The value of 𝑛 may be limited to the practical application, but in principle the amount
of weight added per agent is a design parameter and we are free to choose any value. The
choice of 𝛼

𝑛 is motivated by the fact that it ensures the total amount of weight will be
constant if the initial weight amount adds to 1, i.e. ∑𝑖∑𝑗𝑊𝑡 (𝑖, 𝑗) = 1 ∀𝑡 > 0 if 𝜔0|𝐸| = 1,
both for directed and undirected graphs, and it is consistent with seminal work on Ant
Colony Optimisation [7].

3.2.3 Problem Definition
We consider now the graph and agent dynamics together to define the complete AC Swarm
system in a graph.

Definition 3.4. We define an Ant System (AS) as a tuple (𝐺, {𝑥𝑡 },Λ) where 𝐺 is a planar
connected weighted graph with at least one odd length cycle. The weights 𝑊𝑡 follow the
dynamics in Definition 3.3. The agent positions {𝑥𝑡 } follow the agent probability distribution
dynamics in Definition 3.1. Finally, Λ ≔ (𝑥𝑔 , 𝑥0, 𝑃𝑡 ) is the tuple of restrictions to the agent
movements, with 𝑃𝑡 defined as (3.2). The vertices 𝑥𝑔 , 𝑥0 are the initial and goal vertices.

Remark 3.3. Observe the requirement of 𝐺 being connected and having at least one odd
length cycle. This implies that for long enough times, any vertex 𝑖 ∈ 𝑋 is reachable from any
other 𝑗 ∈ 𝑋 . This is a common concept when studying random walks, and it is shown in the
next section. The necessity of this will become clear in further sections.

We are ready now to formulate the convergence problem that concerns this Chapter.

Problem 3.1. Let an AC Graph System 𝐴𝑆 as defined in Definition 3.4. Can we ensure the
distribution of agents around the graph 𝐺 converges to a stationary distribution 𝑦∞? and,
what are the conditions for the graph topology and parameters that need to be satisfied?

3.3 Results
As pointed out in Definition 3.3, the weight dynamics are different if we consider a di-
rected graph since the weights 𝑊𝑡 (𝑖, 𝑗) are affected by the symmetric agent movements
𝑀𝑡 (𝑗, 𝑖). This motivates to approach the problem in slightly different ways for directed
or undirected graphs. We first present general convergence results that hold for any con-
nected graph. After that, we present stronger convergence results in the case the graph
is directed. Before these, let us state a result relating existing work on stochastic matrices
for consensus problems with this Chapter.

Corollary 3.1. The results in Theorem 2.5 apply similarly to a sequence of column stochastic
matrices. In particular, for a sequence {𝐵𝑡 } where 𝐵𝑖 ∈ ℝ𝑛×𝑛 and all 𝐵⊤𝑖 satisfy Assumption
2.1:

lim𝑘→∞

𝑡=𝑘
∏
𝑡=0

𝐵𝑡 = (1𝜉⊤)⊤
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3.3.1 Dynamics of probability distributions
Recall the agent distribution dynamics in Definition 3.1. With any connected graph, we
can write the distribution at any time 𝑡 > 0 as

𝑦𝑡+1 = 𝑃𝑡𝑦𝑡 = 𝑃𝑡𝑃𝑡−1𝑦𝑡−1 = ... =
𝑘=𝑡
∏
𝑘=0

𝑃𝑘𝑦0.

Therefore, if the limit 𝐿∞ ≔ lim𝑡→∞∏𝑘=𝑡
𝑘=0 𝑃𝑘 exists,

lim𝑡→∞𝑦𝑡+1 = lim𝑡→∞

𝑘=𝑡
∏
𝑘=0

𝑃𝑘𝑦0 = 𝐿∞𝑦0 ≕ 𝑦∞. (3.4)

That is, if we can show the product of our sequence of stochastic matrices 𝑃𝑡 converges to
a stochastic matrix, the agent distribution will converge to a stationary distribution. For
this, let us defined a restricted weight matrix.

Assumption 3.1. Any graph 𝐺 is connected and has at least one odd length cycle.

Assumption 3.2. We assume the weights𝑊𝑡 to be lower bounded for any edge in the graph
by some non-zero constant 𝜀 > 0.

To show the agent distribution convergence properties, we first present the property
introduced in Remark 3.3.

Proposition 3.1. Let 𝑙𝑐 be the maximum length of any odd length cycle in 𝐺. Let diam(𝐺)
be the diameter of the graph. Then,

𝑡 ⩾ 2diam(𝐺)+ 𝑙𝑐 ⇒ Pr{𝑦𝑡 (𝑗) ∣ 𝑦0(𝑖) = 1} > 0 ∀𝑖, 𝑗 ∈ 𝑋 .

Remark 3.4. We consider graphs that represent discretisations of space in navigation prob-
lems. Since we can always add a self loop in a vertex with weight 𝜀, we consider that effectively
the bound in Proposition 3.1 can be tightened to 𝑡 ≤ 2diam(𝐺)+1.
Proposition 3.2. The sequence {𝑃⊤𝑡 } satisfies the conditions in Assumption 2.1.

Now, we present the main result for any connected graph regarding agent distribution
convergence.

Theorem 3.1 (Agent Distribution Convergence). Let 𝐴𝑆 be an AC graph system from Def-
inition 3.4. The product ∏𝑡=𝑘

𝑡=0 𝑃𝑡 converges to a column matrix a.s. as 𝑡 →∞,

lim𝑘→∞

𝑡=𝑘
∏
𝑡=0

𝑃𝑡 = 𝜉1⊤, (3.5)

where 𝜉 ∈ Δ(𝑋) is a probability distribution.
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Corollary 3.2. For an 𝐴𝑆, let every agent 𝑎 ∈ 𝑁 use a different weight matrix𝑊 𝑎𝑡 such that

𝑊 𝑎𝑡 (𝑖, 𝑗) = { 0 if 𝑥𝑎𝑡 = 𝑖 and 𝑥𝑎𝑡−1 = 𝑗,
𝑊𝑡 (𝑖, 𝑗) else.

Then, each agent will converge to a different stationary distribution 𝑦𝑎𝑡
a.s.−−−→ 𝑦𝑎∞ as 𝑡 →∞.

Other conclusions can be now extracted from the presented results. In particular, how
the decision of agents to add or not add weight can be made without disrupting conver-
gence properties of the system.

Corollary 3.3. Let 𝐴𝑆 be an AC graph system. Let 𝜒(𝑎) ∈ {0,1} be a random variable taking
value 1 if a communication event from agent 𝑎 ∈ 𝑁 takes place, and value 0 otherwise. If 𝜒(𝑎)
is independent of 𝑀𝑡 , then it does not affect convergence properties of the system.

3.3.2 Directed Graphs: Convergence of Transition Matrices
In a directed graph, the weights of an AC graph system 𝐴𝑆, and edges (𝑖𝑗) are not affected
by the changes in edge (𝑗𝑖). Considering this, to prove the main result for directed graphs
we present first a set of necessary concepts.

Proposition 3.3. Let 𝐴𝑆 = (𝐺, {𝑥𝑡 },Λ) be an AC system. Let its state be fully defined at time
𝑡 by 𝜎 -algebra

ℱ𝑡 = 𝜎(𝑀0, 𝑀1...,𝑀𝑡 ).
At last, let 𝑛𝑡 (𝑖) ≔ |{𝑎 ∈ 𝑁 |𝑥𝑎𝑡 = 𝑖}| be the total amount of agents in vertex 𝑖 at time 𝑡 . Then,
the position of an agent 𝑥𝑡+1(𝑎0) is a random variable independent of other agent positions
𝑥𝑡+1(𝑎𝑘), 𝑎𝑘 ∈ 𝑁 ⧵ {𝑎0}, and the conditional expected value of 𝑀𝑡+1 is

𝔼[𝑀𝑡+1(𝑖, 𝑗) ∣ ℱ𝑡 ] = 𝑃𝑡 (𝑗, 𝑖)𝑛𝑡 (𝑖).

The sum over the rows in 𝑀𝑡+1 depends on the state of our system at time 𝑡 . More
specifically,

∑
𝑗∈𝑋

𝑀𝑡+1(𝑖, 𝑗) = |{𝑎 ∈ 𝑁 |𝑥𝑎𝑡 = 𝑖}| = 𝑛𝑖(𝑡).

Similarly, the weighted degree 𝑔𝑡+1(𝑖) is also determined if we know the values of𝑀0, 𝑀1,
..., 𝑀𝑡 . By definition

𝑔𝑡+1(𝑖) = ∑
𝑘∈𝑋

(1−𝛼)𝑊𝑡 (𝑖,𝑘) +
𝛼
𝑛𝑀𝑡+1(𝑖,𝑘) = (1−𝛼)𝑔𝑡 (𝑖) +

𝛼
𝑛 ∑

𝑘∈𝑋
𝑀𝑡+1(𝑖,𝑘).

Then,
𝑔𝑡+1(𝑖) = (1−𝛼)𝑔𝑡 (𝑖) +

𝛼
𝑛 𝑛𝑖(𝑡).

With this, we can show a strong stochastic property of the evolution of 𝑃𝑡 when the un-
derlying graph is directed.
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Proposition 3.4. Let 𝐴𝑆 be an AC graph system with 𝐺 being a directed graph. Let the
increasing 𝜎 algebra ℱ𝑡 = 𝜎(𝑀0, 𝑀1...,𝑀𝑡 ), and the temporal difference of the probability
transition matrix 𝑃𝑡 be defined 𝜕𝑃𝑗𝑖(𝑡) ≔ 𝑃𝑡+1(𝑗, 𝑖) −𝑃𝑡 (𝑗, 𝑖). For any 𝛼 ∈ (0,1),

𝔼[𝜕𝑃𝑡 (𝑗, 𝑖) |ℱ𝑡] = 0.
At last, we present the main Theorem of this section.

Theorem 3.2. [Transition Probability Convergence for directed graphs] Let 𝐴𝑆 with 𝐺 being
a directed graph. Then, the probability transition matrix of the agent movement converges

a.s. to a stationary 𝑃∞. That is, 𝑃𝑡
a.s.−−−→ 𝑃∞ as 𝑡 →∞.

Remark 3.5. In an undirected graph, the probabilities 𝑃𝑡 (𝑗, 𝑖) can be affected by flow of
agents moving inwards to 𝑖. Theorem 3.2 relies on the fact that this does not happen to directed
graphs. Nevertheless, the authors believe an analogous proof can be established for undirected
graphs, using the fact that the edges of the graph are modified by a set of agents that do
converge to a fixed distribution.

Corollary 3.4. Let 𝐴𝑆 with 𝐺 to be a directed connected planar graph. Let 𝜒(𝑎) ∈ {0,1} be
a random variable taking value 1 with probability 𝑝𝜒 if a communication event from agent

𝑎 ∈ 𝑁 takes place, and value 0 otherwise. If 𝜒(𝑎) is independent of 𝑀𝑡 , then 𝑃𝑡
a.s.−−−→ 𝑃∞ as

𝑡 →∞.

3.3.3 Convergence Speed
Consider the results of Theorem 3.1. By establishing a minimum weight 𝜀 we ensure con-
vergence of the agent distribution as 𝑡 →∞. Let us recall concepts from Qin et. al. [94].

Theorem 3.3 (Qin et. al. [94]). In addition to Assumption 2.1, if there exists a number
𝑞 ∈ (0,1) such that for any 𝑘 ∈ ℕ0 we have Pr {∏ℎ

𝑖=𝑘𝑊𝑖 ∈ℳ2} ≥ 𝑝 > 0, then the almost sure
convergence of the product to a random matrix 𝐿 is exponential, and the rate is no slower
than (1−𝑞𝜅ℎ)1/ℎ.

Recall Proposition 3.2. By adding a minimum weight 𝜀, the graph is connected for all
𝑡 and since there exists at least an odd length cycle,

Pr{(
𝑡0+2diam(𝐺)+1

∏
𝑡=𝑡0

𝑃𝑡)
⊤
∈ℳ2} = 1 ∀𝑡0.

Therefore, with 𝑞 = 1 and 𝜅 = 𝜀
1+(deg∗(𝐺)−1)𝜀 , the convergence rate for an 𝐴𝑆 system with

minimum weight 𝜀 is no slower than (1−𝛼1+2diam(𝐺))
1

1+2diam(𝐺) .

3.4 Experiments
To show the convergence results in simulated examples, we restrict our cases to the follow-
ing baseline scenarios. First, all edgeweights are initialised to a uniform value𝑊(0) = 𝜔0𝐴,
where 𝐴 is the adjacency matrix and 𝜔0 = 1/|𝐸|.
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Figure 3.2: Directed and Undirected Graphs with 𝜀 = 0.

• Directed and undirected triangular planar lattices.
• |𝑥0| = |𝑥𝑔 | = 1. Sets placed randomly in the graph.
• diam(𝐺) ∈ {10,20}, |𝑁 | ∈ {20,80}.
• 𝜀 ∈ {0, 𝜔0

5 }, 𝛼 ∈ {2 ⋅ 10−2, 1.5 ⋅ 10−1}
We consider 𝜀 = 0 for both directed and undirected graphs. This is since, although we
only showed 𝑃∞ convergence for directed graphs, by Remark 3.5 there is enough reason to
believe it will also converge for directed graphs. For simplicity, we consider only triangular
planar lattice graphs. Therefore, there is no need to add a self loop in the graph, and 𝐺
satisfies the necessary conditions. The choice of low 𝛼 values is motivated by the size of
the graphs. The parameter 𝛼 influences how fast weights go to zero (or 𝜀). A value of
𝛼 = 0.05 yields a half life time of 𝑡1/2 ≈ 13 time steps, and we consider graphs of diameters
between 10 and 20.

To show the convergence in the case of 𝑃∞ we plot the values 𝜕𝑃max − 𝜕𝑃min,where
𝜕𝑃max = max𝑖,𝑗 {𝑃𝑡+1 − 𝑃𝑡 }, and the converse for the minimum. To show convergence of
the matrix product to an identical column matrix, let first 𝜕𝑇 = [∏𝑘

𝑡=0 𝑃𝑡]𝑖 − [∏
𝑘
𝑡=0 𝑃𝑡]𝑗 ,

where [∏𝑘
𝑡=0 𝑃𝑡]𝑖 is the 𝑖-th column of thematrix product, and 𝑖 and 𝑗 are chosen at random

among all columns. Therefore, to show convergence we plot 𝜕𝑇max −𝜕𝑇min.

3.4.1 Convergence Results
Figures 3.2a and 3.2b show the convergence results both for the matrix 𝑃𝑡 and the product
of matrices with 𝜀 = 0, and Figure 3.3 shows the convergence of the product for 𝜀 = 𝜔0/5.
Each line represents the average of 50 simulations done with the same parameter set. The
colors correspond to a fixed set of parameter in the legend, dotted lines are undirected
graphs and full lines directed graphs. Note from Figure 3.2b how the convergence of the
matrix product is indeed exponential, and has a very fast convergence rate. However, from
Theorem 3.2, we require the minimum weight to be set to zero to ensure the convergence
of 𝑃𝑡 , but 𝜀 > 0 to have convergence in the matrix product. From Figures 3.2a and 3.2b we
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Figure 3.3: Directed and Undirected Graphs with 𝜀 = 𝜔0/5.

can see that both the matrix product and 𝑃𝑡 converge. This is consistent with the results in
Theorems 3.2 and 3.1; for convergence to 𝑃∞ we need to set 𝜀 = 0. By setting 𝜀 = 0we allow
the graph to become virtually disconnected, therefore in some cases the matrix product
may not converge to an identical column matrix. Figure 3.3 shows the convergence of the
matrix product for 𝜀 = 𝜔0/5. Note that there does not seem to be much difference in the
convergence for 𝜀 = 𝜔0/5 or 𝜀 = 0.

At last, observe that the convergence in 𝑃∞ seems to be much slower and noisy than
for 𝑦∞. This is consistent with the fact that 𝑦∞ converges exponentially fast, while for
𝑃∞ we do not have that guarantee, and thus may converge only as 𝑡 → ∞. Observe that
the convergence results are extremely similar for both directed and undirected graphs.
This confirms the idea pointed out in Remark 3.5. Furthermore, The convergence to a 𝑃∞
transition matrix seems to be heavily influenced by the evaporation rate.

3.5 Discussion
Convergence of ant-inspired biased random walks The results in Section 3.3 show
different kinds of convergence for an ant-inspired random walk and what conditions the
system needs to satisfy. Convergence of the probability transition matrix to 𝑃∞ is guar-
anteed for 𝜀 = 0. However, to ensure convergence in agent distribution to 𝑦∞, the graph
cannot become disconnected (although, as seen in Figures 3.2b and 3.3, convergence in
agent distribution seems to occur for most simulations even when 𝜀 = 0). This has a
straight-forward solution, to be explored in the next Chapter: One can, instead of forc-
ing a minimum weight in the graph, add randomness in the agent decision making. This
would effectively allow for the simultaneous guaranteeing of convergence properties for
the probability distribution and the transition matrix.

Properties of stationary distributions The main question that arises from these re-
sults is: How can we knowmore (andmaybe control) the final distribution 𝑦∞, and how do
the swarm parameters affect this stationary distribution? This is addressed in the follow-
ing Chapter: one can consider formulate the mean field limit of the multi-agent system,
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and take 𝑦𝑡 as the agent density. This opens a venue to further study the target distribu-
tions 𝑦∞.

Extension to continuous space dynamics We analysed in this Chapter the dynamics
of an ant-inspired stochastic system by taking the state space to be a graph, allowing
us to deal with discrete time, discrete space stochastic difference equations. A natural
question that follows is how would this work apply to continuous space (and continuous
time) dynamics. When extending the system to both continuous state and continuous
time, one needs to consider the stochastic differential equation (SDE) that emerges as the
continuous form of a (biased) random walk. Given the nature of the ant-inspired random
walk, the SDE would depend on a time-dependent weight field, affecting both the drift and
noise terms. This formulation is not (as the problem stands) trivial to consider but it would
have interesting consequences for continuous time learning systems, with connections to
optimal control and Hamilton-Jacobi-Bellman equations.
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4
Mean Field Dynamics of a

Cooperative Foraging Swarm
We have seen in the previous Chapter how, for ant inspired swarm processes, the simultane-
ous modification of the environment with the adaptive agent behaviour results in undesired
dynamical couplings that complicate the analysis and experiments when solving a specific
problem or task. This collides with the idea that biologically-inspired robotics rely on sim-
plifying agents and increasing their number to obtain more efficient solutions to such prob-
lems, drawing similarities with natural processes. We now zoom in on the problem of a
biologically-inspired multi-agent system solving cooperative foraging. We show how mean
field techniques can be used to re-formulate such a stochastic multi-agent problem into a
deterministic autonomous system, de-coupling agent dynamics and enabling the computa-
tion of limit behaviours and the analysis of optimality guarantees. Furthermore, we analyse
how having finite number of agents affects the performance when compared to the mean field
limit and we discuss the implications of such limit approximations in this multi-agent system,
which have impact on more general collaborative stochastic problems.

This chapter is based on  D Jarne Ornia, P. J. Zufiria and M. Mazo Jr, “Mean Field Behavior of Collaborative
Multi-Agent Foragers”, IEEE Transactions on Robotics, vol. 38, no. 4, pp. 2151-2165, Aug. 2022. [123]. All proofs
for technical statements can be found in Appendix A.
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4.1 Introduction
Biological inspiration has had a significant impact in cooperative robotic problems [124–
127]. We now focus our attention on a particular subclass of bio-inspired multi-agent
stochastic coordination problems: foraging. Foraging is the problem of locating an un-
known target, e.g. a source of food, in an unknown environment, and exploiting the short-
est path to such target from a given initial location, e.g. a nest, with the goal of depleting
the food source as fast as possible. For an extensive set of stochastic multi-agent methods
the foraging problem has served as both a benchmark but also a study subject on itself,
given the combined nature of exploration plus optimization that the problem presents
[128]. Naturally, many of the biological systems capable of solving foraging problems
present some (degree of) de-centralised behaviour. Ants, for example, communicate with
each-other only by depositing pheromones on the environment, and achieve global coor-
dination by combining the individual contributions of all members of the swarm without
the need of centralised instructions. Themechanism of communicating indirectly through
enviromental marking is known as stigmergy.

Ant-inspired heuristics have been widely used to solve foraging problems in a dis-
tributed fashion [7, 9, 105, 129–131]. However, little is known about the convergence
guarantees of such systems, or the influence of hyper-parameters on the agent behaviour
patterns. In this Chapter we propose how using so called mean field approximations can
help us understand, design and analyse stigmergy-based robotic systems. Mean field mod-
els have been extensively used in fluid mechanics and particle physics, and more recently
in game theory and control [25, 26]. In recent years mean field formulations of large multi-
agent systems or swarms have gained increased popularity [30–32] (see also an extensive
survey in [132]) as these models abstract away the stochasticity in systems where the
number of interacting agents becomes very large.

4.1.1 Main Contribution
The main contributions of this Chapter are then twofold:

Mean Field Foraging System We approximate a multi agent foraging system for a
foraging problem as a mean-field non-stochastic process. This helps us provide intuition
on the role of the different parameters in a large multi-agent stigmergy swarm.

Distribution of Agents, Rewards and Convergence We derive convergence guaran-
tees that can be attributed to the mean field model of a stigmergy swarm, and provide
insight on the resulting shape of the stationary solutions, both for the agent trajectories
and the pheromone field. Additionally, we argue that the given mean field approxima-
tion yields a qualitative mechanism for reward shaping: An explicit relation between re-
wards and agent distributions for designing reward functions that achieve desired agent
behaviours.

4.2 Foraging Swarm Model
We state in this section the statement of a foraging problem over a graph, and present the
dynamics of a proposed finite multi-agent system trying to solve the foraging problem.
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Consider a swarm of 𝑛 agents moving over an undirected weighted graph 𝐺 = (𝑉 ,𝐸,𝑊 )
trying to solve a foraging problem: the graph has a source vertex 𝑥0 ∈ 𝑋 where the agents
are initialised, and a goal vertex 𝑥𝑔 ∈ 𝑋 they are supposed to find, converging to trajecto-
ries following the shortest path between 𝑥𝑔 and 𝑥0. Foraging concerns, in general, both
finding the shortest path between two points and depleting a food source as fast as possi-
ble. Given the discretised form of the problem, we consider in this Chapter the foraging
problem to be solved if agents reach a state of steadily following the shortest path between
𝑥0 and 𝑥𝑔 , back and forth, since, for real agents that move at constant speed and are able
to carry a limited amount of food per trip, this would be the desired scenario for maximal
depletion of the food source.

The swarm does not have accurate individual position information (GPS-like data).
They can only receive measurements of a weight field from the vertices immediately next
to them. Additionally, assume the agents are not able to communicate with any other
member of the swarm. The agents are only able to send information to the vertex they are
located at, and to receive information only from the neighbouring vertices.

4.2.1 Agent Dynamics
We are interested in solving the foraging problem using only indirect communication
through the environment (the graph). It is convenient now to introduce the assumptions
that are used throughout this Chapter.

Assumption 4.1. Any undirected graph 𝐺 is strongly connected and has at least one odd
length cycle.

Assumption 4.2. We assume there is only one 𝑥0 ∈ 𝑋 and 𝑥𝑔 ∈ 𝑋 , and the distance between
them is larger than one.

Remark 4.1. Since we use graphs to discretise physical space, we are free to choose a partic-
ular discretisation and enforce Assumption 4.1 to be always satisfied (e.g. through triangular
grids).

Now, let 𝐺 be a vertex weighted undirected graph. Let 𝐴 ∈ {0,1}|𝑋 |×|𝑋 | be its adjacency
matrix. We define 𝑁 ∶= {1,2, ...,𝑛} as a set of agents walking from vertex to vertex. The
position of agent 𝑎 at time 𝑡 is 𝑥𝑎𝑡 = 𝑥, 𝑥 ∈ 𝑋 , and we group them as 𝑥𝑡 ∶= {𝑥𝑎𝑡 ∶ 𝑎 ∈ 𝑁 }.
We define the empirical distribution of 𝑛 agents as �̂�𝑛𝑡 ∈ Δ(𝑋) such that for any vertex
𝑥 ∈ 𝑋 , �̂�𝑛𝑡 (𝑖) = 1

𝑛 |{𝑎 ∈ 𝑁 ∶ 𝑥𝑎𝑡 = 𝑖}|. Since the weights are vertex-based (as opposed to edge-
based) we can write 𝑤𝑡 ∈ ℝ|𝑋 | to be the weight vector (and the weight matrix 𝑊𝑡 is fully
determined by 𝐴 and 𝑤𝑡 ).

The agents have a state-dependent policy, such that we write the joint time-dependent
transition probability measure of the agent state evolution as 𝑃𝑡 ∶ 𝑋 ×𝑋 → [0,1], which
depends on some parameters (to be defined). That is, for 𝑖, 𝑗 ∈ 𝑋 ,

Pr {𝑥𝑎𝑡+1 = 𝑗 |𝑥𝑎𝑡 = 𝑖} = 𝑃𝑡 (𝑗, 𝑖), ∀𝑎 ∈ 𝐴. (4.1)

Remark 4.2. The probability measures 𝑃𝑡 are column stochastic matrices. Therefore, when
we consider transitions 𝑖 → 𝑗, the corresponding probability is 𝑃𝑡 (𝑗, 𝑖) to avoid using the
transposed matrix.
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In stigmergy algorithms, the transition probabilities are usually defined as the nor-
malised weights around a vertex. In our case, drawing inspiration from experimental
examples in literature, we model the probabilities of transitioning between vertices with
an 𝜀−greedy approach. Define the gradient matrix:

Definition 4.1. Let 𝑚𝑜𝑢𝑡𝑖 ∶= |argmax𝑘𝑊(𝑖,𝑘)|. The gradient matrix 𝑃∇𝑤 is a stochastic ma-
trix such that

𝑃∇𝑤(𝑗, 𝑖) = {
1

𝑚𝑜𝑢𝑡𝑖
if𝑊(𝑖, 𝑗) =max𝑘{𝑊 (𝑖,𝑘)},

0 else. (4.2)

Definition 4.2. For aminimum probability 𝜀 > 0 and graph𝐺 we define the 𝜀−greedymatrix
as

𝑃 𝜀𝑡 ∶= 𝜀(𝐷(𝐴)−1𝐴)⊤ + (1− 𝜀)𝑃∇𝑤𝑡 .
Then, the foraging agent dynamics are as follows.

Definition 4.3. The distribution of agents 𝑦𝑡 ∈ Δ(𝑋) is the probability of any agent 𝑎 being
on vertex 𝑖 ∈ 𝑋 at time 𝑡 . This probability evolves as a random walk,

𝑦𝑛𝑡+1(𝑖) = Pr{𝑥𝑎𝑡+1 = 𝑖} = (𝑃 𝜀𝑡 𝑦𝑛𝑡 )𝑖 ∀𝑎 ∈ 𝑁 , (4.3)

with 𝑦𝑛0 (𝑥0) = 1.
From (4.3) we define the indicator vectors

𝜁 𝑎𝑡 (𝑖) = { 1 if 𝑥𝑎𝑡 = 𝑖,
0 else, , �̂�𝑛𝑡 = 1

𝑛
𝑛
∑
𝑎=1

𝜁 𝑎𝑡 . (4.4)

Since 𝑃 𝜀𝑡 is the same for all agents, all 𝜁 𝑎𝑡 (𝑖) share the same probability distribution for
all 𝑡 ≥ 0 if 𝜁 𝑎0 = �̂�𝑛0 ∀𝑎. Then, �̂�𝑛𝑡 is a sum of identically distributed random variables with
probability distribution 𝑦𝑡 .
Remark 4.3. Equation (4.3) can be read as “The probability of having an agent in some
vertex 𝑖 at time 𝑡 + 1 is equal to the probability of being in a neighbourhood of 𝑖 at time 𝑡
times the probability of moving to 𝑖”. However, this raises some complications. In our case
𝑃 𝜀𝑡 is a stochastic sequence with respect to 𝑡 and is a function of the state evolution until time
𝑡 . Therefore, the transition probabilities depend on the entire event history. A way of dealing
with this challenge is proposed in Section 4.3.

4.2.2 Weight Dynamics
The agents also modify the weights in the graph, similar to ants laying pheromones on
the ground. Let 𝑅𝑡 ∈ ℝ|𝑋 |×|𝑋 | be the amount of weight added to each vertex at time 𝑡 (to be
properly defined below). Then, the weights in 𝐺 evolve as

𝑤𝑡+1 = (1−𝛼)𝑤𝑡 +𝛼𝑅𝑡 �̂�𝑛𝑡 ,
where 𝛼 ∈ (0,1) is a chosen discount factor. The weights are initialised such that 𝑤0 = 1𝜔0
with 𝜔0 ≥ 0.
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Remark 4.4. Keeping in mind that these systems are defined over a continuous space in
reality, and to avoid over-accumulation of communication (or marking) events in one single
vertex, it is useful to consider a saturated form of reinforcement, where we write (4.6) as

𝑤𝑡+1 = (1−𝛼)𝑤𝑡 +𝛼𝑅𝑡 sgn(�̂�𝑛𝑡 ) .
Effectively, this saturates the agent vector such that at every vertex there can be only one “re-
inforcement” event at a given time. From a real implementation point of view, this is logical
since the reinforcement needs to be processed as some form of aggregated signal by an inter-
acting environment or infrastructure, and otherwise such environment would need to process
arbitrarily large amount of signals in finite time. Additionally, unbounded accumulation of
weights may be undesirable. From this point on, we will retain this formulation.

In order for the swarm to solve the foraging problem, we draw similarities with re-
inforcement learning approaches to design our reward function 𝑅. Let 𝑟 ∈ ℝ≥0 be some
positive constant, and let the goal-based reward Σ𝑟 ∈ {0, 𝑟}|𝑋 |×|𝑋 | such that Σ𝑟 (𝑥𝑔 , 𝑥𝑔) =
Σ𝑟 (𝑥0, 𝑥0) = 𝑟 , zero elsewhere. With 𝛾 ∈ (0,1) being a diffusion parameter, we can write
the reward function in diagonal matrix form as

𝑅𝑡 ∶= 𝐼 +Σ𝑟 +𝛾 diag𝑖 (max𝑗 𝑊𝑡 (𝑖, 𝑗)), (4.5)

and the weight dynamics are simply

𝑤𝑡+1 = (1−𝛼)𝑤𝑡 +𝛼𝑅𝑡 sgn(�̂�𝑛𝑡 ) . (4.6)

The intuition about this is as follows. The reward diagonal matrix has three explicit terms
in each component. First, a constant reward 1 to all vertices to replicate the behaviour of
ants: ants add pheromones to every position they are located at, with at least a minimum
amount (1 in our case), reflecting that vertex has been visited before. Second, the term Σ𝑟
where the agents reward with an additional amount 𝑟 the specific goals of our problem:
finding 𝑥𝑔 and returning to 𝑥0. This is also inspired in entomology; ants may mark the
ground with different intensities if they have found food [133, 134]. Finally, the third term
is a diffusivity term (pheromones diffuse through the air to their immediate surroundings),
and this term makes ants reinforce more or less based on neighbouring weights. Addition-
ally, diffusivity is a commonly used strategy in value function learning problems. When
using Q-values, diffusivity represents the maximum utility to be obtained at the next (or
previous) step.

With (4.3), (4.4) and (4.6) the stochastic dynamics of the agents and weights are fully
defined. We can now present how to use such a model to obtain a foraging swarm.

4.2.3 Foraging Swarm
For the swarm to produce emerging behaviour solving the foraging problem, some addi-
tional conditions must be added into the agent behaviour and weight update rules. As
proposed in several examples in the literature [17, 135, 136], one way to achieve this is
to make use of two different pheromones (or weights 𝑤1𝑡 , 𝑤2𝑡 ). In such situation, agents
looking for 𝑥𝑔 follow 𝑤1𝑡 (move according to 𝑃𝐺1(𝑡, 𝜀) ≡ 𝑃 𝜀,1𝑡 ) and modify 𝑤2𝑡 , while agents
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Figure 4.1: Doubled interconnected Graph resulting from constructing 𝑃 𝜀𝑡 .

looking for 𝑥0 follow 𝑤2𝑡 (move according to 𝑃𝐺2(𝑡, 𝜀) ≡ 𝑃 𝜀,2𝑡 ) and modify 𝑤1𝑡 . This implies
a certain “memory” condition in the agent behaviour that may look non-Markovian: the
agents follow a set of pheromones and reward another depending on their trajectory. But
in fact, we canmodify the system by duplicating the graph size so it remains “memoryless”.
The effects of this can be seen in Figure 4.1. In blue we have the weights 𝑤1(𝑡) and in red
the weights 𝑤2(𝑡). The green edges represent the new directed edges added to the graph
as a result of the interconnection of the two original sub-graphs. The intuition behind this
“duplication” of the graph is to translate into the size of the state-space the fact that there
are 2 simultaneous goals in the foraging problem (finding 𝑥0 and finding 𝑥𝑔 ). We can re-
tain the memoryless condition of the swarm by duplicating the size of the state-space and
interconnecting sub-graphs. For details on how to construct this interconnected graph,
see Appendix C.

