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Abstract: Waste glass (WG), as a nonbiodegradable material, poses a threat to environmental pro-
tection. The reuse of WG as a raw material to replace cement or aggregate in concrete production
is gaining attention for recycling purposes. However, the optimal proportion of WG in concrete
mixtures and its particle size distribution are hard to determine. Large glass particles are prone to
leading to the undesirable alkali–silica reaction (ASR) in concrete. Therefore, in this study, cement
and aggregate in concrete mixtures are partially replaced by combinations of glass powder (<30 µm)
and glass beads (0.2–1.7 mm), respectively. Glass concretes (GCs) containing waste glass at various re-
placement ratios (0, 10, 15, 20, and 30%) are prepared, and their flowability and compressive strength
are evaluated and compared. Finally, steel tubes filled by ordinary concrete (OCFSTs) and steel tubes
filled by glass concrete (GCFSTs) are fabricated and tested in axial compression. The test results
show that the slump and slump flow increase when the replacement ratio is lower than 20%, and
the maximum slump value (250 mm) is achieved for concrete with the use of 20% waste glass. With
regard to compressive strength, as the glass replacement percentage is increased, the compressive
strength of GC continues to reduce. The maximum decrease of compressive strength (merely 70% of
compressive strength for original concrete) is observed in GC mixed with 20% glass, which might
be attributed to the smooth surface of glass, consequently weakening the interfacial bond strength
between the glass and matrix. In terms of the bearing capacity of GCFSTs, the axial compressive
strength of GCFSTs decreases as more GC is used. However, no obvious reduction is observed
compared to OCFSTs (less than 10% for GCFSTs containing 30% GP). Moreover, GCFSTs show greater
(no less than 25% more) deformational ability at peak strength over OCFST columns, demonstrating
that GC is a promising alternative for normal concrete. Finally, the feasibility of existing design codes
(AISC, EC4, and GB50936-2014) to assess the bearing capacity of GCFSTs is evaluated by comparing
the test and calculated results. The current codes, in general, give a conservative prediction and EC4
provides the closest value (predicted to experimental peak load ratio is 0.9).

Keywords: waste glass (WG); recycling; glass concrete (GC); replacement ratios; flowability;
compressive strength; steel tube filled by glass concrete (GCFST); design codes

1. Introduction

Due to increasing demand of glass in our daily lives, the amount of waste glass (WG)
is rising and the disposal of WG becomes a major concern, as it is difficult to biodegrade
and endangers the natural environment [1]. Therefore, rather than the application of WG
as a landfill material, or melting the glass aiming for reproduction, which will respectively
lead to space and energy consumption, reuse of WG has become popular in recent years [2].
For example, in China, about 20 million tons of waste glass is produced, and more than
50% of waste glass has been collected for recycling until 2017 [3]. Furthermore, rather than
being limited to waste glass, other recycling materials, such as marble and coal bottom
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ash, have validated their effectiveness in overcoming environmental issues such as air and
water pollution, as well as improving material properties and structural performance [4–7].
In terms of WG, there are various forms of recycling due to the advanced processing and
manufacturing technology currently available. For example, glass fibers can be extracted
from WG after processing, and then used to improve the mechanical performance of con-
crete, as reported by Małek et al. [8,9]. In addition, reuse of WG as a construction material,
by replacing cement or aggregate, for concrete production is also very promising [10–12].
The use of WG as a component of concrete mixture reduces the utilization of sand and
cement, thereby reducing CO2 emissions.

