

Delft University of Technology

Web3 Sybil avoidance using network latency

Stokkink, Quinten ; Ileri, Can Umut; Epema, Dick; Pouwelse, Johan

DOI
10.1016/j.comnet.2023.109701
Publication date
2023
Document Version
Final published version
Published in
Computer Networks

Citation (APA)
Stokkink, Q., Ileri, C. U., Epema, D., & Pouwelse, J. (2023). Web3 Sybil avoidance using network latency.
Computer Networks, 227, Article 109701. https://doi.org/10.1016/j.comnet.2023.109701

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.comnet.2023.109701
https://doi.org/10.1016/j.comnet.2023.109701

Computer Networks 227 (2023) 109701

A
1

Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier.com/locate/comnet

Web3 Sybil avoidance using network latency
Quinten Stokkink ∗, Can Umut Ileri, Dick Epema, Johan Pouwelse
Delft University of Technology (TU Delft), Mekelweg 5, 2628 CD Delft, The Netherlands

A R T I C L E I N F O

Dataset link: https://doi.org/10.4121/uuid:348
50d65-1908-4249-b446-8e87c6d21ba0

Keywords:
Sybil attack
Latency
Network
Round-trip time
Identity

A B S T R A C T

Web3 is emerging as the new Internet-interaction model that facilitates direct collaboration between strangers
without a need for prior trust between network participants and without central authorities. However, one of
its shortcomings is the lack of a defense mechanism against the ability of a single user to generate a surplus
of identities, known as the Sybil attack. Web3 has a Sybil attack problem because it uses peer sampling
to establish connections between users. We evaluate the promising but under-explored direction of Sybil
avoidance using network latency measurements, according to which two identities with equal latencies are
suspected to be operated from the same node, and thus are likely Sybils. Network latency measurements have
two desirable properties: they are only malleable by attackers by adding latency, and they do not require any
trust between network participants. Our basic SybilSys mechanism avoids Sybil attackers using only network
latency measurements if attackers do not actively exploit their malleability. We present an enhanced version
of SybilSys that protects against targeted attacks using a variant of the flow correlation attack, which we name
TrafficJamTrigger. We show how the message flows of Round-Trip Time measurements can be used to expose
attack patterns and we propose and evaluate six classifiers to recognize these patterns. Our experiments show,
through both emulation and real-world deployment, that enhanced SybilSys can serve a fundamental role for
Web3, effectively establishing connections to real users even in the face of networks consisting of 99% Sybils.
1. Introduction

The Web3 ecosystem, the decentralized web, is the most recent step
in 50 years of continuous evolution of the Internet. This evolution is
tightly connected to the history of the birth, adoption, and governance
of distributed protocols [1]. Web3 is the emerging decentralized alterna-
tive to the currently dominant Web2, which is centrally governed [2].
In contrast to the governance of Web2, the governance model of Web3
could be described as a “collaboration of strangers”, characterized by
a lack of prior trust between users. Therefore, Web3 could be best
defined as a collectively maintained public infrastructure [2]. To create
this infrastructure, users interact with other users, which they find
through peer sampling. However, attackers can interfere with this
sampling by using Sybils, a surplus of fake identities [3]. We present a
peer sampling mechanism that avoids connections to Sybils using only
network latency.

A primary driver of Web3 is the use of transparency to become
“trustless”, the absence of a need for trust in a system [4]. To this end,
Web3 typically consists of peer-to-peer technology (e.g., BitTorrent)
with a distributed ledger (e.g., Bitcoin) and the social practice of
sharing (e.g., GitHub). Web3 is based on open protocols, open source,
open collaboration, and freely re-usable components. Web3 can provide

∗ Corresponding author.
E-mail addresses: q.a.stokkink@tudelft.nl (Q. Stokkink), c.u.ileri@tudelft.nl (C.U. Ileri), d.h.j.epema@tudelft.nl (D. Epema), j.a.pouwelse@tudelft.nl

(J. Pouwelse).

critical infrastructure for identity, money, markets, data, and AI. Even
security improvements are handled openly: Web3 is aiming to alter the
incentives for exploiting bugs, thereby improving security. Incentive
alignment is achieved by offering payment (e.g., Bitcoins) through
bug bounty programs [5]. For example, the community has tried to
address frontrunning, a method to exploit pending trading actions [6],
collaboratively [7–9].

Scalability to billions of users is a problematic requirement for
Web3. Scaling issues arise as nodes within large-scale distributed sys-
tems are unable to keep track of all other participating nodes. The
membership table of nodes may become unmanageable due to its size
and due to the need for frequent updates because of node arrivals
and departures. Early work used this approach, leading to considerable
synchronization costs at scale [10]. Instead of depending on a single
global (data) structure, full scalability is only achieved with distributed
infrastructure. However, the typical Web2 approach of using predefined
critical infrastructure, like the cloud or privately owned servers, vio-
lates the trustless nature of Web3. Therefore, Web3 applications employ
different means to tackle their scalability issue.

A fundamental mechanism at the heart of Web3 applications, which
addresses the scalability issue of node discovery, is the peer-sampling
vailable online 16 March 2023
389-1286/© 2023 The Author(s). Published by Elsevier B.V. This is an open access a

https://doi.org/10.1016/j.comnet.2023.109701
Received 4 May 2022; Received in revised form 9 March 2023; Accepted 11 March
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

2023

https://www.elsevier.com/locate/comnet
http://www.elsevier.com/locate/comnet
https://doi.org/10.4121/uuid:34850d65-1908-4249-b446-8e87c6d21ba0
https://doi.org/10.4121/uuid:34850d65-1908-4249-b446-8e87c6d21ba0
https://doi.org/10.4121/uuid:34850d65-1908-4249-b446-8e87c6d21ba0
https://doi.org/10.4121/uuid:34850d65-1908-4249-b446-8e87c6d21ba0
https://doi.org/10.4121/uuid:34850d65-1908-4249-b446-8e87c6d21ba0
https://doi.org/10.4121/uuid:34850d65-1908-4249-b446-8e87c6d21ba0
https://doi.org/10.4121/uuid:34850d65-1908-4249-b446-8e87c6d21ba0
https://doi.org/10.4121/uuid:34850d65-1908-4249-b446-8e87c6d21ba0
https://doi.org/10.4121/uuid:34850d65-1908-4249-b446-8e87c6d21ba0
https://doi.org/10.4121/uuid:34850d65-1908-4249-b446-8e87c6d21ba0
https://doi.org/10.4121/uuid:34850d65-1908-4249-b446-8e87c6d21ba0
https://doi.org/10.4121/uuid:34850d65-1908-4249-b446-8e87c6d21ba0
https://doi.org/10.4121/uuid:34850d65-1908-4249-b446-8e87c6d21ba0
https://doi.org/10.4121/uuid:34850d65-1908-4249-b446-8e87c6d21ba0
https://doi.org/10.4121/uuid:34850d65-1908-4249-b446-8e87c6d21ba0
https://doi.org/10.4121/uuid:34850d65-1908-4249-b446-8e87c6d21ba0
https://doi.org/10.4121/uuid:34850d65-1908-4249-b446-8e87c6d21ba0
https://doi.org/10.4121/uuid:34850d65-1908-4249-b446-8e87c6d21ba0
https://doi.org/10.4121/uuid:34850d65-1908-4249-b446-8e87c6d21ba0
https://doi.org/10.4121/uuid:34850d65-1908-4249-b446-8e87c6d21ba0
https://doi.org/10.4121/uuid:34850d65-1908-4249-b446-8e87c6d21ba0
https://doi.org/10.4121/uuid:34850d65-1908-4249-b446-8e87c6d21ba0
https://doi.org/10.4121/uuid:34850d65-1908-4249-b446-8e87c6d21ba0
https://doi.org/10.4121/uuid:34850d65-1908-4249-b446-8e87c6d21ba0
https://doi.org/10.4121/uuid:34850d65-1908-4249-b446-8e87c6d21ba0
https://doi.org/10.4121/uuid:34850d65-1908-4249-b446-8e87c6d21ba0
https://doi.org/10.4121/uuid:34850d65-1908-4249-b446-8e87c6d21ba0
https://doi.org/10.4121/uuid:34850d65-1908-4249-b446-8e87c6d21ba0
https://doi.org/10.4121/uuid:34850d65-1908-4249-b446-8e87c6d21ba0
https://doi.org/10.4121/uuid:34850d65-1908-4249-b446-8e87c6d21ba0
https://doi.org/10.4121/uuid:34850d65-1908-4249-b446-8e87c6d21ba0
https://doi.org/10.4121/uuid:34850d65-1908-4249-b446-8e87c6d21ba0
https://doi.org/10.4121/uuid:34850d65-1908-4249-b446-8e87c6d21ba0
https://doi.org/10.4121/uuid:34850d65-1908-4249-b446-8e87c6d21ba0
https://doi.org/10.4121/uuid:34850d65-1908-4249-b446-8e87c6d21ba0
https://doi.org/10.4121/uuid:34850d65-1908-4249-b446-8e87c6d21ba0
https://doi.org/10.4121/uuid:34850d65-1908-4249-b446-8e87c6d21ba0
https://doi.org/10.4121/uuid:34850d65-1908-4249-b446-8e87c6d21ba0
https://doi.org/10.4121/uuid:34850d65-1908-4249-b446-8e87c6d21ba0
https://doi.org/10.4121/uuid:34850d65-1908-4249-b446-8e87c6d21ba0
https://doi.org/10.4121/uuid:34850d65-1908-4249-b446-8e87c6d21ba0
https://doi.org/10.4121/uuid:34850d65-1908-4249-b446-8e87c6d21ba0
https://doi.org/10.4121/uuid:34850d65-1908-4249-b446-8e87c6d21ba0
https://doi.org/10.4121/uuid:34850d65-1908-4249-b446-8e87c6d21ba0
https://doi.org/10.4121/uuid:34850d65-1908-4249-b446-8e87c6d21ba0
https://doi.org/10.4121/uuid:34850d65-1908-4249-b446-8e87c6d21ba0
https://doi.org/10.4121/uuid:34850d65-1908-4249-b446-8e87c6d21ba0
https://doi.org/10.4121/uuid:34850d65-1908-4249-b446-8e87c6d21ba0
https://doi.org/10.4121/uuid:34850d65-1908-4249-b446-8e87c6d21ba0
https://doi.org/10.4121/uuid:34850d65-1908-4249-b446-8e87c6d21ba0
https://doi.org/10.4121/uuid:34850d65-1908-4249-b446-8e87c6d21ba0
https://doi.org/10.4121/uuid:34850d65-1908-4249-b446-8e87c6d21ba0
https://doi.org/10.4121/uuid:34850d65-1908-4249-b446-8e87c6d21ba0
https://doi.org/10.4121/uuid:34850d65-1908-4249-b446-8e87c6d21ba0
https://doi.org/10.4121/uuid:34850d65-1908-4249-b446-8e87c6d21ba0
https://doi.org/10.4121/uuid:34850d65-1908-4249-b446-8e87c6d21ba0
https://doi.org/10.4121/uuid:34850d65-1908-4249-b446-8e87c6d21ba0
https://doi.org/10.4121/uuid:34850d65-1908-4249-b446-8e87c6d21ba0
https://doi.org/10.4121/uuid:34850d65-1908-4249-b446-8e87c6d21ba0
https://doi.org/10.4121/uuid:34850d65-1908-4249-b446-8e87c6d21ba0
https://doi.org/10.4121/uuid:34850d65-1908-4249-b446-8e87c6d21ba0
https://doi.org/10.4121/uuid:34850d65-1908-4249-b446-8e87c6d21ba0
https://doi.org/10.4121/uuid:34850d65-1908-4249-b446-8e87c6d21ba0
https://doi.org/10.4121/uuid:34850d65-1908-4249-b446-8e87c6d21ba0
https://doi.org/10.4121/uuid:34850d65-1908-4249-b446-8e87c6d21ba0
mailto:q.a.stokkink@tudelft.nl
mailto:c.u.ileri@tudelft.nl
mailto:d.h.j.epema@tudelft.nl
mailto:j.a.pouwelse@tudelft.nl
https://doi.org/10.1016/j.comnet.2023.109701
https://doi.org/10.1016/j.comnet.2023.109701
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2023.109701&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Computer Networks 227 (2023) 109701Q. Stokkink et al.

e
p
(
t
g
t
m
t
p
c
a
s
a

t
t
m
T
t
a
i
o
t
c
l
h

W
i
w
b
s
a
m
a

t
S
a
a
m
o
l

2

r
e
m
w

f
a
c
i
s
i
n
(

t
p
n
t
t
T
p
I
a
i

service [11] as it appears for example in Bitcoin and BitTorrent. To this
nd, Web3 requires the creation of an overlay network from network
articipants’ computers without relying on centrally governed servers
“zero-server”), and resilience against fraud in the form of fake iden-
ities. A peer sampling service is required by all three known styles of
ossip protocols used by Web3 applications, i.e., rumor-mongering pro-
ocols, anti-entropy protocols, and aggregation protocols [12]. Rumor-
ongering protocols use flooding to spread information at a fixed rate

o all nodes. Anti-entropy protocols connect to nodes randomly, com-
aring information and reconciling differences. Aggregation protocols
onduct pair-wise information exchanges and combine values to arrive
t a system-wide value. Therefore, all gossip-based Web3 designs are
usceptible to attacks on the peer sampling mechanism, e.g., a Sybil
ttack.