Definition 4.4. Given two (original) undirected graphs 𝐺1 = 𝐺2 = 𝐺, we define a Foraging
Swarm (FS) as the tuple (𝐺,𝑥0, 𝑥𝑔 , �̂�𝑛𝑡 , 𝑛, 𝜀, 𝛾 )with 𝑥0 ∈ 𝑋 ,𝑥𝑔 ∈ 𝑋 , �̂� ∈ Δ(𝑋),𝑛 ∈ℕ,𝜀 ∈ ℝ≥0, 𝛾 ∈
(0,1) such that

�̂�𝑛𝑡 ∶=( �̂�𝑛,1𝑡
�̂�𝑛,2𝑡

), 𝑦𝑛𝑡 ≔ ( 𝑦𝑛,1𝑡
𝑦𝑛,2𝑡

),

𝑤𝑡 ∶= ( 𝑤1𝑡
𝑤2𝑡

) , 𝑊 (𝑡) ≔ ( 𝑊 1(𝑡) 0)
0 𝑊 2(𝑡) ) ,

𝑃 𝜀𝑡 ≔ ( (𝐼 −𝑇 )𝑃 𝜀,2𝑡 𝑆𝑃 𝜀,1𝑡
𝑇𝑃 𝜀,2𝑡 (𝐼 − 𝑆)𝑃 𝜀,1𝑡

),

initialised as 𝑤(0) = 02×|𝑋 |, 𝑦𝑛0 (𝑥0) = 1, �̂�𝑛0 = 𝑦𝑛0 which follows the dynamics

𝑦𝑛𝑡+1 = 𝑃 𝜀𝑡 𝑦𝑛𝑡 ,
𝑤𝑡+1 = (1−𝛼)𝑤𝑡 +𝛼𝑅𝑡 sgn(�̂�𝑛𝑡 ) ,
𝑅𝑡 ∶ = 𝐼 +Σ𝑟 +𝛾 diag𝑖 (max𝑗 𝑊𝑡 (𝑖, 𝑗))

(4.7)
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Remark 4.5. The resulting connected graph in a Foraging Swarm has some edges removed
with respect to the original graph 𝐺. It effectively disconnects 𝑥𝑔1 and 𝑥02 from the rest of the
graph. Nevertheless, the density of agents initialised in these vertices is 0, and since this is a
virtual duplication of the graph, we can simply consider 𝐺 to have edges 𝐸 = {(𝑖𝑗) ∈ 𝐸1 ∪𝐸2 ∶
𝑖, 𝑗 ≠ 𝑥𝑔1 ∪ 𝑥02 } and vertices 𝑋 = {𝑖 ∈ 𝑋1 ∪𝑋2 ∶ 𝑖 ≠ 𝑥𝑔1 ∪ 𝑥02 }. This does not affect the dynamics,
and results again in a strongly connected graph. We will refer to 𝑥𝑔2 ≡ 𝑥𝑔 and 𝑥01 ≡ 𝑥0 as the
resulting target and starting vertices.

Observe the weight dynamics in (4.7) present coupled terms between the weights and
the agents position, which are both random variables. Furthermore, the support of 𝑤𝑡 de-
pends on 𝑛, which implies that the time evolution of the probability distribution of agents
in the graph depends on 𝑛 and on the sequence of weights 𝑤𝑡 (which are, themselves,
dependent on the empirical distribution of agents). Therefore, 𝑦𝑡+1 is a function of the se-
quence of empirical realisations {�̂�𝑡 }. For this reason, it becomes extremely challenging to
analyse the limiting behaviour of the agent distributions. One way to solve this is to study
what happens when we consider very large number of agents. With the presented frame-
work of stochastic foraging swarm, we can specify the first problem to solve in further
sections.

Problem 4.1. Consider a foraging swarm communicating based on a double pheromone
stigmergy method. Construct a non-stochastic mean field model of the system as 𝑛→∞.

4.3 Mean Field Swarm
In mean field models for Swarm Robotics, the number of agents is assumed to be large
enough (𝑛 → ∞) so that random variables can effectively be replaced by a mean valued
deterministic variable. We show here how to do this in the foraging swarm presented in
System 4.4. Recall that the state of our system is fully defined by the 𝜎−algebra generated
by the proportion of agents in each vertex,

ℱ𝑡 = 𝜎(�̂�𝑛0 ,… , �̂�𝑛𝑡 ).
Let us define the sequence �̂�𝑡 (𝑛) ∶= {�̂�𝑛0 , ..., �̂�𝑛𝑡 }. In this case, an event 𝒴𝑡 (𝑛) ∈ ℱ𝑡 is a
sequence of agent proportion vectors until time 𝑡 resulting in the generator sequence of
random variables �̂�𝑛0 ,… �̂�𝑛𝑡 . Now, observe that the conditional expected value of 𝜁 𝑎𝑡 is

𝔼[𝜁 𝑎(𝑡 + 1) =1 ∣ ℱ𝑡] = 𝑃 𝜀𝑡 𝜁 𝑎𝑡 . (4.8)

Recall that 𝜁 𝑎0 = 𝑦𝑛0 ∀𝑎, and note that while all 𝜁 𝑎𝑡 follow the same probability distribution
for all 𝑡 ≥ 0 they are not independent from each other. The evolution of the probability dis-
tribution of every 𝜁 𝑎 follows a product of probabilitymatrices that resembles the dynamics
of a Markov process. From (4.3),

Pr {𝜁 𝑎𝑡 (𝑖) = 1} = 𝑦𝑛𝑡 (𝑖) = (
𝑡

∏
𝑡𝑘=0

𝑃 𝜀𝑡𝑘𝑦𝑛0 )
𝑖
.

But in this case, 𝑃(𝑡𝑘 , 𝜀) = 𝑓 (𝒴𝑘). That is, the sequence of probability transition matrices
is a function of the agent positions for all previous times. This means that, in general, for
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two different events 𝒴𝑚𝑡 (𝑛),𝒴 𝑙𝑡 (𝑛) ∈ ℱ𝑡 ,

Pr{𝜁 𝑎𝑡+1(𝑖) = 1|𝒴𝑚𝑡 (𝑛)} ≠ Pr{𝜁 𝑎𝑡+1(𝑖) = 1|𝒴 𝑙𝑡 (𝑛)}.
Furthermore, observe that the dependence is on the entire sequence until time 𝑡 . Therefore,
in general, the probability of finding agents in each vertex will depend as well on the
position of other agents (making their indicator random vectors dependent). Despite this
complexity, we can show convergence of the agent proportion vector to its distribution
when 𝑛→∞.

Theorem 4.1. Consider a Foraging Swarm from Definition 4.4, and let �̂�𝑡 (𝑛) ∶= {�̂�𝑛0 , ..., �̂�𝑛𝑡 }
and 𝒴𝑡 (𝑛) = {𝑦𝑛0 , 𝑦𝑛1 , ..., 𝑦𝑛𝑡 }. Then, ∃𝒴𝑡 ∶= {𝑦0, 𝑦1, ..., 𝑦𝑡 } such that

lim𝑛→∞�̂�𝑡 (𝑛) = lim𝑛→∞𝒴𝑡 (𝑛) = 𝒴𝑡 a.s. ∀𝑡 ≥ 0,

and 𝒴𝑡 = 𝑓 (𝑦0,𝑤0, 𝑡).
When the number of agents is taken to infinity, the sequence of empirical distributions

converges to its mean, and they both converge to a deterministic sequence 𝒴𝑡 which
is a function of 𝑡 , the graph and the initial conditions. By making use of Theorem 4.1,
one can take the mean field limit and approximate the behaviour of �̂�𝑛𝑡 with 𝑦𝑡 as 𝑛 →
∞. Additionally, the indicator variables 𝜁 𝑎𝑡 become i.i.d. When 𝑛 → ∞, there is only
one possible sequence 𝒴𝑡 occurring with probability one. In other words, the sequence
𝒴𝑡 happens for a set of outcomes of measure 1, and the evolution of the agent density
becomes deterministic. This means that the sequence of matrices 𝑃 𝜀𝑡 is also deterministic
and independent of every single 𝜁 𝑎𝑡 . Therefore, the probability distribution 𝑦𝑡 of all 𝜁 𝑎𝑡
becomes independent from individual agent trajectories. This translates into the indicator
vectors being i.i.d. with respect to each other.

Remark 4.6. Observe the difference between 𝑦𝑛𝑡 (probability distribution of agent positions
for a finite number 𝑛) and 𝑦𝑡 (probability distribution of agent positions when 𝑛→∞). In all
cases, �̂�𝑛0 = 𝑦0, but they can be different from each other for 𝑡 > 0 since they evolve according
to 𝑃 𝜀𝑡 , which implicitly depends on 𝑛.

We can now define our mean field swarm system.

Definition 4.5. Let 𝐺1 = 𝐺2 = 𝐺 be two identical connected weighted graphs. A mean field
foraging swarm system (mf-FS) is defined as the tuple (𝐺,𝑥0, 𝑥𝑔 , 𝑦𝑡 , 𝜀, 𝛾 ) with 𝑥0 ∈ 𝑋 ,𝑥𝑔 ∈
𝑋 ,𝑦𝑡 ∈ Δ(𝑋), 𝜀 ∈ [0,1],𝛾 ∈ [0,1]. The state variables are initialised as 𝑤(0) = 0|𝑋 |, 𝑦0(𝑥0) = 1,
and:

𝑦𝑡+1 = 𝑃 𝜀𝑡 𝑦𝑡 ,
𝑤𝑡+1 = (1−𝛼)𝑤𝑡 +𝛼𝑅𝑡 sgn(𝑦𝑡) ,

(4.9)

These concepts lead us to the second goal of this Chapter.

Problem 4.2. Consider a mf-FS. Do the mean field dynamics converge to a (sub-optimal)
fixed point? Additionally, what can we say (experimentally) about the deviation from the
mean field case when choosing a finite number 𝑛?
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4.4 Convergence Guarantees
We study next the convergence properties of the mf-FS of System 4.5.

Proposition 4.1. Let Assumption 4.1 hold. Let 1 ≥ 𝜀 > 0. Then, the agent density 𝑦𝑡 converges
exponentially to a stationary density 𝑦∞ ∈ Δ(𝑋), unique for given initial conditions 𝑦0 and
𝑤0, that satisfies 𝑦∞(𝑖) > 0 ∀𝑖 ∈ 𝑋 .

Additionally, we can show the following result. Let diam(𝐺) be the diameter of the
underlying graph.

Lemma 4.1. For a mf-FS, with 𝑡𝛿 = 2diam(𝐺), it holds that sgn(𝑦𝑡 ) = 1 ∀𝑡 > 𝑡𝛿 .
Since there is a minimum probability of accessing any vertex in the graph (and the

graph has odd cycles), eventually there is a non-zero amount of agents in every vertex,
regardless of the foraging dynamics. This is equivalent to saying that agents have a non-
zero probability of accessing every vertex of the graph for all times greater than 𝑡𝛿 .
Remark 4.7. In fact, 2diam(𝐺) is an upper bound for the required time 𝑡𝛿 . It represents the
case where 𝐺 is one edge away from being bipartite, and to reach some even vertex in odd
time it takes diam(𝐺) time steps to reach the (only) odd length cycle plus diam(𝐺) time steps
to reach the target vertex. In practice, 𝑡𝛿 ∈ [diam(𝐺),2diam(𝐺)].

With these preliminary results, we can present the main contribution of this section.

Proposition 4.2. There is a unique weight vector 𝑤∞ and corresponding matrix 𝑊∞ satis-
fying 𝑤∞ ∶= (𝐼 +Σ𝑟 +𝛾 diag𝑖 (max𝑗𝑊∞(𝑖, 𝑗)))1 for a fixed reward matrix Σ𝑟 and 𝛾 ∈ [0,1).
Theorem 4.2. The weight dynamics in a mf-FS have a fixed point 𝑤∞, and

lim𝑡→∞𝑤𝑡 = 𝑤∞ ∶= (𝐼 +Σ𝑟 +𝛾 diag𝑖 (max𝑗 𝑊∞(𝑖, 𝑗)))1.

Corollary 4.1. The probability transition matrix converges to a unique matrix lim𝑡→∞ 𝑃 𝜀𝑡 =
𝑃 𝜀∞, and the stationary distribution of agents lim𝑡→∞ 𝑦𝑡 = 𝑦∞ is the eigenvector corresponding
to the eigenvalue 1. That is,

𝑃 𝜀∞ ∶= lim𝑡→∞𝑃 𝜀𝑡 , 𝑦∞ = 𝑃 𝜀∞𝑦∞. (4.10)

4.4.1 On the optimality of solutions
Let us examine now what do the agent distributions look like in a mf-FS system. To this
end, we define first a few useful concepts to characterize the state variables.

Definition 4.6. Let 𝑤 be the weight vector in a mf-FS. We define a maximum (weight)
gradient set of paths 𝒫 ∇𝑤 (𝑖, 𝑗) as the set of all paths between vertices 𝑖, 𝑗 satisfying

𝑝 ∈ 𝒫 ∇𝑤 (𝑖, 𝑗) ⟺ 𝑝 ∶= {𝑖, 𝑖2, 𝑖3, ..., 𝑖𝑘 , 𝑗},
𝑖2 = argmax𝑣(𝑊𝑡 (𝑖,𝑣)), 𝑖3 = argmax𝑣(𝑊𝑡 (𝑖2, 𝑣)), ...,
𝑗 = argmax𝑣(𝑊𝑡 (𝑖𝑘 , 𝑣)).
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In other words, let the weight vector be 𝑤𝑡 . Then, 𝒫 ∇𝑖𝑗 (𝑤𝑡 ) is the set of all paths ob-
tained from following the maximum neighbouring weights at each step when going from
𝑖 to 𝑗. Note that, for any two 𝑖, 𝑗 ∈ 𝑋 , it can be that 𝒫 ∇𝑖𝑗 (𝑤𝑡 ) = ∅ if picking the maximum
weight neighbour at every step does never connect 𝑖 with 𝑗.
Definition 4.7. We define the set of optimal weight vectors 𝒲 ∗ ⊂ ℝ|𝑋 |

≥0 for a mf-FS as

𝒲 ∗ ∶= {𝑤∗ ∶𝒫 ∇𝑤∗(𝑥0, 𝑥𝑔) ≡ 𝒫 (𝑥0, 𝑥𝑔) ∧𝒫 ∇𝑤∗(𝑥0, 𝑥𝑔) ≡ 𝒫 (𝑥𝑔 , 𝑥0)}.
That is, for every weight vector 𝑤∗ ∈ 𝒲 ∗, the set of paths resulting from starting at 𝑥0 (𝑥𝑔)
and following the maximum weight lead to 𝑥𝑔 (𝑥0) and is equal to 𝒫 (𝑥0, 𝑥𝑔) (𝒫 (𝑥𝑔 , 𝑥0)).

This interpretation of an optimal set of weights is entirely pragmatic. We call a weight
distribution optimal if, when starting at 𝑥0 and following the maximum weight vertex at
every step, we end up at 𝑥𝑔 and we obtain a minimum length path between the two (and
vice-versa from 𝑥𝑔 to 𝑥0). Additionally, observe that the optimal weight set𝒲 ∗ is defined
for the doubled graph in Figure 4.1. Nevertheless, given the symmetry of the graph (the
sub-graphs satisfy 𝐺1 = 𝐺2), any optimal weight vector 𝑤∗ ∈ 𝒲 ∗ generates optimal paths
on the original (unweighed) graph too, but it does so separately for paths 𝑥0 →𝑥𝑔 and for
paths 𝑥𝑔 →𝑥0. Intuitively, constructing a weight vector 𝑤∗ means the swarm has solved
the foraging problem by building a weight function whose gradient always leads towards
an optimal path.

Proposition 4.3. Consider a mf-FS. Then, lim𝑡→∞𝑤𝑡 = 𝑤∞ ∈ 𝒲 ∗.

From Definition 4.2, abusing the notation for the variable 𝜀 we can decompose 𝑃 𝜀∞ in
two matrices such that

𝑃 𝜀∞ = (1− 𝜀)𝑃0∞ + 𝜀𝑃1∞, (4.11)
where 𝑃0∞ is the transition matrix corresponding to moving according to the gradient of
the weights 𝑤∞. Observe as well that 𝑃1∞ depends only on the adjacency matrix 𝐴, which
guarantees the decomposition (4.11) to be unique. We define then the following sets.

Definition 4.8. We define 𝑋 𝑜𝑢𝑡𝑣 = {𝑗 ∈ 𝑋 ∶ 𝑃0∞(𝑗,𝑣) > 0}, and 𝑋 𝑖𝑛𝑣 = {𝑗 ∈ 𝑋 ∶ 𝑃∞∞ (𝑣, 𝑗) > 0} as
the out and in neighbour vertices connected to 𝑣 by following 𝑃0∞.

Observe that in Definition 4.1 we use 𝑚 to count the number of (out) neighbours that
have maximum weight around a vertex, and therefore𝑚𝑜𝑢𝑡𝑣 ≡ |𝑋 𝑜𝑢𝑡𝑣 |. Now let 𝑘 = 𝑑(𝑥0, 𝑥𝑔)
and let us use 𝑚𝑖𝑛𝑣 ≡ |𝑋 𝑖𝑛𝑣 |. Define 𝑦 ∈ Δ(𝑋) to be a probability vector taking values

𝑦𝑖 ∶=
⎧⎪
⎨⎪
⎩

1
2𝑘 if 𝑖 = 𝑥0, 𝑥𝑔 ,
1
2𝑘 ∑𝑝∈𝒫 (𝑥0,𝑖)∏𝑢∈𝑝⧵𝑖

1
𝑚𝑜𝑢𝑡𝑢

if 𝑖 ∈ ∪𝒫 ∇𝑤∗(𝑥0, 𝑥𝑔) ⧵ {𝑥0, 𝑥𝑔},
1
2𝑘 ∑𝑝∈𝒫 (𝑥𝑔 ,𝑖)∏𝑢∈𝑝⧵𝑖

1
𝑚𝑜𝑢𝑡𝑢

if 𝑖 ∈ ∪𝒫 ∇𝑤∗(𝑥𝑔 , 𝑥0) ⧵ {𝑥0, 𝑥𝑔},
0 else.

The term 1
𝑚𝑜𝑢𝑡𝑢

can be interpreted as the probability of moving out of 𝑢 towards a specific

neighbour, therefore the product Pr{𝑝} ∶=∏𝑢∈𝑝⧵𝑖
1

𝑚𝑜𝑢𝑡𝑢
can be interpreted as the probability

of following a path 𝑝 until vertex 𝑖, starting at 𝑥0, 𝑥𝑔 . Then, we obtain the following result.
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Proposition 4.4. Consider a mf-FS as 𝑡 → ∞ for a fixed 1 > 𝜀 > 0 and let 𝑃0∞ defined in
(4.11). Then, 𝑃0∞𝑦 = 𝑦 .

Proposition 4.4 indicates that the vector 𝑦 is the first eigenvector of the “gradient”
matrix 𝑃0∞. That is, as the weights converge, when the agents move by selecting the max-
imum weight vertex around them, the only stationary distribution is the one that spreads
all agents equally across the optimal paths between 𝑥0 and 𝑥𝑔 .
Theorem 4.3. Consider a mf-FS. Let 𝑓 ∶ [0,∞)→ [0,∞) be 𝑓 ∈ 𝒦∞. Then, it holds that

‖𝑦∞ −𝑦‖1 ≤ 𝑓 (𝜀).
That is, the stationary agent distribution of the mf-FS gets arbitrarily close to the optimal
distribution as 𝜀 → 0.

We can now reflect on the similarities between a Q-Learning (or other value function
iteration) strategy for finding optimal policies on a MDP and our weight-based foraging
problem, as discussed in the introduction. There is a parallelism between the Q values
associated to state-action pairs and the weight values (pheromones) associated to vertices
on our graph: In both cases they represent the “utility” of a state. However, in our case, by
taking the mean field limit we can study the limit distribution of agents interacting with
this utility field, as well as the utility values themselves. Additionally, in the mean field
limit we can derive deterministic guarantees about both the distribution of agents around
the graph (i.e. the distance ‖𝑦∞ −𝑦‖1) and the trajectories of the agents given by 𝑃 𝜀∞.

4.5 Experiments
Some experiments are here presented to verify the results presented in Section 4.4. We
consider a 20×20 triangular lattice graph, which has min𝑖 deg

𝑜𝑢𝑡 (𝑖) = 2, max𝑖 deg
𝑜𝑢𝑡 (𝑖) = 6

and diam(𝐺) = 31. It is worth mentioning that the amount of “parameter tuning” applied
is minimal. The guarantees from Section 4.4 ensure the mean field process converges to
(a neighbourhood of) a set of vertices along the shortest path, and we choose parameters
to obtain representative results when having a finite amount of agents in the graph. We
picked 𝛾 = 0.9 to have high diffusion, 𝑟 = 5 to be significantly higher than the unitary
reinforcement in 𝑅𝑡 , 𝜀 = 0.5 to have an average exploration rate and 𝛼 = 0.005 since this
yields an evaporation of (1−𝛼)4diam(𝐺) ≈ 1/2.

4.5.1 Mean Field Process
In Figures 4.3 and 4.4 we present the results for two different scenarios of simulations for
a mf-FS:
1) One without obstacles where the shortest path is a perfect line between nest (red

triangle) and food source (upside red triangle).
2) One with a sample (non-convex) obstacle where the shortest path (or collection of

paths) has to go around it on the right side.
At every vertex we plot the value 𝑤1𝑡 (𝑖)−𝑤2𝑡 (𝑖), with the color bar representing the values
of the last plot. In this way we can see the vertices that have a higher overall weight
corresponding to each goal. The number of agents is then proportional to the size of the red
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Figure 4.2: Mean Field trajectories compared to 𝑦

markers on the vertices. The behaviour of the system is specially interesting in the case of
the obstacles in Figure 4.4. In the first few time-steps there is a random exploration taking
place, and very early (around 𝑡 = 40) the agent density starts accumulating in the diagonal
line outwards from the nest, indicating that the shortest path is starting to be exploited.
Soon after (around 𝑡 = 120) the shortest connecting path can already be observed, but the
agent distribution presents oscillations. After enough time-steps the oscillations dampen
(since the graph has enough odd length cycles) and the distribution converges to 𝑦∞. It is
important to remark the convergence speed of themean field dynamics; 𝐺 has 452 vertices,
and the agent density has converged to the shortest path in about 300 time-steps. In Figure
4.2 we present the temporal trajectories for the mean field system compared to the optimal
vector 𝑦 , for different values of 𝜀. Plots for different 𝛼 and 𝛾 values are not included since
these parameters did not have an impact on the mean field results. To better isolate the
effect of every parameter in the system, the influence of 𝜀 is only studied on the mean field
system, and later a fixed value of 𝜀 is applied to the rest of the experiments.

4.5.2 Finite Agents vs. Mean Field

We compare now the results obtained from a mean field approximation system to the
ones obtained when using a finite number of agents. Figures 4.5 and 4.6 show a similar
scenario from the mean field case, but in this case for a finite number of agents. As it can
be seen, both cases take longer to achieve convergence to the shortest path. Additionally
the agents concentrate over wider regions, and some are “trapped” in irrelevant parts of
the graph. Other examples in literature [136] solve this by re-setting the agent position if
they have not found the goal vertices over a too long period of time.

We now study the impact of having a reduced number of agents compared to the
optimal solutions obtained in the mean field case. Let us use the finite sample expectation
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Figure 4.3: Mean Field results without obstables
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Figure 4.4: Mean Field results with obstacles
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Figure 4.5: Discrete agent swarm with 𝑛 = 600
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Figure 4.6: Discrete agent swarm with 𝑛 = 600 and obstacles
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Figure 4.7: Sample expectation of �̂�𝑛𝑡 −𝑦∞ for different 𝑛
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Figure 4.8: Sample variance of �̂�𝑛𝑡 −𝑦∞ for different 𝑛

and variance as

�̂�[�̂�𝑛𝑡 −𝑦∞] ∶=
1
𝐾

𝐾
∑
𝑘=1

�̂�𝑛𝑡 −𝑦∞,

̂Var[�̂�𝑛𝑡 −𝑦∞] ∶=
1
𝐾

𝐾
∑
𝑘=1

(�̂�𝑛𝑡 −𝑦∞ − �̂�[�̂�𝑛𝑡 −𝑦∞])2.

In Figures 4.7 and 4.8 show the results over 𝐾 = 5000 runs. As expected from Theorem 4.1,
both the mean and the variance approach zero for large times as 𝑛 increases. Interestingly,
they both exhibit a peak value after a few time-steps into the runs. This is likely due to
the fact that when agents find 𝑥𝑔 the weights change quite fast since reward is added to
𝐺2 suddenly, and the stochastic system runs may be prone to differ more from each other.
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4.5.3 Interpretation of Variance results
Figures 4.7 and 4.8 show the norms of the finite sample (error) expectation and the finite
sample variance. As expected, for large numbers of agents the plots go to zero relatively
quickly. However, it is interesting to note that the variance and expectation of error in-
crease with 𝑛 until 𝑛 ≈ 600. A possible justification for this is that there is a threshold
under which more agents cause more disorder, but not necessarily better solutions. Look-
ing at the variance values at 𝑡 = 5000𝑠, the first curve for 𝑛 = 50 settles around 0.6 ⋅ 10−2,
and the following curves for 𝑛 = 200, 𝑛 = 400 go up until around 10−2. This indicates that
the variance increases for a range of 𝑛 values, until a certain threshold where it decreases
until approaching 0 for 𝑛 > 1000.

𝑟 𝛼 𝑛 ‖�̂�[�̂� �̄�𝑡 −𝑦∞]‖2 ‖ ̂Var[�̂� �̄�𝑡 −𝑦∞]‖2
20 0.005 200 0.112 0.0097
5 0.05 200 0.121 0.0140
5 0.005 200 0.105 0.0078
20 0.005 800 0.028 0.0006
5 0.05 800 0.022 0.0003
5 0.005 800 0.018 0.0021

Table 4.1: Simulation results

Table 4.1 displays the end results of different combination of parameters over 5000
runs, for 𝑡 = 5000 and fixed 𝜀 = 0.5, 𝛾 = 0.99. In general, lower 𝛼 values and larger agent
numbers seem to cause smaller variances and smaller 𝜈(𝑡,𝑛) values. However, for large
swarms (𝑛 = 800) decreasing the evaporation results in an increase in variance. This effect
seems to be caused by the fact that for large enough swarms, higher evaporation actually
pulls agents towards the optimal solutions faster, therefore decreasing the variance (or
diversity) in trajectories. Interestingly, the impact of 𝑟 in �̂�𝑛𝑡 − 𝑦∞ seems to be small for
the tested cases. Further study of this issue is left for future work, since it may have
implications on other multi-agent stochastic systems where stochastic processes exhibit
couplings that vanish for large number of agents.

4.6 Discussion
Convergence of mf-FS The mean field foraging system converges to a unique station-
ary solution, and does so exponentially fast, under the proposed conditions. In fact, the
distance between themean field agent distribution 𝑦∞ and the optimal distribution 𝑦 seems
to only depend on the exploration rate 𝜀 (see Figure 4.2, Theorem 4.3). That is, the evapo-
ration (or learning) rate 𝛼 and the discount factor 𝛾 do not have an effect in the stationary
solutions, nor in the convergence speed of the mean field system. This can be explained by
the fact that 𝛼 and 𝛾 act as scaling parameters that do not change the shape of the weight
gradients, thus not having an impact on the matrices 𝑃 𝜀𝑡 . Note as well from the results
in Figure 4.2 that the distance between 𝑦𝑡 and 𝑦 shows some linearity with 𝜀 as obtained
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in the bounds of Theorem 4.3. This indicates that, for collaborative multi-agent systems
in stochastic settings, learning rates and discount factors cease to have an impact when
considering large numbers of agents. Therefore, the study of mean field limits on such
a multi-agent system allows us to de-couple the influence of some parameters, that may
only come into play when considering small agent numbers.

Oscillations and Damping Lower exploration rates cause a much slower spread of
agents along the optimal path, resulting in a slowly damped “wave-like” behaviour. These
waves are caused by the initial conditions of agents, since all agents start at 𝑥0 on the
first sub-graph, but they are more quickly damped (agents spreading out faster) for higher
values of 𝜀. This may have an impact when considering finite agent numbers; if we observe
fast oscillations for a set of parameters as 𝑛→∞, theremay be reasons to believe that these
can result in non-convergent behaviour for finite agents.

Interpretation of the mean field limit By considering 𝑦∞ ∶= lim𝑡→∞ (lim𝑛→∞ �̂�𝑛𝑡 )
we are computing the (limit) behaviour in time of an infinitely large system of agents. Our
results do not guarantee, however, that the alternate limit lim𝑛→∞ (lim𝑡→∞ �̂�𝑛𝑡 ) exists as
well. The problem of studying this second limit corresponds to the limitations of a mean
field approximation, and the study of stochastic trajectories of the finite agent system.
Such study would shine some more light on how agents affect the limit distributions in
these systems. It is worth mentioning that the impact of mean field solutions on discrete
time MDPs is in itself a whole subject of study (see [137–139]), and the interest on such
mean field solutions applied to reinforcement learning problems seems to be growing fast
in the last years. Knowing more about the relation between the distributions of finite
agent systems and their mean field limits will give us tools to design multi-agent systems
with guarantees concerning the number of agents needed to solve a specific problem.
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5
Event-Based Communication in
Shared Value Function Learning

We have seen until now how the problem of navigation and foraging in an ant-inspired multi-
agent system can be analysed from a mean-field perspective, allowing us to verify properties
of the limiting distributions and behaviour of the agents. We move in this Chapter to study
how the collective construction of the pheromone (weight) field can be done through an event-
triggered approach, reducing the amount of unnecessary communication. We make a paral-
lelism with a Distributed Q-Learning system, and show howwe can used trigger rules inspired
by Event Triggered Control techniques to build the shared value function more efficiently.
Agents sharing a value function explore an environment (MDP) and compute a triggering
signal which they use distributively to decide when to communicate information to a central
learner in charge of computing updates on the action-value function. We then apply the pro-
posed algorithm to a cooperative path planning problem, and show how the agents are able to
learn optimal trajectories communicating a fraction of the information. Additionally, we dis-
cuss what effects (desired and undesired) these event-based approaches have on the learning
processes studied, and how they can be applied to more complex multi-agent systems.

This chapter is based onD. Jarne Ornia andM.Mazo Jr, “Event-Based Communication in Distributed Q-Learning”
61st IEEE Conference on Decision and Control, 2022 [140]. All proofs for technical statements can be found in
Appendix A.
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5.1 Introduction
A foraging swarm building a pheromone field to collectively learn how to navigate an
unknown environment can be seen as a particular form of a distributed value function
learning problem. In particular, since the pheromone field encodes direction information
(when agents measure neighbouring weights, they are implicitly querying state-action
value functions) one can look into Distributed Q-Learning [141–144] as a general formu-
lation of the problem. These techniques have been applied to many forms of cooperative
and non-cooperative problems [145–149]. In the latter, agents are allowed to collaborate
to reach higher reward solutions compared to a selfish approach [145, 150]. In model free
multi-agent systems, collaboration is often defined as either sharing experiences, value
functions or policies, or some form of communication including current state variables of
the agents. However such cooperative learning systems often include aggressive assump-
tions about communication between agents (as pointed out by [49, 151]). Approaches to
reduce this communication are, in the framework of federated learning [152], in RL us-
ing efficient policy gradient methods [53], limiting the amount of agents (or information)
that communicate [49] or allowing agents to learn how to communicate [51, 153]. These
approaches focus on defining orthogonal communication actions (similar to auxiliary ran-
dom variables for finding correlated equilibria in games) or learning graph topologies for
the communication network.

5.1.1 Main Contribution
Drawing a parallelism with a networked system, in this Chapter we take inspiration from
ETC techniques and turn the communication of a distributed Q-Learning problem [142]
event-based, with the goal of reducing communication events, data storage and learning
iterations. The difficulty of such problem is that allowing agents to independently decide
when to transmit samples may bias the resulting probability distribution of the collected
data, and iid assumptions do not generally hold. The main contribution of this chapter is
then split twofold.

Distributed Trigger-Functions for Communication We propose fully distributed
trigger functions that incorporate trajectory memory which agents use to decide when
to communicate samples in a distributed Q learning system.

Formal Convergence Guarantees We provide convergence guarantees of the result-
ing learning algorithm to the optimal Q function fixed point, and show how these guaran-
tees depend (and do not depend) on the design parameters of the system. To the best of
our knowledge, such ideas have not been applied before to distributed Q-Learning with
convergence guarantees and formal bounds on optimality.

To verify the theoretical results, we analyse experimentally how such event-based tech-
niques result in more efficient learning in a distributed robotic path planning problem.

