
 
 

Delft University of Technology

Uncertainty Quantification and Predictability Analysis for Traffic Forecasting at Multiple
Scales

Li, G.

DOI
10.4233/uuid:aeb5eccb-3cd3-43cb-a796-5390d31f4f5e
Publication date
2023
Document Version
Final published version
Citation (APA)
Li, G. (2023). Uncertainty Quantification and Predictability Analysis for Traffic Forecasting at Multiple
Scales. [Dissertation (TU Delft), Delft University of Technology]. https://doi.org/10.4233/uuid:aeb5eccb-
3cd3-43cb-a796-5390d31f4f5e

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.4233/uuid:aeb5eccb-3cd3-43cb-a796-5390d31f4f5e
https://doi.org/10.4233/uuid:aeb5eccb-3cd3-43cb-a796-5390d31f4f5e
https://doi.org/10.4233/uuid:aeb5eccb-3cd3-43cb-a796-5390d31f4f5e


Uncertainty Quantification and Predictability Analysis
for Traffic Forecasting at Multiple Scales

Guopeng LI



This doctoral dissertation was funded by the Dutch National Data Warehouse of
Traffic Information (NDW). It was also part of the MiRRORS project (with project
number 16720) within the Open Technology Program, which is (partly) financed by

the Applied Sciences Division of the Dutch Research Council (NWO/TTW).

Cover photo generated by printidea, @copyright belongs to the author.



Uncertainty Quantification and Predictability Analysis
for Traffic Forecasting at Multiple Scales

Dissertation

for the purpose of obtaining the degree of doctor
at Delft University of Technology

by the authority of the Rector Magnificus, Prof.dr.ir. T.H.J.J. van der Hagen,
Chair of the Board for Doctorates

to be defended publicly on
Tuesday 25 April 2023 at 10:00 o’clock

by

Guopeng LI

Diplôme d’Ingénieur,
École Nationale Supérieure de Techniques Avancées Paris, France

born in Liao Ning, China



This dissertation has been approved by the promotors.

Composition of the doctoral committee:
Rector Magnificus, Chairperson
Prof.dr.ir. J.W.C van Lint, Delft University of Technology, promotor
Dr. V. L. Knoop, Delft University of Technology, promotor

Independent members:
Prof.dr.ir. A. Verbraeck, Delft University of Technology
Prof.dr. M.M. de Weerdt, Delft University of Technology
Prof.dr.ir. M. Menendez, New York University Abu Dhabi, United Arab Emirates
Dr. J. Kim, The University of Queensland, Australia
Dr. A.M. Alahi, École Polytechnique Fédérale de Lausanne, Switzerland

TRAIL Thesis Series no. T2023/5, the Netherlands Research School TRAIL

TRAIL
P.O. Box 5017
2600 GA Delft
The Netherlands
E-mail: info@rsTRAIL.nl

ISBN: 978-90-5584-324-4

Copyright © 2023 by Guopeng LI

All rights reserved. No part of the material protected by this copyright notice may be
reproduced or utilized in any form or by any means, electronic or mechanical, including
photocopying, recording or by any information storage and retrieval system, without
written permission from the author.

Printed in the Netherlands



The meaning of the world is the separation of wish and fact.
–Kurt Gödel
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Chapter 1

Introduction

Traffic systems are critically important for modern society. They carry passengers
and goods from their origins to their destinations. With the increasing level of urban-
ization, traffic and transportation networks are becoming larger and more complex.
Higher complexity also brings higher vulnerability. The efficiency and safety of traffic
systems are always facing the risk of being damaged by traffic accidents or congestion.
These disturbances may cause severe consequences, such as casualties and injuries,
economic and time costs, air pollution, etc. To address this challenge, developing an
effective and reliable traffic management system is necessary. To this end, people
collect sensor data to monitor traffic system states (perception), use observed data to
describe traffic dynamics and predict the future (prediction), and then decide when and
how to control traffic networks (intervention). As the intermediate module that con-
nects perception and intervention, a reliable prediction model is one essential integral
part of Intelligent Transportation Systems (ITS).

Predicting the macroscopic traffic state and the microscopic driving behaviours are
fundamental for many applications. From passing an unsignalized intersection assisted
by self-driving systems, reducing the waiting time around an on-ramp by real-time me-
tering policy, to mitigating traffic congestion in large-scale road networks by proactive
management, predicting how the system state will change provides critical evidence
for supporting what decisions road agents and authorities should make. Driven by this
application value, great effort has been devoted to developing forecasting models that
can give anticipated driving behaviours or traffic states. Existing methods in the litera-
ture are numerous, and the prediction performance has been significantly improved in
the past several decades.

However, besides the prediction model itself, how predictable the short-future of a
traffic system is on different levels, or the so-called predictability, has not been deeply
discussed in the literature. Traffic phenomena involve many interactive agents that
are not 100% predictable by any means. The first reason is that traffic dynamics are
stochastic by nature. Road agents have diverse behaviours and the traffic system is only
partly-observable on all levels. Second, although most driving behaviours and traffic
state patterns are highly recurring, encountering new situations is always possible in
practice. Therefore, uncertainty governs the predictability of traffic and it should be an
integral part of the traffic modelling task. Since one of the major goals of prediction is
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to support traffic control, ignoring uncertainty will lead to over-confident predictions
and thus decrease the robustness of decision-making. From this perspective, we ar-
gue that uncertainty quantification (UQ) is as important as the prediction model itself.
Therefore, a systematic approach is needed to measure the boundary of any model’s
predictive capability and the additional risk (of getting this prediction wrong) brought
by using this model in the real world. In this thesis, we explore both uncertainty quan-
tification and predictability analysis methods.

This thesis introduction is organized as follows. First, the background on uncertainty
quantification in traffic prediction at different scales is introduced, including traffic dy-
namics modelling (1.1.1), sources of uncertainty (1.1.2), and the three critical factors
for reasonable uncertainty quantification (1.1.3). Based on the discussion, the scien-
tific gaps are identified in Section 1.2 and the research objective and questions are
come up with in Section 1.3. Next, Section 1.4 summarizes the major contributions of
this thesis. Finally, Section 1.5 presents the outline of this thesis.

1.1 Research background

This section presents the background of this thesis. It will start by introducing traf-
fic modelling methods based on their spatio-temporal scales and application purposes.
Then we will scope the uncertainty in traffic systems and the corresponding require-
ments for quantifying it.

1.1.1 Traffic modelling and forecasting

Since the 1950s, modelling traffic flow dynamics, predicting the traffic state, and de-
scribing road agents’ behaviours have been the central topics in the transport and plan-
ning domain. In practice, building a model must prioritize two key factors, the appli-
cation purpose and the spatial-temporal scale. They must be considered together for
determining the needed data types, the model complexity, and the modelling strategy.
Therefore, the background of traffic modelling is organized along these two axes of
purpose and scale.

According to Judea Pearl’s arguments (Pearl, 2009), a model can be evaluated by a
hierarchy of three types of problems of increasing difficulty, the so-called "ladder of
causation". Each of them is closely related to one category of application purposes:

• Level-1: association and prediction
The first stage is "observing and building associations". Given the desired out-
put variable and a set of potentially relevant input variables, a model aims to
directly assimilate their joint probability distribution from the collected obser-
vations (datasets). Such a correlation-based approach ignores the detailed data
generation process. The relevant application is building a predictive model and
deploying this predictor in the same environment.
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• Level-2: intervention and what-if analysis
The second stage is "changing by doing". Besides the naive associations, the
model is encouraged to explore how manipulating one variable influences the
others. This requires building the directional relationships among the variables,
or the so-called causal graph. Such a causation-based model is necessary for
what-if analysis – giving predictions in new, unseen environments and studying
what will happen if the traffic system is intervened in a specific way.

• Level-3: counterfactual and policy-making
The last stage is "imaging and reasoning". Besides the forward generation of
output, the model can also run inversely. If we want the desired (generally opti-
mal) output, how should we manipulate the inputs? This level is closely related
to optimization and policy-making purposes, such as designing long-term land
use, mitigating traffic congestion through traffic control, collision-free motion
planning for autonomous vehicles, etc.

From the lowest to the highest level of this ladder, correlation-based models are re-
placed by causation-based models. Causation-based models are more explainable
and insights into the domain knowledge can be extracted from data. In contrast, a
correlation-based model cannot always give correct relationships. Their differences
are compared in Table.1.1.

Table 1.1: A taxonomy of two types of models

Model Prediction What-if analysis Policy-making
knowledge

insights

Correlation-based ✓ ✗ ✗ ?
Causation-based ✓ ✓ ✓ ✓

However, building a structural causal model from data is not always possible in prac-
tice because it requires high observability of the system, especially of those confounder
variables (common causes) (Schölkopf et al., 2021). For example, due to privacy is-
sues, travellers’ demand patterns cannot be completely tracked but demand is the major
cause of traffic congestion (Jayakrishnan et al., 1995). To fulfil the application purpose
with the existing observability gap in data, knowledge-based assumptions must be in-
duced in the model.

Besides the application purpose, the level of scale of a task is another key to deter-
mining the modelling strategy. "Multi-scale" is an important characteristic of traffic
systems. It means that we need to "solve problems which have important features at
multiple scales of time and/or space" (Multiscale modelling, 2022). Traffic systems
involve intelligent agents (human factors) who have complex decision mechanisms and
behaviours at all levels. These decisions and behaviours are not completely free but are
constrained by traffic rules, infrastructures, and other agents. Therefore, traffic mod-
elling can accommodate any desired complexity at any scale. A macroscopic traffic
flow model is not necessarily more sophisticated than a microscopic model, e.g. lane-
changing. Choosing proper representations and simplifications at different levels, or
the so-called "scale-complexity trade-off", is pivotal for traffic modelling.
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Based on the discussion above and the topic of this thesis, the following overview of
traffic modelling will primarily focus on what assumptions, representations, and sim-
plifications are used, and what problems one may encounter for different application
purposes.

Modelling and predicting microscopic driving behaviours (e.g. represented by trajec-
tories) generally consider the temporal scale of several seconds (the duration of an
interaction) and the spatial scale of a corridor segment or an intersection/roundabout
(within the driver’s eye vision). Although the scale is restricted, the confounder here–
how drivers make decisions and interact with each other–is unobservable and vague.
For the purposes of what-if analysis in traffic simulation and optimal motion control in
autonomous driving, researchers need to make assumptions based on experiences and
behavioural studies of Human Factors (HF). For example, the basic assumption in 1D
Gipps’ car-following model (Gipps, 1981) and its improved variants (we refer to the
review of Ciuffo et al. (2012)) is that all drivers can keep a proper distance headway
to avoid collision based on the motion of both leading and following vehicles. Besides
safety, the family of Intelligent Driver Models (IDM) (Treiber et al., 2000; Kesting
et al., 2010) further assume a comfortable deceleration range. IDM and its variants are
still widely used in traffic simulators, such as SUMO 1. Their safety performances are
even higher than more complex reinforcement learning methods in many simulation
tests (Suo et al., 2021). In more complex 2D interaction scenarios, the assumptions are
mainly about the trade-off between safety, efficiency, and comfort. For example, using
a game theoretical approach to represent lane-changing negotiation (the review of Ji &
Levinson (2020)) or the driving behaviours inside an intersection (Zhao et al., 2022).
There are many excellent reviews and studies that discuss HF in driving-behaviour
modelling, such as the review of Saifuzzaman & Zheng (2014) (specifically on HF in
car-following) and the generic multi-level framework proposed by Van Lint & Calvert
(2018) and Calvert et al. (2020). These models are abstracted from scientifically es-
tablished domain knowledge (of both traffic and cognitive or behavioural sciences) so
they have excellent interpretability and generalizability. The accuracy can be improved
by adding more realistic assumptions and more details.

On the other side, data-driven approaches, and especially most deep learning models,
do not emphasize how to make assumptions and simplifications from domain knowl-
edge. They focus on increasing the accommodated model complexity and learning
feature representations. Compared to the HF models mentioned above, one can say
that these data-driven models are accuracy-oriented. For example, some studies rep-
resent driving scenarios by rasterized multi-channel images and use computer-vision
models to predict the trajectory (Nikhil & Tran Morris, 2018; Xu et al., 2018; Xie et al.,
2020). Recently some researchers represent road agents and high-definite map infor-
mation into nodes and describe their interactions by a dynamical graph. This lighter
representation allows using Graph Neural Networks (GNN) to learn compact features.
For example, VectorNet (Gao et al., 2020) uses a sequence of vectors to consistently
represent map elements and trajectories, then employs a graph attention mechanism
to model their interaction implicitly. Several recent studies use similar methods, e.g.
Zhao et al. (2019); Huang et al. (2019a); Salzmann et al. (2020), etc. However, these
models are all correlation-based (level 1). They are not adaptive to new deployment

1https://www.eclipse.org/sumo/
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environments, and users do not understand how exactly the predictions or decisions are
made (Bahari et al., 2022).

When scaling up to macroscopic traffic modelling and forecasting, since traffic flow
is composed of individual road users, how to represent and simplify these road users
in the traffic stream is very important for the complexity-scale trade-off. For instance,
improper driving behaviours may cause traffic congestion (Hennessy & Wiesenthal,
1999). But implementing a detailed behavioural model (like those sophisticated mod-
els mentioned above) into the macroscopic traffic flow model is not always necessary
in practice. The model complexity depends on the purpose.

One simplification strategy is representing the vehicle stream by a many-particle sys-
tem or a continuous fluid. Instead of delicately describing each agent’s behaviours, this
approach depicts their collective properties (behaviours) in traffic systems, like density,
average speed, and flow. The Lighthill-Whitham-Richards (LWR) model (Lighthill &
Whitham, 1955b; Richards, 1956) is one of the most famous examples. The key as-
sumption is the conservation of vehicles that can be described by a hyperbolic wave
equation. The speed of the wave can be derived from a calibrated fundamental diagram.
Similar examples include higher-order traffic flow models (Payne, 1971; Whitham,
2011) and gas-kinetic models (Prigogine & Herman, 1971), etc. At higher scales, like
urban networks, the concept of Network Macroscopic Fundamental Diagram (NMFD)
(Daganzo & Geroliminis, 2008) can further simplify the representation. We refer the
readers to Helbing et al. (2009) and Johari et al. (2021) for comprehensive reviews of
related methods.

Although information about the microscopic causes of traffic phenomena is partly lost
due to these simplifications, the macroscopic causes still preserve in these models.
For example, the over-saturated traffic demand and the back-propagating stop-and-go
waves. Conversely, most machine learning approaches do not explicitly consider these
macroscopic causes but (similar to the microscopic case) emphasize expanding the
model complexity and assimilating the input-output association in an end-to-end way.
These data-driven frameworks are more generic. They are applicable to many other
dynamical systems.