Any node can use a peer sampling service to discover other nodes
hat are randomly sampled from all nodes in the system, these nodes are
he node’s initial neighbors. Further connections can be made to even
ore peers through connections to the neighbors of a node’s neighbors.
hereby, the concept of neighbors exploits locality as an alternative
o a centrally maintained membership table. However, if a bad-faith
ctor creates many fake identities (Sybils) to serve as neighbors, real
dentities may perpetually be introduced to more Sybils. This systemic
ppression of nodes hinders their ability to maintain public infrastruc-
ure and, thereby, allows for their abuse. For example, an attacker
an deprive nodes of the latest information in a cryptocurrency, which
eads them to think that they will receive currency though this will not
appen (also known as ‘‘double-spending’’ [13]).

Using network latency to avoid Sybils is a unique opportunity for
eb3. In Web2 systems, centralized platforms are used to bring users

n contact with each other, and the indirection of traffic that goes
ith it makes it difficult, if not impossible, to measure network latency
etween users. In contrast, in the Web3 ecosystem, nodes send mes-
ages to each other over the Internet without intermediaries, enabling
new method of defense through latency. Furthermore, these latency
easurements are a particularly attractive option as they do not require
gossip protocol, avoiding a chicken and egg situation.

This work proposes a Sybil-avoiding peer sampling service to enable
he collective infrastructure of Web3 that provides nodes with non-
ybil nodes without a-priori trust. To achieve this, we counter the Sybil
ttack solely using measured network distances, which does not require
centrally governed entity. The core contribution of our work is a
echanism for dependable, zero-server, trustless network topol-
gy creation in spite of Sybils called SybilSys. On a more granular
evel our contributions are as follows:

1. We argue that Sybil avoidance must be addressed in the peer
sampling mechanism (Section 2) and we define an adversary
model (Section 3).

2. We rationalize, implement and verify light-weight Sybil-avoiding
peer sampling using only network latency measurements (Sec-
tion 4).

3. We show how message flows of latency measurements can be
used to detect Sybils over the Internet (Section 5).

4. We create a version of our peer sampling mechanism that specifi-
cally counters attacks against our initial mechanism (Section 6),
based on message flows, and we verify it with real users (Sec-
tion 7). We derive that this mechanism is trustless, predomi-
nantly samples honest nodes and cannot be efficiently attacked.

. Problem description

The core problem of our work is breaking the dependency between
equiring Sybil-free gossip protocols and using gossiped information to
liminate Sybils. Gossip protocols do not guarantee delivery of infor-
ation in a network filled with Sybils and Sybils cannot be identified
ithout the information gossiped through these protocols. In avoiding
2

gossip protocols, Sybil avoidance becomes a key problem for the peer
sampling service. A straightforward gossip-free approach, like relying
on unique IP-addresses or traceroute to filter Sybils is still open to
attacks, as recently shown through the Erebus attack [14].

Adversarial behavior is often considered to be out of scope for
peer sampling research (e.g., with assumptions that “each participant is
limited to one identity” [15]). For decades, analytical studies proposed
peer sampling services and tried to determine if they actually lead to
uniform sampling or become unstable—while ignoring security [11,15–
17].

Bitcoin is an example of a system that seemingly resists Sybils,
but can still suffer attacks on the network layer [18]. Only on its
application layer does Bitcoin provide a solution to Sybil attacks by
crafting a high computational-cost barrier for tampering through a
mathematical puzzle known as proof-of-work. Regrettably, alternatives
to proof-of-work—or in general proof-of-something—systems with both
lower computational costs and preservation of decentralization remain
elusive [19]. Nevertheless, attacks on Bitcoin using Sybils are effec-
tive. Using Sybils to cause (even temporary) network partitioning is
monetarily profitable for attackers [20] and leads to long-term advan-
tages [21]. An interesting ongoing experiment is Blockstack, a chain
which externalized protection against Sybils by relying on Bitcoin [22].
Blockstack rewards prior mining in Bitcoin and uses a verifiable ran-
dom function for leader election, presumably leading to undesirable
rich-get-richer dynamics.

Peer sampling is inherently fragile and sensitive to fraud and
aults. Protocols with mass adoption typically encounter problems such
s malicious behavior, accidental deviations from protocol specifi-
ations, malfunctioning nodes, correlated failures, network partition-
ng, data corruption, and dissemination of incorrect information. The
tate-of-the-art remains fragile. Especially Sybils that follow special-
zed attack strategies (beyond simply existing) go undetected in social
etworks [23–25] and are able to influence applications based on
federated) Artificial Intelligence [26–28].

An example of using a “score function” on social interactions,
o protect against Sybils, is found in GossipSub [29]. With various
arameters, each node attempts to keep track of the honesty of its
eighbors. Their “application-specific score” imports information from
he application level for Sybil avoidance and their “IP Address Colloca-
ion Factor” parameter is very effective against simple Sybil attacks.
he global impact of this approach is still limited because it is not
ossible to trust your neighbors to accurately report their neighbors’
nternet addresses (i.e., this violates our trustless requirement). Every
ddress obtained by an attacker can be re-used to create unique Sybils
n GossipSub. Services that offer unique IP addresses, rotating proxy
infrastructure rental, can dramatically decrease the monetary cost of an
attack on this system.

Using network latency is a promising approach to the Sybil
problem, due to the grounding in the laws of physics. Network latency
can only be tweaked by attackers by artificially increasing it, never by
decreasing it [30]. No software-based attack can alter the lower bound
on latency between two nodes, as the underlying shortest physical link
between nodes remains the same.

Network latency for Sybil avoidance is used in related fields outside
of epidemic protocols and peer sampling. There have been prior at-
tempts to make use of network latency for the detection and avoidance
of Sybils [30,31]. Early work uses triangulation to pinpoint physical co-
ordinates within wireless sensor networks. Unfortunately, triangulation
has proven to fail with realistic network conditions [32–34] due to lack
of latency symmetry for bidirectional wireless links and invalidity of the
triangular inequality from Euclidean geometry. Moreover, triangulation
requires trust in the localization data provided by strangers, violating
the trustless requirement.

Computer Networks 227 (2023) 109701Q. Stokkink et al.

b
m
i
r
H
l
i
g

e
l
b
e
a

n
t
k
u
r
t
a

p

m
l
t

3. Adversary model

Web3 nodes aim to cooperatively maintain public infrastructure
in the presence of attackers that employ an overpowering number of
identities on a limited set of physical resources. Violation of public
infrastructure by attackers can be detected by sharing immutable Web3
data. For example, the immutable history of Bitcoin exposes any at-
tempted violations by attackers through its chain of blocks (connected
using cryptographic hashes). Therefore, a connection to only a single
other honest node is required for any honest node to detect violations.
Conversely, the goal of the attackers is to disallow this sharing of data,
to not have their violations detected. To distinguish attackers, two types
of entities are considered:

• honest nodes control only one logical node and one identity per
physical machine in the network.

• attackers create and control multiple identities per physical ma-
chine in the network. Any identity controlled by an attacker entity
is a Sybil identity.

The focus of this work is to counter the cheapest attack on peer
sampling services: the generation of Sybil identities on a single node.
Within this scope, the goal of attackers is centered around operating
a surplus of Sybil identities on a single node in an attempt to isolate
a cluster of honest nodes from the rest of the network (also known
as an Eclipse attack [35]). Therefore, we consider a Sybil-avoiding
peer sampling mechanism to be successful if it associates only a single
identity with a single node. Our goal does not include the more complex
case of countering Sybil identities operated by a single attacker from
multiple nodes, e.g., by using a botnet, as existing work has already
been shown to work when attackers are limited to one identity per IP
address [15,36].

The peer sampling mechanism that we present in this work depends
on latency measurements between nodes and we now discuss how it
can be attacked by adversaries. In particular, in the remainder of this
section we discuss how the possible attacks are addressed in our work.
Our analysis considers attacks on the hardware, software, and sessions,
required to perform a latency measurement between nodes over the
Internet.

Attacks on the ability of distributed communications networks, like
the Internet, to pass messages between nodes have been studied for
over 60 years [37]. However, to this day, messages that are sent over
the Internet are still not guaranteed to arrive at their destination.
We mitigate all cases of latency measurement messages not arriving
(e.g., due to attacks, offline nodes, and network disruption or outage)
by periodically contacting neighbors and disconnecting from them if
they do not respond. Of course, a network that lacks even the basic
means of communication between nodes trivially forgoes the need of
a Sybil defense, like the one we propose. Therefore, we make the
following assumptions of basic meaningful connectivity:

• Assumption 1: Nodes are addressable over the Internet (e.g.,
through IP) and connectable based on their address.

• Assumption 2: Honest nodes are online long enough to engage
in the peer sampling process.

• Assumption 3: Attackers do not control all hardware on the rout-
ing path over the Internet between them and an honest node. In
Section 5.1 we discuss attackers that control part of the hardware
along the routing path.

It may be possible for adversaries to replay messages that are sent
etween other nodes. Our approach to counter replay attacks is to
ake use of unique pairs of a request and response message (explained

n Section 4). These pairs are made unique through the use of a
andom nonce that is added to the request and response message.
owever, if the random nonce can be predicted, an attacker can send a

atency response before any request was made and potentially lower
ts measured latency. Therefore, we assume that the random nonce
3

eneration used provides the following guarantee:
• Assumption 4: The request and response messages that are sent
between nodes contain a unique nonce that cannot be predicted
by an attacker.

The manner in which our basic mechanism establishes node identi-
ties is through their latency. However, honest nodes that share the same
latency are all seen as belonging to the same identity and, thereby, as
attackers. In this case, a single honest node would still be sampled but
all others in the same location would be ignored, which is inefficient.
In Section 5, we further enhance our identity establishment through
estimation of Internet routing paths between nodes and how they
overlap. However, it is possible that the routing paths of a node with
two others do not overlap at all, e.g., using wormhole routing. In
this second case, our enhanced mechanism may erroneously sample an
attacker. Both of these cases can be addressed by assuming that honest
nodes have typical consumer connections:

• Assumption 5: Honest nodes are geographically dispersed.
• Assumption 6: Honest nodes use a single network adapter and a

single last-mile connection to their physical node.

Adversaries may attempt to abuse the connections that are opened
between nodes by sending a large amount of data. In this work, we
do not provide or implement any protection against these Denial-of-
Service attacks. However, we note that our peer sampling mechanism
has highly regular communication patterns, which allows it to be
coupled to most of the many available Denial-of-Service protection
mechanisms [38].

4. Basic SybilSys: basal Sybil-avoiding peer sampling

We first describe a basic mechanism called Basic SybilSys, which
leverages round-trip time (RTT) measurements to avoid connecting
to multiple identities from the same physical location, i.e., Sybils.
This mechanism does not address the problem that comes with using
network latency for Sybil avoidance: we assume attackers do not delay
messages in order to try to defeat Basic SybilSys (altering latency
measurements, see Section 2). Enhanced SybilSys drops this assumption
(Section 5).

In every node, Basic SybilSys operates three lists of nodes: discov-
red, connected, and accepted. Node identities are moved between these
ists in three steps. During each of these steps a node identity may
e ignored or a connection to it may be dropped. When an identity
nds up in the accepted list, it is made available by SybilSys to a given
pplication.

In the first step, Basic SybilSys is executed by a node to request new
odes from its initial accepted neighbors. These initial neighbors are
ypically either defined by a user or sampled from a specialized server,
nown as a rendezvous server [39]. Basic SybilSys can be implemented
sing a single request message and a single response message. The
equest message indicates a node wants to learn about new nodes and
he response contains the Internet addresses of one or more nodes. New
ddresses in the responses are added to the discovered node list.

In the second step, the latency toward newly discovered nodes is
measured. Repeatedly (using a fixed-interval schedule), a single iden-
tity is randomly sampled from the discovered node list and an outgoing
connection attempt is made. During the connection establishment we
measure the response time. We use the time between the transmission
of the request and the response as the RTT, which includes the remote
message processing time in a measurement. A node’s identity moves
into the connected node list once a connection is established (to the
hysical node over the Internet) and its RTT is known.

Finally, the essential step of Sybil filtering is carried out. The
easured latencies are compared to those of all nodes on the accepted

ist. Non-Sybil identities are promoted from the connected node list to
he accepted node list, while suspected Sybil connections are simply
dropped. Basic SybilSys reasons that two identities with the same RTT

Computer Networks 227 (2023) 109701Q. Stokkink et al.

h

a
t
r
𝛥
a

4

c

Fig. 1. The number of connected and accepted nodes without Sybils (a) and a
istogram of their latencies at the time of 300 s (b).

reside on the same node and are therefore Sybils. We only accept a new
node if we do not yet have a node on the accepted list with the same
RTT. This filtering ensures the latency diversity property: all nodes using
Basic SybilSys are surrounded by nodes with unique latencies.