Dating back to last century, studies have already been conducted to investigate the
performance of glass concrete (GC) when WG is used to replace cement as a gel material,
or aggregate as granular material [13]. In terms of compressive strength, the optimal
replacement ratio varies in different studies, generally ranging from 10% to 40% for glass–
cement replacement [14–19], and around 20% for glass–aggregate replacement [20–24]. For
example, Elaqra and Rustom [16] found that after 90 days, the compressive strength of GC,
with both 10% and 20% cement replacement, was higher than that of ordinary concrete
(OC). Du et al. [25] observed that GC with less than 30% cement replacement does not
decrease its compressive strength. In addition, in the study conducted by Zeybek et al. [26],
it was observed that the workability and compressive strength would be nearly unaffected
if cement particles were replaced by less than 20% glass powder. A reasonable partial
replacement of both cement and aggregate with WG can even improve the mechanical
properties of GC. With regard to aggregate replacement with WG, as summarized by
Qaidi [27], a general conclusion for the effect of glass particles substituting aggregate on
the mechanical properties of concrete is still indecisive, but glass particles are a qualified
alternative to aggregate if the replacement proportion is controlled. Bisht and Ramana [21]
used WG as fine aggregate in concrete, and obtained the highest compressive strength
when 21% glass replacement, with particle sizes ranging from 150 to 600 µm, is adopted.
Çelik et al. [28] replaced fine and coarse aggregate with crushed waste glass and found
that the addition of glass particles decreased the compressive and splitting tensile strength,
while improve the flexural strength of GC.

Although waste glass shows great potential as a substitution for cement or aggregate
in manufacturing concrete, alkali–silica reaction (ASR) expansion is prone to occur in
GC due to the existence of active silica in the glass [29–31]. As a result, internal tensile
stress is generated and possible cracking may occur, which is undesirable and restricts the
application of WG in concrete [32]. However, it is found that the ASR rate in GC is closely
linked with the particle size of WG [33]. Unlike coarse glass particles, which generally lead
to a high degree of ASR, fine glass powder will densify the microstructure of the concrete
and, therefore, inhibit the ASR. As observed by Gorospe et al. [34], replacing aggregate with
fine glass particles has no significant effect, or even mitigates the ASR in hardened concrete
due to pozzolanic characteristics. In contrast, Ling and Poon [35] added glass particles less
than 5 mm in size and serious ASR damage occurred in the concrete. Therefore, not only
should the replacement ratio of glass to cement/aggregate be considered, but also the size
of the glass particles should be taken into consideration for the quality control of GC.

In spite of the possible adverse ASR in GC, one promising application of GC is to fill a
steel tube, combined as a composite [36]. By combining the advantages of both concrete
and steel, concrete-filled steel tubes (CFSTs) have already been widely used in concrete
structures by virtue of their superior compressive strength, high fire and seismic resistance,
better energy absorption ability, etc. [37,38]. The outer steel tube infilled with concrete
is able to provide confinement for the concrete, improve the compressive strength, and
overcome the brittleness of concrete. Therefore, it benefits the use of GC in CFSTs as
the confining effect from the steel tube will restrain the expansion induced by both the
ASR and the action of external load, such as axial force. However, until now, only a few
studies have investigated the performance of CFSTs containing GC. Yu et al. [36] tested
the ultimate bearing capacity of CFSTs with different aggregates, in which one type of
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concrete is developed by replacing the aggregate with WG. The test results showed that the
CFSTs with waste glass had comparable or even better performances than CFST columns
made of OC.

As mentioned previously, it is generally acknowledged that glass powder and fine
glass, as substitutions for cement and aggregate in GC, will improve its mechanical prop-
erties, while coarse glass might damage concrete due to the effect of the ASR [39]. The
mechanical performance of WG, by simply substituting only cement or aggregate, has
been sufficiently investigated. However, there has not been extensive study in terms of
the combination of WG with varied particle sizes as a replacement for both cement and
aggregate, and research regarding the structural performance of CFSTs with GC is still
limited. Therefore, in this study, in order to make full use of WG with various particle
sizes, glass powder with a maximum size less than 23 µm, and fine glass with particle
sizes between 0.2 and 1.7 mm were mixed to replace cement and natural sand, respectively,
for GC production. Flowability and compressive strength of GC with different replace-
ment ratios (maximal 30%) were evaluated. Thereafter, GCFSTs made with GC of various
replacement ratios were tested for compression, and their performances were analyzed
and compared. Finally, the applicability of existing theoretical methods for CFSTs was
examined by comparing predicted values and test results.