5.2 Distributed Q-Learning
Let us now consider the case where 𝑛 agents (actors) perform exploration on the same
MDP with a central learner entity, generalized as a distributed MDP with (𝑋𝑛 ,𝑈 𝑛 , 𝑃 ,𝑅).



5.2 Distributed Q-Learning

5

45

Learner

Agent

Agent

AgentAgent

Agent

(xi, ui, yi, Ri) Qt

Figure 5.1: Distributed Q-Learning System

Agents gather experiences distributively, possibly following different policies, and send
these experiences to the central learner to build a (centralised) 𝑄 function. The goal of
the distributed nature is to speed up exploration, and ultimately find the optimal policy
𝜋 ∗ faster. Such a system may have different architectures regarding the amount of learner
entities, parameter sharing between them, etc.

Assumption 5.1. We assume in this Chapter the reward function to be independent of the
transitions, 𝑅 ∶ 𝑋 ×𝑈 →ℝ.

We consider here a simple architecture where 𝑛 actors gather samples of the form
𝑠𝑖 = (𝑥,𝑢,𝑅(𝑥,𝑢),𝑦)𝑖 following (possibly different) policies 𝜋𝑖 . These actors send the expe-
riences to a single central learner, where these are sampled in batches to perform gradient
descent steps on a single 𝑄 function, and updates each agent’s policy 𝜋𝑖 if needed. This is
a typical architecture on distributed Q-Learning problems where exploring is much less
computationally expensive than learning [142].

Definition 5.1. A distributed Q-learning system for a distributed MDP (𝑋𝑛 ,𝑈 𝑛 , 𝑃 ,𝑅) is a
set of actor agents 𝑁 = {1,2, ...,𝑛} exploring transitions and initialised at the same 𝑥0 ∈ 𝑋 ,
together with a single central learner agent storing a 𝑄𝑡 ∶ 𝑋 ×𝑈 →ℝ estimator function. Let
the subsets 𝑁𝑥 = {𝑖 ∈ 𝑁 ∶ 𝑥𝑖 = 𝑥} have cardinality 𝑛𝑥 . The estimator function is updated with
samples 𝑠𝑖 ∀𝑖 ∈ 𝑁 as:

𝑄𝑡+1(𝑥,𝑢) = 𝑄𝑡 (𝑥,𝑢)+𝛼𝑡
1
𝑛𝑥

∑
𝑖∈𝑁𝑥

(𝑅(𝑥,𝑢)+𝛾max𝑣 𝑄𝑡 (𝑦𝑖 , 𝑣) −𝑄𝑡 (𝑥,𝑢)). (5.1)

We consider the following Assumption to ensure persistent exploration.

Assumption 5.2. Any policy 𝜋𝑖 ∀𝑖 ∈ 𝑁 induces an irreducible Markov Chain.

It is straight-forward to show that the distributed form of the Q-Learning algorithm
in (5.1) converges to the optimal 𝑄∗ with probability one under the same assumptions as
in Theorem 2.6. An example architecture of a distributed Q-Learning system is shown in
Figure 5.1.
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5.2.1 Problem Definition
In practice, the distributed system in (5.1) implicitly assumes that actors provide their ex-
periences at every step to the central learner that performs the iterations on the estimator
𝑄. When using large amounts of actors and exploring MDP’s with large state-spaces, this
can result in memory and data transmission rate requirements that scale badly with the
number of actors, and can become unmanageable in size. Additionally, when the MDP
has a unique initial state (or a small set thereof), the memory may become saturated with
data samples that over-represent the regions of the state-space close to 𝑥0. Let us define
𝜒𝑡 (𝑖) ∈ {0,1} to be an indicator variable of whether agent 𝑖 communicates information at
time 𝑡 , and let 𝜒𝑡 ∶=∑𝑖 𝜒𝑡 (𝑖) be the communication rate, and 𝜒 ∶=∑∞

𝑡=0 be the total amount
of communication events. From this framework, we present the problem addressed in this
Chapter.

Problem 5.1. For a distributed Q-learning system, design logic rules for the agents to de-
cide when to communicate information to a central learner (and when not to) that maintain
convergence and sub-optimality guarantees, and reduce both 𝜒𝑡 and 𝜒 .

We consider the communication to happen from explorers to learner and from learner
to explorers (star topology), and a communication event is an agent sending a sample 𝑠𝑎
to the central learner. The goal formulated as reduce instead of minimise: It is not obvious
how to define a minimum 𝜒𝑡 , 𝜒 further than the bounds 𝜒𝑡 ∈ [0,𝑁 ] and 𝜒 = [0,∞), and it
will depend on the acceptable trade-off with the optimality of the value functions obtained.
Therefore, we attempt here to propose an heuristic that significantly reduces both 𝜒𝑡 and 𝜒
when compared to the baseline algorithm, while satisfying sub-optimality constraints in
terms of the value functions obtained.

5.3 Efficient Distributed Q-Learning
From the convergence proofs of Q-Learning, we know lim𝑡→∞𝑄𝑡 (𝑥,𝑢) −𝑄∗(𝑥,𝑢) = 0 a.s.
Each explorer agent obtains samples 𝑠𝑎 = (𝑥,𝑢,𝑅(𝑥,𝑢),𝑦)𝑎 , and has a function 𝑄𝑡 to use
as a policy. For every sample, the agent can compute the estimated loss with respect to
the estimator 𝑄𝑡 , which is an indication of how far the estimator is from the optimal 𝑄∗.
This suggests that, for 𝛽 ∈ (0,1), we can define the surrogate function for convergence
certification to be a temporal difference (TD) error tracker:

𝐿𝑎(𝑡 + 1) ∶= (1−𝛽)𝐿𝑎(𝑡) + 𝛽||𝑅(𝑥𝑎 ,𝑢𝑎) + 𝛾max𝑣 𝑄𝑡 (𝑦𝑎 , 𝑣) −𝑄𝑡 (𝑥𝑎 ,𝑢𝑎)||, ∀𝑎 ∈ 𝑁 , (5.2)

with 𝐿𝑎(0) = 0. We could now use 𝐿𝑎 to trigger communications analogously to the role
of Lyapunov functions in ETC. The parameter 𝛽 serves as a temporal discount factor, that
helps the agent track the TD error smoothly. Observe that 𝐿𝑎(𝑡) ≥ 0 ∀𝑡,𝑎, and 𝐿𝑎(𝑡) →
0⇒ 𝑄𝑡 −𝑄∗ →0. This last property is an equivalence only in the case that the MDP has
deterministic transitions. The intuition about this surrogate function is as follows. Agents
compute the TD error term as they move through a trajectory, which gives an indication
of how close their 𝑄𝑡 estimator is to the optimal 𝑄∗. Then, they accumulate these losses
in a temporal discounted sum 𝐿𝑎(𝑡), such that by storing only one scalar value they can
estimate the cumulative loss in the recent past.
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Our convergence surrogate function in (5.2) computes the norm of the TD error at each
time step, therefore it may not go to zero for stochastic transitions, but to a neighbourhood
of zero.

Proposition 5.1. Consider a distributed Q-Learning problem from Definition 5.1. For a
deterministic MDP, 𝑄𝑡 →𝑄∗ 𝑎.𝑠. ⇔ 𝐿𝑎(𝑡) → 0 𝑎.𝑠. For a stochastic MDP, 𝑄𝑡 →𝑄∗ 𝑎.𝑠. ⇒
𝐿𝑎(𝑡)→ℒ0 𝑎.𝑠., where ℒ0 = [0, ̄𝑙], and ̄𝑙 = 𝛾max𝑥,𝑢,𝑦 𝔼[max𝑣 𝑄∗(𝑦,𝑣)|𝑥,𝑢]−max𝑣 𝑄∗(𝑦,𝑣).

5.3.1 Event Based Communication
Just as in decentralised ETC [34] a surrogate for stability (Lyapunov function) can be em-
ployed to guide the design of communication triggers, we propose here using the dis-
tributed signals 𝐿𝑎(𝑡) based on the TD error of the Q estimators. In our problem’s context,
the actors can be considered to be the sensors/actuators, and the central controller com-
putes the iterations on 𝑄𝑡 based on the samples sent by the actors. This central controller
updates everyone’s control action (policy 𝜋𝑎). The state variable to stabilize is the differ-
ence 𝑄𝑡 −𝑄∗. The control action analogy is the TD step, and applying the control action
results in ‖𝐸[𝑄𝑡+1|ℱ𝑡 ] −𝑄∗‖∞ < ‖𝑄𝑡 −𝑄∗‖∞, where ℱ𝑡 is a 𝜎−algebra of outcomes over the
trajectories (see [154]). To decide when to transmit, we propose to use triggering rules of
the form

𝜒𝑡 (𝑖) ∶= { 1 if ||𝑅(𝑥𝑎 ,𝑢𝑎) + 𝛾max𝑢𝑄𝑡 (𝑦𝑎 ,𝑢𝑎) −𝑄𝑡 (𝑥𝑎 ,𝑢𝑎)|| ≥max{𝛽𝐿𝑎(𝑡), 𝜀𝜒 }
0 else, (5.3)

with 𝛽 ∈ [0,1] andi 𝜒𝑡 (𝑖) = 1means that agent 𝑖 sends the sample 𝑠𝑎 at time 𝑡 to the central
learner. The event triggered rule in (5.3) has an intuitive interpretation in the following
way. Agents accumulate the value of 𝐿𝑎(𝑡) through their own trajectories in time. If
the trajectories sample states that are already well represented in the current 𝑄𝑡 function,
there is no need to transmit a new sample to the central learner. This can happen for a va-
riety of reasons; some regions of the state-space may be well represented by a randomized
initialisation of 𝑄, or some explorers may have already sampled the current trajectory of-
ten enough for the learner to approximate it. The resulting system is then an event-based
distributed Q-Learning (EBd-Q) system. We divide now the results in stochastic and de-
terminstic MDPs.

5.3.2 Deterministic MDP
Let us first define 𝐻 to be the operator:

𝐻𝑃(𝑄𝑡 (𝑥,𝑢)) ∶=∑
𝑦
𝑃(𝑥,𝑢,𝑦)(𝑅(𝑥,𝑢)+𝛾max𝑣 𝑄𝑡 (𝑦,𝑣)). (5.4)

The mapping 𝐻𝑃 is a contraction operator on the ∞−norm, with 𝐻𝑃 (𝑄∗) = 𝑄∗ being the
only fixed point (see [154] for the proof). Now observe, for a deterministic MDP, that
the transition (𝑥,𝑢)→ 𝑦 happens for a single 𝑦 , and 𝔼𝑦∼𝑃(𝑥,𝑢,⋅)[𝑅(𝑥,𝑢)+𝛾max𝑣 𝑄𝑡 (𝑦,𝑣)−
𝑄𝑡 (𝑥,𝑢) ∣ ℱ𝑡 ] = 𝐻𝑃 (𝑄𝑡 (𝑥,𝑢)) −𝑄𝑡 (𝑥,𝑢).
Theorem5.1. Let (𝑋𝑛 ,𝑈 𝑛 , 𝑃 ,𝑅) be a deterministic MDPwith ‖𝑅‖∞ <∞. Let the event trigger-
ing condition determining communication events be (5.3). Then, the resulting EBd-Q system
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learning on the samples {𝑠𝑎 ∶ 𝜒𝑡 (𝑖) = 1} converges a.s. to 𝑄𝜀𝜒 satisfying ‖𝑄𝜀𝜒 −𝑄∗‖∞ ≤ 𝑓 (𝜀𝜒 )
with 𝑓 (𝜀𝜒 ) ∈ 𝒦∞.

Remark 5.1. Observe that for 𝜀𝜒 = 0 the triggering rule in 5.3 may result in regular (al-
most periodic) communications as 𝑡 → ∞. Setting 𝜀𝜒 > 0 implies the number of expected
communication events goes to 0 as 𝑡 → ∞, and 𝜒 < ∞ at the expense of 𝑄𝑡 converging to a
neighbourhood of 𝑄∗.

One can show that, in the case of a deterministic MDP, convergence is also guaranteed
for the case where the learning rate 𝛼𝑡 = 𝛼 is fixed. In practice, we can consider this to be
the case when applying ETC rules on a deterministic MDP.

5.3.3 Stochastic MDP
We now present similar results to Theorem 5.1 for general stochastic transition MDPs.
Consider a distributed MDP as in Definition 5.1. Let 𝒫 be the set of all possible transition
functions for a given set of actions and states, i.e. 𝒫 ∶= {𝑃 ∶ 𝑋 × 𝑈 → Δ(𝑋)}. Define
𝒯 ∶= {(𝑥,𝑢,𝑦) ∶ 𝑥,𝑦 ∈ 𝑋 , 𝑢 ∈ 𝑈 } as the set of transitions for the given state and action set
𝑋,𝑈 . Let 𝜓 ∶ 2𝒯 ×𝒫 →𝒫 be an operator such that given a subset of transitions 𝒯𝑘 ⊂ 𝒯
and a transition function 𝑃 sets the probability of all transitions𝒯𝑘 to zero and normalizes
the resulting transition function, and we use 𝜓(𝒯𝑘 , 𝑃) ∈ 𝒫 .

Given the MDP probability measure 𝑃 , we define the set 𝒫𝑃 ⊂ 𝒫 as the set containing
all transition functions 𝑃 resulting from “deleting” any combination of transitions in 𝑃 .
That is, 𝒫𝑃 ∶= {𝜓(𝒯𝑘 , 𝑃) ∶ 𝒯𝑘 ∈ 2𝒯 }. Consider now the case where we apply an event
triggered rule to transmit samples on a stochastic MDP. For any pair (𝑥,𝑢), agent 𝑖 and
time 𝑡 , the samples are transmitted (and learned) if 𝜒𝑡 (𝑖) = 1. This means that, in general, it
may happen that for the set of resulting states for a pair (𝑥,𝑢), {𝑦 ∈ 𝑋 ∶ 𝑃𝑥𝑦(𝑢) > 0}, some
transitions will not be transmitted. This biases the resulting stochastic approximation
process, and in practice this is equivalent to applying different transition functions 𝑃𝒯𝑘 ∈
𝒫𝑃 at every step 𝑡 . This leads to the next assumption.

Assumption 5.3. There exists probability measure 𝜇𝑃 ∶ Δ(𝒫𝑃 ) that is only a function of the
MDP, the initial conditions 𝑥0, 𝑄0 and the parameters 𝛾 , 𝜀𝜒 , 𝛽 , such that 𝜇𝑃 (𝜓(𝒯𝑘 , 𝑃)) is the
probability of applying function 𝜓(𝒯𝑘 , 𝑃) at any time step.

Remark 5.2. In fact it follows from the Definition of 𝒫𝑃 that the dependence on 𝛽, 𝜀𝜒 must
exist, given that 𝛽, 𝜀𝜒 = 0 ⇒ 𝜇𝑃 = 1: in this case all samples are always transmitted. In a
similar way, it also holds that lim𝜀𝜒→∞ 𝜇𝑃 (𝜓(𝒯𝑘 , 𝑃)) = 0 ∀𝜇𝑃 (𝜓(𝒯𝑘 , 𝑃)) ∈ 𝒫𝑃 since in such
case no samples are ever transmitted.

Let us reflect on the implications of Assumption 5.3. When applying an event triggered
rule in (5.3) to transmit samples, it may result on experiences not being transmitted if the
trigger condition is not met. This introduces a bias in the communication of samples, but it
can be modelled by considering different transition functions applied at every step (which
have some values 𝜓(𝒯𝑘 , 𝑃)𝑥𝑦(𝑢) = 0 compared to the original function 𝑃 ) by every agent.
Assumption 5.3 implies that, even though every agent uses different functions at every
time-step, the probability of using each 𝑃𝒯𝑘 ∈ 𝒫𝑃 is measurable for fixed initial conditions.
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Remark 5.3. Assumption 5.3 is necessary to obtain the convergence guarantees presented in
the following results. Based on the experimental results obtained, and on the fact that agents
use different policies for exploration when generating trajectories, the Assumption seems to
hold in the cases explored when large amounts of agents are used. One could interpret this
as, for a large enough sample of agents using different policies, the resulting sequence of
transition measures observed is “random enough” to be generated by a fixed probability mea-
sure. However, we leave this as a conjecture, with the possibility that the assumption could
be relaxed to a time-varying distribution over 𝒫𝑃 .

Let us now define the operator �̃� as the expectation

�̃� (𝑄𝑡 (𝑥,𝑢)) ∶= ∑
𝑃 ′∈𝒫𝑃

𝜇𝑃 (𝑃 ′)𝐻𝑃 ′(𝑄𝑡 (𝑥,𝑢)) = 𝔼𝑃 ′∼𝜇𝑃 [𝐻𝑃 ′(𝑄𝑡 (𝑥,𝑢))] .

For a transition function 𝑃 , set 𝒫𝑃 , and density 𝜇𝑃 , define ̃𝑃 ∶= ∑𝑃 ′ 𝜇𝑃 (𝑃 ′)𝑃 ′. We derive
the following results.

Lemma 5.1. For a given EBd-Q system, ̃𝑃 satisfies �̃� (𝑄𝑡 (𝑥,𝑢)) = 𝐻 ̃𝑃(𝑄𝑡 (𝑥,𝑢)), and the oper-
ator has a fixed point �̃� (�̃�) = �̃� satisfying �̃�(𝑥,𝑢) ∶=∑𝑦 ̃𝑃 (𝑥,𝑢,𝑦)(𝑅(𝑥,𝑢)+𝛾max𝑣 �̃�(𝑦,𝑣)) .

Therefore, applying �̃� (�̃�) is equivalent to applying the contractive operator in (5.4)
with transition function ̃𝑃 .
Theorem 5.2. Consider a distributed Q-Learning system as in Definition 5.1, and let the
underlying MDP have stochastic transitions and bounded reward function. Let the event
triggering condition determining communication events be (5.3). Then, the resulting EBd-Q
system learning on the samples {𝑠𝑎 ∶ 𝜒𝑡 (𝑖) = 1} converges a.s. to a fixed point �̃�.

From Remark 5.2 we know that 𝛽, 𝜀𝜒 = 0 ⇒ 𝜇𝑃 (𝑃) = 1 ⇒ �̃� = 𝑄∗. Additionally, for 𝑃𝑡
being the probability transition function applied at time 𝑡 , it holds that 𝐸[𝑃𝑡 ] = ̃𝑃 . But we
can say something more about how the difference 𝑃 − ̃𝑃 influences the distance between
the fixed points ‖𝑄∗ − �̃�‖∞.

Corollary 5.1. Consider a distributed stochastic MDP with an event triggered condition as
defined in (5.3). For a given transition function 𝑃 , a set of functions 𝒫𝑃 and density 𝜇𝑝 ,
∃𝑓 ∈ 𝒦∞ such that ‖𝑄∗ − �̃�‖∞ ≤ 𝑓 (‖𝑃 − ̃𝑃‖∞) .

In fact, the distance ‖𝑃 − ̃𝑃‖∞ is explicitly related to the probability measure 𝜇𝑃 , since
it determines how far ̃𝑃 is from the original 𝑃 based on the influence of every function
in the set 𝒫𝑃 . One can show that ‖𝑃 − ̃𝑃‖∞ ≤ (1 − 𝜇𝑃 )|𝒫𝑃 |, and 1 − 𝜇𝑃 is a measure of how
often we use transition functions different to 𝑃 , which depends on the aggressiveness
of the parameters 𝛽, 𝜀𝜒 . We continue now to study experimentally the behaviour of the
Event Based d-Q systems in Theorem 5.1 and 5.2 regarding the communication rates and
performance of the policies obtained for a given path planning MDP problem.

5.4 Experiments
To demonstrate the effectiveness of the different triggering functions and how they af-
fect the learning of Q-values over a MDP, we use a benchmark problem consisting of a
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Figure 5.2: Path Planning Learning, Vanilla Distributed Q-Learning vs. EBd-Q

path planning problem. The average reward and communication results for a stochastic
and deterministic MDP are presented in Figure 5.2. We use as a benchmark a “vanilla”
Distributed Q-Learning algorithm where all agents are communicating samples continu-
ously, and we compare with different combinations of parameters for the presented EBd-Q
systems. Comparing with other available research is not straight-forward, since it would
require interpreting similarmethods designed for other problems (in the case of distributed
stochastic gradient descent works [36], or policy gradient examples [44, 45]), or compar-
ing with other methods designed for learning speed (e.g. [144]), where the goal is not to
save bandwidth or storage capacity.
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Analysing the experimental results, in both the stochastic and deterministic MDP sce-
narios, the systems reach an optimal policy quicker by following an event triggered sample
communication strategy, but only for 𝜀𝜒 = 0.01. This can be explained by the same principle
as in prioritized sampling [143, 155]: samples of un-explored regions of the environment
are transmitted (and learned) earlier and more often. However, in our case this emerges as
a consequence of the trigger functions 𝜒𝑎(𝑡), and it is the result of a fully distributed deci-
sion process where agents decide independently of each-other when to share information,
and does not require to accumulate and sort the experiences in the first place.

When increasing the triggering threshold to 𝜀𝜒 = 0.05, the learning gets compromised
and the reward decreases for both 𝑛 = 64 and 𝑛 = 8. Additionally, we observe in both
scenarios how the total number of communications increase much slower in the event
based case compared to the vanilla distributed Q-Learning example, and even stabilize in
the case of the deterministic MDP, indicating the number of events is approaching zero.
This is due to the EBd-Q systems sending a much lower amount of samples through the
network per time step. As anticipated by the theoretical results in Theorems 5.1 and 5.2,
higher 𝜀𝜒 results in a larger reduction of communication rates, at the expense of obtaining
less optimal Q functions.

Finally, let us comment on the influence of the number of agents in the experiments.
First, 𝑛 = 8 has lower communication requirements observable in the case with 𝜀𝜒 = 0.01:
the total communication number plateaus earlier and at a significantly lower value for
𝑛 = 64. Second, in the deterministic MDP case we see how larger number of agents result
in faster reaching of a maximum reward.

5.5 Discussion
We have presented a design of ETC inspired trigger functions for d-Q systems with the
goal to allow agents in a such systems to make distributed decisions on which particular
experiences may be valuable and which ones not, reducing the amount of communication
events (and data transmission and storage).

Convergence Results Regarding the convergence guarantees, we have shown how ap-
plying such triggering functions on the communication events results in the centralised
learner converging to a Q-Function that may slightly deviate from the optimal 𝑄∗. How-
ever, we were able to provide an indication on how far the resulting Q functions can be
from 𝑄∗ based on the triggering parameters 𝜀𝜒 , 𝛽 , explicitly for a deterministic MDP and
implicitly (via the distribution 𝜇𝑃 ) for a stochastic MDP.

Reduction of Communication on Path Planning problems Event based rules re-
duce significantly the amount of communication required in the explored path planning
problem considered in previous chapters. The weight based graph (pheromone) of previ-
ous chapter has been abstracted here to a general MDP scenario with distributed value
function learning. In such problems, as seen in the experiments, event-based communica-
tion techniques allow the agents to reduce the communication requirementswhile keeping
a reasonable learning speed, even though they intrinsically modify the probability distri-
butions of the data. In fact, it was observed in the experiments how the proposed EBd-Q
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systems resulted collaterally in a faster learning rate than for the constant communication
case (an effect similar to that in prioritized learning).

Impact on other MARL problems This Chapter is a first step towards safely reducing
communication in model-free multi-agent systems, but it still considers a simple scenario
with a star topology. It would be valuable to explore the effect of such event based com-
munication on general multi-agent RL systems where agents could be sharing more than
experiences (𝑄−values, policies, state measurements...). A next step in this direction is to
consider general MARL problems that require communication in policy roll-out phases.
Then, the effect of event-based communication methods is not only on the learning pro-
cess, but on the controller execution.
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6
Robust Event-Based Interactions in

Multi-Agent Reinforcement
Learning

This chapter presents an approach to reduce the communication required between agents in
a Multi-Agent Reinforcement Learning system by exploiting the inherent robustness of the
underlying Markov Decision Process. We compute so-called robustness surrogate functions
(off-line), that give agents a conservative indication of how far their state measurements can
deviate before they need to update other agents in the system with new measurements. This
results in fully distributed decision functions, enabling agents to decide when it is necessary
to communicate state variables. We derive bounds on the optimality of the resulting systems
in terms of the discounted sum of rewards obtained, and show these bounds are a function of
the design parameters. Additionally, we extend the results for the case where the robustness
surrogate functions are learned from data.

This chapter is based onD Jarne Ornia andM.Mazo Jr, “Robust Event-Driven Interactions in CooperativeMulti-
Agent Learning”, Formal Modeling and Analysis of Timed Systems. FORMATS 2022. Lecture Notes in Computer
Science, vol 13465. Springer, Cham. [156]. All proofs for technical statements can be found in Appendix A
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6.1 Introduction
In the previous chapter we took a step towards distributed event triggered value function
learning. However, questions remained regarding how these ideas can be applied to gen-
eral MARL systems that require communication to solve a problem. We consider now a
centralised training - decentralised execution, where agents must communicate state mea-
surements to other agents in order to execute the distributed policies. Such a problem
represents most real applications of MARL systems: It is convenient to train such systems
in a simulator, in order to centrally learn all agents’ value functions and policies. But if the
policies are to be executed in a live (real) setting, agents will have access to different sets
of state variables that need to be communicated with each-other. In this case, having non-
reliable communication leads to severe disruptions in the robustness of the distributed
policies’ performance. The authors in [54] demonstrated experimentally how very small
adversarial disruptions in state variable communications leads to a collapse of the perfor-
mance of general Cooperative MARL systems. In this regard, [55] proposes learning an
“adviser” model to fall back on when agents have too much uncertainty in their state mea-
surements, and more recently in [56] the authors enable agents to run simulated copies of
the environment to compensate for a disruption in the communication of state variables,
and in [57] agents are trained using adversarial algorithms to achieve more robust policies.
This lack of robustness in communicative multi-agent learning presents difficulties when
trying to design efficient systems where the goal is to communicate less often.

6.1.1 Main Contributions
We consider in this Chapter a general cooperative MARL scenario where agents have
learned distributed policies that must be executed in an on-line scenario, and that depend
on other agent’s measurements.

Reducing Communication in MARL Policy Execution We propose a constructive
approach to synthesise communication strategies that minimise the amount of communi-
cation required and guarantee a minimum performance of the MARL system in terms of
cumulative rewardwhen compared to an optimal policy. We construct so-called robustness
surrogate functions (robustness certificates), which quantify the robustness of the system
to disturbances in agent state variable measurements, allowing for less communication in
more robust state regions.

Data Driven Robustness Surrogates Computing robustness certificates is computa-
tionally expensive, so we consider the case where these surrogate functions are learned
through the scenario approach [157, 158], and provide formal guarantees for the reward
sum bounds in the case where the functions are approximations learned from data.

6.2 Information sharing between cooperative agents
We consider in this Chapter the following problem. Take a cooperative MMDP with set
of agents 𝑁 , where each agent has learned a distributed policy 𝜋𝑖 ∶ 𝑋 → 𝑈𝑖 . We are
interested in the scenario where the state variable 𝑥𝑡 ∈ 𝑋 at time 𝑡 is composed by a set
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of joint observations from all agents, and these observations need to be communicated to
other agents for them to compute their policies.

Assumption 6.1. We assume that each agent 𝑎 has access to a set 𝑋𝑖 ⊂ 𝑋 , such that the
observed state for agent 𝑎 is 𝑥𝑎 ∈ 𝑋𝑎 . That is, the global state at time 𝑡 is 𝑥𝑡 = (𝑥1𝑡 𝑥2𝑡 ... 𝑥𝑛𝑡 )𝑇 .
Furthermore, we assume that the space 𝑋 accepts a sup-norm ‖ ⋅ ‖∞.

We can use 𝑢 ∈ 𝑈 𝑛 to represent a specific joint action 𝑢 ∶= {𝑢1,𝑢2, ...,𝑢𝑛}, and 𝜋 ∶=
{𝜋1,𝜋2, ...,𝜋𝑛} to represent the joint policies of all agents such that 𝜋 ∶ 𝑋 → 𝑈 𝑛 . The
optimal joint (or centralised) policy in a cooperative MMDP is the joint policy 𝜋 ∗ that
maximises the discounted reward sum in the “centrally controlled” MDP, and this pol-
icy can be decomposed in a set of agent-specific optimal policies 𝜋 ∗ = {𝜋 ∗1,𝜋 ∗2, ...,𝜋 ∗𝑛}. We
can similarly consider a value function under a joint policy 𝜋 , 𝑉 𝜋 ∶ 𝑋 → ℝ be 𝑉 𝜋 (𝑥) =
∑𝑦 𝑃(𝑥,𝜋(𝑥),𝑦)(𝑅(𝑥,𝜋(𝑥),𝑦)+ 𝛾𝑉 𝜋 (𝑦)).
Assumption 6.2. Agents have access to optimal policies 𝜋 ∗ and a global optimal function
𝑄∗ (learned as a result of e.g. a multi-agent actor critic algorithm [149]).

Remark 6.1. Assumption 6.1 is satisfied in most MARL problems where the underlying
MDP represents some real physical system (e.g. robots interacting in a space, autonomous
vehicles sharing roads, dynamical systems where the state variables are metric...). In the case
where 𝑋 is an abstract discrete set, we can still assign a trivial bijective map 𝐼 ∶ 𝑋 →ℕ and
compute distances on themapped states ‖𝑥1−𝑥2‖∞ ≡ ‖𝐼 (𝑥1)−𝐼 (𝑥2)‖∞. However, wemay expect
the methods proposed in this Chapter to have worse results when the states are artificially
numbered, since the map 𝑎 may have no relation with the transition probabilities (we come
back to this further in the work).

Consider the case where at a given time 𝑡 , a subset of agents �̂�𝑡 ⊆ 𝑁 does not share
their state measurements with other agents. Let 𝑡𝑖 be the last time agent 𝑎 transmitted its
measurement. We define �̂�𝑡 ∈ 𝑋 as

�̂�𝑡 ∶= (𝑥1𝑡1 , 𝑥2𝑡2 , ..., 𝑥𝑛𝑡𝑛) . (6.1)

That is, �̂�𝑡 is the last known state corresponding to the collection of agent states last trans-
mitted, at time 𝑡 . Then, the problem considered in this Chapter is as follows.

Problem 6.1. Consider a c-MMDP with a set of optimal shared state policies 𝜋 ∗. Synthesise
strategies that minimise the communication events between agents and construct distributed
policies �̂� that keep the expected reward within some bounds of the optimal rewards, these
bounds being a function of design parameters.

6.3 Efficient Communication Strategies
To solve the problem ofminimizing communication, we can first consider a scenariowhere
agents can request state measurements from other agents. Consider a c-MMDP where
agents have optimal policies Π∗. If agents are allowed to request state observations from
other agents at their discretion, a possible algorithm to reduce the communication when
agents execute their optimal policies is to use sets of neighbouring states𝒟 ∶𝑋 →2𝑋 such
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Figure 6.1: Robustness surrogate representation.

that 𝒟(𝑥) = {𝑦 ∶ ‖𝑥 − 𝑦‖ ≤ 𝑑} for some maximum distance 𝑑 . Agents could compute such
sets for each point in space, and request information from others only if the optimal action
changes for any state 𝑦 ∈ 𝒟(𝑥). This approach, however, is not practical on a large scale
multi agent system. First, it requires agents to request information, which could already
be considered a communication event and therefore not always desirable. Additionally,
computing the sets “on the fly” has a complexity of 𝑂(|𝑋 |2) in the worst case, and it has to
be executed at every time-step by all agents. We therefore propose an approach to reduce
communication in a MARL system where agents do not need to request information, but
instead send messages (or not) to other agents based on some triggering rule.

6.3.1 Event-Driven Interactions
To construct an efficient communication strategy based on a distributed triggering ap-
proach, let us first define a few useful concepts. In order to allow agents to decide when is
it necessary to transmit their own state measurements, we define the robustness indicator
Γ ∶ 𝑋 → ℝ≥0 as follows.

Definition 6.1. For a cooperative MMDP with optimal global 𝑄∗ ∶ 𝑋 ×𝑈 𝑛 →ℝ, we define
the robustness surrogate Γ𝜀 ∶ 𝑋 → ℝ≥0 with sensitivity parameter 𝜀 ≥ 0 as:

Γ𝜀(𝑥) ∶=max{𝑑 |∀𝑦 ∶ ‖𝑦 −𝑥‖∞ ≤ 𝑑 ⇒
⇒𝑄∗(𝑦,𝜋 ∗(𝑥)) ≥ 𝑉 ∗(𝑦)− 𝜀}.

The function Γ𝜀 gives a maximum distance (in the sup-norm) such that for any state
𝑦 which is Γ𝜀 close to 𝑥 guarantees the action 𝜋 ∗(𝑥) has a 𝑄 value which is 𝜀 close to the
optimal value in 𝑦 . A representation can be seen in Figure 6.1. Computing the function
Γ𝜀 in practice may be challenging, and we cover this in detail in following sections. In
Algorithm 1 we present a self-triggered state sharing approach for agents to send state
measurements to each other. Essentially, by having agents check the values of Γ𝜀(�̂�𝑡 ),
they can make distributed decisions on when to update others based on how much the
expected reward will deviate from the optimal. Using this Algorithm for communication
allows us to synthesise the following results.