Early data-driven methods include naive conditional averaging (Davis & Nihan, 1991;
Smith & Demetsky, 1997), auto-regression and time series models such as linear re-
gression (Rice & Van Zwet, 2004), Principle Component Analysis (PCA) (Xing et al.,
2015), Support Vector Regression (SVR) (Castro-Neto et al., 2009), (Seasonal) Auto-
Regressive Integrated Moving Average (ARIMA) (Ahmed & Cook, 1979; Williams
& Hoel, 2003), Kalman filter van Hinsbergen et al. (2012), naive Bayesian methods
(van Hinsbergen et al., 2009), etc. Recently, with the fast development of deep learn-
ing models, Deep Neural Networks (DNN) are getting popular in the traffic prediction
domain. For example, simple Multiple-Layer Perceptron (MLP) (Sharma et al., 2018;
Polson & Sokolov, 2017), pure Convolutional Neural Networks (CNN) (Zhang et al.,
2019a), Recurrent Neural Networks (RNN) or combined with CNN (Ma et al., 2015;
Zhao et al., 2017), State-Space Neural Networks (SSNN) (Van Lint et al., 2005), Graph
Neural Networks (Kamarianakis & Prastacos, 2005; Li et al., 2018), etc. Lana et al.
(2018) and Ermagun & Levinson (2018) systematically review the spatio-temporal traf-
fic forecasting topic.
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In summary, traffic modelling and forecasting must first consider the application pur-
pose. Based on this goal, we need to trade off the model complexity for the desired
scale and to determine the assumptions and representations. From this perspective,
the so-called knowledge-based models and data-driven models are not two separate
categories. One of the objectives of this thesis is to combine the best of two worlds–
improving the interpretability and the generalizability of deep learning models by
making assumptions and using causal representations that are compliant with domain
knowledge.

Finally, the discussion above can also be applied to uncertainty estimation. Quantify-
ing predictive uncertainty must consider what is the application purpose, what is the
reasonable representation, and the scale-complexity trade-off. Next, the core concept
of uncertainty in this thesis will be elaborated.

1.1.2 Uncertainty in traffic prediction

A perfect model does not exist. "All models are wrong but some are useful" (Box,
1976). Quantifying uncertainty is about measuring what the model does not know and
what the data cannot give. Generally speaking, all uncertainty is caused by the lack
of some information (or the so-called "sim2real" gap, which means the simulation-to-
reality gap). The information loss can be the result of limited sensing types, measure-
ment errors, or the assumptions and representations made in the model (whether they
are implicit or explicit, data-driven or knowledge-based methods). However, from a
practical perspective of traffic modelling versus data collection, we can categorize the
uncertainty into two types of "unknown". One is what we in principle cannot know
without extra domain knowledge of the underlying process or new perception tech-
nologies, the so-called aleatoric uncertainty. The other one is what we can know in
principle but cannot know in practice due to the finite dataset size, the so-called epis-
temic uncertainty. Now we introduce these two concepts and their special role in data
collection and traffic modelling.

Aleatoric uncertainty originates from the limited observability and/or the unpredictabil-
ity of crucial information that affects the dynamics of the traffic process of interest, e.g.
available sensor types, measurement errors, and the inherent randomness of traffic dy-
namics. Aleatoric uncertainty is scale, application, and case (i.e. dataset)-dependent.
For example, in the case of predicting congestion dynamics along a corridor using data
from loop detectors only, aleatoric uncertainty comes from unobserved microscopic in-
teractions (leading to unexpected disturbances) and from (at best partially observable)
arrival and route choice patterns. Even if we could measure these demand patterns
fully, this may not imply we can predict them more than say a few minutes ahead,
since we cannot observe the full information that governs the dynamics of the demand
patterns themselves, such as individual choice behaviour, demographics, a large event
or a pandemic, etc. Conversely, in the case of using microscopic trajectory data from
GPS trackers or drones to predict the individual motion of vehicles, aleatoric uncer-
tainty may stem from highly relevant but not observed intersection control settings and
the turning signals (blinkers) of surrounding vehicles. Another source of aleatoric un-
certainty may be the strong non-linearity of interactions between drivers, e.g. their
unknown proficiency, driving styles, and intended directions.



1.1. Research background 7

Aleatoric uncertainty thus draws a "red line" on the best we can possibly achieve by
developing prediction models from the given types of data. Aleatoric uncertainty is
irreducible.

Epistemic uncertainty, on the other side, measures the uncertainty due to the lack of
information that is potentially knowable for the given case, scale and application. It
is the additional distrust brought by model abstraction and limits in data coverage. In
other words, epistemic uncertainty quantifies the probability of errors due to deploy-
ing a model in situations for which it was not calibrated. For example, many traffic
phenomena are recurring due to seasonality in the underlying demand patterns. e.g.
day-to-day morning and evening peak hours, week-to-week workdays and weekends,
and season-to-season holidays. There are, however, many factors that add noise around
such recurrent patterns. Think of fluctuations due to events, weather, or long-term
changes in demography or infrastructure construction. New situations where a well-
trained model may fail happen occasionally. Epistemic uncertainty aims to quantify
how reliable predictions with mathematical models are, and—as we will see in this
thesis—it is also crucial in estimating the aleatoric uncertainty.

Epistemic uncertainty is thus due to model abstraction and the "rareness" of prevailing
cases in the data. Epistemic uncertainty helps distinguish between regular and irregular
patterns, which are both predictable in principle, and it supports the computation of the
aleatoric uncertainty that represents those cases which are not predictable.

Aleatoric and epistemic uncertainty together quantify the concept of predictability in
traffic prediction. When epistemic uncertainty is low, the predictability can be mea-
sured by aleatoric uncertainty alone. In the extreme case with zero aleatoric uncer-
tainty, the underlying process is deterministic with full predictability. With very large
aleatoric uncertainty, predictability is limited regardless of what model or how large
datasets are used. When epistemic uncertainty is high, both the prediction and the
aleatoric uncertainty estimation are unreliable. It means that the dataset is too small
/sparse to provide any insights into the traffic process.

This explanation of "predictability" may sound abstract. To further clarify the con-
cepts of aleatoric and epistemic uncertainty, we now put them in the modelling-data
collection pipeline in practice.

As shown in Fig.1.1, people generally start from an initially given dataset for a specific
modelling or forecasting task. Before building the model, it is necessary to evaluate
whether the given dataset can satisfy the accuracy requirement of the application pur-
pose. So the average aleatoric uncertainty (predictability) needs to be quantified by a
model-free approach. If the answer is yes, then we can start building and training the
model. Next, when deploying the calibrated model in real-world environments, rare or
new cases may occur every now and then. Therefore, the model must not only produce
a prediction but also an estimate of the input-dependent aleatoric and epistemic uncer-
tainty. As explained before, their roles are different. Epistemic uncertainty indicates
that the current traffic state has already been seen in the training dataset or that this is
a rare case. Those high-value rare cases can be identified from the data stream and the
dataset can be expanded continuously at a relatively smaller cost. On the other hand,
aleatoric uncertainty helps to identify those inherently unpredictable samples for the
given data types. If a considerable percentage of the dataset is composed of highly un-
certain samples or in case the predictive accuracy needs to be radically improved, the
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aleatoric uncertainty can provide clues about what new types of data should be added.
Then we come back to the initial step.

Initial dataset

Performance 
requirements  
of a task

Satisfy?

Modelling & calibration

Deployment

yes

no

Collect more data
of the same type

Average predictability
estimation

Uncertainty
quantification

High Low

High Rare samples Inherently-uncertain

Low Rare samples Highly-predictable

Epistemic

Aleatoric

Diversify the sources
and types of data

Expand initial dataset

Figure 1.1: The modelling-data collection cycle and the roles of uncertainty quantifi-
cation

The discussion above and the conceptual chart in Fig.1.1 point out the irreplaceable
role of uncertainty quantification. Next, we will discuss what are the principles for
representing and quantifying uncertainty in traffic prediction at multiple levels.

1.1.3 Three pillars of uncertainty quantification

Uncertainty Quantification (UQ) has been widely studied in many domains. Tradi-
tional fields include nuclear safety (Helton, 1993), hydrology (Beck, 1987), climate-
changing (Deser et al., 2012), etc. Recent applications are mainly in computer vision,
such as depth estimation (Lakshminarayanan et al., 2016) and other regression tasks.
However, similar to traffic modelling, applying these existing UQ methods in traffic
prediction also must consider the application purpose, the scale, and the complexity.
Based on these 3 criteria, we propose that there are three key factors or the so-called
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"three pillars" for supporting reasonable uncertainty quantification. They are un-
certainty representation, quantification method, and modelling strategy (see Fig.1.2).
Below these pillars, the available datasets, modelling techniques and related domain
knowledge form the foundation.
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Figure 1.2: "Three pillars" of uncertainty quantification

Which UQ metrics should be used and how to represent uncertainty are the prereq-
uisites. It depends on the specific application purpose and the model complexity of
the prediction task. In practice, there are two types of metrics, variance-based and
entropy-based metrics. If the desired output of the model is a scalar value (e.g. the
average speed at a location) and we aim to estimate the limit of point-estimate accu-
racy, such as mean-square-error, then a variance-based metric is the proper choice. For
probabilistic prediction tasks (e.g. estimate the probability of emerging congestion),
entropy-based metrics can reflect the detailed structure of probability distributions and
they are related to the boundary of log-likelihood. There are two types of representa-
tions, parametric and non-parametric representations. The parametric approach uses a
small number of parameters and a prior form (e.g. mean and variance of Gaussian) to
represent a distribution. It has affordable complexity when the output dimensionality
is high. For example, estimating uncertainty at each location in network-level traffic
forecasting generally involves hundreds of road segments. The non-parametric repre-
sentation approximates the true distribution by finite elements. It is more complex than
a simple prior form but more accurate. It is compatible with low-dimensionality and
safety-sensitive applications, e.g. risk assessment of a single autonomous vehicle.

The quantification method is central to uncertainty estimation. Different methods con-
sider the concept of "predictability" from different angles. Recall the flowchart in
Fig.1.1. Estimating the average aleatoric uncertainty (limit of prediction accuracy) re-
quires a model-free approach because the result indicates whether it is worth increas-
ing the model complexity. This stage does not require a real-time and fast algorithm.
In the model deployment phase, the choice of quantification method depends on the
application purpose. The inference speed is important. For example, in the case of tra-
jectory forecasting related to the safety of autonomous vehicles, lightweight and faster
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methods are preferred due to the limited reaction time (Gao et al., 2020). Conversely,
for long-term data accumulation and offline continuous learning purposes, inference
speed is not the focus.

That modelling strategy is critically important seems a natural and almost trivial re-
mark. However, similar to the data-driven traffic modelling field, using a correlation-
based or causation-based model has not been deeply discussed in the literature yet (We
refer the readers to the review of Abdar et al. (2021) and the survey of Arnez et al.
(2020)). How to identify "rare samples" is naturally related to the generalizability
problem, which refers to the ladder of causation discussed in section 1.1.1. Correlation-
based uncertainty quantification models sometimes give confusing and unreasonable
results due to their limited generalizability (Bahari et al., 2022). When the application
purpose requires suppressing those spurious correlations and learning the true causal
mechanism is possible, we must implement these in the quantification approach. When
it is not possible, we also need to point out the drawback of the used method to avoid
over-confident predictions.

In summary, the three intertwined factors, the uncertainty representation, the quan-
tification method, and the modelling strategy must be considered comprehensively for
reliable and reasonable uncertainty quantification.

1.2 Scientific gaps

This thesis addresses multiple scientific gaps in the modelling-data collection cycle in
Fig.1.1 and in the methodology presented in Fig.1.2. These gaps fall into the following
four research topics.

1. This thesis studies how to extract explainable dynamic spatio-temporal associa-
tions in a deep-learning-based macroscopic traffic forecasting model. This is not
directly related to uncertainty quantification or predictability analysis. But this
section will propose, identify, and explain several helpful principles for guiding
further model designing and uncertainty quantification.

2. This thesis studies how to evaluate whether the initial given macroscopic traffic
dataset can satisfy the desired accuracy requirement without building any pre-
dictor. The special properties of traffic phenomena must be implemented in the
estimation scheme.

3. This thesis considers quantifying the input-dependent aleatoric and epistemic
uncertainty when deploying the model in the real-time data stream. These results
will give insights into the predictability of macroscopic traffic state and the role
of different factors.

4. This thesis uses similar ideas and concepts to study the uncertainty in micro-
scopic trajectory prediction tasks. In this part, we extend the previously devel-
oped methods and address the generalizability problem for intention forecasting.
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Next, we will sequentially elaborate on these 4 scientific gaps.

As discussed at the end of section.1.1.1, recently many emerging methods tried to com-
bine the interpretability of knowledge-based models with the strong function-fitting
ability of deep learning models. One of the most representative ways is extracting
"salient" attention weights from a deep neural network (Veličković et al., 2018) and
regarding them as the quantified "influence" among road links. For example, Gated-
attention networks (Zhang et al., 2018) or pair-wise spatial attention networks (Do
et al., 2019) can predict traffic volume/state and give the corresponding dynamic spatial-
temporal correlations. However, this method has two issues. The first one is that traffic
flow theory is not considered when designing this post-hoc interpretation. We notice
that many studies are exploring the possibility of using deep neural networks or other
data-driven methods to solve partial differential equations (e.g. Sirignano & Spiliopou-
los (2018)). Thus LWR-like model can be implemented in a deep learning model.
Second, the uni-directional propagation of congestion allows modelling causation-like
(but perhaps not true causation) spatial-temporal associations but most studies did not
focus on these directed relationships. Therefore, designing a new asymmetric graph
attention mechanism to better explain what rules the deep learning model has learnt
from data is still necessary.

Estimating the average limit of predictability of univariate and multivariate time series
is an important research topic. One of the most well-known methods is the so-called
Lyapunoc exponent (Wolf et al., 1985). In Chaos analysis, delayed embedding and
phase space reconstruction (PSR) gives estimated value (Packard et al., 1980; Rosen-
stein et al., 1993). Nair et al. (2001) and Shang et al. (2005) used this approach to
analyse traffic flow time series and observed significant chaos. The drawback of this
metric is the relatively high computational complexity brought by PSR (Lan et al.,
2008) and it cannot directly give the lower bound of a type of prediction error. The
second way is maximum likelihood learning, for example, using the Gaussian process
(Idé & Kato, 2009; Yuan et al., 2021). But this approach is model-based. As discussed
before, the average limit of predictability generally needs to be estimated before mod-
elling. Another group of methods are entropy-based approach. Song et al. (2010) is
one of the first papers that employed this approach to analyse the limit of predictability
of human mobility. This strategy is also studied for the multivariate traffic data stream,
such as the speed on a ring freeway (Wang et al., 2015a), travel time (Li et al., 2019),
and traffic flow (Darmon, 2016). However, these methods have at least one of the fol-
lowing drawbacks. One, they only consider discrete stochastic processes. Two, they
assume that different sensors on the road networks are independent. Three, the special
spatio-temporal properties of traffic phenomena are ignored. A more comprehensive
method that can address all these issues is still needed.