2. Experimental Program
2.1. Material Component and Mix Proportion of GC

In this study, two kinds of glass particles (shown in Figure 1), namely, glass powder
and glass beads, were used as partial substitutions for cement and natural sand, respectively,
and both of them were made from local crushed glass sheets using different methods. The
glass powder was obtained by grinding to a particle size less than 30 µm. In order to
produce glass beads without the initial flaws of crushing, the waste glass was heated to
a molten state, and then tiny glass beads, with a diameter ranging from 0.2 to 1.7 mm,
were formed under surface tension forces. In addition, compound silicate cement PC 32.5R
(from Lafarky Cement Plant), together with natural sand (mainly composed of fine sand
with a particle size less than 0.3 mm) and coarse aggregate, having a maximum particle
size less than 20 mm, were used for both OC and GC mixtures. Finally, superplasticizers
mixed with water were added to achieve the workability of fresh concrete. The particle
size distribution of glass beads and natural sand is presented in Figure 2.
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In general, in order to keep material properties comparable to OC, the optimal glass
replacement ratio in the concrete mixtures was within 30% [26]. Therefore, as presented in
Table 1, concrete mixtures designed with various glass replacement ratios (ranging from
0% to 30%) were used in this study. OC without the addition of glass was developed to
have a high slump value without segregation, and then was used as a reference mixture
for comparison. For GC, glass powder and beads with a mass ratio of 0.61 were mixed to
separately replace cement and natural sand. Although different glass replacement ratios
were used in the mixture designs, the total mass of the cement and glass powder was kept
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constant at 450 kg/m3, and the overall weight of the natural sand and glass beads remained
the same (i.e., 680 kg/m3) for different GC mixtures. Moreover, it should be noted that
the volume of the superplasticizer was fixed in the different mixtures, in order to avoid its
influence on the fresh and mechanical properties.
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Table 1. Mix proportions of OC and GC (kg/m3).

Mix ID Replacement Ratio Cement Water Natural Sand Aggregate Glass Powder Glass Beads Superplasticizer

OC 0 450 165 680 1105 0 0 1.29
GC10 10 405 165 612 1105 45 68 1.29
GC15 15 383 165 578 1105 68 102 1.29
GC20 20 360 165 544 1105 90 136 1.29
GC30 30 315 165 476 1105 135 204 1.29

2.2. Flowability and Compressive Strength Test

The flowability and compressive strength of each mixture were evaluated, since the
concrete’s workability governs its successful application, and the axial performance of
a CFST mainly depends on the compressive strength in terms of concrete. As shown in
Figure 3, the slump and slump flow tests were performed in accordance with the procedures
of the Chinese standard for performance test methods of ordinary concrete mixtures (GB/T
50080-2016) [40]. Defined as slump and slump flow, the height difference between the mold
and concrete, and the average diameter of the concrete, respectively, were recorded.
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In order to measure the compressive strength of OC and GC, three concrete cubes
with a length of 100 mm, and three prisms with the dimensions of 150 × 150 × 300 mm3,
were cast for each mixture. After 28 days of curing under lab conditions, the compressive
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strength test (Figure 4) was conducted based on the Chinese standard GB/T 50081-2002 [41].
Each specimen was tested with a loading rate of 0.5 MPa/s until the failure of the sample.
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2.3. Glass Concrete-Filled Steel Tubes (GCFSTs) Test

To investigate the influence of the replacement ratio of glass (0, 10%, 15%, 20%,
and 30%) on the mechanical behavior of GCFSTs, column specimens filled by different
GC mixtures were tested in axial compression. For each mixture, three specimens were
prepared and tested in order to minimize the specimen’s individual differences. Therefore,
a total of 15 circular specimens were fabricated, with a constant L/D ratio of 3. As shown
in Table 2, all specimens were designed with the same dimensions, in which the steel tube
has a length of 400 mm, an outer diameter circular cross section of 133 mm, a 4.75 mm
thickness, and the core concrete has a diameter of 123.5 mm. The steel used in this study
is seamless Q235B and its yield strength, ultimate strength, and E-modulus are 338 MPa,
442 MPa, and 206 GPa, respectively.

Table 2. Details of column specimens.

Specimen ID Number of
Specimens

Glass Replacement
Ratio (%)

Dimension of Steel Tube
L×D×t (mm3)

Dimension of Concrete Core
L×d (mm3)

OCFST 3 0 400 × 133 × 4.75 400 × 123.5
GCFST-10 3 10 400 × 133 × 4.75 400 × 123.5
GCFST-15 3 15 400 × 133 × 4.75 400 × 123.5
GCFST-20 3 20 400 × 133 × 4.75 400 × 123.5
GCFST-30 3 30 400 × 133 × 4.75 400 × 123.5

Notes: L, D, and t represent the length, outer diameter, and thickness of the steel tube, while d represents the
diameter of the concrete core.

