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Abstract. The feasibility of physics-based forecasting of earthquakes depends on how well models can be
calibrated to represent earthquake scenarios given uncertainties in both models and data. We investigate whether
data assimilation can estimate current and future fault states, i.e., slip rate and shear stress, in the presence of a
bias in the friction parameter. We perform state estimation as well as combined state-parameter estimation using
a sequential-importance resampling particle filter in a zero-dimensional (0D) generalization of the Burridge–
Knopoff spring–block model with rate-and-state friction. Minor changes in the friction parameter ε can lead
to different state trajectories and earthquake characteristics. The performance of data assimilation with respect
to estimating the fault state in the presence of a parameter bias in ε depends on the magnitude of the bias. A
small parameter bias in ε (+3 %) can be compensated for very well using state estimation (R2

= 0.99), whereas
an intermediate bias (−14 %) can only be partly compensated for using state estimation (R2

= 0.47). When
increasing particle spread by accounting for model error and an additional resampling step, R2 increases to 0.61.
However, when there is a large bias (−43 %) in ε, only state-parameter estimation can fully account for the
parameter bias (R2

= 0.97). Thus, simultaneous state and parameter estimation effectively separates the error
contributions from friction and shear stress to correctly estimate the current and future shear stress and slip rate.
This illustrates the potential of data assimilation for the estimation of earthquake sequences and provides insight
into its application in other nonlinear processes with uncertain parameters.

1 Introduction

Earthquake hazard quantification requires estimates and un-
certainties of parameters such as the long-term average re-
currence rate of earthquakes. Hence, modeling earthquake
sequences may help us to understand and forecast the pro-
cesses that determine these recurrence intervals. Physics-
based models of the fault are therefore needed to predict
the time when a subsequent earthquake will occur (Barbot
et al., 2012). Using these models, we calculate fault veloc-
ity and stresses for the entire earthquake sequence by solv-
ing the quasi-dynamic equation of motion with laboratory-
derived rate- and state-dependent friction laws. Most of these
physics-based models of seismicity are designed to repro-

duce general characteristics of earthquakes. To tune and syn-
chronize the model to observed reality, data assimilation can
be useful (Barbot et al., 2012). Data assimilation combines
prior information from the simulations of a physics-based
model with information in the form of observations to ob-
tain the best possible description of a dynamical system and
its uncertainty (e.g., Evensen et al., 2022). While data assimi-
lation originates from weather forecasting and oceanography
(e.g., Daley, 1997; Bertino et al., 2003; Kalnay, 2003; Vosse-
poel and van Leeuwen, 2007), few studies have introduced
data assimilation for the purpose of earthquake forecasting
(e.g., Van Dinther et al., 2019; Werner et al., 2011; Hirahara
and Nishikiori, 2019; Hori et al., 2014; Llenos and McGuire,
2011). Applying data-assimilation methods using physics-
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102 A. Banerjee et al.: On parameter bias in earthquake sequence models using data assimilation

based models to predict the occurrence time of earthquakes
is a highly challenging task because, for example, (i) the gov-
erning equations in these physics-based models may not be
sufficiently accurate to forecast earthquake cycles; (ii) earth-
quakes generally occur on faults located at depths of several
to tens of kilometers, and we typically need to rely on indi-
rect and noisy measurements to observe the conditions of the
fault; and (iii) the state variables and parameters in the mod-
els are highly uncertain, and state variables may have multi-
modal distributions. Several studies have considered param-
eter uncertainties using data assimilation in earthquake-cycle
models (e.g., Kano et al., 2010, 2013; Fakuda et al., 2009;
Werner et al., 2011). For example, Kano et al. (2013, 2010)
used an adjoint-based data-assimilation method to estimate
frictional parameters of afterslip, and Fakuda et al. (2009)
used a Markov chain Monte Carlo (MCMC)-based method
to estimate fault friction parameters. On the other hand,
Van Dinther et al. (2019) and Diab-Montero et al. (2023)
assumed the frictional parameters to be known and used an
ensemble Kalman filter (Evensen et al., 2022) to estimate
the fault states. In our present study, we have used particle
filtering, which is also an ensemble-based data-assimilation
method that is highly efficient for nonlinear systems with a
non-Gaussian prior distribution. Ensemble Kalman filters are
not very efficient with respect to encountering non-Gaussian
characteristics. This is the reason for choosing a particle fil-
ter for this study. For a further discussion of available data-
assimilation methods, we refer the reader to Evensen et al.
(2022).

Frictional parameters are important in the evolution of
fault slip, as they largely determine the recurrence interval of
earthquakes. Thus, poorly known or misrepresented parame-
ters can introduce a bias, which can be an important source
of uncertainty in the model. If this bias is not corrected, the
forecasts obtained using the forward model can be mislead-
ing. In previous studies, the frictional parameters have either
been estimated as part of the data assimilation or assumed to
be perfectly known. In this study, we will investigate the abil-
ity of state-estimation methods to correctly update the states
and compensate for a parameter bias as well as exploring
the ability of state-parameter estimation methods to reduce
or even remove parameter bias.