As for input-dependent aleatoric and epistemic uncertainty quantification, this prob-
lem has already been deeply-studied in the artificial intelligence community. We have
enough tools at hand already. These widely-used methods include Bayesian neural net-
works (van Hinsbergen et al., 2009), Monte-Carlo dropout in inference stage (Kendall
& Gal, 2017), deep ensembles (Lakshminarayanan et al., 2016), and some recently-
developed one-pass models such as radical-basis function (van Amersfoort et al., 2020)
or deep regression model (Amini et al., 2020). Some of these methods are also used in
traffic modelling and prediction. For example, Bayesian network for traffic flow pre-
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diction (Zheng et al., 2006; Fu et al., 2020), deep echo state networks (McDermott &
Wikle, 2019), and deep ensembles (Deng et al., 2016; Chen et al., 2021b). The major
gap here is that all these studies focus on modelling competition or performance com-
parison instead of understanding the role of uncertainty in the modelling-data cycle
in Fig.1.1. Evaluating the predictability in model deployment and figuring out what
factors restrict the predictability of macroscopic traffic has not drawn enough attention
in the literature.

When we scale down to microscopic driving behaviour modelling and prediction, un-
certainty quantification has radically different requirements. With the fast develop-
ment of autonomous vehicles and related large-scale datasets, e.g. Waymo (Sun et al.,
2020), nuScenes (Caesar et al., 2020), and Argoverse (Chang et al., 2019), trajectory-
based intention and behaviour prediction has attracted a lot of attention. Uncertainty
is highly related to safety evaluation. Abdar et al. (2021) gives an overview of existing
studies on this topic. The gap here is that most papers directly use those parametric
and correlation-based uncertainty estimation methods developed specifically for scalar
variables. However, three critical factors have not been deeply discussed yet. First,
vehicles move on a 2D plane restricted by arbitrary road layouts so neither classical
covariance-based metric nor the parametric representation can reflect the complexity
of its future 2D locations. Second, the urban driving environment is so complex that
no dataset can cover all scenarios. Therefore, the generalizability of the used method
to unseen new cases cannot be ignored. Third, how to relate the learnt uncertainty to
our domain knowledge on driving behaviours is not the focus of the AI community.
We need a novel method to fill the gaps of uncertainty representation, model general-
izability, and the lack of domain knowledge in trajectory prediction.

1.3 Research objective and questions

Based on the discussion above on research background and scientific gaps, now we
formulate the overall research objective of this thesis as follows:

Technically, how to systematically quantify the uncertainty of traffic prediction on mul-
tiple levels?

Scientifically, how predictable are traffic dynamics at different scales?

To the best of our knowledge, until writing this thesis, there are no systematic studies
that address the issues mentioned before. This thesis aims to fill these gaps and realize
the overall objective by answering the following 8 key research questions. They are
clustered into 4 groups. Each group contains 1-2 research questions that correspond to
one research gap.

Question 1: For macroscopic highway networks, how to build a deep-learning-
based traffic forecasting model that can provide post-hoc, causation-like inter-
pretations on spatial associations?
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We start with the high-level macroscopic traffic dynamics modelling and prediction.
The first research question focus on the interpretability of deep-learning-based traffic
forecasting models. As discussed before, due to limited observability, causal suffi-
ciency cannot always be satisfied. In most cases only macroscopic traffic states, such
as flow and speed, are available. The true "confounder" (or the inner driving force) of
congestion evolution, such as traffic demand, route choices, and microscopic driving
behaviours are generally unavailable in the dataset. However, seeking post-hoc inter-
pretations from such a model by designing novel modules is still possible. The novel
module must be compatible with traffic flow theory, especially about how to model
the spatial associations of congestion spreading. By considering domain knowledge,
this interpretation of spatial relationships can be restricted to be causation-like. Such a
method can further give principles of model construction and hyperparameters tuning.
These potential findings are important for guiding further studies on predictability and
uncertainty quantification of multi-scale traffic forecasting. [Chapter 2]

Question 2: Given a dataset that is large and representative enough, what are
the model-free, theoretical lower bounds of predictive accuracy for probabilistic
models and deterministic models respectively?

Question 3: How to directly estimate the spatial-temporal distribution of pre-
dictability of traffic speed before building any forecasting models?

These two research questions are related to the model-free approach of estimating the
average limit of predictability for macroscopic highway networks. They together ad-
dress one important issue: before diving into building the forecasting model, how
to estimate whether the provided data at hand or the target traffic process itself are
enough "predictable"? Sometimes researchers are too obsessed with improving mod-
elling techniques but ignore where is the limit. In practice, two types of predictors are
widely-used, deterministic models that give a point prediction, and probabilistic mod-
els that predict the output distribution. Correspondingly, we need to develop both the-
ories and numerical methods to estimate the limit of mean-square-error and negative-
log-likelihood. The conclusions are expected to put detailed model bench-marking into
perspective. If the estimated limit can satisfy our requirement, we can go to uncertainty
quantification in modelling. [Chapter 3]

Question 4: How to estimate the aleatoric and epistemic uncertainty of each spe-
cific prediction for highway networks?

Question 5: If the answer to question 4 suggests the predictability of highway
traffic patterns is limited. What explains this limited predictability?

These two questions focus on the uncertainty quantification of a specific traffic fore-
casting model. Saying we need to quantify both aleatoric and epistemic uncertainty of
the current input traffic states. Question 5 develops the quantification method while
question 6 explains what the estimated aleatoric and epistemic uncertainty means. The
answer to question 5 can point out what is missed in the current macroscopic traffic
data and question 6 addresses the day-to-day recurrence of congestion patterns. The
findings can guide data collection and continuous learning in a real-time data stream.
[Chapter 4]
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Question 6: In microscopic trajectory forecasting, how to give reasonable spa-
tial uncertainty measurements that can remove the influence of arbitrary road
layout?

Question 7: In the urban driving environment, how to build a generalizable mo-
tion forecasting model that can give both reliable predictions and uncertainty es-
timation in new scenarios?

These two research questions are about microscopic trajectory prediction. We focus on
modelling the interactions among multiple road agents and predicting their behaviours
in a short future around (3 s). This topic is important for developing a more realistic
simulation environment for self-driving cars. The uncertainty quantification is critical
for safer decision-making and motion planning. However, different from macroscopic
traffic forecasting, trajectory prediction has its unique requirements (as mentioned be-
fore), such as complex urban driving scenarios, 2-dimensional distributions, and arbi-
trary road layouts. So the generalizability of the model and a reasonable uncertainty
metric/representation is critically important. The classical correlation-based uncer-
tainty quantification method must be extended to this problem by considering causal
relationships. Further, we need to identify which types of data are indispensable but
currently unavailable for modelling human driving behaviours. [Chapter 5]

By answering all the research questions above, we expect to obtain a bird-view and
deeper understanding of the uncertainty and predictability in multi-level traffic mod-
elling and prediction.

1.4 Contributions

By answering the sub-questions and achieving the overall research objective, the ma-
jor contribution to the field of multi-scale traffic prediction is a systematic approach
to quantify interpretable and reasonable uncertainty in traffic dynamics. Such an ap-
proach can comprehensively measure how predictable traffic is at different levels. In
this subsection, we provide the contributions of our thesis to each scientific gap. These
contributions include proposed novel models and methodology, theoretically-proved
mathematical theorems, and toolkits or building blocks for different applications.

1.4.1 Traffic forecasting models

[Chapter 2]

• A new graph attention mechanism, the dynamic graph convolution (DGC) mod-
ule, is proposed to learn causation-like real-time spatial associations of graph
signal series. The DGC module is implemented in a recurrent neural network,
the dynamic graph convolutional network (DGCN), to predict multistep macro-
scopic traffic speed evolution.
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• The proposed DGCN model combines the advantage of a data-driven and simulation-
based approach. The prediction is accurate and the learnt dynamic spatial asso-
ciations are consistent with traffic flow theory.

• The DGCN also gives an empirical principle for tuning the order of the adjacency
matrix (receptive field) based on the time interval and average distance between
adjacent road links in graph-based prediction models. This finding can help
accelerate the hyper-parameter tuning of other similar models.

1.4.2 Average predictability for highway networks

[Chapter 3]

• We prove that the conditional entropy of the output variable given the input
variable gives the lower bound of negative-log-likelihood. The discrete form
of Fano’s theorem is extended to multivariate continuous stochastic processes,
and thus gives the corresponding lower bound of mean-square-error (MSE) or
determinant of the covariance matrix (DCM). Their ratio can be interpreted as
the strength of temporal correlations.

• We challenge the stationarity assumption of traffic time series and propose to
consider both the cyclo-stationarity and localization of traffic congestion in the
estimate of conditional entropy.

• Practically, we show that the estimated average predictability is a function of
time and location. This gives traffic managers and practitioners a tool to identify
the most unpredictable time slots and positions from the result. The results thus
provide insights into the vulnerability of highway networks.

1.4.3 Uncertainty quantification for highway networks

[Chapter 4]

• Using the beta distribution as the prior for modelling predicted highway speed,
we propose a fully-convolutional probabilistic graph neural network to form deep
ensembles. Both the aleatoric and epistemic uncertainty of each input sample
can be quantified by variational inference.

• We show that the results of input-dependent aleatoric and epistemic uncertainty
can put performance comparison into perspective. They quantify where is the
boundary of modelling and how frequently rare congestion patterns happen.

• The findings offer a new pipeline for continuous data collection and modelling
improvement.
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1.4.4 Trajectory prediction and uncertainty

[Chapter 5]

• We proposed a novel human-driven vehicle’s intention and trajectory prediction
model, the so-called Uncertainty-Quantification networks (UQnet). We added a
causal part to the model and a novel causal regularization to the loss function
so UQnet can tell apart the spurious correlations between the driving behaviours
of surrounding agents and environment biases. UQnet is state-of-the-art in the
open INTERPRET challenge and shows significantly higher generalizability to
new scenarios.

• We extend the 1D parametric uncertainty quantification method to 2D non-
parametric models. UQnet directly uses a 2D histogram (a heatmap) to approxi-
mate the true distribution.

• We demonstrate that the proposed 2D non-parametric approach and UQnet can
correctly measure the risk of intention prediction due to its higher generalizabil-
ity and more reasonable uncertainty metrics. So this novel method can be used
for refining/distilling a large dataset and finding out those truly rare samples for
generalizability evaluation.

1.5 Thesis outline

The outline of this paper-based thesis is shown in Figure 1.3. It has a "sandwich"
structure that sequentially contains the introduction, main body, conclusions and per-
spective. The three parts are connected by black arrows. In line with the scientific gaps
and research questions, this thesis has four chapters as the main body. Each chapter an-
swers one to several research questions and it is based on one paper that was written as
the first author during the PhD. At the beginning of each chapter, we declare whether
the paper is published, If yes we state where it is published. If not we state whether it
is at the time under review and where it was submitted. To avoid potential confusion,
the text in each chapter is completely the same as that published in the journal.

The four chapters are grouped into two parts, macroscopic and microscopic traffic
modelling and prediction. They are put in two areas with different background colours.
For each separate chapter, the dashed box represents that this study is not directly re-
lated to uncertainty quantification but provides an essential prerequisite. Solid boxes
mean that this section develops theories, methods, and models of uncertainty quantifi-
cation and predictability analysis.

The blue arrows are added to clarify the relationships between different chapters.
Chapter 2 studies how to learn the causation-like real-time spatial associations in
macroscopic traffic state forecasting by a deep learning model. Its findings on local-
ized spatial associations inspire the assumptions used in Chapter 3 and its conclusions
on hyper-parameter tuning from the insights of traffic flow theory guides the model
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Figure 1.3: Outline of this thesis

construction in Chapter 4. Chapter 3 uses the empirical rule of congestion propaga-
tion to partition the dataset and estimate location-specific predictability. While chapter
4 directly uses the proposed attention mechanism in chapter 2 to construct the basic
uncertainty quantification model. The model-based input-dependent uncertainty es-
timation method proposed in chapter 4 refines the model-free average predictability
analysis in chapter 3 and their results are consistent. Chapter 5 addressed the same
type of issue as chapter 4, but the methodology is extended to more general 2D cases
in trajectory prediction and the causal mechanism is implemented.

In Chapter 6, we summarize the key findings and the overall conclusion. The impli-
cations on science and practice and some recommendations for further research topics
will also be presented.





Chapter 2

Spatial associations in macroscopic
traffic prediction

This chapter presents a deep learning approach that can explicitly give the learnt traffic-
state-dependent spatial associations among highway links in short-term traffic forecast-
ing. The proposed dynamic graph convolutional module combines the interpretability
of knowledge-based traffic flow models and the fitting ability of data-driven deep neu-
ral networks. Implementing such a module in recurrent neural networks can give accu-
rate and explainable predictions. The analysis proves that deeper neural networks face
the risk of being confused by the spurious correlations of congestion patterns. There
exists an optimal perception field that can remove the spurious correlations and allow
the model to learn “causation-like” spatial associations. This conclusion is critical for
designing robust prediction models and reasonable uncertainty quantification methods
in the following chapters.

