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Simplex-Based Proximal Multicategory
Support Vector Machine

Sheng Fu, Piao Chen , and Zhisheng Ye , Senior Member, IEEE

Abstract— The multicategory support vector machine (MSVM)
has been widely used for multicategory classification. Despite
its widespread popularity, regular MSVM cannot provide direct
probabilistic results and suffers from excessive computational
cost, as it is formulated on the hinge loss function and it solves a
sum-to-zero constrained quadratic programming problem. In this
study, we propose a general refinement of regular MSVM,
termed as the simplex-based proximal MSVM (SPMSVM). Our
SPMSVM uses a novel family of squared error loss functions in
place of the hinge loss and it removes the explicit sum-to-zero
constraint by the simplex structure. Consequently, the SPMSVM
only requires solving an unconstrained linear system, leading
to closed-form solutions. In addition, the SPMSVM can be cast
into a weighted regression problem so that it is scalable for large-
scale applications. Moreover, the SPMSVM naturally yields an
estimate of the conditional category probability, which is more
informative than regular MSVM. Theoretically, the SPMSVM
is shown to include many existing MSVMs as its special cases,
and its asymptotic and finite-sample statistical properties are
well established. Simulations and real examples show that the
proposed SPMSVM is a stable, scalable and competitive classifier.

Index Terms— Category probability, fisher consistency, kernel
learning, multicategory classification, universal consistency.

I. INTRODUCTION

CLASSIFICATION is an ubiquitous problem in many
statistical applications [1], [2]. Given a training dataset

with subjects having both covariates and class labels, the
learning task is to develop a classification rule to predict the
label for a future sample based on its input. Among various
classification methods, support vector machine (SVM) and
deep neural network (DNN) have become the popular ones
during the last decades [3], [4], [5]. The performance of DNN
and SVM in classification depends heavily on the quantity and
quality of the training data. Generally, if the training data is
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complex and has a large size, DNN often performs better than
SVM in prediction but is also more computationally intensive.
On the other hand, SVM is preferred when the data size is
moderate or when some fundamental properties of the training
data are well understood so that a domain-specific kernel could
be specified, e.g., [6], [7], and [8]. Moreover, SVM enjoys
several main advantages, such as the regularization parameter
to control over-fitting, global solution via convex optimization
and substantial theoretical foundations. This study focuses on
the development of the SVM-based methods.

The original SVM is a typical binary classifier and it aims
to find a hyperplane in the feature space with maximum
separation between the two classes [9], [10], in which hinge
loss function is used. The classical SVM has been extended by
researchers in last decades, such as LSSVM [11], ψ-learning of
SVM [12], L2-SVM [13], ramp-SVM [14] and pin-SVM [15].
Although binary SVMs have many successful applications,
multicategory problems are commonly seen in practice [16].
A multitude of multicategory extensions to SVMs have been
proposed in the literature. One natural idea is to use the binary
SVMs sequentially, which are known as the one-versus-rest
and one-versus-one approaches [17], [18]. Although these pro-
cedures are conceptually straightforward to implement, they
do not necessarily yield the optimal prediction in terms of the
classification accuracy [19], [20]. Hence, it is more appropriate
to consider all the classes simultaneously for multicategory
classification. For a k-category classification problem (k ≥ 2),
a simultaneous classifier requires k classification functions in
principle. To reduce the redundant parameter space, the sum-
to-zero constraint is often imposed on the k functions either
explicitly [19], [21], [22] or implicitly [23], [24], [25]. Such
a constraint is used to ensure that the degree of freedom of
the k classification functions is k − 1. In this study we refer
to multicategory SVMs that use k classification functions as
regular MSVMs. Similar terminology of regular MSVMs is
also used by [20], [26], [27], [28], and [29]

Regular MSVMs can be cast into constrained optimization
problems, but the extra classification function and the intrinsic
sum-to-zero constraint make their optimization computation-
ally expensive, especially for large-scale applications. In last
decades, the efficient simplex-based classification framework
has been proposed to address the sum-to-zero constraint
in regular MSVMs, e.g., [27], [28], [30], [31], [32], [33],
[34], and [35]. A simplex structure plays a critical role for
these simplex-based classifiers, which naturally generalizes
the classical binary methods and also removes the sum-to-
zero constraint. Consider a regular simplex centred at the
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origin in the (k−1)-dimensional Euclidean space, and assume
that each vertex vector represents one category. Then only
k−1 classification functions are needed and the classifier can
be efficiently trained without the sum-to-zero constraint. The
simplex-based MSVMs and their extensions have been well
studied and applied in a variety of applications, e.g., [36], [37],
[38], [39], [40], and [41]. As shown by [33], the simplex-based
classifiers can enjoy a lower computational cost than regular
procedures with the sum-to-zero constraint.

Despite their widespread popularity, both regular and
simplex-based MSVMs suffer from an intrinsic disadvantage.
Due to the non-differentiable hinge loss, the resulting clas-
sifiers do not directly yield the estimate of the category
probability [22], [42], [43], which is informative to indicate the
quality or confidence of the outcome of classification. In other
words, these MSVMs are not able to provide the estimate
of the category probability given the explanatory variables,
which is undesirable in a variety of practical applications,
e.g., [44]. In the literature, several efforts have been made
to obtain the probabilistic outputs for MSVMs. There are
generally two approaches to overcome the difficulty brought
by the non-differentiable hinge loss. The first one is to modify
MSVMs by refitting procedure [45], [46], [47] or sequential
weighted learning [48], [49]. The former depends heavily on
the assumptions of the refitting model while the latter involves
extensive training. This category of methods consists of a
two-step procedure with indirect probabilistic results from
the model fitting. On the other hand, the second category of
methods is to replace the hinge loss in MSVMs by some
proper loss functions, such as the quadratic (least square)
loss [11], [50], [51], [52], [53] and large-margin unified
machine loss [22], [33]. Benefiting from the modified loss
functions, these classifiers can estimate the class conditional
probability explicitly and conveniently. However, the connec-
tions among these existing methods are still unclear. There
are other multicategory classifiers using more complicated
loss functions, e.g., [27], 54], and [55], which cannot yield
a convenient or tractable category probability estimation.

Among the various multicategory classifiers, we focus
on the ones built on quadratic loss in this study, known
as proximal MSVMs, which can be viewed as competitive
approximators of their original counterparts based on hinge
loss [56]. Due to the connection between hinge loss and
quadratic loss, the proximal MSVMs enjoy several merits.
First, they can be efficiently trained by solving a linear system
[50], [52]. Second, the conditional class probability can then
be readily estimated [53], [57], [58]. There exist some seminal
works incorporating the quadratic loss and the simplex-based
structure, e.g., [30], [32], and [43], that can share the additional
advantages of simplex-based approaches. However, the rela-
tionships among these regular and simplex-based classifiers
are still unclear, and several important theoretical properties
have not been thoroughly investigated, such as the category
probability estimation, the convergence analysis, the general-
ization bound and the universal consistency in the reproducing
Hilbert kernel space.

The main objective of this study is to propose a unified class
of multicategory classifiers by using the quadratic loss and

simplex-based framework, which is termed as Simplex-based
Proximal MSVM (SPMSVM). In particular, we propose a
general family of squared loss functions under the simplex
framework, which generalizes many loss functions of existing
proximal MSVMs [32], [43], [53], [57], [58]. Specifically,
SPMSVM solves a unconstrained optimization problem, which
is equivalent to a weighted regression model. Hence, the
closed-form solution for SPMSVM can be readily obtained
via solving a system of linear equations. Furthermore, we can
borrow the advanced solvers from the linear regression lit-
erature for scalable implementation of SPMSVM. Unlike
MSVMs, SPMSVM is able to estimate the category probability
due to the elaborate loss functions. Moreover, the intimate
relationship between many existing MSVMs and SPMSVM is
theoretically established, and they are indeed special cases of
SPMSVM. From this perspective, SPMSVM can be treated as
a general integration of many existing classifiers.

Furthermore, the statistical learning theory of SPMSVM
is thoroughly investigated. First, we show that under some
conditions, the proposed loss functions are Fisher consis-
tent, which is a fundamental requirement for classifiers [59],
[60], [61]. We then derive the closed-form expressions for
the category probability, which is important in knowing the
strength of the prediction. Due to the flexible loss functions,
the established probability expressions cover many existing
results. In addition, we also establish some other theoretical
properties of SPMSVM, including comparison inequalities
for the excess misclassification risk, convergence rate, finite
sample bound and universal consistency. These properties
are important in learning and justifying the performance of
classifier asymptotically and in finite samples, but they are
rarely discussed in the literature of MSVMs possibly due to
the aforementioned technical difficulties. For example, [43]
proposed a simplex-based MSVM using a quadratic loss,
which is actually a special case of SPMSVM. However, only
Fisher consistency and category probability estimation were
investigated in their paper. On the other hand, these theoretical
gaps are well filled in this study as the statistical properties
established for SPMSVM can be naturally extended to many
existing MSVMs.

The rest of this article is organized as follows. In Section II,
we give a brief review of regular MSVMs and the simplex-
based approaches. In Section III, we propose the novel
SPMSVM and explore its theoretical properties. We study
some statistical properties of the kernel SPMSVM in
Section IV. Computationally efficient and scalable algorithms
are developed in Section V. Numerical studies are presented
in Section VI. Some discussions are provided in Section VII.
All theoretical proofs and technical details are provided in the
Appendix.

II. SIMULTANEOUS MULTICATEGORY CLASSIFICATION

In this section, we review the large margin multicategory
classification. Suppose we are given a training set T =
{(xi, yi), i = 1, . . . , n}, obtained from an unknown under-
lying distribution P(X,Y ). Here, xi ∈ X ⊆ R

d is the input
predictor and yi ∈ Y = {1, . . . , k} is the corresponding
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TABLE I

EXAMPLES OF LOSS FUNCTIONS IN MULTICATEGORY
CLASSIFICATION, WHERE [u]+ = max(u, 0)

category. Our target is to find a classifier mapping X to Y
based on the dataset T , so that we can predict the class
membership of a new observation.

In what follows, let 1 be a vector of 1’s, 0 be a vector
of 0’s, and ej be the j-th column of an identity matrix I.
Their dimensions can be contextually inferred. Denote �·� as
the Euclidean norm of a vector, and Tr(·) as the trace of a
square matrix. Define sign(·) as the sign function, and �(·) as
the indicator function taking 1 when the statement is true and
0 otherwise.

A. Regular Classification Framework

We review some multicategory classification techniques
from the perspective of category coding scheme. For a
k-category classification problem, we encode the j-th category
as ej ∈ R

k. To consider all classes together, many existing
large margin classifiers require the classification function g =
(g1, . . . , gk) : X �→ R

k, such as [19], [21], [23], and [24]. The
consequent prediction rule is defined as argmaxj�g(x), ej	 =
argmaxj gj(x) for any x ∈ X . That is to say, the compo-
nent gj(x) represents the score of classifying x as the j-th
category.

Observe that the prediction rule is invariant under a shift of
each component of classification function. In particular, if we
add the same function h : X �→ R to every gj , the predicted
label does not change as argmaxj gj(x) = argmaxj{gj(x)+
h(x)}. To address this undesired obstacle and obtain a unique
solution, the sum-to-zero constraint

�k
j=1 gj(·) = 0 is often

imposed for multicategory classification; see [2] and [62] for
a comprehensive review.

For a given classification function g, a point (x, y) is mis-
classified if and only if y 
= argmaxj gj(x). Let V (g(x), y)
be a loss function that measures the loss of using g(x) to
predict its label y. A sensible loss V should enforce gy to be
the maximum among g1, . . . , gk. For example, we list several
commonly used loss functions in the MSVMs in Table I.
Notice that the hinge loss and least square function play a
central role in these loss functions.

Typically, a large margin multicategory classifier follows the
“loss+ penalty” framework,

min
g∈G

1
n

n�
i=1

V (g(xi), yi) + λΩ(g), (1)

where G = {g : X �→ R
k|
�k

j=1 gj(x) = 0, ∀x ∈ X} is the
hypothesis class, Ω(·) is the roughness penalty of g to control
the model complexity and prevent overfitting, and λ > 0 is
the tuning parameter to balance the loss and penalty terms.

The sum-to-zero constraint for g is needed to make the
model identifiable. To illustrate, consider the binary classi-
fication with labels {1, 2}. We have g2 = −g1 and the
resulting prediction rule is 3

2 − 1
2 sign(g1(x)), where only

one single function works. This constraint obviously incurs
non-negligible computational efforts in solving (1).

B. Simplex-Based Classification Framework

To avoid the cumbersome sum-to-zero constraint in (1),
[27], [30], [31], [32], [33] considered the multicategory clas-
sification under a simplex structure, and they showed that the
simplex-based methods enjoy more efficient optimization than
regular ones. To begin with, define k simplex vertex vectors
in R

k−1 as follows,

wj =

⎧⎨⎩
1√
k−1

1, if j = 1

− 1+
√

k
(k−1)3/2 1 +

�
k

k−1ej−1, if 2 ≤ j ≤ k
, (2)

where 1 and ej’s are vectors in R
k−1. Thus, these wj’s form

a k-vertex simplex, denoted as a matrix W = (w1, . . . ,wk) ∈
R

(k−1)×k. One can verify that
�k

j=1 wj = 0, each wj has
Euclidean norm 1 and the inner products between any distinct
pairs are equal, i.e., �wi,wj	 = − 1

k−1 for any i 
= j.
For illustration, we show an example of the simplex-based

classification with k = 3 in Figure 1. In general, we assign
the j-th category to the j-th vertex vector wj (j = 1, . . . , k).
A simplex-based classifier requires a (k − 1)-dimensional
vector-valued function f : X �→ R

k−1 with the prediction
rule argmaxj�f (x),wj	, which removes one redundant com-
ponent compared to regular classifiers. The k inner products
are related to the angles between the mapped data and each
vertex vector of the simplex W, so the simplex-based classi-
fication is also called angle-based classification by [33]. Since�k

j=1�f (x),wj	 ≡ 0 naturally holds for any x ∈ X , the
sum-to-zero constraint is implicitly transferred to the k inner
products.