Proposition 6.1. Consider a c-MMDP communicating and acting according to Algorithm
1. Let �̂�𝑎𝑡 be the last known joint state stored by agent 𝑖 at time 𝑡 , and 𝑥𝑡 be the true state at
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Algorithm 1 Self-Triggered State Sharing
1: Initialise 𝑁 agents at 𝑥0;
2: Initialise last-known state vector �̂�0 = 𝑥0, 𝑎 ∈ 𝑁
3: 𝑡 = 0,
4: while 𝑡 < 𝑡𝑚𝑎𝑥 do
5: for 𝑎 ∈ 𝑁 do
6: if ‖𝑥𝑡 (𝑖) − �̂�𝑡−1(𝑖)‖∞ > Γ𝜀(�̂�𝑡−1) then
7: �̂�𝑡 (𝑖) ← 𝑥𝑡 (𝑖)
8: Send updated �̂�𝑡 (𝑖) to all 𝑁−𝑖 ;
9: end if

10: Execute action �̂� ∗𝑖 = 𝜋 ∗𝑖 (�̂�);
11: end for
12: 𝑡 ++;
13: end while

time 𝑡 . Then, it holds:
�̂�𝑎𝑡 = �̂�𝑡 ∀𝑎 ∈ 𝑁 , (6.2)

‖�̂�𝑡 −𝑥𝑡 ‖∞ ≤ Γ𝜀(�̂�𝑡 ) ∀𝑡. (6.3)

Now let us use �̂�𝑡 = 𝑅(𝑥𝑡 ,𝜋 ∗(�̂�𝑡 ),𝑥𝑡+1) as the reward obtained when using the delayed
state �̂�𝑡 as input for the optimal policies. We then present the following result.

Theorem 6.1. Consider a c-MMDP and let agents apply Algorithm 1 to update the delayed
state vector �̂�𝑡 . Then it holds ∀𝑥0 ∈ 𝑋 :

𝔼[
∞
∑
𝑡=0

𝛾 𝑡𝑅(𝑥𝑡 ,𝜋 ∗(�̂�𝑡 ),𝑥𝑡+1) ∣ 𝑥0] ≥ 𝑉 ∗(𝑥0) − 𝜀
𝛾

1−𝛾 .

In other words, Theorem 6.1 indicates that when using Algorithm 1 for self-triggered
communication, the expected discounted reward sum will deviate at most 𝜀 𝛾

1−𝛾 from the
original utility, which is linearly dependent with the design sensitivity 𝜀.

6.4 Robustness Surrogate and its Computation
The computation of the robustness surrogate Γ𝜀 may not be straight-forward. When the
state-space of the c-MMDP is metric, we can construct sets of neighbouring states for a
given 𝑥 . Algorithm 2 produces an exact computation of the robustness surrogate Γ𝜀 for a
given c-MMDP and point 𝑥 . Observe that in the worst case, Algorithm 2 has a complexity
of 𝑂(|𝑋 |) to compute the function Γ𝜀(𝑥) for a single point 𝑥 . If this needs to be computed
across the entire state-space, it explodes to an operation of worst case complexity 𝑂(|𝑋 |2),
which clearly suffers of the curse of dimensionality. In order to compute such functions
more efficiently while retaining probabilistic guarantees, we can make use of the Scenario
Approach for regression problems [157].
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Algorithm 2 Computation of Robustness Indicator
1: Initialise 𝑥 .
2: Initialise 𝑑 = 1.
3: Done = False
4: while Not Done do
5: Compute Set 𝑋 𝑑 ∶= {𝑦 ∶ ‖𝑥 −𝑦‖ = 𝑑};
6: if ∃𝑦 ∈ 𝑋 𝑑 ∶ 𝑄∗(𝑦,𝜋 ∗(𝑥)) ≤ 𝑉 ∗(𝑦)− 𝜀 then
7: Done = True
8: else 𝑑 ++
9: end if

10: end while
11: Γ𝜀(𝑥) = 𝑑 −1

6.4.1 Learning theRobustness Surrogatewith the ScenarioApproach
The data driven computation of the function Γ𝜀 can be proposed in the terms of the follow-
ing optimization program. Assume we only have access to a uniformly sampled set 𝑋𝑠 ⊂ 𝑋
of size |𝑋𝑠 | = 𝑠. Let Γ̂𝜃𝜀 be an approximation of the real robustness surrogate parametrised
by 𝜃 . To apply the scenario approach optimization, we need Γ̂𝜃𝜀 to be convex with respect
to 𝜃 . For this we can use a Support Vector Regression (SVR) model, and embed the state
vector in a higher dimensional space trough a feature non-linear map 𝜙(⋅) such that 𝜙(𝑥)
is a feature vector, and we use the kernel 𝑘(𝑥1, 𝑥2) = ⟨𝜙(𝑥1),𝜙(𝑥2)⟩. Let us consider sam-
pled pairs {(𝑥𝑗 , 𝑦𝑗)}𝑠 , with 𝑦𝑗 = Γ𝜀(𝑥𝑗) computed through Algorithm 2. Then, we propose
solving the following optimization problem with parameters 𝜏 ,𝜚 > 0:

minimise𝜃∈𝑋 ,𝜅≥0,𝑏∈ℝ,
𝜉𝑖≥0,𝑗=1,2,...,𝑆

(𝜅 + 𝜏‖𝜃‖2)+𝜚
𝑆
∑
𝑖=1

𝜉𝑖 ,

𝑠.𝑡 . ||𝑦𝑗 −𝑘(𝜃,𝑋𝑗) −𝑏|| − 𝜅 ≤ 𝜉𝑗 , 𝑗 = 1,…, 𝑠.
(6.4)

The solution to the optimization problem (6.4) yields a trade-off between howmany points
are outside the prediction tube ||𝑦 −𝑘(𝜃 ∗,𝑋𝑗) −𝑏∗|| < 𝜅∗ and how large the tube is (the value
of 𝜅∗). Additionally, the parameter 𝜚 enables us to tune how much we want to penalise
sample points being out of the prediction tube. Now take (𝜃 ∗, 𝜅∗, 𝑏∗, 𝜉 ∗𝑗 ) as the solution to
the optimization problem (6.4). Then, the learned robustness surrogate function will be:

Γ̂𝜃 ∗𝜀 ∶= 𝑘(𝜃 ∗,𝑋𝑗) +𝑏∗.

From Theorem 3 [157], it then holds for a sample of points 𝑋𝑠 and a number of outliers
𝑠∗ ∶= |{(𝑥,𝑦) ∈ 𝑋𝑆 ∶ ||𝑦 −𝑘(𝜃 ∗, 𝑥) −𝑏∗|| > 𝜅∗}|:

𝑆
Pr {𝜖 (𝑠∗) ≤ Pr {𝑥 ∶ ||Γ𝜀(𝑥)− Γ̂𝜃

∗
𝜀 (𝑥)|| > 𝜅∗} ≤ 𝜖 (𝑠∗)} ≥ 1−𝛽 (6.5)
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where 𝜖(𝑠∗) ∶= max{0,1 − 𝑡(𝑠∗)}, 𝜖(𝑠∗) ∶= 1 − 𝑡(𝑠∗), and 𝑡(𝑠∗), 𝑡(𝑠∗) are the solutions to the
polynomial

( 𝑠𝑠∗)𝑡
𝑠−𝑠∗ − 𝛽

2𝑠
𝑠−1
∑
𝑖=𝑘

( 𝑖𝑠∗)𝑡
𝑖−𝑘 − 𝛽

6𝑠
4𝑆
∑
𝑖=𝑠+1

( 𝑖𝑠∗)𝑡
𝑖−𝑠∗ = 0.

Now observe, in our case we would like Γ𝜀(𝑥) ≥ Γ̂𝜃 ∗𝜀 (𝑥) to make sure we are never
over-estimating the robustness values. Then, with probability larger than 1−𝛽 :

𝜖 (𝑠∗) ≥Pr {𝑥 ∶ ||Γ𝜀(𝑥)− Γ̂𝜃
∗

𝜀 (𝑥)|| > 𝜅∗} ≥ Pr {𝑥 ∶ Γ𝜀(𝑥)− Γ̂𝜃 ∗𝜀 (𝑥) < −𝜅∗} =
=Pr {𝑥 ∶ Γ𝜀(𝑥) < Γ̂𝜃 ∗𝜀 (𝑥)−𝜅∗} .

(6.6)

Therefore, taking ‖𝑥𝑡 (𝑖) − �̂�𝑡−1(𝑖)‖∞ > Γ̂𝜃 ∗𝜀 (�̂�𝑡−1) − 𝜅∗ as the condition to transmit state mea-
surements for each agent, we know that the probability of using an over-estimation of the
true value Γ𝜀(𝑥𝑡 ) is at most 𝜖 (𝑠∗) with confidence 1−𝛽 .

Then, let {�̂�𝑡 } be the sequence of joint actions taken by the system. The probability of
𝑈𝑡 violating the condition 𝑄∗(𝑥𝑡 ,𝑈𝑡 ) ≥ 𝑉 ∗(𝑥𝑡 ) − 𝜀 for any 𝑥𝑡 ∈ 𝑋 is at most 𝜖 (𝑠∗). Then, we
can extend the results fromTheorem 6.1 for the case where we use a SVR approximation as
a robustness surrogate. Define the worst possible suboptimality gap 𝜄 ∶=max𝑥,𝑈 |𝑉 ∗(𝑥) −
𝑄∗(𝑥,𝑈 )|.
Corollary 6.1. Let Γ̂𝜃 ∗𝜀 obtained from (6.4) from samples 𝑋𝑆 . Then, a c-MMDP communi-
cating as in Algorithm 1 and using trigger condition ‖𝑥𝑡 (𝑖)− �̂�𝑡−1(𝑖)‖∞ > Γ̂𝜃 ∗𝜀 (�̂�𝑡−1)−𝜅∗ yields,
with probability higher than 1−𝛽 :

𝔼[
∞
∑
𝑡=0

𝛾 𝑡 ̂𝑟𝑡 ∣ 𝑥0] ≥ 𝑉 ∗(𝑥0) − 𝛿,

with 𝛿 ∶= (𝜀 + 𝜖 (𝑠∗) (𝜄 − 𝜀)) 𝛾
1−𝛾 .

We can interpret the results of Corollary 6.1 in the following way. When using the
exact function Γ𝜀 , the sequence of actions produced ensures that, at all times, an action
is picked such that the expected sum of rewards is always larger than some bound close
to the optimal. When using the approximated Γ̂𝜃 ∗𝜀 , however, we obtain from the scenario
approach a maximum probability of a real point not satisfying the design condition: ‖𝑥 −
𝑦‖ ≤ Γ̂𝜃 ∗𝜀 − 𝜅∗ ∧ 𝑄∗(𝑦,Π∗(𝑥)) < 𝑉 ∗(𝑦) − 𝜀. When this happens during the execution of the
c-MMDP policies it means that the agents are using delayed state information for which
they do not have guarantees of performance, and the one-step-ahead value function can
deviate by the worst sub-optimality gap 𝜄.

6.5 Experiments
We set out now to quantify experimentally the impact of Algorithm 1 on the performance
and communication requirements of a benchmark c-MMDP system. First of all, it is worth
mentioning that the comparison of the proposed algorithm with existing work is not pos-
sible since, to the best of our knowledge, no previous work has dealt with the problem
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of reducing communication when executing learned policies in a c-MMDP system. For
this reason, the results are presented such that the performance of different scenarios (in
terms of different Γ𝜀 functions) is compared with the performance of an optimal policy
with continuous communication.

6.5.1 Benchmark: Collaborative Particle-Tag
We evaluate the proposed solution in a typical particle tag problem (or predator-prey)
[149]. We consider a simple form of the problem with 2 predators and 1 prey. The
environment is a 10 × 10 arena with discrete states, and the predators have the actions
𝑈𝑖 = {up,down, left,right,wait} available at each time step and can only move one position
at a time. The environment has no obstacles, and the prey can move to any of the 8 adja-
cent states after each time step. The predators get a reward of 1 when, being in adjacent
states to the prey, both choose to move into the prey’s position (tagging the prey). They
get a reward of −1 when they move into the same position (colliding), and a reward of
0 in all other situations. A representation of the environment is presented in Figure 6.2.

Figure 6.2: Particle Tag, Predators
in orange, Prey in blue.

The global state is then a vector 𝑥𝑡 ∈ {0,1,2, ..., 9}6, concate-
nating the 𝑥,𝑦 position of both predators and prey. For the
communication problem, we assume each agent is only able
to measure its own position and the prey’s. Therefore, in or-
der to use a joint state based policy 𝜋𝑖 ∶ {0,1,2, ..., 9}6 → 𝑈 ,
at each time-step predators are required to send its own po-
sition measurement to each other.

6.5.2 Computation of Robustness Surrogates
With the described framework, we first compute the optimal
𝑄∗ function using a fully cooperative vanilla𝑄-learning algo-
rithm [148], by considering the joint state and action space,
such that 𝑄 ∶ {0,1,2, ..., 9}6 ×𝑈 2 →ℝ. The function was com-
puted using 𝛾 = 0.97. We then take the joint optimal policy
as 𝜋 ∗(𝑥) = argmax𝑈 𝑄∗(𝑥,𝑈 ), and load in each predator the
corresponding projection 𝜋 ∗𝑖 . To evaluate the trade-off between expected rewards and com-
munication events, we compute the function Γ̂𝜀 by solving an SVR problem as described
in (6.4) for different values of sensitivity 𝜀. Then, the triggering condition for agents to
communicate their measurements is ‖𝑥𝑡 (𝑖) − �̂�𝑡−1(𝑖)‖∞ > Γ̂𝜃 ∗𝜀 (𝑥)−𝜅∗.

The hyper-parameters for the learning of the SVRmodels are picked through heuristics,
using a sample of size 𝑠 = 104 to obtain reasonable values of mis-predicted samples 𝑠∗ and
regression mean-squared error scores. Note that 𝑠 = 1

100 |𝑋 |. To estimate the values 𝜖(𝑠∗),
a coefficient of 𝛽 = 10−3 was taken, and the values were computed using the code in [159].
For more details on the computation of 𝜚-SVR models (or 𝜇−SVR)[160] see the project
code¹.

Figure 6.3 shows a representation of the obtained SVR models for different values of 𝜀,
plotted over a 2D embedding of a subset of state points using a t-SNE [161] embedding. It
can be seen how for larger 𝜀 values, more “robust” regions appear, and with higher values

¹https://github.com/danieljarne/Event-Driven-MARL
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Figure 6.3: Obtained Γ̂𝜃∗𝜀 models on a 2D embedding.

of Γ𝜀 . This illustrates how, when increasing the sensitivity, the obtained approximated
Γ̂𝜃 ∗𝜀 take higher values almost everywhere in the state space, and form clusters of highly
robust points.

6.5.3 Results
The results are presented in Table 6.1. We simulated in each case 1000 independent runs
of 100 particle tag games, and computed the cumulative reward, number of communica-
tion events and average length of games. For the experiments, �̂�[⋅] is the expected value
approximation (mean) of the cumulative reward over the 1000 trajectories, and in every en-
try we indicate the standard deviation of the samples (after ±). We use 𝜏𝜀 as the generated
trajectories (games) for a corresponding parameter 𝜀, ℎ(𝜏𝜀) as the total sum of communica-
tion events per game for a collection of games, and 𝑔 ∶=∑𝑔∈𝜏𝜀

|𝑔|
|𝜏𝜀 |

as the average length of
a game measured over the collected 𝜏𝜀 . For the obtained 𝑄∗ function, the worst optimality
gap is computed to be 𝜄 = 1.57.

Let us remark the difference between the 4th and 5th column in Table 6.1. The metric
ℎ(𝜏𝜀) is a direct measure of amount of messages for a given value of 𝜀. However, note that
we are simulating a fixed number of games, and the average number of steps per game
increases with 𝜀: the lack of communication causes the agents to take longer to solve the
game. For this reason we add the values ℎ(𝜏𝜀)/𝑔, which are a measure of total amount
of messages sent versus amount of simulation steps for a fixed 𝜀 (i.e. total amount of
steps where a message could be sent). Broadly speaking, ℎ(𝜏𝜀) compares raw amount of
information shared to solve a fixed amount of games, and ℎ(𝜏𝜀)/𝑔 compares amount of
messages per time-step (information transmission rate). Note at last that there are two
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𝜀 �̂�[∑∞
𝑡=0 𝛾 𝑡𝑅𝑡 ] 𝑔 ℎ(𝜏𝜀) ℎ(𝜏𝜀 )

𝑔 𝜖(𝑠∗) 𝛿
0 2.72±0.50 10.72±0.44 21.49±0.89 2.00 - -
0.4 2.72±0.53 10.77±0.44 19.13±0.87 1.78 0.079 16.33
0.5 1.62±0.92 12.45±0.58 16.75±0.85 1.35 0.148 22.39
0.6 0.99±1.09 13.71±0.71 14.49±0.87 1.06 0.205 26.61
0.7 0.93±1.08 13.74±0.69 14.09±0.85 1.03 0.117 26.85
0.8 0.74±1.10 14.65±0.80 14.11±0.87 0.96 0.075 28.10
0.9 0.64±1.08 14.82±0.83 14.33±0.88 0.96 0.097 31.69

Table 6.1: Simulation Results for Event-Triggered Communication in MARL

collaborative players in the game, therefore a continuous communication scheme would
yield ℎ(𝜏𝜀)/𝑔 = 2.

6.6 Discussion
Summary We have presented an approach to reduce the communication required in
a collaborative reinforcement learning system when executing optimal policies in real
time, while guaranteeing the discounted sum of rewards to stay within some bounds that
can be adjusted through the parameters 𝜀 and 𝜖(𝑠∗) (this last one indirectly controlled by
the learning of data driven approximations Γ̂𝜃 ∗𝜀 ). The guarantees were first derived for
the case where we have access to exact robustness surrogates Γ𝜀 , and extended to allow
for surrogate functions learned through a scenario approach based SVR optimization. In
the proposed experiments for a 2-player particle tag game the total communication was
reduced between 10%−44% and the communication rate by 12%−52%, while keeping the
expected reward sum �̂�[∑∞

𝑡=0 𝛾 𝑡𝑅𝑡 ] ∈ [0.68,2.76].

Experiments From the experimental results we can get a qualitative image of the trade-
off between communication and performance. Larger 𝜀 values yield a decrease in ex-
pected cumulative reward, and a decrease in state measurements shared between agents.
Note finally that in the given c-MMDP problem, the minimum reward every time step is
min𝑅(𝑥𝑡 ,𝑈 ,𝑥𝑡+1) = −1, therefore a lower bound for the returns is 𝔼[∑∞

𝑡=0 𝛾 𝑡𝑅𝑡 ] ≥ −1 𝛾
1−𝛾 =

−32.333. Then, the performance (even for the case with 𝜀 = 0.9 remains relatively close to
the optimum computed with continuous communication.

Robustness Surrogates and Conservativeness The computation of the values Γ𝜀(𝑥)
and the learning of the SVRmodels for Γ̂𝜃 ∗𝜀 (𝑥) introduced significant conservativeness with
respect to the theoretical bounds. Recall the bound obtained in Corollary 6.1, and observe
that for 𝜀 = 0.5 ⇒ 𝛿 = 22.39. On average, �̂�[𝑉 ∗(𝑥0)] ≈ 2.72 when initialising 𝑥0 at random
(as seen on Table 6.1). This yields a quite conservative bound of �̂�[𝑉 ∗(𝑥0)]−𝛿 = −19.67 on
the expected sum of rewards, while the communication events are reduced by around 22%
due to the conservative computation of Γ𝜀 . One first source of conservativeness is in Algo-
rithm 1. When computing the exact value Γ𝜀(𝑥) = 𝑑 , it requires every point 𝑦 ∶ ‖𝑥 −𝑦‖∞ ≤ 𝑑
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to satisfy the condition in Definition 6.1. The number of states to be checked grows expo-
nentially with 𝑑 , and many of those states may not even be reachable from 𝑥 by following
the MDP transitions. Therefore we are effectively introducing conservativeness in cases
where probably, for many points 𝑥 , we could obtain much larger values Γ𝜀(𝑥) if we could
check the transitions in the MDP. Another source of conservativeness comes from the
SVR learning process and in particular, the values of 𝜅∗. Since the states are discretised,
‖𝑥𝑡 (𝑖) − �̂�𝑡−1(𝑖)‖∞ ∈ {0,1,2,3, ..., 10}. Therefore, the triggering condition is effectively con-
strained to ‖𝑥𝑡 (𝑖) − �̂�𝑡−1(𝑖)‖∞ > ⌊Γ̂𝜃 ∗𝜀 (𝑥) −𝜅∗⌋, which makes it very prone to under-estimate
even further the true values of Γ𝜀(𝑥). Additionally, for most SVR models we obtained pre-
dictions Γ̂𝜃 ∗𝜀 (𝑥)−𝜅∗ that are extremely close to the real value, so small deviations in 𝜅∗ can
have a significant impact in the number of communications that are triggered “unneces-
sarily”. A possible improvement for future work could be to compute the true values Γ𝜀(𝑥)
through a Monte-Carlo based approach by sampling MDP trajectories. This would yield a
much more accurate representation of how “far” agents can deviate without communicat-
ing, and the guarantees could be modified to include the possibility that the values Γ𝜀(𝑥)
are correct up to a certain probability. Another option would be to compute Γ𝜀(𝑥) using
a different topology through embedding 𝑥 in some higher dimensional space. At last, we
can come back now to the statements in Remark 6.1. It is now evident how having a
certain physical structure in the MDP (i.e. transition probabilities being larger for states
closer in space) would help mitigate the conservativeness. An MDP with large transition
jumps with respect to the sup-norm will result in more conservative and less meaningful
robustness surrogates.

Complexity versus Robustness The qualitative results of Figure 6.3 have a relevant in-
terpretation when considering the motivation for this Chapter. Generalising conclusions
from the studied case, one can see how for any MMDP that requires state variable commu-
nication, the structure of the MMDP has a deep impact on how this communication relates
to robustness in terms of utility loss due to delayed information. In Figure 6.3 we can see
how the state space (even for a relatively simple MMDP) presents a complex structure in
terms of regions where communication is required. This hints at the following conclusion:
the inherent structure of MMDPs (or MDPs in general) in terms of state-action complexity
has a profound impact on robustness properties of the agent policies, and this complexity
is not straight-forward to reproduce even for very simple MDPs. These ideas are further
explored in the following Chapter.
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7
Robust Reinforcement Learning

Through Lexicographic Objectives
We have seen until now how the lack of robustness in Reinforcement Learning policies is
an organically emerging problem when reducing communication in model free multi-agent
systems. However, robustness-inducing algorithms inevitably disrupt the learning dynamics.
Robustness may not be desirable at any price; the alterations caused by robustness require-
ments from otherwise optimal policies should be explainable and quantifiable. In particular,
policy gradient algorithms that have strong convergence guarantees are often modified to in-
duce robustness in ways that do not preserve algorithm guarantees, which defeats the purpose
of formal robustness requirements. In this Chapter we propose and study a notion of robust-
ness in partially observable MDPs where state observations are perturbed by a noise-induced
stochastic kernel, which is a generalisation of the delayed state problem in Chapter 6. We
use these notions to propose a robustness-inducing scheme, applicable to any policy gradi-
ent algorithm, to formally trade off the reward achieved by a policy with its robustness level
through lexicographic optimisation, which preserves convergence properties of the original
algorithm.

This chapter is based on  D. Jarne Ornia, L. Ribeiro, L. Hammond, M. Mazo Jr and A. Abate, “Observational
Robustness and Invariances in Reinforcement Learning via Lexicographic Objectives”, arXiv Pre-Print [162]. All
proofs for technical statements can be found in Appendix A.
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7.1 Introduction
In Robust RL [83], there is often a trade-off between how robust a policy is and how close
it is to the set of optimal policies in its training environment. To address this trade-off
in the context of robustness versus observational noise, we define a regret-based robust-
ness notion characterised by a stochastic map to quantify robustness and investigate what
makes a policy maximally robust. We then propose using a relaxed lexicographic trade-off,
in which we allow policies to trade performance (discounted reward sum) to robustness.
This is done through the use of Lexicographic RL (LRL) [102], which allows policies to devi-
ate from a prioritised objective in favour of obtaining better results for the next objectives
priority-wise.

This chapter tackles the study of robustness versus observational disturbances, where
agents observe a disturbed state measurement and use it as input for the policy. We argue
that robustness, being interpreted from a formal perspective, should be quantified and in-
duced in a policy (controller) by modifying the underlying learning process in a verifiable
way.

7.1.1 Main Contributions
Most existing work on RL with observational disturbances proposes modifying RL algo-
rithms (learning to deal with perturbations through linear combinations of regularising
loss terms or adversarial terms) that come at the cost of explainability (in terms of sub-
optimality bounds) and verifiability, since the induced changes in the new policies result
in a loss of convergence guarantees. Our main contributions are summarised in the fol-
lowing points.

Structure ofRobust Policy Sets Weconsider general unknown stochastic disturbances
and formulate a quantitative definition of observational robustness that allows us to char-
acterise the sets of robust policies for any MDP in the form of operator-invariant sets. We
analyse how the structure of these sets depends on the MDP and noise kernel, and obtain
an inclusion relation (cf. the Inclusion Theorem, Section 7.3) providing intuition into how
we can search for robust policies more effectively.¹

Verifiable Robustness through LRL The proposed characterisation and analysis al-
lows us to cast robustness as a lexicographic optimisation objective and propose a meta-
algorithm that can be applied to any existing policy gradient algorithm: Lexicographically
Robust Policy Gradient (LRPG). Compared to existing approaches for observational robust-
ness, LRPG allows us to:
1) Retain policy sub-optimality up to a specified tolerance while maximising robustness.
2) Formally control the utility-robustness trade-off through this design tolerance.
3) Preserve formal guarantees of the PG algorithm.

We provide numerical examples on how this approach is applied to existing policy gra-
dient algorithms, comparing them to previous work and verifying how the previously

¹We claim novelty on the application of such concepts to the understanding and improvement of robustness in
disturbed observation RL. Although we have not found our results in previous work, there are strong connec-
tions between Sections 7.2-7.3 in this paper and the literature on planning for POMDPs [163, 164] and MDP
invariances [165–167].
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(b) In LRPG, the policy is guaranteed (up to the original
algorithm used) to converge to an 𝜖 ball of Π∗ , and from
those, the most robust ones.

Figure 7.1: Qualitative representation of the proposed LRPG algorithm, compared to usual robustness-inducing
algorithms. The sets in blue are the maximally robust policies to be defined in the coming sections. Through
LRPGwe guarantee that the policies will only deviate a bounded distance from the original objective, and induce
a search for robustness in the resulting valid policy set.

mentioned Inclusion Theorem helps to induce more robust policies while retaining algo-
rithm optimality. Figure 7.1 represents a qualitative interpretation of the results in this
work (the structure of the robust sets will become clear in following sections).

7.2 Observationally Robust Reinforcement Learning
Robustness-inducingmethods inmodel-free RLmust address the following dilemma: How
do we deal with uncertainty without an explicit mechanism to estimate such uncertainty
during policy execution? Consider an example of an MDP where, at policy roll-out phase,
there is a non-zero probability of measuring a “wrong” state. In such a scenario (even
without adversarial uncertainty) optimal policies can be almost useless: measuring the
wrong state can lead to executing unboundedly bad actions. This problem is represented
by the following version of a noise-induced partially observable Markov Decision Process
[164].

Definition 7.1. An observationally-disturbed MDP (DOMDP) is (a POMDP) defined by the
tuple (𝑋 ,𝑈 ,𝑃,𝑅,𝑇 ,𝛾 ) where 𝑋 is a finite set of states, 𝑈 is a set of actions, 𝑃 ∶ 𝑈 ×𝑋 ↦Δ(𝑋)
is a probability measure of the transitions between states and 𝑅 ∶ 𝑋 ×𝑈 ×𝑋 ↦ℝ is a reward
function. The map 𝑇 ∶ 𝑋 ↦ Δ(𝑋) is a stochastic kernel induced by some unknown noise
signal, such that 𝑇(𝑦 ∣ 𝑥) is the probability of measuring 𝑦 while the true state is 𝑥 , and acts
only on the state observations. At last 𝛾 ∈ [0,1] is a reward discount.

In a DOMDP² agents can measure the full state, but the measurement will be disturbed
by some unknown random signal in the policy roll-out phase. Unlike the POMDP setting
the agent has access to the true state 𝑥 during learning of the policies (the simulator is
noise-free), and no information about the noise kernel 𝑇 or a way to estimate it. The
difficulty of acting in such DOMDP is that the transitions are actually undisturbed and a

²Definition 7.1 is a generalised form of the State-Adversarial MDP used by [86]: the adversarial case is a particular
form of DOMDP where 𝑇 is a probability measure that assigns probability 1 to one state.
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function of the true state 𝑥 , but agents will have to act based on disturbed states �̃� ∼ 𝑇 (⋅ ∣ 𝑥).
We then need to construct policies that will be as robust as possible against noise with-
out being able to construct noise estimates. This is a setting that reflects many robotic
problems; we can design a policy for ideal noise-less conditions, and we know that at de-
ployment there will likely be noise, data corruption, adversarial perturbations, etc., but we
do not have certainty on the disturbance structure. A (memoryless) policy for the agent
is a stochastic kernel 𝜋 ∶ 𝑋 ↦Δ(𝑈 ). For simplicity, we overload notation on 𝜋 , denoting
by 𝜋(𝑥,𝑢) as the probability of taking action 𝑢 at state 𝑥 under the stochastic policy 𝜋 in
the MDP, i.e., 𝜋(𝑥,𝑢) = Pr{𝑢 ∣ 𝑥}. The value function of a policy 𝜋 , 𝑉 𝜋 ∶ 𝑋 ↦ℝ, is given by
𝑉 𝜋 (𝑥0) = 𝔼[∑∞

𝑡=0 𝛾 𝑡𝑅(𝑥𝑡 ,𝜋(𝑥𝑡 ),𝑥𝑡+1)]. The action-value function of 𝜋 (𝑄-function) is given
by 𝑄𝜋 (𝑥,𝑢) = ∑𝑦∈𝑋 𝑃(𝑥,𝑢,𝑦)(𝑅(𝑥,𝑢,𝑦)+𝛾𝑉 𝜋 (𝑦)). It is well known that, under mild condi-
tions [58], the optimal value function can be obtained by means of the Bellman equation
𝑉 ∗(𝑥) ∶= max𝑢∑𝑦∈𝑋 𝑃(𝑥,𝑢,𝑦)(𝑅(𝑥,𝑢,𝑦) + 𝛾𝑉 ∗(𝑦)), and an optimal policy is guaranteed
to exist such that 𝜋 ∗(𝑥) ∶= argmax𝜋 𝑉 𝜋 (𝑥)∀𝑥 ∈ 𝑋 . We then define the objective func-
tion as 𝐽 (𝜋) ∶= 𝔼𝑥0∼𝜇0[𝑉 𝜋 (𝑥0)] with 𝜇0 being a distribution of initial states, and we use
𝐽 ∗ ∶=max𝜋 𝐽 (𝜋). If a policy is parameterised by 𝜃 ∈ Θ we write 𝜋𝜃 and 𝐽 (𝜃).
Assumption 7.1. For any DOMDP and policy 𝜋 , the resulting MC is irreducible and aperi-
odic.

We now formalise a notion of observational robustness. Firstly, due to the presence of
the stochastic kernel 𝑇 , the policywe are applying is altered aswe are applying a collection
of actions in a possibly wrong state. This behaviour can be formally captured by:

Pr{𝑢 ∣ 𝑥,𝜋,𝑇 } = ⟨𝜋,𝑇 ⟩(𝑥,𝑢) ∶= ∑
𝑦∈𝑋

𝑇(𝑦 ∣ 𝑥)𝜋(𝑦,𝑢), (7.1)

where ⟨𝜋,𝑇 ⟩ ∶ 𝑋 ↦Δ(𝑈 ) is the disturbed policy, which averages the current policy given
the error induced by the presence of the stochastic kernel. Notice that ⟨⋅,𝑇 ⟩(𝑥) ∶ Π↦Δ(𝑈 )
is an averaging operator yielding the alteration of the policy due to noise. We can then
define the robustness regret³:

𝜌(𝜋,𝑇 ) ∶= 𝐽 (𝜋)− 𝐽 (⟨𝜋,𝑇 ⟩). (7.2)

Definition 7.2 (Policy Robustness). We say that a policy 𝜋 is 𝜅-robust against a stochastic
kernel 𝑇 if 𝜌(𝜋,𝑇 ) ≤ 𝜅. If 𝜋 is 0-robust we say it is maximally robust. We define the sets
of 𝜅-robust policies, Π𝜅 ∶= {𝜋 ∈ Π ∶ 𝜌(𝜋,𝑇 ) ≤ 𝜅}, with Π0 being the set of maximally robust
policies.

