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A B S T R A C T

Due to the fact that there is a lack of comprehensive understanding of how the dynamic nature of supply chain
networks (SCNs) interrelates with network structures, particularly network topologies under disruptions. This
research employs a novel evolving model of a supply chain network (SCNE model) by modifying the Barabási
and Albert (BA) model to capture the phenomenon of regional economy and the factor of firms’ attractiveness,
considering the degree, the locality preference, and the heterogeneity of SCN members simultaneously. We then
analyze the SCNE model via the mean-field theory and conduct simulation study to identify the scale-free
characteristic of the proposed supply chain network model. Additionally, we leverage node and edge removal
to emulate random and targeted disruptions. We measure and compare the robustness of four network models,
i.e., the SCNE model, the Erdos and Rényi (ER) model, the BA model, and the Watts and Strogatz (WS) model
using two essential metrics, i.e., the size of the largest connected component and the network efficiency. We
find that the robustness of the SCNE model is better than the BA model and the WS model on the whole in the
presence of disruptions. Also, from the node level, the SCNE model maintains resilience, behaving similarly to
the ER model against random disruptions while it shows vulnerability under targeted disruptions, responding
in line with the BA model and the WS model. From the edge level, the network efficiency of the SCNE model
changes slowly, and the topological structure of the SCNE model slightly changes initially but decreases rapidly
at some value, as well as the BA model, the WS model, and the ER model. Based on the results, we summarize
key points of the implications for research and practice in supply chain management.
1. Introduction

Modern supply chain networks (SCNs) are becoming increasingly
large-scale, more interconnected, and more complex as they expand [1–
3]. As a result of this trend, SCNs may now be examined as a whole sys-
tem rather than isolated components. Thereby we need to understand
the SCN from a system perspective, and a complex network perspective
is an effective tool for this [4–8]. A supply chain network can be
conceptualized structurally as a collection of nodes and arcs/edges [9,
10], with the former representing agents (e.g., firms) and the latter
expressing interactions between them (e.g., buy and sell relationships).
An SCN agent/firm has the intricate flows and connections of logistics,
information, contract, and finance [5,11,12]. There are also behaviors
and direct/indirect relationships that affect the overall operation of the

∗ Correspondence to: School of Economics and Management, Beihang University, 37 Xueyuan Road, Haidian District, Beijing, 100191, PR China.
E-mail address: h_zhou@buaa.edu.cn (H. Zhou).

SCN, such as behavior control of supply chain finance [13], decision-
making of SCN agents [12,14], value-creating [15–17], and knowledge
of resilience learning [18]. As SCNs evolve over time, so do their scale,
shape, and configuration [19,20], which leads plenty of scholars to
study SCNs from the perspective of evolving rules (i.e., attachment
rules). For instance, based on the Barabási and Albert (BA) model,
Ref. [21] model the complex logistic network by using a modified
preferential attachment (MPA), which considers the node’s relativity,
attractiveness, and directed association simultaneously. Ref. [22] pro-
pose a Degree and Locality-based Attachment(DLA) growth model to
investigate a military logistic network. Recently, Ref. [23] develop the
DLA model and propose a new growth model called the grow-mature-
decline (GMD) model by considering the SCN life cycle. Nonetheless,
these models (i.e., MPA, DLA, GMD) capture SCNs only by taking into
vailable online 27 March 2023
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account either the location(i.e., the node’s distance) or the heterogene-
ity (i.e., the node’s difference) of SCN members. To deal with this
limitation, we propose a novel evolving model of the SCN by incor-
porating the features of regional economy and firms’ attractiveness,
called the SCNE model, which considers both the location and the
heterogeneity of SCN members.

As we know, the topic of supply chain disruptions is crucial in sup-
ply chain management [24–26]. Typically, a modest local disruption in
an SCN could severely damage a firm, spreading throughout the entire
SCN, and this failure may result in supply chain avalanche [11,27–31].
The following examples illustrate this argument. In 2000, a 10-minute
fire at a Philips chip factory hit Ericsson, a European mobile phone
manufacturer thousands of miles away [32]. In the aftermath of the 911
attacks, the collapse of bridges, roads, and airports across the United
States led to unprecedented delays in many companies’ SCNs. At the
beginning of 2020, the sudden exponential increase in the number of
global COVID-19 cases led to the complete closure of many critical
facilities, markets, and activities in the global supply chain system [33],
and some companies’ SCNs were even completely paralyzed. Similarly,
the 2022 Russia–Ukraine conflict affected the global SCN, causing
severe supply shortages or even disruptions in many industries such
as food, energy, transportation, and manufacturing. Consequently, to
respond to these disruptions, it is of vital importance to understand
how to create a robust supply chain network [34–37]. A large body
of literature has explored supply chain disruptions and the relationship
between SCN structure and its robustness yet (see Section 2). Following
this trend, we also analyze the robustness of the SCNE model against
both random and targeted disruptions from both the node and edge
levels.

Inspired by both complex network theory and supply chain man-
agement, this research seeks to answer the following research ques-
tions(RQs):

• RQ1: How can we model a large-scale supply chain network based on
its dynamic processes?

• RQ2a: What happens when supply chain network nodes/edges fail?
• RQ2b: How can we mitigate the effects of those failures?

The aim of this paper is to investigate the behavior and performance
f supply chain networks from a macroscopic perspective. In order to
odel the supply chain network with its dynamic process more rea-

onably, we propose a novel evolving model of an SCN, which displays
he locality preference and the fitness of the SCN nodes. We utilize the
ean-field approach to analyze the degree distribution of the SCNE
odel theoretically. In particular, we simulate the degree distribution

f the proposed SCNE model to prove the theoretical findings: The
CNE model can produce an SCN with the scale-free feature, and the
eterogeneity of the network is lower than the BA model. In addition,
or comparison of its properties, we also examine the SCNE model’s
obustness, which is measured by the two important metrics related to
he topological structure and efficiency of the network under random
nd targeted disruptions both at the node and edge levels, and compare
he results with those traditional network models, i.e., the ER model,
he BA model, and the WS model. The latter two models are generally
egarded as the typical models for SCNs.

The main innovation of this work lies in the following aspects.
irst, using interdisciplinary knowledge from supply chain management
nd complex network theory, we propose a novel evolving model
f SCNs, which also echos the current literature that has put great
mphasis on the quantitative studies of SCNs modeling [7,38]. Second,
y emphasizing the macroscopic perspective of network dynamics, this
tudy provides a thorough explanation of the formation, evolution,
nd collapse of the SCNs. In the meantime, this study also takes the
ehaviors of SCN members into account. This paper investigates how
he preferences and differences of SCN members affect the topological
2

tructure of SCNs in terms of SCN generation. In light of this, this
paper examines how these variables impact the evolution of the SCN’s
degree distribution. Additionally, this paper simulates destroying the
SCN by removing nodes and edges, which clarifies the SCN’s robustness.
Thirdly, this study adds to the current body of knowledge regarding
SCN robustness, which does not fully take into account the signifi-
cance of network structure [10]. This is addressed by investigating the
relationship between SCNs’ dynamic nature and network structures,
particularly network topologies under disruptions. At last, scholars
have begun investigating SCN disruption and resilience, primarily at
the node level [39]. As a result, this paper simulates the removal
of edges and nodes. The difference between node and edge levels
is explained in this experiment, which adds to the existing body of
research.