This chapter is published as a journal article: Li, G., V. L. Knoop, H. van Lint (2021)
Multistep traffic forecasting by dynamic graph convolution: Interpretations of real-time
spatial correlations, Transportation Research Part C: Emerging Technologies, 128, p.
103185
In section.2.4.3: Discussion on model interpretability, an extra paragraph about causal
confusion is added. The other sections are the same as the published paper.
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ABSTRACT

Accurate and explainable short-term traffic forecasting is pivotal for making trustwor-
thy decisions in advanced traffic control and guidance systems. Recently, the deep
learning approach, as a data-driven alternative to traffic flow model-based data assim-
ilation and prediction methods, has become popular in this domain. Many of these
deep learning models show promising predictive performance but inherently suffer
from a lack of interpretability. This difficulty largely originates from the inconsistency
between the static input-output mappings encoded in deep neural networks and the dy-
namic nature of traffic phenomena. Under different traffic conditions, such as freely-
flowing versus heavily congested traffic, different mappings are needed to predict the
propagation of congestion and the resulting speeds over the network more accurately.
In this chapter, we design a novel variant of the graph attention mechanism. The major
innovation of this so-called dynamic graph convolution (DGC) module is that local
area-wide graph convolutional kernels are dynamically generated from evolving traf-
fic states to capture real-time spatial dependencies. When traffic conditions change,
the spatial association encoded by the DGC module changes as well. Using the DGC,
we construct a multistep traffic forecasting model, the Dynamic Graph Convolutional
Network (DGCN). Experiments using real freeway data show that the DGCN has a
competitive predictive performance compared to other state-of-the-art models. Equally
importantly, the prediction process in the DGCN and the trained parameters are indeed
explainable. It turns out that the DGCN learns to mimic the upstream-downstream
asymmetric information flow of typical road traffic operations. Specifically, there ex-
ists a speed-dependent optimal receptive field – which governs what information the
DGC kernels assimilate – that is consistent with the back-propagation speed of stop-
and-go waves in traffic streams. This implies that the trained parameters are consistent
with traffic flow theory. This optimal hyper-parameter can avoid learning spurious
correlations between links but capture the true cause of the future traffic state. We
believe this research paves a path to more transparent deep learning models applied for
short-term traffic forecasting.
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2.1 Introduction

Accurate and reliable short-term traffic forecasting is one of the core functions of
Intelligent Transportation Systems (ITS). Predicting the dynamic evolution of traffic
has been a popular research topic for many decades, both on a single corridor (e.g.
Van Lint et al. (2005)) and on large road networks (e.g. Fusco et al. (2016)). For broad
and recent overviews of methods and challenges in this active research field, we refer
the readers to Lana et al. (2018) and Ermagun & Levinson (2018). The discussion
hereafter focuses on three key methodological challenges related to real-time traffic
forecasting for travel information provision and traffic management: interpretability,
observability, and uncertainty.

2.1.1 Background: network-level traffic prediction

The evolution of traffic network conditions can be viewed as a superposition of var-
ious intertwined dynamical processes, including origin-destination (O-D) traffic de-
mand, route choice patterns, queuing and congestion backward propagation, driving
behaviours that govern emerging characteristics, etc. Traffic condition forecasting re-
quires either implicitly or explicitly considering the dynamics in both demand and
supply. In the literature, many different methods are proposed to tackle short-term
traffic prediction tasks. They range from simple approaches such as conditional av-
eraging (Davis & Nihan, 1991; Smith & Demetsky, 1997), auto-regression and time
series models (Ahmed & Cook, 1979; Castro-Neto et al., 2009), to sophisticated ma-
chine learning approaches (e.g. Hamner (2010); Huang et al. (2014); Polson & Sokolov
(2017)), and simulation-based approaches in conjunction with sequential data assim-
ilation methods (Wang et al., 2005; Van Hinsbergen et al., 2011). One of the biggest
advantages of data-driven approaches – which encompass all methods except those us-
ing simulation-based models – is that explicitly disentangling the demand and supply
dynamics is not required. Available data can be fully explored regardless of whether
the model simulates the physical process between the input data (speeds, flows, travel
times, trajectories, and other information) and the desired output quantity. Instead,
data-driven methods aim to learn correlations between inputs and outputs. Their per-
formances mainly depend on the type of data, model structures, and the optimization
strategy, whether these mappings are explainable in traffic science. However, the inter-
pretability of data-driven models becomes a new problem. Taking the example of deep
neural networks, neither the complex model containing numerous learnable parameters
nor the internal states of hidden layers are easy to explain. If a traffic prediction model
is only used as a “black-box” inference engine, it may suffice for many purposes, but
certainly not for traffic management and control.

Simulation-based methods offer an alternative for explainable network-level traffic
forecasting since these methods explicitly delineate the prediction task into constituent
sub-problems and compute the resulting traffic state by “white box” physical and be-
havioural models. The simulation-based approach gives a comprehensive solution for
traffic state estimation, prediction, and for control optimization (Wang et al., 2008).
However, this transparent methodology also comes with serious challenges.
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The first challenge is the limited observability of some constituent parameters and
variables. There are much more unknowns that govern the traffic dynamics than the
limited bits of information derived from sensors, let alone project them in the short-
term future. Particularly, demand and route choice patterns are difficult to be fully
observed (Viti et al., 2014; Castillo et al., 2012; Krishnakumari et al., 2019). Some
other key variables and parameters, such as vehicle densities and road capacities, are
also difficult or costly to observe with or derive from sensor data. Although with vehi-
cle counting, accumulation and thus density is available in principle, inevitable small
errors may lead to unbounded biases (Xie et al., 2018; Nantes et al., 2016; Bhaskar
et al., 2014).

Secondly, even if all required data were observable, because of the stochastic nature
of traffic dynamics, the prediction is still influenced by uncertainty. The uncertainty
comes from the predicted boundary conditions (e.g. demand and capacity constraints)
and from the traffic flow process itself. Small errors in the projected inflow at a certain
position, or in the expected capacity of an intersection, may cause large prediction
errors in the resulting traffic states. Additionally, where and when errors are made also
matters. These errors may have larger consequences at some specific locations and
during some time slots. For example, the spreading of congestion in a road network
largely depends on whether queues spill over some junctions and off-ramps, and these
differences can be significant (van Lint et al., 2012a; Knoop et al., 2015).

To address these challenges, it is necessary to combine the best of both data-driven and
simulation-based worlds: an adaptive learning solution that uses whatever available
incomplete data and produces predictions that are at least partly explainable.

2.1.2 Contributions and outline

In this paper, we investigate deep learning models that are able to learn explainable
dynamic spatial correlations, which can be defined as traffic-condition-dependent in-
teractions among adjacent links. In deep learning models, spatial correlation is gen-
erally implicitly modelled by stacked convolutional or graph convolutional layers. To
make this process more explainable, we propose a novel graph attention variant in the
form of Dynamic Graph Convolution (DGC) modules. DGC modules assume that
the spatial correlation depends on the road network connectivity, locations, and traf-
fic states in a receptive field. In other words, it learns to mimic the location-specific
and condition-dependent propagation of information. DGC modules are implemented
in a recurrent encoder-decoder model to realize multistep speed forecasting. We call
this prediction model a Dynamic Graph Convolutional Network (DGCN). By tracking
the generated dynamic kernels, we explain what spatial correlations are learnt by this
model in different scenarios. The key contributions of this paper are:

• Model construction: The dynamic convolution is extended to graphs by consid-
ering the properties of traffic networks. Based on a new DGC module, a novel
multistep traffic forecasting model, the DGCN, is proposed.

• Performance comparison: Validated on real freeway network datasets, the DGCN
shows competitive predictive accuracy compared to a selection of state-of-the-art
models.
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• Model interpretation: The generated dynamic convolutional kernels offer in-
sights into what the model has learnt from the data. It turns out that DGC mod-
ules encode an explainable proxy to the basic traffic flow theory.

The rest of this paper is organized as follows: Section 2.2 describes the details of the
DGCN. Next, section 2.3 compares the performances of DGCN against some baseline
models using real freeway-network speed datasets. Section 2.4 presents model inter-
pretations. Finally, Section 2.5 draws conclusions and gives several potential research
directions.

2.2 Method: deep learning models

In this section, we first give a brief overview of deep learning models applied to short-
term traffic prediction. How spatial correlations are implemented in different models is
our focus. Then, specific to our purpose, some notations and the problem formulation
are defined in subsection 2.2.2. Next, we introduce the basic building block, the DGC
module, and combine it with an RNN encoder-decoder to construct the novel DGCN
prediction model in 2.2.3.

2.2.1 Overview of related works

Recently, deep learning, especially deep neural networks (DNN), brought new pos-
sibilities to the short-term traffic forecasting domain. DNNs capture spatiotemporal
features by a large amount of organized trainable parameters. Many papers propose a
variety of DNN models to improve predictive performance. For example, Huang et al.
(2014) proposes deep belief networks (DBN) for traffic flow prediction. Polson &
Sokolov (2017) combines a linear model with L1 regularization and a layer activated by
a tanh function to predict the sharp transition of traffic flow. Increasingly, standardized
modules, such as convolutional layers and recurrent layers, are used to construct new
DNN-based predictors. For example, Ma et al. (2015) uses long-short-term memory
(LSTM) networks to predict speed evolution on a corridor. Ma et al. (2017) converts
traffic dynamics to heat map images and employs deep convolutional neural networks
(CNN) for speed prediction. To apply CNN on non-Euclidean structures, the convo-
lutional operator is extended to graph convolution (Kipf & Welling, 2017; Hamilton
et al., 2017). Such graph convolutional networks (GCN) are suitable for network-level
traffic forecasting because a road network can be naturally represented by a graph. For
example, Yu et al. (2018) combines spectral-domain graph convolution and tempo-
ral gated convolution to predict network-level traffic speed, so-called spatio-temporal
graph convolutional networks (STGCN). In many of these studies, the central focus is
on improving forecasting precision and reliability and much less on model interpreta-
tion. To improve the interpretability of deep learning models, an increasing number of
studies attempt to explain what neural networks learn from data and particularly spatial
correlations.

In the literature, there are two main methods to achieve this. The first one is imple-
menting predefined components to represent spatial correlations. These components
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stay static after training. The idea is similar to those variants of regression models
considering spatial interactions (e.g. Kamarianakis & Prastacos (2005); Min & Wynter
(2011)). For example, Li et al. (2018) considers congestion as a bidirectional diffusion
process described by random walks. Diffusion convolution is embedded into gated re-
current units (GRU) resulting in a so-called diffusion convolutional RNN (DCRNN).
Cui et al. (2019) proposes traffic graph convolution (TGC) to extract rich spatial fea-
tures on small graphs. The design of this TGC considers the maximum speed of ve-
hicles and results show that statistically larger kernel weights emerge at frequently
congested intersections. Zhang et al. (2019b) combines a similar graph convolutional
layer, a GRU encoder-decoder, and a temporal attention layer in one model, and calls
this an attention graph convolutional-seq2seq (AGC-seq2seq) model. The authors de-
fine the average matrix of graph convolutional kernels as spatial dependencies and
draw similar conclusions as in Cui et al. (2019). This approach can give a static map-
ping that encodes spatial dependencies that work best on average. However, spatial
dependencies are fundamentally dynamic in traffic flows. This inconsistency restrains
these models’ interpretability.

The second option is letting the model learn dynamic spatial correlations from data.
The graph attention mechanism (Veličković et al., 2018) is a promising solution in
this direction. In graph attention networks (GAT), graph convolutional kernels are no
longer static, but are calculated from real-time node features. For example, Zhang et al.
(2018) proposes gated attention networks (GaAN) to predict traffic states. An extra soft
gate is added based on GAT. Do et al. (2019) uses a simplified pairwise spatial atten-
tion layer to predict traffic volumes and directly produce dynamic spatial correlations
in the form of heat maps. However, some important features of traffic flows are ignored
when designing these models. First, the propagation of information is asymmetric in
traffic networks. In freely flowing areas, kinematic waves move with the driving di-
rection; in congested traffic, they move against the traffic flow. In the former case
upstream information suffices for prediction; in congestion, the model needs to com-
bine up- and downstream information. Second, how far up- or downstream the model
would have to “look for information" to accurately track the evolution of congestion
depends on the data granularity and the network topology. Third, some unavoidable
“unseen” factors, such as an on-ramp branch that is not covered by sensors, can also
influence the prediction. The ability to explain how a model gives reliable predictions
by adjusting dynamic spatial correlations for incomplete data is critically important
for decision-making in traffic control. Implementing the properties above may yield a
more accurate and more explainable mapping.

To develop dynamical mappings for these spatio-temporal relationships, we need a spa-
tial attention mechanism that adapts in real-time to the prevailing traffic conditions.
This study aims to fill this gap by designing a new spatial attention variant consid-
ering the upstream-downstream asymmetry of traffic dynamics and the influence of
incomplete data.

2.2.2 Mathematical Formulations and Preliminaries

Traffic dynamics on a road network can be written as a spatio-temporal graph:
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G (VN ,E ,AN×N ;XT×N×C), (2.1)

in which the subscripts indicate the dimensions of the tensor. VN is the set of N nodes,
E is the set of edges (connecting these nodes), and A is the adjacency matrix. For T
discrete time steps of duration ∆t, the evolution of traffic states is represented by the
feature tensor X. The feature vector of node i at time t is denoted as Xt

i ∈ RC, which
can be composed of C traffic variables, such as speed, flow, etc. Short-term traffic
forecasting is formulated as a sequence-to-sequence regressive task in this study. On
a road network G , the input is the feature tensor observed in the past m timesteps
Xobs

m×N×C, the output is the predicted feature tensor of the next p timesteps X̂pred
p×N×C that

maximizes the following conditional probability:

X̂pred
p×N×C = argmax

Xreal
p×N×C

Pr(Xreal
p×N×C|Xobs

m×N×C; G ) (2.2)

We denote m∆t as the observation window and p∆t as the prediction horizon. On a
spatiotemporal graph G , we denote the set of all nodes within k hops from a central
node vi as N k

i (including the central node itself), in which k is the so-called receptive
field. If the latent representation of vi is a learnable function of all feature vectors
within the receptive field, we have:

y⃗i = ϕagg(⃗xN k
i

; G ) (2.3)

in which ϕagg() is the k-walk graph aggregator.

2.2.3 Dynamic graph convolutional networks

One of the earliest dynamic convolutional networks is proposed by Brabandere et al.
(2016), the so-called Dynamic Filters Network (DFN). In that model, pixel-wise dy-
namic convolutional kernels are used to capture the movement of objects and to pre-
dict the next several frames of a video. Based on a similar idea, we design a dynamic
graph convolution to capture the propagation of congestion. The structure is shown in
Fig.2.1. The input of the DGC is split into two tensors, feature maps X′ and traffic
states X. Each DGC module has three parts: (1) a filters generation network (FGN)
computes dynamic graph convolutional kernels from varying feature maps; (2) the gen-
erated kernels are then applied in a local-wide graph convolution with traffic states; (3)
post-processing adjusts the dimension of outputs.