With the help of the simplex W, we can simplify the
functional space of the classification function, as shown in
the following proposition.

Proposition 1: Consider two spaces F = {f |f : X �→
R

k−1} and G = {g : X �→ R
k|
�k

j=1 gj(x) = 0, ∀x ∈ X}.
Then G is equivalent to G� = {W�f : X �→ R

k|f ∈ F}.
By Proposition 1, the simplex-based multicategory classifi-

cation solves the following problem

min
f∈F

1
n

n�
i=1

�(f(xi), yi) + λΩ(f ), (3)
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Fig. 1. Illustration for the simplex-based classification with k = 3. The
dashed lines stand for decision boundaries, which split the space into the
red/green/blue regions corresponding to classes 1/2/3. The mapped f is closest
to w1 with the predicted label 1.

TABLE II

EXAMPLES OF LOSS FUNCTIONS IN SIMPLEX-BASED CLASSIFICATION

where �(·, ·) is a proper simplex-based loss function. For

the learned classifier �f from (3), the corresponding decision
boundary classifier can be represented as {x ∈ X| �f (x) =
t(wi + wj), t ≥ 0, ∀i 
= j}. When k = 2, it reduces to the
well-known binary decision boundary, {x ∈ X| �f(x) = 0}.

The simplex coding strategy brings in several distinctive
merits, such as symmetry, elimination of extra parameters
and constraints, and simplification of computation and model
interpretation. Table II shows some loss functions for the
simplex-based classifiers, which are closely related to regular
loss functions in Table II. Because the loss function in [27] is
too complicated and does not have a compact form, it is not
included in Table II. Interested readers can refer to the paper
for details.

With a clear geometric interpretation in Figure 1 as well
as [31], [32], and [33], it is easy to understand the simplex-
based classification. In contrast to regular methods, the
simplex-based classifier (3) efficiently solves an unconstrained
optimization problem involving fewer parameters. Hereafter,
we focus on the simplex-based classification framework, and
propose a flexible family of loss functions to guarantee some
properties for the resulting classifiers.

III. SIMPLEX-BASED PROXIMAL MULTICATEGORY SVM

A desirable multicategory classifier should enjoy sound
theoretical properties, be efficient to compute and be able to
estimate conditional class probabilities [58]. These require-
ments are mainly determined by the employed loss functions.
Since many MSVMs are built on the non-differentiable hinge

Fig. 2. Plot of the SLS loss functions with different {γ, α} under k = 3 and
y = 1.

loss and its generalizations, they do not attain any informa-
tion of the conditional class probability [44]. On the other
hand, although the simplex-based MSVMs can circumvent
the sum-to-zero constraint, the corresponding algorithms are
still computationally intensive due to the hinge loss [28].
To overcome these difficulties, we propose the simplex-based
proximal MSVM (SPMSVM) in this section.

Based on the general formula in (3), we first design a novel
family of simplex-based least square (SLS) loss functions as
follows,

L(f (x), y)=γ(α−�f(x),wy	)2+(1−γ)
�
j �=y

(1+�f(x),wj	)2,

(4)

where γ ∈ [0, 1] is a convex combination parameter and α
is a scale parameter. A reasonable SLS loss function should
enforce large �f(x),wy	 and small {�f(x),wj	, j 
= y} for
correct classification. Figure 2 shows the plot of the SLS loss
function (4) under different values of (γ, α). It can be seen that
as γ increases, the value of the loss function increases when
both f1 and f2 are negative, while the loss decreases when
only one of fj’s is negative. Moreover, as α increases, the
loss function increases when at least one of fj’s is negative,
and the loss decreases when both f1 and f2 are positive.

The proposed SLS loss with parameters {γ, α, k} contains
a broad family of loss functions. For example, when γ = 0,
it is the simplex-based generalization of that in [53]. When
(γ, α) = (1, 1), it extends the squared loss in [57] by the sim-
plex. When α = k − 1, it is the simplex-based counterpart of
the composite least square loss in [58]. When (γ, α) = (1

2 , 1),
it refines the sequential binary proximal SVM based on the
one-vs-all approach, where there are no regions of ambiguity
in the prediction space due to the simplex encoding [27], [59].
When (γ, α) = (1

2 ,
1

k−1 ), one can verify that

L(f (x), y) =
k

2(k − 1)
�f(x) − wy�2 + Constant, (5)

which is equivalent to the simplex least square loss in [32]
and the least distance loss used in [43], by ignoring the
factor k

2(k−1) and the irrelevant constant. Consider binary
classification with k = 2. The simplex becomes (w1, w2) =
(1,−1), and the SLS loss is arranged as

L(f(x), y) = [(γα+ 1 − γ) − wyf(x)]2 + Constant.
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If γα+1−γ > 0, we can recover the binary classifiers in [11]
and [51]. Hence, the proposed SLS loss can provide a unified
insight on a multitude of existing classifiers.

For the training set T , we propose the following SPMSVM
classifier

min
f∈F

1
n

n�
i=1

L(f (xi), yi) + λΩ(f ), (6)

which can be viewed as a proximal version of multiclass SVM
although the “support vector” property does not clearly hold.
More precisely, the support vectors of non-proximal MSVMs
are determined by a small part of training set, while the support
vectors of the SPMSVM contain all the training data points,
which is a major difference noticed by [51], [52], and [53].
Due to the simplex-based classification framework, SPMSVM
enjoys computational convenience by solving an unconstrained
optimization problem with fewer parameters.

To investigate the statistical properties of the SPMSVM (6),
we consider the ideal case when n goes to infinity and λ = 0.
Recall that P is the underlying distribution of (X,Y ). Let
PX be the marginal distribution of X , and Pj(x) = Pr(Y =
j|X = x) be the conditional class probability for the j-th
category and x ∈ X . Sometimes, we simply write Pj(x) as
Pj by omitting the dependence on x.

For any classifier C : X → Y , we employ the misclassifica-
tion error to measure its performance, also known as 0–1 risk
and defined as

R(C) = EP [�(C(X) 
= Y )] = Pr(C(X) 
= Y ). (7)

Thus, the 0–1 risk R(C) is identical to the probability of clas-
sification error. The optimal classification rule that minimizes
R(C) is the Bayes classifier

C∗(x) = argmax
j

Pj(x), ∀x ∈ X . (8)

For a general classification function f : X �→ R
k−1, the

resulting simplex-based classifier Cf is defined as Cf (x) =
argmaxj�f (x),wj	 for x ∈ X . Thus, the misclassification
risk for Cf is given by

R(Cf ) =
	
X
P (Y 
= Cf (x)|X = x)dP (x)

= 1 −
	
X
P (Y = Cf (x)|X = x)dP (x).

Due to the optimality of C∗, we have R(Cf ) ≥ R(C∗) for
any f .

The SPMSVM uses the SLS loss L as a surrogate of the
0–1 risk. Similarly, the full L-risk of a classification function
f is defined as

E(f ) = EP [L(f (X), Y )]

=
	
X×Y

L(f (x), y)dP (x, y)

=
	
X

k�
j=1

Pj(x)L(f (x), j)dP (x). (9)

The conditional L-risk at a fixed x ∈ X is given by

Sx(u) =
k�

j=1

Pj(x)L(u, j), u ∈ R
k−1. (10)

Clearly, E(f ) is a functional of f and Sx(u) is a function
of u. As suggested by [32], we consider a hypothesis space
of measurable functions

L2(PX) =


f : X �→ R

k−1
��� 	

X
�f(x)�2 dP (x) <∞

�
.

The following proposition summarizes some properties of the
expected L-risk.

Proposition 2: The full L-risk is a convex and continuous
functional E : L2(PX) �→ R+.

With Proposition 2, we can define the population minimizer
of E(f ) as

f∗ = arginf
f∈L2(PX)

E(f ). (11)

With the above setup, we will conduct theoretical analysis
on the SPMSVM. Specifically, we establish some properties
about f∗, including Fisher consistency, probability estimation,
excess risk bounds and convergence rate.

A. Fisher Consistency

Fisher consistency is a fundamental asymptotic property
for classifiers. Fisher consistency requires that when the sam-
ple size is sufficiently large, the classifier learned from a
surrogate loss function approximates the Bayes classification
rule, which corresponds to the minimum misclassification rate.
Specifically, a general simplex-based loss function L is Fisher
consistent if and only if Cf∗ = C∗, where f∗ is the population
minimizer similar to (11); see [32].

Fisher consistency defined as above depends on the full
L-risk. We can define an alternative Fisher consistency in a
pointwise manner, i.e., Cf∗(x) = C∗(x), which is constructed
on the minimization of the conditional L-risk at an arbitrary
x ∈ X . Such an adjustment is helpful to verify Fisher
consistency in practice; see [28], [33], and [43]. The definition
for the general and pointwise manner of Fisher consistency
was introduced in [59], wherein this property is also called
infinite-sample consistency. To investigate Fisher consistency
for the SLS loss (4), we introduce a mild assumption which
is widely adopted in the MSVM literature.

Assumption 1: Assume that Pj(x) > 0 for all x ∈ X and
j = 1, . . . , k.

Let f∗ be the theoretical minimizer of the full L-risk E(f ),
as defined in (11). For any fixed x ∈ X , the following
proposition characterizes the minimizer of the conditional
L-risk Sx(·) and the explicit expression of f∗(x).

Proposition 3: For the SLS loss L with (γ, α), under
Assumption 1, the vector f∗(x) minimizes the conditional
L-risk at any x ∈ X , and takes the form

f∗(x) =
k�

j=1

sj(x)wj , (12)
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where sj(x) = 1
k (γα+1−γ)(k−1)aj


Pj −

�k
t=1 atPt�k

t=1 at

�
and

aj = 1
(2γ−1)Pj+1−γ . Moreover, f∗ ∈ L2(PX).

For the full L-risk minimizer f∗, Proposition 3 implies that
f∗(x) is the minimizer of the conditional L-risk Sx(·) at any
x ∈ X . From the expression (12), we know that f∗(x) is
a linear combination of the vertex vector wj’s, where the
coefficients are determined by Pj(x)’s. For example, when
γ = 1

2 , f∗(x) = (k−1)(α+1)
k

�k
j=1 Pj(x)wj . Moreover,

if Pj(x) ≡ 1
k for any j = 1, . . . , k and x ∈ X , we have

the degenerated case f∗(x) ≡ 0, and the predicted label can
be any of the possible classes.

The following theorem provides a sufficient condition for
the SLS loss to achieve Fisher consistency.

Theorem 1: Under Assumption 1, if γα+ 1 − γ > 0, then
the SLS loss is Fisher consistent.

Assumption 1 in Proposition 3 and Theorem 1 is adopted
to simplify expressions, and it is useful to eliminate some
corner cases. For example, if Pt = 0 and γ = 1, we have
f∗ = −(k− 1)αwt from Proposition 3. No matter what α is,
we have �f∗,wj	 ≡ α for any j 
= t, which does not depend
on the information of {Pj , j 
= t}. Obviously, it is a case of
little interest in practice.

We illustrate Theorem 1 by considering some special exam-
ples. If γ = 0, the SLS loss does not contain α, and the
consequent simplex-based classifier enjoys Fisher consistency,
which is consistent with the results for regular classifier
in [53]. For each γ ∈ (0, 1], we should require α > 1 − 1

γ
to ensure Fisher consistency. When γ = 1, the SLS loss
becomes (α − �f(x),wy	)2, which is Fisher consistent for
α > 0. [57] proved Fisher consistency for regular least square
loss (1 − gy(x))2 under the sum-to-zero constraint, and here
we generalize it to the advanced simplex-based classification
framework. Moreover, we develop a simplex-based version
of the composite least square loss used in [58] by setting
α = k−1, and Fisher consistency is still reserved. For the SLS
loss with (γ, α) = (1

2 ,
1

k−1 ), we recover the Fisher consistency
in [43]. Compared with existing simplex-based MSVMs, e.g.,
[28] and [33], our results about Fisher consistency are more
general due to the wider range γ ∈ [0, 1].

B. Estimation of Category Probability

In addition to the category membership prediction, esti-
mation of the conditional class probability is also important
in understanding the data [44]. Classifiers that can provide
an estimation of the class probability are termed as “soft”
classifiers by [42], which have drawn extensive attention in the
literature; see [22], [33], [43], [53], and [58] and the reference
therein. Here, we show that our SPMSVM can naturally
provide an estimation of the conditional class probability.

As shown by Proposition 3, Eq. (12) implies that the
theoretical minimizer f∗(x) is a function of the conditional
class probabilities, Pj(x)’s. A natural idea is to establish the
link functions between Pj(x)’s and f∗(x), which represent
Pj(x) as a function of f∗(x). Furthermore, once an estimate
of f∗ is obtained from the dataset, it can be used to predict
class probabilities. The following theorem gives the explicit
form of link functions for SPMSVM.

Theorem 2: Let f∗ be the minimizer of full-L risk as
defined in (11). For any fixed x ∈ X , the link functions can
be expressed as

Pj(x) =

�
1

α+1 �f
∗(x),wj	 + 1

k , if γ = 1
2

1 + k(1−γ)
2γ−1

�
cj�

k
i=1 ci

− 1−γ
2γ−1 , if γ 
= 1

2

, (13)

where cj = 1
(2γ−1)�f∗(x),wj	−(γα+1−γ) for j = 1, . . . , k.

