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A B S T R A C T

Sentinel-1 observes the whole globe every 12 days (6 days when both satellites were operational) and provides
a wealth of data relevant to agriculture. Sugarcane cultivators could potentially benefit from these data
by using them to assist operational and management practices. However, first, thorough understanding is
needed of Sentinel-1 backscatter and its behavior over sugarcane canopies. In this study, we aimed to improve
understanding of how Sentinel-1 backscatter responds to sugarcane yield variability and waterlogging. In order
to do so we focused on an irrigated sugarcane plantation in Xinavane, Mozambique. In the analysis presented,
we assessed different polarizations, their ratio, and benchmarked them against optical indices and passive
microwave observations in different seasons. With the help of a large sugarcane yield dataset, we analyzed
how backscatter relates to sucrose yield variability in different seasons. We found VV backscatter related to
the stalk development, the most important reservoir for sucrose accumulation. In addition, in a season with
reported waterlogging, optical and radar observations showed a delay in sugarcane crop development. Further
analysis showed the presence of water underneath the canopy caused an increase in all polarizations and the
cross ratio (CR). The results imply that Sentinel-1 backscatter contains information on both waterlogging under
the canopy as well as sucrose development in the stalk. By isolating and quantifying the impact of waterlogging
on backscatter, it will be possible to further quantify sucrose development with backscatter observations and
identify waterlogging simultaneously.
1. Introduction

The global production of sugarcane is driven by the demand for raw
sugar and (bio-)ethanol (Shabbir et al., 2021). Over the last few decades
researchers have managed to breed the perennial grass to produce high
contents of sucrose. Furthermore, sucrose is the soluble sugar present in
the stem of the sugarcane crop and, as a result of breeding, sugarcane
species accumulate high concentrations of sucrose. Additionally, the
concentration of sucrose in the sugarcane stem can be as high as 18
percent of fresh weight (Mustafa et al., 2018).

Improving operational and management practices in the sugarcane
production chain are key to sustainable intensification, in order to
ultimately close the current yield gaps with less pressure on the en-
vironment (Bordonal et al., 2018). An example is to improve current

∗ Corresponding author at: Planet Labs Inc, San Francisco, CA 94107, USA.
E-mail address: nadja@planet.com (N. den Besten).

manual sugarcane monitoring to adjust on-site management (Bocca
et al., 2015). Here, information on the presence of waterlogging plays a
role due to waterlogged soil conditions affecting plant physiology and
hampering crop growth and yield significantly (Shaw et al., 2013; den
Besten et al., 2021b). Academic literature reports the cause of water-
logging in irrigated agriculture to be a result of over-irrigation or poor
sub-surface drainage (FAO, 2016). In rain-fed agriculture, Martinez-
Feria and Basso (2020) found waterlogging to be an important driver
behind yield instability in the US Midwest.

Satellite remote sensing can play a role in improving current sug-
arcane production practices through monitoring (Cancela et al., 2019;
McCabe et al., 2016; Mancini et al., 2019; Bégué et al., 2018). Un-
fortunately, the integration of new remote sensing techniques into the
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decision making process of sugarcane production remains slow (Bocca
et al., 2015). Previous studies have researched the relationship be-
tween sugarcane yield and vegetation indices computed from satellite
data (Bégué et al., 2010; Lofton et al., 2012; Molijn et al., 2019;
Morel et al., 2014). Common techniques are based on optical in-
dices (e.g. NDVI) (Morel et al., 2014) and focus on machine learn-
ing (Shendryk et al., 2021; Fernandes et al., 2017).

Vegetation indices retrieved from backscatter are also starting to
proliferate (Steele-Dunne et al., 2017). Researchers have shown the
capabilities of cross- and co-polarization backscatter channels to mon-
itor sugarcane (Baghdadi et al., 2009; Molijn et al., 2019; Som-ard
et al., 2021). For example, Baghdadi et al. (2009) concluded cross-
polarizations are slightly better for monitoring sugarcane and, there-
fore, Molijn et al. (2019) did not consider co-polarization.

Vegetation indices retrieved from radar are sensitive to different
characteristics than indices derived from optical sensors. Microwave
energy responds to the dielectric properties of the crop canopy, but also
to the structure of the crops, such as the size, and orientation of leaves,
stalk, and fruit (McNairn and Brisco, 2004). The dielectric properties
are strongly influenced by the water content in the plant (Ulaby and
Jedlicka, 1984). In addition, for sugarcane, den Besten et al. (2021a)
showed how a change in the internal characteristics of sugarcane
during the growing season influences the radar backscatter. As a result
of sucrose accumulation, the dielectric constant of the canopy decreases
and the strength of the observed backscatter signal also decreases.