Prior to filling with concrete, the bottom end of the tube specimen was mounted with
a cover plate to avoid leakage of the concrete. Then, the concrete was poured until reaching
the same length of the steel tube, and the concrete was levelled to keep a flat surface for
uniform loading. In order to guarantee a good bond between the concrete and the steel tube,
the dust on the inner surface of the steel tube was wiped out. It should be noted that all
specimens had a smooth inner steel surface to exclude the influence of interface treatment,
and were cured under the same curing conditions as the concrete cubes and prisms.

Before testing, as shown in Figure 5, strain gauges and linear variable differential
transducers (LVDTs) were applied to obtain the strain in the longitudinal and transverse
directions, and the deformation of the specimen for the whole loading process. For one
specimen, eight strain gauges were symmetrically glued to its four sides; each side had two
strain gauges vertically and horizontally glued to the center of the specimen. Moreover,
two LVDTs were installed to measure the average axial displacement of the specimen.
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Figure 5. Measurement layout (front view).

After measurement preparation, all tubular specimens were placed in the center of the
loading device and were loaded under axial compression (Figure 6). The specimen was
initially preloaded to eliminate the gap between the specimen and the loading device, and
then tested to failure under deformation control with a loading rate of 0.4 mm/min. Setting
a relatively low loading speed is not only appropriate to record the static load–displacement
behavior prior to the peak load, but also helps to capture the post-peak behavior of the
specimen beyond the ultimate load [42].
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Figure 6. CFST testing under compressive loading: (a) experimental setup; (b) strain gauges (enlarged).

3. Test Results and Discussion
3.1. Material Properties
3.1.1. Slump and Slump Flow of OC and GC Mixtures

The slump and slump flow of the studied concrete mixtures are presented in Figure 7.
As depicted in Figure 7a, the slump and slump flow increase as more glass particles are
added to the concrete, when the replacement ratio is lower than 20%. However, when more
than 20% glass (as such in GC30) is used as the raw material, decreases in slump and slump
flow are observed, though the corresponding GC30 mixture is still flowable. The reduction
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of flowability might be because compared to the cement particles, a sharper edge and
higher specific area of the glass powder will harm the workability of the concrete mixtures
as more glass powders replace the cement, which is in agreement with the finding in [43,44].
Compared to OC, the slump and slump flow values of all GC mixtures are higher, since the
smooth surface of the glass beads enables a lower cohesion with the contacted particles.
The addition of the glass powder to replace the cement reduces the water absorption of the
concrete mixtures, and hence increases the fluidity, as also found in [45,46]. The highest
slump and slump flow values are achieved when the replacement ratio is 20%, which
are 20% and 60% higher than the control OC mixture, respectively. Figure 7b shows the
relationship between slump and slump flow, and it is found that the slump and slump flow,
in general, exhibit a linear function for all of the mixtures, except for GC20. GC20 shows a
sharp increase in the slump flow, which might lead to bleeding in fresh concrete, which is
not favorable for the concrete quality.
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Figure 7. Slump and slump flow for different mixtures: (a) slump and slump flow values; (b) rela-
tionship between slump and slump flow.

3.1.2. Compressive Strength of OC and GC Mixtures

The cubic compressive strengths at the ages of 7 days and 28 days, as well as the
28 days’ prismatic compressive strengths for the mixtures in the current study are shown
in Figure 8. It is observed that the compressive strength in general decreased with the
addition of more glass in the concrete mixtures. When more than 15% glass particles are
used, the compressive strength of the GC is only around 70% of the original concrete
mixture. Although similar test results are also found in [26] when glass particles are used
to substitute cement, the compressive strength of the GC increases if glass particles are
a substitute for cement and aggregate together, which is contrary to the findings in the
current study, which is possibly due to the differences in particle size and shape. Therefore,
though the best workability is seen in GC with 20% glass, the compressive strength of such a
mixture is not promising, which is possibly due to concrete bleeding [43], the reduced bond
between the glass beads and the matrix [47], as well as the reduced amount of cement [48].
However, comparing 28 days’ cubic and prismatic test results, the reduction of compressive
strength is not obvious when the glass replacement is no more than 15%. The pozzolanic
reaction of glass powder could help to densify the microstructure of the concrete [49],
and therefore improve its compressive strength and mitigate the strength reduction from
the glass beads substituting the aggregate, although there is an upper bound for strength
improvement [25]. In addition, compared to OC, the compressive strength of GC increases
at a higher rate if more curing time is provided. This is because the existence of fine glass
powder, generally, will gradually consume a large quantity of Ca(OH)2, and thus lead to
significant pozzolanic activity, which is confirmed by the strength gain exhibited in GC as
the curing time increases.
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Figure 8. Compressive strength of different mixtures.