Theorem 2 is a guideline to estimate the conditional
class probability, via the link function (13). We observe that
Pi(x) = Pj(x) if and only if �f∗(x),wi	 = �f∗(x),wj	.
If the fitted �f is a consistent estimator of true f∗, based

on (13), then the estimated probabilities { �Pj(�f), j =
1, . . . , k} are also consistent. Under some mild assumptions on
the data generating process, the consistency and convergence
results will be discussed in Section III-D.

The exact form of link functions for SLS loss with general
(γ, α), as shown in (13), is more prominent than some existing
methods. [58] only studied the link functions for three corner
values of γ. If γ = 1

2 , in contrast to Theorem 2 in [43],
our link functions avoid the calculation of a matrix inverse.
In addition, the results in [53] can be recovered when γ = 0.
We should mention in passing that the simplex-based MSVMs
involving hinge loss provide no results on the conditional class
probability; see [28] and [33].

When γ 
= 1
2 , it is difficult to simplify the link function

(13) except for γ = 0 and 1. For a given �f , the estimated
conditional class probabilities at γ ∈ {0, 1

2 , 1} are as follows,

�Pj(x) =

⎧⎪⎪⎨⎪⎪⎩
1 − (k − 1) 1/[1+��f(x),wj	]�

k
t=1 1/[1+��f(x),wt	] , if γ = 0

1
α+1 ��f(x),wj	 + 1

k , if γ = 1
2

1/[��f(x),wj	−α]�
k
t=1 1/[��f(x),wt	−α]

, if γ = 1

.

(14)

For γ > 0 and α → +∞, each estimated probability
approximates 1

k for any x ∈ X . Then, the procedure of
probability estimation at this corner case is degenerated.

With the help of Theorem 2, the conditional class prob-
ability estimators �Pj(x)’s naturally satisfy the sum-to-one
condition, i.e.,

�k
j=1

�Pj(x) = 1. A potential issue is that the

individual estimator �Pj(x) could be outside of [0, 1]. To ensure
a proper probability estimation, we consider the following
rescale procedure on the original �Pj’s

�P scaled
j (x) =

�Pj(x) − mini=1,...,k
�Pi(x)�k

l=1[ �Pl(x) − mini=1,...,k
�Pi(x)]

∈ [0, 1].

One can check that the scaled probabilities still satisfy the
sum-to-one condition. Similar modifications can be found in
[43], [58], and [66].

C. Relaxation Error Analysis

For classification tasks, the adopted loss function plays
a pivotal role as a relaxation of the misclassification risk.
To quantify the error incurred by relaxation, it is of great
interest to derive comparison inequalities explicitly relating
the excess misclassification risk to the excess expected loss.

Authorized licensed use limited to: TU Delft Library. Downloaded on April 06,2023 at 06:22:34 UTC from IEEE Xplore.  Restrictions apply. 



FU et al.: SIMPLEX-BASED PROXIMAL MULTICATEGORY SUPPORT VECTOR MACHINE 2433

In statistical learning theory, we can use these inequalities
to obtain rates of convergence or oracle inequalities. The
excess risk concept is first discussed in binary classification
by [60], and some classical results for particular multicategory
classifiers are established by [30], [32], and [59]. To the best
of our knowledge, a systematic error analysis for the classifiers
involving the least square loss functions is still lacking in the
literature. To fill this gap, we conduct a thorough error analysis
for the SPMSVM in this section. Since the proposed SLS loss
is a rich family of least square functions and the SPMSVM
covers many popular MSVMs in a unified framework, these
results can be naturally extended to many existing classifiers.

For the misclassification risk R(C) in (7), C∗ is the Bayes
classifier defined by (8). For the full L-risk E(f) in (9), f∗

is the population minimizer defined by (11). Denote R∗ =
R(C∗) and E∗ = E(f∗). Under the regularity conditions stated
in Theorem 1, the SLS loss enjoys Fisher consistency, which
implies C∗ = Cf∗ and R(Cf∗) = R(C∗) = R∗. Further, the
comparison inequality depicts a quantitative relation between
the excess misclassification risk and the excess L-risk as

R(Cf ) −R∗ ≤ ψ(E(f ) − E∗) (15)

for any function f and a nondecreasing function ψ : [0,∞) �→
[0,∞). A suitable ψ should satisfy ψ(0) = 0. Note that ψ
highly depends on the loss function L, and possibly the data
distribution. If ψ is known, then the inequality (15) not only
implies Fisher consistency, but also allows to bound the excess
risk by the excess L-risk. In particular, the bounds on the
excess L-risk can yield bounds on the excess misclassification
risk.

We first make a technical assumption as follows, which is
slightly stronger than Assumption 1.

Assumption 2: Assume that there exists a constant δ ∈
(0, 1

2 ) such that δ ≤ Pj(x) ≤ 1 − δ for all x ∈ X and
j = 1, . . . , k.

Next, we state the main results in the following theorem.
Theorem 3: Suppose that Assumption 2 is satisfied and

γα + 1 − γ > 0. The following comparison inequality hold
for any f ∈ L2(PX),

R(Cf ) −R∗ ≤ Cγ

�
E(f ) − E∗, (16)

where Cγ is 2γ−1+k(1−γ)
γα+1−γ

�
2
δ for γ ∈ [0, 1

2 ), 2
α+1 for γ = 1

2

and {2γ−1+k(1−γ)}(1−δ)

(γα+1−γ)
√

δ3 for γ ∈ (1
2 , 1].

Note that Assumption 2 is mild because it only affects the
constant Cγ under the setting γ 
= 1

2 . Consider a sequence
of estimates �fn

, such that �fn
→ f∗. The corresponding

L-risk sequences satisfy E(�fn
) → E∗, due to the continuity

of E(·). By Theorem 3, we have R(C�fn) converges to R∗,
i.e., the resulting sequences of classifiers C�fn enjoy Fisher
consistency. In addition, the order of excess risk E(f ) − E∗

can be improved for some special distributions. Motivated
by [32] and [59], we introduce the multiclass low noise
condition in the following assumption, which can be viewed
as a generalization of Tsybakov’s binary noise condition [67].

Assumption 3: Given x ∈ X , let P(1)(x) and P(2)(x)
be the first largest and second largest conditional probability,

respectively. Assume that there exists C > 0, a ≥ 0 and
h∗ > 0, such that the distribution P(X,Y ) satisfies the
following condition:

PX({x ∈ X|P(1)(x) − P(2)(x) ≤ h}) ≤ Cha, ∀h ∈ (0, h∗].
(17)

Intuitively, when it is difficult to distinguish the class with
the highest probability from others, i.e., P(1)(x) is very close
to P(2)(x) for some x, there may exist extremely large
misclassification error. In particular, if a = 0, condition (17)
reduces to the case without any noise assumption. When
a = ∞, it becomes the ideal noiseless case.

With Assumption 3, we can improve the results of Theo-
rem 3 as follows.

Theorem 4: Under the same conditions in Theorem 3,
if Assumption 3 holds, then we have

R(Cf ) −R∗ ≤ �C a+1
a+2 {E(f ) − E∗}

a+1
a+2 , (18)

where �C = 4(a+ 1)C
1

a+1 a−
a

a+1C2
γ > 0.

Remarkably, Theorem 3 is covered as a special case of
Theorem 4 with a = 0. If a > 0, the order of E(f ) − E∗

is a+1
a+2 >

1
2 , which is better than that of Theorem 3. Further,

setting a = ∞ leads to a+1
a+2 → 1, which refines the results in

Theorem 3.

D. Convergence Rate Analysis

The recent work by [22] and [33] studied the convergence
of the excess risk for a family of multicategory classifiers
inspired from large margin unified loss [42]. In this section,
we are interested in the convergence rate analysis for the
proposed SPMSVM. Specifically, we establish the bounds on
the excess L-risk E(f )−E∗. By the comparison inequalities in
Section III-C, one can bound the excess misclassification risk,
R(Cf ) − R∗, in terms of the excess L-risk. Consequently,
these can lead to the bounds on the excess misclassification
risk.

Let �fn
be the learned SPMSVM classification function

from the dataset T and a functional space H , i.e., �fn
=

argminf∈H
1
n

�n
i=1 L(f (xi), yi), which is also called the

empirical risk minimizer. For the full L-risk E(f ), the popula-
tion minimizer within the space H is fH = arginff∈H E(f ).
In what follows, we reveal the relationship between the
convergence rate of �fn

to fH and that of the excess L-risk,
as well as the size of the functional space H .

Recall the conditional L-risk Sx(u) defined in (10).
By Proposition 3, we denote the minimizer of Sx(u) as
u∗ = argminu∈Rk−1 Sx(u), where u∗ depends on the feature
x. Meanwhile, for the population minimizer f∗ ∈ L2(PX)
defined by (11), we have f∗(x) = u∗ pointwisely for x. Let
ΔSx(u) = Sx(u)−Sx(u∗) and ΔE(f ) = E(f )−E∗. Further-
more, the excess L-risk satisfies ΔE(f ) = EPX [ΔSx(f (x))].

The following theorem states the property of the excess
conditional L-risk at a fixed x.

Theorem 5: Under Assumption 1, we have

ΔSx(u) = (u−u∗)�
�

k�
j=1

[γPj + (1−γ)(1−Pj)]wjw
�
j

�
(u−u∗).
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Theorem 5 can be used to establish the connection of the
convergence rate of the classification function and that of the
excess L-risk. Since fH minimizes the L-risk within the space
H , we can decompose the excess L-risk as

ΔE(�fn
) =

�
ΔE(�fn

) − ΔE(fH)
�

+ ΔE(fH),

where the first term depends on the data fitting and is called the
L-estimation error, and the second term is deterministic and
is called the L-approximation error. When H is sufficiently
rich, so that

fH = arginf
f∈H

E(f ) = arginf
f∈L2(PX )

E(f ) = f∗, (19)

the estimator �fn
will converge to f∗ as the sample size

n grows, under some regularity conditions. One typical
example is that H is dense in L2(PX). In this case, the
L-approximation error is zero, and the excess L-risk is essen-
tially the L-estimation error. Thus, we can explore how the
convergence rate of �fn

affects the convergence rate of the
excess L-risk.

We first introduce some notations and assumptions, which
are similar to those in [22]. Note that γ and α are parameters of
the SLS loss L (4). Let μ(·) be regular Lebesgue measure. For
a fixed pair (γ, α), associated with the distribution P(X,Y ),
we can naturally define k−1 probability measures on the real
line: τj(B) = P (f∗

j ∈ B), j = 1, . . . , k − 1, where B is any
Borel measurable set.

Assumption 4: For any γ ∈ [0, 1] and α > 0, τj �
μ, j = 1, . . . , k − 1. Namely, every measure τj is absolutely
continuous with respect to the Lebesgue measure μ.

Assumption 5: For any γ ∈ [0, 1] and α > 0,
nq{�fn

(X,Y ) − f∗(X,Y )} → T (γ, α,X, Y ) in dis-
tribution, where T (γ, α,X, Y ) = (T1, . . . , Tk−1) is a
multivariate random variable, whose distribution depends
on (γ, α), and varies among different (X,Y ); q >
0 is a constant. Moreover, suppose that for fixed (γ, α),�

X,Y
| sup1≤j≤k−1 Tj|2dP (X,Y ) <∞.

Assumption 4 is valid if there is no probability mass point in
the distribution P , and Assumption 5 is essential to prevent the
distribution of T from diverging with large probability when
(X,Y ) varies. Next we state the main result in the following
theorem.

Theorem 6: Consider the SPMSVM model with the under-
lying distribution P . Suppose Assumptions 1, 4 and 5 are
satisfied, and (19) holds. Then for any fixed γ and α,

ΔE(�fn
) = O(n−2q).

Under Assumption 4, the L-risk E(f ) has bounded second
order derivative for a fixed (γ, α) almost surely. For proper
(γ, α), if q = 1

2 for regular finite dimensional problems, then�fn
is
√
n−consistent. From Theorem 6, we can claim that the

excess L-risk is n-consistent under these conditions.
When the L-approximation error is nonzero, i.e.,

inf
f∈H

E(f ) > inf
f∈L2(PX )

E(f), (20)

then the excess L-risk does not converge to 0, and Theorem 6
becomes inapplicable. In such cases, we are interested in

the convergence rate of the L-estimation error, ΔE(�fn
) −

ΔE(fH) = E(�fn
) − E(fH). First, we should modify the

previous Assumption 5 as follows.
Assumption 6: For any γ ∈ [0, 1] and α > 0,

nq{�fn
(X,Y ) − fH(X,Y )} → T (γ, α,X, Y ) in

distribution, where T (γ, α,X, Y ) = (T1, . . . , Tk−1)
is a multivariate random variable, whose distribution
depends on (γ, α), and varies among different
(X,Y ); q > 0 is a constant. Moreover, suppose that
for fixed (γ, α),

�
X,Y | sup1≤j≤k−1 Tj|dP (X,Y ) < ∞ and�

X,Y
| sup1≤j≤k−1 f

∗
j | + | sup1≤j≤k−1 f

H
j |dP (X,Y ) <∞.

Theorem 7: Consider the SPMSVM model with the under-
lying distribution P . Suppose Assumptions 1, 4 and 6 are
satisfied, and (20) holds. Then for any fixed γ and α,

ΔE(�fn
) − ΔE(fH) = O(n−q).