The performance of Basic SybilSys relies on the filtering step, which
ensures that no two (or more) nodes are accepted with a similar latency.
This dramatically limits Sybil attacks to one identity per node (which is
the same number as an honest node has). However, SybilSys may also
filter identities that are not Sybils if they are operated from different
nodes that happen to have the same latency.

4.1. Latency and diversity

Our algorithm uses a simple, practical, and economical method to
measure latency and (latency) diversity. We use a simple probe packet
and response to measure Internet latency, an application-level ping ap-
proach. Repeated probing of a single target increases the measurement
accuracy [30–34].

The latency measurements of two target nodes are considered (la-
tency) diverse if their difference is larger than some threshold parameter
𝛥. Our implementation uses the median of five latency probes as the la-
tency measurement to avoid transient congestion and packet loss [40].
If more probes have been performed, the last five are used to form the
latency measurement value.

Other, more advanced, implementations of latency diversity are
lso possible. For example, the Kolmogorov–Smirnov test can be used
o test latency similarity [41], giving the distance between two se-
ies of latency measurements. It would also be possible to modulate

in our approach by deriving the variance of measurements from
lready-accepted nodes.

.2. Real-world deployment

We now deploy Basic SybilSys over the Internet for a Web3 appli-
ation to demonstrate to what extent our peer sampling service avoids
4

Fig. 2. The number of connected and accepted nodes with 99% Sybils (a) and a
histogram of their latencies at the time of 300 s (b).

Sybils. The distributed system we utilize is called Tribler [42], which
is our research vehicle for cooperative systems research, and which has
been installed by 2 million users.1 Tribler uses peer sampling and gossip
protocols to offer a video streaming service.

Our setup consists of a single ‘‘measuring’’ node that uses Basic
SybilSys to sample nodes from the Tribler network, which still use the
default peer sampling service of Tribler. We evaluate one configuration
with and one without Sybils, and we extend our setup with a second
‘‘attacker’’ node that operates Sybils in the former configuration. For
the configuration without Sybils we do not include an ‘‘attacker’’ node
in our setup. The experiment terminates after 300 s.

When used for the configuration with Sybils, the ‘‘attacker’’ node
operates 100 Sybils in such a way that they do not hinder real users in
the Tribler network. To obtain a presence of 99% Sybils, we modify
the mechanism that provides an initial sample of nodes to be non-
random. With a probability of 99% each identity in this sample is a
Sybil, operated from our ‘‘attacker’’ node, instead of being randomly
sampled from the Tribler network. Each Sybil only introduces one of the
other Sybils from the ‘‘attacker’’ node for Basic SybilSys’ discovery step
response messages (instead of a random sample of its accepted nodes).
Lastly, we modify our response messages to not forward Sybils to the
regular users from the Tribler network.

We present (a) the numbers of connected and accepted nodes over
time, for which we (b) verify the diversity property (at a time of 300 s
into the experiment). These results are presented for our configuration
without Sybils in Fig. 1 and for a configuration with a Sybil presence
of 99% in Fig. 2.

The horizontal axes of Figs. 1(a) and 2(a) represent the elapsed time
since the start of the experiment, and their vertical axes give the num-
ber of identities that are connected or accepted (all accepted identities
are also counted as connected). From a network crawl we estimate
that the Tribler network contains roughly 50 000 nodes, meaning that

1 https://www.tribler.org/.

https://www.tribler.org/

Computer Networks 227 (2023) 109701Q. Stokkink et al.

r
F
1

d
p
i
s
m
t
p
i
t

F
t
t
r
p
s
t
n
c

5

v
a
m
l
i
n
l
i
s

5

o
i
f
s
a
a
w
m
m
t
t

t
f
m
e
s
a
j

i
p

p
f
t
f
p
b
m

s
o
f
u
d
m
t

t
a
m
u
a
t
a
m
l
T
c
b
l

r
I
m
t
p
s
a
m

5

t
s
o
s
a
i
T

o
a
m
i

t
t
u
o
e
f
1
r
s
t

approximately one hundredth of our network is reached in about five
minutes.

The histograms of Figs. 1(b) and 2(b) show the number of occur-
rences of measured latencies, in intervals of 5 ms. The chosen time
ange of the histograms (0 through 1000 ms) omits one occurrence in
ig. 1(b) (at 1295 ms) and two occurrences in Fig. 2(b) (at 1655 ms and
730 ms).

Our results show that Basic SybilSys correctly provides latency
iversity and eventually finds honest nodes. The implementation re-
eatedly traverses its most-recently added neighbors starting from 10
nitially accepted nodes, which is visible in Figs. 1(b) and 2(b): no
ingle latency interval contains more than 10 accepted nodes. Further-
ore, it can be observed that the accepted nodes are spread out over

he RTT intervals, which is the latency diversity we seek. The second
roperty of Basic SybilSys is that it eventually finds and accepts nodes
n the network. However, the more Sybils are present in the network,
he longer it will take to find latency-diverse nodes.

Our results highlight two implementation details of Basic SybilSys.
irst, in Figs. 1(a) and 2(a) sudden increases in the number of connec-
ions are visible (e.g., at 140 and 160 s in Fig. 2(a)), which occur due to
he spam prevention for requesting random samples from the deployed
endezvous servers. The second detail is that the Basic SybilSys im-
lementation uses latency-diverse random walks from latency-diverse
tarting points. As long as SybilSys cannot find 10 latency-diverse nodes
o start from, it continues to repeatedly drop connections and request
ew random samples. This leads to a longer period of low numbers of
onnections as the number of Sybils grows.

. Enhanced SybilSys: hardening to attacks

The Basic SybilSys algorithm presented in the previous sections is
ulnerable to the latency measurement interference attack, in which an
ttacker may wait before answering a network latency measurement
essage. Furthermore, Basic SybilSys does not account for changes in

atency (e.g., due to mobile nodes that physically travel) nor a node’s
nitial accepted neighbors completely consisting of Sybils (causing a
ode to be perpetually introduced to only more Sybils). The issue of
atency updates (and any other updates in routing path) is addressed
n Section 5.1. Countering attackers that manage to occupy the initial
et of accepted neighbors is discussed in Section 6.4.

.1. Detecting measurement interference

When two message flows that are of ‘‘sufficient size’’ are routed
ver the Internet to a single address, they will join in a network
nterface queue at some point along their ways. The sizes of the message
lows should be adjusted to account for the latency of the nodes that
end them. For example, if two nodes both send only one message
t the same time and their latencies to a shared queue are 50 ms
nd 100 ms, the queue has likely already forwarded the first message
ithin the roughly 50 ms before the second message arrives. By sending
ore messages, over a longer time period, it becomes more likely that
essages of the two message flows occupy the same queue at the same

ime. Thereby, additional queueing delay for messages occurs when
hey have to wait for messages of another flow.

Enhanced SybilSys leverages the fact that RTT measurements cap-
ure queuing delays and can therefore be used to detect joining message
lows. By sending a message flow of latency probes (i.e., RTT measure-
ent messages) to each of two identities, a joining of both flows is

xposed through the RTT measurement responses. Our measurement
trategy, called TrafficJamTrigger, creates these latency probe flows and
djusts their size such that the probes’ response messages are likely to
oin.

The pattern that emerges from joining flows is a sudden (short)
ncrease in measured RTT. In contrast, if messages follow the same
hysical path during their flow, i.e., they originate from the same
5

hysical machine and are Sybils, there is no deferred joining of these
lows’ physical paths and the phenomenon will not occur. Therefore,
he lack of successful pattern detection can be used as an indicator
or identities being Sybils. Secondarily, if messages do follow the same
ath (i.e., to Sybils on the same node), we expect higher RTTs to
e measured over the entire series of measurement responses as all
essages already occupy the same queues.

TrafficJamTrigger is applied to a message flow between a node
ending latency probes and one of two identities that are simultane-
usly being measured. An identity is classified as an attacker if its
low does not show signs of the two flows joining. Enhanced SybilSys
ses this classification to further filter nodes beyond using the latency
iversity of Basic SybilSys. This intrinsically avoids identities whose
essage flows are routed through a single proxy (e.g., the Erebus attack

hat reroutes message flows through a single autonomous system [14]).
Our TrafficJamTrigger mechanism is grounded in existing work on

he flow correlation attack on Tor [43]. The goal of the flow correlation
ttack is for an attacker to detect whether a single honest node receives
essages from two message flows, for each of which the honest node
ses a different identity. Thereby, the attacker wishes to defeat Tor’s
nonymization (that allows the honest node to communicate using the
wo identities without exposing the Internet address of its node). An
ttacker uses the correlation between a sudden increase in RTT and
essages being sent over both message flows to infer that both flows

ead to the same node. This attack has been shown to work for both
CP and UDP [44]. TrafficJamTrigger uses the concept of the flow
orrelation attack to determine whether identities are Sybils or not
y creating RTT measurement message flows to those identities and
ooking for an RTT increase.

Routing over the Internet is not the same as routing over Tor. The
outing of messages through Tor ‘‘circuits’’ follows fixed paths over the
nternet. In contrast, any two messages sent to the same IP address
ay take radically different paths over the Internet. However, even

hough the paths are not explicitly defined by the application layer,
aths over the Internet have enough temporal stability to apply the
ame technique: Internet paths can remain stable for days or months,
nd wireless paths are expected to last for multiple seconds, if not
inutes [45].

.2. Verifying the flow join pattern and its impact on RTT

We now verify our claim that flow correlation can be used over
he Internet through two small experiment setups. Our first setup
hows the increase in the measured RTT as the number of identities
n a single node increases when messages share a single path. Our
econd setup shows the patterns in RTT measurements of joining flows
nd of a single flow, focusing on the manner in which measurements
ncrease over time instead of the increase’s intensity. Both setups use
rafficJamTrigger.

For both setups, we implement TrafficJamTrigger by sending bursts
f 20 messages to each identity that is being measured. The identities
re sent such bursts in descending order of their ‘‘initial RTT’’, which is
easured for each identity in isolation before using TrafficJamTrigger,

n order to avoid message flow joins during these initial measurements.
Our first setup consists of two nodes connected over a LAN, with

wo intermediate routers. We use one node to measure the RTTs and
he other to respond to RTT measurement requests. The measuring node
ses TrafficJamTrigger in an attempt to detect an increase in the RTT
f the identities operated from the responding node. To show to what
xtent the number of identities influences a latency measurement inter-
erence attack, we test three configurations with basic delays of 0 ms,
00 ms, and 500 ms that determine how long every Sybil waits before
esponding to a latency probe. Assuming the Sybils to be numbered
tarting from zero, Sybil 𝑖 uses a delay of 𝑖 ⋅𝑑, with 𝑑 the basic delay of
he configuration. The delays correspond to an optimal attack, where an

Computer Networks 227 (2023) 109701Q. Stokkink et al.
Fig. 3. The measured latency increase versus the number of identities on a node with TrafficJamTrigger in comparison to the measured latency without using TrafficJamTrigger,
with linear regression lines to provide extrapolation. The regression lines of 100 ms and 500 ms for December 2021 in Fig. 3(a) overlap.
Fig. 4. The measured RTT per message sent in a single 20-message burst versus the message sending timestamp (starting from 0) for an honest node (a) and a Sybil (b).
b
b
J
i
s

(
w
w
e

5

S

attacker only requires a single Sybil to take over every unique latency
slot in the accepted node list.

Our results go up to the point where our measuring node starts
filling its (network socket) receiving buffer, which we find at 64 iden-
tities. When the receiving buffer of the measuring node starts filling,
the increase in RTT jumps into the order of dozens of milliseconds
due to the limits of our hardware. In turn, if the jump is used to
detect Sybils, the use of limited hardware would directly result in trivial
Sybil detection. Therefore, to predict for more powerful hardware,
we provide an extrapolation of our results for higher identity counts
instead.

In Fig. 3 we present the measured RTT versus the number of identi-
ties on the responding node. We calculate linear regression models for
each set of measurements and plot them as lines in our graphs (these
would be straight lines if the horizontal axis would be linear instead of
on a log scale). To show programming language (in)dependence, both a
Python (Fig. 3(a)) and a Java (Fig. 3(b)) implementation are evaluated.
To show the repeatability of this experiment we include the results from
both 2020 and 2021 for the same Python implementation.