The DGC module differs from the DFN (Brabandere et al., 2016) in three ways. First,
it is extended from Euclidean space to graphs by involving an adjacency matrix that
encodes the connectivity. This extension is necessary because the number of neighbour
nodes is arbitrary on a graph. Another method is converting graphs to Euclidean im-
ages by stitching all roads in order and applying CNN (Ma et al., 2017). However, the
neighbours around intersections on the graph may locate far away in the image. For ex-
tracting explainable spatial correlations from DNN, GCN is a better choice because the
real geographical distances among roads are conserved. Second, the FGN uses a more
computationally efficient one-step process instead of the heavy convolutional encoder-
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Figure 2.1: DGC module: (a) the structure of a DGC module; (b) the details of filters
generation networks and the DGC graph aggregator

decoder. Third, in the FGN of the DFN, convolutional kernels are shared among all
pixels. Considering the fact that each node is unique in a road network in terms of
infrastructure, capacity, and link connectivity, we add position-specific parameters in
the FGN of the DGC. The mathematical formula of FGN is given below:

AkN×N =Ci[(AN×N)
k]

SN×N(t) = (AkN×N ⊙BN×N)X′
N×C(t)ΓΓΓC×N +bN

WN×N(t) = σ1(AkN×N ⊙SN×N(t))
, (2.4)

where B, ΓΓΓ and b are trainable parameters. Ci[ ] pins all non-zero elements in a matrix
to 1. Ak is the k-hop adjacency matrix. σ1() is the nonlinear activation or normaliza-
tion function. Because the input feature map X′(t) varies at each instant, the generated
graph convolutional kernel W(t) also evolves with time. Then the generated dynamic
kernels W(t) is applied in a space-domain graph convolution and a shared node-wise
fully-connected layer is used for post-processing:{

HN×D = (WN×N(t)⊙AkN×N)XN×D

Yout
N×C′ = σ2(HN×DVD×C′ +b′

C′)
, (2.5)

in which V and b′ are trainable parameters. σ2() is an activation function. To better
clarify this process and for easier readability, equation (2.6) depicts the graph aggrega-
tor in (2.4) and (2.5) for a single node i:

s j,i(t) = ( ∑
j∈N k

i

β j,i⟨⃗γi, x⃗′ j(t)⟩)+bi

w j,i(t) = σ1({s j,i(t) | j ∈ N k
i })

h⃗i = ∑
j∈N k

i

w j,i(t )⃗x j

y⃗i = FCθC′ (⃗hi)

(2.6)
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The first equation in (2.6) describes how the initial dynamic graph convolutional ker-
nels s j,i are generated from feature vectors. It also indicates the parameter sharing
strategy: γ⃗i is the shared parameter in the very receptive field. β j,i represents the spe-
ciality of each node when generating initial weights. Each s j,i is a learnable k-walk
graph aggregator of x⃗′N k

i
. For simplification, in the following parts we denote a DGC

module with N ×C′ output dimension and k receptive field on a spatiotemporal graph
G as follows:

Yout
N×C′(t) = DGCk(X′(t),X(t),C′;G ) (2.7)

The DGC proposed here is essentially a variant of the graph spatial attention module
(Zhu et al., 2019). In the section hereafter, we compare it with another variant, the
Graph Attention Network (GAT) depicted by (2.8) and proposed in Veličković et al.
(2018). We only discuss the single-head attention variant here, but the conclusions
also hold for multi-head attention.



φw(⃗xi, x⃗ j) = ⟨FCθva (⃗xi),FCθvb (⃗x j)⟩

w j,i =
exp(φw(⃗xi, x⃗ j))

∑
j∈N k

i

exp(φw(⃗xi, x⃗ j))

y⃗i = FCθo(wi,iFCθva (⃗xi)+ ∑
j∈N k

i , j ̸=i

w j,iFCθvb (⃗x j))

(2.8)

Different from DGC, the GAT module computes pairwise similarities between a cen-
tral node and its neighbours and then applies softmax normalization in each receptive
field. Rearranging the feature vectors of neighbour nodes does not change the out-
put. Although GAT can distinguish most types of node orders by overlapping multiple
adjacent receptive fields, there exist traffic phenomena where GAT may fail to learn
the right spatial correlations. One example is the upstream-downstream asymmetry
discussed earlier. For a given road segment xi it matters whether an upstream road
segment or a downstream segment is congested. In the first case (upstream congestion)
this may not affect the segment xi at all, whereas in the other case we can expect this
congestion to propagate upstream and thus affect the conditions on xi. The GAT mod-
ule does not distinguish these two cases. Other models, such as GaAN (Zhang et al.,
2018), have the same limitation. At least in theory, the DGC module can explicitly
learn these asymmetries.

Fig.2.2 presents a clarifying example. Consider a small corridor represented by seven
nodes as shown in the left. Our focus is on the outputs of the three most central nodes
here, y⃗1, y⃗2, y⃗3. For simplicity’s sake, we assume that all nodes can exhibit only two
traffic states, a freely-flowing state represented by x⃗free versus a congested state x⃗cong.
We also consider a fixed size of the receptive field, k = 2. From a traffic flow theory
perspective, the short-term evolution of these three nodes is related but quite different.
Congestion propagates against the direction of flow (from right to left). Only in the
case node 3 indeed becomes congested, the probability that node 2 becomes congested
later in time increases dramatically. Only in that case node 2 also becomes congested,
and later in time still, node 1 may become congested as well. But the three nodes are
not likely to be influenced by the upstream (left) congestion because there may be a
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stationary bottleneck, such as an on-ramp. Thus, for short-term prediction purposes,
these three nodes need to be treated differently. However, GAT modules cannot achieve
this. Because the initial weight φ is computed from the central node and one neighbour
node, only two dynamic weights, ω f f (for free-flow neighbour nodes) and ω f c (for
congested neighbour nodes) will be generated. No matter how these 3 congested nodes
and 2 free-flowing nodes are ranged, the last equation in (2.8) gives the same output,
see Fig.2.2 right top. The DGC module, in contrast to GAT, caters for these directional
dynamics by making the local weights conditional to the relative location (β j,i) of all
neighbour nodes, as shown in Fig.2.2 right bottom. Each node has its unique weight.
We refer to equations (2.6) versus (2.8) for comparing DGC and GAT for a single
receptive field.

Figure 2.2: An example of directional effects: if k = 2, each receptive field contains
three free-flow nodes and two congested nodes. GAT and GaAN give the same hidden
presentation of the three central nodes, but DGC can distinguish them.

The RNN encoder-decoder (Kumar & Asger, 2018) is widely-used for seq2seq regres-
sion tasks, including applications for traffic prediction (e.g. Van Lint et al. (2005)).
Each RNN cell receives the current input and the hidden state from last time step
(Xt ,ht−1), generates the new output and hidden state (X̂t+1,ht). The encoder saves the
last hidden state as the context vector C. The context vector is copied as the first hidden
state to initialize the decoder. Usually, two RNN cells of the same type but with dif-
ferent parameters are used in the encoder and the decoder respectively. Based on DGC
modules, we propose a novel multistep traffic forecasting model, the Dynamic Graph
Convolutional Network (DGCN). The model architecture and the inner structure of the
novel RNN cell are shown in Fig.2.3. It combines a DGC module with a regular graph
convolutional GRU-like (GCGRU) cell, where gates in GRU are replaced by different
space-domain static graph convolutions. For each time step, the current traffic state is
concatenated with the hidden state to form feature maps. The feature maps and the cur-
rent traffic state are fed into DGC module to give the prediction. Then the prediction
and the hidden state are put into GCGRU to produce new hidden state. Mathematical
formulas are given in (2.9). Scheduled sampling (Bengio et al., 2015) is an effective
curriculum learning strategy to mitigate the discrepancy between training and infer-
ence phases. In training, the decoder uses either the ground-truth or the prediction
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Figure 2.3: Architecture of DGCN model: (a) RNN encoder-decoder; (b) The inner
structure of DGCN cell.

given by last time step. The probability of using the ground-truth, ε , is gradually re-
duced to 0 with iterations during training so the model can start with learning from the
correct answers and ends with giving the predictions by itself. In inference and testing,
ε is reset as 0.



Xt+1 = DGCk([Xt ,ht−1],Xt ,1;G )

rt = σ(GCr,k′([Xt+1,ht−1],G ))

ut = σ(GCu,k′([Xt+1,ht−1],G ))

ct = tanh(GCc,k′([Xt+1,(rt ⊙ht−1)],G ))

ht = (1−ut)⊙ht−1 +ut ⊙ ct

(2.9)

To make the values of dynamic kernels more stable and to give clear congestion bound-
aries, the adjacency matrix masking process (the 3rd equation in (2.4)) is replaced by
equation (2.10) to realize softmax normalization in each receptive field (Vaswani et al.,
2017). So the model is encouraged to explore the most important link in each receptive
field and the kernel values are bounded between 0 and 1:

WN×N(t) = so f tmax(SN×N(t)−1015(1−AkN×N)) (2.10)

In summary, we propose a DGC module to capture directional dynamics in traffic
data. Subsequently, we implement these DGC modules in an RNN encoder-decoder to
realize multistep traffic forecasting. In the next section, we will benchmark this new
model against existing multi-step forecasting models.
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2.3 Experiments

In this section, the proposed model is tested on real-world freeway networks. All data
used in this study are provided by National Data Warehouse for Traffic Information
(NDW, The Netherlands). Raw speed data are collected from loop detectors on free-
ways. The well-known adaptive smoothing method (ASM) (Treiber & Helbing, 2002;
van Lint & Hoogendoorn, 2010) is used to fill the missing points in the sensor dataset.

2.3.1 Data description and benchmark models

The freeways around two big cities, Rotterdam and Amsterdam (Netherlands), are
selected as research targets. The major clock-wise and counter clock-wise beltways
around Rotterdam are respectively named as RotCL and RotCC. The two beltways are
uniformly partitioned into 200 m links. RotCL contains 199 links and RotCC contains
208 links. The more complex freeway network around Amsterdam which contains
multiple intersections is noted as "AMSnet". AMSnet covers a larger area so it is uni-
formly partitioned into 400 m links to reduce complexity. AMSnet has 201 links in total.
These networks are shown in Fig.2.4. Each link is represented by a node to construct
graphs. Speed data of the entire year of 2018 are prepared. All holidays and weekends
are removed due to the lack of congestion. 27 highly-congested weeks without severe
sensor malfunction are selected. The chosen weeks are shuffled and partitioned into 3
groups: 18 weeks for training, 4 weeks for validation, and 5 weeks for testing. Only
afternoon-evening peak hours between 14:00-19:00 are included in the dataset because
this time period contains the most diverse and richest patterns, which makes this traffic
forecasting task more challenging.

Figure 2.4: The freeway networks around Rotterdam and Amsterdam. The arrows are
driving directions.

The traffic forecasting formulation is determined by 4 parameters: time interval ∆t,
spatial resolution l, observation steps m, and prediction steps p. For the two beltways
we fix the average length of each link l = 200m and define two different tasks:

• Task-1: shorter time interval: Data is aggregated every 2 min (∆t = 2min), ob-
servation window is 30 min (m = 15) and the maximum prediction horizon is
20 min (p = 10).
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• Task-2: longer time interval: Data is aggregated every 5 min (∆t = 5min), ob-
servation window is 60 min (m = 12) and the maximum prediction horizon is
30 min (p = 6).

The four corresponding datasets are noted as RotCC2, RotCC5, RotCL2, and RotCL5

(network + time interval). For AMSnet, we only consider Task-1. The DGCN has two
hyperparameters: the receptive field of the DGC module k, and the GCGRU module k′.
We fix k′ = 2 and tune k for different predictive tasks and networks by grid-searching.
For the two ring freeways, the optimal receptive fields of Task-1 and Task-2 are k = 4
and k = 9, respectively. The optimal receptive field for AMSnet is k = 2. To evaluate
the performance of the DGCN, it is compared with the following benchmark models:

• Historical average (HA): HA is a simple model that calculates the average speed
of historical data as predictions. If the training set is fixed, HA gives the same
prediction every day and the performance doesn’t change with the prediction
horizon.

• K-nearest neighbours (KNN): K-nearest neighbours regression (Denoeux, 1995)
calculates the predictions based on the K most similar patterns in the training set.
The similarity is measured by their Euclidean distance (RMSE) and predictions
are computed through the weighted average of the corresponding future evolu-
tion. Weights are normalized by the inverse of Euclidean distance. The optimal
hyperparameter K = 25 is chosen by grid search and cross-validations.

• DCNN: Here we use the depth-4 model proposed in Ma et al. (2017) as a regular
deep CNN baseline model. The beltways are cut off at a position and treated as a
corridor. The roads in AMSnet are stitched together to form an image. Compared
to GNN-based models, some adjacent pixels on these images may represent two
geographically distant positions.

• GAT: The GAT module proposed by Veličković et al. (2018) is implemented
in GRU cells. This model also has a recurrent encoder-decoder structure. To
guarantee a fair comparison, its receptive field is set the same as the DGCN. The
feature enhancement layer in GAT has 5 output units.

• DCRNN: This predictor proposed by Li et al. (2018) is one of the state-of-the-art
multistep traffic forecasting models. Here we use the same hyperparameters set-
ting as the dual-random walk model in their paper. This is a reasonable choice
because the number of nodes and the scale of our road networks is compara-
ble to theirs. Like the DGCN, this model also has a recurrent encoder-decoder
structure.

• STGCN: This model proposed in Yu et al. (2018) is another state-of-the-art
single-step traffic forecasting model combining spatial graph convolution and
gated temporal convolution. When giving multistep predictions, the observa-
tion window moves with the updated new prediction step by step. Here we use
the variant that shows the best predictive accuracy in Yu et al. (2018), called
STGCN(Cheb).
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• Graph Wavenet: This model proposed by Wu et al. (2019) combines the dif-
fusion convolution in DCRNN and the fully-convolutional structure of STGCN
and generates multistep predictions. An additional learnable self-adaptive adja-
cency matrix is used to capture dependencies among links. But this self-adaptive
adjacency matrix is static after training.

When training the models, all speed data is firstly normalized between 0 and 1 by di-
viding by the speed limit 120 kmh−1, then normalized by the z-score function. For
testing, normalized data are used as input, but the output is fed into a reverse process to
give true-value predictions. The errors are calculated by taking several distance mea-
sures between predictions and the corresponding ground-truth data. We choose three
error measures: MAE, MAPE and RMSE. The mean average error (MAE) measures
the overall accuracy; the mean average percentage error (MAPE) is particularly sensi-
tive to errors in the contours of low-speed areas (i.e. whether the models accurately
track the spatio-temporal boundaries of congestion patterns), and the root mean square
error (RMSE) provides a combined measure (bias + variance) for the uncertainty in
the predictions. The three metrics are used to evaluate the performance from differ-
ent aspects. In training, RMSE is chosen as the loss function because of the z-score
normalization. The Adam optimizer (Kingma & Ba, 2017) is chosen to minimize the
loss function. The initial learning rate, decay rate, and scheduled sampling parame-
ters are tuned for each model. Early stopping on the validation set is used to mitigate
overfitting. Our experimental platform has one GPU (NVIDIA GeForce GTX 1070,
16GB). All deep learning models are trained and tested through parallel computation
on GPU. The source code, datasets, hyperparameters setting, visualization and model
interpretation tools are available online: 1.