The remaining sections of this paper are organized as follows. After
covering the theoretical foundation and related papers on SCNs in
Section 2, we propose the supply chain evolving model in Section 3,
including its assumption, algorithm, and theoretical analysis. Section 4
discusses our simulation results, and in Section 5, we present the
conclusions.

2. Literature review

We conduct a literature review in three parts. We first introduce the
ER model, the WS model, and the BA model, which are three represen-
tative network evolving models because many real-world networks can
be abstracted into these three models, then review related SCN models,
and last highlight the knowledge gap.

2.1. Three network evolving models

In the last two decades, network science has helped to uncover
complex network topologies for describing and understanding many
real-world systems [7,40]. In complex network theory, there are three
most characteristically distinct network evolving models based on their
evolving rules: The ER model [41], the WS model [42], and the BA
model [43]. (1) The ER models produce random networks with Poisson
egree distribution which are frequently employed for benchmarking
o confirm that the questioned topology possesses specific characteris-
ics [3,23]. In the ER model, edges of new nodes are added randomly,
hich is called random attachment (RA). The generation model, 𝐺(𝑛, 𝑝)

model, assumes that connections between 𝑛 nodes are chosen according
to the probability 𝑝. (2) The WS models generate semi-random and
semi-structured networks with similar Poisson degree distribution. Refs.
[44,45] argue the SCNs have the features of WS topologies. In the WS
model, regular networks are randomly re-connected. The generation
model, 𝐺(𝑛, 𝑘, 𝑝) generates a WS network with 𝑛 nodes, each node hav-
ing 𝑘 neighbors, and re-connecting edges randomized with probability
𝑝. (3) The BA models form random scale-free networks with power-
law distribution which are the results of the growth mechanism and
preferential attachment (PA) mechanism. In many real-world networks,
the degree distribution follows a power-law distribution [46], in which
most nodes have relatively few edges, while some nodes have many
edges. Refs. [6,10,11,35] suggest the SCNs have the features of BA
topologies. The generation model, 𝐺(𝑛, 𝑚) generates a BA network with
𝑛 nodes and 𝑚 edges added each time. The main differences among
these models are summarized in Table 1.

2.2. Related supply chain network models

In this paper, we use the definition of SCNs by Ref. [47] p.265,
‘‘SCNs are defined as networks of exchange relationships between sup-
pliers, customers, and their partner firms that are necessary for man-
ufacturing and providing goods and services to the market’’. Based on
the definition, we view an SCN as an undirected graph. Extending the
complex network topological structure to the supply chain context, the

relevant research can be roughly divided into three categories.
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Table 1
Summary of three network evolving models.
(1) Modeling and topology analysis of supply chain networks [3,5,21,
47–49]. The context of which is mostly focusing on the topo-
logical structure of SCNs. For example, Ref. [47] empirically
construct 21 extended (five-layer) supply chain networks rep-
resenting different industries, analyze their topology, and find
community, scale-free, and hierarchical structures in complex
supply chain networks. According to the intrinsic properties of
ecological industrial systems, the green logistics network is con-
structed and designed by modifying the BA model and its topol-
ogy is analyzed [21], whereas a lack of robustness analysis. Ref.
[49] examine the topological structure and COVID-19-related
risk propagation in Thin-film-transistor liquid-crystal displays
(TFT-LCD) supply networks from a dynamic perspective.

(2) Network topology and robustness interact in mitigating disruptions
[4,10,22,23,34–37,50–56]. This aspect pays attention on ana-
lyzing the robustness of SCNs from the perspective of network
structure, revealing the fragility, collapse conditions, and evolu-
tion of the SCN. This kind of study measures the robustness of
the SCN by arguing that in the case of continuous elimination
of components (i.e., node/edge removals), the more function-
ality the system maintains, the more robust the network. For
example, Ref. [35] extend the linear supply chain proposed by
Ref. [57] to a complex supply network, studying the relationship
between the network topology and its robustness to supply dis-
ruptions in the face of random failures and targeted attacks, one
of the key indicators being the largest connected components
(LCC). Ref. [54] use empirical datasets to study the robustness
of manufacturing networks, as well as the LCC.

(3) Robustness measurement, design, and optimization [22,23,29,36,
52,58–62]. In terms of robustness measurement, Ref. [58] eval-
uate the structure and risk exposure of the SCN by multiplying
a single node value and the adjacency matrix as a measure of
structural robustness. Ref. [61] consider the robustness evalu-
ation mechanism of the supply chain structure for disruption
propagation, and measure the robustness of the SCN. As for
design and optimization, Ref. [36] propose a Decision Support
System based on the rewiring strategy of Ref. [34] to design and
optimize the network performance by analyzing the robustness
of the SCN to disruptions through appropriate topology analysis
and network optimization. Ref. [52] design robust SCNs from the
perspective of complex network topologies, i.e., network gener-
ation algorithms. In addition, network characteristics, including
network topology, can be used to better understand supply chain
network robustness than network types [29], which provides a
3

useful perspective for designing and optimizing robust SCNs.
2.3. Knowledge gap

The related literature on the overlapping of SCNs, disruptions, and
robustness is presented in Table 2. The most commonly used investiga-
tion method is simulation. Existing models either focus on the structure
of the SCN and ignore the structural robustness (e.g., Refs. [21,63]), or
neglect the real-world features of SCNs (e.g., Refs. [29,35]). Here we
address the research gaps.

First, for the evolving models for SCNs, the attachment rules cap-
ture real-world SCNs either only taking into account the location or
heterogeneity of SCN members. Therefore we address this research
gap by incorporating the features of regional economy and firms’
attractiveness, which considers both the locality preference and the
heterogeneity of SCN nodes in the model. Specifically, the BA model,
the DLA model, and the GMD model describe the evolving process
of SCN by the preference for only degree, or degree and locality,
neglecting the fitness of the new node. To overcome such deficiencies,
we consider these factors at the same time in the SCNE model.

Second, regardless of the robustness measuring and in the presence
of disruptions, most of the studies focus only on the removal of the
node level, and very little literature focuses on the removal of the edge
level. So we try to enrich the research by considering removal at both
the node and edge levels.

Third, yet we know remarkably little about how the dynamic nature
of SCNs is interrelated with network structures, especially network
topologies under both random and targeted disruptions. To fill this
research gap, we pay equal attention to network topological structures
and their robustness under disruptions. In this paper, we show its
equality in the simulation part, focusing on the analysis of the network
structure characteristics on the one hand, and testing its robustness on
the other hand.

3. Model

This section presents the SCNE model, consisting of model assump-
tions in Section 3.1, model algorithm in Section 3.2, and theoretical
analysis of the SCNE model in Section 3.3.