Unfortunately, studies relating large sugarcane yield datasets to
backscatter are scarce (den Besten et al., 2021a; Shendryk et al., 2021).
In addition, it is not known how or the extent to which waterlogging
beneath a thick canopy, such as sugarcane, affects different radar
polarizations and polarization ratios. Expanding knowledge on how
Sentinel-1 backscatter responds to sugarcane yield variability and wa-
terlogging is crucial to help the interpretation of the radar vegetation
signals. In addition, information on the presence of waterlogging it-
self is valuable to several agricultural practices (e.g. drainage issues,
trafficability, irrigation).

Therefore, the aim of this study was to understand how Sentinel-1
backscatter responds to sugarcane yield variability and waterlogging.
Here we present how backscatter observations can be used to monitor
sugarcane yield and how the observations are influenced by water-
logging. The ultimate goal was to increase understanding on how to
simultaneously monitor sugarcane and waterlogging using Sentinel-1
SAR data. To research the issue we focused on an irrigated sugarcane
plantation in Xinavane, southern Mozambique, a site with numerous
reported issues related to waterlogging (den Besten et al., 2021b).

2. Sugarcane growth

Sugarcane is grown in subtropical and tropical regions. Harvest
dates are ideally determined to match optimum supply to the nearest
sugar mill (Bocca et al., 2015). The majority of sugarcane plantations
or farms grow sugarcane as a ratoon crop (Inman-Bamber, 2013).
This is a common and cost-effective practice around the world, where
sugarcane is not replanted after harvest, but grown from the preceding
plant (Surendran et al., 2016).

Sugarcane is ideally harvested at maximum sugar accumulation in
the stem. The average length of the growing season in Xinavane is
twelve months (den Besten et al., 2020). The growing season can be
divided into different growth stages. In the analysis presented in this
paper, we defined the following four growth stages: the initial stage (30
days), the tillering stage (90 days), the development stage (150 days),
and the final stage (90 days) (Doorenbos and Kassam, 1979; Silva et al.,
2015).

Sugarcane is a peculiar crop as it accumulates sucrose both inside
and outside the cells (both symplast and apoplast) (Wang et al., 2013).
The sugarcane plant deposits the sucrose in the stem vacuoles and
cells around it. During the tillering stage, the sugarcane plant starts
2

accumulating biomass. The biomass growth takes place particularly in
the leaf canopy (Inman-Bamber, 2013). Hereafter, in the development
stage, the growth emphasis is on the stem, which is an important
sink for sucrose development (Inman-Bamber, 2013; Cock, 2001). In
this stage, the sucrose accumulation starts to play a significant role.
See Fig. 1 (A) and (D). Sucrose forms as a hydrogen bond, and the
development of stalk moisture and sucrose are therefore closely linked
to each other (Inman-Bamber et al., 2009). Over time, the sucrose
accumulation ensures that a fraction of the water in the fresh stalk is
substituted with sucrose, see Fig. 1 (A) (Muchow et al., 1996).

Throughout the growing season, the vertical distribution of su-
crose and Vegetation Water Content (VWC) inside the sugarcane plant
changes as well. From our experience in Xinavane, we know that the
vertical distribution inside the sugarcane plant changes during the
growing season. However, to our knowledge, quantitative data on this
have not been published to date. A few researchers have attempted to
capture the changes of the vertical distribution over time by sampling
different varieties in the development stage. These results showed the
sucrose distribution in lower yielding varieties was stored mostly in
the lower inter-nodes, whereas in the higher yielding varieties the
sucrose is distributed more homogeneous in the stalk, see Fig. 1 (C)
and (D) (Inman-Bamber et al., 2009). Nodes are referred to as the place
where leafs develop on the stalk, see Fig. 1 (E) and (F).

3. Data and methods

The research presented in this paper focused on different satellite re-
mote sensing observations for an irrigated sugarcane plantation. Optical
and passive microwave observations were used to benchmark Sentinel-
1 observations, in order to understand the seasonal characteristics and
expose differences. Ground data were used to understand how radar
observations in different polarizations and their ratio relate to sucrose
yield. Section 3.1 will explain the origin and characteristics of the data
and Section 3.2 will provide a description of the data analysis.