Based on Theorem 7, if f∗ /∈ H ,
the convergence rate of the excess
L-risk ΔE(�fn

) is the same as �fn
. Hence, the excess

L-risk is also
√
n−consistent under some mild conditions

when q = 1
2 .

E. Comparison With Existing Methods

In this section, we compare the theoretical results of
SPMSVM with some related multicategory classifiers involv-
ing quadratic loss functions, as shown in Table III. As seen, the
Fisher consistency and category probability estimation have
been extensively studied, while our method serves as a unified
framework to connect them. In addition, we extend the results
of the excess risk to a more flexible family of SLS loss.
On the other hand, the convergence rate is a novel theoretical
contribution to the literature. In this study, we establish the
relationship between the convergence rate of the classification

function �fn
and that of the excess SLS risk, as well as the

size of the functional space. The results can be extended to
other MSVMs in the table.

IV. KERNEL LEARNING FOR SPMSVM

Notice that in Section III, we consider the ideal setting for
the SPMSVM with infinite samples and without the penalty,
and we put no restrictions on the form of the classification
functions. In this section, we concentrate on the L2 regularized
SPMSVM in a reproducing kernel Hilbert space (RKHS) and
reveal the connections between regular multicategory classifier
and its simplex-based version. The closed-form solution of the
kernel SPMSVM is derived for efficient computation. In par-
ticular, the finite sample generalization bound and universal
consistency are also established, which are novel contributions
to the MSVM literature.

First, we need to introduce some conventional notations.
Let K(·, ·) : X × X �→ R be a positive definite kernel, and
HK be a structured RKHS generated by K . Specifically, HK

is defined as the linear span of the set of functions {Kx =
K(x, ·) : x ∈ X} with the inner product �Kx,Ky	HK given
by �Kx,Ky	HK = K(x,y). RKHS also has the following
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TABLE III

COMPARISON ON THE THEORETICAL RESULTS OF SPMSVM WITH SOME EXISTING METHODS

reproducing property

�Kx, h	HK = h(x), ∀h ∈ HK , x ∈ X .

Denote �h�HK
as the square norm of the function h ∈ HK .

We refer to [3] for more details about RKHS.

A. Connections With Regular Methods

Consider the multicategory classifier (1), i.e.,
ming∈G 1

n

�n
i=1 V (g(xi), yi) + λΩ(g). Assume that

gj(·) = pj +qj(·) with pj ∈ R and qj ∈ HK for j = 1, . . . , k.
When the linear kernel K(x1,x2) = x�

1 x2 is used, the
standard linear learning for (1) is recovered. The kernelized
multicategory classifier with the L2 penalty solves

min
g∈�k

j=1({1}+HK)

1
n

n�
i=1

V (g(xi), yi) + λ

k�
j=1

�qj�2
HK

,

subject to
k�

j=1

gj(x) = 0, ∀x ∈ X . (21)

In [19] and [21], the sum-to-zero constraints at all possible
values of x can be equivalently relaxed to the n observations
{x1, . . . ,xn}. According to Proposition 1, there exists a
function f ∈

�k−1
j=1 ({1} + HK) such that g = W�f .

For notational simplicity, we write f(·) = c + h(·) with
c ∈ R

k−1 and h = (h1, . . . , hk−1) ∈ Hk−1
K . As a result, gj =

w�
j f , pj = w�

j c and qj = w�
j h for j = 1, . . . , k. Given

that
�k

j=1 gj(x) =
�k

j=1 w�
j f (x) ≡ 0, the cumbersome

constraints in (21) can be naturally removed. Consequently,
we can replace g by W�f to simplify (21), and the main
result is summarized in the following theorem.

Theorem 8: With the simplex W, the regularized multicat-
egory classifier (21) can be reduced to

min
f∈�k−1

j=1 ({1}+HK)

1
n

n�
i=1

V (W�f(xi), yi)+
kλ

k−1

k−1�
j=1

�hj�2
HK

.

(22)

Theorem 8 indicates that if one legitimately defines the
simplex-based loss function as �(f(x), y) = V (W�f(x), y),
then the tuning parameter λ changes with a scale factor

k
k−1 . In other words, the simplex-based classifier (22) is
equivalent to regular classifier (21). Nevertheless, (22) only

uses k − 1 classification functions and it solves an uncon-
strained optimization problem, and hence its computation and
statistical analysis are much less challenging. As an application
of Theorem 8, we can reveal the equivalence between the
reinforced MSVM [21] and the simplex-based MSVM [28].
In the literature, [68] showed the equivalence between the two
methods by [19] and [32] under a general unregularized and
cost-sensitive scenario, while [69] studied such equivalence
under a linear setting, which are special cases of our results.
Interestingly, guaranteed by Theorem 8, we can show that
the classifier in [23] is equivalent to a special example
of GenSVM [27], because the GenSVM loss function with
p = 1 and κ → −1 is the simplex-based version of [23].
Although the simplex-based classifiers are equivalent to their
regular versions under the sum-to-zero constraint, they can be
more efficiently solved due to the benefits from the simplex
structure [28], [33].

In what follows, we focus on the SPMSVM with the SLS
loss L in (4). Following the RKHS-based statistical learning,
we assume that the classification function f : X �→ R

k−1

takes the form

fj(x) = cj + hj(x), j = 1, . . . , k − 1,

where cj ∈ R and hj ∈ HK . Then, the kernel SPMSVM
seeks f ∈

�k−1
j=1 ({1} + HK) to minimize the L2 penalized

empirical SLS loss function as follows,

min
f∈�k−1

j=1 ({1}+HK)

1
n

n�
i=1

L(f (xi), yi) + λ
k−1�
j=1

�hj�2
HK

. (23)

Due to the flexibility of the loss L, we extend existing MSVMs
in [32], [43], [53], and [58] to a general kernel setting.

Although the sum-to-zero constraint has been removed, the
optimization of (23) is over an infinite dimensional hypoth-
esis space, and it is still a challenging task. The following
representer theorem is helpful to convert problem (23) into a
finite-dimensional optimization problem, which is much easier
to solve.

Theorem 9: Let f∗ be the solution of problem (23). Then,
there exists some coefficients bij ∈ R and cj ∈ R (i =
1, . . . , n; j = 1, . . . , k − 1), such that f∗(x) can be repre-
sented as

f∗
j (x) =

n�
i=1

bijK(xi,x) + cj , j = 1, . . . , k − 1.
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For more discussions on the representer theorem, we refer
readers to [70], [71], [72], [73], [74], and [75].

B. Finite Sample Generalization Bound

In reality, all statistical models are estimated from a set
of finite samples. In this section, we study the finite sample
data-dependent generalization bound on the full L-risk, i.e.,
E(f ) = EP [L(f (X), Y )]. Following the conventions, since
fj(·) = cj + hj(·), we can absorb the intercept cj into hj

for notational convenience. Let Ω(f ) =
�k−1

j=1 �fj�2
HK

and
H = Hk−1

K . Furthermore, the kernel SPMSVM is formulated
as

min
f∈H

1
n

n�
i=1

L(f (xi), yi) + λΩ(f ). (24)

By duality with convex L and regularization Ω(·), (24) is
equivalent to the optimization problem

min
f∈H

1
n

n�
i=1

L(f (xi), yi), subject to Ω(f ) ≤ Λ. (25)

Note that there is a one-to-one correspondence for (λ,Λ).
Then, we consider the hypothesis space

FΛ ={f : X �→R
k−1|fj ∈ HK , j=1, . . . , k − 1, Ω(f)≤Λ}.

(26)

Assumption 7 is needed to establish the generalization bound
of the full L-risk, and the main results about generalization
bound are presented in Theorem 10.

Assumption 7: There exists a constant CX > 0 such that
supx∈X

�
K(x,x) = CX <∞.

Theorem 10: Suppose that Assumption 7 is satisfied. Denote
μ = 2k

k−1CX

√
Λ+2|γα+1−γ| and M = γα2 +(1−γ)(k−

1)+μCX

√
Λ, where γ and α are parameters for the SLS loss

L. Then for any 0 < θ < 1, with probability at least 1 − θ,
the following holds for all f ∈ FΛ:

E(f ) ≤ 1
n

n�
i=1

L(f (xi), yi) + 2μCX

�
2(k − 1)Λ

n

+M

�
log(1/θ)

2n
.

Under Assumption 7, one can verify that FΛ ⊆ L2(PX),
so E∗ = inff∈L2(PX ) E(f ) ≤ inff∈FΛ E(f ). Assume that�fn

∈ FΛ is the solution to (25). Applying Theorem 10 to �fn
,

we obtain a upper bound for the minimum full L-risk with
high probability

E∗ ≤ E(�fn
) ≤ 1

n

n�
i=1

L(�fn
(xi), yi) + 2μCX

�
2(k − 1)Λ

n

+M

�
log(1/θ)

2n
.

The above bound is computable from the dataset T and the
chosen model.

It is noteworthy that the technical analysis using
Rademacher complexity plays a critical role to derive the

generalization bound in Theorem 10. Under the regularization
framework (24) of the kernel SPMSVM, we will employ the
similar technique to investigate the universal consistency of
the resulting estimator, which will be introduced in the next
section.

C. Universal Consistency

Note that the kernel SPMSVM is a non-parametric func-
tion estimation problem in a product RKHS. In this section,
we elucidate the behavior of the L-approximation error and
establish the universal consistency of the regularized estimator
under a universal kernel. The concept of universal consis-
tency is a fundamental asymptotical property for a machine
learning method, which requires that when the sample size
grows to infinity, the method eventually approaches the Bayes
rule without any specifications of the distribution of the
data.

The definition of a universal kernel is adapted from [76]
and [77]. Assume that X ⊆ R

d is a compact input space of X
and C(X ) is the space of all continuous functions g : X �→ R.
We say the kernel K(·, ·) defined on X is universal if the
RKHS HK generated by K is dense in C(X ), i.e., for any
� > 0 and any g ∈ C(X ), there is an f ∈ HK such that
�f − g�∞ = supx∈X |f(x) − g(x)| < �.

If the RKHS is rich enough, then the L-approximation
error can be arbitrarily small. For a general kernel K , let
fH = inff∈H E(f ) with H = Hk−1

K . Recall that f∗ =
inff∈L2(PX) E(f ) and E∗ = E(f∗). The L-approximation
error is given by ΔE(fH) = E(fH) − E∗.

We first show that, if K is a universal kernel, then the
L-approximation error ΔE(fH) = 0.

Theorem 11: Suppose that Assumption 1 holds. Let X be a
compact space and HK be induced by a universal kernel K .
Then we have ΔE(fH) = 0.

Theorem 11 also implies a fact that H is dense in L2(PX).
Consider the regularized estimator

�fn
= argmin

f∈H

1
n

n�
i=1

L(f (xi), yi) + λΩ(f ). (27)

The following theorem demonstrates that the L-risk at �fn
is

consistent under some conditions.
Theorem 12: Suppose conditions in Theorem 11 and

Assumption 7 are satisfied. Let λ = λn → 0, such that
nλ2

n → ∞ as n→ ∞. For the SLS loss L with γ ∈ [0, 1] and
finite α, the estimator �fn

is defined by (27). Then, we have
E(�fn

) − E∗ a.s.−−→ 0, ∀P(X,Y ).
Assumption 7 holds for the Gaussian kernel with CX ≤ 1.

Hence, Theorem 12 indicates that the SPMSVM involv-
ing the Gaussian kernel is consistent. Moreover, we can
extend the results of Theorem 12 to establish the con-
sistency of the misclassification risk in the following
corollary.

Corollary 1: Under the same conditions as in Theorems 3
and 12, we have

R(C�fn) −R∗ a.s.−−→ 0, ∀P(X,Y ).
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V. ALGORITHM IMPLEMENTATION

A. General Closed-Form Solution

Define the coefficient matrix B = (b1, . . . , bk−1) ∈
R

n×(k−1), where bj = (b1j , . . . , bnj)� ∈ R
n is the j-th

column vector. Denote c = (c1, . . . , ck−1)� ∈ R
k−1 as a

vector of intercepts. Let K be the n×n Gram matrix with the
(i, j)-entry K(xi,xj). By Theorem 9, we have fj = hj + cj

and hj =
�n

i=1 bijK(xi, ·). Furthermore,
�k−1

j=1 �hj�2
HK

=�k−1
j=1 b�

j Kbj = Tr(B�KB), using the reproducing property
of the RKHS. In particular, denote Ki as the i-th column
vector of K, and then f(xi) = B�Ki + c. Hence, we can
reformulate problem (23) as

min
B,c

1
n

n�
i=1

L(B�Ki + c, yi) + λTr(B�KB). (28)

Notice that [28] and [58] used a technical trick by imposing
penalization on the intercept cj’s, and showed that the incurred
difference by penalizing the intercepts is often negligible in
many situations. Using the same treatment, we add the extra
term λc�c into the objective function of (28), and derive its
closed-from solution. Let �Ki = (1,K�

i )� ∈ R
n+1 for i =

1, . . . , n. To simplify the mathematical expression, we define
two matrices as follows,

�B =
�
c�

B

�
∈ R

(n+1)×(k−1)

and

G =
�

1 0�
n

0n K

�
∈ R

(n+1)×(n+1).