3.1. Model assumptions

SCN is a dynamic and complex system [6,11,64], consisting of
different types of firms (i.e., suppliers, manufacturers, distributors, and
retailers), complicated flows, connections, and relationships (i.e., mate-
rial, information, contract, and financial flows). The topological struc-

ture of the SCN is changing through the evolving time because new
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Table 2
Related papers on the SCN, disruptions, and robustness.

Referencesa Supply chain network Robustness measuring Approach

Graph Evolving rulesb Disruptionsc Robustnessd

Ref. [4] Undirected PA & RA NR 1,2,3 Simulation
Ref. [34] Undirected RLR NR 4,5,6,7 Simulation
Ref. [22] Undirected MPA NR 4,5,7,8 Simulation
Ref. [35] Undirected PA, RA NR 1,3,10,11 Simulation
Ref. [21] Directed MPA – – Simulation & Case study
Ref. [52] Directed PA NR 4,5,11,12 Simulation
Ref. [10] Directed – NR & AR 13 Simulation
Ref. [54] Undirected – NR & CF 1,10,14,15,16 Simulation & Empirical
Ref. [63] Undirected MPA – – Simulation
Ref. [36] Directed PA & RA NR 5,17 Simulation & Case study
Ref. [27] Directed PTR & PPR & PRR NR 5,18 Simulation
Ref. [23] Undirected PA & RA NR 19,20,21 Simulation
Ref. [29] Undirected PA & RA RP 22,23,24 Simulation & Case study
Ref. [37] Undirected PA & RA HCF 25 Simulation
This paper Undirected MPA NR & ER 1,2 Simulation

aThe literature is mostly based on complex network theory.
bRLR: Randomized local rewiring; PTR: Preferred trust rule; PPR: Preferred price rule; PRR: Preferred random rule.
cNR: Node removal; AR: Arc removal; ER: Edge removal; CF: Cascades of failures; RP: Risk propagation; HCF: Hybrid cascading failure.
dNote that similar to the work of [27,34], we also do not distinguish the terms resilience and robustness. 1: Size of the LCC; 2: Average path
length(APL) of the LCC; 3: Max. distance of the LCC; 4: Supply availability rate; 5: Size of the largest functional sub-network (LFS); 6: Inverse of
avg min. supply-path length(SL); 7: Adjusted avg inverse SL; 8: Avg SL in the LFS; 9: Max. SL in the LFS; 10: APL; 11: Clustering coefficient; 12:
Average SL of the LFS; 13: Supply network resilience; 14: Assembly completeness; 15: Cascading failures of companies; 16: Cascading failures
of products; 17: Avg SL; 18: Number of sub SCN; 19: Size of the LCC that includes at least one node of each subset(LACC); 20: Weighted APL
of the LACC; 21: Max. vertical path length of the LACC; 22: Size of the LCC at initial impact(LCC_II); 23: Size of the LCC at full impact(LCC_FI);
24: Number of healthy nodes at full impact(NH_FI); 25: Interdependent supply network robustness.
3
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firms will continuously enter the network to keep the operational
function of the SCN. In our model, nodes represent firms in supply
chain networks, and edges between nodes represent exchange rela-
tionships (e.g., business collaboration). We develop the BA model for
the supply chain network, which is called the supply chain network
evolving model, i.e., the SCNE model, by focusing on the phenomenon
of regional economy [63], and the factor of firms’ attractiveness [21].

(1) Regional economy.
Firms in the SCN will speed up their business collaboration more
easily in the regional economy. The reasons behind this phe-
nomenon are as follows: (a) From a political, economic, and
cultural point of view1, there are no trade restrictions locally.
Political or defense factors are nonexistent. Language and cultural
barriers do not exist. Within the region, there is greater mobility
of labor and capital [65–67]. (b) From the operational level, to cut
down on transportation costs as well as to boost the synergy effect
and share efficiency across partnerships [63]. (c) Organizations
for regional economic cooperation exist, including the EU, APEC,
FTAA, AFTA, and others.
In our model, we consider the locality preference i.e., the new node
prefers nodes in its neighborhood over distant nodes [22,23,63] to
capture the features of the SCN with the regional economy when
firms are establishing cooperative relations. This characteristic is
reflected in Eq. (1).

(2) Firms’ attractiveness.
Firms in the SCN have heterogeneous attractiveness. There are
focal firms and other ordinary firms in the SCN. In terms of
business volume, market share, and technological competition,
focal firms have more advantages. Firms also vary in the aspects
of social status, business reputation, and corporate strength. New
firms prefer to cooperate with firms with higher attractiveness to
acquire more abundant operational resources and reduce risks.
This phenomenon is regarded as ‘‘rich gets richer’’ [43]. The
BA model captures this phenomenon via new nodes’ established
edges with high-degree nodes, only utilizing degree to measure
the nodes’ attractiveness in the network. However, this setting

1 https://www.economicsnetwork.ac.uk/true_showcase/regional_economies
4
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does not correspond to reality. For example, when a new firm has
innovative high-tech technologies in the supply chain network,
many firms are still willing to establish cooperative relations with
it. To overcome such shortcomings, our model introduces fitness 𝜂𝑖
to measure the heterogeneous attractiveness of firms in the SCN,
making it possible for new firms to get more opportunities to
be connected. In our model, the nodes have different fitness to
compete for links [21,68], and the greater the node’s fitness is,
the greater the probability of attracting new nodes to connect to
it will be. This characteristic is reflected in Eq. (2).

(3) An exemplary SCN.
Apple’s SCN is a representative example of the supply chain
network. Fig. 1(a) shows some major suppliers and retailers of
Apple. Fig. 1(b) shows Apple’s position within the supply chain
network. It is evident that Apple’s SCN is large-scale, compared
with previous studies (e.g., Ref. [21], 82 firms; Ref. [5], 70 firms;
Ref. [35], 18 firms; Ref. [69], 106 firms; Ref. [36], 184 firms;
and Ref. [29], 250 firms). There are thousands of firms and
each firm has multiple supply chain relationships with others.
Also, the mobile phone manufacturing process involves numerous
node firms, and firms with different attractiveness from different
regions of the world have cross-regional business collaboration.
Therefore, when developing a supply chain network evolving
model, it is vital to consider the regional economy and firms’
attractiveness.

To conclude, we have the following assumptions.

• Assumption 1: The supply chain network is an undirected graph
𝐺 = (𝑉 ,𝐸).

• Assumption 2: To capture the features of the SCN, i.e., regional
economy and attractiveness, consider the locality preference and
the fitness of the SCN nodes.

.2. Model algorithm

By amending the BA model, a novel evolving model for an SCN
s proposed by using a modified preferential attachment. For ease of
eference, we summarize the notations and definitions in Table 3. The
CN evolving process is described as follows:
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Fig. 1. Apple’s supply chain network. .
Source: Bloomberg Finance LP, FactSet Deutsche Bank Quantitative Strategy [70].
Table 3
The notations and definitions in the SCNE model.