2.3.2 Results

Table 2.1 and Table 2.2 list the overall average predictive errors of the proposed model
and benchmark models on different datasets. Because the sizes of the two beltways
are close, we do not distinguish their training time but give the average value. Fig.2.5
further shows the relation between each single-step errors and the prediction horizon
on RotCC and AMSnet. They present how errors accumulate with prediction steps. The
tendency is the same for another freeway RotCL. Because DNN models show signifi-
cantly higher predictive accuracy than HA and KNN on AMSnet, we only compare deep
learning models in Fig.2.5. We observe the following phenomena from the results:

• DGCN or STGCN(Cheb) achieves the best overall multistep predictive accuracy
in terms of the three metrics in most forecasting tasks. They show comparable
performances on the two beltways and AMSnet. Especially, DGCN outperforms
all the other models in terms of RMSE, which is the optimization target in train-
ing. It means that DGCN is better at tackling rare congestion patterns with higher
uncertainties.

1https://github.com/RomainLITUD/DGCN_traffic_forecasting

https://github.com/RomainLITUD/DGCN_traffic_forecasting
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Table 2.1: Multistep predictive performances comparison on two ring freeways during
peak hours 14:00 - 19:00

Model MAE(kmh−1) MAPE(%) RMSE(kmh−1) Time(s)
freeway RotCC RotCL RotCC RotCL RotCC RotCL Average

shorter time interval: ∆t = 2min; p = 10
HA 9.83 9.81 12.92 13.74 16.39 16.02 72
KNN 6.95 6.29 17.66 14.90 12.94 11.38 240
DCNN 5.84 5.18 12.07 10.94 10.42 9.04 600
GAT 6.04 5.39 13.44 11.73 10.98 9.34 1100
DCRNN 5.41 5.28 12.53 10.84 9.93 9.00 350
STGCN(Cheb) 5.16 4.56 11.28 9.23 10.69 8.90 750
Graph
Wavenet

5.35 4.91 12.02 10.93 9.92 8.73 900

DGCN 5.07 4.68 11.23 9.30 9.78 8.53 650
longer time interval: ∆t = 5min; p = 6

HA 9.60 9.61 12.62 13.39 16.26 15.85 62
KNN 7.51 6.84 18.32 15.49 13.78 12.09 27
DCNN 7.25 6.28 15.07 12.62 12.63 10.74 280
GAT 7.59 5.76 13.96 11.50 14.31 10.15 500
DCRNN 6.26 5.70 14.44 12.89 11.40 10.10 250
STGCN(Cheb) 5.66 5.34 12.79 10.97 11.40 10.03 400
Graph
Wavenet

6.46 5.62 14.61 10.83 11.79 9.63 500

DGCN 5.90 5.15 12.70 10.31 11.12 9.57 350

Table 2.2: Multistep predictive performances on AMSnet: ∆t = 2min, m = 15, p = 10

Model MAE(kmh−1) MAPE(%) RMSE(kmh−1) Time(s)
HA 5.98 17.74 11.61 65
KNN 4.65 14.42 11.57 330
DCNN 4.14 11.02 8.52 610
GAT 3.86 10.15 8.17 1500
DCRNN 3.82 9.36 8.05 550
STGCN(Cheb) 3.76 9.48 8.03 820
Graph
Wavenet

3.67 9.31 8.11 1040

DGCN 3.67 8.98 7.83 680

• In Fig.2.5, for the beltway RotCC, the slope of the KNN curve is the smallest
in terms of the three accuracy metrics. The predictive errors of STGCN(Cheb)
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Figure 2.5: The relations between MAE/MAPE/RMSE and the prediction horizon for
each single time step.

increase the fastest with prediction steps, especially for RMSE. The other models
are between them. The reason is that STGCN(Cheb) is a one-step prediction
model employing a fully-convolutional structure. But all the other GNN-based
deep learning models need to balance the multistep predictive errors and the
prediction horizon. DCNN also has a regular fully-convolutional structure, but
all predictive steps are generated together as an image so the multistep errors are
also balanced. Although the overall average errors of DGCN and STGCN(Cheb)
are close, STGCN(Cheb) performs better for shorter-horizon prediction while
DGCN is more accurate for longer-horizon prediction.

• Having similar GRU-like structures containing graph attention modules, DGCN
consumes less running time than GAT but consistently gives better predictions.
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The computational efficiency originates from the parameters sharing in the DGC
module: the calculation of pairwise similarities is replaced by collective matrix
operations.

• Generally speaking, deep learning models give better predictions than HA and
KNN. This advantage is more significant on AMSnet than on the two ring free-
ways because the congestion patterns on a net-like graph are more complex due
to spatial correlations among roads. DNN models consume longer training time
than HA and KNN. However, the running time can be further reduced by using
more powerful GPU clusters.

To summarize, we showed that DGCN is able to give satisfactory predictions on real-
world datasets. The results support the theoretical discussion in Section 2.2: DGC
performs better than GAT when tackling complex directional patterns. Next, we will
focus on the most important advantage of the proposed model: DGCN has high inter-
pretability.

2.4 Model interpretation

Now we explain what DGCN learns from data by looking inside of DGC module.
Section 2.4.1 relates the optimal receptive field to the back-propagation speed of stop-
and-go waves and shows again that the upstream-downstream asymmetry of models
has a significant influence on traffic forecasting performance. Section 2.4.2 directly
gives the relation between dynamic graph convolutional kernels and speed data. It
shows how DGC “understands" traffic dynamics in different situations.

2.4.1 Optimal receptive field

To explore how predictive errors change with the receptive field, we formulate a series
of forecasting tasks: the observation step m = 10 and prediction step p = 3 are fixed.
The time interval changes from 1 min to 5 min by 1 min. For each of the five tasks
above, the receptive field k gradually increases from 1 to 12. Thus, we can obtain five
MAE - k curves. In Fig.2.6, the five curves are overlapped together. Notice that the x-
axis is the real physical receptive field, k× l. The left figure shows that the five curves
have a similar tendency: with the increasing receptive field, MAE drops rapidly until
it reaches an optimal point, then increases slowly. The longer the time interval is, the
larger the optimal receptive field is. The right figure shows that the relation between
∆t and kopt can be approximated by a linear equation:

kopt × l ≈ 19.8kmh−1
∆t (2.11)

To explain this relation and visualize the effect of the receptive field directly, we set dif-
ferent k values, re-train the DGCN models on RotCC2, and compare their predictions
with the ground-truth. The results are shown in Fig.2.7 (∆t = 2min). For a small recep-
tive field k = 2, the model tends to predict the backpropagation of stop-and-go waves
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Figure 2.6: Left: MAE-receptive field relations for different time intervals on RotCC;
Right: the linear relation between the optimal receptive field and the time interval.

Figure 2.7: Ground-truth (top left) and 10 min predictions given by DGCN with differ-
ent receptive field k during peak hours on RotCC2: an example on 15-01-2018.

but the constrained receptive field results in mismatching patterns. The speed of the
stop-and-go wave measured on this prediction is about 13 kmh−1, which is lower than
the true value. As for k = 4, the receptive field is large enough so the model can give
precise predictions with clear stop-and-go wave boundaries. Even the merging of con-
gestion (see the area in the circle) is successfully predicted because DGC considers the
speciality of each location. DGC learns from historical data that congestion frequently
stops spreading at that position because there is an off-ramp, even if this off-ramp is
not included in the dataset. When k is too large, for example, k = 8, each receptive
field contains multiple stop-and-go waves so the model is confused about which wave
will cause the incoming congestion. So the congestion boundary becomes blurred.
Fig.2.7 clearly illustrates how DGC mimics the directional flow of information. To
predict the traffic state at a position after ∆t, only the most adjacent stop-and-go wave
should be included in the receptive field. Thus, we can estimate the maximal speed of
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stop-and-go waves by an empirical inequality:

kopt ≥ |vs|max
∆t
l

(2.12)

Comparing (2.12) with (2.11), we can estimate the upper bound of the speed of stop-
and-go waves on RotCC: about 19.8 kmh−1. In Fig.2.7, this estimated average speed
is about 18 kmh−1. Considering the receptive field is discretized by links’ length
l = 0.2km in our model, 19.8 kmh−1 is a reasonable upper bound. This analysis ex-
plains why we choose k = 4,k = 9 for the two ring freeways and k = 2 for AMSnet in
our experiments. It also gives a hyperparameter tuning principle in a traffic forecasting
model. For a road network, if the time interval is small enough to show the fine struc-
ture of stop-and-go waves, the shorter links are, or the higher vs is, the bigger receptive
field should be chosen.

2.4.2 Dynamic spatial correlations

In many deep learning based traffic forecasting models, temporal dependencies and
spatial correlations are modelled separately by different modules (e.g. Cui et al. (2019);
Zhang et al. (2019b); Yu et al. (2020)). But in DGCN, the spatial correlations depend
on historical and current traffic states. For simplification, we take the first decoder
cell as an example. The encoder encrypts observed traffic conditions in the past m−1
time steps into the context vector C, and C is concatenated with the current input Xt .
Thus, each node is associated with two features, (ci,xi). They represent the histori-
cal information and the current traffic condition respectively. Because of the softmax
normalization in DGC, all weights are non-negative and the sum of weights in each re-
ceptive field equals to 1. So we can interpret generated dynamic graph kernels W(t) as
relative spatial correlations. For example, Wi, j(t) represents the “influence" of node- j
on node-i for the prediction of next time step t + 1 (see Fig.2.1). We call it an “in-
fluence coefficient". To help visualise multi-dimensional dynamic filters in a single
figure, we define a directional distance vector on the ring freeways:

d⃗k = (−k,−k+1,−k+2, ... ,−1,0,1, ... ,k−2,k−1,k) (2.13)

For node i, the spatial correlation vector is defined by:

J⃗t
i = (W t

i,i−k,W
t
i,i−k+1,W

t
i,i−k+2, ... ,W

t
i,i+k−2,W

t
i,i+k−1,W

t
i,i+k) (2.14)

The filter value is defined by their inner product divided by k:

f t
i =

1
k
⟨d⃗k, J⃗t

i ⟩, f t
i ∈ [−1,1] (2.15)

For more complex graphs, the definition is exactly the same, but the numbers of down-
stream/upstream adjacent nodes (the length of d⃗k and J⃗t

i ) depend on locations. Follow-
ing the concept of spatial attention, f t

i is called an attention coefficient. It is a variable
of space and time. More negative f t

i means that upstream links are more important,
while more positive f t

i indicates that traffic states of downstream links dominate the
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prediction. In the following parts, spatial correlation vectors J⃗t
i and attention coeffi-

cients f t
i extracted from decoder cells are compared with real-time predictions vt+1

i to
seek model interpretations.

Fig.2.8 shows the relations between the average attention coefficient f̄ and the pre-
dicted speed v for different datasets. f̄ is calculated over all links with the same speed
range, which is uniformly aggregated every 5 kmh−1, from 0 kmh−1 to 120 kmh−1. In
Fig.2.9, each column of the heat map represents the average spatial correlation vector
¯⃗J in the corresponding speed range. Here we only show RotCC as two clarifying exam-

ples in Fig.2.9 because the number of adjacent links is not the same for different nodes
on AMSnet. Fig.2.10 further directly compares the ground-truth of speed and the cor-
responding evolution of dynamic attention coefficient on RotCC2 during the peak hour
of a randomly selected workday. In Fig.2.11, we select two representative scenarios
on AMSnet: an on-ramp and an off-ramp. The speed is compared with the real-time
spatial attention distribution to precisely show how DGC gives predictions under these
more complex situations. The following conclusions can be drawn from the results:
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Figure 2.8: f̄ -v relations on different datasets

Figure 2.9: J⃗-v relations on RotCC: each column is the average J⃗ in that speed range.
y-axis is the directional distance.

1. Given that congestion is defined by a speed value lower than 70kmh−1, then
Fig.2.8 shows that the average attention coefficient f̄ gradually shifts to a higher
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Figure 2.10: Comparison between the speed ground-truth and the dynamic attention
coefficient.

Figure 2.11: Comparison between the speed ground-truth and the dynamic attention
on AMSnet (k = 2): The left figure is an on-ramp and the right one is an off-ramp. The
arrows represent driving directions (downstream). Stars represent the central nodes
in the receptive field. Black numbers are speed, red numbers are dynamic attention
values. Red nodes and blue nodes respectively represent congested and free-flowing
traffic states.

positive value with the decreasing of v. It means that DGC tends to credit higher
spatial importance to downstream links in low-speed regions. We call this phe-
nomenon attention transition.

2. In Fig.2.9, the heat map shows that in free-flowing areas the average spatial
attention distributes more or less evenly around central links, while for congested
areas spatial attention gradually converges to farther downstream links with the
decreasing of speed (the top-left red spot). We call this phenomenon attention
convergence.

3. Attention transition and convergence statistically explain how DGC “understands”
traffic dynamics. In case all adjacent links within the receptive field of a specific
link i are freely flowing, the model infers that link i will remain in a free-flow
state in the next time step. But when congestion occurs, the model switches at-
tention to downstream links to assimilate information that describes backwards
propagating jam waves and other congestion dynamics. The more speed de-
creases, the farther away downstream the attention is shifted. This mechanism is
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consistent with basic traffic flow theory and in line with the analysis in section
2.4.1.

4. Fig.2.10 presents how DGCN learns the unique property of each location. In
general, as explained above, the dynamic graph convolutional kernels pay more
attention to downstream links in low-speed congested areas, like area-1. But at
some special positions, like in area-2 and 3, even if the speed is very low, the
attention still keeps neutral (close to 0) to stop the back propagation of stop-and-
go waves and to resist the change of traffic states. These positions are important
on-ramps causing bottlenecks or off-ramps stopping the shock waves from spill-
back. DGCN learns these infrastructure differences solely from incomplete data.
DFN and GAT cannot do this.

5. Fig.2.11 shows similar but more complicated phenomena. For the on-ramp on
the left, the left branch from the west is congested but another branch from the
south and the downstream links are free-flowing. The DGC deducts that there
will be a standing bottleneck due to the merging of two traffic streams. So the
spatial attention focuses on the central node (neutral). For the off-ramp shown in
the right figure, the downstream branch to the southeast is congested but another
branch and upstream links are not congested. The DGC automatically increases
its attention to the congested downstream branch but credits very low attention to
the other one. It predicts that the jam wave will spill back and continue spreading.
The analysis shows that DGC is able to treat more complex graphs and give
explainable real-time spatial correlations. It allows for delicately studying the
role of intersections in a network.