Then the inner product between f(xi) and wj is
�f (xi),wj	 = K�

i Bwj + c�wj = �K�
i
�Bwj , and the

modified regularization is Tr(B�KB) + c�c = Tr(�B�G�B).
Define τij = γ�(yi = j) + (1 − γ)�(yi 
= j) and zij =
α�(yi = j) − �(yi 
= j) for i = 1, . . . , n and j = 1, . . . , k.
As a result, the objective function of problem (28) can be
modified as

1
n

n�
i=1

L(f (xi), yi) + λTr(B�KB) + λc�c

=
1
n

n�
i=1

k�
j=1

τij(zij − �K�
i
�Bwj)2 + λTr(�B�G�B). (29)

Setting its derivatives with respect to �B to 0, we obtain the
following KKT condition,

1
n

n�
i=1

k�
j=1

2τij( �K�
i
�Bwj − zij)�Kiw�

j + 2λG�B = 0. (30)

Denote �A = (a11, . . . , am1, a12, . . . , am2, . . . , a1n, . . . ,
amn)� ∈ R

mn as the vectorization of A ∈ R
m×n. Arranging

the KKT condition, we obtain an explicit solution of �B,

���B=b·
� 1

n

n�
i=1

Λi⊗( �Ki
�K�

i )+λIk−1 ⊗ G
�−1� 1

n

n�
i=1

wyi⊗ �Ki

�
,

(31)

where b = γα+ 1 − γ, Λi = k(1−γ)
k−1 Ik−1 + (2γ − 1)wyiw

�
yi

and ⊗ is the standard Kronecker product for two matrixes
and. The closed-form solution (31) involves some fundamental
matrix operations. Details on deriving (31) are deferred to the
Appendix. In particular, if γ = 1

2 , the equation (31) can be
simplified as

��B=
α+ 1

2
·
 k

2n(k − 1)

n�
i=1

�Ki
�K�

i +λG
�−1 1

n

n�
i=1

�Kiw�
yi

�
.

The closed-form solution (31) is helpful to investigate the
effect of α. Consider two pairs (γ, α1) and (γ, α2). According
to (31), the resulting SPMSVMs based on the same training
set and the same tuning parameter λ have the same coefficient
matrices except the term b. Let bi = γαi + 1 − γ for i =
1, 2. The learned decision functions for SPMSVMs are linear
dependent, i.e., b2�f1 = b1�f2. If b1 and b2 have the same sign,
then these two SPMSVMs have the same predicted labels.
Furthermore, based on Theorem 2, one can verify that the
estimated probabilities are exactly the same. Inspired by this
observation, we could select α to make the term b = γα+1−γ
be either negative or positive, which simplifies the procedure
of tuning an optimal α in practice. The effects of α will be
investigated numerically in Section VI-A.

The proposed SPMSVM and many existing MSVMs can
be cast into convex quadratic programming (QP) problems.
Nevertheless, the proposed SPMSVM simply solves a uncon-
strained problem while regular MSVMs suffer from the lin-
ear constraints. Note that the convex QP can be tackled in
polynomial time with either the ellipsoid or interior point
method [78], [79]. Therefore, the cost of solving SPMSVM
for a fixed λ is at worst O(n3) via the formula (31), similar to
that of [32]. For large n, the unconstrained QP can be solved
efficiently by linear conjugate gradient algorithm with optimal
convergence rate [80]. Compared to regular MSVMs, another
advantage of SPMSVM is that it requires fewer parameters due
to the simplex-based structure. More specifically, the kernel
SPMSVM involves (n + 1)(k − 1) parameters, while regular
MSVMs have (n + 1)k parameters. Thus, n + 1 parameters
are reduced, and so is the required memory.

B. Scalable Algorithm for Linear SPMSVM

Note that when n/d/k is too large, directly using the
closed-form solution (31) may become less sufficient, due
to practical constraints such as exhaustive matrix operations
and large amount of storage [81]. Therefore, it is desir-
able to design a more scalable algorithm for SPMSVM to
handle massive datasets. For large-scale SVM, state-of-the-
art solvers include LibSVM [82] and LibLinear [83] using
block dual coordinate descent scheme [84], [85], cutting
plane method [86] and Pegasos [87] based on stochastic
gradient descent procedures. Unlike the direct solver (31), the
above-mentioned methods can solve the optimization prob-
lem iteratively, which is tractable for modern large datasets.
Among them, the approaches using coordinate decent are
more prominent with many successful applications for large
datasets [2], [84], [88], since the coordinate subproblem is
univariate and generally has a closed-form solution. Here,

Authorized licensed use limited to: TU Delft Library. Downloaded on April 06,2023 at 06:22:34 UTC from IEEE Xplore.  Restrictions apply. 



2438 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 69, NO. 4, APRIL 2023

we concentrate on the implementation of large-scale linear
SPMSVM.

Assume that fj(x) = x�bj + cj for j = 1, . . . , k − 1. Let
B = (b1, . . . , bk−1) ∈ R

d×(k−1) with bj = (b1j , . . . , bdj)� ∈
R

d being the j-th column vector, and c = (c1, . . . , ck−1)� ∈
R

k−1. Similar to the arguments in (29), we obtain the follow-
ing problem

min
B,c

1

n

n�
i=1

k�
j=1

τij(zij−x�
i Bwj−c�wj)

2+λ(Tr(B�B) + c�c).

(32)

We are now ready to convert (32) to a weighted linear
regression model. More precisely, consider a set of obser-
vations {(�xt, �zt, ωt), t = 1, . . . , n × k = N}, with �xt =
wj ⊗ (1,xi) ∈ R

(k−1)(d+1), �zt = zij and ωt = kτij for
t = (i−1)k+j. Define β = (c1, b�1 , . . . , ck−1, b

�
k−1)�. It can

be verified that (32) is equivalent to

min
β

1
N

N�
t=1

ωt(�zt − �x�
t β)2 + λβ�β, (33)

where ωt is the weight for the t-th observation. In contrast to
the original setting, problem (33) has more observations and
larger dimensions of covariates, but the number of parameters
remains the same. There are many well-developed solvers
for the linear regression problem (33), such as stochastic
algorithms [89], [90] and many numerical methods in the
monograph [91]. In this study, we apply the R glmnet
package which employs the coordinate descent strategy. More
details on the method can be found in [92].

VI. NUMERICAL STUDIES

In this section, we use extensive simulations and several real
datasets to assess the performance of the proposed SPMSVM
method. For comparison purposes, we consider several com-
petitive MSVMs, including OVOSVM (one-versus-one exten-
sion of binary SVM), WWMSVM [23], CSMSVM [24],
GenSVM [27] and RAMSVM [28]. Specifically, we select
the best GenSVM in terms of predication accuracy with
hyperparameters (p, τ) ∈ {1, 1.5, 2} × {−0.9, 0.5, 5}, and
the best RAMSVM with γ ∈ {0, 0.1, . . . , 1}, which are
suggested in [27] and [28], respectively. Moreover, the REC
method [43] can be viewed a special case of SPMSVM, whose
results are also exhibited for comparison. All the methods
are implemented in the R environment [93], and some well-
known packages including e1071, kernlab, gensvm and
ramsvm are used for existing MSVMSs. As mentioned earlier,
the classifiers in [19], [21], [53], and [58] are special cases
of these considered methods, so we do not highlight them
individually due to the space limit.

Consider a testing set {(xi, yi), i = 1, . . . , n∗}. If the pre-
dicted labels by a classifier are {�yi, i = 1, . . . , n∗}, then the
corresponding prediction error is defined as 1

n∗
�n∗

i=1 �(yi 
=�yi), i.e., the proportion of misclassified testing points. In par-
ticular, only the SPMSVM (and hence the special case REC)
can directly provide probability estimation. We utilize the
mean absolute error (MAE) to measure the errors of proba-
bility estimation, 1

n∗k

�n∗

i=1

�k
j=1 | �Pj(xi) − Pj(xi)|, where

Pj(xi) and �Pj(xi) are the true and estimated probabili-
ties, respectively. The MAE has been widely used in the
MSVM literature to measure the quality of a classifier [22],
[33], [43], [58]. In addition, we also consider the Brier
score [94] as a complement, which does not require the
true probability. Specifically, the Brier score is defined as
1

n∗
�n∗

i=1

�k
j=1[ �Pj(xi) − �(yi = j)]2. For both MAE and

Brier score, a lower value indicates a better performance with 0
being the best possible value.

For each method, we tune the best classifier on a grid of
30 different values of λ: {2−15, 2−14, . . . , 214}. Note that the
SLS loss contains two parameters, the convex combination
parameter γ and the scale parameter α. We will consider
different combinations of (γ, α) to examine their effects on
SPMSVM.

A. Simulations

In this section, we conduct three simulations, ranging from
small size to large size. For each simulation, we generate a
training set to learn a model, a separate tuning set to select
the tuning parameter λ, and a testing set to evaluate the
performance of the tuned model. Let n and n∗ be the size
of the training/tuning set and the testing set, respectively.
In particular, we fix n∗ = 10000. The detailed data generating
processes are stated as follows.

Example 1: We consider a classification problem with 6 cat-
egories and d covariates. For j = 1, · · · , 6, let Pr(Y = j) = 1

6
and the first 2 covariates of [X |Y = j] be distributed as
N (μj , σ

2I2) with centers

μj =
�
2
0

�
,

�
1√
3

�
,

�
−1√

3

�
,

�
−2
0

�
,

�
−1
−
√

3

�
,

�
1

−
√

3

�
,

and σ ∈ {0.5, 0.7}. The last d − 2 covariates are noise and
assumed i.i.d. N (0, 0.5).

Example 2: In this example, we generate a 4-category
classification dataset with 5 covariates. Assume that Pr(Y =
j) = 1

4 for each category. Specifically, the first two covariates
of [X |Y = j] follows a mixture Gaussian distribution

1
2
N ((cos(jπ/4), sin(jπ/4))�, σ2I2)

+
1
2
N ((cos(jπ/4 + π), sin(jπ/4 + π))�, σ2I2),

where σ ∈ {0.3, 0.4}. The remaining 3 covariates are i.i.d.
N (0, 0.3).

Note that the parameter σ in both examples controls the
scale of strength of true signal. As σ grows, there are more
overlaps for all classes, and the classification performance
may naturally get worse. Due to the settings of these simu-
lations, we apply linear learning for Example 1 and kernel
learning with Gaussian radial basis function (RBF) kernel
for Example 2. Specifically, we follow the guideline provided
in [28] to choose the bandwidth parameter for the Gaussian
kernel, that is, we chose it as the median of all the pairwise
Euclidean distances of training inputs.

First of all, we investigate the effects of (γ, α) on SPMSVM
based on Example 1 with d = 10 and σ = 0.5. We use
100 data points for training, 100 data points for tuning and
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TABLE IV

CLASSIFICATION ERRORS OF SPMSVM BASED ON EXAMPLE 1 UNDER DIFFERENT VALUES OF (γ, α)

another 10000 data points for testing. We consider γ ∈
{0, 0.1, . . . , 1} and α ∈ {−10,−9, · · · , 0, 1, 2 . . . , 10}. Based
on 100 replications, the estimated classification errors are
shown in Table IV. Generally, for a fixed γ, the prediction
error is non-increasing as α increases. For a fixed α < 0, there
is a threshold γ0 such that SPMSVM performs inadequately
at γ ≥ γ0. This is consistent with our theoretical analysis
on the effects of (γ, α) in Section V-A. More specifically,
Fisher consistency is a fundamental requirement for the suc-
cessful implementation of classifiers. In terms of the proposed
SPMSVM, the Fisher consistency may not hold when γα +
1 − γ ≤ 0 and hence unsatisfactory performance can be
expected. In what follows, we consider γ ∈ {0, 0.1, . . . , 1}
and α ∈ {−1, 0, 1} for tuning of SPMSVM.

Next, we conduct comparison studies based on Example 1
under a variety of settings of (n, d, σ). The average compu-
tational time of training and the label prediction errors of
testing based on 100 replications are reported in Table V.
As seen, SPMSVM achieves the most accurate label prediction
in all the considered settings. As the dimension d or the
noise parameter σ increases, the prediction accuracy of all
methods deteriorates, which is consistent with our simulation
designs. We also observe that the prediction error of SPMSVM
decreases and approaches the Bayes error as the sample size
n grows, which indicates that SLS loss is Fisher consistent.
In terms of training time, SPMSVM and REC are fairly
comparable and they outperform the other MSVMs. On the
other hand, Table VI exhibits the comparison results for
Example 2 under the Gaussian kernel. SPMSVM is again
the best classifier in terms of prediction accuracy, and it is
computationally efficient.

Because only REC and SPMSVM can directly estimate the
category probability and OVOSVM can heuristically provide
some probabilistic outputs [46], [95], we present the esti-
mated MAE and Brier score by these three MSVMs based
on Examples 1 and 2 in Table VII. As seen, OVOSVM
outperforms SPMSVM in several settings for linear learning of
Example 1, while SPMSVM is uniformly better for nonlinear
learning of Example 2, which implies that the heuristic method
for probability estimation in OVOSVM is less efficient for
datasets that are not linearly separable. It is important to recall
that SPMSVM outperforms OVOSVM by a large margin in

terms of the classification performance even for the linear
cases, as previously shown in Table V. Between SPMVM and
REC, it is observed that SPMSVM outperforms REC for both
criterion in all the simulation settings. This is reasonable as
REC is a special case of SPMSVM with γ = 0.5, and the
results actually indicate that the optimal γ for all the simulated
data is not 0.5. Moreover, the MAE is uniformly smaller
than the corresponding Brier score as the exact distribution
of data generating process is known and the true probability
of category is available.

Our last simulation is intended to investigate the scalability
of the proposed SPMSVM. The datasets are generated with
the true signal linearly depending on a few covariates. The
simulation settings are given as follows.

Example 3: We consider 10 categories and 10 covariates.
Assume that Pr(Y = j) = 0.1, and the first two covariates
of [X |Y = j] follows N ((cos(jπ/5), sin(jπ/5))�, 0.04I2),
where the 10 mean vectors are equally distributed on the unit
circle. The other 8 covariates are i.i.d. N (0, 0.01). Let the sizes
of training, tuning and testing sets be 100000, 100000 and
10000, respectively.