The objective of this paper is to evaluate the effectiveness
of data assimilation for state estimation and state-parameter
estimation in the presence of a parameter bias. To address
this, we consider various cases: one set of cases in which the
parameter is assumed to be known but has a biased value and
one set of cases in which the parameter is estimated along
with the state. In these cases, we model fault slip across faults
separating tectonic plates using a spring–block slider model,
which is assumed to obey a rate- and state-dependent friction
formulation (e.g., Ruina, 1983; Erickson et al., 2008, 2011;
Dieterich, 1979). We assimilate observations of fault slip ve-
locity and fault shear stress using a particle filter to estimate
the fault states.

2 Methods

2.1 Data-assimilation framework

Let the vector xt be the state of a model describing a dynamic
system at time index t = 1, . . .,T . We assume that the state is
evolving from time t − 1 to t according to

xt =Mt−1,t (xt−1,ξ )+ ηt, (1)

where ξ represents a vector containing the model parame-
ters andM(t−1,t) is the nonlinear operator describing the time
evolution of the system. Here, t is the time step for model in-
tegration. Acknowledging that the model is not perfect, we
use ηt to represent the model error.

Consider a vector y that contains all observations yto at
time to = 1, . . .,To as y = (y1,y2, . . .,yto , . . .,yTo ). These ob-
servations are taken as the “true state” x̃t for each time to,
which does not necessarily coincide with the model time
steps. Observation yto can be related to the true state at that
moment as follows:

yto =H (x̃to )+βto , (2)

whereH is the observational operator that maps the model to
the data and βto is the observational noise error. We assume
observational errors to be independent and uncorrelated. Ob-
servational errors can be quantified by comparing observa-
tions with independent observations for which the measure-
ment error is known – for example, from instrument spec-
ifications. In the synthetic case presented here, we assume
the error statistics to be known. Using these definitions of x
and y, we apply Bayes’ theorem to obtain the posterior dis-
tribution of the state estimate:

p(x | y)=
p(y | x)p(x)

p(y)
, (3)

where p(y | x) is the likelihood, p(x) is the prior density and
p(y) is the marginal density of the observations that can be
considered a normalization factor.

2.1.1 Particle filter

In the following, we describe a data-assimilation method for
a generic state vector z, which can represent the state x of the
system (i.e., the variables that change over time), the parame-
ters ξ of the system, which we assume to remain constant, or
both. In the case of state estimation, the state vector is z= x;
in the case of state and parameter estimation, the state vector
also includes the parameters z= [x,ξ ]T.

A Monte Carlo representation in the form of particles can
be used to approximate the posterior pdf p(z|y) at observa-
tion time to as follows:

p(z0:to |y1:to )=
1
N

N∑
i=1

δ(z0:to − z0:to,i), (4)
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where N is the number of Monte Carlo realizations and i is
the counter of these realizations.

We refer to these realizations as “particles”, whereas they
may be referred to as “ensemble members” in other studies.

When we insert Eq. (4) into Eq. (3) and replace x with z,
we obtain an expression for the posterior distribution of the
state vector z:

p(z0:to |y1:to )=
1
N

N∑
i=1

wiδ(z0:to − z0:to,i). (5)

Here, the weights wi for each particle i are

wi =
p(y1:to,i | z0:to,i)

1
N

∑N
i=1p(y1:to,i | z0:to,i)

, (6)

where p(y1:to,i | z0:to,i) is the likelihood belonging to the ob-
servations in the time period 1 to to. As the observations y
are fixed, this likelihood is a function of the vector z for each
particle i, as discussed in Van Leeuwen (2015). Assuming
that the model operator describes a Markov process and that
the state at a certain (assimilation) time is completely deter-
mined by the model operator acting on the state of the prior
(assimilation) time, we write the weights as follows:

wi =
p(yto,i | zto,i)

1
N

∑N
i=1p(yto,i | zto,i)

. (7)

Thus, the values of the weights are determined by the like-
lihood p(yto |zto ). Particles with a higher weight are closer
to the observation than those with a lower weight. For the
derivation of this method, see Van Leeuwen (2009).

As the number of particles is typically too small to have
sufficient samples of the prior, we observe that, as time
progresses, most of the particles obtain negligible weights,
whereas one or a few particles obtain a very high weight. This
is commonly referred to as “filter degeneracy” (e.g., Snyder
et al., 2008).

In the present study, the likelihood p(y|zt ) that defines the
likelihood at a particular time t for observation yto is assumed
to be given by the Lorentz function:

p(yto | zto )=
1

1+ [yto−H (zto )]2

βto
2

, (8)

where βto
2 is the variance of the observational noise and zto is

the state vector at time to. The Lorentz function is chosen in-
stead of a Gaussian function because the wider tails lead to
less filter degeneracy (Vossepoel and van Leeuwen, 2007).
To further avoid degeneracy, we introduce a resampling step
known as sequential-importance resampling (SIR). This re-
sampling discards particles with very low weights while du-
plicating particles with high weights in such a way that the
number of particles remains constant. This ensures an ap-
proximation of the prior distribution that is less sensitive to

particle degeneracy. Resampling is performed if the effec-
tive sample sizeNeff exceeds a threshold value. The effective
sample size is given as

Neff =
1∑
w2
i

, (9)

and the threshold is typically chosen to be half the particle
size, i.e., N/2.