One can motivate the characterisation and models above from a control perspective,
where policies use as input discretised state measurements with possible sensor measure-
ment errors. Formally ensuring robustness properties when learning RL policies will, in
general, force the resulting policies to deviate from optimality in the undisturbed MDP.
With this motivation, we solve the following problem.

Problem 7.1. For a DOMDP and a given tolerance level 𝜖, derive a policy 𝜋𝜖 that satisfies
𝐽 ∗ −𝐽 (𝜋𝜖) ≤ 𝜖 as a prioritised objective and is as robust as possible according to Definition 7.2.
³The robustness regret satisfies 𝜌(𝜋 ∗,𝑇 ) ≥ 0 ∀𝑇 , and it allows us to directly compare the robustness regret with
the utility regret of the policy.
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7.3 Characterisation of Robust Policies
An important question to be addressed, before trying to synthesise robust policies through
LRL, is what these robust policies look like, and how they are related to DOMDP properties.
The robustness notion in Definition 7.2 is intuitive and it allows us to classify policies.
We begin by exploring what are the types of policies that are maximally robust, starting
with the set of constant policies and set of fix point of the operator ⟨⋅,𝑇 ⟩, whose formal
descriptions are now provided.

Definition 7.3. A policy 𝜋 ∶ 𝑋 ↦Δ(𝑈 ) is said to be constant if 𝜋(𝑥) = 𝜋(𝑦) for all 𝑥,𝑦 ∈ 𝑋 ,
and the collection of all constant policies is denoted by Π̄. A policy 𝜋 ∶ 𝑋 ↦ Δ(𝑈 ) is called
a fixed point of the operator ⟨⋅,𝑇 ⟩ if 𝜋(𝑥) = ⟨𝜋,𝑇 ⟩(𝑥) for all 𝑥 ∈ 𝑋 . The collection of all fixed
points will be denoted by Π𝑇 .

In other words, a constant policy is any policy that yields the same action distribution
for any state, and a fixed point policy is any policy whose action distributions are un-
altered by the noise kernel. Observe furthermore that Π𝑇 only depends on the kernel 𝑇 and
the set⁴ 𝑋 . We now present a proposition that links the two sets of policies in Definition
7.3 with our notion of robustness.

Proposition 7.1. Consider a DOMDP as in Definition 7.1, the robustness notion given in
Definition 7.2 and the concepts in Definition 7.3, then we have that

Π̄ ⊆ Π𝑇 ⊆ Π0.
The importance of Proposition 7.1 is that it allows us to produce (approximately) max-

imally robust policies by computing the distance of a policy to either the set of constant
policies or to the fix point of the operator ⟨⋅,𝑇 ⟩, and this is at the core of the construc-
tion in Section 7.4. However, before this, let us introduce another set that is sandwiched
between Π0 and Π𝑇 . Let us assume we have a policy iteration algorithm that employs
an action-value function 𝑄𝜋 and policy 𝜋 . The advantage function for 𝜋 is defined as
𝐴𝜋 (𝑥,𝑢) ≔ 𝑄𝜋 (𝑥,𝑢)−𝑉 𝜋 (𝑥) and can be used as a maximisation objective to learn optimal
policies (as in, e.g., A2C [99], A3C [168]). We can similarly define the noise disadvantage
(a form of negative advantage) of policy 𝜋 as:

𝐷𝜋 (𝑥,𝑇 ) ∶= 𝑉 𝜋 (𝑥)−𝔼𝑢∼⟨𝜋,𝑇 ⟩(𝑥)[𝑄𝜋 (𝑥,𝑢)], (7.3)

which measures the difference of applying at state 𝑥 an action according to the policy 𝜋
with that of playing an action according to ⟨𝜋,𝑇 ⟩ and then continuing playing an action
according to 𝜋 . Our intuition says that if it happens to be the case that 𝐷𝜋 (𝑥,𝑇 ) = 0 for all
states in the DOMDP, then such a policy is maximally robust. And this is indeed the case,
as shown in the next proposition.

Proposition 7.2. Consider a DOMDP as in Definition 7.1 and the robustness notion as in
Definition 7.2. If a policy 𝜋 is such that 𝐷𝜋 (𝑥,𝑇 ) = 0 for all 𝑥 ∈ 𝑋 , then 𝜋 is maximally
robust, i.e., let

Π𝐷 ∶= {𝜋 ∈ Π ∶ 𝜇𝜋 (𝑥)𝐷𝜋 (𝑥,𝑇 ) = 0∀𝑥 ∈ 𝑋}.
⁴There is a (natural) bijection between the set of constant policies and the space Δ(𝑈 ). The set of fixed points of
the operator ⟨⋅,𝑇 ⟩ also has an algebraic characterisation in terms of the null space of the operator Id(⋅) − ⟨⋅,𝑇 ⟩.
We are not exploiting the later characterisation in this paper.
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then we have that Π𝐷 ⊆ Π0.

So far we have shown that both the set of fixed points Π and the set of policies for
which the disadvantage function is equal to zero Π𝐷 are contained in the set of maximally
robust policies. More interesting is the fact that the inclusion established in Proposition
7.1 and the one in Proposition 7.2 can be linked in a natural way through the following
Inclusion Theorem.

Theorem 7.1 (Inclusion Theorem). For a DOMDP with noise kernel 𝑇 , consider the sets
Π,Π𝑇 ,Π𝐷 and Π0. Then, the following inclusion relation holds:

Π ⊆ Π𝑇 ⊆ Π𝐷 ⊆ Π0.

Additionally, the sets Π,Π𝑇 are convex for all MDPs and kernels 𝑇 , but Π𝐷 ,Π0 may not be.

Let us reflect on the inclusion relations of Theorem 7.1. The inclusions are in general
not strict, and in fact the geometry of the sets (as well as whether some of the relations
are in fact equalities) is highly dependent on the reward function, and in particular on
the complexity (from an information-theoretic perspective) of the reward function. As an
intuition, less complex reward functions (more uniform) will make the inclusions above
expand to the entire policy set, andmore complex reward functions will make the relations
collapse to equalities. The following Corollary illustrates this.

Corollary 7.1. For any ergodic DOMDP there exist reward functions 𝑅 and 𝑅 such that the
resulting DOMDP satisfies:
(i) Π𝐷 = Π0 = Π (any policy is max. robust) if 𝑅 = 𝑅,
(ii) Π𝑇 = Π𝐷 = Π0 (only fixed point policies are maximally robust) if 𝑅 = 𝑅.

We can now summarise the insights from Theorem 7.1 and Corollary 7.1 in the follow-
ing conclusions: (1) The set Π is maximally robust, convex and independent of the DOMDP,
(2) The set Π𝑇 is maximally robust, convex, includes Π, and its properties only depend on
𝑇 , (3) The set Π𝐷 includes Π𝑇 and is maximally robust, but its properties depend on the
DOMDP.

7.4 Robustness through Lexicographic Objectives
We have now characterised robustness in a DOMDP and explored the relation between
the sets of policies that are robust according to the definition proposed. We have seen in
the Inclusion Theorem that several classes of policies are maximally robust, and our goal
now is to connect these results with lexicographic optimisation. To be able to apply LRL
results to our robustness problem we need to first cast robustness as a valid objective to be
maximised, and then show that a stochastic gradient descent approach would indeed find
a global maximum of the objective, therefore yielding a maximally robust policy. Then,
this robustness objective can be combined with a primary reward-maximising objective
𝐾1(𝜃) = 𝔼𝑥0∼𝜇0[𝑉 𝜋𝜃 (𝑥0)] and any algorithm with certified convergence to solve Problem
7.1. Policy-based LRL (PB-LRL) allows us to encode the idea that, when learning how to
solve an RL task, robustness is important but not at any price, i.e., we would like to solve
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the original objective reasonably well⁵, and from those policies efficiently find the most
robust one.

7.4.1 Robustness Objectives
We propose now a valid lexicographic objective for which a minimising solution yields a
maximally robust policy. For this, we will perturb the policy during training according to
the following logic. In the introduction, we emphasised that the motivation for this work
comes partially from the fact that we may not know 𝑇 in reality, or have a way to estimate
it. However, the theoretical results until now depend on 𝑇 . Our proposed solution to this
lies in the results of Theorem 7.1. We can use a design generator ̃𝑇 to perturb the policy
during training such that ̃𝑇 has the smallest possible fixed point set (i.e. the constant
policy set), and any algorithm that drives the policy towards the set of fixed points of ̃𝑇
will also drive the policy towards fixed points of 𝑇 : from Theorem 7.1, Π ̃𝑇 ⊆ Π𝑇 .

Assumption 7.2. The design kernel ̃𝑇 satisfies Π ̃𝑇 = Π
We discuss further the choice and implications of using a design kernel ̃𝑇 in Section

7.5. One of the messages of the Inclusion Theorem is the fact that fixed point policies are
maximally robust. Consider the objective to be minimised:

𝐾 ̃𝑇 (𝜃) = ∑
𝑥∈𝑋

𝜇𝜋𝜃 (𝑥)
1
2 ‖𝜋𝜃 (𝑥)− ⟨𝜋𝜃 ,

̃𝑇 ⟩(𝑥)‖22, (7.4)

Notice that optimising (7.4) projects the current policy onto the set of fixed points of the
operator ⟨⋅, ̃𝑇 ⟩, and due to Assumption 7.1, which requires 𝜇𝜋𝜃 (𝑥) > 0 for all 𝑥 ∈ 𝑋 , the
optimal solution is equal to zero if and only if there exists a value of the parameter 𝜃
for which the corresponding 𝜋𝜃 is a fixed point of ⟨⋅, ̃𝑇 ⟩. In practice, the objectives are
computed for a batch of trajectory sampled states 𝑋𝑠 ⊂ 𝑋 , and averaged over 1

|𝑋𝑠 |
; we

denote these approximations with a hat. By applying standard stochastic approxima-
tion arguments, we can prove that convergence is guaranteed for a SGD iteration using
∇𝜃 �̂� ̃𝑇 (𝜃)(𝑥) = (𝜋𝜃 (𝑥)−𝜋𝜃 (𝑦))∇𝜃𝜋𝜃 (𝑥), 𝑦 ∼ ̃𝑇 (⋅ ∣ 𝑥) to the optimal solution of problem 7.4.

Lemma 7.1. Let 𝜋𝜃 be a fully-parameterised policy in a DOMDP, and 𝛼𝑡 a learning rate.
Consider the following approximated gradient for objective 𝐾 ̃𝑇 (𝜋) and sampled point 𝑥 ∈ 𝑋 :

∇𝜃 �̂� ̃𝑇 (𝜃)(𝑥) = (𝜋𝜃 (𝑥)−𝜋𝜃 (𝑦))∇𝜃𝜋𝜃 (𝑥), 𝑦 ∼ ̃𝑇 (⋅ ∣ 𝑥). (7.5)

Then, the following iteration with 𝑥 ∈ 𝑋 and some initial 𝜃0,

𝜃𝑡+1 = 𝜃𝑡 −𝛼𝑡∇𝜃 �̂� ̃𝑇 (𝜃𝑡 ) (7.6)

yields 𝜃 → ̃𝜃 almost surely where ̃𝜃 satisfies 𝐾 ̃𝑇 ( ̃𝜃) = 0.
⁵The advantage of using LRL is that we need not know in advance how to define “reasonably well” for each
new task. Additionally, we obtain a hyper-parameter that directly controls the trade-off between robustness
and optimality: the tolerance 𝜖. Through 𝜖 we determine how far we allow our resulting policy to be from an
optimal policy in favour of it being more robust.
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7.4.2 Lexicographically Robust Policy Gradient
We present now the proposed LRPG meta-algorithm to achieve lexicographic robustness
for any policy gradient algorithm at choice.

Algorithm 3 LRPG

1: input MDP, ̃𝑇 , 𝜖
2: intialise 𝜃 , critic (if using), 𝜆, {𝛽1, 𝛽2, 𝜂}
3: set 𝑡 = 0, 𝑥𝑡 ∼ 𝜇0
4: while 𝑡 <max_iterations do
5: perform 𝑢𝑡 ∼ 𝜋𝜃 (𝑥𝑡 )
6: observe 𝑟𝑡 , 𝑥𝑡+1
7: if �̂�1(𝜃) not converged then �̂�1 ← �̂�1(𝜃)
8: end if
9: update critic (if using)

10: update 𝜃 and 𝜆 using (2.2)
11: end while
12: output 𝜃

From [102], the convergence of PB-LRL algorithms is guaranteed as long as the orig-
inal policy gradient algorithm (such as PPO [169] or A2C [170, 171]) for each single ob-
jective converges. We can then combine Lemma 7.1 with these results to guarantee that
Lexicographically Robust Policy Gradient (LRPG), Algorithm 3, converges to a policy that
maximise robustness while remaining (approximately) optimal with respect to 𝑅.
Theorem 7.2. Consider a DOMDP as in Definition 7.1 and let 𝜋𝜃 be a parameterised policy.
Take 𝐾1(𝜃) = 𝔼𝑥0∼𝜇0[𝑉 𝜋𝜃 (𝑥0)] to be computed through a chosen algorithm (e.g., A2C, PPO)
that optimises 𝐾1(𝜃), and let 𝐾2(𝜃) = −𝐾 ̃𝑇 (𝜃). Given an 𝜖 > 0, if the iteration 𝜃 ← projΘ [𝜃 +
∇𝜃 �̂�1] is guaranteed to converge to a parameter set 𝜃 ∗ that maximises𝐾1, and hence 𝐽 (locally
or globally), then LRPG converges a.s. under PB-LRL conditions to parameters 𝜃𝜖 that satisfy:

𝜃𝜖 ∈ argmin𝜃∈Θ′ 𝐾 ̃𝑇 (𝜃) such that 𝐾 ∗1 ≥ 𝐾1(𝜃𝜖) − 𝜖, (7.7)

where Θ′ = Θ if 𝜃 ∗ is globally optimal and a compact local neighbourhood of 𝜃 ∗ otherwise.

We reflect again on Figure 7.1. The main idea behind LRPG is that by formally expand-
ing the set of acceptable policies with respect to 𝐾1, we may find robust policies more ef-
fectively while guaranteeing a minimum performance in terms of expected rewards. This
addresses directly the premise behind Problem 7.1. In LRPG the first objective is still to
minimise the distance 𝐽 ∗ − 𝐽 (𝜋) up to some tolerance. Then, from the policies that satisfy
this constraint, we want to steer the learning algorithm towards a maximally robust policy,
and we can do so without knowing 𝑇 as long as Assumption 7.2 is satisfied.

7.5 Assumptions on 𝑇
A natural question following Section 7.4.1 and the theoretical results in Section 7.4 is how
to choose ̃𝑇 , and how the choice influences the resulting policy robustness towards any
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other true 𝑇 . In general, for any arbitrary policy utility landscape in a given MDP, there
is no way of bounding the distance of the resulting policies for two different noise kernels
𝑇1,𝑇2. As a counter-example, consider an MDPwhere there are 2 possible optimal policies
𝜋 ∗1,𝜋 ∗2, and take these two policies to be maximally different, i.e. 𝐷𝑇𝑉 (𝜋 ∗1‖𝜋 ∗2) = 1 ∀𝑥 ∈ 𝑋 .
Then, when using LRPG to obtain a robust policy, a slight deviation in the choice of ̃𝑇
can cause the gradient descent scheme to deviate from converging to 𝜋 ∗1 to converging
to 𝜋 ∗2, yielding in principle a completely different policy. However, the optimality of the
policy remains bounded: Through LRPG guarantees we know that, for both cases, the
utility of the resulting policy will be at most 𝜖 far from the optimal. We can, thus, state
the following.

Corollary 7.2. Take 𝑇 to be any arbitrary noise kernel, and ̃𝑇 to satisfy Assumption 7.2.
Let 𝜋 be a policy resulting from a LRPG algorithm. Assume that min𝜋 ′∈Π ̃𝑇 𝐷𝑇𝑉 (𝜋‖𝜋 ′) = 𝑎
for some 𝑎 < 1. Then, it holds for any 𝑇 that min𝜋 ′∈Π𝑇 𝐷𝑇𝑉 (𝜋‖𝜋 ′) ≤ 𝑎.

That is, when using LRPG to obtain a robust policy 𝜋 , the resulting policy is at most 𝑎
far from the set of fixed points (and therefore a maximally robust policy) with respect to
the true 𝑇 . This is the key argument behind our choices for ̃𝑇 : A priori, the most sensible
choice is a kernel that has no other fixed point than the set of constant policies.

Remark 7.1. This fixed point condition is satisfied in the discrete state case for any ̃𝑇 that
induces an irreducible Markov Chain, and in continuous state for any ̃𝑇 that satisfies a reach-
ability condition ( i.e. for any 𝑥0 ∈ 𝑋 , there exists a finite time for which the probability of
reaching any ball 𝐵 ⊂ 𝑋 of radius 𝑟 > 0 through a sequence 𝑥𝑡+1 = 𝑇(𝑥𝑡 ) is measurable). This
holds for (additive) uniform or Gaussian disturbances.

7.6 Experiments
We verify the theoretical results of LRPG in a series of experiments on discrete state/action
safety-related environments [172]. Minigrid-LavaGap, Minigrid-LavaCrossing are safe ex-
ploration tasks where the agent needs to navigate an environment with cliff-like regions
and receives a reward of 1 when it finds a target. Minigrid-DynamicObstacles is a dynamic
obstacle-avoidance environment where the agent is penalised for hitting an obstacle, and
gets a positive reward when finding a target. Minigrid-LavaGap is small enough to be
fully observable, and the other two environments are partially observable. In all cases
observations consist of a 7×7 field of view in front of the agent, with 3 channels encoding
the color and state of objects in the environment. We use A2C [58] and PPO [95] for our
implementations of LRPG which we denote by LR-PPO and LR-A2C, respectively. In all
cases, the lexicographic tolerance was set to 𝜖 = 0.99�̂�1 to deviate as little as possible from
the primary objective.

Sampling T̃ To simulate ̃𝑇 we disturb 𝑥 as �̃� = 𝑥 + 𝜉 for (1) a uniform bounded noise
signal 𝜉 ∼ 𝒰[−𝑏,𝑏] ( ̃𝑇 𝑢) with 𝑏 = 2 (1.5 for LavaCrossing) and (2) and a Gaussian noise ( ̃𝑇 𝑔 )
such that 𝜉 ∼ 𝒩 (0,0.5). We test the resulting policies against a noiseless environment (∅),
a kernel 𝑇1 = ̃𝑇 𝑢 and a kernel 𝑇2 = ̃𝑇 𝑔 . The main point of these combinations is to also test
the policies when the true noise 𝑇 is similar to ̃𝑇 .
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(a) MiniGrid-LavaGap (b) MiniGrid-LavaCrossing (c) MiniGrid-DynamicObstacles

Figure 7.2: Screenshots of the environments used.

General Robustness Results. Firstly, we investigate the robustness of four algo-
rithms where we do not have a 𝑄 function. If we do not have an estimator for the critic
𝑄𝜋 , Proposition 7.1 suggests that minimising the distance between 𝜋 and ⟨𝜋,𝑇 ⟩ can serve
as a proxy to minimise the robustness regret. We consider the algorithms:
1) Vanilla PPO (noiseless).
2) LR-PPO with a uniform noise kernel (𝐾𝑢𝑇 ).
3) LR-PPO with a Gaussian noise kernel (𝐾𝑔

𝑇 ).
4) SA-PPO from [86].

In these experiments, we use PPO with a neural policies and value functions; the archi-
tectures and hyper-parameters used in each case can be found in Appendix B. The results
are summarised in the left-hand side of Table 7.1. Each entry is the median of 10 inde-
pendent training processes, with reward values measured as the mean of 100 independent
trajectories.

Robustness through Disadvantage Objectives. If we have an estimator for the
critic 𝑄𝜋 we can obtain robustness without inducing regularity in the policy using 𝐷𝜋 ,
yielding a larger policy subspace to steer towards, and hopefully achieving policies closer
to optimal. With the goal of diving deeper into the results of Theorem 7.1, we consider
the objective:

𝐾𝐷(𝜃) ∶= ∑
𝑥∈𝑋

𝜇𝜋𝜃 (𝑥)
1
2 ‖𝐷

𝜋𝜃 (𝑥,𝑇 )‖22.

We aim to test the hypothesis introduced through this work: by setting 𝐾2 = 𝐾𝐷 and thus
aiming tominimise the disadvantage𝐷, wemay obtain policies that yield better robustness
with similar expected rewards. Observe that 𝜋𝐷 ∈ Π𝐷 ⟹ 𝐾𝐷(𝜋𝐷) = 0. To test this, we
compare the following algorithms on the same environments:

1. Vanilla A2C (noiseless). 3. LR-A2C with 𝐾𝑔
𝑇 .

2. LR-A2C with 𝐾𝑢𝑇 . 4. LR-A2C with 𝐾𝐷 .

We use A2C in this case since the structure of the original cost functions are simpler than
PPO, and hence easier to compare between the scenarios above, and we modified A2C to
retain a Q function as a critic. With each objective function resulting in gradient descent
steps that pull the policy towards different maximally robust sets (𝐾𝑇 →Π𝑇 and𝐾𝐷 →Π𝐷
respectively), we would expect to obtain increasing robustness for 𝐾𝐷 . The results are
presented in the right-hand side of Table 7.1.
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PPO on MiniGrid Environments A2C on MiniGrid Environments

Noise Vanilla LRPPO (𝐾𝑢𝑇 ) LRPPO (𝐾 𝑔
𝑇 ) SA-PPO Vanilla LRA2C (𝐾𝑢𝑇 ) LRA2C (𝐾 𝑔

𝑇 ) LRA2C (𝐾𝐷)
LavaGap
∅ 0.95±0.003 0.95±0.075 0.95±0.101 0.94±0.068 0.94±0.004 0.94±0.005 0.94±0.003 0.94±0.006
𝑇1 0.80±0.041 0.95±0.078 0.93±0.124 0.88±0.064 0.83±0.061 0.93±0.019 0.89±0.032 0.91±0.088
𝑇2 0.92±0.015 0.95±0.052 0.95±0.094 0.93±0.050 0.89±0.029 0.94±0.008 0.93±0.011 0.93±0.021
LavaCrossing
∅ 0.95±0.023 0.93±0.050 0.93±0.018 0.88±0.091 0.91±0.024 0.91±0.063 0.90±0.017 0.92±0.034
𝑇1 0.50±0.110 0.92±0.053 0.89±0.029 0.64±0.109 0.66±0.071 0.78±0.111 0.72±0.073 0.76±0.098
𝑇2 0.84±0.061 0.92±0.050 0.92±0.021 0.85±0.094 0.78±0.054 0.83±0.105 0.86±0.029 0.87±0.063
DynamicObstacles
∅ 0.91±0.002 0.91±0.008 0.91±0.007 0.91±0.131 0.91±0.011 0.88±0.020 0.89±0.009 0.91±0.013
𝑇1 0.23±0.201 0.77±0.102 0.61±0.119 0.45±0.188 0.27±0.104 0.43±0.108 0.45±0.162 0.56±0.270
𝑇2 0.50±0.117 0.75±0.075 0.70±0.072 0.68±0.490 0.45±0.086 0.53±0.109 0.52±0.161 0.67±0.203

Table 7.1: Reward values gained by LRPG and baselines.

7.7 Discussion
Experiments We applied LRPG on PPO and A2C algorithms, for a set of discrete ac-
tion, discrete state grid environments. These environments are particularly sensitive to
robustness problems; the rewards are sparse, and applying a sub-optimal action at any
step of the trajectory often leads to terminal states with zero (or negative) reward. LRPG
successfully induces lower robustness regrets in the tested scenarios, and the use of 𝐾𝐷 as
an objective (even though we did not prove the convergence of a gradient based method
with such objective) yields a better compromise between robustness and rewards. When
compared to recent observational robustness methods, LRPG obtains similar robustness
results while preserving the original guarantees of the chosen algorithm (it even outper-
forms in some cases, although this is probably highly problem dependent, so we do not
claim an improvement for every DOMDP).

Further Considerations on LRPG The advantages of LRPG with respect to, for exam-
ple, using POMDP results to construct optimal policies for the disturbed state case (taking
the observation map to be the noise kernel) lie mainly in the situations where we are
not able to construct approximations of such noise kernels. For example, if the system
presents some kind of non-stationarity (in terms of noise), it may be un-feasible to try to
estimate the observation map. Through LRPG, however, we can always steer the policy
towards a set that is always maximally robust, and this may lead to improvements even
in the non-stationary setting. Exploiting this consequence can be an interesting research
direction.

Robustness, Complexity and Invariances Sections 7.2 and 7.3 discuss at large the
structure, shape and dependence of the maximally robust policy sets. These insights help
derive optimisation objectives to use in LRPG, but there is more to be said about how pol-
icy robustness is affected by the underlying MDP properties. We hint at this in the proof
of Corollary 7.1. More regular (less complex in entropy terms, or more symmetric) reward
functions (e.g., reward functions with smaller variance across the actions 𝑅(𝑥, ⋅,𝑦)) seem
to induce larger robust policy sets. In other words, for a fixed policy, a more complex re-
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ward function yields larger robustness regrets as soon as any noise is introduced in the
system. This raises questions on how to use these principles to derive more robust poli-
cies in a comprehensive way, but we leave these questions for future work. Additionally,
one could quickly extend these ideas and use LRL to induce other kinds of invariances to
policies. For example, one could use LRL to obtain policies that generalise to a subclass of
reward functions (connecting to previous thoughts on complexity). One advantage of this
approach would be that the resulting policy gradient algorithm would retain the original
algorithm guarantees.
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8
Conclusion

The constrains introduced in model-free multi-agent systems by considering communi-
cation practicalities span across many different problems. Through this dissertation, we
have started by looking into how ant-inspired multi-robot systems are affected by these
constraints, and evolved towardsmore general state-observation robustness problems that
emerge in imperfect information Reinforcement Learning scenarios. We now summarise
some observations and statements that can be distilled from this work, and we point to-
wards future possibilities and problems that follow from these observations.

8.1 Key Observations
Interpretation of Ant-Inspired Swarm Results In Chapter 3 we analyse how, by in-
terpreting the class of ant-inspired swarms considered as a particular biased random walk
one can extract conclusions about the convergence of both the pheromone fields and the
probability distributions of the agents. First, randomness in the decision making is neces-
sary for convergence of distributions, which resonates with other convergence results for
RL algorithms on MDPs: persistent exploration is required in swarm systems. Addition-
ally, it is not possible to a priori determine the stationary distribution of the agents. This
will depend on the sequence of stochastic matrices that dictate the evolution of the proba-
bilities, and this sequence is itself a random process determined by the agent movements.
Interestingly, this sequence is itself a Martingale when the swarm walks on a directed
graph (which is the scenario that better represents a connection with a value-based RL
system).

Mean Field Models for Verification of Systems One important take from Chapter 4
is the utility of studying mean field processes in large multi-agent model-free systems.
Through mild assumptions in the reinforcement scheme, one can obtain deterministic
discrete time difference equations that yield the stationary agent distribution in (almost)
closed form for fixed initial conditions. This allows us to, first, study which parameters
have an influence in the stationary behaviour of the system and which do not, and second,
verify properties of such distributions and establish bounds on expected behaviours when
having a finite amount of agents.
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Learning ofRobustnessCertificates Chapter 6 is built on the following premise: If we
gather data to learn policies and value functions, perhapswe can use it to knowmore about
the system. In our case, we use it to learn certificate functions that measure how much
delay the MARL can tolerate in agent-to-agent communication depending on the state-
space region. Interestingly, the amount of computation required for this is much smaller in
comparison with the complexity of RL algorithms, and it provides a substantially powerful
tool when rolling out policies (or controllers) in a multi-agent MDP. Additionally, since
the motivation for this is reducing communication safely, through the use of the scenario
approach we make sure that this is done without breaking possible inherited optimality
guarantees.

VerifiableReinforcement Learning versusRegularisation In Chapter 7we propose
an alternative interpretation to robustness in RL. Most of the robust RL literature (specifi-
cally for observational robustness) hinges on the idea that, in model free RL, the best we
can do is to propose open-loop robustness: Introducing carefully designed regularisation
terms in the learning of the policies flattens the policy approximator in sensitive regions
of the input space, therefore obtaining (almost as a collateral effect) robustness versus
disturbances. We suggest a different logic: instead of modifying thoroughly crafted RL
algorithms in un-predictable ways in hopes of obtaining robustness, one can use LRPG to
carefully guide the evolution of the policies towards more robust regions, while making
sure the policy will still work reasonably well in the original problem. This is done by
interpreting robustness as an invariance towards disturbance operators, which although
seemingly straight-forward, was not proposed in existing robust RL work.

8.2 Shortcomings and Improvements
An interpretation of Ant Colony Algorithms (or in particular, ant-inspired multi-robot sys-
tems) that is partly exploited in this dissertation is the following: Ant-inspired systems are a
subclass of MARL systems. In particular, the pheromone fields are value functions, and the
decisionmaking algorithms combinedwith the directional sensing of the pheromones con-
stitute a value-based policy (e.g. Q value 𝜖-greedy). Even Ant Colony Optimization can be
thought of as a form of reinforcement-based stochastic optimization, and although devel-
oped almost independently of seminal RL work, one should ask the question of whether
these methods have been over-powered by more general (MA)RL algorithms. Not only
this, but given that (as presented in this dissertation) the most interesting theoretical re-
sults on ant-inspired multi-robot systems come through the explicit use of RL related con-
cepts (reward signals, exploration rates, transition probabilities...), a critical question to be
asked is if we are not simply solving a particular form of a general problem that has been
addressed extensively in other forms in the literature (re-inventing the wheel).

A motivation for synthesising closed form solutions of the mean field swarm systems
is to be able to use the reward function as a control input. Ideally, one could take the results
of Chapter 4 to design reward functions that achieve desired agent distributions, and one
could do it perhaps through a feedback control scheme. To achieve this, however, one
needs to improve on the results in Chapter 4 to devise an iterative approach that allows
for reward shaping in foraging swarms: the closed form solutions of the agent distributions
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are a non-linear function of the weights, which may not be straight-forward to turn into
a solvable feedback iteration.

In Chapter 6 the proposed method proves to be very useful at safely reducing commu-
nication in the studied cases, but they yield very conservative results both in terms of the
theoretical bounds and the experimental sensitivity to variations in 𝜀. A large source of
conservativeness is the computation of the robustness surrogate functions. First, the func-
tions are computed using the sup-norm on the state-space, and bounding the norm by the
first state that violates the robustness condition. This means that, for large dimensional
state-spaces, the condition violation can happen for only one state in an 𝑛-dimensional
box, and this is enough to restrict the robustness surrogate. This induces significant con-
servativeness in the systems. It would be muchmore useful to compute these bounds based
on the MDP trajectories: if a state 𝑦 is never visited from 𝑥 , even though it may be close in
norm, it should not play a role in the robustness of 𝑥 . Alternatively, one could lift the state
space to a higher dimensional space where using the sup-norm produces tighter bounds.

At last, the main shortcoming of the LRPG (meta) algorithm proposed in Chapter 7 is
the fact that one needs to choose a noise map ̃𝑇 to induce robustness properties in the policy
gradient algorithms. This raises questions on, first, what noise generator to pick. We argue
that a uniform distribution may be a sensible choice if no information is available, but one
could similarly argue that an adversarial disturbance would be more effective at producing
robust policies. Second, it is not clear how this choice would affect the obtained robust-
ness regrets, and how this can be problem dependent. One may want to find alternative
formulations to avoid this choice completely without breaking LRPG assumptions.

8.3 Future Research Directions
Event-Based Cooperation In Chapter 6 we propose schemes for event-based informa-
tion sharing in model free multi-agent systems. However, we consider fully cooperative
agents. A very interesting research direction would be to investigate the case of mixed
cooperative-competitive agents. In such systems, one could try to learn action classifiers
that would tell agents if a given action is more selfish or more altruistic. In that case, one
must choose when to execute altruistic actions, and when to execute selfish actions. This
could be framed from an event-based perspective, where this choice is triggered by some
bounded estimation on the cooperative-competitive objectives.