From the results of Fig. 3 we observe an increase in the measured
RTT as the number of identities deployed on the responding node
increases. The increase in RTT is even observed when Sybils wait
longer before responding to probes. However, the RTT increase due
to identities sharing a path should disappear when Sybils increase
their waiting time for probe responses. Therefore, the shown increase
using 500 ms, which is almost double the highest measured increase
of 256.6 ms, must be due to other factors (e.g., identity management
inefficiencies in our implementation). Whereas these other factors help
in the detection of Sybils, we note that the 500 ms RTT increase could
feasibly be eliminated with specialized attacker hardware. Neverthe-
less, when message flows do share a path (0 ms delay), the RTT clearly
6

increases with the number of identities. e
Our second setup, to show the pattern that emerges when flows
join, consists of a measuring node that is connected to 50 honest nodes
sampled from our Tribler network and two separate nodes that each run
25 Sybils. Of the two Sybil nodes, one is at a distance of 300 m on the
same (TU Delft) campus as the measuring node, and the other is 48 km
away, hosted in a datacenter. None of the 52 nodes that are connected
to the measuring node are on the same LAN as the measuring node. We
present the typical pattern of RTTs resulting from each of the bursts’
response messages when two honest nodes are being measured (a) and
when two Sybils are being measured (b). The latter situation, with two
Sybils, corresponds to that of our first setup when two identities share
the same node (see Fig. 3).

To highlight the difference between honest nodes and Sybils, Fig. 4
shows two typical bursts, which we found through qualitative analysis
of several dozens of measurement pairs. The first obvious difference
is the steady increase in measured RTT for the honest node versus its
absence for the Sybil. However, this steady increase (roughly 1.6 ms
etween messages) simply shows the application’s buffer being filled
y other messages. This is not necessarily a result of applying Traffic-
amTrigger. Instead, the pattern is characterized by the sudden jump
n measured RTT for the honest nodes (at timestamp 1.74 ms, after the
ixth measurement), which does not occur for the Sybils.

The effectiveness of classification using the pattern that we observed
i.e., whether it is statistically significant) depends on the manner in
hich the pattern is detected. Therefore, in the remainder of this work
e define six binary classifiers to detect the RTT jump pattern and we
valuate them using real users.

.3. Properties of Enhanced SybilSys

Enhanced SybilSys does not aim to prevent attackers from creating
ybils. An attacker can temporarily block communication between hon-

st nodes using Sybils, known as an Eclipse attack [35]. Nevertheless,

Computer Networks 227 (2023) 109701Q. Stokkink et al.

a
c
S
a
h
n

s
s
o
w
w
e
a
r
a
t
w
b

n
p
o
a
n

we summarily present the five properties of Enhanced SybilSys that
greatly increase the effort needed for attackers to perform a successful
Sybil attack, based on our findings of Section 4, and Section 5.

Trustless self-reinforcing Sybil avoidance is guaranteed through
bias toward honest nodes when introducing neighbors. Nodes keep

onnections open to those neighbors that they have accepted as non-
ybil through their latency-diversity property. Therefore, honest nodes
re more likely to increasingly introduce and be introduced to other
onest nodes without requiring a trust relationship with the introducing
ode.
Attackers must create Sybils with unique RTTs to be able to

uppress honest nodes (governed by the threshold parameter 𝛥). This
uppression implies that Sybils must wholly occupy the accepted list
f a node, which is filtered using latency diversity. By estimating
hat RTTs will be measured to honest nodes, an attacker can interfere
ith latency measurements to have its Sybils appear to match the
stimations. This causes the honest nodes to be filtered out when they
re eventually found. However, every diverse RTT of an honest node
equires a new Sybil group. For example, to obtain a Sybil presence in
network that contains two honest nodes that differ in latency more

han 𝛥, an attacker must create two groups of Sybils that have RTTs
ithin 𝛥 of each honest node (doubling the number of required Sybils
y using latency diversity).
Attackers require low latency to targets to compete with honest

odes. To perform an Eclipse attack, Sybils must have an overpowering
resence within a latency of 𝛥 of any honest node. However, the
nly attack on RTT measurements is to introduce additional delay,
s they cannot be decreased by an attacker. Therefore, if an honest
ode exists that has a measured RTT that differs more than 𝛥 from the

node that operates Sybils, it is impossible to suppress this honest node
using Sybils. As a consequence, honest nodes that are in close physical
proximity cannot be attacked without an attacker buying hardware
close to the targets. For a network-wide attack an attacker would have
to buy hardware close to all honest nodes in the network, which makes
a network-wide attack possible, but infeasible.

Open networks (Web3) cannot be efficiently attacked as the net-
work participants are not known beforehand. In contrast, in networks
with known participants, it is feasible for an attacker to measure and
predict latencies between other network participants that are online
for extended periods. However, Web3 technology is characterized by
participants from all over the world that continuously join and leave
the system. In order for an attacker to disrupt connectivity in such a
network, all possible latencies must be preempted and have a majority
of Sybils to suppress newly joining honest nodes with a unique latency.
Therefore, practically, with a latency measurement timeout of 5 s and
a diversity threshold of 𝛥 = 5 ms, allowing 1000 distinct latencies,
and with a sufficient number of honest nodes, the required number of
Sybils has to be increased thousand-fold in comparison to an equal Sybil
attack without latency diversity.

Low Sybil counts must be used per node to decrease the chance
of a connection being dropped. As the number of identities per node
grows, it becomes increasingly likely that a connection to any of these
identities is dropped. Therefore, a significant Sybil attack must be
spread out over multiple nodes.

6. Enhanced SybilSys: implementation

In this section we discuss the implementation details of Enhanced
SybilSys: the data structure that stores node identities, how flow joining
is brought about, how it is detected when flows do join, maintain-
ing and refreshing the node storage data structure, and the parame-
terization of Enhanced SybilSys. To implement flow recognition and
data structure maintenance multiple options are presented, which are
evaluated in Section 7.
7

6.1. The peer discovery tree

Every newly joining node in the system creates a peer discovery
tree as its environment to operate in with itself as the root. Using the
peer sampling process, it first selects an initial set of latency-diverse
nodes, which we call the bootstrap set, as its children in this tree. Each
of these children then helps the creator by building a (linear) branch
of the tree consisting of latency-diverse nodes, starting with itself, of
a pre-specified maximum length. In fact, they initiate a random walk,
reporting back to the creator the identities of the nodes sampled along
the branch and discarding those that are found by the creator to be
not latency-diverse with any of the previous nodes in the branch. In
the latter case, another node is sampled. As a consequence of this
construction, the nodes in the bootstrap set and the nodes in each of the
branches separately are latency diverse, but nodes in different branches
may not be. An example of a possible peer discovery tree is given in
Fig. 5.

TrafficJamTrigger must be applied to all pairs of nodes that require
latency diversity. However, because neighborhoods are of limited size,
this is not a problematic requirement. Furthermore, the pairs that
require diversity are not all pairs of nodes in the peer discovery tree.
For example, given the ten initially sampled latency-diverse nodes that
grow branches of four diverse child nodes (as in Section 4.2), only
105 pairs need to be probed: 45 pairs for the ten initial nodes and 6
pairs for each of the 10 branches of four nodes. We continuously apply
TrafficJamTrigger to random pairs in the peer discovery tree after the
initial filtering using latency diversity. We discuss how a tree is updated
when node pairs classify as Sybils in Section 6.4.

6.2. Bringing about message flow joins

TrafficJamTrigger sends bursts of RTT measurement messages to
two identities to decide whether they share a node. However, it may
not be sufficient to send two flows of measurement requests to two
identities one after the other. For example, a node close to a measuring
node may already have responded to all latency probes before a node
that is further away has even started responding. This example would
not lead to two message flows joining in a queue and therefore lead
to the honest nodes being labeled as Sybils. To this end, our probe
sending strategy consists of alternating short bursts of messages to the
two identities instead.

When measuring two identities, TrafficJamTrigger sends a burst of
messages to the identity with the higher RTT, which is immediately
succeeded by messages to the other identity. The intent of this ‘‘slowest
first’’ ordering is to account for the case when an honest node has a low
latency and responds before the measuring node even finishes sending
out its latency probes to the node with the higher RTT. In practice, we
use the heuristic of alternatingly sending the same number of bursts
(of 20 messages each) to both identities, one for every 200 ms of RTT
of the slower identity (for example, two bursts to each identity if the
highest RTT is 234 ms). Despite it being a heuristic, we show that this
strategy works well enough to detect attackers in Section 7, and we
leave further optimization to future work.

6.3. Recognizing message flow joins

Any binary classifier that is able to detect a sudden jump in a
burst of measured RTTs, shown in Section 5.2, for the node with the
highest initial RTT (Section 6.2) should suffice for TrafficJamTrigger.
However, the steady increase or decrease of measured RTTs makes
it more difficult to detect this jump. Queues may be in the process
of being filled or emptied due to other messages (Section 5.2). For
example, an RTT jump of 0.2 ms between two measurements over a
steady increase of 1 ms leads to an RTT difference of 1.2 ms between
them, while the jump is actually of equal magnitude compared to a
difference of 0.2 ms when there is no steady increase.

Computer Networks 227 (2023) 109701Q. Stokkink et al.

a
m
c

t
T
t
c
h
b
t
i
t
m

g
o
a
t
J
𝜀
R
t

Fig. 5. Example of a peer discovery tree for a node 𝑛0 with a maximum depth of 3 and 𝛥 = 0.1 s. Nodes with dark (red) shading violate the latency diversity. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)
t
s
R
t
i

6

N
l
S
s
p
g
b

t
d
f
s
s
w
t
w
a
i
a
a

Fig. 6. Example construction of the pivot point, mean trendline, and pivot trendline,
for an imaginary measurement curve.

A linear interpolation, of two specifically selected measurements
of the same burst, is constructed to compensate for the increase (or
decrease) during a burst. We call the linear interpolation a trendline
nd we explain the two ways in which we construct it shortly. A burst’s
easurements are recalculated as their difference to the value of their

orresponding trendline at the time of sending a measurement probe.
We consider two types of trendlines: the mean trendline and the pivot

rendline. The mean trendline starts with the first measurement of a
rafficJamTrigger burst and ends with its last measurement. The pivot
rendline starts from the pivot point instead. The pivot point intuitively
orresponds to the point where a queue has finished filling and streams
ave not joined yet (the fifth point in Fig. 4(a), just before the RTT jump
etween the sixth and the seventh point). We define this pivot point as
he last measurement in a burst that increases more, in comparison to
ts predecessor, than the preceding measurement. As a visual reference,
he two trendlines and the pivot point are shown for an imaginary
easurement curve in Fig. 6.

We now present six classifiers for detecting the RTT-jump pattern,
iven in Table 1. The first three classifiers are based on the nearness
f the RTT measurements to their trendline. We express this nearness
s the mean squared error (MSE) of RTT measurements being smaller
han a parameter 𝜀. Two identities are classified as Sybils if the Traffic-
amTrigger measurements of the slower node have an MSE smaller than
. The difference between the three MSE-based classifiers lies in the
TT measurements that are included in the computation of the MSE:

he MSE classifier uses all measurements, the MSE pre-pivot classifier
uses all measurements up to the pivot point, and the MSE post-pivot
uses only the measurements after the pivot point.

Two further classifiers are based on the shape of the measure-
ment progression, taking no parameters. The log-like classifier is based
on whether the majority of the measurements are higher than the
trendline. The wave-like classifier decides if nodes are Sybils if the
TrafficJamTrigger measurements do not cross the trendline exactly
once, going from values smaller than the trendline to values larger than
those of the trendline.
8

w

Table 1
Binary classifiers that detect artificial delay using the RTT burst measurements of the
node with the highest initial RTT.

Classifier Attacker classification condition

MSE MSE of all RTT measurements is smaller than 𝜀.
MSE pre-pivot MSE of RTT measurements before the pivot is smaller than 𝜀.
MSE post-pivot MSE of RTT measurements after the pivot is smaller than 𝜀.
Log-like Most of the measurements are above the trendline.
Wave-like RTT measurement progression does not go from below to

above the trendline.
Baseline
increase

The average of the measurements is a given percentage
higher than the initial RTT measurement before the burst.

Our final classifier is the baseline increase classifier, which exploits
he latency increase phenomenon mentioned in Section 5.2. This clas-
ifier deems two identities to be Sybils if the identity with the highest
TT exceeds a given increase in average RTT during a burst compared

o its initial RTT. The results of Fig. 3 show that this method increases
n efficacy as the number of Sybils on a device grows.

.4. On accepted node removal

Enhanced SybilSys may require the removal of accepted nodes.
odes may go offline, they may physically move (and no longer be

atency-diverse), and TrafficJamTrigger may classify identity pairs as
ybils. Secondarily, nodes should be continuously removed (and re-
ampled) to avoid the situation in which a successful attack could ever
ermanently hold all of the spots in a node’s peer discovery tree if Sybils
o undetected. In all of these cases a node’s peer discovery tree has to
e updated.

We consider three (binary) aspects that can be combined for a
otal of eight possible configurations for node removal from the peer
iscovery tree. First, we explore what node pairs to select for classi-
ication. We distinguish the selection of node pairs in the bootstrap
et combined with those in each single branch (the local pairs) and
electing pairs from the entire peer discovery tree (all pairs). Secondly,
e investigate what node pairs to remove for continuous resampling,

he churn strategy. We consider periodically removing the node pair
ith the highest (worst) classifier score (though it may not be above
classifier’s threshold), and removing a random node pair. Lastly, we

nspect whether to either remove all following nodes in a branch when
node is removed or to only remove an intermediate node in a branch

nd keep its descendants by linking its child to its parent. In Section 6.5

e evaluate all eight configurations.