In our study, we have implemented a systematic resam-
pling algorithm, as it provides better estimates compared
with other resampling methods used in data assimilation (Hol
et al., 2006). For a description of this and other resampling
techniques, the reader is referred to publications such as
Doucet et al. (2001).

2.2 Forward model

2.2.1 Spring–block slider with rate-and-state friction

A simplified, computationally efficient description of earth-
quake sequences is provided by a spring–block slider sys-
tem, often referred to as the Burridge–Knopoff (BK) model
for frictional sliding (Burridge and Knopoff, 1967). Such 0D
and 1D models have been shown to retain key features of
periodic sequences on homogeneous faults, including quan-
titative estimates of their recurrence interval and maximum
coseismic slip upon using the calculated stress rate from 2D
or 3D models (Li et al., 2022). The spring–block slider sys-
tem simplifies stick–slip motion of a fault caused by the ad-
jacent movement of two tectonic plates using an assembly
of springs and blocks (Fig. 1a). The blocks are connected
by springs with a spring constant kc and pulled by a plate
moving with a uniform velocity V via another set of springs
with a spring constant kp. The blocks represent one side of
the fault, where the fault line is the contact surface between
the blocks and the rough surface that the blocks are placed
upon. The equation of motion of the ith block in a 1D chain
of blocks of equal mass m is described by (Cartwright et al.,
1997, Eq. 1)

mz̈i = kc(zi+1− 2zi + zi−1)− kp(zi −V t)−Fi(żi), (10)

where zi is the position of block i, or the displacement from
its initial position, and Fi(żi) describes the frictional force.

We describe the frictional force using a laboratory-derived
rate- and state-dependent friction formulation (e.g., Di-
eterich, 1979; Ruina, 1983; Marone, 1998). This empirical
formulation has been used successfully over the last decades
to describe the dynamics of sequences of earthquakes, in-
cluding their spontaneous nucleation, propagation, arrest and
post-seismic slip in response to tectonic loading (e.g., La-
pusta et al., 2000; Lapusta and Barbot, 2012). As in Rice
and Tse (1986), the equation of motion (Eq. 10) for rate- and
state-dependent friction equations assuming a slip law for the
evolution of state variable θ (Ruina, 1983) can be written as
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Figure 1. (a) The zero-dimensional (0D) spring–block representa-
tion used in this study. k is the spring constant, v is the slip velocity
and z (= u) is the slip. (b) A schematic diagram taken from Erick-
son et al. (2008) illustrating the stress response to a step change in
the imposed velocity v of a single spring–block slider model.

(Erickson et al., 2011, Eq. 6)

Fi(żi,2)= σn

(
f ∗+2i + a ln

żi

v0

)
, (11)

2̇i =−

(
żi

L

)(
2i + b ln

żi

v0

)
. (12)

Here, the capital notation 2 refers to b · ln v0θ
L

, which is
an equivalent yet more convenient description for the rate-
and-state friction state variable θ , which can be interpreted
as the change in interface strength from reference friction f ∗

(Nakatani, 2001). Furthermore, σn is normal stress; v0 is the
reference velocity, which is assumed to be equal to the plate
velocity V below; and a, b and L are the associated rate-
and-state friction parameters. After a sudden change in the
slip rate, parameter a states the direct change in friction. Pa-
rameter b describes the evolution towards a new steady-state
friction coefficient, where characteristic slip distance L de-
scribes the distance taken by state variable θ to reach a new
steady-state θ .

In this study, we consider a zero-dimensional (0D) version
analyzing a single spring–block slider (Fig. 1a). This model
does not take the spatiotemporal correlation between differ-
ent blocks or fault segments into account. Equation (10) can
be rewritten for a single block for nondimensional slip of the
block with respect to an initial position on the driving plate u
(z in Fig. 1) and nondimensional slip rate v, and it can be
solved by assuming vp = v0. This can be simplified into three

partial differential equations written in terms of dimension-
less variables (using θ = Aθ̂ , v = v0v̂, u= Lû and t = L

v0
t̂ ,

where ˆ indicates the dimensional variables) as updated from
Eq. 2 of Erickson et al. (2008).

2̇=−v(2+ (1+ ε) lnv), (13)
u̇= v− 1, (14)

v̇ =−γ 2
[
u+

1
ξ

(2+ lnv)
]
, (15)

where γ =
√

k
M

L
v0

is the nondimensional frequency and ξ =
kL
A

is the nondimensional spring constant (see also Gu et al.,
1984). Shear stress τ is derived by multiplying slip by −ξ
(e.g., Rice and Tse, 1986).

Finally, the internal parameter ε = σ ′n(b−a)
σ ′na

is a key param-
eter that measures the sensitivity of the velocity relaxation
and includes A= aσ ′n and B = bσ ′n, where σ ′n is the effective
normal stress, as demonstrated in Erickson et al. (2008).

When compared to a slip-weakening friction formulation,
the parameter b− a takes the role of a stress drop, whereas
a corresponds to the strength excess (Fig. 1b).