Learning more than Policies A prevalent idea through Chapter 6 is that one should
perhaps take advantage of the data collection requirements of model-free RL algorithms to
learn something else than a value function and a policy. In our case, we learn robustness
certificates that help with reducing communication in MARL. One could devise similar
problems where we would want to learn other types of certificates or indicators. For
example, one could learn uncertainty indicators, that would give agents an estimation on
whether the current state is specially sensitive to any form of uncertainty in the system.
Then agents could use this to trade-off safety for rewards

Putting a Price on Uncertainty Consider a game where, when playing it live, getting
full state information is increasingly costly. That is, if the game is represented by some
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form of (multi-agent) MDP, one can always access the full state 𝑥 at a high cost (through a
cost model not necessarily known), but one can instead use increasingly uncertain states
at a decreasing cost. That is, reducing uncertainty is a choice that the agent has access
to, but in exchange for some resource. This may be the case when e.g. measurements
are acquired through costly mechanisms (communication) that one may not desire to use
at all time steps. For diverse reasons, e.g. establishing a separation of concerns between
(control) strategy design and uncertainty reduction cost (communication requirements), it
may not be desirable to include the selection of a specific into the learning of the strategy.
This sort of problem is connected to the motivation behind Chapter 7, and can open very
interesting research directions on how to reduce uncertainty when necessary, and how
would this affect the dynamics of the game.

Model-Based Robustness in Reinforcement Learning A natural conclusion from
Chapter 7 is that model free approaches can only go so far when trying to assert robust-
ness in learned policies. If the agent does not have any mechanism to estimate how much
noise is being introduced in the systems, or whether there are disturbances at all, acting
safely under uncertainty becomes an (almost) educated guess. Learning specific models
to try to estimate how much uncertainty there is in the system would produce much more
reasonable results when trying to solve robust RL problems. This could be done through
model based RL techniques, but also through other less restrictive approaches. For exam-
ple, one could try to learn uncertainty estimators based on sequences of states; a single
state is not enough to estimate uncertainty, but sequences of states are.
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Chapter 3
Corollary 3.1. We can show this by contradiction. The results presented inTheorem 2.5 are
formulated for row-stochastic matrices. Letℳ be a class of row stochastic matrices which
sequences satisfy Assumption 2.1. Consider the sequence of column stochastic matrices
{𝐵𝑘}, with any sequence formed by transposed elements {𝐵⊤𝑖 } ∈ ℳ. Let ℳ𝐵 be the set of
all possible matrices 𝐵𝑖 , and ℳ𝐵⊤ the set of all 𝐵⊤𝑖 , such that 𝐵𝑖 ∈ ℳ𝐵 and 𝐵⊤𝑖 ∈ ℳ𝐵⊤ for
any 𝑖. Consider the left product of the original sequence. Observe that we can take the
transposed of the product:

[
𝑡=𝑘
∏
𝑡=0

𝐵𝑡]
⊤

=
𝑡=𝑘
∏
𝑡=0

𝐴𝑡 , (A.1)

where 𝐴𝑡 ∈ ℳ𝐵⊤ for all 𝑡 . If the limit as 𝑘 → ∞ of (A.1) does not exist, there exists a
sequence {𝐴𝑡 } for which its product does not converge. But by definition, the sequence
{𝐴𝑡 } satisfies Assumption 2.1 since 𝐴𝑖 ∈ℳ𝐵⊤ , and any sequence {𝐵⊤𝑖 } ∈ ℳ. Therefore, the
limit in (A.1) must satisfy (a.s.):

lim𝑘→∞

𝑡=𝑘
∏
𝑡=0

𝐵𝑡 = lim𝑘→∞
[
𝑡=𝑘
∏
𝑡=0

𝐴𝑡]
⊤

= (1𝜉⊤)⊤ ,

where 𝜉 ∈ Δ(𝑛) and all its entries sum to 1. □

Proposition 3.1. If there are no odd length cycles in 𝐺, then we can split the graph in odd
and even vertices. Starting from an odd vertex it is only possible to reach any other odd
vertex in even times, and the converse. Let there now be one odd cycle 𝒞 . Let 𝑖 be a
starting node and 𝑗 any other vertex, with the shortest 𝑖 − 𝑗 path being of even length 𝑙𝑖𝑗 .
Then, Pr{𝑥𝑎𝑡 (𝑗) ∣ 𝑥𝑎𝑡 (𝑖)} > 0 if 𝑡 > 2𝑘+𝑙𝑖𝑗 ∀𝑘 ∈ℕ+0 . The onlyway of reaching 𝑗 in odd time is by
completing then the odd length cycle. Let 𝑙𝑖𝑣 be the minimum path length between 𝑖 and
any vertex 𝑣 ∈ 𝒞 , and let 𝑙𝑣𝑗 be the minimum 𝑣 − 𝑗 path length. Then, Pr{𝑥𝑎𝑡 (𝑗) ∣ 𝑥𝑎𝑡 (𝑖)} > 0
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if 𝑡 > 2𝑘 + 𝑙𝑖𝑣 + 𝑙𝑣𝑗 + 𝑙𝑐 ∀𝑘 ∈ ℕ+0 . Since 𝒞 is the only odd length cycle, 𝑡odd = 2𝑘 + 𝑙𝑖𝑣 + 𝑙𝑣𝑗 + 𝑙𝑐
is an odd number. And particularly,

𝑡odd ≤ 2diam(𝐺)+ 𝑙𝑐 .

□

Proposition 3.2. First of all, 𝑊𝑡 (𝑖, 𝑗) ∈ [𝜀,1] for all edges {𝑖𝑗} satisfying 𝑊0(𝑖, 𝑗) ≠ 0. Let
deg∗ ≔max{𝑑𝑖 ∶ 𝑖 ∈ 𝑋}. Then,

𝛼 = 𝜀
1+ (deg∗−1)𝜀 ⇒ 𝑃𝑡 (𝑗, 𝑖) > 𝛼 ∀𝑃𝑡 (𝑗, 𝑖) > 0, (A.2)

which satisfies the condition (2) of Assumption 2.1. For condition (1) in Assumption 2.1,
see that the associated digraph to 𝑃𝑡 is a connected planar graph. From Proposition 3.1,
the matrix product

[
2diam+1
∏
𝑘=0

𝑃𝑡0+𝑘]
⊤

has all entries > 0 for any pair 𝑘, 𝑙 and any 𝑡0. This follows from connected graphs prop-
erties. From (A.2) we make sure that the graph can never become disconnected, therefore
𝑃𝑡 is irreducible for all 𝑡 . Furthermore, since no edges are being deleted for any 𝑡 , the
probability

Pr {[
2diam+1
∏
𝑘=0

𝑃𝑡0+𝑘]
⊤ ∈ℳ2} = 1 ∀𝑡0 > 0.

Hence, 𝑃⊤𝑡 satisfies Assumption 2.1. □

Theorem 3.1. Let 𝑃𝑡 be constructed with 𝜀 > 0 being a minimum weight at choice. From
Proposition 3.2, we know that the sequence {𝑃⊤𝑡 } satisfies Assumption 1, and recalling
Corollary 3.1, the left product

lim𝑘→∞

𝑘
∏
𝑡=0

𝑃𝑡 = 𝜉1⊤.

Then, the agent distribution as 𝑡 →∞ is

lim𝑡→∞𝑦𝑡 = 𝜉1⊤𝑦0 = 𝜉 ,

since 𝜉1⊤ is a matrix of identical columns 𝜉 and the vector 𝑦0 sums 1 over all its entries.
The agent probability distribution converges a.s. to the vector 𝜉 regardless of 𝑦0. □

Proof: Corollary 3.2. The proof follows identical steps to Theorem 3.1. Now we have |𝑁 |
different sequences {𝑃𝑎𝑡 }, depending on the movement of each agent. However, each se-
quence satisfies Assumption 2.1 (it can be easily checked by the logic in Proposition 3.2).
Therefore, each agent converges to a distribution 𝑦𝑎𝑡

a.s.−−−→ 𝑦𝑎∞ as 𝑡 →∞. □
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Proof: Corollary 3.3. Proof is analogous toTheorem 3.1. In fact, to have 𝑦𝑡
a.s.−−−→𝑦∞ as 𝑡 →∞

we do not need to impose 𝛾 to be independent from 𝑀𝑡 , but this requirement does affect
a second corollary in the next section. □

Proof: Proposition 3.3. First see that if 𝑊𝑡 is known, so is the transition probability matrix
𝑃𝑡 . Now recall that 𝑃𝑡 (𝑗, 𝑖) determines the probability of any agent moving from vertex 𝑖
to vertex 𝑗 at time 𝑡 . Therefore, for any agent 𝑎 ∈ 𝑁 ,

𝑃{𝑥𝑡+1(𝑎) = 𝑗 ∣ 𝑥𝑡 (𝑎) = 𝑖} = {
1, 𝑖 ∈ {𝑥𝑔 , 𝑥0},
𝑊𝑡 (𝑖,𝑗)
𝑔𝑡 (𝑖)

else.

The weights in the graph are only updated after all agents have moved. Then, the choice
of one agent at time 𝑡 does not affect the choices of other agents at 𝑡 . Denote 𝑁𝑖 = {𝑎 ∈ 𝑁 ∶
𝑥𝑡 (𝑎) = 𝑖} and observe that 𝑛𝑡 (𝑖) ≡ |𝑁𝑖 |. Then,

𝔼[𝑀𝑡+1(𝑖, 𝑗) ∣ ℱ𝑡 ] = ∑
𝑎∈𝑁𝑖

𝑃𝑡 (𝑗, 𝑖) = 𝑃𝑡 (𝑗, 𝑖)𝑛𝑖(𝑡).

□

Proposition 3.4. First, it is trivial from (3.2) that for any 𝑖 ∈ {𝑥𝑔 , 𝑥0}:
𝜕𝑃𝑡 (𝑗, 𝑖) = 0⇒ 𝔼[𝜕𝑃𝑡 (𝑗, 𝑖) ∣ ℱ𝑡 ] = 0 ∀𝑡 > 0.

Consider now the rest of the edges (𝑖 ∉ {𝑥𝑔 , 𝑥0}). From (3.2) and substituting the weight
dynamics in Definition 3.3:

𝑃𝑡+1(𝑗, 𝑖) =
𝑊𝑡+1(𝑖, 𝑗)
𝑔𝑡+1(𝑖)

=
(1−𝛼)𝑊𝑡 (𝑖, 𝑗) + 𝛼

𝑛𝑀𝑡+1(𝑖, 𝑗)
𝑔𝑡+1(𝑖)

. (A.3)

Recall that
𝑔𝑡+1(𝑖) = (1−𝛼)𝑔𝑡 (𝑖) +

𝛼
𝑛 𝑛𝑡 (𝑖). (A.4)

Now we can compute the probability increment 𝜕𝑃𝑡 (𝑗, 𝑖) = 𝑃𝑡+1(𝑗, 𝑖) −𝑃𝑡 (𝑗, 𝑖) from (A.3) as

𝜕𝑃𝑡 (𝑗, 𝑖) =
((1−𝛼)𝑊𝑡 (𝑖, 𝑗) +𝑀𝑡+1(𝑖, 𝑗)𝛼𝑛 )𝑔𝑡 (𝑖) −𝑊𝑡 (𝑖, 𝑗)𝑔𝑡+1(𝑖)

𝑔𝑡 (𝑖)𝑔𝑡+1(𝑖)
(A.5)

and substituting (A.4) in the numerator in (A.5),

𝜕𝑃𝑡 (𝑗, 𝑖) =
𝛼
𝑛 (𝑀𝑡+1(𝑖, 𝑗)𝑔𝑡 (𝑖) −𝑊𝑡 (𝑖, 𝑗)𝑛𝑡 (𝑖))

𝑔𝑡 (𝑖)𝑔𝑡+1(𝑖)
. (A.6)

Observe that, by using the result in Proposition 3.3

𝑊𝑡 (𝑖, 𝑗)𝑛𝑡 (𝑖)
𝑔𝑡 (𝑖)

= 𝑃𝑡 (𝑗, 𝑖)𝑛𝑡 (𝑖) = 𝔼[𝑀𝑡+1(𝑖, 𝑗) ∣ ℱ𝑡 ]. (A.7)
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Finally, substituting (A.7) in (A.6):

𝜕𝑃𝑡 (𝑗, 𝑖) =
𝛼
𝑛
𝑀𝑡+1(𝑖, 𝑗) −𝔼[𝑀𝑡+1(𝑖, 𝑗) ∣ ℱ𝑡 ]

𝑔𝑡+1(𝑖)
. (A.8)

Let us now take the conditional expected value of (A.8). The denominator is fully deter-
mined by ℱ𝑡 . Furthermore,

𝔼[𝔼[𝑀𝑡+1(𝑖, 𝑗) ∣ ℱ𝑡 ] ∣ ℱ𝑡 ] = 𝔼[𝑀𝑡+1(𝑖, 𝑗) ∣ ℱ𝑡 ] ⇒

⇒𝔼[𝜕𝑃𝑡 (𝑗, 𝑖) ∣ ℱ𝑡 ] = 𝛼 𝔼[𝑀𝑡+1(𝑖, 𝑗) −𝔼[𝑀𝑡+1(𝑖, 𝑗) ∣ ℱ𝑡 ] ∣ ℱ𝑡 ]
𝑛𝑔𝑡+1(𝑖)

= 0.

□

Theorem 3.2. Take the probability transition matrix increment 𝜕𝑃𝑡 (𝑗, 𝑖). See that it is a
random variable that takes values 𝜕𝑃𝑡 (𝑗, 𝑖) ∈ [−1,1] (therefore, sup𝑡 𝔼[𝜕𝑃𝑡 (𝑗, 𝑖)+] <∞). Now,
from Proposition 3.4

𝔼[𝜕𝑃𝑡 (𝑗, 𝑖) ∣ ℱ𝑡 ] = 0⇒ 𝔼[𝑃𝑡+1(𝑗, 𝑖) −𝑃𝑡 (𝑗, 𝑖) ∣ ℱ𝑡 ] = 0.
See that 𝑃𝑡 (𝑗, 𝑖) is fully determined by the the information in 𝜎-algebra ℱ𝑡 . Then,

𝐸[𝑃𝑡+1(𝑗, 𝑖) −𝑃𝑡 (𝑗, 𝑖) ∣ ℱ𝑡 ] = 𝔼[𝑃𝑡+1(𝑗, 𝑖) ∣ ℱ𝑡 ] −𝑃𝑡 (𝑗, 𝑖) = 0 ⟺
⟺𝔼[𝑃𝑡+1(𝑗, 𝑖) ∣ ℱ𝑡 ] = 𝑃𝑡 (𝑗, 𝑖).

(A.9)

From Definition 2.4 it is clear that the entries of the probability transition matrix are all
Martingales, and by Theorem 2.2 the matrix will converge to a 𝑃∞ a.s. □

Corollary 3.4. Take eq. (A.6). If 𝜒 ∈ {0,1} is a random variable determining if weight is
being added or not, we can write

𝜕𝑃𝑡 (𝑗, 𝑖) =
𝛼
𝑛 (∑

𝑀𝑡+1(𝑖,𝑗)
𝑘=1 𝛾𝑘 −𝑃𝑡 (𝑗, 𝑖)∑𝑛𝑡 (𝑖)

𝑘=1 𝛾𝑘)
𝑔𝑡+1(𝑖)

, (A.10)

with 𝑔𝑡+1(𝑖) = (1−𝛼)𝑤𝑖 + 𝛼
𝑛 ∑

𝑛𝑡 (𝑖)
𝑘=1 𝛾𝑘 . But if the variables𝑀𝑡 and 𝜒 are independent, 𝔼[𝑋𝑌 ∣

ℱ𝑡 ] = 𝔼[𝑋 ∣ ℱ𝑡 ]𝔼[𝑌 ∣ ℱ𝑡 ]. Furthermore, let 𝑍 = ∑𝑀𝑡+1(𝑖,𝑗)
𝑘=1 𝜒𝑘 , and observe that by the law

of total expectation

𝔼[𝑍 ∣ ℱ𝑡 ] = 𝐸 [𝐸 [𝑍 ∣ 𝑀𝑡+1(𝑖, 𝑗)] ∣ ℱ𝑡 ] =
= 𝔼[𝑀𝑡+1(𝑖, 𝑗)𝑝𝜒 ∣ ℱ𝑡] = 𝑝𝜒𝔼[𝑀𝑡+1(𝑖, 𝑗) ∣ ℱ𝑡 ] .

(A.11)

Then, taking the expected value of the numerator in (A.10):

𝔼[
𝑀𝑡+1(𝑖,𝑗)
∑
𝑘=1

𝛾𝑘 −𝑃𝑡 (𝑗, 𝑖)
𝑛𝑡 (𝑖)
∑
𝑘=1

𝜒𝑘 ∣ ℱ𝑡] =

=𝑝𝜒 (𝔼[𝑀𝑖𝑗(𝑡 + 1) ∣ ℱ𝑡]−𝔼[𝑀𝑖𝑗(𝑡 + 1) ∣ ℱ𝑡]) = 0.
(A.12)

Therefore, 𝑃𝑡
a.s.−−−→ 𝑃∞ as 𝑡 →∞ regardless of 𝜒 . □
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Chapter 4
Theorem 4.1. We show this by induction. Let us look first at 𝑡 = 0. For a fixed set of initial
conditions �̂�𝑛0 , 𝑤0, observe that �̂�𝑛0 = �̂�0, and we have ∀𝑎 ∈ 𝑁

Pr{𝜁 𝑎1 (𝑖) = 1 ∣ �̂�𝑛0 ,𝑤0} = �̂�1(𝑖) = (𝑃 𝜀0 �̂�𝑛0 )𝑖 .

Observe that in this case, the initial conditions are fixed, therefore we can consider the
total probability

Pr[{𝜁 𝑎1 (𝑖) = 1}] = (𝑃 𝜀0 �̂�𝑛0 )𝑖 = (𝑃 𝜀0 �̂�0)𝑖 . (A.13)

Observe that (A.13) does not depend on 𝑎. Therefore, all agents have the same marginal
probability distribution for 𝑡 = 1. Additionally, the transition probabilities at 𝑡 = 0 have not
been affected by agent trajectories, therefore for the first time step 𝜁 𝑎1 (𝑖) are i.i.d. ∀𝑎. We
can then specify the joint distribution of having 𝑘 agents in vertex 𝑖 at time 𝑡 = 1: this is
the joint probability of events resulting in 𝑘 agents moving to 𝑖, and 𝑛 −𝑘 agents moving
elsewhere. Recall �̂�𝑛1 = 1

𝑛 ∑
𝑛
𝑎=1 𝜁 𝑎(1). Since 𝜁 𝑎𝑖 are indicator variables,

𝔼[𝜁 𝑎1 ] = 𝑃 𝜀0 �̂�0 = �̂�1.

Let us now consider the case where 𝑛→∞, and define 𝑦1 ∶= lim𝑛→∞ �̂�1. Since at 𝑡 = 0 the
initial conditions are fixed and all agents are initialised in the same vertex, it also holds
that �̂�0 = 𝑦0. Additionally, 𝑃 𝜀0 is not affected by the limit 𝑛→∞, and �̂�1 = 𝑃 𝜀0 �̂�0 = 𝑃 𝜀0𝑦0 = 𝑦1.
Therefore, by Theorem 2.1 we have

lim𝑛→∞ �̂�𝑛1 = 𝔼[𝜁 𝑎1 ] = 𝑦1 a.s. (A.14)

That is, with probability 1, the agent proportion converges to the marginal probability dis-
tribution as 𝑛→∞ for 𝑡 = 1. From (A.14) it holds that any event𝒴1 ∈ ℱ1 (i.e. any possible
combination of agent positions until time 𝑡 = 1) satisfies𝒴1 ∈ ℱ1 ⇒𝒴1 = {𝑦0, 𝑦1} 𝑎.𝑠. That
is, Pr{𝒴1 ∈ ℱ1 ∶ 𝑞(1) = 𝑦1} = 1 (the union of events has measure 1). Then, the update of 𝑃 𝜀1
depends on 𝑤1, and in the limit lim𝑛→∞𝑤1 = 𝑓 (lim𝑛→∞ �̂�𝑛1 ,𝑤0) = 𝑓 (𝑦0,𝑤0). Now for 𝑡 = 2,

𝔼[𝜁 𝑎2 ] =𝔼[𝔼[𝜁 𝑎2 ∣ ℱ1]] = 𝔼[𝑃 𝜀1𝔼[𝜁 𝑎1 ∣ ℱ1]] = 𝑃 𝜀1𝔼[𝜁 𝑎1 ] = 𝑃 𝜀1𝑦1 = 𝑦2. (A.15)

Therefore, with probability 1, the marginal probability distributions 𝜁 𝑎2 are determined by
𝑦1 (since they depend on 𝒴1, and this occurs a.s.). Therefore, the variables are i.i.d. in the
limit 𝑛→∞, and by the law of large numbers,

lim𝑛→∞ �̂�𝑛2 = 𝔼[𝜁 𝑎2 ] = 𝑦2 a.s.

By induction, it holds that there is only one possible sequence 𝒴𝑡 = {𝑦0, 𝑦1, ..., 𝑦𝑡 } where
Pr{lim𝑛→∞𝒴𝑡 (𝑛) = 𝒴𝑡 } = 1 ∀𝑡 ≥ 0. Therefore 𝔼[𝜁 𝑎𝑡+1] = 𝑃 𝜀𝑡 𝑦𝑡 = 𝑦𝑡+1, thus

lim𝑛→∞ �̂�𝑛𝑡 = 𝑦𝑡 a.s. ∀𝑡 ≥ 0.

□
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Proposition 4.1. Given the bounded probability matrix 𝑃 𝜀𝑡 , for any edge (𝑖𝑗) ∈ 𝐸, we have
𝑃 𝜀𝑡 (𝑗, 𝑖) ≥ 𝜀. Furthermore, since by Assumption 4.1 there is at least one odd length cycle,
the graph is aperiodic and we can directly invoke results from Chapter 3 on convergence
of stigmergy swarm probability distributions. In particular, from Theorem 3.1

∃𝑦∞ ∶ lim𝑡→∞(
𝑡

∏
𝑡𝑘=0

𝑃 𝜀𝑡𝑘)𝑦0 = 𝑦∞.

Since all positive terms in matrices 𝑃 𝜀𝑡 are lower bounded, the product matrix 𝑃 𝜀∞ ∶=
lim𝑡→∞∏𝑡

𝑡𝑘=0 𝑃 𝜀𝑡𝑘 is irreducible, and from Theorem 2.4 the eigenvector 𝑦∞ is unique and
has strictly positive entries. Additionally, fromTheorem 3.1we know that the convergence

is exponential, with a rate bounded by 𝛼 = (1− 𝜀
1+(𝑔∗−1)𝜀

1+2diam(𝐺))
1

1+2diam(𝐺) . □

Lemma 4.1. First, since all 𝑃 𝜀𝑡 have the positive entries lower bounded by 𝜀 and the graph
is connected, they are all irreducible and we can infer

(
𝑡0+2diam(𝐺)

∏
𝑡𝑘=𝑡0

𝑃 𝜀𝑡𝑘)
𝑗𝑖
= (𝑃 𝜀𝑡0+2diam(𝐺)...𝑃 𝜀𝑡0)𝑗𝑖 ≥ 𝜀2diam(𝐺) ∀𝑖, 𝑗 ∈ 𝑋 . (A.16)

In other words, all vertices are reachable from any other for times larger than 2diam(𝐺).
Now, making use of (A.16), and 𝑙⊤1 , 𝑙⊤2 , ..., 𝑙⊤|𝑋 | being the rows:

𝑡0+2diam(𝐺)
∏
𝑡𝑘=𝑡0

𝑃 𝜀𝑡𝑘 = (
𝑙⊤1
...
𝑙⊤|𝑋 |

)⇒
𝑡0+2diam(𝐺)

∏
𝑡𝑘=𝑡0

𝑃 𝜀𝑡𝑘𝑦𝑡0 = (
𝑙⊤1 𝑦𝑡0...
𝑙⊤|𝑋 |𝑦𝑡0

) ≥ 𝜀2diam(𝐺)1.

Therefore, for 𝑡0 = 0 and 𝑡 > 2diam(𝐺) we have 𝑦𝑡 =∏𝑡
𝑡𝑘=0 𝑃 𝜀𝑡𝑘𝑦0 ≥ 𝜀𝑡1. Last, from Proposi-

tion 4.1, lim𝑡→∞ 𝑦𝑡 = 𝑦∞ > 0, therefore

𝑡 > 2diam(𝐺)⇒ 𝑦𝑡 > 0 ⟺ sgn(𝑦𝑡 ) = 1.
□

Proposition 4.2. Let 𝐵 ∈ {0,1}|𝑋 |×|𝑋 | be the selector matrix satisfying

𝐵𝑤∞ = diag𝑖 (max𝑗 𝑊∞(𝑖, 𝑗))1

. Since 𝐵 is a row stochastic matrix byTheorem 2.4 it has all its eigenvalues in the unit disc,
and (𝐼 −𝛾𝐵) has all its eigenvalues in a disc of radius 𝛾 centred at 1. Therefore, its inverse
is properly defined and 𝑤∞ = (𝐼 − 𝛾𝐵)−1(𝐼 +Σ𝑟 ) has a unique solution if 𝛾 ∈ [0,1). □

Theorem 4.2. Recall the weight dynamics:

𝑤𝑡+1 =(1−𝛼)𝑤𝑡 +𝛼 (𝐼 +Σ𝑟 +𝛾 diag𝑖 (max𝑗 𝑊𝑡 (𝑖, 𝑗)))sgn(𝑦𝑡 ). (A.17)
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Let us use for brevity 𝜙(𝑊) ∶= diag𝑖 (max𝑗𝑊(𝑖, 𝑗)), assume 𝑤∞ = (𝐼 +Σ𝑟 +𝛾𝜙(𝑊∞))1 and
define 𝑧𝑡 ∶= 𝑤𝑡 −𝑤∞. Subtract 𝑤∞ at each side of (A.17):

𝑧𝑡+1 = (1−𝛼)𝑧𝑡 +𝛼 (𝑅𝑡 sgn(𝑦𝑡 ) −𝑤∞) . (A.18)

Define 𝑒𝑡 ∶= sgn(𝑦𝑡 ) −1 to obtain:

(𝐼 +Σ𝑟 +𝛾𝜙(𝑊𝑡 ))sgn(𝑦𝑡 ) −𝑤∞ =
=(𝐼 +Σ𝑟 +𝛾𝜙(𝑊𝑡 ))𝑒𝑡 +𝛾 (𝜙(𝑊𝑡 ) −𝜙(𝑊∞))1.

Taking the ∞-norm at each side of (A.18):

‖𝑧𝑡+1‖∞ = ‖(1−𝛼)𝑧𝑡 +𝛼(𝑅𝑡𝑒𝑡 +𝛾 (𝜙(𝑊𝑡 ) −𝜙(𝑊∞))1‖∞ ≤
≤(1−𝛼) ‖𝑧𝑡 ‖∞ +𝛼 ‖𝑅𝑡 ‖∞ ‖𝑒𝑡 ‖∞ +𝛼𝛾 ‖𝜙(𝑊𝑡 ) −𝜙(𝑊∞)‖∞ ‖1‖∞ . (A.19)

Recall the induced ∞-norm of a matrix is its maximum absolute row sum. Then,

‖𝜙(𝑊𝑡 ) −𝜙(𝑊∞)‖∞ ‖1‖∞ =max𝑖 |max𝑗 𝑊𝑡 (𝑖, 𝑗) −max𝑗 𝑊∞(𝑖, 𝑗)| ≤

≤max𝑖 |max𝑗 |𝑊𝑡 (𝑖, 𝑗) −𝑊∞(𝑖, 𝑗)|| =max𝑖 |𝑧𝑡 (𝑖)| = ‖𝑧𝑡 ‖∞.
(A.20)

Now from Lemma 4.1, ‖𝑒𝑡 ‖∞ = 0 ∀𝑡 > 2diam(𝐺), therefore substituting (A.20) in (A.19):

‖𝑧𝑡+1(𝑖)‖∞ ≤ (1−𝛼)‖𝑧𝑡 ‖∞ +𝛼𝛾‖𝑧𝑡 ‖∞ =
= (1−𝛼(1−𝛾))‖𝑧𝑡 ‖∞ ≤ (1−𝛼(1−𝛾))2‖𝑧𝑡−1‖∞ ≤
≤ (1−𝛼(1−𝛾))𝑡−2diam(𝐺)‖𝑧(2diam(𝐺))‖∞ ⇒ lim𝑡→∞ ‖𝑧𝑡 (𝑖)‖∞ = 0.

(A.21)

Finally, lim𝑡→∞ ‖𝑧𝑡 ‖∞ = 0⇒ lim𝑡→∞𝑤𝑡 = 𝑤∞, and the proof is complete. □

Corollary 4.1. From Theorem 3.1 we know that the limit lim𝑡→∞ 𝑦𝑡+1 = lim𝑡→∞ 𝑦𝑡 = 𝑦∞
exists. Additionally, from Theorem 4.2 we know that the limit lim𝑡→∞ 𝑃 𝜀𝑡 = 𝑃 𝜀∞ also exists.
Therefore, using the limit product rule:

lim𝑡→∞𝑦𝑡+1 = lim𝑡→∞𝑃 𝜀𝑡 𝑦𝑡 = 𝑃 𝜀∞𝑦∞ = 𝑦∞.

□

Proposition 4.3. From Theorem 4.2, the fixed point is

𝑤∞ = (𝐼 +Σ𝑟 +𝛾 diag𝑖 (max𝑗 𝑊∞(𝑖, 𝑗)))1,

and recall from Proposition 4.2 that it is unique. Additionally, Σ𝑟 (𝑖, 𝑖) = 𝑟 for 𝑖 ∈ {𝑥0, 𝑥𝑔} and
is 0 for all other vertices, and it can be shown by contradiction (not added here for brevity)
that argmax𝑖(𝑤∞(𝑖)) = 𝑥0, 𝑥𝑔 . Now, to prove the proposition we assume the following
structure for 𝑤∞, and later show it is indeed a solution (and therefore the only one, since
it is unique). Let us assume for 𝑤∞:

𝑣,𝑢 ∈ 𝑋 1 ∶ 𝑑(𝑥0, 𝑣) > 𝑑(𝑥0,𝑢) ⇒ 𝑤∞(𝑣) < 𝑤∞(𝑢), (A.22)



A

88 A Technical Proofs

and the same holds for the converse 𝑣,𝑢 ∈ 𝑋 2 with the distance to 𝑥𝑔 . That is, if 𝑣 is one
step further away from 𝑥0 than 𝑢, then it has a smaller weight value. Now recall

𝑤∞(𝑖) = (1+Σ𝑟 (𝑖, 𝑖) + 𝛾max𝑗∈𝑋 𝑊∞(𝑖, 𝑗)), (A.23)

and Σ𝑟 (𝑖, 𝑖) = 0 ∀ 𝑖 ≠ 𝑥0, 𝑥𝑔 . Then, ∀𝑗 ∈ 𝑋 ∶ 𝑑(𝑥0, 𝑗) = 1:

𝑤∞(𝑗) =(1+𝛾max
𝑘∈𝑋

𝑊∞(𝑗,𝑘)) = (1+𝛾𝑤∞(𝑥0)),
𝑤∞(𝑥0) =(1+ 𝑟 +𝛾max

𝑘∈𝑋
𝑤∞(𝑖,𝑘) = (1+ 𝑟 +𝛾𝑤∞(𝑗)).