3.1. Data

3.1.1. Yield data
Crop yield data were obtained from a sugarcane plantation located

on the banks of the lower Incomati river in Xinavane, Mozambique
(see Fig. 2). The local sugar mill runs from April to December and
during these months sugarcane is harvested and milled. The sugarcane
produced in the plantation is converted to raw sugar at the sugar mill.
In the plantation, ratoon sugarcane is grown under irrigated condi-
tions (den Besten et al., 2020). The average field-size is approximately
20 hectares (den Besten et al., 2020). The sugarcane in the plantation
is planted in rows 1–1.5 meter apart. The dominant sugarcane varieties
in the plantation are N25 and N23, accounting for 86 percent (Butler,
2001). The research presented focused on 299 fields that are owned
and managed by the Tongaat Hulett group.

To harvest the sugarcane, fields are burnt to ease the manual
harvest process and remove leaves. After the fire ceases, the harvest
laborers cut the stalk from the roots at ground level. The harvested
sugarcane is then collected by trucks allocated to specific fields. The
trucks containing harvested sugarcane are weighed and documented
per field. After weighing, several samples are tested for their sucrose
content. This process results in data per field on sugarcane yield (tonnes
of cane per hectare, TCH) and sucrose yield (tons of sucrose per hectare,
TSH).

For this research we considered the sucrose yield (TSH) obtained by
the sugar mill for the seasons 2018–2019, 2019–2020, and 2020–2021.
The preceding seasons correspond to 2019, 2020, and 2021 in Fig. 3
(A). These years were taken because of robust availability of satellite
data during these seasons and contrasting years in terms of soil water
content. Seasons 2015–2019 experienced a rainy season below average,
in contrast to seasons 2020 and 2021 in Fig. 3 (den Besten et al., 2020).
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Fig. 1. A schematic diagram of the vertical and temporal distribution of sucrose in the sugarcane stalk. (A) shows the temporal change of sucrose, vegetation, and water distribution
over the development and final phase (Muchow et al., 1996); (B) and (C) the vertical distribution for a low and high yielding variety respectively (Inman-Bamber et al., 2009)
For reference purposes (D), (E), and (F) illustrate the physical development of the canopy and vertical structure of the sugarcane stalks.
Fig. 2. Location of fields under study in Xinavane, Mozambique. The colors indicate average yield for the seasons 2019–2021 for 299 fields. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)
Interestingly, Fig. 3 (A) shows the mean sucrose yield was lower in
seasons 2020 and 2021.

In addition, Fig. 3 (B) shows the percentage of sucrose and moisture
of fresh weight measured at harvest. This is to illustrate the high
percentage of sucrose concentration in the stalk (up to 16 percent).
There is a negative correlation between sucrose and moisture content at
3

harvest, further illustrating the relation between sucrose and moisture
content in the sugarcane stalk (see Section 2).

3.1.2. Soil Water Content and Land Surface Temperature
During the analysis, Soil Water Content and Land Surface Tem-

perature as derived from the Land Parameter Retrieval Model using
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Fig. 3. (A) shows a boxplot of mean sucrose yield for seasons 2015 until 2021 (B) shows the relation between measured sucrose and moisture percentage of fresh weight of
seasons 2018–2021 for the 299 fields.
passive microwave observations were used (van der Schalie et al.,
2017; Owe et al., 2008). A downscaling method was applied to the
passive microwave brightness temperatures to get to a spatial resolution
of 100 m (de Jeu et al., 2016). The basis for Soil Water Content
was SMAP’s L-band (1.41 GHz) passive microwave observations at
06:00AM at equatorial passing (descending) and the effective field of
view footprint is a 39 km by 47 km ellipse. The observations represent
the Soil Water Content in the first 0–5 cm of the soil. To compute Land
Surface Temperature AMSR-2’s Ka-band (36.5 GHz) data were used,
which observes at 01:30AM (descending) with a spatial resolution of
7 km × 12 km (Holmes et al., 2009; Owe et al., 2008).

For the analysis, the Soil Water Content was used to understand the
temporal variation in soil moisture over the three seasons. The data
products are too coarse to identify individual irrigation events (den
Besten et al., 2021b). Nevertheless, it is very valuable for identifying
wet or dry periods. Certainly, in combination with observations from
the field, a period with prolonged waterlogging could be identified in
season 2020–2021, see Fig. 4 and Section 3.2.4. In Fig. 4 (C) we zoom
in on the soil water content during the identified waterlogging peak
where (II) indicates a week during the waterlogging peak and (I) a week
before of the waterlogging event.