2.2.2 Friction parameter ε

To study stick–slip behavior, we limit our 0D model to a
velocity-weakening regime for which a− b < 0 and the sys-
tem generates a stable limit-cycle solution with periodic os-
cillations (Fig. 2). In nature, earthquakes are far from peri-
odic; however, as we have simplified our model to a 0D sys-
tem and do not consider the spatiotemporal correlations of
the faults, the system generates periodic cycles. The char-
acteristics of the earthquake cycle are strongly influenced
by friction parameters a and b. In this study, we address
these together and introduce a bias in the prior friction pa-
rameter ε = b−a

a
. The parameter values in this work are

based on laboratory experiments by Niemeijer and Vissers
(2014) on phyllosilicate-rich fault rocks, from which we se-
lect the results representative of depths of 6 km. At this depth,
five repeat experiments provide a range of ±1 standard de-
viation (SD) for b− a from 0.00161 to 0.0077 (Fig. 7a in
Niemeijer and Vissers, 2014), i.e., equivalent to an ε value
of 0.161–0.77 for a = 0.01. In our synthetic perfect model
tests, we define ε= 0.7 as the true sensitivity of velocity re-
laxation. Inspired by the measured b− a SD values, we se-
lected three cases of parameter bias, i.e., ε= 0.72 for a small
bias of +3 %, ε= 0.60 for intermediate bias of −14 % and
ε= 0.40 for a large bias of −43 %. Figure 2 presents the
state trajectories for these three cases. The large impact of the
value of ε on the system dynamics is evident from the large
difference between the trajectory of the simulation with the
large parameter bias and that of the true trajectory. All pa-
rameters used in the simulations of the “truth” for the fault
slip model are summarized in Table 1.

Nonlin. Processes Geophys., 30, 101–115, 2023 https://doi.org/10.5194/npg-30-101-2023
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Figure 2. Phase diagram for a Burridge–Knopoff (BK) model with a rate-and-state friction formulation when (1) ε= 0.72 (a small-bias
case), (2) ε= 0.60 (an intermediate-bias case), (3) ε= 0.40 (a large-bias case) and (4) the model parameter is equal to the true parameter (a
case of no bias).

Table 1. Parameters of the reference model.

Parameters “Truth” model parameters

Spring constant (k) 10 MPam−1

Period of the analog freely slipping system (2π
√
m/k) 5 s

Reference sliding velocity (vo) 30 mmyr−1

Effective normal stress (σn
′) 120 MPa

Direct effect parameter (a) 0.01
Evolution effect parameter (b) 0.007
Nondimensional friction parameter (ε) 0.7
Nondimensional spring constant (ξ ) 0.26
Nondimensional frequency (γ ) 0.18
Characteristic scale length (L) 80 mm
Friction coefficient (µ∗) 0.60

3 Numerical experiments

3.1 State and state-parameter estimation for the
seismic-cycle model

In state estimation in the seismic-cycle model, the state x
to be estimated is given by x = [2,τ,v]T. In the state and
parameter estimation, we augment this state vector with

ξ = [ε],

where ε is the poorly known friction parameter. The state
vector is then given by z= [x,ξ ]T.

By updating this state vector, we update both the state and
the parameter at each new analysis time.

3.2 Experimental design

In the following, we consider a “truth run” with εt and three
different priors with εm: one with a small bias, one with a
medium bias and one with a large bias. To test if data assim-
ilation is indeed capable of estimating the state trajectories,
we assimilate synthetic observations of both shear stress and
slip rate every four time steps. The reason that we assimilate
so frequently is to obtain sufficient information regarding the

https://doi.org/10.5194/npg-30-101-2023 Nonlin. Processes Geophys., 30, 101–115, 2023
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behavior of the fault in the short coseismic phase (i.e., the
phase of the earthquake itself). The performance of the data
assimilation is evaluated by comparing state estimates to the
true trajectory.

3.3 Twin experiments

As the true state of the fault system is unknown, we validate
our data-assimilation algorithms using twin experiments. Us-
ing these synthetic experiments, we can assess whether data-
assimilation methods are able to correctly evaluate the poste-
rior distribution of the state. For the synthetic truth, we select
a forward model run that follows Eqs. (13)–(15). The initial
conditions of the three state variables are 20= 0, d0= 6 and
v0= 1.

For state and parameter estimation, a different approach
has been adopted to generate the prior. As we observe that the
state variables are highly sensitive to the parameter value, we
make sure that prior state variables are fully consistent with
the prior parameter values. For this, we use the following
procedure:

1. We sample N prior parameters ε (where N is the num-
ber of particles) from a lognormal distribution with
0.01 SD and a mean of εm.

2. For each i = 1, . . .,N set of parameter values, we run
the model forward for a small time duration (around
100 time units) using ε′,im .

3. We sample the initial conditions of the state vari-
ables (2, d , v) from theseN forward runs at any random
time from each trajectory i.

In this way, each state variable and the parameter chosen
in the ensemble (2i , τi , vi , εi) represent a different trajec-
tory for a different value of εm. As each particle has a dif-
ferent parameter value, the prior ensemble contains different
recurrence times for earthquake slip events.

Synthetic observations are produced by sampling from
the synthetic truth and adding an observational error from
a Gaussian distribution with an SD of σβ .