(A.24)

Solving (A.24) for both weights we obtain

𝑤∞(𝑥0) =
1+ 𝑟 +𝛾
1−𝛾 2 , 𝑤∞(𝑗) =

1+𝛾(1+ 𝑟)
1−𝛾 2 . (A.25)

Therefore, 𝑟 > 0⇒ 𝑤∞(𝑥0) > 𝑤∞(𝑗)∀𝑗 ∶ 𝑑(𝑖, 𝑗) = 1. Then, for any 𝑘 ∈ 𝑋 1, 𝑘 ≠ 𝑥0,

𝑤∞(𝑘) = 1+𝛾max
𝑙∈𝑋

𝑊∞(𝑘, 𝑙) = 1+𝛾 +𝛾 2max𝑚∈𝑋 𝑊∞(𝑙,𝑚)

=... =
𝑑(𝑥0,𝑘)
∑
𝑎=1

𝛾𝑎−1 +𝛾𝑑(𝑥0,𝑘)𝑤∞(𝑖) =

=
𝑑(𝑥0,𝑘)
∑
𝑎=1

𝛾𝑎−1 + 𝛾𝑑(𝑥0,𝑘) (1+ 𝑟 +𝛾)
1−𝛾 2 = 1+𝛾 +𝛾𝑑(𝑥0,𝑘)𝑟

1−𝛾 2 ,

(A.26)

and the same holds for any 𝑘 ∈ 𝑋 2 with the distance 𝑑(𝑥𝑔 , 𝑘). Observe (A.26) yields an
explicit solution to the fixed point 𝑤∞ that satisfies the assumption in (A.22). From Propo-
sition 4.2, this is the only solution, thus (A.22) indeed holds for the fixed point and graphs
considered. Finally, by construction (A.26) guarantees that picking the neighbouring max-
imum weight 𝑤∞ from any 𝑣 ∈ 𝑋 leads to 𝑥0 (or 𝑥𝑔 ) through the minimum distance path,
i.e. 𝑤∞ ∈ 𝒲 ∗. □

Proposition 4.4. From Definition 4.2, if 𝑦 is the eigenvector of 𝑃0∞ corresponding to the
eigenvalue 1,

𝑃0∞𝑦 = 𝑦 ⇔ { (𝐼 −𝑇 )𝑃∇𝑤2∞
𝑦1 +𝑆𝑃∇𝑤1∞

𝑦2 = 𝑦1
𝑇𝑃∇𝑤2∞

)𝑦1 + (𝐼 − 𝑆)𝑃∇𝑤1∞
𝑦2 = 𝑦2. (A.27)

Recall Remark 4.5. Since we are considering the full doubled graph with |𝑋 | = 2|𝑋1| =
2|𝑋2| (that is, with all 𝑥𝑔1, 𝑥01, 𝑥𝑔2, 𝑥02 ∈ 𝑋 ), there are two vertices in the graph that are
effectively disconnected from the rest, namely 𝑥𝑔1 and 𝑥02. Therefore, 𝑦𝑡 (𝑥𝑔1 ) = 𝑦𝑡 (𝑥02 ) =
0 ∀𝑡. Similarly,

𝑥𝑔1, 𝑥02 ∉ (∪𝒫 (𝑥0, 𝑥𝑔)) ∪ (∪𝒫 (𝑥𝑔 , 𝑥0)) ⇒ 𝑦𝑥𝑔 1 = 𝑦𝑥02 = 0. (A.28)
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Let us focus on the first equality in (A.27). Recall 𝑦1𝑥0 = 𝑦2𝑥𝑔 =
1
2𝑘 and 𝑦1𝑥𝑔 = 𝑦2𝑥0 = 0. Let

us now verify that 𝑃∇𝑤1∞
𝑦2 = 𝑦2 for all vertices 𝑣 ≠ 𝑥0, 𝑥𝑔 . Recall from Definition 4.1 that

𝑃∇𝑤1∞
(𝑗, 𝑖) = 1

|𝑋 𝑜𝑢𝑡𝑖 | ∀𝑗 ∈ 𝑋
𝑜𝑢𝑡𝑖 . Then, for any 𝑣 ≠ 𝑥0, 𝑥𝑔 ,

(𝑃∇𝑤1∞
𝑦2)𝑣 = ∑

𝑗∈𝑋 𝑖𝑛𝑣

𝑦2𝑗
𝑚𝑜𝑢𝑡𝑗

. (A.29)

Substituting now 𝑦2𝑗 =
1
2𝑘 ∑𝑝∈𝒫 (𝑥𝑔 ,𝑗)∏𝑢∈𝑝⧵𝑗

1
𝑚𝑜𝑢𝑡𝑢

in (A.29):

∑
𝑗∈𝑋 𝑖𝑛𝑣

𝑦2𝑗
𝑚𝑜𝑢𝑡𝑗

= ∑
𝑗∈𝑋 𝑖𝑛𝑣

1
2𝑘 ( ∑

𝑝∈𝒫 (𝑥𝑔 ,𝑗)
∏
𝑢∈𝑝⧵𝑗

1
𝑚𝑜𝑢𝑡𝑢

) 1
𝑚𝑜𝑢𝑡𝑗

=

= 1
2𝑘 ∑

𝑗∈𝑋 𝑖𝑛𝑣

∑
𝑝∈𝒫 (𝑥𝑔 ,𝑗)

∏
𝑢∈𝑝

1
𝑚𝑜𝑢𝑡𝑢

.
(A.30)

Since all 𝑗 ∈ 𝑋 𝑖𝑛𝑣 lead to 𝑣 , (A.30) is simply

1
2𝑘 ∑

𝑗∈𝑋 𝑖𝑛𝑣

∑
𝑝∈𝒫 (𝑥𝑔 ,𝑗)

∏
𝑢∈𝑝

1
𝑚𝑜𝑢𝑡𝑢

= 1
2𝑘 ∑

𝑝∈𝒫 (𝑥𝑔 ,𝑣)
∏
𝑢∈𝑝⧵𝑣

1
𝑚𝑜𝑢𝑡𝑢

= 𝑦2𝑣 , (A.31)

and (𝑃∇𝑤1∞
𝑦2)𝑣 = 𝑦2𝑣 . Similarly,

(𝑃∇𝑤2∞
𝑦1)𝑣 = 𝑦1𝑣 ∀𝑣 ≠ 𝑥0, 𝑥𝑔 , (A.32)

and 𝑦1𝑥𝑔 = 0. Now observe

(𝑆𝑃∇𝑤1∞
𝑦2)𝑖 = { (𝑃∇𝑤1∞

𝑦2)𝑖 if 𝑖 = 𝑥0,
0 else. (A.33)

From Proposition 4.3, we know that 𝑤1∞(𝑥0) = max𝑗 𝑤∞(𝑗) ⇒ 𝑃∇𝑤1∞
(𝑥0, 𝑖) = 1 ∀ (𝑖𝑥0) ∈ ℰ .

Since all paths 𝑝 ∈ 𝒫 (𝑥𝑔 , 𝑥0) start and end at the same vertices and have the same length,
recall 1

𝑚𝑜𝑢𝑡𝑢
can be interpreted as the probability of moving out of 𝑢, therefore the product

Pr{𝑝} ∶=∏𝑢∈𝑝⧵𝑥0
1

𝑚𝑜𝑢𝑡𝑢
is the probability of following the entire path 𝑝, and it holds that

∑
𝑝∈𝒫 (𝑥𝑔 ,𝑥0)

∏
𝑢∈𝑝⧵𝑥0

1
𝑚𝑜𝑢𝑡𝑢

= ∑
𝑝∈𝒫 (𝑥𝑔 ,𝑥0)

Pr{𝑝} = 1, (A.34)
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Therefore, by making use of (A.34), we can compute (A.33):

(𝑆𝑃∇𝑤1∞
𝑦2)𝑥0 = ∑

𝑗∈𝑁 𝑖𝑛
𝑥0

𝑦2𝑗
𝑚𝑜𝑢𝑡𝑗

= ∑
𝑗∈𝑁 𝑖𝑛

𝑥0

1
2𝑘 ( ∑

𝑝∈𝒫 (𝑥𝑔 ,𝑗)
∏
𝑢∈𝑝⧵𝑗

1
𝑚𝑜𝑢𝑡𝑢

) 1
𝑚𝑜𝑢𝑡𝑗

=

= 1
2𝑘 ∑

𝑗∈𝑁 𝑖𝑛
𝑥0

∑
𝑝∈𝒫 (𝑥𝑔 ,𝑗)

∏
𝑢∈𝑝

1
𝑚𝑜𝑢𝑡𝑢

= 1
2𝑘 ∑

𝑝∈𝒫 (𝑥𝑔 ,𝑥0)
∏

𝑢∈𝑝⧵𝑥0
1

𝑚𝑜𝑢𝑡𝑢
= 1
2𝑘 = 𝑦1𝑥0 .

(A.35)

Finally, combining (A.32) and (A.35) we have

(𝐼 −𝑇 )𝑃∇𝑤2∞
𝑦1 +𝑆𝑃∇𝑤1∞

𝑦2 = 𝑦1, (A.36)

and analogously one can show that the same holds for the second equation in (A.27). There-
fore, 𝑃0∞𝑦 = 𝑦 . □

Theorem 4.3. Recall 𝑃(∞,𝜀) = (1− 𝜀)𝑃0∞ + 𝜀𝑃1∞. Additionally, from Corollary 4.1 and Propo-
sition 4.4,

𝑃(∞,𝜀)𝑦∞ = 𝑦∞, 𝑃0∞𝑦 = 𝑦.
Now let 𝐿 ∶= (𝐼 −𝑃0∞). Then, we can expand

𝑦∞ −𝑦 = 𝑃(∞,𝜀)𝑦∞ −𝑃0∞𝑦 = (1− 𝜀)𝑃0∞𝑦∞ + 𝜀(𝑃1∞𝑦∞ −𝑃0∞)𝑦 =
=𝑃0∞(𝑦∞ −𝑦)+ 𝜀(𝑃1∞ −𝑃0∞)𝑦∞ ⇒𝐿(𝑦∞ −𝑦) = 𝜀(𝑃1∞ −𝑃0∞)𝑦∞.

(A.37)

The null space of 𝐿 is given by 𝐿𝑏 = 0 ⟺ 𝑃0∞𝑏 = 𝑏, and byTheorem 2.4we know 𝑏 is unique,
therefore rank(𝐿) = |𝑋 |−1. But to solve the system of equations 𝐿(𝑦∞ −𝑦) = 𝜀(𝑃1∞ −𝑃0∞)𝑦∞,
𝐿 needs to be invertible. For this we can add the following additional equation: We know
it must hold that 1⊤(𝑦∞ −𝑦) = 0, and this equation is linearly independent from all rows in
𝐿 if and only if ∄𝑐 ∈ ℝ|𝑋 | that satisfies 𝐿𝑏 = 1. Let us show that there does not exist such a 𝑏
by contradiction. Assume ∃𝑏 ∶ 𝐿𝑏 = 1. Recall 𝒫 (𝑥0, 𝑥𝑔),𝒫 (𝑥𝑔 , 𝑥0) are the sets of optimal
paths between 𝑥0, 𝑥𝑔 and 𝑥𝑔 , 𝑥0, with 𝒫 (𝑥0, 𝑥𝑔) ∈ 𝒫 (𝑥0, 𝑥𝑔). Then, ∀𝑖1 ∈ 𝑋 𝑜𝑢𝑡

𝑥0 ,𝐿𝑥0𝑥0 =
𝐿𝑖1𝑖1 = 1, 𝐿𝑖1𝑥0 = − 1

𝑚𝑜𝑢𝑡
𝑥0

. Adding the rows of 𝐿 ∀𝑖1:

( ∑
𝑖1∈𝑋 𝑜𝑢𝑡

𝑥0

𝐿𝑖1)
𝑗

= {
1 if 𝑗 ∈ 𝑋 𝑜𝑢𝑡

𝑥0 ,
−1 if 𝑗 = 𝑥0,
0 else.

(A.38)

Now let ∪𝑖1𝑋 𝑜𝑢𝑡𝑖1 ∶= {𝑘 ∶ 𝑘 ∈ 𝑋 𝑜𝑢𝑡𝑖1 ∀𝑖1 ∈ 𝑋 𝑜𝑢𝑡
𝑥0 } be the set of all vertices at distance 2 from 𝑥0

when following optimal paths, and 𝑖2 ∈ ∪𝑖1𝑋 𝑜𝑢𝑡𝑖1 . Adding the rows of 𝐿 ∀𝑖2:

( ∑
𝑖2∈∪𝑖1𝑋 𝑜𝑢𝑡𝑖1

𝐿𝑖2)
𝑗

= {
1 if 𝑗 ∈ ∪𝑖1𝑋 𝑜𝑢𝑡𝑖1 ,
−1 if 𝑗 ∈ 𝑋 𝑜𝑢𝑡

𝑥0 ,
0 else.

(A.39)
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Now it is clear that adding (A.38) and (A.39):

( ∑
𝑖∈𝑋 𝑜𝑢𝑡

𝑥0

𝐿𝑖1 + ∑
𝑖2∈∪𝑖1𝑋 𝑜𝑢𝑡𝑖1

𝐿𝑖2)
𝑗

= {
1 if 𝑗 ∈ ∪𝑖1𝑋 𝑜𝑢𝑡𝑖1 ,
−1 if 𝑗 = 𝑥0,
0 else.

(A.40)

Extending the sum until vertex 𝑥𝑔 , we add rows ∀𝑖 ∈ ∪𝒫 (𝑥0, 𝑥𝑔):

( ∑
𝑖∈∪𝒫 (𝑥0,𝑥𝑔)⧵𝑥0

𝐿𝑖)
𝑗
= {

1 if 𝑗 = 𝑥𝑔 ,
−1 if𝑘 = 𝑥0,
0 else.

(A.41)

Analogously, considering the reverse paths 𝒫 (𝑥𝑔 , 𝑥0) one obtains

( ∑
𝑖∈∪𝒫 (𝑥𝑔 ,𝑥0)⧵𝑥𝑔

𝐿𝑖)
𝑗
= {

1 if 𝑗 = 𝑥0,
−1 if 𝑗 = 𝑥𝑔 ,
0 else.

(A.42)

Define𝑚 = |∪𝒫 (𝑥0, 𝑥𝑔)| = |∪𝒫 (𝑥𝑔 , 𝑥0)| as the number of vertices in all optimal paths, and
from (A.41) and (A.42) one obtains

∑
𝑖∈∪𝒫 (𝑥0,𝑥𝑔)⧵𝑥0

𝐿𝑖𝑐 = 𝑚−1, ∑
𝑗∈∪𝒫 (𝑥𝑔 ,𝑥0)⧵𝑥𝑔

𝐿𝑗𝑐 = 𝑚−1⇒ −𝑚 = 𝑚,

which is a contradiction. Then, ∄𝑏 ∶ 𝐿𝑏 = 1, and there is a row in 𝐿, 𝑃1∞ − 𝑃0∞ such that
replacing it (assuming it is the last row, without loss of generality) we obtain

�̃� ∶= (
𝐿1
...
1⊤

),𝑀𝑦∞ ∶= (
(𝑃1∞ −𝑃0∞)1𝑦∞...

0⊤
),

where rank(�̃�) = |𝑋 |. Now, observe

�̃�(𝑦∞ −𝑦) = 𝜀𝑀𝑦∞ ⇒𝑦∞ −𝑦 = 𝜀�̃�−1𝑀𝑦∞.

Finally, since ‖�̃�−1‖1 is bounded and does not depend on 𝜀 and ‖𝑀𝑦∞‖1 ≤ 2, ∃𝑐 ∈ ℝ≥0 and
𝑓 (𝜀) ∈ 𝒦∞ such that

‖𝑦∞ −𝑦‖1 ≤ 𝜀‖�̃�−1𝑀𝑦∞‖1 ≤ 𝜀𝑐 =∶ 𝑓 (𝜀). (A.43)

□

Chapter 5
Proposition 5.1. Consider first a deterministic MDP. In this case, 𝑃𝑥𝑦(𝑢) ∈ {0,1}, and

𝑄∗(𝑥,𝑢) = 𝑅(𝑥,𝑢)+𝛾𝔼𝑦∼𝑃(𝑥,𝑢,⋅) [max𝑣 𝑄∗(𝑦,𝑣)] = 𝑅(𝑥,𝑢)+𝛾max𝑣 𝑄∗(𝑥′, 𝑣)
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where 𝑥′ satisfies 𝑃(𝑥,𝑢,𝑥′) = 1. Then,

𝑄𝑡 →𝑄∗ 𝑎.𝑠.⇔ 𝑄𝑡 (𝑥,𝑢)−𝑄∗(𝑥,𝑢)→ 0 𝑎.𝑠. ∀𝑥 ∈ 𝑋 ,𝑢 ∈ 𝑈 .

Recalling the Q-learning iteration, ∀𝑥 ∈ 𝑋 ,𝑢 ∈ 𝑈 it holds a.s.:

lim𝑡→∞𝑄𝑡 (𝑥,𝑢) = 𝑄∗(𝑥,𝑢)⇔ lim𝑡→∞𝑄𝑡+1(𝑥,𝑢)−𝑄𝑡 (𝑥,𝑢) =

= 0⇔ lim𝑡→∞𝑄𝑡 (𝑥,𝑢)+𝛼𝑡
1
𝑛𝑥

(∑
𝑖∈𝑛𝑥

𝑅(𝑥,𝑢)+𝛾max𝑣 𝑄∗(𝑥′, 𝑣) −𝑄𝑡 (𝑥,𝑢))−𝑄𝑡 (𝑥,𝑢) = 0⇔

⇔ lim𝑡→∞
1
𝑛𝑥

(∑
𝑖∈𝑛𝑥

𝑅(𝑥,𝑢)+𝛾max𝑣 𝑄∗(𝑥′, 𝑣) −𝑄𝑡 (𝑥,𝑢)) = 0.
(A.44)

In a deterministic MDP for a fixed (𝑥,𝑢) there is a single state 𝑥′ in the possible transitions.
Therefore, 1

𝑛𝑥
∑𝑖∈𝑛𝑥 𝑅(𝑥,𝑢)+𝛾max𝑣 𝑄∗(𝑥′, 𝑣)−𝑄𝑡 (𝑥,𝑢)→0⇔ |𝑅(𝑥,𝑢)+𝛾max𝑣 𝑄∗(𝑥′, 𝑣)−

𝑄𝑡 (𝑥,𝑢)| → 0, and a.s.

lim𝑡→∞ |𝑅(𝑥,𝑢)+𝛾max𝑣 𝑄∗(𝑥′, 𝑣) −𝑄𝑡 (𝑥,𝑢)| = 0⇔ lim𝑡→∞𝐿(𝑡) = 0,

which happens almost surely.
For the stochastic transition MDP, lim𝑡→∞ �̂�𝑡 (𝑥,𝑢) = 𝑄∗(𝑥,𝑢) and for any 𝑖 ∈ 𝑁𝑥 with

observed transition (𝑥𝑖 ,𝑢𝑖 , 𝑦𝑖):

lim𝑡→∞𝑅(𝑥𝑖 ,𝑢𝑖) + 𝛾max𝑣 𝑄∗(𝑦𝑖 , 𝑣) −𝑄𝑡 (𝑥𝑖 ,𝑢𝑖) = 𝛾(𝔼𝑦∼𝑃(𝑥𝑖 ,𝑢𝑖 ,⋅)[max𝑣 𝑄∗(𝑦,𝑣)]−max𝑣 𝑄∗(𝑦𝑖 , 𝑣)).

Finally, from Assumption 5.2, all (𝑥,𝑢) are visited infinitely often. Therefore,

‖‖‖(max𝑣 𝑄∗(𝑦𝑖 , 𝑣) −𝔼𝑦∼𝑃(𝑥𝑖 ,𝑢𝑖 ,⋅)max𝑣 𝑄∗(𝑦,𝑣))‖‖‖∞
=∶ 𝑙∗,

and therefore lim𝑡→∞ 𝐿(𝑡) ≤ 𝑙∗ a.s. □

Theorem 5.1. We show this by contradiction. Assume first that ∃𝑡0 such that a communi-
cation event is never triggered for 𝑡 > 𝑡0. Then, for any agent 𝑖 ∈ 𝑁 it holds that

||𝑅(𝑥𝑖 ,𝑢𝑖) + 𝛾max𝑣 𝑄𝑡 (𝑦𝑖 , 𝑣) −𝑄𝑡 (𝑥𝑖 ,𝑢𝑖)|| <max{𝜌𝐿𝑖(𝑡), 𝜖}.

Take first max{𝛽𝐿𝑖(𝑡), 𝜖𝜒 } = 𝜖𝜒 . This implies the desired result, |𝑅(𝑥𝑖 ,𝑢𝑖)+𝛾max𝑣 𝑄𝑡 (𝑦𝑖 , 𝑣)−
𝑄𝑡 (𝑥𝑖 ,𝑢𝑖)| < 𝜖𝜒 .

Now take max{𝛽𝐿𝑖(𝑡), 𝜖𝜒 } = 𝛽𝐿𝑖(𝑡) ⇒ |𝑅(𝑥𝑖 ,𝑢𝑖) + 𝛾max𝑣 𝑄𝑡 (𝑦𝑖 , 𝑣) − 𝑄𝑡 (𝑥𝑖 ,𝑢𝑖)| < 𝛽𝐿𝑖(𝑡),
and observe 𝐿𝑖(𝑡 + 1) ≤ (1 − 𝛽(1 − 𝛽))𝐿𝑖(𝑡). Therefore, ∃𝑡𝜖 ≥ 𝑡0 ∶ 𝐿𝑖(𝑡𝜖) < 𝜖𝜒 ⇒ ||𝑅(𝑥𝑖 ,𝑢𝑖) +
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𝛾max𝑣 𝑄𝑡 (𝑦𝑖 , 𝑣) −𝑄𝑡 (𝑥𝑖 ,𝑢𝑖)|| < 𝜖𝜒 , and ∀(𝑥,𝑢), 𝑡 > 𝑡𝜖 :
||𝑅(𝑥,𝑢)+𝛾max𝑣 𝑄𝑡 (𝑦,𝑣)−𝑄𝑡 (𝑥,𝑢)|| ≤ 𝜖𝜒 ⇒

⇒||𝑄∗(𝑥,𝑢)−𝑄𝑡 (𝑥,𝑢)+𝛾 (max𝑣 𝑄𝑡 (𝑦,𝑣)−max𝑣 𝑄∗(𝑦,𝑣)) || ≤ 𝜖𝜒 ⇒

⇒||𝑄∗(𝑥,𝑢)−𝑄𝑡 (𝑥,𝑢)|| ≤ 𝜖𝜒 +𝛾max𝑣
||𝑄𝑡 (𝑦,𝑣)−𝑄∗(𝑦,𝑣)|| ≤ 𝜖𝜒 +𝛾‖𝑄𝑡 −𝑄∗‖∞ ⇒

⇒‖𝑄∗ −𝑄𝑡 ‖∞ ≤ 𝜖𝜒 +𝛾‖𝑄𝑡 −𝑄∗‖∞ ≤ 𝜖𝜒
1−𝛾 .

(A.45)

Furthermore, it follows from (5.3) that no samples are transmitted for 𝑡 > 𝑡𝜖 , therefore 𝑄𝑡
has converged for 𝑡 > 𝑡𝜖 to some 𝑄𝜖 . Therefore, lim𝑡→∞ ‖𝑄∗ −𝑄𝑡 ‖∞ = ‖𝑄∗ −𝑄𝜖 ‖∞ ≤ 𝜖𝜒

1−𝛾 .
Now assume that communication events happen infinitely often after some 𝑡0. Since

all pairs (𝑥,𝑢) are visited infinitely often and the MDP is deterministic, we have

‖𝐻(𝑄𝑡+1)(𝑥,𝑢)−𝑄𝑡+1(𝑥,𝑢)‖∞ =
=‖‖‖𝑅(𝑥,𝑢)+𝛾max𝑣 𝑄𝑡+1(𝑦,𝑣)−𝑄𝑡 (𝑥,𝑢)−𝛼𝑡(𝑅(𝑥,𝑢)+𝛾max𝑣 𝑄𝑡 (𝑦,𝑣)−𝑄𝑡 (𝑥,𝑢))‖‖‖∞

≤

≤‖(1−𝛼𝑡 )(𝑅(𝑥,𝑢)−𝑄𝑡 (𝑥,𝑢))+𝛾max𝑣 (𝑄𝑡 (𝑦,𝑣)+𝛼𝑡(𝑅(𝑦,𝑣)+𝛾max𝑣′ 𝑄𝑡 (𝑦′, 𝑣′) −𝑄𝑡 (𝑦,𝑣)))−
−𝛼𝑡𝛾max𝑣 𝑄𝑡 (𝑦,𝑣)‖∞ = ‖(1−𝛼𝑡 )(𝑅(𝑥,𝑢)−𝑄𝑡 (𝑥,𝑢)+𝛾max𝑣 𝑄𝑡 (𝑦,𝑣))+
+𝛾𝛼𝑡 max𝑣 (𝑅(𝑦,𝑣)+𝛾max𝑣′ 𝑄𝑡 (𝑦′, 𝑣′) −𝑄𝑡 (𝑦,𝑣))‖∞ ≤
≤(1−𝛼𝑡 )‖𝑅(𝑥,𝑢)−𝑄𝑡 (𝑥,𝑢)+𝛾max𝑣 𝑄𝑡 (𝑦,𝑣)‖∞ +𝛾𝛼𝑡 ‖𝑅(𝑦,𝑣)+𝛾max𝑣′ 𝑄𝑡 (𝑦′, 𝑣′) −𝑄𝑡 (𝑦,𝑣)‖∞ ≤
≤(1−𝛼𝑡 (1−𝛾))‖𝑅(𝑥,𝑢)−𝑄𝑡 (𝑥,𝑢)+𝛾max𝑣 𝑄𝑡 (𝑦,𝑣)‖∞ =
=(1−𝛼𝑡 (1−𝛾))‖𝐻(𝑄𝑡 )(𝑥,𝑢)−𝑄𝑡 (𝑥,𝑢)‖∞.
Therefore, lim𝑡→∞ ‖‖𝐻(𝑄𝑡 )(𝑥,𝑢)−𝑄𝑡 (𝑥,𝑢)‖∞ = 0, which implies no samples are transmitted
as 𝑡 →∞ and contradicts the infinitely often assumption. From (A.45), lim𝑡→∞ ‖𝑄∗−𝑄𝑡 ‖∞ ≤𝜖𝜒
1−𝛾 . □

Lemma 5.1. Take any ̂𝑃 ∈ 𝒫𝑃 . By the law of total expectation and making use of Pr[ ̂𝑃] =
𝜇𝑃 ( ̂𝑃), it follows that 𝔼[𝐻 ̂𝑃 (𝑄𝑡 ) ∣ ℱ𝑡 , ̂𝑃] = ∑ ̂𝑃∈𝒫𝑃

𝜇𝑃 ( ̂𝑃)𝐻 ̂𝑃 (𝑄𝑡 )(𝑥,𝑢) ≡ 𝐻 ̃𝑃 (𝑄𝑡 ). To show that
�̃� is a fixed point, observe we can write

∑
̂𝑃∈𝒫𝑃

𝜇𝑃 ( ̂𝑃)∑
𝑦

̂𝑃 (𝑥,𝑢,𝑦)(𝑅(𝑥,𝑢)+𝛾max𝑣 �̃�(𝑦,𝑣)) =

=∑
𝑦
(∑

̂𝑃
𝜇𝑃 ( ̂𝑃) ̂𝑃(𝑥,𝑢,𝑦))(𝑅(𝑥,𝑢)+𝛾max𝑣 �̃�(𝑦,𝑣)) =

=∑
𝑦

̃𝑃 (𝑥,𝑢,𝑦)(𝑅(𝑥,𝑢)+𝛾max𝑣 �̃�(𝑦,𝑣)) .
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□

Theorem 5.2. Define 𝜉𝑡 (𝑥,𝑢) ∶= 𝑄𝑡 (𝑥,𝑢)−�̃�(𝑥,𝑢). Then, the iteration (2.1) applied at every
time step is 𝜉𝑡+1(𝑥,𝑢) = (1−𝛼𝑡 )𝜉𝑡 (𝑥,𝑢) +𝛼𝑡 (𝑅(𝑥,𝑢) + 𝛾max𝑣 𝑄𝑡 (𝑦,𝑣) − �̃�(𝑥,𝑢)). Now, from
Lemma 5.1,

‖𝔼[𝑅(𝑥,𝑢)+𝛾max𝑣 𝑄𝑡 (𝑦,𝑣)− �̃�(𝑥,𝑢) ∣ ℱ𝑡] ‖∞ =
=‖�̃� (𝑄𝑡+1)(𝑥,𝑢)− �̃� (�̃�)(𝑥,𝑢)‖∞ =
=𝛾‖ ̃𝑃(𝑥,𝑢,𝑦)(max𝑣 𝑄𝑡 (𝑦,𝑣)−max𝑣 �̃�(𝑦,𝑣))‖∞ ≤
≤𝛾‖ ̃𝑃(𝑥,𝑢,𝑦)‖∞‖𝑄𝑡 − �̃�|‖∞ ≤ 𝛾‖𝜉𝑡 (𝑥,𝑢)|‖∞.

Therefore, the expected value of the operator �̃� is a 𝛾 -contraction in the sup-norm, with
fixed point �̃�, and it follows that ‖𝜉𝑡 (𝑥,𝑢)‖∞ →0 a.s. □

Corollary 5.1. Recall 𝐻 ̃𝑃 (�̃�) = �̃� and 𝐻𝑃 (𝑄∗) = 𝑄∗. Then,

‖𝑄∗ − �̃�‖∞ = ‖𝐻𝑃 (𝑄∗) −𝐻 ̃𝑃 (�̃�)‖∞ =
=‖∑

𝑦
𝑃(𝑥,𝑢,𝑦)(𝑅(𝑥,𝑢)+𝛾max𝑣 𝑄∗(𝑦,𝑣))− ̃𝑃(𝑥,𝑢,𝑦)(𝑅(𝑥,𝑢)+𝛾max𝑣 �̃�(𝑦,𝑣))‖∞ =

=𝛾
‖‖‖‖
∑
𝑦
𝑃(𝑥,𝑢,𝑦)max𝑣 𝑄∗(𝑦,𝑣)− ̃𝑃(𝑥,𝑢,𝑦)max𝑣 �̃�(𝑦,𝑣)

‖‖‖‖∞
.

(A.46)

Define 𝛿𝑃 ∶= ̃𝑃 −𝑃 and substitute in (A.46):

‖𝑄∗ − �̃�‖∞ = 𝛾‖∑
𝑦
𝑃(𝑥,𝑢,𝑦)(max𝑣 𝑄∗(𝑦,𝑣)−max𝑣 �̃�(𝑦,𝑣))−𝛿𝑃(𝑥,𝑢,𝑦)max𝑣 �̃�(𝑦,𝑣)‖∞ ≤

≤𝛾‖∑
𝑦
𝑃(𝑥,𝑢,𝑦)max𝑣 |𝑄∗(𝑦,𝑣)− �̃�(𝑦,𝑣)|‖∞ +𝛾‖𝛿𝑃(𝑥,𝑢,𝑦)max𝑣 �̃�(𝑦,𝑣)‖∞.

(A.47)
Finally, observe ‖∑𝑦 𝑃(𝑥,𝑢,𝑦)max𝑣 |𝑄∗(𝑦,𝑣)−�̃�(𝑦,𝑣)|‖∞ ≤ 𝛾‖𝑄∗ −�̃�‖∞. Additionally, since
the reward functions are bounded, for a discount rate 𝛾 ∈ (0,1) the values of �̃�(𝑥,𝑢) ≤ 𝑐
are also bounded for some constant 𝑐 ∈ ℝ≥0. Therefore,

‖𝑄∗ − �̃�‖∞ ≤𝛾‖𝑄∗ − �̃�‖∞ +𝛾‖𝛿𝑃(𝑥,𝑢,𝑦)‖∞‖�̃�‖∞ ≤
≤𝛾‖𝑄∗ − �̃�‖∞ +𝑐𝛾‖𝛿𝑃(𝑥,𝑢,𝑦)‖∞ ⇒ ‖𝑄∗ − �̃�‖∞ ≤ 𝑓 (‖𝑃 − ̃𝑃‖∞) ,

(A.48)

with 𝑓 (‖𝑃 − ̃𝑃‖∞) ∶= 𝑐 𝛾
1−𝛾 ‖𝑃 − ̃𝑃‖∞. □

Chapter 6
Proposition 6.1. Properties (6.2) and (6.3) hold by construction. First, all agents update
their own �̂�𝑡 (𝑖) based on the received communication, therefore all have the same last-
known state. Second, whenever the condition ‖𝑥𝑡 (𝑖) − �̂�𝑡−1(𝑖)‖∞ > Γ𝜀(�̂�) is violated, agent
𝑖 transmits the new state measurement to others, and �̂�𝑡 is updated. Therefore ‖𝑥𝑡 − �̂�𝑡 ‖∞ >
Γ𝜀(�̂�𝑡 ) holds for all times. □
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Theorem 6.1. From Proposition 6.1, ‖𝑥𝑡 − �̂�𝑡 ‖∞ ≤ Γ𝜀(�̂�𝑡 )∀𝑡 , and recalling the expression for
the optimal 𝑄 values:

𝑄∗(𝑥𝑡 ,𝜋 ∗(�̂�𝑡 )) = 𝔼[�̂�𝑡 +𝛾𝑉 ∗(𝑥𝑡+1) ∣ 𝑥𝑡 ] ≥ 𝑉 ∗(𝑥𝑡 ) − 𝜀. (A.49)

Now let �̂� (𝑥0) ∶= 𝔼[∑∞
𝑡=0 𝛾 𝑡 ̂𝑟𝑡 ∣ 𝑥0] be the value of the policy obtained from executing the

actions 𝜋 ∗(�̂�𝑡 ). Then:

𝔼[
∞
∑
𝑡=0

𝛾 𝑡 �̂�𝑡 ∣ 𝑥0] = 𝔼[ ̂𝑟0 +𝛾𝑉 �̂� (𝑥1) ∣ 𝑥0] =

=𝔼[�̂�0 +𝛾�̂� (𝑥1) + 𝛾𝑉 ∗(𝑥1) − 𝛾𝑉 ∗(𝑥1) ∣ 𝑥0] =
=𝔼[�̂�0 +𝛾𝑉 ∗(𝑥1) ∣ 𝑥0] + 𝛾𝔼[�̂� (𝑥1) −𝑉 ∗(𝑥1 ∣ 𝑥0].