2.4.3 Discussion on model interpretability

So far we have explained what dynamic spatial correlations the DGC has learned from
traffic data and the resulting statistical relationships between trainable parameters and
speed. We emphasize that the attention convergence and transition phenomena high-
lighted in the results section are emerging results of the learning process. In this final
subsection we return to how this relates to traffic dynamics, which can be compactly
described by the LWR kinematic wave model (Lighthill & Whitham, 1955a):

∂ρ(x, t)
∂ t

+∇xq(x, t) = s(x, t)

⇒ ∂ρ(x, t)
∂ t

+ c(ρ)∇xρ(x, t) = s(x, t) (2.16)

in which ρ is density, q is flow, c(ρ) = ∂q/∂ρ is the kinematic wave speed, and s is
the source term governing in- and outflows at on-ramps and off-ramps. Once traffic
density increases beyond some critical density ρc, the wave speed c(ρ) < 0, which
means kinematic waves move against the direction of flow. In flows with densities
below ρc, disturbances move with the flow (c(ρ) ≥ 0). Recall that this directional
dynamics is used to justify the location-specific design of the DGC module. It turns
out this choice really pays off. Using the spatial attention mechanism, the DGC module
indeed seems to have encoded traffic state-dependent wave speeds which determine
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which up- and downstream nodes offer the most relevant information for the prediction.
In freely-flowing conditions, it uses a mix of up- and downstream information; in
congestion, it assimilates more information from downstream. This dynamic state-
dependent behaviour cannot be achieved by the benchmark models.

Another tentative possibility is to consider the DGC model as an alternative to real-time
macroscopic simulation models (e.g. Wang et al. (2005); Van Hinsbergen et al. (2011)),
which combine continuous traffic flow models as described by (2.16) with sequential
Bayesian estimators (Kalman filters, particle filters, etc). Li et al. (2018) explains that
diffusion graph convolution is equivalent to the discrete form of a Laplacian opera-
tor (a second-order differential) on graphs. Similarly, extended spatial-domain graph
convolution can also be treated as the discrete form of an unknown nonlinear spatial
operator with a source term parameterized inside:

∂ρ

∂ t
+Sx(ρ,s) = 0 (2.17)

To approximate this equation and the implicit mapping in Sx by neural networks, some
basic rules need to be fulfilled. For one, the kinematic wave model in (2.16) is a
conservation equation. Nothing is conserved in the relation (2.17) learnt by DGCN,
unless one would explicitly add such conservation rules. A related issue is that the
maximum speed of jam waves should constrain the adaptive receptive field. In many
practical cases, however, flow data are not available, whereas speeds are increasingly
available, both through infrastructure-based sensing and through probe vehicle data.
The dynamics of average speed can be described as the superposition of a convective
process and other higher-order effects due to location-specific reasons. Our results
suggest that these dynamics can be more or less learnt by DGCN just from data.

Finally, we point out that the results shown in Fig.2.6 and Fig.2.7 are relevant to the
"causal confusion" in correlation-based deep learning models. Without restrictions
on the direction of information flowing, most DNNs cannot distinguish correlation
and causation. Learning false causation or spurious correlation, such as which stop-
and-go wave will cause the congestion here, can damage the robustness of the model.
The optimal receptive field also suggests that deeper is not necessarily better in traffic
forecasting. Domain knowledge is always important for traffic dynamics modelling.

2.5 Conclusion and outlook

In this paper, we demonstrated a multistep short-term traffic forecasting model using
dynamic graph convolution. The key feature of the proposed model is that it combines
the road graph embedded in their structures and the RNN component which allows
learning explainable traffic dynamics.

Experiments on freeway networks show that the proposed model, DGCN, can give sat-
isfactory short-term predictions. The core innovation, the dynamic graph convolution
(DGC) module, is a “grey-box” that allows us to unravel what heuristic dynamic spatial
correlations the model has learnt. Two points are demonstrated. First, designing a suit-
able directional features extraction module and choosing a so-called adaptive receptive
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field is critically important for predicting the fine structures of congestion patterns.
Second, we observed two phenomena, graph attention transition and convergence, that
show how the DGC learns dynamic spatial correlations that make sense from a traffic
flow perspective. The model has learnt speed-and-location-dependent, kinetic wave
speeds so as to assimilate the right data under the right conditions. In practice, this
model can give both network-level traffic state prediction and dynamic spatial depen-
dencies among links. The predicted states can be used for prediction-based services,
such as estimated time of arrival and congestion forewarning. In traffic control, spatial
correlations can help practitioners to diagnose where the predicted congestion spreads
from, which is important for transparent decision-making.

This study leads to several potential research directions. For the deep learning tech-
nique itself, arguably the dynamic graph convolution module is not deep enough. The
mechanism can be easily extended to multi-head attention, or multi-scale DGC mod-
ules with different receptive fields to capture hierarchical information flow. This may
improve both predictive performance and interpretability. For example, this study fo-
cuses on continuous traffic streams on freeway networks. Urban road networks may
have more bottlenecks because of traffic lights so the traffic flows are less continuous.
Spatial correlations in these scenarios need further studies.

Second, the DGC in this paper is myopic by design. It considers traffic dynamics from
a localized and short-term view. Some other factors resulting in emerging congestion
patterns or long-term variations, such as sudden demand peaks, traffic accidents, and
weather, are not considered. Whereas our model can predict the dynamics of conges-
tion once it has started, it is not suitable for predicting the onset of congestion, which is
highly uncertain. This problem restricts the prediction horizon to 30 min or less during
busy peak hours. For multi-step forecasting, it is very sensitive to previous predictions
and unexpected new bottleneck activation quickly increases prediction errors.

A third interesting path of investigation is to add flows to the inputs. We hypothe-
size that in that case a DGC-based model may be designed such that it is explainable
as a real-time macroscopic traffic flow model with adaptable state variables and pa-
rameters. The big difference with classic simulation-based traffic data assimilation
methods is that DGC-based approaches may be better able to learn the dynamics from
incomplete data than say an LWR-like model in combination with a sequential Monte
Carlo method. On the other hand, we also may be overly optimistic about the level of
potential interpretability.

Finally, and this combines all previous points, maybe it is possible to redesign these
dynamic graph convolution models such that they are able to learn the dynamics of
multiple demand and supply processes, such as the dynamics of the traffic state itself,
the dynamics of key parameters like capacity, and the dynamics of demand. We be-
lieve it is better to develop methods that use the best of both worlds of data-driven
and simulation-based models. These results can help design similar frameworks and
develop more explainable deep learning based traffic forecasting models for decision-
making support.
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Chapter 3

The average predictability of
macroscopic traffic speed

In the previous chapter, we obtained an empirical relationship that describes which
links may causally influence the future traffic state at a location. This chapter aims
to directly estimate the average predictability of highway traffic state from data. The
empirical rules are used to partition the dataset and reduce the computational complex-
ity of the proposed entropy-based approach. Theoretically, we proved that conditional
entropy gives the lower bound of negative-log-likelihood for probabilistic forecasting
models. Then the k-p-nearest algorithm is used to estimate the predictability of speed
as a function of time and locations. The results illustrate that the average predictability
is significantly lower at some special locations and during evening peak hours.

This chapter is published as a journal article: Li, G., V. L. Knoop, H. van Lint (2022a)
Estimate the limit of predictability in short-term traffic forecasting: An entropy-based
approach, Transportation Research Part C: Emerging Technologies, 138, p. 103607.
The content is the same as the journal paper.



46 3. The average predictability of macroscopic traffic speed

ABSTRACT

In the past several decades, many models have been proposed to continuously im-
prove predictive accuracy. A key but unsolved question is whether there is a theoretical
bound to the accuracy with which traffic can be predicted and whether that limit can
be directly estimated from data. To answer this question, we use core concepts in in-
formation theory to derive the limit of predictability in short-term traffic forecasting.
Theoretical analysis proves that conditional differential entropy poses a rigorous lower
bound of negative-log-likelihood (NLL) for probabilistic models. And the continu-
ous form of Fano’s theorem further gives a loose lower bound of mean-square-error
(MSE) for deterministic models. Based on the special properties of traffic dynam-
ics, two assumptions are made in the estimate of entropy metrics: cyclostationarity
(traffic phenomena show strong periodicity) and localized spatial correlation (due to
kinematic wave propagation). They allow formulating the limit of predictability as a
function of longitudinal space and time-of-day which finds the most uncertain loca-
tions and periods solely from data. Experiments on univariate traffic accumulation
forecasting and network-level speed forecasting show that selected models, including
some state-of-the-art deep learning models, indeed cannot outperform the estimated
lower bounds but just approach them. The limit of predictability depends on the time
of day, network locations, observation range, and prediction horizon. Results reveal
that the stochastic nature of traffic dynamics and improper assumptions on the prior
distribution of output are two major factors restricting predictive performance. In sum-
mary, the proposed method estimates a trustworthy performance boundary for most
traffic forecasting models.
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3.1 Introduction

Short-term traffic forecasting is critically important for many key applications in the
traffic and transportation domain. Reliable and accurate short-term predictions of traf-
fic quantities can help traffic managers to rapidly react and make trustworthy decisions
to mitigate congestion proactively. For example, Yuan et al. (2011) and Liebig et al.
(2017) show that in case urban traffic flows are dynamically guided and re-routed
based on predicted traffic states, congestion can be effectively reduced during evening
peak hours. Attracted by its great value in applications, researchers have proposed
a wide category of methods to give more and more precise traffic predictions, e.g.
Van Lint (2008); Ma et al. (2017); Fusco et al. (2016). Although great progress has
been made to improve the predictive performance in this active research field, an im-
portant question remains open:

What is the theoretical boundary of predictive accuracy for short-term traffic forecast-
ing?

The answer can tell how far we have gone in this domain and what could be the most
valuable research direction in the future. Practically, it can put the results from com-
paring state-of-the-art predictive models into perspective.

We argue that the predictability of traffic variables is mainly governed by two factors:
observability and uncertainty. In a rigorous theoretical sense, a state-space system
(like traffic networks) is perfectly observable only if we can completely construct all
the current state variables from the available measurements by using whatever assump-
tions on the system dynamics and how the measurements relate to those dynamics.
That a system is perfectly-observable is a sufficient but not necessary condition for
this system to be perfectly predictable. The necessity does not hold because the system
may be not deterministic. The corresponding negative proposition is: if a system is
not fully-observable, then it is not fully predictable. Strict determinism and perfect
observability together in principle imply perfect predictability.

However, both strict determinism and perfect observability cannot be satisfied in the
traffic domain. From experience, traffic systems apparently are not fully-observable.
Many latent variables, such as demand and route choice patterns, cannot be completely
reconstructed from the limited information collected by sensors. It is almost impossible
to get all the demand and supply information needed to predict the short-term evolu-
tion of traffic states, especially in large networks. Because of this limitation, most
data-driven traffic forecasting problems (e.g. using deep learning techniques, Erma-
gun & Levinson (2018); Lana et al. (2018)) are formulated as sequence-to-sequence
regression tasks that only involve easily-observable quantities (e.g. speed and travel
time), rather than as in classic state estimation and prediction tasks that explicitly esti-
mate many underlying state variables (e.g. density, Wang et al. (2006); van Hinsbergen
et al. (2012)). The second fact is that traffic phenomena are not deterministic but nat-
urally stochastic due to all possible randomness in both supply and demand dynamics.
For example, many driving and travelling behaviours, like lane-changing choices, are
highly random and they could have a significant impact on macroscopic traffic states
(Schakel et al., 2012).

Therefore, the output of a traffic forecasting model should always be considered as
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an input-dependent random variable obeying a probability density distribution (PDF).
In this sense, most predictive models in literature fall into one of two categories, that
is, deterministic or probabilistic. Deterministic models aim to build point-to-point
mapping. By minimizing mean-square-error (MSE) or determinant of covariance ma-
trix (DCM), it predicts the mean of the output’s PDF. In contrast, probabilistic mod-
els describe the joint PDF of input and output random variables and learn to directly
give output’s PDF by minimizing negative-log-likelihood (NLL). We specify that this
classification only depends on the input-output formulation. Taking the example of a
deterministic model, one may use explicit traffic modelling (Ben-Akiva et al., 1998),
Kalman-filter-based methods (Wang et al., 2006; van Hinsbergen et al., 2012), or black-
box deep neural networks (Ma et al., 2017). There may exist random variables inside
the model (such as Bayesian networks, van Hinsbergen et al. (2009))—whatever is used
within such a model, if the final output is an estimate of mean value, it is a deterministic
model.

NLL and MSE describe predictive uncertainty from different aspects so it is necessary
to consider two corresponding metrics of predictability. Thus, we come up with the
following research question central to this paper:

If traffic forecasting is formulated as a self-regressive task, given a dataset, what are
the model-free, theoretical lower bounds of predictive performance for probabilistic
models and deterministic models respectively?

The answer to this question is highly relevant to researchers. It gives a more objective
assessment of data-driven models and puts bench-marking more and more complex
models into perspective. In this paper, we use key concepts in information theory
to estimate the limit of predictability in short-term traffic forecasting. Theoretically,
conditional differential entropy gives the rigorous limit of the expectation of NLL.
Then the extended continuous form of Fano’s theorem further gives a soft lower bound
of the expectation of MSE/DCM. Here both metrics are indices of model-independent
average limit of predictability. Whatever model is run on a large enough data set, the
expectation of NLL/MSE/DCM cannot reach the lower bound.

Another concern is that the uncertainty during some time slots and at some locations
in a road network could be much higher and cause much higher predictive errors. For
instance, when an on-ramp will be saturated and when a new congestion bottleneck
will start is highly uncertain. Congestion propagation in a road network also largely
depends on whether queues spill over some specific intersections and off-ramps (van
Lint et al., 2012a; Knoop et al., 2015). Identifying the most uncertain (the least pre-
dictable) time-of-day and network locations from data is valuable for traffic managers.
In this study, two special properties, cyclostationarity and localized spatial correlations
are considered in the entropy estimation scheme. So the limit of predictability can be
formulated as a function of space and time of day. The key contributions of this paper
are:

• Estimate the theoretical spatio-temporal lower bound of predictive error for both
deterministic and probabilistic traffic forecasting models.
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• Quantify how observation range and prediction horizon influence the limit of
predictability.

• Identify the most unpredictable time slots and locations in a road network di-
rectly from data.

• Illustrate that the stochasticity of traffic dynamics and improper assumptions on
output distribution are two major bottlenecks for further improving predictive
accuracy.

The remainder of this paper is organized as follows. Section 3.2 presents the back-
ground knowledge and related works in literature. Section 3.3 describes the proposed
method, including its theoretical basis, implementation of spatio-temporal dependen-
cies, and the numerical scheme to estimate the limit. Section 3.4 shows the results and
gives an analysis of numerical experiments. Section 3.5 finally concludes and proposes
several related research directions.