Fig. 4 (A) also shows the average daily Land Surface Temperature
for all the fields under study. The LST reflects the seasonality in
the plantation, with higher temperatures before and during the rainy
season and lower temperatures during winter. LST was used in the
analysis to understand seasonal dynamics and to understand the role
of temperature on sucrose development.

3.1.3. Sentinel-1 radar backscatter
Sentinel-1 GRD data were processed using Google Earth Engine and

the Sentinel-1 Toolbox. During this process, a radiometric calibration
and terrain correction were applied to convert the data into normalized
backscatter and correct for elevation differences. The Sentinel-1 satel-
lites observed with Synthetic Aperture Radar (SAR), captures backscat-
ter at 5.405 GHz (C-band) at 5x20 m spatial resolution. Descending
data from Sentinel-1 A and B were used. Fig. 5 (A) shows the avail-
able observations that were used throughout the season. In southern
Mozambique the majority of the revisit frequency between 4 to 6 days,
with a few exceptions in 2018 as a result of maintenance (ESA, 2021).
Fig. 5 (B) provides a snapshot of Sentinel-1 VH polarization. Finally,
the observations were sampled at a 10 by 10 meter resolution.

Backscatter time series were extracted for each field with daily
average values of VV and VH polarizations, see Fig. 2 (B) for the
4

respective field boundaries. The cross ratio (CR) was also calculated for
each field. The Cross Ratio can be calculated by subtracting VH-VV on a
logarithmic scale. Previous work showed CR reduces the backscatter ef-
fect of soil moisture and soil-vegetation interactions (Vreugdenhil et al.,
2018; Khabbazan et al., 2019). The individual VV and VH backscatters
contain artefacts of soil moisture, rain events, and irrigation for exam-
ple (Molijn et al., 2019). The CR relates more to the volume scattering
from vegetation and increases with vegetation growth (Veloso et al.,
2017).

3.1.4. Planet Fusion NDVI
The Normalized Difference Vegetation Index (NDVI) requires red

and near-infrared bands and is widely used as an indicator of the
chlorophyll content and density of a vegetated surface (Rouse et al.,
1974). In this study PlanetScope satellite data were used. PlanetScope
provides near-daily global imaging at optical wavelengths, observing
in RGB and near-infrared at 3–5 m spatial resolution. This study used
the Planet Fusion surface reflectance product, which represents a com-
prehensive harmonization and fusion methodology based on the Cube-
Sat Enabled Spatio-Temporal Enhancement Method (CESTEM) (Planet,
2022; Houborg and McCabe, 2018b,a). Planet Fusion leverages rigor-
ously calibrated publicly accessible datasets from Sentinel-2, Landsat
8/9, Moderate Resolution Imaging Spectroradiometer (MODIS), and
Visible Infrared Imaging Radiometer Suite (VIIRS) in concert with
the higher spatial and temporal resolution data provided by Planet’s
medium resolution constellation of 200+ CubeSats for full fleet inter-
operability. Planet Fusion includes rigorous, temporally driven, cloud
and cloud shadow detection and advanced harmonization to reduce
cross-sensor inconsistencies resulting from variations in orbital config-
urations, spectral responses, and geometric and radiometric quality.
The end result is a next generation analysis ready surface reflectance
product that can be used to derive daily, cloud-free, and gap-free NDVI
time series data characterized by enhanced radiometric stability and
consistency across space and time to support studies on high-frequency
vegetation dynamics (Planet, 2022; Aragon et al., 2021; Houborg and
McCabe, 2018a). Finally, the observations were resampled at a 10 by
10 meter resolution to meet the spatial resolution of Sentinel-1 for a
more accurate comparison.

3.2. Data analysis

3.2.1. Classifying fields by sucrose yield
First, the variation of vegetation indices per field were assessed

over the growing season. To understand the response of the vegetation
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Fig. 4. (A) Land Surface Temperature and (B) soil water content averaged for all the fields under study from April 2018 until December 2021. The individual observations are
indicated with colored dots. The gray line shows a moving average with a 10 day timeframe. The blue shading indicates the rainy season. (C) detailed view of the rainy season
of 2021. (I) and (II) indicate before and during the waterlogging peak, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

Fig. 5. (A) Green squares are days of Sentinel-1 observations used in the analysis (Tomkwok, 2022). (B) Snapshot of Sentinel-1 observation (2021-02-17) with fields under study
in Xinavane, Mozambique. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 6. (A) cumulative Land Surface Temperature between DAR 150–200 for fields with similar ratooning months (B) violin plot for average sucrose yield per ratooning month
for season 2019, 2020, and 2021.
indices to sugarcane yield variability, the 25th, 50th, and 75th per-
centiles of the sucrose yield (TSH) dataset were calculated. From these
percentiles four groups were created, respectively < 25th, 25th–50th,
50th–75th, > 75th. These yield constraints were used to mask the field
time series and generate averages for different performance groups and
different indices. A rolling mean of fifteen days was used to visualize
time series.