3.2. Structural Behaviour of CFST
3.2.1. Failure Patterns

Based on the experimental observations, all of the tubular specimens, with or without
the addition of glass particles, show similar damage processes and failure modes. In order
to provide a clear understanding of the failure process, the failure mode of specimen
GCFST-10 is chosen for deep analysis, as presented in Figure 9. The damage process could
be divided into three stages: (a) linear-elastic stage, (b) plastic deformation stage, and
(c) post-peak failure stage. In the first stage, as the load increases, only slight deformation
and no obvious surface damage are observed. However, when the load is increased to
around 80% of the peak load, the specimen starts to expand in the lateral direction, and
slippage (Figure 9a) appears along the axial direction of the steel–concrete column. When it
enters the post-peak failure stage, local buckling occurs at the mid-height of the specimen,
and a drum-type failure is exhibited (Figure 9a). It should be mentioned that after the peak
load, rather than sudden brittle fracture, the specimen behaves in a ductile damage process
until the final failure. After steel yields, it still possesses enough strain-hardening capacity
before reaching its peak strength. Therefore, in the current study, the test is terminated and
the failure load is obtained when the obvious outward drum-type deformation is observed
in the test specimen. However, when the specimen continues to deform after the peak
load, the compatibility between the steel tube and the concrete filling starts to decrease,
since a higher plastic deformation occurs in the steel column. The difference in transverse
displacement between the steel and the concrete will gradually weaken their composite
action to resist the external load, as proved by the concrete peeling in Figure 9b.
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3.2.2. Load–Deformation Response

The load versus deformation (obtained by averaging measurements from two LVDTs)
in the axial direction for specimens with different concrete mixtures, together with the
comparison of the average load–deformation relationship, are presented in Figure 10, and
Table 3 summarizes the average experimental results for all of the tested specimens. As
shown in Figure 10, similar to the damage process, there are three phases in the load–axial
deformation response for all of the specimens. In the first phases (linear-elastic phase),
the deformation is linearly increasing at a low rate as the load increases. Afterwards,
when more than 80% of the axial compressive load is applied (second phase), plastic
deformation occurs and the axial displacement rapidly grows. After reaching the peak load,
due to the continuous confining effect from the outer steel tube, the specimen’s ultimate
bearing capacity only slightly decreases (within 10% of the ultimate strength), followed
by a remarkable deformational ability (the deflection when the specimen fails is at least
1.3 times the deflection at the peak load).
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Figure 10. Load–deformation response for all specimens: (a) OCFST specimens; (b) GCFST-10 speci-
mens; (c) GCFST-15 specimens; (d) GCFST-20 specimens; (e) GCFST-30 specimens; (f) comparison of
average load–deformation response for different specimens.
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Table 3. Summary of the test results.

Specimen ID Peak Load Fu (kN) Residual Bearing
Capacity Fre (kN)

Deflection at Peak
Load ∆p (mm)

Ultimate Deflection
at the Failure of

Specimen ∆u (mm)

Ductility
Coefficient

(ξ= ∆u
∆p

)

ConfiningFactor

(θ=
Asfy
Acfc

)

OCFST 1398.8 1301.7 17.9 39.6 2.2 2.096
GCFST-10 1376.6 1343.3 22.9 39.0 1.7 2.059
GCFST-15 1325.0 1318.1 23.1 34.6 1.5 2.288
GCFST-20 1260.2 1228.7 22.3 35.6 1.6 2.990
GCFST-30 1297.3 1277.2 26.9 36.1 1.3 3.017

Notes: As, Ac, fy, and fc represent the sectional area of the steel tube, sectional area of the concrete, yield strength
of the steel, and compressive strength of the concrete prism, respectively.