Notation Definition

𝑚0 The number of the nodes in the SCN at the initial time;
𝑒0 The number of the edges in the SCN at the initial time;
𝑚 The number of the edges with a node adding in the SCN at each time step;
𝑁 The total number of the nodes in the SCN;
𝐺 Undirected network graph with 𝑉 nodes and 𝐸 edges, 𝐺 = (𝑉 ,𝐸);
𝑡∕𝑇 Time step;
(𝑥𝑖 , 𝑦𝑖) The coordinate of node 𝑖 in the SCN;
𝑑𝑖𝑗 The distance between node 𝑖 and node 𝑗, 𝑑𝑖𝑗 =

√

(𝑥𝑖 − 𝑥𝑗 )2 + (𝑦𝑖 − 𝑦𝑗 )2;
𝑅 The coverage radius of each node;
𝐿 The choosing radius of each node;
𝑊𝑖 The local-region(choosing region) of node 𝑖, 𝑊𝑖 =

{

𝑗 ∣ 𝑑𝑖𝑗 ≤ 𝑚𝑖𝑛(𝐿,𝑅) ∧ 𝑗 ∈ 𝐺
}

;
𝜂𝑖 The fitness of node 𝑖, 𝜂𝑖 ∈ (0, 1) follows some distribution;
𝛼 The tunable parameter that can adjust the relationship between fitness and locality preference;
𝑝𝑟𝑒𝑔𝑖𝑜𝑛 The probability of the new node 𝑖 comes into a local-region;
∏

𝑖,𝑗 The probability of connection between new node 𝑖 and old node 𝑗.
• Initial state-Step 1: 𝑡 = 0, the network begins to evolve. The
number of nodes and edges at the start is denoted as 𝑚0 and
𝑒0, respectively. Each node 𝑖 is randomly given a coordinate
(𝑥𝑖, 𝑦𝑖). These nodes connect with surrounding nodes based on
their distance 𝑑𝑖𝑗 from each other and their own coverage 𝑅.

• Growth-Step 2: at each time step 𝑡, add a new node with 𝑚 (𝑚 <
𝑚0) edges into the network. The new node will enter a certain area
based on the locality preference, i.e., the node will choose a corre-
sponding location within a certain range to appear in the network
according to a specific network characteristic. Commonly defined
network characteristics are node degree, betweenness, closeness,
eigenvector, or other physical properties [5,10,29,54,71]. In this
paper, the node degree is considered as the basis for nodes to join
the network. Eq. (1) defines the probability that the new node
comes into a local-region:

𝑝𝑟𝑒𝑔𝑖𝑜𝑛 =

∑

𝑖∈𝑊𝑖
𝑘𝑖

∑

𝑗∈𝐺 𝑘𝑗
(1)

where 𝑘 denotes the degree of the node, ∑

𝑖∈𝑊𝑖
𝑘𝑖 indicates the

sum of the degree of all nodes in the selected local-region 𝑊𝑖,
∑

𝑘 represents the sum of the degree of all nodes in the SCN
5

𝑗∈𝐺 𝑗
𝐺. Call the local-region’s radius as choosing radius, denoted 𝐿.
It can be seen from Eq. (1) that the location of the new node
is determined by the sum of the degrees of the nodes in the
choosing region, which refers to the extent of the activity level
of the SCN members in the region. High activity levels can be
understood that there are numerous nodes closely coupled in the
region, reflecting the aggregation features of the SCN structure
and maintaining high practical implications.

• Preferential attachment-Step 3: when a new node enters the
network, it selects certain nodes in its local-region to link with.
The probability that a new node is connected to an already
existing node in the network is defined in Eq. (2):
∏

𝑖,𝑗
=

𝑓 (𝜂𝑖, 𝑑𝑖)𝑘𝑖
∑

𝑗∈𝑊𝑗
𝑓 (𝜂𝑗 , 𝑑𝑗 )𝑘𝑗

(2)

where 𝑓 (𝜂𝑖, 𝑑𝑖) = 𝜂𝛼𝑖 (1 − 𝑑𝑖
∑

𝑑𝑖
)1−𝛼 , and 𝜂 is chosen from the

distribution 𝜌(𝜂), i.e., 𝜂𝑖 follows some distribution (e.g., uniform,
exponential, power-law, and etc.). Eq. (2) means that the greater
the fitness(i.e., wealth, reputation, and competitiveness) of the
node is, the closer the distance between the two nodes is, and
the greater the probability that the new node is connected to it
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Fig. 2. An example of the SCNE model. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)

will be. 𝛼 is a tunable parameter that can adjust the relationship
between fitness and locality preference.

• Iteration: repeat Steps 2 and 3 until the SCN reaches the desired
size 𝑁 .

After 𝑇 time steps, an SCN with 𝑁 = 𝑚0+𝑇 nodes with 𝑒0+𝑚𝑇 edges
s generated. Fig. 2 illustrates a simple example of the SCNE model.
n this example, each new node will establish two edges, i.e., 𝑚 = 2.
nitially 𝑡 = 0, the network starts with 𝑚0 = 4 connected nodes (different
olors) with 𝑒0 = 5 edges (gray). When 𝑡 = 1, a new node (blue)
omes into the local-region(dotted shadow part) with the probability
f 𝑝𝑟𝑒𝑔𝑖𝑜𝑛, within the coverage radiant and choosing radiant, i.e., 𝑅 and
, the 𝑚 = 2 edges of the new node will prefer the node with high
egree, great fitness, and close nodes, say, nodes connected by red lines.
imilarly, when 𝑡 = 2, a new node (green) connects to existing nodes
y following the same rule. The white node (the greatest degree) does
ot compete with the orange and purple nodes because its fitness is not
s high as theirs. As more nodes are added, an SCN will emerge from
his attachment process.

.3. Theoretical analysis

According to the mean-field approach [72], for any node 𝑖 in the
CN, based on the assumption that 𝑘𝑖 is distributing continuously, the
egree in unit time step 𝑡 of node 𝑖 will match to:
𝜕𝑘𝑖
𝜕𝑡

= 𝑚
∏

𝑖,𝑗
= 𝑚

𝑓 (𝜂𝑖, 𝑑𝑖)𝑘𝑖
∑

𝑗∈𝑊𝑗
𝑓 (𝜂𝑗 , 𝑑𝑗 )𝑘𝑗

. (3)

First, assume the total number of nodes in the network (i.e., 𝑁)
is large enough, thereby there are enough nodes connected to the
new-adding nodes. Then we can approximate as 𝑑𝑗

∑𝑛
𝑗=1 𝑑𝑗

= 0. Sec-
nd, assume that there is an average attractiveness (i.e., fitness) of
odes in local-region, namely, 𝜂𝑎𝑣𝑔 = ⟨𝜂⟩. Third, in large complex

networks, the average degree of nodes in choosing region is calculated
as ⟨𝑘⟩ = 2(𝑒0+𝑚𝑡)