3.2.2. Seasonality in sucrose development
Previous studies have found a connection between ratooning month,

sugarcane biomass accumulation and sucrose yield (van Heerden et al.,
2010). Due to seasonal variations in radiation, the relationship between
biomass and intercepted radiation is affected by ratooning month. This
means that radiation use efficiency for sugarcane varies depending on
the ratooning month (Donaldson et al., 2008). Fig. 4 A shows how Land
Surface Temperature (LST) varies during the year and Fig. 6 shows that
yield is indeed affected by choice of ratooning month. Fig. 6 shows the
difference in yield in the plantation can potentially be as much as 3 TSH
[=20 percent] comparing the average yield in August and November.

Fig. 6 illustrates how the LST in the period of Day After Ratooning
(DAR) 150–200 relates to the seasonality in yield. This implies, in order
to compare other influential factor besides temperature, ratooning
dates or month need to be considered. Therefore, the data were further
sorted by ratooning month which ranges from May to November. April
and December were excluded from the analysis due to insignificant
number of fields harvested during these months. The categorization
aimed to understand the effect of ratooning month on crop growth
and how the vegetation indices are affected by other factors (e.g. large
rainfall events).

3.2.3. Inter-annual variability
To demonstrate the difference between seasons, the average of the

different observations for a specific Day of Ratooning was created for
different growing seasons. Three seasons were used to compute these
averages, season 2018–19, season 2019–2020, and season 2020–2021.
In addition to time series, Pearson correlations between sucrose yield
and polarizations, CR, and NDVI were also provided. The average
value of these polarizations and indices in the last 150 days before
the ratooning date were related to sucrose yield to understand the
relationship to yield in different seasons.
6

3.2.4. The influence of waterlogging on sucrose monitoring
In this section we visualized mean backscatter over the time series

of the VV, VH, and CR for fields ratooned in a given month. To illustrate
the effect of waterlogging on backscatter we focused on the wet period
in season 2020–2021 (see Fig. 4 (C)). The agricultural department in
Xinavane confirmed that intense rainfall events combined with high
groundwater levels due to the rise of water levels in the Incomati
river, resulted in prolonged waterlogging during this period. To start
with, the SWC and backscatter were compared in a season with a
relatively dry rainy season (2018–19) and a relatively wet rainy season
(2020–21) for similar ratooning months. Second, we compared data
from at the waterlogging peak [2021-02-11:2021-02-18], to data from
the local minimum before the waterlogging peak [2021-01-12:2021-
01-19]. Each period contained three radar observations, which were
averaged before visualizing the difference as a function of growth stage.

4. Results and discussion

4.1. Observing different sucrose levels

Figs. 7 shows the behavior of VH and VV backscatter and the CR
during three different growing seasons. Figs. 7 (A), (D), and (G) show
that the increase in biomass leads to an increase of around 5 dB in
VH backscatter. Similar to the results of Molijn et al. (2019), there is a
rapid increase at the start of the season and a slower decrease after the
maximum is reached. However, the results are similar among the yield
performance categories, particularly early in the season.

In contrast, results from the VV polarization in Fig. 7, (B), (E), and
(H), are markedly different for the four yield performance classes. By
the end of the season, the difference between the lowest and highest
performing categories is 1.5 dB in VV compared to 0.5 dB in VH.
The maxima are more distinct in VV compared to VH, and the rate of
decrease after the maximum is also different. One reason for the clear
distinction among yield categories in VV may be the predominantly
vertical structure due to the sugarcane stalks. In addition, the stalk is
the main reservoir of sucrose in the sugarcane crop (Wang et al., 2013)
and sucrose yield data is directly linked and measured from the fresh
stalk biomass, Section 2. Stalk biomass is lower in lower performing
fields and higher in higher performing fields (Inman-Bamber et al.,
2009).