When the average load–deformation responses for CFSTs filled with different concrete
mixtures are compared (Figure 10f), it is observed that compared to the reference OCFST,
all GCFST specimens exhibit quicker stiffness degradation prior to reaching their peak
loads, though the GCFST with less than 20% glass shows slightly higher initial stiffness. As
depicted in Table 3, in terms of the bearing capacity of CFSTs, with the addition of more
glass particles, the peak load continues to decrease, which is owing to the compressive
strength reduction of GC, as described in Section 3.1.2. The lowest bearing capacity is
observed in GCFST-20, which might be a result of the highest cubic compressive strength
reduction of GC20 due to the possible concrete bleeding. When the deformation of the
tested specimen is compared, it is found that the addition of glass particles enables a
higher deformational ability (∆p) at the peak load, which leads to a slightly lower ultimate
deformation ∆u when the specimen fails. In order to further evaluate the ductility capacity,
the ductility coefficient (ξ) [50] is denoted as:

ξ =
∆u

∆p
(1)

where ∆u and ∆p are displacement at the peak load and displacement when the specimen
fails, respectively. Therefore, it is demonstrated that GC leads to the decrease of peak
strength and a lower ductility coefficient ξ of GCFST in the current study. However, the
maximal peak load reduction is merely 7% for GCFST-30, and there is a negligible reduction
of ultimate deformation ∆u, which proves that GC is still a promising alternative to OC as
a filling material in CFSTs.

In addition, in order to evaluate the confinement contribution of steel tubes on the
structural performance of CFSTs [51], the confining factor is introduced and defined as follows:

θ =
As fy

Ac fc
(2)

where As, Ac, fy, and fc are the sectional area of the steel tube, sectional area of the concrete,
yield strength of the steel, and compressive strength of the concrete prism, respectively.
The calculated results are summarized in Table 3 as well. It is found that the confining
factor increases with more glass inside the concrete, demonstrating that compared to
OCFSTs, GCFSTs show a more significant confinement action of the steel tube. This is
possibly because the steel tube is able to restrict the glass concrete expansion induced by
the ASR, and thus avoid cracking of the concrete. Therefore, it shows great potential for the
application of GC in CFSTs because the steel tube could mitigate the adverse expansive
effect of GC, enhance the combined action between GC and the outer steel tube, and
therefore improve the bearing capacity of GCFSTs.

3.2.3. Load–Strain Relationship

The load–strain (both axial and lateral strain) relationship for tubular specimens with
different concrete mixtures is plotted in Figure 11, in which the negative strain value
represents the compressive strain in the axial direction, and the positive value indicates
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the tensile strain in the transverse direction at the mid-height of the specimen. As shown
in Figure 11a, in the initial elastic stage, both the compressive and tensile strains increase
slowly with linearly increasing load. When it enters the elastic-plastic stage (after the
yield strength of the steel), the strain dramatically increases with the continuously added
applied load. Finally, in the plastic deformation stage, the strain increases without strength
enhancement of the specimens. Figure 11b presents the strain variation before the steel
yields, and it is shown that the axial strain increases quicker than the corresponding value
of the lateral strain at the same load level. This is because the transverse deformation is
generated due to the Poisson effect, which is generally 0.2–0.3 of axial deformation for
normal concrete.
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When the strain variation for specimens filled by different concrete mixtures are
compared, it is found that compared to OCFSTs, the addition of glass particles enables
GCFSTs to exhibit a higher axial strain capacity while still keeping comparable strain limits
in the lateral direction. Therefore, it is demonstrated that the GCFSTs in general show
better deformational ability in the axial direction under compressive load before the local
buckling (indicated by the lateral deformation) occurs.