𝑚𝑜+𝑡
= 2𝑚. Therefore, ∑

𝑗∈𝑊𝑗
𝑓 (𝜂𝑗 , 𝑑𝑗 )𝑘𝑗 =

∑

𝑗∈𝑊𝑗
𝜂𝛼𝑗 (1 −

𝑑𝑗
∑𝑛

𝑗=1 𝑑𝑗
)1−𝛼𝑘𝑗 =

∑

𝑗∈𝑊𝑗
𝜂𝛼𝑗 𝑘𝑗 = 𝑛 ⋅ 𝜂𝛼𝑎𝑣𝑔 ⟨𝑘⟩ = 𝑛 ⋅ 𝜂𝛼𝑎𝑣𝑔

2(𝑒0+𝑚𝑡)
𝑚𝑜+𝑡

= 2𝑚𝑛 ⋅ 𝜂𝛼𝑎𝑣𝑔 ,

where 𝑛 is the number of nodes within the coverage of the new node.
Then, simplifying the formula (3), we have

𝜕𝑘𝑖
𝜕𝑡

=
𝑔(𝑓 )𝑘𝑖

2
, (4)

where 𝑔(𝑓 ) = 𝑓 (𝜂𝑖 ,𝑑𝑖)
𝑛𝜂𝛼𝑎𝑣𝑔

.
Adjusting formula (4), we have

𝜕𝑘𝑖
𝑘𝑖

=
𝑔(𝑓 )
2

d𝑡. (5)

Solving differential equations, we have

𝑘 (𝑡) = 𝑒
𝑔(𝑓 )
2 𝑡+𝐶 . (6)
6

𝑖 i
According to the initial condition 𝑘𝑖(𝑡𝑖) = 𝑚, we solve 𝐶 = 𝑙𝑛(𝑚) −
𝑔(𝑓 )
2 𝑡𝑖. Put 𝐶 into formula (6), then

𝑘𝑖(𝑡) = 𝑚𝑒
𝑔(𝑓 )
2 (𝑡−𝑡𝑖). (7)

Therefore, the probability that the degree 𝑘𝑖(𝑡) of node 𝑖 in the SCN
s less than 𝑘 is

(𝑘𝑖(𝑡) < 𝑘) = 𝑝(𝑡𝑖 > 𝑡 − 𝑙𝑛( 𝑘
𝑚
) 2
𝑔(𝑓 )

). (8)

Implanting new nodes at constant intervals:

𝑝(𝑡𝑖) =
1

𝑚0 + 𝑡
, (9)

then we have:

𝑝(𝑘𝑖(𝑡) < 𝑘) = 1− 𝑝(𝑡𝑖 ≤ 𝑡− 𝑙𝑛( 𝑘
𝑚
) 2
𝑔(𝑓 )

) = 1− 1
𝑚0 + 𝑡

(𝑡− 𝑙𝑛( 𝑘
𝑚
) 2
𝑔(𝑓 )

). (10)

The probability of node degree distributions should be match

𝑝(𝑘) =
𝜕𝑝(𝑘𝑖(𝑡) < 𝑘)

𝜕𝑘

= 2
𝑔(𝑓 )(𝑚0 + 𝑡)

𝑘−1.
(11)

𝑘 is the continuous random variable for the degree of the node in
he SCN. Thus, we obtain:

(𝑘) ∝ 𝜃𝑘−1 (12)

here 𝜃 = ∫𝜂 ∫𝑑 𝜀𝛿𝑝(𝑘)d𝜂d𝑑. 𝜀 and 𝛿 are the distributions of 𝜂 and 𝑑,
espectively.

Therefore, the degree distribution of the SCN is simultaneously
etermined by the distributions of 𝜂 and 𝑑. And by adjusting these
arameters, we can obtain different network structures.

roperty 1. The SCNE model can produce a supply chain network with the
cale-free feature, and the heterogeneity of the network is lower than the BA
etwork.

roof. According to the generation process of the SCNE model, we can
btain the degree distribution 𝑃 (𝑘) ∼ 𝑘−1 of the SCN, which has a
ower-law form with degree exponent 𝛾 = 1, lower than the BA network
egree exponent 𝛾 = 3.

According to Ref. [43], this result indicates our model can produce
cale-free SCNs. To summarize, our model not only considers the lo-
ality preference of the new node but also balances the relationships
nd fitness of nodes in the SCN. By varying settings of the parameters,
upply chain networks with different topologies are generated.

. Simulation

In this section, we take simulation experiments, and the reasons
re as follows. (1) The operational data of supply chain firms are
enerally confidential and not publicly available, making it difficult
o obtain [44,73]. (2) To investigate the proposed RQs and verify the
heoretical analysis. (3) It is impossible to build a real-world SCN and
estroy it. Consequently, we undertake computer simulations in the
ollowing fashion: (1) Experiment I: Network structure of supply chain
etworks. Firstly, given the parameters according to the real-world
ituation, an SCN is generated based on the proposed SCNE model. We
nalyze the network topological structure by adjusting the choosing
adius 𝐿, the coverage radius 𝑅, and the distribution of the fitness
𝑖. (2) Experiment II: The robustness of supply chain networks. Then,
e simulate disruptions for four different network models(i.e., the
CNE model, the ER model, the WS model, and the BA model) under
our different disruption scenarios, i.e., node and edge removals ×
argeted attack and random failure (the reasons are analyzed further

n Section 4.2.1), and calculate the robustness metrics in each case.



Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena 170 (2023) 113371J. Wang et al.

s
r
p
o
d
r
c
a
s
l
w
w
i
f

4

b
i
b
u
𝑅
d

4

l
e
d
h

Lastly, we analyze, compare, and derive several important managerial
implications based on the results obtained from the simulation.

The baseline parameters of our experimental setup are provided
below. Note that 𝑁 = 250 is a common network size [29], Ref. [23]
et 𝑁 = 600, and Refs. [4,52] set 𝑁 = 1000, the scale of the SCN is
elatively large. So we suppose there is a supply chain network com-
osed of 𝑁 = 1000 firms. According to Refs. [23,43], we set the number
f firms in the initial network 𝑚0 = 7 because this value is small, and
oes not affect the final network structure. As described by previous
esearchers [22,43,52], assume new-adding firms’ edges 𝑚 = 5. The
overage radius and choosing radius determine the locality preference
t the same time. Usually, they are different, but not much. Hence, we
et coverage radius 𝑅 = 70, choosing radius 𝐿 = 50. Additionally, let
ocality preference and fitness have the same effect on the SCNE model,
e set the adjusting parameter 𝛼 = 0.5. Ref. [74] found that firms’
ealth and competitiveness follow Pareto distributions in competitive

ndustries, which means firms’ attractiveness is very different, so we let
itness 𝜂𝑖 satisfy the power-law distribution.

.1. Experiment I: Network structure of supply chain networks

In this part, we explore network topology and network degree distri-
ution of the SCNE model, respectively. First, the proposed SCNE model
s used to generate an SCN topology from the given parameters. Then,
y adjusting the parameters(i.e., the rest of the parameters remain
nchanged and change the choosing radius 𝐿, the coverage radius
, and the distribution of the fitness 𝜂𝑖 respectively), we address the
egree distribution of the network.