For each simulated data, we apply linear learning for
all compared methods. In particular, we implement the lin-
ear SPMSVM using the glmnet package, as discussed
in Section V-B. Similar to Example 1 and 2, we conduct
100 replications for different simulated dataset, and record
the means of classification error, computational time for train-
ing a model, and probability estimation measures for those
related methods. Because CSMSVM, GenSVM, RAMSVM
and WWMSVM suffer from the memory or convergence
issues, we only summarize the results for the other methods
in Table VIII. As seen, SPMSVM enjoys the near-optimal
performance comparing with the Bayes classifier, as well as
more accurate estimated probability. It is evident that the
running time of SPMSVM is considerably shorter than that
of OVOSVM, indicating that the regression-based implemen-
tation for SPMSVM could scale very well to large data sizes.

B. Real Data Analysis

In this subsection, we demonstrate the SPMSVM via seven
real datasets available from open data sources. A summary of
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TABLE V

RESULTS OF LABEL PREDICTION ERROR AND TRAINING TIME FOR EXAMPLE 1. THE ESTIMATED BAYES ERROR FOR σ = 0.5/0.7 IS 0.0432/0.1534,
RESPECTIVELY. THE BOLD NUMBERS INDICATE THE BEST RESULTS FOR THAT SETTING. THE NUMBERS IN PARENTHESES REPRESENT THE

ESTIMATED STANDARD ERRORS

TABLE VI

RESULTS OF LABEL PREDICTION ERROR AND TRAINING TIME FOR EXAMPLE 2. THE ESTIMATED BAYES ERROR FOR σ = 0.3/0.4 IS 0.2017/0.3386,
RESPECTIVELY. THE BOLD NUMBERS INDICATE THE BEST RESULTS FOR THAT SETTING. THE NUMBERS IN PARENTHESES

REPRESENT THE ESTIMATED STANDARD ERRORS

these datasets is shown in Table IX, where nmin/nmax is the
size of the minority/majority categories, respectively. The pre-
dictors of every dataset are standardized to have sample mean
zero and standard deviation one. In our analysis, we randomly

split each dataset into three subsets with equal size for training,
tuning and testing. Based on our preliminary investigation,
we find that linear classifiers are sufficient, and hence only
carry out linear learning for all compared methods. Since the
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TABLE VII

RESULTS OF PROBABILITY ESTIMATION ERRORS ON ALL SIMULATED EXAMPLES FOR OVOSVM, REC AND SPMSVM. THE BOLD NUMBERS
INDICATE THE BEST RESULTS FOR THAT SETTING

TABLE VIII

RESULTS OF LABEL PREDICTION ERROR, PROBABILITY ESTIMATION ERRORS AND TRAINING TIME FOR EXAMPLE 3. THE ESTIMATED

BAYES ERROR IS 0.1221. THE NUMBERS IN PARENTHESES REPRESENT THE ESTIMATED STANDARD ERRORS

TABLE IX

SUMMARY OF THE REAL DATASETS

Fig. 3. Plots of the average prediction errors on the serval real datasets for SPMSVM.

true probabilities for all datasets remain unknown, we only
record the averages and standard deviations of prediction error
and computational time for training based on 100 replications.
The other settings are analogous to those in Section VI-A.

The results of prediction error and training time on the
real datasets are reported in Table X. It is evident that the
SPMSVM achieves the most accurate prediction for almost all
the datasets and the difference with RAMSVM on Dataset 4
is actually negligible. On the other hand, the simplex-based

MSVMs, i.e., REC and SPMSVM, are more computation-
ally efficient than the other MSVMs (note CSMSVM and
RAMSVM do not converge within 48 hours for Datasets 5).
Because REC is a special case of SPMSVM, it generally
requires less computational time. It is important to note that
prediction errors are generally large for Datasets 4 and 5 due
to the imbalanced categories. Based on our investigation, the
DNN-based methods also fail to provide a satisfactory solution
for these two datasets and the prediction errors are respectively
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TABLE X

RESULTS OF LABEL PREDICTION ERROR AND TRAINING TIME FOR THE REAL DATASETS. THE BOLD NUMBERS INDICATE THE BEST RESULTS FOR THAT
SETTING. THE NUMBERS IN PARENTHESES REPRESENT THE ESTIMATED STANDARD ERRORS

0.6791 and 0.9199 if the standard multilayer perceptron is
employed. Therefore, more advanced methods are needed to
improve the performance in presence of imbalanced cate-
gories. For example, the weighted learning and cost-sensitive
learning could be promising tools for imbalanced classifica-
tion [97], [98], [99], [100], and see some survey papers, [101],
[102], [103], for more advanced methods.

Recall that the classifier in [53] corresponds to SPMSVM
with γ = 0 and the classifier in [43] (REC) is a special case of
SPMSVM with γ = 0.5. To further illustrate the gained advan-
tage of SPMSVM over these two existing methods, Figure 3
provides a visualization of the effect of γ in SPMSVM,
whose pattern changes for three different datasets (Datasets 2,
3 and 5). According to Figure 3, these two methods yield
the suboptimal performances for the three datasets, while
the SPMSVM achieves more accurate prediction due to the
flexible γ.

Overall, the effectiveness of the SPMSVM has been verified
by the simulated and real datasets. The SPMSVM can provide
the label prediction and probability estimation simultaneously,
and enjoy the convenience of computation.

VII. CONCLUSION

This study provides a systematic analysis on simplex-based
proximal MSVM. Two distinct features of the proposed
SPMSVM are a flexible family of squared loss functions and
a simplex-based framework. Compared to regular MSVMs,
the general closed-form solution for SPMSVM was derived,
which is established by solving a unconstrained linear sys-
tem. Furthermore, the linear SPMSVM was converted to a

weighted regression problem and hence is highly scalable
by using the well-developed regression solvers. In addition
to the label prediction, estimation of the category proba-
bility was also achieved by using the SPMSVM. Theoret-
ically, the SPMSVM was shown to cover many existing
MSVMs and own many statistical properties, some of which
are rarely discussed in the literature of MSVMs. Numerical
results demonstrated that the SPMSVM outperforms most
existing MSVMs in terms of the computational speed and
the prediction accuracy, and it can be a competitive and
promising multicategory classifier in a variety of application
domains.

One important future direction is to scale the SPMSVM
to extremely large datasets (e.g., millions of observations).
In our study, we established two possible implementations
for SPMSVM: one is to directly use the closed-form solu-
tion (31) and the other is to apply the advanced solver
for the regression-based formulation (33). Our suggestion is
that when there are at most 10k observations, the solver
using the closed-form solution is more suitable, while the
regression-based implementation is preferable if the dataset
contains over 10k observations. On the other hand, when the
datasets are beyond the capacity of a single/center machine
and there are communication bandwidth constraints, more
advanced techniques have to be invoked. One possible way
is to use the parallel computation where the data are stored
at different machines in a distributed manner. In such cases,
distributed statistical learning algorithms have to be developed.
For more technical details, we refer readers to [104], [105],
and [106] and a recent survey paper by [107].
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APPENDIX A
TECHNICAL PROOFS

Lemma 1 implies that W has the full rank k − 1.
Lemma 1: For the matrix W, WW� = k

k−1 Ik−1.
Proof of Lemma 1: By the definition of W, we know that

W�W =
k

k − 1
Ik − 1

k − 1
1k1�

k .

By left multiplying W, we have WW�W = k
k−1W, which

implies (WW� − k
k−1 Ik−1)W = 0. Since W has rank

k − 1, we can find k−1 independent columns as an invertible
submatrix �W. Hence, we know (WW� − k

k−1 Ik−1)�W = 0,
which implies WW� = k

k−1 Ik−1.
Proof of Proposition 1: For a fixed x ∈ X , let g =

(g1(x), . . . , gk(x))� and f = (f1(x), . . . , fk−1(x))�.
Denote S1 = {g ∈ R

k|
�k

j=1 gj = 0} and S2 = {W�f ∈
R

k|f ∈ R
k−1}. We prove S1 = S2 in two directions.

• First, for any g ∈ S1, we can find f = (1 − 1
k )Wg ∈

R
k−1 such that W�f = (1 − 1

k )W�Wg = (Ik −
1
k1k1�

k )g = g ∈ S2. Hence, S1 ⊆ S2 holds.
• Reversely, for any g� ∈ S2, then there exists a f ∈ R

k−1

such that g� = W�f . Furthermore, we have
�k

j=1 g
�
j =

1�
k g� = 1�

k W�f = (W1k)�a = 0, which implies that
g� ∈ S1. So S2 ⊆ S1.

Thus, S1 = S2. By the arbitrariness of x, we have G = G�.
Proof of Proposition 2: We first show that L(u, y) =

γ(α−�u,wy	)2 +(1− γ)
�

j �=y(1+ �u,wj	)2 is 2-Nemitski
loss function with p = 2.

L(u, y)

=γ(α − �u,wy�)2 + (1 − γ)
�
j �=y

(1 + �u, wj�)2

=γα2 + (1 − γ)(k − 1) − 2(γα + 1 − γ)�u,wy�

+ u�
�k(1 − γ)

k − 1
Ik−1 + (2γ − 1)wyw

�
y

�
u

≤γα2 + (1 − γ)(k − 1) + |γα + 1 − γ|(1 + �u�2) +
k

k − 1
�u�2

=γα2 + (1 − γ)(k − 1) + |γα + 1 − γ|
+
�
|γα + 1 − γ| + k

k − 1

�
�u�2 .

The matrix k(1−γ)
k−1 Ik−1 + (2γ − 1)wyw�

y has eigenvalues
k(1−γ)

k−1 and k(1−γ)
k−1 + 2γ − 1, smaller than k

k−1 for any
γ ∈ [0, 1].

Note that the Hessian matrix is ∇2L(u, y) = k(1−γ)
k−1 Ik−1 +

(2γ − 1)wyw�
y � 0. Therefore, L(u, y) is convex and

continuous. Theorem 1 in the appendix of [32] ensures that
E : L2(PX) �→ R+ is a well defined, convex and continuous
functional.

Proof of Proposition 3: Let f∗ : X �→ R
k−1 be the

minimizer of E(f), then f∗ satisfies ∇E(f∗) = 0. Theorem
1 in the appendix of [32] also guarantees that f∗(x) minimizes
the conditional L-risk Sx(u) for any x ∈ X . Denote A(x) =
k(1−γ)

k−1 Ik−1+(2γ−1)
�k

j=1 Pj(x)wjw�
j and b = γα+1−γ,

we can write

Sx(u) =
k�

j=1

PjL(u, j)

=u�A(x)u− 2b
k�

j=1

�u, Pjwj	 + γα2 + (1 − γ)(k − 1).

Let aj = 1
(2γ−1)Pj+1−γ for j = 1, . . . , k. Setting the first

derivatives to be zero gives k�
j=1

2
aj

wjw�
j

�
u∗ − 2b

k�
j=1

Pjwj = 0. (34)

Since the matrix
�k

j=1
2
aj

wjw�
j is positive definite, (34) has

an unique solution f∗(x) = u∗. Denote sj = �u∗,wj	 for
j = 1, . . . , k. We can rewrite (34) as

k�
j=1

(sj/aj − bPj)wj = 0.

By the property of W, for j = 1, . . . , k, we have

sj/aj − bPj = C ⇒ sj = aj(bPj + C).

Thanks to the condition
�k

j=1 sj = 0, we have

0 =
k�

j=1

aj(bPj + C) = C

k�
j=1

aj + b

k�
j=1

ajPj .

Thus, we get C = − b
�k

j=1 ajPj�
k
j=1 aj

and

sj = baj


Pj −

�k
t=1 atPt�k

t=1 at

�
, j = 1, . . . , k.

Solving the k linear equations �u∗,wj	 = sj , we have

u∗ = (WW�)−1
k�

j=1

sjwj =
k − 1
k

k�
j=1

sjwj ,

where the last equation holds by Lemma 1. When x varies in
X , we get the desired closed-form of f∗(x) = u∗ at a fixed
x ∈ X . Specifically, we have

�u∗,wj	 =

�
(α+ 1)(Pj − 1

k ), if γ = 0.5;
b

2γ−1


1 − kaj�

k
t=1 at

�
, if γ 
= 0.5.

(35)

Last, we show that f∗ ∈ L2(X , PX). Note that

�f∗(x)�2 =
k − 1

k

�2 k�
j=1

sjwj

�� k�
j=1

sjwj

�

=
k − 1
k

k�
t=1

s2t

≤
�

(k−1
k )2(α+ 1)2, if γ = 0.5;

(k−1)2b2

(2γ−1)2 , if γ 
= 0.5.
.

So f∗ is almost surely bounded and belongs to L2(PX).
Proof of Theorem 1: By Proposition 3 and γα+ 1− γ >

0, following (35), we can verify that Pi > Pj ⇐⇒ �f∗,wi	 >
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�f∗,wj	. Hence, we have argmaxj Pj = argmaxj�f∗,wj	,
and Fisher consistency easily follows.

Proof of Theorem 2: When γ = 1
2 , by Proposition 3,

we know f∗ = (k−1)(α+1)
k

�k
j=1 Pjwj and s∗j = (α+1)Pj −

α+1
k . Hence, we have Pj = 1

α+1s
∗
j + 1

k . Recall the condition
(34), we know

k�
j=1

[(2γ − 1)s∗jPj − bPj + (1 − γ)s∗j ]wj = 0,

and (2γ − 1)s∗jPj − bPj + (1 − γ)s∗j = C for any j. Let
dj = (1 − γ)s∗j and cj = 1

(2γ−1)s∗
j−b . We get

1
cj
Pj + dj = C ⇒ Pj = cj(C − dj).