The combined influence of the differences between VH and VV is

encapsulated in the CR. Fig. 7 (C), (F), (I), shows a clear distinction
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Fig. 7. The figures in the first columns (A), (D), and (G) show the development of VH over the growing season. Subsequently, the figures in the second column (B, E, and
H) represent the VV and third column (C, F, and I) represent the CR. Each row represents a different season: 2018–2019, 2019–2020, and 2020–2021 (Day after Ratooning)
respectively. The different colors represent the different sucrose yield percentiles over the growing season.
among the yield categories in the CR. The CR of lower yield categories
increases more slowly, and reaches a maximum 50 to 75 days later
than the higher yield categories. The maximum values themselves are
higher for the lower yield categories. The most notable feature, though,
is the divergence after the maximum has been reached. The CR from
the lowest yield category stays close to its maximum until harvest,
while the CR of the highest yield category has the sharpest decline.
By the end of the season, the difference in CR between the highest
and lowest yield categories can be as high as 1 dB (Fig. 7 (F)). Fur-
thermore, den Besten et al. (2021a) used published data and modeling
to argue that sucrose accumulation decreases the dielectric constant
of sugarcane, thereby lowering the Sentinel-1 backscatter. A decrease
of the dielectric constant due to an increase in sucrose concentration
was also observed by Sumranbumrung et al. (2021). This explains why
higher performance categories show lower CR values over the growing
season, and vice versa. Fig. 7 (C), (F), (I) confirms the CR is indicative
of the measured VWC, as pointed out by other studies (Veloso et al.,
2017; Vreugdenhil et al., 2018).

Recall that the vertical distribution of moisture and sucrose is not
uniform, and is different for higher and lower yielding sugarcane
(Fig. 1) (Inman-Bamber et al., 2009). In higher yielding sugarcane,
7

the ratio of moisture to sucrose is more vertically homogeneous, while
there is a gradient in lower yielding stalks. However, even in higher
yielding sugarcane, there is little to no sucrose at the top of the plant.
Note though, that the dynamics of total backscatter are not necessarily
dominated by the top of the canopy, or some sensing depth from the
top of the canopy. Recent modeling at L-band has also shown that
contributions to total backscatter depend on the vertical distribution
of moisture, or more generally on the vertical variations in dielectric
constant (Vermunt et al., 2022). InSAR studies have also shown that
the phase center can be close to the surface even for relatively high
frequencies (Joerg et al., 2018; Steele-Dunne et al., 2017). This explains
why, even at C-band, Sentinel-1 backscatter is sensitive to dynamics
in sucrose accumulation within the stalk and allows for a distinction
between sugarcane with high and low sucrose yield.

In Fig. 8 the development of VH, VV, CR, and NDVI over all three
growing seasons are visualized. Fig. 8 (D) and (E) shows CR and NDVI
are able to distinguish different performance groups over the growing
season. In particular, the lowest performance category deviates early in
the season from the other categories. This may suggest poor performing
fields are more easily detectable early in the season. The maximum of
the VH, VV and CR radar data is observed earlier than the maximum
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Fig. 8. The development of (A) VH, (B) VV, (C) CR, and (D) NDVI over the growing season combining all seasons (Day after Ratooning). The different colors represent the different
sucrose yield percentiles over the growing season.
in the optical indices. This was also observed by Molijn et al. (2019).
More importantly, while the lowest category deviates from the others in
the optical indices early in the season, the distinction between all four
classes is clearer in the radar data. In particular there is a delay between
the classes during the development stage. In addition, Table 1 shows
the correlation between backscatter and sucrose yield in the different
seasons. The VV polarization and sucrose yield show moderate positive
correlations in Season 2018–19 and Season 2019–20.

4.2. Seasonality in sucrose development

Fig. 9 (A), (B), and (C) shows the influence of ratooning month on
the evolution of backscatter. The influence of the choice of ratooning
month on crop yield is visible in VV, VH, and CR. In VV, VH and CR the
fields ratooned in October and November rise to their maximum faster
than other months. However, in the VV and VH data these fields end up
distinctly lower at the end of the growing season. This is very consistent
with Fig. 6 (B), which shows that fields ratooned in the months October
and November have a lower yield compared to other ratooning months.
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Compared to NDVI in Fig. 9 (D), the development is similar to
the individual polarizations. Fields ratooned in October or November,
for instance, rise faster, but finish with the lowest average values.
This illustrates the importance of temperature on sucrose development.
Fields ratooned in October or November experience high temperatures
at the start of the growing season.