Data-assimilation settings

The experiments are performed with 1000 particles using a
sequential-importance resampling (SIR) particle filter. The
observations are provided for the two state variables τ and v,
as these are most likely to be observable, following the ap-
proach and large uncertainties determined by Van Dinther
et al. (2019). We sample observations at intervals of four time
units (i.e., 1t = 4) and add synthetic observational noise
sampled from a normal distribution with zero mean and
variance σβ2

∼N (0,σβ2). Large assimilation steps can ad-
versely affect data assimilation, as they can miss variations in
earthquakes. Thus, it is necessary to choose a short time step.
In the present study, observations were sampled at four time

units, and the SD of the observation error σβ was 0.6 for fault
shear stress and 1.15 for slip velocity observations. These
values are consistent with the estimates of Van Dinther et al.
(2019) and Mowafy and Bilbas (2016). The stochastic model
error ηt (Eq. 1) for the state evolution is sampled from a nor-
mal distribution ∼N (0,ση2) with ση= 0.01. We add a value
of 0.01 amplitude to represent model error in the fault shear
stress τ and state variable2 and a value of 0.5 for slip veloc-
ity v.

4 Results and analysis

4.1 Case A: state estimation

Figure 3b–d illustrate the evolution of the posterior mean τ
(red) and all prior particles (gray) in the three cases of pa-
rameter bias and compare it with the reference (no bias) case
(Fig. 3a). We refer to the posterior mean as the analysis.
When the parameter bias is small, the prior estimates of the
fault stress and slip rate evolution capture the truth well, as
seen from Fig. 3b. On the other hand, for the intermediate-
bias (Fig. 3c) and large-bias (Fig. 3d) cases, the prior state
estimation fails to capture the evolution of the shear stress
after a few seismic cycles, which complicates the data assim-
ilation going forward. Figure 2b clearly demonstrates that the
data assimilation in the large-bias case (εm= 0.40) is unable
to account for the difference in state evolution caused by the
parameter bias.

To better understand and improve these data-assimilation
results, we analyze the results for the experiment with in-
termediate bias in more detail (Fig. 4). Via the assimilation
of data representative of both the interseismic and coseis-
mic periods, we determine whether stress can be estimated.
Throughout the paper, we illustrate the stress for a number
of assimilation times that represent the time epochs before
and after an earthquake (Fig. 3a): t = 16,20,24,72 and 76.
In the enlarged version of the figure (Fig. 5), we can see the
probabilistic estimate of fault shear stress based on the as-
similation of coseismic data at t = 20. The prior and poste-
rior density represent the particles before and after undergo-
ing resampling, respectively. The mean value of the posterior
density of stress corresponds better to the true value than that
of the prior density. In fact, at time t = 20, the particles clos-
est to the observation (representing a pre-slip condition) have
the highest likelihood and, consequently, obtain the highest
weights. As a consequence, the posterior density has its peak
close to the truth. It should be noted that particles with shear-
stress values that are further away from the observations may
still obtain high weights because of their fit to the observed
slip rate. As a result, the posterior trajectory is close to the ob-
servations but fails to completely follow the true trajectory.
Figure 6a–j illustrate this further with phase diagrams that
show, by means of scatterplots, the distribution of particles
in the 2–τ space. The blue and black lines in the phase dia-
gram in Fig. 2b represent the trajectory of the particles when
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Figure 3. The evolution of 1000 particles along with the posterior mean, observation and truth of state variable τ for state estimation for
(a) the case when the model parameter is equal to the true parameter (i.e., a case of no bias; εm= 0.70), (b) a small-bias case (εm= 0.72),
(c) an intermediate-bias case (εm= 0.60) and (d) a large-bias case (εm= 0.40), when εt= 0.70, γ = 0.26 and ξ = 0.18.

Figure 4. Shear-stress evolution. The coseismic and interseismic phases in the seismic cycle have been highlighted. The time points discussed
in the study are t = 16,20,24,72 and 76 in the interseismic phase and t = 20 in the coseismic phase.

https://doi.org/10.5194/npg-30-101-2023 Nonlin. Processes Geophys., 30, 101–115, 2023



108 A. Banerjee et al.: On parameter bias in earthquake sequence models using data assimilation

Figure 5. Shear-stress evolution with weight distribution at time
t = 20. The color of the lines represents the value of the weight,
which is a function of the distance between the prior shear-stress
estimate and the observation. The red line represents the posterior
pdf, the gray line represents the prior pdf, the magenta line shows
where the observation stands and the black line is the true state.

the model parameter εm is 0.60 (intermediate bias) and 0.70
(no bias), respectively. The sizes and colors of the symbols
indicate the particle weights. Figure 7a–j present the result-
ing pdf distributions of the corresponding plots in Fig. 6.