(A.50)

Then, substituting (A.49) in (A.50):

𝔼[
∞
∑
𝑡=0

𝛾 𝑡 �̂�𝑡 ∣ 𝑥0] ≥𝑉 ∗(𝑥0) − 𝜀 +𝛾𝔼[�̂� (𝑥1) −𝑉 ∗(𝑥1) ∣ 𝑥0]. (A.51)

Now, observe we can apply the same principle as in (A.50) for the last term in (A.51),

�̂� (𝑥1) −𝑉 ∗(𝑥1) = 𝔼[�̂�1 +𝛾�̂� (𝑥2) ∣ 𝑥1] −𝑉 ∗(𝑥1) =
= 𝑄∗(𝑥1,𝜋 ∗(�̂�1)) + 𝛾𝔼[�̂� (𝑥2) −𝑉 ∗(𝑥2) ∣ 𝑥1] −𝑉 ∗(𝑥1) ≥
≥ 𝑉 ∗(𝑥1) − 𝜀 −𝑉 ∗(𝑥1) + 𝛾𝔼[�̂� (𝑥2) −𝑉 ∗(𝑥2) ∣ 𝑥1] =
= −𝜀 +𝛾𝔼[�̂� (𝑥2) −𝑉 ∗(𝑥2) ∣ 𝑥1].

(A.52)

Substituting (A.52) in (A.51):

𝔼[
∞
∑
𝑡=0

𝛾 𝑡 �̂�𝑡 ∣ 𝑥0] ≥ 𝑉 ∗(𝑥0) − 𝜀 −𝛾𝜀 +𝛾 2𝔼[𝔼[�̂� (𝑥2) −𝑉 ∗(𝑥2) ∣ 𝑥1] ∣ 𝑥0]. (A.53)

Now it is clear that, applying (A.52) recursively:

𝔼[
∞
∑
𝑡=0

𝛾 𝑡 �̂�𝑡 ∣ 𝑥0] ≥ 𝑉 ∗(𝑥0) − 𝜀 −𝛾𝜀 +𝛾 2𝔼[𝔼[�̂� (𝑥2) −𝑉 ∗(𝑥2) ∣ 𝑥1] ∣ 𝑥0] ≥

≥𝑉 ∗(𝑥0) − 𝜀
∞
∑
𝑘=0

𝛾𝑘 .
(A.54)

Substituting ∑∞
𝑘=0 𝛾𝑘 =

𝛾
1−𝛾 in (A.54):

𝔼[
∞
∑
𝑡=0

𝛾 𝑡 �̂�𝑡 ∣ 𝑥0] ≥ 𝑉 ∗(𝑥0) − 𝜀
𝛾

1−𝛾 .

□
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Corollary 6.1. Take expression (6.6), and consider the action sequence executed by the
agents to be {�̂�𝑡 }∞𝑡=0. We can bound the total expectation of the sum of rewards by con-
sidering {�̂�𝑡 }∞𝑡=0 to be a sequence of random variables that produce 𝑄∗(𝑥𝑡 , �̂�𝑡 ) ≥ 𝑉 ∗(𝑥𝑡 ) − 𝜀
with probability 1− 𝜖 (𝑠∗), and 𝑄∗(𝑥𝑡 , �̂�𝑡 ) ≥ 𝑉 ∗(𝑥𝑡 ) − 𝜄 with probability 𝜖 (𝑠∗). Then,

𝔼[
∞
∑
𝑡=0

𝛾 𝑡 �̂�𝑡 ∣ 𝑥0] = 𝔼[𝔼[
∞
∑
𝑡=0

𝛾 𝑡 �̂�𝑡 |{�̂�𝑡 },𝑥0]] = 𝔼[𝔼[�̂�0 +𝛾�̂� (𝑥1)|{�̂�𝑡 },𝑥0]] =

=𝔼[𝔼[�̂�0 +𝛾𝑉 ∗(𝑥1)|{�̂�𝑡 } ∣ 𝑥0] + 𝛾𝔼[�̂� (𝑥1) −𝑉 ∗(𝑥1)|{�̂�𝑡 },𝑥0]].
(A.55)

Observe now, for the first term in (A.55):

𝔼[𝔼[�̂�0 +𝛾𝑉 ∗(𝑥1)|{�̂�𝑡 },𝑥0]] ≥ (1− 𝜖 (𝑠∗))(𝑉 ∗(𝑥0) − 𝜀)+
+𝜖 (𝑠∗) (𝑉 ∗(𝑥0) − 𝜄) = 𝑉 ∗(𝑥0) − 𝜀 − ̄𝜖 (𝑠∗) (𝜄 − 𝜀). (A.56)

Take the second term in (A.55), and ∀𝑥1 ∈ 𝑋 given actions {�̂�𝑡 } it holds:
𝔼[�̂� (𝑥1) −𝑉 ∗(𝑥1) ∣ {�̂�𝑡 }] ≥ 𝔼[�̂�1 +𝛾𝑉 ∗(𝑥2) + 𝛾(�̂� (𝑥2)) −𝑉 ∗(𝑥2))−
−𝑉 ∗(𝑥1) ∣ {�̂�𝑡 }] ≥ −𝜀 − 𝜖 (𝑠∗) (𝜄 −𝛼)+𝛾𝔼[�̂� (𝑥2) −𝑉 ∗(𝑥2)].

Therefore, we can write

𝛾𝔼[𝔼𝑥0[�̂� (𝑥1) −𝑉 ∗(𝑥1) ∣ {�̂�𝑡 }]] = 𝛾𝔼[𝔼[�̂� (𝑥1) −𝑉 ∗(𝑥1) ∣ {�̂�𝑡 }] ∣ 𝑥0] ≥
≥ 𝛾 (−𝜀 − 𝜖 (𝑠∗) (𝜄 − 𝜀)+ 𝛾𝔼[𝔼[�̂� (𝑥2) −𝑉 ∗(𝑥2)] ∣ 𝑥0])

(A.57)

Finally, substituting (A.56) and (A.57) in (A.55):

𝔼[
∞
∑
𝑡=0

𝛾 𝑡 �̂�𝑡 ∣ 𝑥0] ≥ 𝑉 ∗(𝑥0) − (𝜀 + 𝜖 (𝑠∗) (𝜄 − 𝜀))
𝛾

1−𝛾 . (A.58)

□

Chapter 7
Proposition 7.1. If a policy 𝜋 ∈ Π is a fixed point of the operator ⟨⋅,𝑇 ⟩, then it holds that
⟨𝜋,𝑇 ⟩ = 𝜋 . Therefore, one can compute the robustness of the policy 𝜋 to obtain 𝜌(𝜋,𝑇 ) =
𝐽 (𝜋)− 𝐽 (⟨𝜋,𝑇 ⟩) = 𝐽 (𝜋)− 𝐽 (𝜋) = 0 ⟹ 𝜋 ∈ Π0. Therefore, Π𝑇 ⊆ Π0.

For a discrete state and action spaces, the space of stochastic kernels 𝒦 ∶ 𝑋 ↦ Δ(𝑋)
is equivalent to the space of row-stochastic |𝑋 | × |𝑋 | matrices, therefore one can write
𝑇(𝑦 ∣ 𝑥) ≡ 𝑇𝑥𝑦 as the 𝑥𝑦−th entry of the matrix 𝑇 . Then, the representation of a constant
policy as an 𝑋 ×𝑈 matrix can be written as 𝜋 = 1|𝑋 |𝑣⊤, where 𝑣 ∈ Δ(𝑈 ) is any probability
distribution over the action space. Observe that, applying the operator ⟨𝜋,𝑇 ⟩ to a constant
policy yields:

⟨𝜋,𝑇 ⟩ = 𝑇1|𝑋 |𝑣⊤. (A.59)
Matrix 𝑇 is row-stochastic, and by the Perron-Frobenius Theorem [173] it has at least
one eigenvalue eig(𝑇 ) = 1, and this admits a (strictly positive) eigenvector 𝑇1|𝑋 | = 1|𝑋 |.
Therefore, substituting this in (A.59):

⟨𝜋,𝑇 ⟩ = 𝑇1|𝑋 |𝑣⊤ = 1|𝑋 |𝑣⊤ = 𝜋 ⟹ Π ⊆ Π𝑇 .
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□

Proposition 7.2. Recall the definition in (7.1) and that the noise disadvantage function of
a policy 𝜋 is given by (7.3). We want to show that 𝐷𝜋 (𝑥,𝑇 ) = 0 ⟹ 𝜌(𝜋,𝑇 ) = 0. Taking
𝐷𝜋 (𝑥,𝑇 ) = 0 one has a policy that produces an disadvantage of zero when noise kernel 𝑇
is applied. Then,

𝐷𝜋 (𝑥,𝑇 ) = 0 ⟹ 𝔼𝑢∼⟨𝜋,𝑇 ⟩(𝑥)[𝑄𝜋 (𝑥,𝑢)] = 𝑉 𝜋 (𝑥) ∀𝑥 ∈ 𝑋 . (A.60)

Now define the value of the disturbed policy

𝑉 ⟨𝜋,𝑇 ⟩(𝑥0) ∶= 𝔼 𝑢𝑘∼⟨𝜋,𝑇 ⟩(𝑥𝑘),
𝑥𝑘+1∼𝑃(⋅∣𝑥𝑘 ,𝑢𝑘)

[
∞
∑
𝑘=0

𝛾𝑘𝑅(𝑥𝑘 ,𝑢𝑘)] ,

and take:
𝑉 ⟨𝜋,𝑇 ⟩(𝑥) = 𝔼𝑢∼⟨𝜋,𝑇 ⟩(𝑥),

𝑦∼𝑃(⋅∣𝑥,𝑢)
[𝑅(𝑥,𝑢,𝑦)+ 𝛾𝑉 ⟨𝜋,𝑇 ⟩(𝑦)] .

Wewill now show that𝑉 𝜋 (𝑥) = 𝑉 ⟨𝜋,𝑇 ⟩(𝑥), for all 𝑥 ∈𝑋 . Observe, from (A.60) using𝑉 𝜋 (𝑥) =
𝔼𝑢∼⟨𝜋,𝑇 ⟩(𝑥)[𝑄𝜋 (𝑥,𝑢)], we have ∀𝑥 ∈ 𝑋 :

𝑉 𝜋 (𝑥)−𝑉 ⟨𝜋,𝑇 ⟩(𝑥) =
=𝔼𝑢∼⟨𝜋,𝑇 ⟩(𝑥)[𝑄𝜋 (𝑥,𝑢)] −𝔼𝑢∼⟨𝜋,𝑇 ⟩(𝑥)

𝑦∼𝑃(⋅∣𝑥,𝑢)
[𝑅(𝑥,𝑢,𝑦)+ 𝛾𝑉 ⟨𝜋,𝑇 ⟩(𝑦)]

=𝔼𝑢∼⟨𝜋,𝑇 ⟩(𝑥)
𝑦∼𝑃(⋅∣𝑥,𝑢)

[𝑅(𝑥,𝑢,𝑦)+ 𝛾𝑉 𝜋 (𝑦)−𝑅(𝑥,𝑢,𝑦)− 𝛾𝑉 ⟨𝜋,𝑇 ⟩(𝑦)]

=𝛾𝔼𝑦∼𝑃(⋅∣𝑥,𝑢) [𝑉 𝜋 (𝑦)−𝑉 ⟨𝜋,𝑇 ⟩(𝑦)] .

(A.61)

Now, taking the sup norm at both sides of (A.61) we get

‖𝑉 𝜋 (𝑥)−𝑉 ⟨𝜋,𝑇 ⟩(𝑥)‖∞ = 𝛾 ‖‖𝔼𝑦∼𝑃(⋅∣𝑥,𝑢) [𝑉 𝜋 (𝑦)−𝑉 ⟨𝜋,𝑇 ⟩(𝑦)]‖‖∞ . (A.62)

Observe that for the right hand side of (A.62), we have ‖‖𝔼𝑦∼𝑃(⋅∣𝑥,𝑢) [𝑉 𝜋 (𝑦)−𝑉 ⟨𝜋,𝑇 ⟩(𝑦)]‖‖∞ ≤
‖𝑉 𝜋 (𝑥)−𝑉 ⟨𝜋,𝑇 ⟩(𝑥)‖∞. Therefore, since 𝛾 < 1,

‖𝑉 𝜋 (𝑥)−𝑉 ⟨𝜋,𝑇 ⟩(𝑥)‖∞ ≤ 𝛾‖𝑉 𝜋 (𝑥)−𝑉 ⟨𝜋,𝑇 ⟩(𝑥)‖∞ ⟹
⟹‖𝑉 𝜋 (𝑥)−𝑉 ⟨𝜋,𝑇 ⟩(𝑥)‖∞ = 0.

Finally, ‖𝑉 𝜋 (𝑥)−𝑉 ⟨𝜋,𝑇 ⟩(𝑥)‖∞ = 0 ⟹ 𝑉 𝜋 (𝑥)−𝑉 ⟨𝜋,𝑇 ⟩(𝑥) = 0 ∀𝑥 ∈𝑋 , and𝑉 𝜋 (𝑥)−𝑉 ⟨𝜋,𝑇 ⟩(𝑥) =
0∀𝑥 ∈ 𝑋 ⟹ 𝐽(𝜋) = 𝐽 (⟨𝜋,𝑇 ⟩) ⟹ 𝜌(𝜋,𝑇 ) = 0. □

Inclusion Theorem 7.1. Combining Proposition 7.1 and Proposition 7.2, we simply need to
show that Π𝑇 ⊂ Π𝐷 . Take 𝜋 to be a fixed point of ⟨𝜋,𝑇 ⟩. Then ⟨𝜋,𝑇 ⟩ = 𝜋 , and from the
definition in (7.3):

𝐷𝜋 (𝑥,𝑇 ) =𝑉 𝜋 (𝑥)−𝔼𝑢∼⟨𝜋,𝑇 ⟩(𝑥,⋅)[𝑄𝜋 (𝑥,𝑢)] = 𝑉 𝜋 (𝑥)−𝔼𝑢∼𝜋(𝑥,⋅)[𝑄𝜋 (𝑥,𝑢)] =
=𝑉 𝜋 (𝑥)−𝑉 𝜋 (𝑥) = 0.
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Therefore, 𝜋 ∈ Π𝐷 , which completes the inclusions.
To show convexity of Π,Π𝑇 , first for a constant policy 𝜋 ∈ Π, recall that we can write

𝜋 = 1𝑣⊤, where 𝑣 ∈ Δ(𝑈 ) is any probability distribution over the action space. Now take
𝜋1,𝜋2 ∈ Π. For any 𝛼 ∈ [0,1], 𝛼𝜋1 +(1−𝛼)𝜋2 = 𝛼1𝑣⊤1 +(1−𝛼)1𝑣⊤2 = 1(𝛼𝑣1 +(1−𝛼)𝑣2)⊤ ∈ Π.

Finally, for the set Π𝑇 , assume there exist two different policies 𝜋1,𝜋2 both fixed points
of ⟨⋅,𝑇 ⟩. Then, for any 𝛼 ∈ [0,1], ⟨(𝛼𝜋1+(1−𝛼)𝜋2),𝑇 ⟩ = 𝛼𝑇𝜋1+(1−𝛼)𝑇𝜋2 = 𝛼𝜋1+(1−𝛼)𝜋2.
Therefore, any affine combination of fixed points is also a fixed point. □

Corollary 7.1. For statement (i), let 𝑅(⋅, ⋅, ⋅) = 𝑐 for some constant 𝑐 ∈ ℝ. Then, 𝐽 (𝜋) =
𝔼𝑥0∼𝜇0[∑𝑡 𝛾 𝑡𝑅𝑡 ∣ 𝜋] =

𝑐𝛾
1−𝛾 , which does not depend on the policy 𝜋 . For any noise kernel 𝑇

and policy 𝜋 , 𝐽 (𝜋)− 𝐽 ⟨𝜋,𝑇 ⟩ = 0 ⟹ 𝜋 ∈ Π0.
For statement (ii) assume ∃𝜋 ∈ Π0 ∶ 𝜋 ∉ Π𝑇 . Then, ∃𝑥∗ ∈ 𝑋 and 𝑢∗ ∈ 𝑈 such that

𝜋(𝑥∗,𝑢∗) ≠ ⟨𝜋,𝑇 ⟩(𝑥∗,𝑢∗). Let:

𝑅(𝑥,𝑢,𝑥′) ∶= {𝑐 if 𝑥 = 𝑥∗ and 𝑢 = 𝑢∗
0 otherwise

.

Then, 𝔼[𝑅(𝑥,𝜋(𝑥),𝑥′] < 𝔼[𝑅(𝑥, ⟨𝜋,𝑇 ⟩(𝑥),𝑥′] and since the MDP is ergodic 𝑥 is visited in-
finitely often and

𝐽 (𝜋)− 𝐽 (⟨𝜋,𝑇 ⟩) > 0 ⟹ 𝜋 ∉ Π0,
which contradicts the assumption. Therefore, Π0 ⧵Π𝑇 = ∅ ⟹ Π0 = Π𝑇 . □

Lemma 7.1. We use standard results on stochastic approximation with non-expansive op-
erators, specifically Theorem 2.3 [91]. First, observe that for a fully parameterised policy,
one can assume to have a tabular representation such that 𝜋𝜃 (𝑥,𝑢) = 𝜃𝑥𝑢 , and ∇𝜃𝜋𝜃 (𝑥) ≡ Id.
We can then write the stochastic gradient descent problem in terms of the policy. Let
𝑦 ∼ ̃𝑇 (⋅ ∣ 𝑥). Then:

𝜋𝑡+1(𝑥) =𝜋𝑡 (𝑥)−𝛼𝑡(𝜋𝑡 (𝑥)−𝜋𝑡 (𝑦)) =
=𝜋𝑡 (𝑥)−𝛼𝑡(𝜋𝑡 (𝑥)− ⟨𝜋𝑡 , ̃𝑇 ⟩(𝑥)− (𝜋𝑡 (𝑦)− ⟨𝜋𝑡 , ̃𝑇 ⟩(𝑥))).

We now need to verify that the necessary conditions for applying Theorem 2.3 hold. First,
𝛼𝑡 satisfies Assumption 2.2. Second, making use of the property ‖ ̃𝑇 ‖∞ = 1 for any row-
stochastic matrix ̃𝑇 , for any two policies 𝜋1,𝜋2 ∈ Π:

‖⟨𝜋1, ̃𝑇 ⟩ − ⟨𝜋2, ̃𝑇 ⟩‖∞ =‖ ̃𝑇𝜋1 − ̃𝑇𝜋2‖∞ = ‖ ̃𝑇 (𝜋1 −𝜋2)‖∞ ≤
≤‖ ̃𝑇 ‖∞‖𝜋1 −𝜋2‖∞ = ‖𝜋1 −𝜋2‖∞.

Therefore, the operator ⟨⋅, ̃𝑇 ⟩ is non-expansive with respect to the sup-norm. For the final
condition, we have

𝔼𝑦∼ ̃𝑇 (⋅∣𝑥) [𝜋𝑡 (𝑦)− ⟨𝜋𝑡 , ̃𝑇 ⟩(𝑥) ∣ 𝜋𝑡 , ̃𝑇 ] = ∑
𝑦∈𝑋

̃𝑇 (𝑦 ∣ 𝑥)𝜋𝑡 (𝑦)− ⟨𝜋𝑡 , ̃𝑇 ⟩(𝑥) = 0.

Therefore, the difference 𝜋𝑡 (𝑦) − ⟨𝜋𝑡 , ̃𝑇 ⟩(𝑥) is a martingale difference for all 𝑥 . One can
then apply Theorem 2.3 with 𝜉𝑡 (𝑥) ≡ 𝜋𝑡 (𝑥), 𝐹(⋅) ≡ ⟨⋅, ̃𝑇 ⟩ and 𝑀𝑡+1 ≡ 𝜋𝑡 (𝑦) − ⟨𝜋𝑡 , ̃𝑇 ⟩(𝑥) to
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conclude that 𝜋𝑡 (𝑥)→ �̃�(𝑥) almost surely. Finally from assumption 7.1, for any policy all
states 𝑥 ∈ 𝑋 are visited infinitely often, therefore 𝜋𝑡 (𝑥)→ �̃�(𝑥)∀𝑥 ∈ 𝑋 ⟹ 𝜋𝑡 → �̃� and �̃�
satisfies ⟨�̃� , ̃𝑇 ⟩ = �̃� , and 𝐾 ̃𝑇 (�̃�) = 0. □

Theorem 7.2. We apply the results from [102] in Theorem 2.7. Essentially, authors in [102]
prove that for a policy gradient algorithm to lexicographically optimise a policy for mul-
tiple objectives, it is a sufficient condition that the stochastic gradient descent algorithm
finds optimal parameters for each of the objectives independently. From Lemma 7.1 we
know that a policy gradient algorithm using the gradient estimate in (7.5) converges to
a maximally robust policy, i.e. a set of parameters 𝜃′ = argmax𝜃 𝐾 ̃𝑇 . Additionally, by as-
sumption, the chosen algorithm for 𝐾1 converges to an optimal point 𝜃 ∗. While the two
objective functions are not of the same form – as in [102] – the fact they are both invex
[174] either locally or globally depending on the form of 𝐾1, implies that �̂� is also invex
and hence that the stationary point 𝜃𝜖 computed by LRPG satisfies equation (7.7). □
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B
Experimental Frameworks

B.1 Cooperative Path Planning Experiments
We modified the Frozen Lake environment in OpenAI GYM [175]. We edited the environ-
ment to have a bigger state-space (1296 (𝑥,𝑢) pairs), the agents get a reward 𝑅 = −1 when
choosing an action that makes them fall in a hole, and 𝑅 = 10when they find the goal state.
Additionally, the agents get a constant reward of −0.01 every time they take an action, to
reflect the fact that shorter paths are preferred. The action set is𝒰 = {up, down, left, right}.
For the stochastic transition case, the agents get a reward based on the pair (𝑥,𝑢) regard-
less of the end state 𝑥′. The resulting Frozen Lake environment can be seen in Figure
B.1. We consider a population of 𝑁 ∈ {8,64} agents, all using 𝜀-greedy policies with dif-
ferent exploration rates (as proposed in [168]). The number of agents is chosen to be
multiple of 8 (to facilitate running on parallel cores of the computer), to represent both
a “large” and a “small” agent number scenario. The agents are initialised with a value
𝜀𝑖 ∈ {0.01,0.2,0.4,0.6,0.8.0.99} chosen at random. For all the simulations we use 𝛼 = 0.01,
𝛾 = 0.97, 𝛽 = 0.05. We plot results for 𝜀𝜒 ∈ {0.01,0.05}. The 𝑄−function is initialised ran-
domly 𝑄0(𝑥,𝑢) ∈ [−1,1]∀(𝑥,𝑢). The results are computed for 25 independent runs and
averaged for each scenario. We present results for a stochastic and a deterministic MDP.
In the stochastic case, for a given pair (𝑥,𝑢) there is a probability 𝑝 = 0.7 of ending up at
the corresponding state 𝑥′ (e.g. moving down if the action chosen is down) and ̄𝑝 = 0.3 of
ending at any other adjacent state.

To compare between the different scenarios, we use an experience replay buffer of size
𝑁 ×1000 for the central learner’s memory, where at every episode we sample mini-batches
of 32 samples. The policies are evaluated with a fixed 𝜀0 = 0.01, computing the rewards for
10 independent runs. The learning rate 𝛼 and “diffusion” 𝛾 were picked based on similar
size Q-learning examples in the literature. In the case of the ET related parameters 𝛽, 𝜀𝜒 ,
these were picked after a very quick parameter scan. First, 𝛽 = 0.05 yields a half-life time
of ≈ 15 time steps, which is on the same order as the diameter of the path planning arena.
The value function magnitude is related to the maximum reward in the MDP. Take a pair
(𝑥,𝑢) being 1 step away from the path planning goal has an associated reward on the
order of 𝛾‖𝑅(𝑥,𝑢)‖∞ ≈ 9.7. However, a pair (𝑥,𝑢) being 2 steps away has 𝛾 2‖𝑅(𝑥,𝑢)‖∞ ≈ 9.4.
Therefore, when being really close to the goal, the error associated with taking one extra
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Figure B.1: Path Planning map used.

step is on the order of ≈ 0.03. By choosing 𝜀𝜒 = 0.01, we ensure the threshold is low enough
to capture one-step errors. Then, 𝜀𝜒 = 0.05 is larger than this gap, so it ensures a significant
enough difference for comparison.

B.2 Observational Robustness Experiments
We use in the experiments well-tested implementations of A2C and PPO adapted from
[176] to include the computation of the lexicographic parameters in (2.2). Since all the
environments use a pixel representation of the observation, we use a shared representation
for the value function and policy, where the first component is a convolutional network,
implemented as in [176]. The hyperparameters of the neural representations are presented
in Table B.1.

Layer Output Func.

Conv1 16 ReLu
Conv2 32 ReLu
Conv3 64 ReLu
Fc4 256 ReLu

Table B.1: Shared Observation Layers

The actor and critic layers, for both algorithms, are a fully connected layer with 256 fea-
tures as input and the corresponding output. We used in all cases an Adam optimiser. We
optimised the parameters for each (vanilla) algorithm through a quick parameter search,
and apply the same parameters for the Lexicographically Robust versions.
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LavaGap LavaCrossing DynObs
Steps 106 106 8×105
𝛾 0.99 0.999 0.99
𝛼 0.001 0.001 0.001
𝜖(Adam) 10−8 10−8 10−8
Grad. Clip 0.5 0.5 0.5
Gae 0.95 0.95 0.95
Rollout 256 512 256

Table B.2: A2C Parameters

LavaGap LavaCrossing DynObs
Parallel Envs 8 8 8
Steps 106 106 8×105
𝛾 0.99 0.99 0.99
𝛼 0.001 0.001 0.001
𝜖(Adam) 10−8 10−8 10−8
Grad. Clip 0.5 0.5 0.5
Ratio Clip 0.2 0.2 0.2
Gae 0.95 0.95 0.95
Rollout 256 512 256
Epochs 10 10 10
Entr. Weight 0 0 0

Table B.3: PPO Parameters

For the implementation of the LRPG versions of the algorithms, in all cases we allow
the algorithm to iterate for 1/3 of the total steps before starting to compute the robustness
objectives. In other words, we use �̂� (𝜃) = 𝐾1(𝜃) until 𝑡 = 1

3 max_steps, and from this point
we resume the lexicographic robustness computation as described in Algorithm 3. This
is due to the structure of the environments simulated. The rewards (and in particular
the positive rewards) are very sparse in the environments considered. Therefore, when
computing the policy gradient steps, the loss for the primary objective is practically zero
until the environment is successfully solved at least once. If we implement the combined
lexicographic loss from the first time step, many times the algorithm would converge to
a (constant) policy without exploring for enough steps, leading to convergence towards a
maximally robust policy that does not solve the environment.

Noise Kernels We consider two types of noise; a normal distributed noise ̃𝑇 𝑔 and a
uniform distributed noise ̃𝑇 𝑢 . For the environments LavaGap and DynamicObstacles, the
kernel ̃𝑇 𝑢 produces a disturbed state �̃� = 𝑥 +𝜉 where ‖𝜉 ‖∞ ≤ 2, and for LavaCrossing ‖𝜉 ‖∞ ≤
1.5. The normal distributed noise is in all cases𝒩 (0,0.5). The maximum norm of the noise
is quite large, but this is due to the structure of the observations in these environments.
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The pixel values are encoded as integers 0 − 9, where each integer represents a different
feature in the environment (empty space, doors, lava, obstacle, goal...). Therefore, any
noise ‖𝜉 ‖∞ ≤ 0.5 would most likely not be enough to confuse the agent. On the other hand,
too large noise signals are unrealistic and produce pathological environments. All the
policies are then tested against two “true” noise kernels, 𝑇1 = ̃𝑇 𝑢 and 𝑇2 = ̃𝑇 𝑔 . The main
reason for this is to test both the scenarios where we assume a wrong noise kernel, and
the case where we are training the agents with the correct kernel.

LRPG Parameters The LRL parameters are initialised in all cases as 𝛽1 = 2, 𝛽2 = 1, 𝜆 = 0
and 𝜂 = 0.001. The LRL tolerance is set to 𝜖𝑡 = 0.99�̂�1 to ensure we never deviate too
much from the original objective, since the environments have very sparse rewards. We
use a first order approximation to compute the LRL weights from the original LMORL
implementation.

Comparison with SA-PPO One of the baselines included is the State-Adversarial PPO
algorithm proposed in [86]. We altered our implementation of PPO to incorporate the
adversarial optimisation for the disturbances as described by [86]. The implementation
includes an extra parameter that multiplies the regularisation objective, 𝑘𝑝𝑝𝑜 . Since we
were not able to find indications on the best parameter for discrete action environments,
we implemented 𝑘𝑝𝑝𝑜 ∈ {0.1,1,2} and picked the best result for each entry in Table 7.1.
Larger values seemed to de-stabilise the learning in some cases. The rest of the parameters
are kept as in the vanilla PPO implementation.
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C
Additional Results

C.1 Incorporating multiple target vertices in graphs
Consider two identical graphs 𝐺1, 𝐺2 at 𝑡 = 0. Let �̂�𝑛,1𝑡 be the agent proportion in 𝐺1 with
probability distribution 𝑦𝑛,1𝑡 , and �̂�𝑛,2𝑡 be the agent proportion in 𝐺2 such that 𝑦𝑛,20 = 0.
Since the agents follow opposite weight fields (agents in graph 1 follow weights of graph
2, and vice-versa), let us write the following matrices by considering the union of both
systems, 𝐺1 ∪𝐺2:

𝑤𝑡 ∶= ( 𝑤1𝑡
𝑤2𝑡

) ,𝑃∪(𝑡, 𝜀) ∶= ( 𝑃2(𝑡, 𝜀) 0
0 𝑃1(𝑡, 𝜀) ) ,

and �̂�𝑛𝑡 ≔ ( 𝑦𝑛,1𝑡
𝑦𝑛,2𝑡

). Note the reordering of the blocks in 𝑃∪(𝑡, 𝜀), reflecting the fact that

the agents follow opposite weights. The weight dynamics as written in (4.6) are then

𝑤1𝑡+1(𝑖) = (1−𝜌)𝑤1𝑡 (𝑖) + 𝜌�̂�𝑛,1𝑡 (𝑖)𝑅𝑡 ,
𝑤2𝑡+1(𝑖) = (1−𝜌)𝑤2𝑡 (𝑖) + 𝜌�̂�𝑛,2𝑡 (𝑖)𝑅𝑡 ,

(C.1)

with w(0) = w01. Agents enter graph 𝐺2 when they find the vertex 𝒯 1, and go back to
graph 𝐺1 when they find vertex 𝒮 2, resulting in two interconnected systems having each
an inflow (u1(𝑡),u2(𝑡) ∈ ℙ|𝑋 |) and outflow (v1(𝑡),v2(𝑡) ∈ ℙ|𝑋 |) of agents exiting and entering
the graphs. The dynamics for the agent distribution can be written as

ŷ1(𝑡 + 1) = 𝑃2(𝑡, 𝜀)𝑦𝑛,1𝑡 +u1(𝑡) +v1(𝑡)
ŷ2(𝑡 + 1) = 𝑃1(𝑡, 𝜀)𝑦𝑛,2𝑡 +u2(𝑡) +v2(𝑡). (C.2)

Define now the selector matrices 𝑆 ∈ ℝ|𝑉 |×|𝑉 | and 𝑇 ∈ ℝ|𝑉 |×|𝑉 | as diagonal matrices with
𝑆𝑖𝑖 ,𝑇𝑗𝑗 = 1 for 𝑖 = 𝒮 , 𝑗 = 𝒯 , zero otherwise. If u1(𝑡) is the distribution of agents entering
graph𝐺1 from graph𝐺2 at time 𝑡 and v1(𝑡) is the density of agents leaving𝐺1, both graphs
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are interconnected and closed to external inputs, and then:

u1(𝑡) ≡ −v2(𝑡) = 𝑆𝑃1(𝑡, 𝜀)𝑦𝑛,2𝑡
v1(𝑡) ≡ −u2(𝑡) = 𝑇𝑃2(𝑡, 𝜀)𝑦𝑛,1𝑡 . (C.3)

Therefore, substituting (C.3) in (C.2), the agent probability distribution dynamics are given
by

�̂�𝑛𝑡+1 =(
(𝐼 −𝑇 )𝑃2(𝑡, 𝜀) 𝑆𝑃1(𝑡, 𝜀)
𝑇𝑃2(𝑡, 𝜀) (𝐼 − 𝑆)𝑃1(𝑡, 𝜀) ) �̂�𝑛𝑡 =

=∶𝑃(𝑡, 𝜀)�̂�𝑛𝑡 .
(C.4)

Furthermore, observe that the matrix 𝑃(𝑡, 𝜀) in (C.4) is also column stochastic. Effectively,
we have interconnected the two graphs by the vertices 𝒮 and 𝒯 , and made the agents
move according to the opposite pheromones.
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Glossary
ETC Event-triggered control.

MC Markov Chain.

MDP Markov Decision Process.

RL Reinforcement Learning.

MARL Multi-Agent Reinforcement Learning.

PG Policy Gradient (algorithms).

LRPG Lexicographically Robust Reinforcement Learning.

LMORL Lexicographic Multi-Objective Reinforcement Learning.
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