Since
�k

j=1 Pj = 1, we have C =
1+
�k

j=1 cjdj�k
j=1 cj

and

Pj =
1 +

�k
t=1 ctdt�k

t=1 ct
cj − cjdj .

Plugging dj’s into Pj’s and using some tedious algebra, the
desired results are established.

Proof of Theorem 3: Define A = k(1−γ)
k−1 Ik−1 +

(2γ − 1)
�k

j=1 Pj(x)wjw�
j , where the dependence on x

is omitted. Assume λmin(A) is the smallest eigenvalue
of A. Denote Xf = {x ∈ X|Cf∗(x) 
= Cf (x)} and
b = γα+ 1 − γ > 0. By definition, the excess L-risk is

E(f ) − E∗

=
	
X

k�
j=1

Pj(x){L(f (x), j) − L(f∗(x), j)}dP (x)

=
	
X


 k�
j=1

2b�f∗(x) − f(x), Pj(x)wj	

+ f�(x)Af (x) − f∗�(x)Af∗(x)
�
dP (x)

=
	
X



f�(x)Af (x) + f∗�(x)Af∗(x)

− 2f∗�(x)Af (x)
�
dP (x)

=
	
X

(f(x) − f∗(x))�A(f (x) − f∗(x))dP (x)

≥λmin(A)
	
X
�f (x) − f∗(x)�2

dP (x). (36)

(i) Case γ = 1
2

. Since A = k
2(k−1) Ik−1 and E(f ) − E∗ =

k
2(k−1)

�
X �f∗(x) − f (x)�2

dP (x), the excess misclassifica-

tion risk is

R(Cf ) −R∗

=
	
Xf

{PCf∗ (x)(x) − PCf (x)(x)}dP (x)

=
	
Xf

1
α+ 1

�f∗(x),wCf∗ (x) − wCf (x)	dP (x)

=
1

α+ 1

	
Xf

{�f∗(x) − f (x),wCf∗ (x) − wCf (x)	

+ �f(x),wCf∗ (x) − wCf (x)	}dP (x)

≤ 1
α+ 1

	
Xf

�f∗(x) − f(x),wCf∗ (x) − wCf (x)	dP (x).

Moreover, using Jensen and Cauchy-Schwarz inequalities,
we can write

{R(Cf ) −R∗}2

≤ 1
(α+ 1)2

	
Xf

{�f∗(x) − f(x),wCf∗ (x) − wCf (x)	}2dP (x)

≤ 2k
(k − 1)(α+ 1)2

	
Xf

�f∗(x) − f (x)�2
dP (x)

=
4

(α+ 1)2
{E(f ) − E∗}.

Taking square roots, the result for γ = 1
2 in (16) follows.

In what follows, we consider the case γ 
= 1
2 . By Proposi-

tion 3, we know �f∗(x),wj	 = b
2γ−1


1 − kaj�

k
t=1 at

�
, where

aj = 1
(2γ−1)Pj+1−γ for j = 1, . . . , k. By Theorem 2,

we have Pj(x) =

1 + k(1−γ)

2γ−1

�
cj�k

i=1 ci
− 1−γ

2γ−1 with cj =
1

(2γ−1)�f∗(x),wj	−b for j = 1, . . . , k. One can verify that each

cj = − kbaj�
k
t=1 at

< 0. The corresponding excess misclassifica-

tion risk is

R(Cf ) −R∗

=
	
Xf

{PCf∗ (x)(x) − PCf (x)(x)}dP (x)

=
	
Xf


1 +

k(1 − γ)
2γ − 1

� cCf (x)�k
t=1 ct


cCf∗ (x)

cCf (x)
− 1

�
dP (x)

≤[2γ−1+k(1−γ)]
	
Xf

�f∗(x),wCf∗ (x)−wCf (x)	
b−(2γ−1)�f∗(x),wCf∗ (x)	

dP (x).

(37)

Note that A = k(1−γ)
k−1 Ik−1 + (2γ − 1)

�k
j=1 Pj(x)wjw�

j =�k
j=1{γPj(x) + (1 − γ)(1 − Pj(x))}wjw�

j , we know

λmin(A)≥min
j

k

k−1
{γPj(x)+(1−γ)(1−Pj(x))}≥ kδ

k−1
.

(38)

(ii) Case γ ∈ [0, 1
2
). Since �f∗(x),wCf∗ (x)	 ≥ 0 and

�f(x),wCf∗ (x) − wCf (x)	 ≤ 0, according to (37), the excess
misclassification risk is

R(Cf ) −R∗

≤[2γ − 1 + k(1 − γ)]

�
Xf

�f∗(x),wCf∗ (x) − wCf (x)�
b+ (1 − 2γ)�f∗(x),wCf∗ (x)�

dP (x)

≤2γ − 1 + k(1 − γ)

b

�
Xf

{�f∗(x),wCf∗ (x) − wCf (x)�}dP (x)

≤2γ − 1+k(1−γ)
b

�
Xf

{�f∗(x) − f(x),wCf∗ (x) − wCf (x)�}dP (x).

Combining (36) and (38), we have

{R(Cf ) −R∗}2

≤
2γ − 1 + k(1 − γ)

b

�2 2k
k − 1

	
Xf

�f∗(x) − f(x)�2
dP (x)

≤2[2γ − 1 + k(1 − γ)]2

δb2
{E(f) − E∗}.
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(iii) Case γ ∈ (1
2
, 1]. Under Assumption 2, we have 1

1−δ ≤
aj = 1

γPj(x)+(1−γ)(1−Pj(x)) ≤ 1
δ . By (35) and (37), the

corresponding excess misclassification risk is

R(Cf ) − R∗

≤[2γ − 1 + k(1 − γ)]

�
Xf

�f∗(x), wCf∗ (x) − wCf (x)	
b − (2γ − 1)�f∗(x), wCf∗ (x)	

dP (x)

=
2γ − 1 + k(1 − γ)

b

�
Xf

�k
t=1 at

kaCf∗ (x)
{�f∗(x), wCf∗ (x) − wCf (x)	}dP (x)

≤ [2γ−1+k(1−γ)](1−δ)

bδ

�
Xf

{�f∗(x)−f(x), wCf∗ (x)−wCf (x)	}dP (x).

Combining (36) and (38), we have

{R(Cf ) −R∗}2

≤
� [2γ−1+k(1−γ)](1−δ)

bδ

�2 2k

k−1

�
Xf

�f ∗(x)−f (x)�2
dP (x)

≤2[{2γ − 1 + k(1 − γ)}(1 − δ)]2

b2δ3
{E(f) − E∗}.

Summarizing the results in Case (i), (ii) and (iii), the proof is
complete.

To prove Theorem 4, we first show the following lemma.
Lemma 2: The generalised Tsybakov condition is equivalent

to that for all f ∈ L2(PX):

P (Xf ) ≤ Ca{R(Cf ) −R∗} a
a+1 ,

where Ca = (a+ 1)C
1

a+1 a−
a

a+1 > 0 is a constant depending
on a.

Proof of Lemma 2: Since SLS loss is Fisher consistent,
we have Cf∗ is Bayes optimal, which implies that the index
(1) in P(1)(x) is Cf∗(x). Denote mf (x) � PCf∗ (x)(x) −
PCf (x)(x). Therefore, mf (x) ≥ P(1)(x) − P(2)(x), and
further

R(Cf ) −R∗

=
	
Xf

mf (x)dP (x)

≥
	
Xf

mf (x)�(mf (x) ≥ t)dP (x)

≥t
	

X
�(mf (x) ≥ t)dP (x)−

	
X\Xf

�(mf (x)≥ t)dP (x)
�

≥t

1 −

	
X
�(mf (x) < t)dP (x) −

	
X\Xf

1dP (x)
�

≥t(1 − Cta − P (X\Xf )) = t(P (Xf ) − Cta).

Now taking the minimum of the above bound with respect to t,

we get t∗ =


P (Xf )
C(a+1)

� 1
a

. Finally plugging t∗ in the bound,

we get R(Cf )−R∗ ≥ a

C
1
a (a+1)

a+1
a

{P (Xf )} a+1
a . This shows

that

P (Xf ) ≤ (α+ 1)C
1

a+1 a−
a

a+1 {R(Cf ) −R∗} a
a+1 .

Define Ca = (a + 1)C
1

a+1 a−
a

a+1 , then the desired result is
established.

Proof of Theorem 4: If t ≤ mf (x), then tmf (x) ≤
m2

f (x) and therefore mf (x) ≤ m2
f (x)

t . Note that

R(Cf ) −R∗ =
	
Xf

mf (x)dP (x)

=
	
Xf

mf (x)�(mf (x) ≤ t)dP (x)

+
	
Xf

mf (x)�(mf (x) > t)dP (x)

≤tP (Xf ) +
1
t

	
Xf

m2
f (x)dP (x)

≤tCa{R(Cf ) −R∗} a
a+1 +

C2
γ

t
{E(f) − E∗}.

In the last inequality we used Theorem 3 and Lemma 2.
Minimizing the right hand side of the above inequality over t,
we get the result (18).

Proof of Theorem 5: Let V1(u) = (α− u)2 and V2(u) =
(1 − u)2. Note that

Sx(u) =
k�

j=1

L(u, j)Pj

=
k�

j=1

Pj

�
γV1(�u,wj	) + (1 − γ)

�
i�=j

V2(−�u,wi	)
�

=
k�

j=1

[γPjV1(�u,wj	)+(1−γ)(1−Pj)V2(−�u,wj	)].

By definition, ΔSx(u) = Sx(u) − Sx(u∗). We can rewrite
the RHS of the display as

k�
j=1

[γPjV1(�u,wj	) + (1 − γ)(1 − Pj)V2(−�u,wj	)]

−
k�

j=1

[γPjV1(�u∗,wj	) + (1 − γ)(1 − Pj)V2(−�u∗,wj	)].

With adding and subtracting, rearrange to obtain that the above
display is equivalent to

(u − u∗)�
� k�

j=1

[γPj + (1 − γ)(1 − Pj)]wjw
�
j

�
(u − u∗)

+
k�

j=1

[γPjV
�
1(�u∗,wj�)−(1−γ)(1−Pj )V �

2 (−�u∗,wj�)]�u−u∗,wj�

In combination with the desired inequality, observe
that the above is essentially RHS of Theorem 5
plus �u∗ − u,

�k
j=1[γPjV

�
1(�u∗,wj	) − (1 − γ)(1 −

Pj)V �
2 (−�u∗,wj	)]wj	, so it suffices to show the latter,

denoted by U , equals 0.
Since u∗ minimizes Sx(u) for fixed x, then we know that

k�
j=1

[γPjV
�
1(�u,wj	)− (1−γ)(1−Pj)V �

2 (−�u,wj	)]wj = 0.

Thus U = 0, and the desired result follows.
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Proof of Theorem 6: By Theorem 5, we have

ΔSx(u)= (u − u∗)�
� k�

j=1

[γPj + (1 − γ)(1 − Pj)]wjw
�
j

�
(u − u∗)

≤ k

k − 1
(u − u∗)�(u − u∗).

Here, we use the fact that the largest eigenvalue of�k
j=1[γPj + (1 − γ)(1 − Pj)]wjw�

j is smaller than
k

k−1 maxj{γPj + (1 − γ)(1 − Pj)} ≤ k
k−1 . Because τj �

μ, j = 1, . . . , k − 1 in Assumption 4, we can multiply both
sides by n2q , and take expectation to obtain

n2qΔE(�fn
) ≤ k

	
X,Y

��� sup
1≤j≤k−1

Tj

���2dP (X,Y ).

Because of Assumption 5, the RHS is bounded, and the desired
result follows.

Proof of Theorem 7: We find that

ΔSx(u1) − ΔSx(u2)

=
k�

j=1

[γPj + (1 − γ)(1 − Pj)]{�u1 − u∗,wj�2 − �u2 − u∗,wj�2}

=
k�

j=1

[γPj + (1 − γ)(1 − Pj)]�u1 − u2,wj��u1 + u2 − 2u∗,wj�

≤�u1 − u2�∞�u1 + u2 − 2u∗�∞ ·
k�

j=1

[γPj + (1 − γ)(1 − Pj)] �wj�2
1

≤(k − 1)2�u1 − u2�∞�u1 + u2 − 2u∗�∞.

The last inequality uses the fact that �wj�1 ≤
√
k − 1, ∀j.

In particular, let u1 = �fn
(x), u2 = fH(x) and u∗ = f∗(x).

By Assumption 6, �fj − fH
j is nq consistent, and | �fj + fH

j −
2f∗

j | ≤ | �fj −fH
j |+2(|fH

j |+ |f∗
j |) → 2(|fH

j |+ |f∗
j |). The rest

of the proof is analogous to that of Theorem 5.
Proof of Theorem 8: Plugging g = W�f into problem

(21), then we have

min
f∈�k−1

j=1 ({1}+HK)

1
n

n�
i=1

V (W�f(xi), yi)+λ
k�

j=1

�w�
j h�2

HK
.

Define a matrix H ∈ R
(k−1)×(k−1) with the elements

�hi, hj	HK . We can rewrite the regularization as

k�
j=1

�w�
j h�2

HK
=

k�
j=1

w�
j Hwj

= Tr
 k�

j=1

w�
j Hwj

�
= Tr


H

k�
j=1

wjw�
j

�
.