Computer Networks 227 (2023) 109701Q. Stokkink et al.
Fig. 7. The precision and recall for different values of 𝜀 for the MSE classifier using
the mean trendline (a) and the pivot trendline (b).

6.5. Configuration for deployment

We configure Enhanced SybilSys to seamlessly integrate with our
existing Tribler network in order to deploy and evaluate it with real
users of Tribler (Section 7). We adopt the parameterization of Tribler’s
peer sampling mechanism as much as possible, namely the total number
of nodes and the periodicity of the peer discovery algorithm. First, we
derive the peer discovery tree’s bootstrap set size and its maximum
branch length (see Section 6.1) from the total number of nodes. The
remainder of this section presents small-scale experiments to configure
parameters that cannot be derived from Tribler: the parameterization of
the classifiers (given in Section 6.3) and the configuration of Enhanced
SybilSys’ node removal (Section 6.4).

We configure Enhanced SybilSys’ peer discovery tree based on the
peer sampling mechanism of Tribler. We adopt the total number of 20
as the target size of the peer discovery tree. Given the target number
of 20 nodes, we parameterize SybilSys with 10 branches that grow to a
branch length of 4 (if not stopped at 20 nodes, the tree would grow to
a size of 40 nodes).

The experiments to parameterize the classifiers emphasize classifier
quality over the speed of node discovery. The setup of our configuration
experiments uses two nodes that each operate 25 Sybil identities and
we sample 50 honest nodes from the Tribler network for each run
(equal to the setup of Section 5.2). We run 60-second experiments using
𝛥 = 0.05 s, a bootstrap set size of 6, a maximum peer discovery tree
branch length of 4 and a total tree size of 20 for each node. With less
branches than in actual deployment, the quality of classifiers is stressed
more.

We parameterize our classifiers (also known as ‘‘training’’ in Ma-
chine Learning) to provide a balance between recall and precision.
On the one hand, the recall of any binary classifier corresponds to
the chance that whatever entity is being classified, Sybils in our case,
is classified as that entity. As Enhanced SybilSys uses classifiers to
mark nodes for removal, the recall corresponds to the chance that a
Sybil is (eventually) removed. The recall should therefore be as high
as possible. On the other hand, the precision of a binary classifier
corresponds to the fraction of entities that are correctly classified over
all the entities. A precision lower than 0.5 causes Enhanced SybilSys to
mostly mark honest nodes for removal. Inversely, because nodes share
9

Table 2
The number of honest nodes found using the node removal strategies of Section 6.4
averaged over 30 experiment runs (higher is better).

Node removal strategy Number of honest nodes

Pairs Churn Descendant Mean Median Min Max

local worst remove 9.18 9 4 17
local worst keep 8.88 9 5 14
local random remove 9.39 9 5 15
local random keep 8.56 9 5 12
all worst remove 9.57 10 5 16
all worst keep 8.91 9 5 13
all random remove 9.95 10 6 17
all random keep 10.24 10 6 16

their neighbors with each other, a precision of over 0.5 means that
nodes predominantly resample nodes from a set of nodes that is more
likely to contain honest nodes. Therefore, if the precision is at least
over 0.5, this resampling ensures that honest nodes are predominantly
connected to other honest nodes.

We use our setup to configure the MSE-based classifiers and the
baseline increase classifier. We show the impact of different values of
𝜀 on the precision and recall for both the mean trendline in Fig. 7(a)
and the pivot trendline in Fig. 7(b) for the MSE classifier. The results of
Fig. 7 show a trade-off between the classifier’s recall and its precision.
We pick a value that lies between the collapse of the precision and the
collapse of the recall, with a precision of at least 0.5. Therefore, for both
trendlines, we configure the MSE classifier to use a value of 𝜀 = 10 ms.
The pre-pivot and post-pivot parameterization have a similar collapse
and we again choose values between their collapses, which we find at
𝜀 = 10 ms and 𝜀 = 0.01 ms respectively. In the same fashion, for the
baseline increase classifier we pick a 20% increase in latency to classify
Sybils.

In order to configure the node removal of Enhanced SybilSys, we
evaluate the strategies of Section 6.4 using our experiment setup with
the MSE classifier. We present the number of honest nodes each node-
removal strategy yields in Table 2. Firstly, the result of applying
classification over all pairs in the peer discovery tree is similar to
that of classification within each branch and the bootstrap set, though
classifying all pairs performs slightly better. Secondly, enforcing churn
through continuously removing the ‘‘most Sybil’’ 2-tuple also does not
lead to any big differences in honest node counts compared to random
node removal, performing worse in all cases but one. Lastly, we find
that—in all but one case—removing all descendants in a branch leads
to more honest node retention than only removing the particular Sybil
node and linking its child and parent node. Our results show that the
configuration that retains the most honest nodes consists of applying
classification over all node pairs, periodically removing random nodes
and linking descendants to the parents of removed nodes in a branch.

6.6. Overview of Enhanced Sybilsys

Omitting the passive latency measurements (Section 4), bootstrap
set construction (Section 6.1), and peer maintenance (Section 6.4),
the activity diagram of Fig. 8 serves as a summary of our proposed
algorithm. The periodicity of this algorithm consists of each node in the
network running it once every 0.5 s (the default periodicity of Tribler’s
peer sampling).

7. Enhanced SybilSys: evaluation

We now evaluate both our flow joining detection classifiers and our
complete Enhanced SybilSys algorithm (configured for deployment as
described in Section 6.5) through two experiments. First, we construct
several data sets of TrafficJamTrigger measurements to which we apply
the six classifiers defined in Section 6.3. Second, we evaluate Enhanced

SybilSys using the best-performing classifier to mimic a best-effort

Computer Networks 227 (2023) 109701Q. Stokkink et al.

d
w

w
E
W
o
t
S

7

s
h
t
o
T
c
m
o
t
W
c

Fig. 8. Activity diagram of our Enhanced SybilSys for the requested total node count
𝑛, and the maximum branch length 𝑘.

efense by honest nodes. Finally, based on the experimental results,
e estimate the cost of attacking Enhanced SybilSys.

Both experiments of this section use real users of our Tribler net-
ork and we introduce Sybils into the network that actively attack
nhanced SybilSys using the latency measurement interference attack.
e denote the node that uses Enhanced SybilSys in order to filter

ut Sybils as the ‘‘measuring node’’ and we set its latency diversity
hreshold 𝛥 = 5 ms, based on the real-world deployment results of
ection 4.2.

.1. RTT-based classifiers evaluation

To evaluate our binary classifiers (Section 6.3), we create four data
ets consisting of TrafficJamTrigger measurements, one for pairs of
onest nodes and three for pairs of Sybils. We create more sets for Sybils
o evaluate the impact of running Sybils on three different numbers
f nodes, which should make them harder to detect (Section 5.2).
he setup for all four of these sets consists of a measuring node that
onnects to all identities in a given set and performs TrafficJamTrigger
easurements for all pairs of identities it is connected to. The data sets

nly contain the measurement bursts which are used for classification,
hose of the node with the highest RTT for each pair (Section 6.3).

e do not perform TrafficJamTrigger measurements, and we do not
reate datasets, for pairs consisting of an honest node and a Sybil. The
10
Table 3
Overview of the data sets used for the evaluation of the classifiers.

Data set Nodes Identities per node Measured pairs

Honest 500 1 124 750
Sybil (1) 1 100 4950
Sybil (2) 2 50 4950
Sybil (3) 4 25 4950

Table 4
Sybil classifier performance for both trendline types.

Classifier Mean Pivot

Precision Recall Precision Recall

Random 0.5021 0.4982 0.4984 0.4974
MSE 0.5372 0.9119 0.5895 0.9479
MSE pre-pivot 0.5319 0.9139 0.5860 0.9544
MSE post-pivot 0.4428 0.5877 0.1661 0.1037
Log-like 0.5457 0.4683 0.6577 0.9069
Wave-like 0.6283 0.4761 0.6544 0.9071
Baseline increase 0.5951 0.7350 0.5965 0.7392

reason is that we deem it unethical to Sybil attack unsuspecting users
of Tribler. This limitation may skew our results. For reproducibility
and further research, we have made our anonymized data sets publicly
available [46].

Our honest set was created using the nodes of real Tribler users
found with a network crawler that assumed the role of the measuring
node. These users were running real workloads and had real network
congestion during their measurement. All users had unique IP addresses
and remained online for the duration of our experiment. Over the
course of three days, our network crawler had eventually connected
to 500 nodes and the experiment was started. TrafficJamTrigger mea-
surements were performed by the crawler for all possible pairs of
these 500 nodes, leading to 124 750 unique sequences of measurement
bursts. The mean size of a sequence of bursts was 99 messages, and the
median was 39 messages (to reiterate, we send 20 messages per 200 ms
of RTT). Due to network effects, there were messages that did not
receive a response. Out of 124 750 sequences of bursts, only 7414 had
all of their individual messages responded to. Despite these network
effects, Section 7.2 shows that a classifier can be used for effective Sybil
filtering.

The Sybil sets capture artificially delayed Sybil attackers. We es-
tablish three data sets for different attacker setups, where the attacker
nodes are in different physical locations: (1) a single node operating
100 Sybil identities, (2) two nodes operating 50 Sybil identities each,
and (3) four nodes operating 25 Sybil identities each. Each setup
operates in its own overlay network partition in order to keep Sybil
attackers from communicating with Tribler users. TrafficJamTrigger
measurements were performed for all possible Sybil pairs, including
those running on different nodes. All three setups have 100 identities,
each resulting data set includes 4950 TrafficJamTrigger sequences of
measurement bursts per setup. For reference, the summary of our data
sets is given in Table 3.

We evaluate the binary classifiers (parameterized using the training
set of Section 6.5) using a test set comprised of our honest set and
our Sybils sets. However, our honest set and Sybils sets are not of
equal sizes (124 750 bursts sequences for honest nodes and three sets
of 4950 bursts sequences for Sybils) and this imbalance would skew the
precision and recall metrics [47]. To make up for the size differences,
we use statistical bootstrapping, which consists of random resampling
with replacement from the (smaller) Sybil sets to match the size of the
(largest) honest set. Other methods can be used to equalize the set sizes
(e.g., taking a subset of the honest set), though their estimation errors
should all converge for a sufficiently-large smaller set [48]. Opinions on
what constitutes a sufficiently-large set differ, but typically this is in the

order of hundreds of data points (our smallest data set has 4950).

Computer Networks 227 (2023) 109701Q. Stokkink et al.
The precision and recall, calculated using our test set, for all of the
RTT classifiers are presented in Table 4 for both trendline methods (see
Section 6.3). For reference, we include the random classifier, which
simply classifies an identity as Sybil with a 50% chance. We only
include this reference to show that our statistical bootstrapping method
is correctly implemented and leads to 50% precision and 50% recall.

Our results indicate that a jump in latency measurements is best
detected by the MSE pre-pivot classifier, which classifies measurements
as intermediate queues are filling before the pivot point. In contrast, the
MSE post-pivot classifier shows both very poor precision and very poor
recall, showing it is very difficult to detect Sybils after the pivot point
using the Mean Squared Error, i.e., after queues are filled. This lack
of detection aligns with the intuition that there can be no jump (up)
in RTT measurements if all RTT probes already suffer the maximum
queuing time. The MSE classifier, which considers both the pre-pivot
and post-pivot measurements, achieves similar results to the pre-pivot
classifier in spite of the inclusion of the post-pivot measurements. The
log-like and wave-like classifiers have a relatively high precision of over
0.5 and are also usable with Enhanced SybilSys. These two classifiers
benefit greatly from the pivot trendline, nearly doubling in recall value.
The baseline increase classifier does not use a trendline and we have
simply evaluated it twice, with similar results. All in all, all classifiers
except the MSE post-pivot classifier are able to effectively filter Sybils
with Enhanced SybilSys. Nevertheless, as recall is the decisive metric
for convergence of the set of accepted nodes to a set of honest nodes, we
use the MSE pre-pivot classifier for our final algorithm in the following
evaluation.

7.2. Real-world evaluation of Enhanced SybilSys

Our second evaluation consists of combining the best performing
Sybil classifier, MSE pre-pivot, with our Enhanced SybilSys peer discov-
ery mechanism and evaluating it in a network with Sybil nodes. Again,
every honest node is running a peer-to-peer file sharing client, leading
to real-world congestion effects. The aim of our evaluation is to show
that honest nodes are still able to find each other in these extremely
challenging conditions. We explore two aspects of how an honest node
finds other honest nodes: (1) the time it takes until it finds the first
other honest node, and (2) how the number of honest nodes it has found
progresses over time.

For both aspects we explore, we create a setup with in total 100
identities (both honest and Sybils). Our setup consists of a measuring
node that is connected to a number of honest nodes from the Tribler
network and up to four attacker nodes that run 25 Sybil identities
each. To create networks with a given Sybil fraction, we randomly
sample identities from these honest nodes and from the attackers’ Sybil
identities. For example, a network with a Sybil fraction of 0.75 contains
25 random honest nodes and 75 random Sybils, each of which may run
on any of the four attacker nodes.