The particles with a parameter bias show a phase differ-
ence compared with the truth (Fig. 6a–e). Trajectories of par-
ticles with lower values of ε have a shorter cycle and their
2–τ trajectories are always ahead of the true trajectories. At
time t = 16 (i.e., in the interseismic phase), the particles and
the truth are almost in sync. However, in the coseismic phase
(t = 20), minor differences in the state for that specific mo-
ment can result in large differences in the state trajectory. In
this phase, particles that were previously close to each other
are pulled apart. After the coseismic phase (i.e., for t = 24),
the particles of the biased prior parameter, which have shorter
cycles than the truth, reach the interseismic phase of the sub-
sequent earthquake event faster than the truth. The pattern
then repeats itself. When there is no bias (Fig. 6f–j), the par-
ticles are always in sync with the truth. Compensating for a
bias in the prior parameter could also be achieved by chang-
ing the assimilation settings. In this study, we explore the
effect of (i) increasing the model error and/or (ii) resampling
twice rather than once. Using different assimilation settings,
it is possible to inflate the ensemble.

We note that a biased parameter value makes it physically
impossible to have 2 and τ in the same phase and ampli-
tude as in the true seismic cycle for an extended period of
time. However, with different assimilation settings, it might
be feasible to adjust the state such that we can correctly pre-
dict the arrival of the next earthquake. Figure 8a–c show the
state-estimation results for three different data-assimilation
settings, and Fig. 8d presents the case of joint state-parameter
estimation. It can be seen from the figure that increasing
model error along with frequent resampling leads to more
effective compensation for the biased prior parameter than
state estimation without these settings (Fig. 3c).

4.2 Case B: increased model error

The model error in the forward model equation represents
the imperfections in the model and, thus, maintains ensem-
ble spread. Adding ηt to the forward model equations im-
proves the efficacy of the filter. Choosing a smaller model
error reduces the spread, which restricts the solution space
considerably.

We find that inclusion of model error has a noticeable pos-
itive effect on the posterior estimate (brings the mean of the
posterior closer to the truth) when the parameter bias is either
small or intermediate.

We observe that increasing the model error causes the prior
τ distribution of the particles to have two peaks in the coseis-
mic phase. This was a single peak when the model error was
smaller. This shows that increasing model error allows for a
larger variety of states in the prior. The phase diagrams for
the intermediate bias case when we increase the model error
(ηt in Eq. 1) are presented in Fig. S1 in the Supplement.

4.3 Case C: double resampling

Resampling improves the effectiveness of the particle filter
by introducing more particles with a state close to the ob-
served state (Sect. 2.1.1). We observe that double resampling
retains particles that are in the same interseismic phase as that
of the truth (as at t = 24). From this, we conclude that dou-
ble resampling can be useful with respect to retaining more
particles “in sync” with the truth in the distribution, but ad-
ditional spread in the ensemble is required to shift the poste-
rior distribution more towards the truth. It is also important
to highlight that we observe a double peak at 250 time steps
in Fig. 8b, which represents the double-resampling experi-
ment. At this (250th) time step, the data-assimilation analysis
does not fit the observations well. A similar mismatch is ob-
served after approximately 500 time steps in this experiment.
At these moments, double resampling effectively increases
the spread in the particles to such an extent that the constraint
to the shear-stress observations becomes less strong. Hence,
we can conclude that, although it can be useful with respect
to retaining important particles in the prior distribution, dou-
ble resampling is not as effective with respect to increasing
the ensemble spread compared with increased model error
(Fig. 8a). The effect of double resampling on the posterior
distribution for an intermediate bias is provided in Fig. S2 in
the Supplement.

4.4 Case D: increased model error and double
resampling

We study the effect of increasing the model error with conse-
quent double resampling on the posterior estimates and use
the term “combined adjustment” for this data-assimilation
setting. The posterior distribution of stress for the combined
adjustment captures the truth distinctly better compared with
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Figure 6. Particles in the2–τ space for the case of state estimation with (a–e) intermediate bias (εm= 0.6) and (f–j) no bias (εm= εt= 0.7).
The points represent the particles in the distribution and the lines represent the trajectories in the phase diagram for the respective values of
the parameter εm. The blue line represents the phase diagram for εm= 0.6, whereas the black line is for the case in which εt= 0.7. The sizes
and colors of the symbols representing the particles reflect the weight of each particle.

Figure 7. The pdfs representing the posterior mean (red), the prior (gray line), the observation (magenta) and the truth (black line) for the
case illustrated in Fig. 6.

the case with model error only. There is no significant differ-
ence in the forecasting ability of the prior particle distribu-
tion in the first seismic cycle for the combined adjustment.
Increasing model error and double resampling both increase
the variability within the particles. However, at time t = 76,

after the coseismic phase, particles of this combined adjust-
ment experiment are no longer fully in sync with the truth.
The effect of combined adjustment on the posterior distri-
bution for an intermediate bias is provided in Fig. S3 in the
Supplement.
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Figure 8. The evolution of particles with time for intermediate bias in state estimation with (a) higher model error (ηt= 0.1), (b) double
resampling (ηt= 0.01), (c) a combination of higher model error (ηt= 0.1) and double resampling, and (d) joint state-parameter estimation
(ηt= 0.01).

Figure 9. The 2–τ phase diagrams for the case with (a–e) state-parameter estimation and (f–j) state estimation for intermediate bias. The
use of colors and lines is the same as in Fig. 6.
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Figure 10. The pdfs for the case with (a–e) joint state-parameter estimation and (f–j) state estimation with intermediate bias in Fig. 9.