By Lemma 1, we know WW� =
�k

j=1 wjw�
j = k

k−1Ik−1.
Thus, the regularization is equivalent to k

k−1Tr(H) =�k−1
j=1 �hj�2

HK
. The formulation (22) is established.

Proof of Theorem 9: Consider fj(x) = cj + hj(x) with
hj ∈ HK . Decompose hj(·) =

�n
i=1 bijK(xi, ·) + ρj(·)

for j = 1, . . . , k − 1, where bij’s are some constants and
ρj(·) is the element in the RKHS orthogonal to the span of
{K(xi, ·), i = 1, . . . , n}. By the definition of the reproducing

kernel K(·, ·), �hj ,K(xi, ·)	HK = hj(xi) for i = 1, . . . , n.
Then

fj(xi) = cj + hj(xi) = cj + �hj ,K(xi, ·)	HK

= cj + �
n�

s=1

bsjK(xs, ·) + ρj(·),K(xi, ·)	HK

= cj +
n�

s=1

bsjK(xs,xi).

Thus the data fit functional in (23) does not depend on ρj(·) at
all for j = 1, . . . , k−1. On the other hand, we have �hj�2

HK
=�n

s=1

�n
t=1 bsjbtjK(xs,xt) + �ρj�2

HK
for j = 1, . . . , k− 1.

Let h∗j (·) =
�n

i=1 bijK(xi, ·) and f∗
j (x) = h∗j (·) + cj for

j = 1, . . . , k − 1. Then f∗
j (xi) = fj(xi) and

k−1�
j=1

��h∗j��2

HK
=

k−1�
j=1

n�
s=1

n�
t=1

bsjbtjK(xs,xt)

≤
k−1�
j=1

n�
s=1

n�
t=1

bsjbtjK(xs,xt) +
k−1�
j=1

�ρj�2
HK

=
k−1�
j=1

�hj�2
HK

.

Hence, the solution f∗(x) to minimize (23) can be expressed
as f∗

j (x) =
�n

i=1 bijK(xi,x)+cj for j = 1, . . . , k−1, where
bij’s and cj’s are some constants.

Proof of Theorem 10: To start with our proofs, we require
some lemmas.

Lemma 3 ([108, Rademacher complexity]): Let X be any
set, F a class of functions f : X �→ [0,M ] and let X and
S = {X1, . . . , Xn} be i.i.d. random variables with values
in X . Then for any θ > 0, with probability at least 1 − θ,
the following holds for all f ∈ F :

E[f(X)] ≤ 1
n

n�
i=1

f(Xi) +
2
n

ES



Eσ

�
sup
f∈F

n�
i=1

σif(Xi)
��

+M

�
log(1/θ)

2n
.

Here σ = (σ1, . . . , σn) are independent Rademacher vari-
ables, uniformly distributed on {−1, 1}.

Lemma 4 ([109, Corollary 1]): Given samples
{x1, . . . , xn} ∈ Xn. Let H ⊆ R

m be a Hilbert space
and F be a class of functions f : X �→ H and let
hi : H �→ R be L-Lipschitz continuous with respect to the
L2-norm. Then

Eσ

�
sup
f∈F

n�
i=1

σihi(f (xi))
�
≤
√

2LEσ

�
sup
f∈F

n�
i=1

m�
j=1

σijfj(xi)
�
,

where σij is an independent doubly indexed Rademacher
sequence and fj(xi) is the j-th component of f(xi).

Lemma 5: Fix t ∈ {1, . . . , k}, assume that �u� ≤ C, then
L(u, t) is μ-Lipschitz continuous in u with respect to the
L2-norm, i.e., for any u1,u2 ∈ R

k−1,

|L(u1, t) − L(u2, t)| ≤ μ �u1 − u2� .
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with μ = 2k
k−1C + 2|γα + 1 − γ|. Furthermore, we have

L(u, t) ≤ γα2 + (1 − γ)(k − 1) + μC.
Proof of Lemma 5: Recall the SLS loss L in (4), we note

that

L(u, t) =γ(α− �u,wt	)2 + (1 − γ)
�
j �=t

(1 + �u,wj	)2

∇uL(u, t)=2γ(�u,wt	−α)wt+2(1−γ)
�
j �=t

(1+�u,wj	)wj

=2Au + 2(γα+ 1 − γ)wt,

where A = k(1−γ)
k−1 Ik−1 + (2γ − 1)wtw�

t . From the mean
value theorem, there exists �u lies between u1 and u2 such that
L(u1, t)−L(u2, t) = {∇uL(u, t)}|�u=�u(u1−u2). Combining
with Cauchy-Schwartz inequality, we have

|L(u1, t) − L(u2, t)|
≤ �{∇uL(u, t)}|u=�u� �u1 − u2�
=2 �A�u + (γα+ 1 − γ)wt� �u1 − u2�
≤2{�A�u� + |γα+ 1 − γ| �wt�} �u1 − u2� .

The fact that λmax(A) ≤ k
k−1 implies �Au� ≤ k

k−1C for
any �u� ≤ C. By simple algebra, the Lipschitz continuity of
L is established. In particular, we have L(u, t) − L(0, t) ≤
μ �u� ≤ μC, thus L(u, t) is bounded.

Lemma 6: Suppose that Assumption 7 is met. Then
�f(x)� ≤ CX

√
Λ for any x ∈ X and f ∈ FΛ.

Proof of Lemma 6: Under Assumption 7, using the prop-
erties of RKHS, we know

fj(x)=�fj(·),K(x, ·)	≤�fj�HK
�K(x, ·)�HK

≤CX�fj�HK
.

Using Cauchy-Schwartz inequality, �f (x)� =��k−1
j=1 f

2
j (x) ≤ CX

��k−1
j=1 �fj�2

HK
≤ CX

√
Λ.

After the above preparations, we begin the main proof.
Define a hypothesis space related to FΛ,

G := {g : (X ,Y) �→ R|g(x, y) = L(f (x), y), f ∈ FΛ}.

By Lemmas 5 and 6, we know L(f (x), y) ∈ [0,M ]. Using
Lemma 3 for G, we have

EP [g(X, Y )] ≤ 1

n

n�
i=1

g(xi, yi) +
2

n
ES

	
Eσ



sup
g∈G

n�
i=1

σig(xi, yi)
��

+M

�
log(1/θ)

2n
. (39)

By Lemmas 4 and Lemma 5, we know

Eσ

�
sup
g∈G

n�
i=1

σig(xi, yi)
�

= Eσ

�
sup

f∈FΛ

�
i

σiL(f (xi), yi)
�

≤
√

2μEσ

�
sup

f∈FΛ

n�
i=1

k−1�
j=1

σijfj(xi)
�
,

(40)

where σij ’s are independent Rademacher variables. Moreover,
we can simplify the RHS term of (40) as follows,

Eσ

�
sup

f∈FΛ

n�
i=1

k−1�
j=1

σijfj(xi)
�

=Eσ

�
sup

f∈FΛ

n�
i=1

k−1�
j=1

σij�fj(·),K(xi, ·)	HK

�

=Eσ

�
sup

f∈FΛ

k−1�
j=1

�fj(·),
n�

i=1

σijK(xi, ·)	HK

�

≤Eσ

�
sup

f∈FΛ

����k−1�
j=1

�fj�2
HK

����k−1�
j=1

n�
s=1

n�
t=1

σisσitK(xs,xt)

 

≤
√

ΛEσ

�����k−1�
j=1

n�
s=1

n�
t=1

σisσitK(xs,xt)

 
.

Using Jensen’s inequality and Assumption 7, we have

Eσ

�����k−1�
j=1

n�
s=1

n�
t=1

σisσitK(xs,xt)

 

≤

����Eσ

� k−1�
j=1

n�
s=1

n�
t=1

σisσitK(xs,xt)
�

=

����k−1�
j=1

n�
i=1

K(xi,xi) ≤ CX

�
n(k − 1).

Plugging these results in (40), we have

Eσ

�
sup
g∈G

n�
i=1

σig(xi, yi)
�
≤ μCX

�
2n(k − 1)Λ.

Combining (39), by the definition of G, we establish the
desired result in Theorem 10.

Proof of Theorem 11: Note that Assumption 1 is used to
guarantee the existence of f∗. We need to show that, for any
� > 0, there exists f � ∈ H such that

ΔE(f �) = E(f �) − E∗ < �. (41)

Using the fact in Theorem 5, we know

ΔE(f �) =
	
X

ΔSx(f �(x))dP (x)

≤ k

k − 1

	
X
�f �(x) − f∗(x)�2dP (x)

≤ k

	
X

sup
1≤j≤k−1

�f �
j (x) − f∗

j (x)�2
∞dP (x)

≤ k sup
1≤j≤k−1

�f �
j − f∗

j �2
∞. (42)

Since f∗ is measurable in a compact input space X , by Lusin’s
theorem, there exists a continuous vector-valued function �f =
( �f1, . . . , �fk−1) such that�fj ∈ C(X ) and � �fj − f∗

j �∞ <
�

2k
, j = 1, . . . , k − 1.

(43)
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Note that �f is also continuous. The definition of the universal
kernel implies the existence of a function f � ∈ H such that

�f �
j − �fj�∞ <

�

2k
, j = 1, . . . , k − 1. (44)

By combining expressions (42)–(44), we obtain inequal-
ity (41).

Proof of Theorem 12: Define �En(f ) = 1
n

�n
i=1

L(f (xi), yi) and L0 = L(0, y) = γα2 + (1− γ)(k− 1) <∞
for notational convenience. The objective function in (27) can
be simplified as

J(f) = �En(f ) + λnΩ(f ).

Observe that J(�fn
) ≤ J(0) ≤ L0. Therefore λnΩ(�fn

) ≤
L0 − �En(�fn

) ≤ L0 and hence Ω(�fn
) ≤ L0

λn
. Set Λn = L0

λn
,

and we have �fn
∈ FΛn , as defined in (26). Let � > 0. By the

Borel-Cantelli Lemma it suffices to show

sup
n≥0

P (E(�fn
) − E∗ ≥ �) <∞.

By Theorem 11, we can fix a f � ∈ H such that E(f �) <
E∗ + �

2 . Note that f � ∈ FΛn for n sufficiently large. From
Theorem 10, for such large n and with probability at least
1 − θ

2 w.r.t. the training data,

E(�fn
) ≤�En(�fn

) + 2CXμn


2(k − 1)Λn

n
+ Mn


log(2/θ)

n

≤�En(f �) + λnΩ(f �) − λnΩ(�fn
) + 2CXμn


2(k − 1)Λn

n

+ Mn


log(2/θ)

n

≤�En(f �) + λnΩ(f �) + 2CXμn


2(k − 1)Λn

n

+ Mn


log(2/θ)

n
, (45)

where μn = 2k
k−1CX

√
Λn + 2|γα + 1 − γ| and Mn =

γα2 + (1 − γ)(k − 1) + CXμn

√
Λn. Using Theorem 10 and

the standarad symmetrization technique [110], the following
holds with probability at least 1 − θ

2 ,

�En(f �) ≤ E(f �) + 2CXμn

�
2(k − 1)Λn

n
+Mn

�
log(2/θ)

n
.

(46)
Combining (45) and (46), we have

E(�fn
)≤E(f�)+λnΩ(f�)+4CXμn

�
2(k−1)Λn

n
+2Mn

�
log(2/θ)

n
.

Take θ = n−2, and let N be such that n ≥ N implies that
both f � ∈ FΛn and

λnΩ(f �) + 4CXμn

�
2(k − 1)Λn

n
+ 2Mn

�
log(2/θ)

n
≤ �

2
.

Then for n ≥ N , with probability 1 − 1
n2 ,

E(�fn
) ≤ E(f �) +

�

2
≤ E∗ + �.

Therefore,

sup
n≥0

P (E(�fn
) − E∗ ≥ �) ≤ N − 1 +

�
n≥N

1
n2

<∞.

APPENDIX B
DETAILS ON (5)

By using the fact
�k

j=1 wjw�
j = WW� = k

k−1 Ik−1 and�k
j=1 wj = 0, we have

L(f (x), y)

=
1
2
(�f (x),wy	)2 −

1
(k − 1)

�f (x),wy	

+
1
2

�
j �=y

(�f (x),wj	)2 +
�
j �=y

�f (x),wj	 + Constant

=
1
2

k�
j=1

(�f(x),wj	)2 −
k

(k − 1)
�f (x),wy	 + Constant

=
1
2
f(x)�

 k�
j=1

wjw�
j

�
f(x)− k

(k−1)
�f (x),wy	+Constant

=
k

2(k − 1)
�f(x) − wy�2 + Constant.

APPENDIX C
DERIVATION OF (31)

From the equation (30), we know

���B =
 1
n

n�
i=1

k�
j=1

τij(wjw�
j ) ⊗ ( �Ki

�K�
i ) + λIk−1 ⊗ G

�−1

×
 1
n

n�
i=1

k�
j=1

τijzijwj ⊗ �Ki

�
. (47)

By Lemma 1, we know k
k−1 Ik−1 = WW� =

�k
j=1 wjw�

j .
Note that

k�
j=1

τijwjw�
j = γwyiw

�
yi

+ (1 − γ)
�
j �=yi

wjw�
j

= γwyiw
�
yi

+ (1 − γ)
 k

k − 1
Ik−1 − wyiw

�
yi

�
=
k(1 − γ)
k − 1

Ik−1 + (2γ − 1)wyiw
�
yi

� Λi,

and

k�
j=1

τijzijwj = γαwyi − (1 − γ)
�
j �=yi

wj

= γαwyi − (1 − γ)(−wyi)

= (γα+ 1 − γ)wyi = bwyi.

Then we can rewrite (47) as a compact form (31).
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