.1.1. Network topology
Fig. 3 shows the topology of the supply chain network, which is a

arge-scale network. It shows how firms in the SCN are connected. An
dge shows the business cooperation between two nodes. Where the
egree centrality (𝐷𝐶) measures how many direct neighbors the node
as. 𝐷𝐶 is defined as

∑

𝑖≠𝑗 𝑒𝑖𝑗
𝑛−1 = 0, where 𝑒𝑖𝑗 is binary, and 𝑒𝑖𝑗 = 1 if there

is an edge between node 𝑣𝑖 and node 𝑣𝑗 ; otherwise 𝑒𝑖𝑗 = 0. Actually,
in a supply chain network, a node with a high 𝐷𝐶 reflects the fact
that the firm often plays a key role in operational activities such as
material transportation, information exchange, and capital flow, which
also indicates that a disruption of the firm can have a considerable
impact on network performance. In contrast, a disruption of a node
with low 𝐷𝐶 has a limited impact on the network. Fig. 3 also shows
that the resulting supply chain network has strong heterogeneity, that
is, the number of important hub firms (𝐷𝐶 > 0.15) is relatively small,
while the number of ordinary firms with low 𝐷𝐶 is large, which has
obvious scale-free characteristics, which verifies the theoretical analysis
above in Section 3.3.

4.1.2. Network degree distribution
The degree distribution of the SCN is closely related to its topology

and is often used to analyze network structure [75]. Degree distribu-
tions, which are charts that show the frequency of 𝐷𝐶 throughout the
network, are used to illustrate variations. A homogeneous distribution
indicates that the majority of firms have a similar amount of connec-
tions, which has a similar effect on overall connectivity. Certain firms
(i.e., hub firms) would have a stronger influence on connection than
others if the distribution is heterogeneous.

(1) Locality preference.
In our simulation, we determine the parameters, i.e., choosing
radius 𝐿 and coverage radius 𝑅 to observe the influence of locality
preference on degree distribution.
Fig. 4(a)–(e) shows the changes of position forms under different
settings of the SCN. Fig. 4(a) plots the position form of firms
without locality preference (randomly) for SCN, while Fig. 4(b)–
(e) plots position forms of firms considering locality preference
7

with different choosing radius 𝐿. We find that when the choosing
radius 𝐿 gradually decreases, the more likely firms are to enter
the SCN to cluster in regions with a high density of firms. In this
case, the regional economy feature of the SCN becomes apparent.
Taking the mobile phone manufacturers SCN in China as an
example, firms have locality preferences based on the regional
economy and are mostly distributed in Guangdong, Jiangsu, and
Taiwan [76]. The practical advantages of this phenomenon are,
for one thing, firms in the SCN will reduce transportation costs,
and for another, strengthen synergies and improve efficiency.
Fig. 5(a) and (b) illustrate comparisons of the degree distribution
under different choosing radius 𝐿 and coverage radius 𝑅. Fig. 5(a)
verifies the findings of Fig. 4 again. Obviously, as 𝐿 gradually
increases, the distribution of firms in the SCN tends to be scat-
tered, so the proportion of firms with a larger degree is lower than
that when the choosing radius is small. This variation tendency is
consistent with the decrease of coverage radius 𝑅. In other words,
as 𝑅 increases, firms with a high degree in the SCN will be more
likely to be connected by a new firm, so the heterogeneity of node
degree in the SCN is increased.

(2) Fitness.
In order to investigate the heterogeneity of nodes’ fitness, that is,
to characterize the different attractiveness of firms in the SCN, we
consider 𝜂𝑖 to obey three distributions (i.e., uniform, exponential,
and power-law distribution) [21]. This setting can reflect the
change in the heterogeneity of nodes’ attractiveness from low to
high.
Fig. 6(a)–(c) shows the fitness distribution of firms in the SCN.
The horizontal axes denote the fitness value of firms and the ver-
tical axes are the number of the corresponding firms. The uniform
distribution reflects that firms’ attractiveness is mostly the same
while the power-law distribution indicates that firms’ attractive-
ness is very different. And the difference in firms’ attractiveness
of exponential distribution is between them.
Fig. 6(d) shows the comparison of the degree distribution under
different fitness distributions. We find that the higher the hetero-
geneity of nodes’ fitness, the higher the heterogeneity of network
degree distribution. The explanation is that a limited number
of firms with great attractiveness have a higher probability of
cooperating with the new firms in the SCN. A positive feedback
loop is created consequently: As node degree increases, hub nodes
are more likely to form.

To conclude, the SCNE model holds the following properties.

Property 2. The degree distribution of the SCN produced by the SCNE
model will be more homogeneous with increasing choosing radius or decreas-
ing coverage radius of SCN firms, holding other parameters constant.

Property 3. The degree distribution of the SCN produced by the SCNE
model will be more heterogeneous with more various attractiveness of SCN
firms, holding other parameters constant.

4.2. Experiment II: The robustness of supply chain networks

In this part, we define disruptions, measure robustness, and compare
the robustness of the SCNE model with the ER model, the WS model,
and the BA model. Note that BA and WS models are always viewed
as the typical models for supply chain networks [47]. To ensure a fair
comparison, assume that the number of nodes (firms) of the four models
is 𝑁 = 1000. Fig. 7 shows the degree distribution for four different
network models. The degree distribution of ER model is shown as the
Poisson distribution, BA model follows a power-law distribution. WS
model follows similarly to the Poisson distribution. The SCNE model
behaves like power-law distribution, but the heterogeneity is lower
than that of the BA model. Next, we define disruptions for the SCN,
as well as robustness measuring from the perspective of topology. And

finally, the simulation results are obtained.
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Fig. 3. Supply chain network topology.
Fig. 4. Position forms under different settings of the SCN.
4.2.1. Defining disruptions: Random failure and targeted attack
Traditionally, there are two types of disruption risks: random and

targeted disruptions [23]. Random disruptions, in which every node/
edge has an equal probability of being removed, represent many events
that have a low likelihood of occurrence but have a prominent impact
on an SCN, such as natural disasters(floods, earthquakes, hurricanes),
disease & epidemics, plant fire, and economic crises2. Targeted dis-
ruptions refer to emergencies like political systems (war, terrorism,

2 See the examples in Section 1, fire at a Philips chip factory and COVID-19
cases.
8

labor disputes, regulations, terrorist attacks) and economic sanctions,
in which the vital nodes/edges are more likely to be removed3. There
are many metrics to measure the node’s/edge’s importance. For node’s
importance, such as degree centrality, betweenness, closeness, and
eigenvector centrality [40]. Referring to the vast majority of the litera-
ture in Table 2, we opt for 𝐷𝐶 of nodes and the betweenness of edges
to measure the importance. Here, the betweenness of edges is defined
as the ratio of the number of paths passing through the edge among all
the shortest paths in the SCN to the total number of shortest paths.