We determine the number of Sybils per node based on the results
shown in previous sections. In Section 5.2 (the second setup) shows the
relationship between the number of identities per node and how easily
Sybils are detected using an initial RTT measurement, corresponding
to the baseline increase classifier. As the latency of all identities on a
single node grows with the number of identities on the node, so does
the efficacy of our baseline increase classifier (see Section 6.3). Using
the setup of Section 6.5, we derive that the largest number of Sybils per
node that does not increase the recall of our baseline increase classifier
is 25 identities (reaching a recall of 0.92 at 50 Sybil identities, equaling
the MSE pre-pivot classifier).

We present the time until half of the honest (measuring) nodes
has found another honest node. The reason for using this metric is
that when there is at least one connection to another honest node,
peer sampling is successful for Web3 applications (see Section 3). For
brevity, we call the neighborhood of an honest node (excluding the
11
Fig. 9. Time until half of the honest nodes has found another honest node, i.e., until
their neighborhoods are robust, as the Sybil fraction increases.

Fig. 10. The number of honest nodes found by the measuring node over time (the
dark, red, line) in a 99% Sybil network. A random sample of 20 nodes leads to 0.2
found honest nodes, a robust neighborhood contains more than 0.5 honest nodes, and
a perfect classifier upper bounds the number of found honest nodes with a geometric
distribution.

measuring node itself) that includes at least one honest node robust.
The results we present are averaged over 20 runs of at least 10 min.

The results of our first exploration given in Fig. 9 show that up to
a Sybil fraction of 0.95 (with only 5 honest nodes for 100 identities),
the neighborhoods of honest nodes are robust nearly instantly. This
robustness is grounded in the chance of sampling at least one honest
node with 20 samples, the target number of nodes (see Section 6.5),
from a set of 100 identities that include 5 honest nodes (essentially
binomial sampling). Our results underline that, up to a Sybils fraction
of 0.95, Sybils can be trivially avoided by opening a sufficiently large
number of connections. Nevertheless, Enhanced SybilSys is useful when
the initial random sample of nodes does not contain an honest node and
when the number of connections cannot be scaled up to match the Sybil
presence in a network (e.g., due to security or hardware constraints).
For the Sybil fractions of 0.97 and 0.99, an honest node using Enhanced
SybilSys is expected to find another honest node after 275 and 335 s,
respectively, with a granularity of five seconds.

We now zoom in on how the number of honest nodes found pro-
gresses over time for a setup with a fraction of Sybils of 0.99, which is
the most challenging case for 100 identities. It forces Enhanced SybilSys
to filter out latency-diverse Sybils using TrafficJamTrigger in order to
find the single honest node. For comparison, we use two benchmarks,
for both an upper bound on the number of honest nodes found (which
could be reached using a perfect classifier with a precision and recall
of 1.0) and the number expected to be found in a random sample
(e.g., from a rendezvous server). Any Sybil-avoiding peer sampling
mechanism is upper bounded by the chance to discover an honest
node through iterative random sampling, which follows a geometric
distribution. In contrast, a random sample of 20 uniformly randomly
sampled nodes (the configured number of target nodes) leads to 0.2
honest nodes on average for a network that contains one honest node
out of 100 nodes.

Computer Networks 227 (2023) 109701Q. Stokkink et al.

n
h
s
h
o

7

n
t
o

Table 5
The estimated cost of performing a Sybil attack with $20 hardware to delay honest
node connections by 6 min, depending on the network size.

Network Year Online nodes Attack cost

Bitcoin 2017 10k [49] $0.79M
Ethereum 2018 15k [50] $1.19M
Kazaa 2002 30k [51] $2.38M
Tribler 2020 50k [this work] $3.96M
Napster 2000 500k [52] $39.6M
Napster 2001 1.57M [53] $124.3M

The results depicted in Fig. 10 show that Enhanced SybilSys does
ot reach the theoretical maximum honest node count. However, En-
anced SybilSys does outperform the benchmark of purely random
ampling. Our results show that the average number of connected
onest nodes reaches over 0.5 after 6 min, at which point the majority
f experiment runs have found and retained the singular honest node.

.3. On the cost of attacking

We evaluate the monetary cost of delaying the discovery of honest
odes by six minutes (the time we found in Section 7.2 for a network
o become robust). To put this into perspective, we use the statistics
f Tribler, which is estimated to have 50 000 concurrent users. In

Section 7.2, it is shown that the ratio of the number of Sybil identities to
the number of honest nodes should be at least 99:1 to delay honest node
discovery by six minutes. Therefore, using Section 7.2’s setup of one
node per 25 identities, a successful attack is required to use more than
198 000 nodes in different physical locations. Even if attackers use free
Wi-Fi and old $20 Raspberry Pi’s, a Sybil attack on this network would
cost just under 4 million dollars. At this cost, attacks other than the
Sybil attack are economically more viable to block communication. For
example, cheaper attacks are a man-in-the-middle attack on all users
(about 50 000 × 20$, excluding labor costs) and rented virtual private
servers (given a $10 price tag per server, leading to 198 000 × 10$).

Using the same assumptions as for the estimate using our own
network, we estimate the attack cost for several other popular peer-to-
peer technologies. The costs are calculated using the estimated number
of online nodes for each technology. The resulting cost to delay con-
nections between honest nodes (for six minutes) is given in Table 5.
For instance, we calculate a cost of $124.3M for the 1.57 million online
nodes that Napster had in 2001. However, our estimate is based on
measurements that were done for a file-sharing application and its
heavy bandwidth load decreases classifier effectiveness, as observed in
Section 7.1. We predict that applications that have lighter bandwidth
loads will have more success in detecting Sybils. Therefore, using
Sybils to attack networks where users have lighter bandwidth loads is
expected to have a higher cost.

8. Related work

Decentralized techniques to avoid Sybil identities have been studied
in many contexts, including computational puzzles [54–57], graph-
based approaches [58–61] and reputation mechanisms [62–65].

In the case of computational puzzles, computational resources of
nodes are challenged to limit the influence of attackers. SybilCon-
trol [54] proposes admission control that requires each identity to
periodically solve computational puzzles, suppressing the influence of
attackers who failed to solve a puzzle. To protect honest identities from
devoting excessive computational effort, da Costa Cordeiro et al. use
computational puzzles that have adaptive difficulty [57] and that are
energy-efficient [66]. An issue with the computational puzzle approach
is that attackers practically use the computational disparity between
consumer devices and their hardware to take control over peer-to-peer
networks, in particular the networks of cryptocurrencies. Besides, in
12

the field of cryptocurrencies, these attacks are not just for the sake of
vandalism: these attacks are profitable [20]. In contrast, our approach
does not depend on the computational resources of attackers, but the
routing infrastructure in between an attacker and a target, which is
unlikely to be fully in the hands of an attacker given the global structure
of the Internet.

Graph-based approaches leverage the sparse connections between
Sybils and honest identities. SybilGuard [61] and SybilLimit [60] rely
on random walks for ranking nodes to filter out attackers. However,
both approaches suffer from a large number of false negatives as well as
computational complexity due to the requirement of testing all suspect
nodes. SybilRank [58] is less prone to false negatives and reduces
the computational complexity of SybilGuard and SybilLimit. However,
these graph-based approaches rely on a set of globally known honest
nodes called trust seeds. In our approach, none of the components
assume a-priori trusted nodes.

Reputation mechanisms rely on assigning numerical scores to each
identity based on reported interaction histories [62–65]. However, ad-
dressing the problem of establishing trust relationships, through some
form of decentralized reputation system, is also beholden to a plethora
of attacks [67]. Creating trust requires a circular dependency between
the creation of trust and the mitigation of attacks, which easily leads to
reputation building with fake histories [68]. We have sought to avoid
this problem in our own work by only mitigating attacks based on
first-hand knowledge, completely avoiding both requiring centralized
infrastructure and the need to establish trust.

Latency as a Sybil classifier. Many studies have attempted to
use triangulation for detecting and avoiding Sybils, using latency to
pinpoint physical coordinates [30,31] or (locally) by using signal
strength [69–74]. However, the approach of signal strength, while
highly similar, is not applicable for interactions over the Internet.
Bazzi and Konjevod [30] exploit the geometric properties of network
latency to test the distinctness of identities. However, this work builds
on the assumption that the latency of nodes has strong geometric
properties and that these latency measurements are symmetric. Em-
pirical studies provide sufficient evidence to reject the validity of
both assumptions [32–34]. In our work, we do not rely on those
assumptions and consider artificially delayed latency measurements.
Sherr et al. propose Veracity [31], a decentralized service for securing
network coordinate systems, which also considers the case where an
attacker artificially delays the latencies. However, it mainly addresses
the coordinate system protection problem and has limited guarantees
against malicious identities, providing results for a structured network
(DHT) consisting of up to 40% active attackers, using 500 simulated
nodes. We show in our experiments that the combination of Basic
SybilSys and TrafficJamTrigger can handle up to 99% active attackers,
using 500 real users, running real workloads.

Digital Identity. Detection and prevention of fake identities plays
an essential role in identity management systems [66,75,76]. In a
recent study, Stokkink et al. [75] have created a decentralized digital
identity solution that requires no intermediation by third parties, suit-
able to even replace physical passports. This may seem to suggest a lack
of communication to third parties and therefore to forego the problem
of the Sybil attack. Indeed, as pointed out by Maram et al. [76], the
building of identity information is Sybil-resistant. However, for the
overall solution, this claim of Sybil-resistance would be false since these
systems still require communication with others [75]. These solutions
require decentrally established communication channels, which can
be Sybil attacked. However, once communication to honest nodes
is established, these solutions may be a great complement to our
technology.

9. Conclusion

To aid in avoiding Sybil attacks on Web3 applications, this paper
presented Basic SybilSys, a Sybil-avoiding peer discovery mechanism
based solely on network latency. Secondarily, this paper introduced

Computer Networks 227 (2023) 109701Q. Stokkink et al.

y
o
M
t
a

D

c
i

D

/

A

c
w
v
i

R

TrafficJamTrigger, a network latency measurement strategy, to allow
for detection of attacks that counter our Basic SybilSys mechanism. The
combination of Basic SybilSys and TrafficJamTrigger forms Enhanced
SybilSys.

Enhanced SybilSys promises to establish connections between users
while avoiding Sybils without the need for trust or a centrally gov-
erned infrastructure. As Enhanced SybilSys only serves to establish
connections, any of the numerous existing Sybil avoidance algorithms
and mechanisms (e.g., computational puzzles, social network infer-
ence, reputation mechanisms and digital identities) can be used to
complement Enhanced SybilSys. Whereas Enhanced SybilSys already
avoids Sybils, future work may explore the complementary technology
it enables to further filter Sybils and to achieve even less Sybils in
a node’s neighborhood. Furthermore, to improve Enhanced SybilSys,
future work may also investigate other means of detecting Sybils using
TrafficJamTrigger measurements.

Through tests with Enhanced SybilSys, it was shown to what extent
network latency is able to ensure connections to non-Sybils over the
Internet and what the expected monetary cost of undermining our
Sybil avoidance is. It has been shown how non-Sybil nodes are still
found even when a network consists of 99% Sybils. Using the results
for the Tribler network, it is estimated that an attacker would have
to invest millions of dollars to obtain a significant presence in a real
overlay network to perform a successful (albeit temporary) Eclipse
attack. Therefore, SybilSys succeeds in driving up the cost of the
previously cheapest and easiest attack on the communication layer of
Web3 solutions.

CRediT authorship contribution statement

Quinten Stokkink: Conceptualization, Data curation, Formal anal-
sis, Investigation, Methodology, Software, Visualization, Writing –
riginal draft. Can Umut Ileri: Conceptualization, Formal analysis,
ethodology, Writing – original draft. Dick Epema: Project adminis-

ration, Supervision, Writing – original draft. Johan Pouwelse: Formal
nalysis, Funding acquisition, Supervision, Writing – original draft.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.

ata availability

The data sets used in this manuscript are publicly available at https:
/doi.org/10.4121/uuid:34850d65-1908-4249-b446-8e87c6d21ba0

cknowledgments

This research did not receive any specific grant from funding agen-
ies in the public, commercial, or not-for-profit sectors. The authors
ould like to thank Jan S. Rellermeyer for his contribution to an earlier
ersion of this work. We thank Martijn de Vos whose comments helped
mprove and clarify this work.

eferences

[1] Dave Peck, the PSL Team, An engineer’s hype-free observations on web3 (and
its possibilities), 2021, https://www.psl.com/feed-posts/web3-engineer-take.

[2] Shermin Voshmgir, Token Economy: How the Web3 Reinvents the Internet, Vol.
2, Token Kitchen, 2020.

[3] John R. Douceur, The sybil attack, in: International Workshop on Peer-To-Peer
Systems, Springer, 2002, pp. 251–260.