4.5 Case E: joint state-parameter estimation

Figure 9 presents the results for state-parameter estimation
as phase diagrams. Figure 10 presents the corresponding pdf
distributions of these phase diagrams. Not surprisingly, joint
state-parameter estimation (Fig. 9a–e) improves the poste-
rior distribution compared with the case of state estimation
(Fig. 9f–j).

The parameter estimate gradually comes close to its true
value after a certain time period. In the state-parameter esti-
mation case, the parameter estimate gradually changes from
its prior (biased) value towards the correct estimate of ε= 0.7
and then remains at that value. Hence, in this case, the state
variables are improved in the next seismic cycle, which is
not the case in state estimation. From this, we can conclude
that joint state-parameter estimation is the most effective ap-
proach for seismic-cycle estimation in the presence of a pa-
rameter bias in this case. It is important to note that the state-
parameter estimate leads not only to a reasonably good pos-
terior estimate of the state at these selected time steps but
also at all assimilation time steps in the period considered,
i.e., from t = 4 to t = 500 (Fig. 4).

To evaluate the overall accuracy of the state and the
joint state-parameter estimation for the different biased-
parameter cases, we perform a regression analysis. The re-
sults in Fig. 11 show how close the posterior estimates
of the different experiments are to the truth using the R-
squared (R2) value. We find that state estimation is efficient
when the parameter bias is small, with an R2 value of 0.99.
For the intermediate-bias case, the setting of increasing the
model error to 0.1 and consequent resampling with a smaller
model error of 0.01 SD (standard deviation) results in an
R2 value of 0.61. However, for all of the cases, the joint state-
parameter estimation leads to significantly higher R2 val-

ues and, hence, improved state estimates compared with the
cases with state estimation only. This confirms our conclu-
sion from Sect. 4.5.

5 Discussion

The results of this study illustrate the implications of param-
eter bias in data-assimilation applications for seismic-cycle
modeling. They show that it is feasible to apply a particle fil-
ter to a fault slip model; moreover, they reveal that uncertain-
ties in friction parameters can be accounted for by either di-
rectly estimating these parameters or via a larger model error.
By accounting for these improved parameter estimates, fault
state estimates can also be improved. This demonstrates that
a possible trade-off between estimating shear stress and fric-
tion can be effectively accounted for using data-assimilation
methods. In other words, data assimilation is able to sepa-
rate error contributions due to uncertainties in friction (i.e.,
shear over normal stress) from uncertainties in estimates of a
fault’s shear stresses. This suggests that potentially large un-
certainties in friction do not hamper the further development
of data-assimilation methods nor physics-based seismic haz-
ard assessment.

The simplest and most effective approach to deal with pa-
rameter bias depends on the degree of parameter bias ob-
served. For laboratory experiments with increased accuracy,
one can potentially still use and tune state estimation (e.g.,
via increasing model error). However, for observed uncer-
tainties in laboratory experiments such as in Niemeijer and
Vissers (2014), particularly when also accounting for uncer-
tainties under in situ conditions (e.g., effective pressure and
thermal conditions and the amount of displacement) and in
laboratory setups (e.g., sample type with or without gouge),
state-parameter estimation is clearly the best and the required
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Figure 11. Comparison of regression between the estimate of τ and the true τ , showing the corresponding R2 values for the three bias cases
(rows) and for different assimilation approaches (columns). The red dots indicate the estimated values or the posterior and true τ values at
the observation times. A diagonal line is added for reference.

approach. It is remarkable to observe that any degree of bias
can be dealt with equally effectively by accounting for state-
parameter estimation (Fig. 11). This suggests that, even upon
extrapolation to significantly larger biases, state-parameter
estimation can be an effective solution for earthquake-cycle
problems.

It is important to remember that these findings are based on
the performance of state update and state-parameter update
algorithms for a simplified nonlinear physics-based model in
synthetic experiments. Some limitations that are still present
in this pioneering study, which eventually need to be ad-
dressed, include the following:

– In this study, we assimilate both the fault shear-stress
and the slip rate observations on the plate interface.
However, we have also conducted experiments only as-
similating the fault shear-stress observations. In the lat-
ter case, it is observed that the state estimate yields bet-
ter fits to the truth compared with the case in which we
assimilate both types of observations or only the slip
rate. Assimilating slip rate observations leads to lower
weight values owing to their relatively high observa-
tion error. This affects the posterior estimate. However,
a thorough study still needs to be conducted to identify
which observations provide the most meaningful infor-
mation when assimilated in earthquake-cycle models.

– In this study, we focus only on the uncertainty with re-
spect to parameter ε. It can be seen from Eqs. (13)–(15)
that the highly uncertain characteristic slip lengthL also
impacts fault states and cycle characteristics.