3 See the examples in Section 1, 911 attacks and Russia-Ukraine conflict.
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Fig. 5. Degree distribution comparison.
Fig. 6. Degree distribution comparison under different fitness distribution.
Fig. 8 presents an example of the robustness of an SCN subjected
to (a) repeated, targeted node removal [53] and (b) repeated, random
edge removal. For operation (a), the red node and its incident edges
are removed at each attack. At the time 𝑡1, a single node is disrupted
intentionally (i.e., removed by calculated node 𝐷𝐶) from the SCN, and
the axis shows the change of the robustness of the SCN with each time
epoch.
9

4.2.2. Robustness measuring
In the context of supply chain networks, topological metrics can be

good indicators of network performance [5]. When the network’s nodes
and edges are disrupted, the network’s structure and efficiency change,
the size of the largest connected component (LCC) and network efficiency
can be used to indicate the network’s robustness in the presence of
disruptions. Here we define two metrics: the relative size of the largest
connected component 𝑅 and the relative network efficiency 𝐸.
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Fig. 7. Degree distribution for four different SCN models.

The relative size of the largest connected component 𝑅. According to
percolation theory [77] and Table 2, the robustness of an SCN can be
measured by finding out the size of the LCC. So we define 𝑅 as the
relative size of the LCC

𝑅 =
𝑆(𝑡)
𝑆(0)

(13)

where 𝑆(𝑡) is the number of nodes in the LCC of the SCN after the
repeated disruption, and 𝑆(0) refers to the number of nodes in the
nitial SCN.
The relative network efficiency 𝐸. Network efficiency was firstly

proposed by Ref. [72] to characterize the properties of small-world
networks, which presents an approach to identify the spread of a
network by calculating the average of the reciprocal of shortest path
lengths between each node pair in the SCN, defined as

𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 = 1
𝑁(𝑁 − 1)∕2

∑

𝑖≠𝑗

1
𝑑′𝑖𝑗

(14)

where 𝑑′𝑖𝑗 is the shortest path length between node 𝑖 and 𝑗, and 𝑁 is the
number of nodes in the SCN. The shorter the APL, the more efficient
the exchange/cooperation will be. Network efficiency is the degree to
which the network can operate normally and function within a certain
period of time, and it can describe the efficiency of the network to
transmit trade/information. Accordingly, we define 𝐸 as the relative
network efficiency

𝐸 =
𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦(𝑡)
𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦(0)

(15)

where 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦(𝑡) is the network efficiency of the SCN after the
repeated disruption, and 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦(0) refers to the network efficiency
nitially.

.2.3. Results for the comparison of the robustness
In order to reduce statistical fluctuations and overcome the inter-

erence of random factors, we perform 30 independent simulations for
ach case and record the average as the final result.

(1) Results for random disruptions. Figs. 9 and 10 show the four
SCN models’ responses to random disruptions from both node
and edge levels. The horizontal axes denote the node and edge
removal percentage respectively and the vertical axes are the
robustness metrics. The ER model performs best against dis-
ruptions. But the real supply chain network structure is not
random(Ref. [46], p. 96), so the ER model is generally used
as a benchmark model for comparative analysis. Surprisingly,
for the relative network efficiency 𝐸, we find that the SCNE
10
model always performs better than the BA model and the WS
model. For the relative size of the LCC, 𝑅, when the nodes are
removed before approximately 30% (or the edges are removed
before approximately 45%), the SCNE model is only slightly
poorer than the BA model and the WS model. In other words, the
four models’ responses to disruptions are very close. After that
percentage, the SCNE model performs better than the BA model
and the WS model observably. That means the SCNE model has
a better performance than the BA model and the WS model on
the whole, which implies the SCNE model is basically robust
under random disruptions. Additionally, the decrease in network
efficiency of the SCNE model is also small, which proves the
robustness of the SCNE model against random disruptions again.

(2) Results for targeted disruptions. Figs. 11 and 12 demonstrate the
four SCN models’ responses to targeted disruptions from both
node and edge levels. The horizontal axes show the node and
edge removal percentage respectively and the vertical axes are
the robustness metrics. Similarly, the ER model performs best.
And for the relative network efficiency 𝐸, the SCNE model
performs better than the BA model and the WS model. In terms
of the relative size of the LCC, 𝑅, their performance in front
of the percentage(30% for nodes removal and 70% for edges
removal) is not much different, but beyond which, the SCNE
model is always better than the BA model and the WS model.
It is notable that SCNs deteriorate rapidly over some value of
the percentage, which is around 20% for the BA model, 25% for
the WS model, 35% for the SCNE model, and 70% for the ER
model from the node level. From the edge level, it is 40%, 75%,
80%, and nearly 95% for the WS model, the BA model, the SCNE
model, and the ER model, respectively. The results are consistent
with the previous observation [22,23,51], showing the fragility
of the SCNs. Nonetheless, we can also draw the conclusion that
the SCNE model performs better than the BA model and the WS
model under targeted disruptions overall.

(3) Targeted disruptions vs. random disruptions. Arguably, random
disruptions are more frequent than targeted disruptions, but the
latter is more harmful. Comparing Figs. 9 and 11, it is shown
that from the node level, the SCNE model features robustness,
behaving similarly to the ER model against random disruptions.
Although the SCNE model shows vulnerability under targeted
disruptions and behaves in line with the BA model and the WS
model, it is stronger than these two models. In fact, according to
theMolloy-Reed Criteria [78], 𝑝𝑐 = 1∕(𝜅−1), where 𝑝𝑐 refers to the
percentage of nodes removal and 𝜅 measures the heterogeneity
of networks, describes the strength of SCN heterogeneity playing
an extremely important role in the coexistence of robustness and
fragility of SCNs. The SCNE model has more tolerance against
disruptions than the BA model and the WS model because the
heterogeneity of the SCNE model is lower.

(4) Node level vs. edge level. Clearly, we find that the network effi-
ciency of the SCN models changes slowly from the edge level
compared with the node level. The reason behind this is, the
removal of edges affects the performance of information/trade
exchange is smaller than node removals in SCNs. Intuitively,
nodes removed randomly are supposed to be equated to edges
removed randomly. However, they are not. Note that the WS
model performs worse than the BA model under edge removals
while it does oppositely under the removal of nodes. It is because
when a node is removed, the edges of the node are passively
changed, but after an edge is removed, the node may still
exist. This is in line with reality. In practice, if the exchange
relationships of some firms in the SCN end, it will not lead to
the destruction of the firm. On the other hand, it is also related
to the evolving rules. The WS model is based on the rules of re-
connecting edges, while the BA model is based on growth and
preferential mechanisms, which results in the change of edges
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Fig. 8. Repeated disruption scenario. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 9. Responses of the supply chain network models under random disruptions (node level).
Fig. 10. Responses of the supply chain network models under random disruptions (edge level).
significantly impacting the WS model. Furthermore, we also find
that the relative size of the LCC, 𝑅, is barely changed at first
and then (at some value) decreases dramatically. That is the
11
same reasons addressed above, in other words, only removing
a higher number of edges can result in a noticeable change in
the topology of SCNs from the edge level.
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Fig. 11. Responses of the supply chain network models under targeted disruptions (node level).
Fig. 12. Responses of the supply chain network models under targeted disruptions (edge level).
The main findings from the simulation of robustness measuring can
be summarized as the following properties.