4. Evaluation of Existing Methods for Ultimate Strength Prediction

Based on the comparison of both the material properties for OC and GC (focusing
on the workability and compressive strength) and the structural behavior of OCFSTs
and GCFSTs in Section 3, it is reasonable to conclude that with less than 20% of glass
substitution in concrete, the GC is a comparable material to OC, and is promising as a filling
concrete in CFSTs. However, most of the existing methods in the current design codes
are primarily focused on the performance evaluation of OCFSTs, and it remains unclear
whether these calculation methods are feasible for GCFSTs. Therefore, in this section, the
commonly used standards, including AISC 360-16 [52], EC4 [53], and Chinese specifications
GB50936-2014 [54], will be adopted to predict the ultimate strength of GCFSTs.

Table 4 presents the main equations for different codes used in the current study, the
test results, as well as the predicted strength. Figure 12 compares the ultimate strength
between the experimental results and the code prediction from AISC, EC4, and GB50936-
2014. It is found that all three of these specifications underestimate the column capacity
compared to the test results. However, it is inferred that EC4 gives a closer prediction
compared to the other two codes, based on the fact that the ratio of predicted to experimen-
tal results is around 0.9 for EC4, while it is only 0.67 and 0.8 for AISC and GB50936-2014,
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respectively. This is because, in EC4, the enhancement of concrete compressive strength
gained from the confining effect of the steel tube is taken into account, while AISC gives
the most conservative results, as the compressive strength of the core concrete can only
reach 0.95 fc for the circular column specified in AISC. For GB50936-2014, the concrete-filled
steel column is simply regarded as a unified material, and the empirical formula is built
based on the regression of a large amount of experimental data. However, the variability of
material properties and the neglected interaction between the concrete and the steel might
lead to large discrepancies compared to experimental results.

Table 4. Comparison of test results and code predictions.

Test AISC EC4 GB50936-2014
Fu (kN) PAISC (kN) PEC4 (kN) PGB50936 - 2014 (kN)

Equation –

For compact circular CFST:

PAISC = Pno [0.658
Pno
Pe ] , when Pno

Pe
≤ 2.25;

Pno = As fy + 0.95 fc Ac ;

Pe =
π2(EI)e

L2 ;

(EI)e = Es Is + C3 Ec Ic ;

C3 = 0.6 + 2[ As
As+Ac

] ≤ 0.9

For circular CFST:

PEC4 = ηa As fy + Ac fc (1 + ηc t
D

fy
fc

);

ηa = 0.25(3 + 2λ) ≤ 1.0;
ηc = 4.9 − 18.5λ + 17λ2 ≥ 0;

λ =

√
Npl,Rd

Ncr
;

Npl,Rd = As fy + Ac fc ;

Ncr =
π2(EI)e

L2 ;

(EI)e = Es Is + 0.6Ec Ic ;

Ec = 22000( fc+8
10 )

0.3

For circular CFST:
NGB50936−2014 = (1.212 + Bθ + Cθ2) fc Asc ;
B = 0.176 fy/213 + 0.974;
C = −0.104 fc/14.4 + 0.031;

θ =
As fy
Ac fc

OCFST 1398.8 934.3 1250.4 1129.6
GCFST-10 1376.6 938.8 1254.7 1136.6
GCFST-15 1325.0 909.5 1226.6 1097.7
GCFST-20 1260.2 847.6 1167.3 1020.8
GCFST-30 1297.3 845.3 1165.1 1018.7

Notes: PAISC , PEC4, and PGB50936−2014 represent the ultimate strength prediction from AISC, EC4, and GB50936-
2014, respectively. For AISC prediction, Pno and Pe are the nominal capacity and the plastic resistance of the
column cross section, respectively; (EI)e, Es, Ec, Is, and Ic denote the effective stiffness of the composite cross
section, elastic modulus of the steel and the concrete, and moment of inertia of the steel tube and the concrete,
respectively. For EC4 prediction, ηa, ηc, λ, Npl,Rd, and Ncr are the reduction factor for steel, enhancement factor
for concrete, relative slenderness of the column, plastic resistance, and critical buckling load of the column,
respectively. For GB50936-2014 prediction, B and C are coefficients considering the contribution from steel and
concrete, respectively; Asc and θ represent the total cross sectional area and confinement factor, considering the
confining effect from the outer steel tube, respectively.
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In summary, all three of these codes could provide a safe design for circular steel
columns incorporated with glass concrete, due to their relatively conservative predicted
results. However, the existing codes still need further evaluation due to the limited test
results in the current study, and the development of new calculation methods is encouraged,
in order to consider the complicated action between the steel and the concrete core in CFSTs,
and the material constitutive law of glass concrete.