In addition, Fig. 9 illustrates the difference in temporal behavior
between optical and radar timeseries. Where NDVI shows a clear dis-
tinction between ratooning months, it is evident backscatter records
more than vegetation. For example, in Fig. 9 (C) the CR for ratooning
month November shows a steep rise due to high initial temperatures
and reaching a maximum at DAR 75. After reaching this maximum a
second high is reached at DAR 100, coinciding with the onset of the
rainy season, which commences at the end of December or January
(see Section 3.2). This is also visible in the ratooning month of August
in the CR, a second peak is reached around DAR 200 in Fig. 9 (C), which
coincides with the onset of the rainy season. These additional peaks are
not visible in NDVI in Fig. 9 (D). It is known that backscatter is sensitive
to soil moisture and the soil surface in early growth stages (de Roo
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Fig. 9. The average (A) VH, (B) VV, (C) CR, and (D) NDVI over the growing season (Day After Ratooning) for different ratooning months. The colors indicate the different
ratooning months.
Table 1
This table shows the Pearson correlation between mean backscatter in the last 150 days
of the growing season observed in different polarizations, the CR, NDVI, and sucrose
yield (TSH) for seasons 2018–19, 2019–20, 2020–21 and all three seasons together.

Season 2018–19 Season 2019–20 Season 2020–21 All seasons

VV 0.55 0.52 0.22 0.53
VH 0.22 0.21 −0.11 0.19
CR −0.48 −0.54 −0.49 −0.56
NDVI 0.58 0.6 0.34 0.6

et al., 2001; Pierdicca et al., 2017). However, it may be worthwhile to
also consider the effect of extreme wet periods throughout the growing
season.

4.3. Inter-year variability

Table 1 shows generally higher correlations between NDVI and su-
crose yield than backscatter observations and sucrose yield in different
9

seasons. For backscatter, the CR and VV give highest correlations to the
yield. The correlation with CR is variable ranging from −0.48 - −0.56,
whereas the correlation between VV and sucrose yield lay between 0.22
and 0.55. Interestingly, all correlations except CR are affected in season
2020–21. The VH backscatter and sucrose yield in season 2020–21 is
even negative opposing the correlation in other seasons.

Fig. 10 shows the mean over the growing season for VV, VH, CR,
and NDVI as a function of day after ratooning. In Fig. 10 (C) and (D)
it is clearly visible season 2020–21 is behaving differently than other
seasons. The graphs show a delay in the sugarcane development. Fig. 11
(A), (C), and (D) show the standard deviation is also different in season
2020–21. In this season a long wet period was documented, resulting
into prolonged waterlogging, see Section 3.2.4.

4.4. The influence of waterlogging on sugarcane monitoring

Fig. 12 shows (A) the average Soil Water Content and (B) average
VH polarization for fields with a ratooning month in June in two dif-
ferent seasons, season 2018–2019 (red) and season 2020–2021 (blue).
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Fig. 10. The average (A) VH, (B) VV, (C) CR, and (D) NDVI over the growing season for seasons 2018–2019, 2019–2020, and 2020–2021. (Day after Ratooning).
Fig. 12 illustrates the response of VH backscatter due to the rainy
season. In both seasons an increased Soil Water Content in Fig. 12
(A) in mid-February and a drydown towards April is visible in VH
backscatter in Fig. 12 (B). The rainy season was less intense in season
2018–2019 than in 2020–2021, which resulted in a long waterlogging
event in 2021. Considering the waterlogging event, as identified in
Section 3.2.4, the blue shaded area (II) identifies the peak of the
waterlogging event in 2021 and (I) before the waterlogging event. The
difference between VH backscatter at the height of the peak (II) and
before the rise of the peak (I) is also visible in Fig. 12 (B) in season
2020–2021. Similar figures for different ratooning months can be found
in the appendix.

To further quantify the effect of the waterlogging event on backscat-
ter, Fig. 13 shows the difference in the period before the large soil water
content peak in season 2020–21 and during the peak for different ra-
tooning months. The difference shows backscatter increases as a result
of the event and is visible in VH, VV and CR. The waterlogging event
causes differences between 0.45 dB and 1 dB for VV, and between 1.12
to 1.47 dB for VH. The higher values in November in the individual
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polarizations indicate that the effect of waterlogging is more visible
at earlier stages of the crop growth, i.e. when the canopy is not fully
developed yet. The results of CR in Fig. 13 also indicate that the effect
of waterlogging may be translated through to the cross ratio. Therefore,
the CR contains information on waterlogging.