[4] Usman W. Chohan, Are cryptocurrencies truly trustless? in: Cryptofinance and
13

Mechanisms of Exchange, Springer, 2019, pp. 77–89.
[5] Hideaki Hata, Mingyu Guo, M. Ali Babar, Understanding the heterogeneity
of contributors in bug bounty programs, in: 2017 ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement, ESEM, IEEE,
2017, pp. 223–228.

[6] Philip Daian, Steven Goldfeder, Tyler Kell, Yunqi Li, Xueyuan Zhao, Iddo Bentov,
Lorenz Breidenbach, Ari Juels, Flash boys 2.0: Frontrunning in decentralized
exchanges, miner extractable value, and consensus instability, in: 2020 IEEE
Symposium on Security and Privacy, SP, IEEE, 2020, pp. 910–927.

[7] Dan Robinson, Georgios Konstantopoulos, Ethereum is a dark forest, 2020,
https://www.paradigm.xyz/2020/08/ethereum-is-a-dark-forest/.

[8] Tal Be’ery, Ethology: A safari tour in ethereum’s dark forest, 2020, https:
//zengo.com/ethology-a-safari-tour-in-ethereums-dark-forest/.

[9] DeGate Team, An analysis of ethereum front-running and its defense solu-
tions, 2021, https://medium.com/degate/an-analysis-of-ethereum-front-running-
and-its-defense-solutions-34ef81ba8456.

[10] Kenneth P. Birman, Mark Hayden, Oznur Ozkasap, Zhen Xiao, Mihai Budiu,
Yaron Minsky, Bimodal multicast, ACM Trans. Comput. Syst. (TOCS) 17 (2)
(1999) 41–88.

[11] Márk Jelasity, Spyros Voulgaris, Rachid Guerraoui, Anne-Marie Kermarrec,
Maarten Van Steen, Gossip-based peer sampling, ACM Trans. Comput. Syst.
(TOCS) 25 (3) (2007) 8–es.

[12] Ken Birman, The promise, and limitations, of gossip protocols, Oper. Syst. Rev.
41 (5) (2007) 8–13.

[13] Ghassan O. Karame, Elli Androulaki, Srdjan Capkun, Double-spending fast
payments in bitcoin, in: Proceedings of the 2012 ACM Conference on Computer
and Communications Security, 2012, pp. 906–917.

[14] Muoi Tran, Akshaye Shenoi, Min Suk Kang, On the routing-aware peering against
network-eclipse attacks in bitcoin, in: 30th USENIX Security Symposium (USENIX
Security 21), 2021.

[15] Harry C. Li, Allen Clement, Edmund L. Wong, Jeff Napper, Indrajit Roy, Lorenzo
Alvisi, Michael Dahlin, Bar gossip, in: Proceedings of the 7th Symposium on
Operating Systems Design and Implementation, 2006, pp. 191–204.

[16] Márk Jelasity, Rachid Guerraoui, Anne-Marie Kermarrec, Maarten Van Steen,
The peer sampling service: Experimental evaluation of unstructured gossip-based
implementations, in: ACM/IFIP/USENIX International Conference on Distributed
Systems Platforms and Open Distributed Processing, Springer, 2004, pp. 79–98.

[17] Anne-Marie Kermarrec, Alessio Pace, Vivien Quema, Valerio Schiavoni, Nat-
resilient gossip peer sampling, in: 2009 29th IEEE International Conference on
Distributed Computing Systems, IEEE, 2009, pp. 360–367.

[18] Adja Elloh Yves-Christian, Badis Hammi, Ahmed Serhrouchni, Houda Labiod,
Total eclipse: How to completely isolate a bitcoin peer, in: 2018 Third Inter-
national Conference on Security of Smart Cities, Industrial Control System and
Communications, SSIC, IEEE, 2018, pp. 1–7.

[19] Abdelatif Hafid, Abdelhakim Senhaji Hafid, Mustapha Samih, Scaling
blockchains: A comprehensive survey, IEEE Access 8 (2020) 125244–125262.

[20] Savva Shanaev, Arina Shuraeva, Mikhail Vasenin, Maksim Kuznetsov, Cryptocur-
rency value and 51% attacks: evidence from event studies, J. Altern. Invest. 22
(3) (2019) 65–77.

[21] Muhammad Saad, Victor Cook, Lan Nguyen, My T. Thai, Aziz Mohaisen,
Partitioning attacks on bitcoin: Colliding space, time, and logic, in: 2019 IEEE
39th International Conference on Distributed Computing Systems, ICDCS, IEEE,
2019, pp. 1175–1187.

[22] Muneeb Ali, Jude Nelson, Ryan Shea, Michael J. Freedman, Bootstrapping trust
in distributed systems with blockchains, USENIX; Login 41 (3) (2016) 52–58.

[23] Mansour Alsaleh, Abdulrahman Alarifi, Abdul Malik Al-Salman, Mohammed
Alfayez, Abdulmajeed Almuhaysin, Tsd: Detecting sybil accounts in twitter, in:
2014 13th International Conference on Machine Learning and Applications, IEEE,
2014, pp. 463–469.

[24] Jing Jiang, Zifei Shan, Wenpeng Sha, Xiao Wang, Yafei Dai, Detecting and
validating sybil groups in the wild, in: 2012 32nd International Conference on
Distributed Computing Systems Workshops, IEEE, 2012, pp. 127–132.

[25] P. Gao, B. Wang, N.Z. Gong, S.R. Kulkarni, K. Thomas, P. Mittal, Sybilfuse: Com-
bining local attributes with global structure to perform robust sybil detection,
in: 2018 IEEE Conference on Communications and Network Security, CNS, 2018,
pp. 1–9.

[26] Anastasia Koloskova, Sebastian Stich, Martin Jaggi, Decentralized stochas-
tic optimization and gossip algorithms with compressed communication, in:
International Conference on Machine Learning, PMLR, 2019, pp. 3478–3487.

[27] Clement Fung, Chris J.M. Yoon, Ivan Beschastnikh, Mitigating sybils in federated
learning poisoning, 2018, arXiv preprint arXiv:1808.04866.

[28] Clement Fung, Chris J.M. Yoon, Ivan Beschastnikh, The limitations of federated
learning in sybil settings, in: 23rd International Symposium on Research in
Attacks, Intrusions and Defenses (RAID 2020), 2020, pp. 301–316.

[29] Dimitris Vyzovitis, Yusef Napora, Dirk McCormick, David Dias, Yiannis Psaras,
Gossipsub: Attack-resilient message propagation in the filecoin and eth2. 0
networks, 2020, arXiv preprint arXiv:2007.02754.

[30] Rida A. Bazzi, Goran Konjevod, On the establishment of distinct identities in
overlay networks, Distrib. Comput. 19 (4) (2007) 267–287.

[31] Micah Sherr, Matt Blaze, Boon Thau Loo, Veracity: Practical secure network
coordinates via vote-based agreements, in: USENIX Annual Technical Conference,
2009.

[32] Jonathan Ledlie, Paul Gardner, Margo I. Seltzer, Network Coordinates in the

Wild, Vol. 7, NSDI, 2007, pp. 299–311.

https://doi.org/10.4121/uuid:34850d65-1908-4249-b446-8e87c6d21ba0
https://doi.org/10.4121/uuid:34850d65-1908-4249-b446-8e87c6d21ba0
https://doi.org/10.4121/uuid:34850d65-1908-4249-b446-8e87c6d21ba0
https://www.psl.com/feed-posts/web3-engineer-take
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb2
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb2
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb2
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb3
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb3
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb3
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb4
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb4
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb4
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb5
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb5
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb5
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb5
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb5
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb5
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb5
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb6
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb6
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb6
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb6
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb6
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb6
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb6
https://www.paradigm.xyz/2020/08/ethereum-is-a-dark-forest/
https://zengo.com/ethology-a-safari-tour-in-ethereums-dark-forest/
https://zengo.com/ethology-a-safari-tour-in-ethereums-dark-forest/
https://zengo.com/ethology-a-safari-tour-in-ethereums-dark-forest/
https://medium.com/degate/an-analysis-of-ethereum-front-running-and-its-defense-solutions-34ef81ba8456
https://medium.com/degate/an-analysis-of-ethereum-front-running-and-its-defense-solutions-34ef81ba8456
https://medium.com/degate/an-analysis-of-ethereum-front-running-and-its-defense-solutions-34ef81ba8456
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb10
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb10
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb10
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb10
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb10
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb11
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb11
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb11
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb11
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb11
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb12
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb12
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb12
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb13
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb13
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb13
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb13
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb13
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb14
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb14
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb14
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb14
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb14
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb15
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb15
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb15
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb15
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb15
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb16
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb16
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb16
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb16
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb16
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb16
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb16
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb17
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb17
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb17
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb17
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb17
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb18
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb18
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb18
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb18
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb18
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb18
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb18
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb19
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb19
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb19
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb20
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb20
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb20
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb20
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb20
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb21
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb21
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb21
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb21
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb21
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb21
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb21
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb22
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb22
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb22
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb23
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb23
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb23
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb23
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb23
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb23
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb23
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb24
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb24
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb24
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb24
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb24
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb25
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb25
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb25
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb25
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb25
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb25
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb25
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb26
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb26
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb26
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb26
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb26
http://arxiv.org/abs/1808.04866
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb28
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb28
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb28
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb28
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb28
http://arxiv.org/abs/2007.02754
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb30
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb30
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb30
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb31
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb31
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb31
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb31
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb31
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb32
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb32
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb32

Computer Networks 227 (2023) 109701Q. Stokkink et al.
[33] Cristian Lumezanu, Randy Baden, Neil Spring, Bobby Bhattacharjee, Triangle
inequality variations in the internet, in: ACM SIGCOMM Conference on Internet
Measurement, ACM, 2009.

[34] Raúl Landa, Joao Taveira Araújo, Richard G. Clegg, Eleni Mykoniati, David
Griffin, Miguel Rio, The large-scale geography of internet round trip times, in:
2013 IFIP Networking Conference, IEEE, 2013, pp. 1–9.

[35] Atul Singh, et al., Eclipse attacks on overlay networks: Threats and defenses, in:
IEEE INFOCOM, Citeseer, 2006.

[36] Brian Neil Levine, Clay Shields, N. Boris Margolin, A Survey of Solutions To the
Sybil Attack, Vol. 7, University of Massachusetts Amherst, Amherst, MA, 2006,
p. 224.

[37] Paul Baran, On distributed communications networks. rand corporation, in:
P-2626), Santa Monica, 1962, 40 Pp, 32, 1962, pp. 168–267.

[38] Georgios Loukas, Gülay Öke, Protection against denial of service attacks: A
survey, Comput. J. 53 (7) (2010) 1020–1037.

[39] Bryan Ford, Pyda Srisuresh, Dan Kegel, Peer-to-peer communication across
network address translators, in: USENIX Annual Technical Conference, General
Track, 2005, pp. 179–192.

[40] Frank Dabek, Russ Cox, Frans Kaashoek, Robert Morris, Vivaldi: A decentral-
ized network coordinate system, in: ACM SIGCOMM Computer Communication
Review, Vol. 34, ACM, 2004, pp. 15–26, (4).

[41] Ashwin Lall, Data streaming algorithms for the kolmogorov-smirnov test, in: 2015
IEEE International Conference on Big Data (Big Data), IEEE, 2015, pp. 95–104.

[42] Johan Pouwelse, Pawel Garbacki, Jun Wang, Arno Bakker, Jie Yang, Alexandru
Iosup, Dick Epema, Marcel Reinders, Maarten Van Steen, Henk J. Sips, Tribler: a
social-based peer-to-peer system, Concurr. Comput.: Pract. Exper. 20 (2) (2008)
127–138.

[43] Tadayoshi Kohno, Andre Broido, Kimberly C. Claffy, Remote physical device
fingerprinting, IEEE Trans. Dependable Secure Comput. 2 (2) (2005) 93–108.

[44] Sebastian Zander, Steven J. Murdoch, An improved clock-skew measurement
technique for revealing hidden services, in: USENIX Security Symposium, 2008,
pp. 211–226.

[45] Krishna Ramachandran, Irfan Sheriff, Elizabeth Belding, Kevin Almeroth, Routing
stability in static wireless mesh networks, in: International Conference on Passive
and Active Network Measurement, Springer, 2007, pp. 73–82.

[46] Quinten Stokkink, Can Umut Ileri, Johan Pouwelse, Jan S. Rellermeyer, Latency
Collision Measurements. 4TU.Centre for Research Data, Dataset, 2020, http:
//dx.doi.org/10.4121/uuid:34850d65-1908-4249-b446-8e87c6d21ba0.

[47] Sotiris Kotsiantis, Dimitris Kanellopoulos, Panayiotis Pintelas, et al., Handling
imbalanced datasets: A review, GESTS Int. Trans. Comput. Sci. Eng. 30 (1) (2006)
25–36.

[48] Cathy O’Neil, Rachel Schutt, Doing Data Science: Straight Talk from the
Frontline, O’Reilly Media, Inc., 2013.