Property 4. The robustness measuring of the proposed SCN evolving model
performs better than the BA model and the WS model on the whole in the
presence of disruptions.

Property 5. From the node level, the proposed SCN evolving model holds
the coexistence of robustness and fragility: It maintains resilience, behaving
similarly to the ER model against random disruptions while it shows vulner-
ability under targeted disruptions, responding in line with the BA model and
the WS model.

Property 6. From the edge level, the network efficiency of the proposed SCN
evolving model changes slowly, and the topological structure of the proposed
SCN evolving model slightly changes initially but decreases rapidly at some
value, as well as the BA model, the WS model, and the ER model.

5. Conclusions

Supply chain networks evolve over time based on their dynamic
formation process. To address the RQ1: How can we model a large-
scale supply chain network based on its dynamic processes, we proposed
a novel evolving model of supply chain network, since complex net-
works are proven to be an effective abstraction tool to describe the
topological structure and macro aspects of SCNs. Instead of focusing
on the interactions between specific SCN members, this simplification
12
depicts what occurs at the network level. We develop the revised BA
model to illustrate the regional economy and firms’ attractiveness by
considering the degree, the locality preference, and the heterogeneity
of SCN members simultaneously. To answer the RQ2a: What happens
when supply chain network nodes/edges fail, we adopt computer simu-
lations to create four different disruption scenarios. For the purpose
of quantifying robustness and dynamic response to disruptions, we
compare the proposed model with the ER model, the BA model, and
the WS model. Specifically, the ER model is set to be the benchmark,
and the BA model and the WS model map onto prototypes of real-
world supply chain networks. Several properties of the proposed model
have been drawn, which lays a solid foundation for supply chain
management development. (a) The SCN generated by the SCNE model
holds the characteristics of scale-free, and the heterogeneity of the
network is lower than the BA model. The degree distribution will be
more homogeneous if the choosing radius increases, or the coverage
radius and the heterogeneity of fitness decrease. (b) No matter whether
under random or targeted disruptions, the responses of SCNE model are
better than the BA model and the WS model. From the node level, the
SCNE model coexists the robustness and fragility. And from the edge
level, the changing trend of the network efficiency and the topological
structure differs. The former is slow and the latter has a jumping point.

5.1. Theoretical contributions

Theoretically, this study makes the following contributions. First,
we present a novel evolving model of SCNs, combining the inter-

disciplinary knowledge of complex network theory and the content
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of supply chain management. This work contributes to the growing
literature on quantitative studies of supply chain networks modeling [7,
38].

Second, this study offers a comprehensive understanding of the
formation, evolution, and collapse of the SCNs by focusing on the
macroscopic perspective of network behavior. Meanwhile, we addition-
ally consider the behavior of SCN members. For the generation of the
SCN, we study how the preference and differences of SCN members
influence the topological structure of SCNs. Accordingly, we explore
how these factors affect the degree distribution evolution. Furthermore,
we crash the SCN by removing nodes and edges via simulation, which
helps understand the robustness of the SCN.

Third, this study enriches the emerging research on supply chain
network robustness, which has not fully incorporated the role of net-
work structure [10]. We address this by studying how the dynamic
nature of SCNs interrelates with network structures, especially network
topologies under disruptions.

Finally, researchers have started looking into supply chain network
disruption and resilience, primarily at the node level [39]. Therefore,
we perform both node and edge removals simulations. This experi-
ment supplements the current literature by explicating the difference
between node and edge levels.

5.2. Managerial implications

Our findings address the RQ2b: how can we mitigate the effects of those
failures. Properties 1–3 show the findings of degree distribution corre-
sponding to structural topology, and Properties 4–6 state the relatively
high robustness of the SCNE model under disruptions. Therefore, to
mitigate the effects of those failures efficiently, managers need to build
a robust SCN, that is, to follow the process of the SCNE model, featuring
by regional economy and firms’ attractiveness. From a practical per-
spective, managers can, in a timely and appropriate manner, strengthen
the stability and closeness of business cooperation between firms by
establishing firm alliances in the local-region, to ensure forming the
topology of the SCNE model.

Also, this study sheds light on how to manage supply chain net-
works. There are some practice implications for managers in the fol-
lowing logic based on the observations. The diversification of degree
distribution of the SCNE model is affected by the choosing radius, the
coverage radius, and the fitness distribution. The greater the choosing
radius is, the smaller the coverage radius is, and the more homogeneous
fitness distribution is, the lower the degree distribution of the SCNE
model will be. And the SCNE model with a lower heterogeneity leads
to a more robust topological structure against disruption risks. Lastly,
from the perspective of the focal firm of a supply chain network
(e.g., smartphone supply chain networks [76]), we can propose op-
timization strategies for the robustness of SCN from firm-level and
network-level, respectively. (a) Firm-level. Note that SCNs with scale-
ree properties are weak against targeted disruptions, thus the focal
irm plays a pivotal role in managing such disruptions. Therefore,
he capital and resources of focal firms need to be controlled more
arefully and systematically to resist targeted risks. For other ordinary
irms, take full advantage of their flexibility to improve responsiveness
n limited business relationships and avoid relatively large structural
isks [79,80]. (b) Network-level. It is pointed out that the robust topo-
ogical structures of SCNs are necessary to maintain features of the
egional economy, but the characteristics should not be too obvious. The
pparent regional economy features lead to the phenomenon of ‘‘rich
ets richer’’ in the local-region, which is extremely vulnerable against
argeted disruptions. Taking advantage of the reduced logistics costs,
nd increased efficiency of information transmission brought about
y the regional economy, regional organizations (e.g., EU, APEC) or
overnments should work together to promote multi-regional coordi-
ated regional industrial development strategies. At the same time,
hey should avoid the over-intensive distribution of similar exchange
13

elationships to reduce the SCN characteristics of the regional economy.
5.3. Limitation and future research

There are a few limitations in this study that provide directions
for future research. First, this work provides a single-layer supply
chain network model, which ignores the hierarchical [47,81] topologi-
cal structure of the SCN. In fact, the supply chain network is complex,
composed of thousands of firms, with multi-agent, multi-layer charac-
teristics [7]. Multi-layer considerations could bring a more in-depth
analysis of how this topology influences the robustness of the SCN.
Second, along with random and targeted disruptions, local disruptions
are an important way to study network robustness [82,83]. Future
extensions could incorporate different types of disruption scenarios at
the same time, e.g., local and global, random and targeted, or the
mixed scenario [23], because in reality there are numerous disruption
risks coupled together [84]. Third, we only analyze the robustness of
the proposed model, lacking a quantitative method to improve the
robustness. In future work, we aim to design an optimization approach
to build high robustness of SCNs without changing costs, to address this
shortcoming.
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