Though few studies have explicitly considered waterlogging, these
differences can be considered in the context of what is known about
flooding under vegetation more generally. Lang et al. (2008) researched
the difference of flooded and non-flooded forest in HH polarization
(C-band) and recorded an average difference of 2.45 db depending on
the incidence angle. Sentinel-1 data was also used to detect temporary
flooded vegetation (TFV) to improve flood algorithms (Tsyganskaya
et al., 2018). Tsyganskaya et al. (2018) found, in different parts of
the world, that VH and VV increased during flooding events and the
increase was due to the interaction between standing water and the ver-
tically oriented vegetation which increases the double- or multi-bounce
interactions (Tsyganskaya et al., 2018).

Despite sugarcane’s thick canopy, Fig. 13 shows that waterlogging
is visible in all crop stages. It seems that the effect of waterlogging is
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Fig. 11. The standard deviation VH, VV, CR, and NDVI over the growing season for seasons 2018–2019, 2019–2020, and 2020–2021. (Day after Ratooning).
more evident at earlier stages of the growing season (ratooning month
November) in the individual polarizations. The results imply Sentinel-
1 backscatter contains both information on waterlogging under the
canopy as well as sucrose development in the stalk. Therefore, CR could
potentially play a role in the discrimination of waterlogging.

5. Conclusion

The aim of this research was to understand how Sentinel-1 backscat-
ter responds to sugarcane yield variability and waterlogging. We
demonstrated the possibility to monitor sugarcane yield throughout
the season, the effect of ratooning month on sugarcane development,
and how waterlogging under the canopy is observed within different
stages during the sugarcane development. All this valuable information
is evidently present in Sentinel-1 backscatter.

The results showed VV backscatter contains information on sucrose
development. The VV backscatter responds to the stalk characteristics
which is also the reservoir of sucrose in the sugarcane crop. The CR
represents the VWC in the stalk and the results demonstrated the
11
influence of the distribution in availability of moisture and sucrose in
the stalk on total observed backscatter. The fraction of sucrose and
VWC changes over the growing season and the vertical distribution of
sucrose and VWC varies as well. The results showed both influence the
observed backscatter.

In addition, the results demonstrated the influence of choice in
ratooning month on the sucrose yield and consequently backscatter.
By considering ratooning month and comparing sucrose yield with
different backscatter observations, we discovered the influence of wa-
terlogging beneath the sugarcane canopy. Especially the VH backscatter
was found to be sensitive to waterlogging beneath a canopy. However,
waterlogging was also visible in the CR, which demonstrates the CR can
be used to discriminate waterlogging from regular crop growth condi-
tions. Moreover, the analysis implies the influence of waterlogging is
present in all stages of the sugarcane growth, despite a thick sugarcane
canopy.

The results of this research indicate that Sentinel-1 backscatter
contains both information on waterlogging under the canopy as well
as sucrose development in the plant. As the influence of waterlog-
ging is detectable on a field-scale, it gives confidence that Sentinel-1
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Fig. 12. The average Soil Water Content (A) and average VH backscatter (B) for fields ratooned in August for Season 2018–2019 and 2019–2020. The graphs zoom in on the
period of the 1st of January until the 1st of April. (I) and (II) indicate the period before and during the waterlogging event in Season 2020–2021. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 13. The difference between backscatter during and before the waterlogging peak averaged for fields with similar ratooning months.
backscatter can be used to monitor waterlogging. Also, the influence
of waterlogging can be flagged to help interpret vegetation signals
retrieved with Sentinel-1 backscatter.

We recommend future studies and applications on crop monitoring
with backscatter to consider waterlogging or inundation within the
growing season. In addition, more experimental research is needed to
understand the vertical and temporal distribution of sucrose and mois-
ture and its effect on backscatter for different crops. This is necessary
to improve understanding of the actual sensing depth of backscatter
and to understand the contributions of different surface and crop
characteristics on backscatter retrievals. Here, modeling studies could
contribute to increased understanding of the backscatter signal.

Sentinel-1 backscatter contains a lot of information relevant to
monitor sugarcane development. Nevertheless, more collaboration is
needed between radar remote sensing experts and application users
12
to extract relevant and actionable information about the surface and
canopy. In addition, such collaboration would allow remote sensing
scientists to benefit from the great wealth of data collected on the
ground by agriculturalists every season.
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