[49] Varun Deshpande, Hakim Badis, Laurent George, Btcmap: mapping bitcoin
peer-to-peer network topology, in: 2018 IFIP/IEEE International Conference on
Performance Evaluation and Modeling in Wired and Wireless Networks, PEMWN,
IEEE, 2018, pp. 1–6.

[50] Seoung Kyun Kim, Zane Ma, Siddharth Murali, Joshua Mason, Andrew Miller,
Michael Bailey, Measuring ethereum network peers, in: Proceedings of the
Internet Measurement Conference 2018, 2018, pp. 91–104.

[51] Jian Liang, Rakesh Kumar, Keith W. Ross, The kazaa overlay: A measurement
study, Comput. Netw. J. (Elsevier) 49 (6) 2005.

[52] CNN Money, Napster: 20 million users. https://money.cnn.com/2000/07/19/
technology/napster/index.htm.

[53] Jintae Lee, An end-user perspective on file-sharing systems, Commun. ACM 46
(2) (2003) 49–53.

[54] Frank Li, Prateek Mittal, Matthew Caesar, Nikita Borisov, Sybilcontrol: Practical
sybil defense with computational puzzles, in: Proceedings of the Seventh ACM
Workshop on Scalable Trusted Computing, 2012, pp. 67–78.

[55] Miguel Castro, Peter Druschel, Ayalvadi Ganesh, Antony Rowstron, Dan S.
Wallach, Secure routing for structured peer-to-peer overlay networks, Oper. Syst.
Rev. 36 (SI) (2002) 299–314.

[56] Hosam Rowaihy, William Enck, Patrick McDaniel, Thomas La Porta, Limit-
ing sybil attacks in structured p2p networks, in: IEEE INFOCOM 2007-26th
IEEE International Conference on Computer Communications, IEEE, 2007, pp.
2596–2600.

[57] Weverton Luis da Costa Cordeiro, Flávio Roberto Santos, Gustavo Huff Mauch,
Marinho Pilla Barcelos, Luciano Paschoal Gaspary, Identity management based
on adaptive puzzles to protect p2p systems from sybil attacks, Comput. Netw.
56 (11) (2012) 2569–2589.

[58] Qiang Cao, Michael Sirivianos, Xiaowei Yang, Tiago Pregueiro, Aiding the
detection of fake accounts in large scale social online services, in: 9th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 12), 2012,
pp. 197–210.

[59] Nguyen Tran, Jinyang Li, Lakshminarayanan Subramanian, Sherman S.M. Chow,
Optimal sybil-resilient node admission control, in: 2011 Proceedings IEEE
INFOCOM, IEEE, 2011, pp. 3218–3226.

[60] Haifeng Yu, Phillip Gibbons, Michael Kaminsky, Feng Xiao, Sybillimit: A near-
optimal social network defense against sybil attacks, in: 2008 IEEE Symposium
on Security and Privacy (Sp 2008), IEEE, 2008, pp. 3–17.

[61] Haifeng Yu, Michael Kaminsky, Phillip Gibbons, Abraham Flaxman, Sybilguard:
defending against sybil attacks via social networks, ACM SIGCOMM Comput.
Commun. Rev. 36 (4) (2006) 267–278.
14
[62] Sepandar D. Kamvar, Mario T. Schlosser, Hector Garcia-Molina, The eigentrust
algorithm for reputation management in p2p networks, in: Proceedings of the
12th International Conference on World Wide Web, 2003, pp. 640–651.

[63] Atsushi Yamamoto, Daisuke Asahara, Tomoko Itao, Satoshi Tanaka, Tatsuya
Suda, Distributed pagerank: a distributed reputation model for open peer-to-peer
network, in: 2004 International Symposium on Applications and the Internet
Workshops. 2004 Workshops, IEEE, 2004, pp. 389–394.

[64] Michel Meulpolder, Johan A. Pouwelse, Dick H.J. Epema, Henk J. Sips, Barter-
cast: A practical approach to prevent lazy freeriding in p2p networks, in: 2009
IEEE International Symposium on Parallel & Distributed Processing, IEEE, 2009,
pp. 1–8.

[65] Alex Biryukov, Daniel Feher, Recon: Sybil-resistant consensus from reputation,
Pervasive Mob. Comput. 61 (2020) 101109.

[66] Weverton Luis da Costa Cordeiro, Flávio Roberto Santos, Marinho Pilla Barcellos,
Luciano Paschoal Gaspary, Hanna Kavalionak, Alessio Guerri-eri, Alberto Mon-
tresor, Making puzzles green and useful for adaptive identity management in
large-scale distributed systems, Comput. Netw. 95 (2016) 97–114.

[67] Eleni Koutrouli, Aphrodite Tsalgatidou, Taxonomy of attacks and defense mecha-
nisms in p2p reputation systems - lessons for reputation system designers, Comp.
Sci. Rev. 6 (2–3) (2012) 47–70.

[68] Alexander Stannat, Can Umut Ileri, Dion Gijswijt, Johan Pouwelse, Achieving
sybil-proofness in distributed work systems, in: International Conference on
Autonomous Agents and Multiagent Systems 2021.

[69] Arthanareeswaran Angappan, T.P. Saravanabava, P. Sakthivel, K.S. Vishvaksenan,
Novel sybil attack detection using rssi and neighbour information to ensure
secure communication in wsn, J. Ambient Intell. Humaniz. Comput. 12 (6)
(2021) 6567–6578.

[70] Yong Huang, Wei Wang, Yiyuan Wang, Tao Jiang, Qian Zhang, Lightweight
sybil-resilient multi-robot networks by multipath manipulation, in: IEEE IN-
FOCOM 2020-IEEE Conference on Computer Communications, IEEE, 2020, pp.
2185–2193.

[71] Chundong Wang, Likun Zhu, Liangyi Gong, Zhentang Zhao, Lei Yang, Zheli Liu,
Xiaochun Cheng, Accurate sybil attack detection based on fine-grained physical
channel information, Sensors 18 (3) (2018) 878.

[72] Yue Liu, David R. Bild, Robert P. Dick, Z. Morley Mao, Dan S. Wallach, The
mason test: A defense against sybil attacks in wireless networks without trusted
authorities, IEEE Trans. Mob. Comput. 14 (11) (2015) 2376–2391.

[73] Gilles Guette, Bertrand Ducourthial, On the sybil attack detection in vanet, in:
2007 IEEE International Conference on Mobile Adhoc and Sensor Systems, IEEE,
2007, pp. 1–6.

[74] Murat Demirbas, Youngwhan Song, An rssi-based scheme for sybil attack
detection in wireless sensor networks, in: 2006 International Symposium on a
World of Wireless, Mobile and Multimedia Networks (WoWMoM’06), ieee, 2006,
pp. 5–pp.

[75] Quinten Stokkink, Georgy Ishmaev, Dick Epema, Johan Pouwelse, A truly self-
sovereign identity system, in: 2021 IEEE 46th Conference on Local Computer
Networks, LCN, IEEE, 2021, pp. 1–8.

[76] Deepak Maram, Harjasleen Malvai, Fan Zhang, Nerla Jean-Louis, Alexander
Frolov, Tyler Kell, Tyrone Lobban, Christine Moy, Ari Juels, Andrew Miller,
Candid: Can-do decentralized identity with legacy compatibility, sybil-resistance,
and accountability, in: 2021 IEEE Symposium on Security and Privacy, SP, IEEE,
2021, pp. 1348–1366.

Quinten Stokkink is a Ph.D. student at the Delft University
of Technology where he performs research on cooperative
systems, specializing in Self-Sovereign Identity. After re-
ceiving his M.Sc. in 2017, he created the IPv8 networking
library, serving both to power the first Dutch Government
backed Self-Sovereign Identity prototype and to replace the
Dispersy elastic database library within the Tribler video-on-
demand client. His current research interests lie in defining
the required networking technology for digital represen-
tation of natural persons and its security considerations.
He has published papers on both details of Self-Sovereign
Identity technology and its ethical considerations.

Can Umut Ileri is a PostDoctoral researcher for Dis-
tributed Systems at TU Delft and the Delft Blockchain
Lab. His research interests lie in distributed algorithms
for cooperative systems. His current research focuses on
building a universal computational model for trust in de-
centralized systems. Before joining TU Delft, he worked
as a research assistant at Ege University where he did
his PhD. During his Ph.D. studies, he worked on dis-
tributed algorithms, with a special focus on graph theory
and self-stabilization. He designed self-stabilizing algorithms
for graph-theoretical problems such as capacitated match-
ing, capacitated minimum spanning tree and k-way graph
partitioning.

http://refhub.elsevier.com/S1389-1286(23)00146-9/sb33
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb33
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb33
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb33
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb33
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb34
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb34
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb34
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb34
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb34
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb35
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb35
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb35
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb36
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb36
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb36
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb36
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb36
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb37
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb37
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb37
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb38
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb38
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb38
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb39
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb39
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb39
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb39
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb39
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb40
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb40
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb40
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb40
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb40
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb41
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb41
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb41
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb42
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb42
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb42
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb42
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb42
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb42
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb42
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb43
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb43
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb43
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb44
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb44
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb44
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb44
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb44
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb45
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb45
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb45
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb45
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb45
http://dx.doi.org/10.4121/uuid:34850d65-1908-4249-b446-8e87c6d21ba0
http://dx.doi.org/10.4121/uuid:34850d65-1908-4249-b446-8e87c6d21ba0
http://dx.doi.org/10.4121/uuid:34850d65-1908-4249-b446-8e87c6d21ba0
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb47
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb47
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb47
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb47
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb47
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb48
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb48
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb48
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb49
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb49
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb49
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb49
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb49
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb49
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb49
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb50
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb50
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb50
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb50
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb50
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb51
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb51
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb51
https://money.cnn.com/2000/07/19/technology/napster/index.htm
https://money.cnn.com/2000/07/19/technology/napster/index.htm
https://money.cnn.com/2000/07/19/technology/napster/index.htm
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb53
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb53
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb53
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb54
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb54
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb54
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb54
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb54
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb55
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb55
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb55
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb55
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb55
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb56
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb56
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb56
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb56
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb56
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb56
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb56
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb57
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb57
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb57
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb57
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb57
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb57
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb57
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb58
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb58
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb58
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb58
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb58
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb58
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb58
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb59
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb59
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb59
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb59
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb59
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb60
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb60
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb60
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb60
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb60
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb61
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb61
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb61
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb61
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb61
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb62
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb62
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb62
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb62
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb62
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb63
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb63
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb63
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb63
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb63
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb63
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb63
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb64
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb64
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb64
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb64
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb64
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb64
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb64
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb65
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb65
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb65
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb66
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb66
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb66
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb66
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb66
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb66
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb66
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb67
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb67
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb67
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb67
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb67
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb68
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb68
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb68
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb68
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb68
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb69
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb69
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb69
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb69
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb69
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb69
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb69
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb70
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb70
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb70
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb70
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb70
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb70
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb70
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb71
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb71
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb71
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb71
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb71
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb72
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb72
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb72
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb72
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb72
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb73
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb73
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb73
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb73
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb73
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb74
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb74
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb74
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb74
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb74
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb74
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb74
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb75
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb75
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb75
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb75
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb75
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb76
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb76
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb76
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb76
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb76
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb76
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb76
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb76
http://refhub.elsevier.com/S1389-1286(23)00146-9/sb76

Computer Networks 227 (2023) 109701Q. Stokkink et al.
Dick H.J. Epema is a full professor of Distributed Systems
at Delft University of Technology. His research interests
are in the areas of resource management and scheduling
in distributed systems, including datacenters and clouds,
and of cooperative systems, including blockchains. He is
the Director of the Delft Blockchain Lab, which brings
together all blockchain-related research of Delft University
of Technology. He has published over 150 papers, and he
has organized such conferences as CCGrid, HPDC, and the
IEEE P2P Conference.
15
Johan Pouwelse is an associate professor at Delft Univer-
sity of Technology, specialized in large-scale cooperative
systems. During his Ph.D. he created the first system for
cooperative resource management. The resulting driver got
accepted into the Linux kernel and this architecture is still
used by every Android and iOS device. Also, he conducted
the first resource usage measurements for IEEE 802.11b,
known now as wifi. After receiving his Ph.D., he conducted
one of the largest measurements of the Bittorrent P2P
network. He founded the Tribler video-on-demand client in
2005, which has been installed by 1.8 million people over
the past decade.

	Web3 Sybil avoidance using network latency
	Introduction
	Problem Description
	Adversary model
	Basic SybilSys: basal Sybil-avoiding peer sampling
	Latency and diversity
	Real-world deployment

	Enhanced SybilSys: hardening to attacks
	Detecting measurement interference
	Verifying the flow join pattern and its impact on RTT
	Properties of Enhanced SybilSys

	Enhanced SybilSys: implementation
	The peer discovery tree
	Bringing about message flow joins
	Recognizing message flow joins
	On accepted node removal
	Configuration for deployment
	Overview of Enhanced Sybilsys

	Enhanced SybilSys: evaluation
	RTT-based classifiers evaluation
	Real-world evaluation of Enhanced SybilSys
	On the cost of attacking

	Related Work
	Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	References