5. Conclusions

In this study, a series of tests (material test and CFST structural test) are conducted
to investigate the material properties of GC and the structural performance of CFSTs
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incorporated with GC. The effect of glass with different particle sizes and varying ratios on
the flowability and compressive strength of GC are evaluated. Then, the structural behavior
of ordinary CFSTs and GCFSTs, with the application of different GC mixtures under axial
compression, are compared in terms of the failure patterns, load–deflection response, and
load–strain relationship. Finally, the applicability of existing codes for the ultimate strength
prediction of GCFSTs is examined. Based on the test results in this study, the following
conclusions could be drawn:

1. The addition of glass particles (powders and beads) will increase the flowability
of the concrete due to reduced particle cohesion resulting from the smooth surface
of the glass beads, and higher w/c ratio as a consequence of cement substitution.
The highest slump and slump flow are achieved at a 20% glass replacement ratio,
exhibiting an increase of 20% and 60%, respectively, compared to ordinary concrete.
Beyond a 20% replacement ratio, a decrease in slump and slump flow was observed
due to the sharp edges and higher specific area of the glass powder.

2. The compressive strength of concrete will continuously decrease as more glass par-
ticles are added to the concrete mixture, which might be owing to the decrease of
cement hydration and weak bonds between the glass beads and the matrix. However,
the reduction of prismatic compressive strength (within 10%) is not obvious if less than
20% glass is applied, due to the pozzolanic reaction of the glass powder. Moreover,
compared to OC, more curing time is required for GC to fully develop its strength.
Overall, the use of glass particles in concrete mixtures requires careful consideration
of the desired properties, and the appropriate proportion of glass particles to avoid
the reduction of the mechanical properties. When both workability and compressive
strength are taken into consideration, it is recommended to use less than 20% glass
particles for combined cement and aggregate replacement.

3. Compared to OCFSTs, GCFSTs exhibit a similar damage process (i.e., linear-elastic
stage, plastic deformation stage, and post-peak failure stage) and drum-type failure
patterns at the mid-height of the column. Though GC has lower compressive strength
compared to OCFSTs, less than a 10% decrease of the ultimate strength is observed in
GCFSTs due to more significant confinement from the outer steel tube, which further
restricts the expansion induced by possible adverse ASRs in GC.

4. GCFSTs exhibit a higher deformational ability at peak load (1.25 times higher than
OCFSTs), and comparable ultimate deformation at failure load compared to their
OCFST counterparts, which is possibly due to the enhanced composite action of GC
and the steel tube, which shows potential for the application of GC in CFSTs.

5. Compared to OCFSTs, the addition of glass particles in GCFSTs enables it to have
a higher axial strain capacity while still maintaining comparable strain limits in the
lateral direction. Therefore, GCFSTs exhibit better deformational ability in the axial
direction under compressive load.

6. The experimental results are compared to the predicted ultimate bearing capacity
based on existing design codes (AISC, EC4, and GB50936-2014). It is demonstrated
that all of the design codes, in general, provide conservative and safe predictions for
circular GCFSTs, and that the EC4 gives the closest prediction (predicted to experi-
mental peak load ratio is 0.9), while the AISC underestimates the actual compressive
capacity to a great extent.

In summary, this study indicates that the addition of glass particles improves the
flowability of glass concrete. However, a reasonable replacement ratio (less than 20%
replacement ratio in the current study) needs to be taken into consideration in order
to avoid a reduction in mechanical properties. With the application of GC in CFSTs,
GCFSTs show great potential for structural applications, such as high-rise buildings, bridges,
tunnels, and other infrastructure, due to its enhanced composite action and deformational
ability. However, the long-term behavior of GCFSTs, considering the combined action of
mechanical load and environmental condition, needs to be examined in future studies.
Finally, the current design codes generally provide conservative and safe predictions for
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GCFSTs. In order to reliably predict the bearing capacity of GCFSTs, it is recommended to
develop new calculation methods regarding the interaction between steel and concrete, as
well as taking into consideration the material constitutive law of glass concrete.
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