– Typically, earthquake forecasting is approached in a
probabilistic manner (e.g., Marzocchi et al., 2017).
Kinematic inversions of earthquake global positioning
system (GPS) data have been used to estimate frictional
properties in afterslip areas (e.g., Miyazaki et al., 2004;
Hsu et al., 2006) but not for the estimation of earthquake
dynamics. As outlined by Van Dinther et al. (2019),
data assimilation for earthquake sequences has the ad-
vantage that it can account for measurement and model
errors, non-Gaussian probabilities and sequential updat-
ing as data become available. The results of this study
demonstrate how, for a highly simplified representation
of earthquake cycles, nonlinear data assimilation pro-
vides a means to account for both measurement errors
and parameter biases. It also highlights how observa-
tions can be included as they become available. While
particle filters are not computationally efficient, they
can propagate the full error distribution, which makes
them attractive for the estimation and forecasting of
highly nonlinear processes like earthquake generation.
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– Another point of attention is the selection of the number
of particles required for a correct sampling of the prior.
On the one hand, increasing the number of particles can
improve estimation accuracy, but limited computational
resources can make this impractical. On the other hand,
having a lower number of particles increases the risk
of filter degeneracy. In this study, we initially used 50
and 100 particles but increased the number of parti-
cles to 1000 to avoid degeneracy. Realization of 1000
particles may be computationally expensive for models
that are more complex than the model used here. Im-
proved sampling techniques, such as using a proposal
density function, or using a particle flow (e.g., Hu and
Van Leeuwen, 2021) could help one to reduce compu-
tational costs while maintaining the advantage of a non-
linear filtering method.

– An additional point worth mentioning is the use of syn-
thetic observations for fault displacement and velocities
for data assimilation in this study. In realistic applica-
tions, the assumptions that we have made with respect
to data-assimilation frequency and the SD and distribu-
tion of the observational errors may not be valid. How-
ever, if we know the distribution of the measurement
errors, we can use that information to choose the rel-
evant likelihood function, which can greatly effect our
fault estimates. Fault shear-stress observations are usu-
ally not available or are subject to large errors if they
are available. In contrast, fault velocities can be ob-
served fairly accurately using GPS; this has been dis-
cussed by Van Dinther et al. (2019), who demonstrated
that stress measurements are useful despite their large
errors. Following Van Dinther et al. (2019), we empha-
size the need to conduct additional sensitivity studies
in order to understand the implications of factors such
as data gaps, outliers and instrumental noise before our
proposed methods can be used on real data.

– It is also very important to highlight the reason behind
selecting a 0D model for this study. Simplified fault slip
models are computationally efficient tools that help us
to understand the physics behind earthquake dynamics.
A study by Li et al. (2022) compared the simulation of
earthquakes in 0D, 1D, 2D and 3D models and found
that lower-dimension models (0D and 1D) qualitatively
represent the same dynamics as 2D and 3D models. Al-
though 0D models cannot simulate the full complex-
ity of earthquake physics, they have the advantage that
they are computationally inexpensive and provide the
user with a tractable conceptual description of earth-
quake physics and the importance of the friction pa-
rameter. In our case, we were interested in investigating
the effect of frictional parameter bias on the estimated
fault states in earthquake-cycle models. Hence, in the
present work, we investigated a simplified version of a

Burridge–Knopoff spring–block slide model in a sim-
plified 0D form. Eventually, in order to accurately sim-
ulate the behavior of real earthquake faults, 1D, 2D and
3D simulation models will be required (e.g., Li et al.,
2022).

Nonetheless, simplified models provide useful insights to
solve more complex problems. This is an important stepping
stone in the development of data-assimilation applications
for the simulation of more realistic earthquake cycles. Fu-
ture developments for these purposes, addressing the above
limitations, could utilize other methods explicitly accounting
for parameter bias in the data-assimilation scheme in order
to obtain a better accuracy (e.g., Dee and Da Silva, 1998;
Sørensen and Madsen, 2004; Chepurin et al., 2005; Auligné
et al., 2007; Li et al., 2009; Du et al., 2020).

6 Conclusions

In this study, we demonstrated the effect of a parameter bias
in an earthquake-cycle model on the estimated states with
data assimilation. Synthetic, noisy observations of the shear
stress and slip velocity on the fault plate interface were as-
similated with state and state-parameter estimation methods
using a particle filter. In our forward model, the shear-stress
estimates strongly depend on the friction parameter ε. There-
fore, an inaccurate representation of this parameter would
impact the stress estimates and forecast cycles obtained using
this model. To quantify this impact, we considered three dif-
ferent magnitudes of biases with respect to the true parameter
εt= 0.7: (i) small bias (model parameter εm= 0.72), (ii) in-
termediate bias (model parameter εm= 0.60) and (iii) large
bias (model parameter εm= 0.40).

For a small bias in friction parameter ε, we find that
state estimation is most effective (R2

= 0.99 for the re-
gression between the estimated and true shear stress). In
the case of an intermediate bias, state estimation alone
is less effective (R2

= 0.47). However, by increasing the
prior model error and adding a second resampling step in
the data-assimilation approach, the results can be improved
(R2
= 0.61). Nonetheless, state-parameter estimation in this

case is best (R2
= 0.97). In the case of a large parameter

bias, state-parameter estimation (R2
= 0.97) is a significantly

more effective manner to reconstruct the true state than state
estimation (R2

= 0.31) or improved state estimation with
combined adjustments (R2

= 0.30). This suggests that state-
parameter estimation using data assimilation could be an ef-
fective method to improve forecasts of frequently recurring
fault slip events.

Data availability. The observations in the study were generated
via simulation. Extra explanatory figures have been uploaded to the
Supplement.
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