3.2 Background

3.2.1 Preliminaries

This subsection introduces the entropy measures in information theory and some basic
concepts of discrete-time stochastic processes. In information theory, the central con-
cept of entropy was first-time induced by Shannon to quantify the information content
of a discrete random variable (Shannon, 1948). Theoretically, the Shannon entropy of
continuous random variables is infinity. To extend this concept, differential entropy of
a continuous random variable V with probability distribution function pV (v) supported
on V is proposed and defined as follows:

H(V ) =−
∫
V

pV (v) ln pV (v)dv (3.1)

Higher entropy means higher uncertainty. For two continuous random variables, the
conditional (differential) entropy of X given Y is defined as:

H(X |Y ) = H(X ,Y )−H(Y ) =−
∫
X ,Y

pX ,Y (x,y) ln pX |Y (x|y) dxdy (3.2)

where X ,Y denote the support sets of X and Y . Conditional entropy measures how
much additional information is carried by X when side information Y is known. It
represents the average additional uncertainty of output. H(X |Y ) = H(X) if and only if
X and Y are independent.

For a state-space system with n observable variables, the evolution of system state can
be written as a n-dimensional time series {XXX t}, or a so-called multivariate stochastic
process. Herein XXX t ∈ Rn represents the n-dimension system state observed at time t.
When this system transits from old states to a new state, new information (uncertainty)
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is produced in addition to the old information carried by the historical observations.
For stochastic processes, stationarity is one of the most important properties. A sta-
tionary process is defined as a stochastic process whose unconditional joint probability
distribution of sub-sequences of any length does not change with time shifting:

p(XXX t1 , ...,XXX tn) = p(XXX t1+τ , ...,XXX tn+τ), ∀τ, t1, ..., tn ∈ R, ∀n ∈ N (3.3)

It means that statistical properties do not change with time. To facilitate the narra-
tive, from now on we denote XXX t−m:t = {XXX t−m, ...,XXX t−1} as the past m step observa-
tions from t; XXX t:t+p = {XXX t , ...,XXX t+p−1} as the next p step states. m is called observa-
tion window and p is prediction horizon. When predicting XXX t:t+p from given side
information XXX t−m:t , predictive uncertainty can be measured by conditional entropy
H(XXX t:t+p|XXX t−m:t). If p = 1 (1-step prediction), we have the so-called entropy rate:

S(XXX t) = lim
m→∞

H(XXX t |XXX t−m:t) (3.4)

For stationary processes or at least asymptotically stationary processes, both condi-
tional entropy and entropy rate are time-independent. Information is statistically gen-
erated at a constant rate. And thus predictability is a constant.

3.2.2 Related works

Predictability quantification is always an important topic. For a complex system with
unknown undergoing data generation process, such as traffic networks, this limit has to
be estimated from collected observations (dataset). We observe three major approaches
in the literature.

One of the most widely-used metrics of predictability is Lyapunov exponent (Wolf
et al., 1985) in chaos analysis. It characterizes how sensitive a deterministic process is
to disturbing initial conditions or measures the stability of a stochastic process. Esti-
mating Lyapunov exponents from time series firstly requires phase space reconstruc-
tion (PSR) through certain techniques like delayed embedding (Packard et al., 1980;
Rosenstein et al., 1993). Specific to traffic time series, Nair et al. (2001) and Shang
et al. (2005) use this method to analyse the chaos of scalar traffic time series and show
that both univariate speed and flow series have positive maximum Lyapunov exponent,
which is a signature of chaos. Some papers combine chaos analysis with other meth-
ods to predict traffic states. For example, Li et al. (2016) uses a two-level framework.
Different sources of data (speed, flow, occupancy) are firstly processed in lower dimen-
sional space, and then PSR embeds and fuses the initial flow series and processed flow
series into a higher dimensional space with the assistance of Bayesian estimation the-
ory. The embedded data are then fed into radial-basis-function (RBF) neural networks
to give predictions. However, the Lyapunov exponent has several shortcomings. First,
in most cases extending this scheme to correlated multivariate time series is challeng-
ing. The studies mentioned above only consider univariate time series. The difficulty
mainly originates from PSR. Embedding usually maps the original multivariate time
series into an unnecessarily high-dimensional phase space (Lan et al., 2008), which
is numerically challenging. Second, Lyapunov exponents cannot be directly related
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to predictive errors in state space. Instead, it gives an average separation rate. These
drawbacks limit its applications.

The second strategy is maximum likelihood learning. With the development of deep
neural networks (DNN) techniques, this method is becoming mainstream. It assumes
that the output obeys an input-dependent prior distribution (such as Gaussian). Pa-
rameters of this distribution (like mean and variance) are learnt by a DNN through
minimizing NLL. This approach enjoys many advantages. First, it allows for estimat-
ing the inherent randomness of each prediction. Second, NLL minimization is easy
to be implemented in an end-to-end training process so the power of DNN can be re-
leased. Specific to traffic forecasting, most papers in the literature consider traffic
time series as a Gaussian process (Idé & Kato, 2009; Yuan et al., 2021). The major
drawback is that we have to use distributions “a prior” to approximate the true but
unknown distribution. The true distribution might be complex, such as a mixture, or
even multi-modal. If we use a simple uni-modal distribution to approximate it, NLL
may not reach the desired low value.

The third solution is the entropy-based approach. One of the earliest attempts to ana-
lyze the predictability of univariate time series based on conditional entropy was pro-
posed by Song et al. (2010), in a discrete form. The authors studied the one-step pre-
dictability of human mobility based on the mobile phone call position database. The
limit of one-step predictability is defined as the maximum probability of predicting a
user’s correct position area in the next moment given the observations of the past trace.
The Upper Bound of Predictability (UBP) is given from the entropy rate by the famous
Fano’s theorem (Cover, 1999). The entropy rate of finite stationary time series can be
estimated by Lempel-Ziv coding algorithm (Kontoyiannis et al., 1998).

This method has been widely applied in many domains to estimate the UBP of station-
ary univariate time series, including traffic and transportation. These studies basically
use a similar strategy to process continuous variables: continuous univariate time se-
ries are discretized into several "states" to compute UBP. UBP here can be interpreted
as the maximum probability of giving a prediction whose MSE is smaller than the
square of discrete size. For example, Wang et al. (2015a) investigates the UBP of traf-
fic speed on a ring freeway. Each sensor on the network is assumed to be independent
of each other and speed is discretized into a few ranges. Li et al. (2019) extends this
method to continuous univariate series by measuring the similarity of two sequences.
If the distance between them is smaller than a pre-defined tolerance, then they are
counted as “the same". So the concept of Lempel-Ziv entropy can be extended and it
can be regarded as a new metric of predictability. Li et al. (2019) uses this method
to measure the UBP of travel time, etc. Some papers also try to avoid discretization
by using differential entropy. For example, Darmon (2016) directly estimates differen-
tial entropy rate from stationary time series to represent the inherent unpredictability.
Amigó et al. (2017) proposed an ignorance score based on differential conditional
entropy to represent models’ prediction quality. However, this approach has several
drawbacks.

The first is the stationarity assumption. All studies above assume that traffic quantities
form a stationary time series. But this does NOT hold for many traffic series. Many
traffic phenomena show strong time-of-day-related periodicity. If the Lempel-Ziv cod-
ing algorithm, or other entropy estimators such as the non-linear embedding estima-



52 3. The average predictability of macroscopic traffic speed

tors, are directly applied to non-stationary time series, the entropy rate, and thus UBP,
would be overestimated. Xiong et al. (2017) gives a systematic study on this topic.
We refer the readers to this paper for more details. Second, sensors and links cannot
be considered independent for network-level traffic forecasting. In many phenomena,
like the spreading of congestion, the traffic state of a link is strongly correlated with its
topological neighbours. We emphasize that time index and spatial correlations must be
included in the estimation of the limit of predictability.

To address these issues, our approach explicitly formulates conditional differential en-
tropy as a time- and space-related quantity. Two special properties of traffic network
dynamics, temporal cyclostationarity and localized spatial correlations are used to split
all data into subsets. Based on estimated conditional entropy, we derive the lower
bound of NLL for probabilistic models and the lower bound of MSE for deterministic
models.

3.3 Methodology

This section presents details of the proposed entropy-based approach. First, we give
a theoretical analysis. Next, we show how to implement spatiotemporal correlations
into a network-level predictability estimation scheme. The last subsection further intro-
duces the used entropy estimator, the so-called kp-Nearest neighbours (kpN) estimator.

3.3.1 Theory

Consider two random variables XXX ∈ Rm (input) and YYY ∈ Rn (output). Their joint PDF
can be written as:

pXXX ,YYY (xxx,yyy) = pYYY |XXX=xxx(yyy)pXXX(xxx) (3.5)

If we precisely know the conditional density function pYYY |XXX=xxx(yyy) for every input, then
the problem is solved. We can directly use its differential entropy or covariance matrix
to quantify predictive uncertainty. Unfortunately, this is infeasible in practice. When
collecting data, one cannot know the output distribution but just observe a series of
input-output pairs. For one specific input, we have to find other input samples that are
close enough in phase-space, and use their corresponding observed outputs to estimate
the true output distribution. However, as explained in the discussion on the Lyapunov
exponent and PSR in subsection 3.2, this is a challenging and unsolved topic. So we
come up with a compromise solution. Instead of constructing a continuous PDF in
probability space, the input range is relaxed according to some external evidence and
a scalar average entropy measure is computed. This approach avoids mapping inputs
into phase space and also results in sufficient samples to support entropy estimation.

Because pYYY |XXX=xxx(yyy) is unknown, a probabilistic model uses a prior distribution, noted
as qYYY |XXX=xxx(yyy), to approximate it. We have the following theorem:

Theorem 1 (Limit of NLL) Consider two multivariate random variables XXX ∈Rm and
YYY ∈ Rn. A model estimates pYYY |XXX=xxx(yyy) by an approximated prior qYYY |XXX=xxx(yyy), then the
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expectation value of NLL for any probabilistic model obeys the following inequality:

EpXXX ,YYY (xxx,yyy)[NLL]≥ H(YYY |XXX) (3.6)

Equality holds (the lower bound is reached) if and only if that ∀xxx, pYYY |XXX=xxx(yyy)= qYYY |XXX=xxx(yyy)
almost everywhere (“almost everywhere” means that p−q has measure 0).

Proof. The expectation of NLL for one given xxx is:

−EYYY∼pYYY |XXX=xxx(yyy)[lnqYYY |XXX=xxx(YYY )]=−EYYY∼pYYY |XXX=xxx(yyy)[ln pYYY |XXX=xxx(YYY )]+EYYY∼pYYY |XXX=xxx(yyy)[ln
qYYY |XXX=xxx(YYY )
pYYY |XXX=xxx(YYY )

]

(3.7)

The first term on the right is the entropy of YYY at given XXX = xxx, the second term is
Kullback–Leibler (KL) divergence, noted as DKL(q | p), which is non-negative because
of Gibbs’ inequality. DKL(q | p) = 0 if and only if pYYY |XXX=xxx(yyy) = qYYY |XXX=xxx(yyy) almost
everywhere. Now we apply expectation over input space pXXX(xxx) on both side:

EpXXX ,YYY (xxx,yyy)[NLL] =−
∫
X

pXXX(xxx)[
∫
Y

pYYY |XXX=xxx(yyy) ln pYYY |XXX=xxx(yyy)dyyy]dxxx+EpXXX (xxx)[DKL(q | p)]

=−
∫
X ,Y

[pYYY |XXX=xxx(yyy)pXXX(xxx)] ln pYYY |XXX=xxx(yyy)dyyydxxx+EpXXX (xxx)[DKL(q | p)]

= H(YYY |XXX)+EpXXX (xxx)[DKL(q | p)]
(3.8)

Because of the non-negativity of KL divergence, Theorem 1 is proved.

As the theorem says, the lower bound can be reached if and only if the output distribu-
tion of every input is perfectly modelled, no matter what the distribution is. H(YYY |XXX) is
a measure of data uncertainty. It describes the inherent randomness of data generation
process. Higher data uncertainty means lower predictability. The distance between the
NLL of a model and H(YYY |XXX) is the model uncertainty, which is the additional uncer-
tainty caused by model abstraction (Lee et al., 2017). This gap is mainly determined
by how well the prior distribution can represent the true distribution. Bigger gaps im-
ply that this probabilistic model cannot give reliable estimates of input-dependent data
uncertainty. Theorem.1 gives the optimal lower bound for probabilistic models.

Entropy is not the only metric of uncertainty. We also want to derive a lower bound of
MSE/DCM for deterministic models. We show the following theorem:

Theorem 2 (Multivariate Fano’s theorem) Consider two multivariate random vari-
ables XXX ∈ Rm and YYY ∈ Rn. If YYY is predicted based on side information XXX , then there
exists a lower bound of the determinant of the expectation of covariance matrix for any
point-estimate model:

detEpXXX ,YYY (xxx,yyy)[(YYY −ŶYY )(YYY −ŶYY )T ]≥ 1
(2πe)n e2H(YYY |XXX) (3.9)

The lower bound is reached if and only if the error (YYY −ŶYY ) is 0-mean Gaussian and
independent from XXX .



54 3. The average predictability of macroscopic traffic speed

Proof. Given an input xxx, the point-estimate of output is ŷ̂ŷy, the predictive error eee = yyy− ŷ̂ŷy
is a random variable in Rn. Because entropy is translation invariant (ŷ̂ŷy is a constant),
we can always assume that the mean of eee is 0 (un-biased estimator). If we note the
covariance matrix of eee as KKK = EYYY∼pYYY |YYY=xxx(yyy)[eee eeeT ], (Cover, 1999, pg.254) shows that the
following inequality holds for all distributions (if detKKK exists):

1
2

lndet(2πeKKK)≥ H(eee|XXX = xxx), H(eee|XXX = xxx) = H(YYY |XXX = xxx) (3.10)

Equality holds if and only if eee is Gaussian. Again, we apply expectation over input
space on both side:

1
2

∫
X

pXXX(xxx) lndet(2πeKKK)dxxx ≥ H(YYY |XXX) (3.11)

As shown in (3.8), the right side is conditional entropy. Because ln◦det is concave,
Jensen’s inequality gives:

1
2

ln[(2πe)n det(
∫
X

pXXX(xxx)KKKdxxx)]≥ 1
2

∫
X

pXXX(xxx) lndet(2πeKKK)dxxx (3.12)

where equality holds if and only if KKK is independent from XXX . The integral on the left
is actually the expectation of the determinant of the covariance matrix (DCM). By
combining (3.11) and (3.12), Theorem 2 is proved.

Fang et al. (2019) provides an alternative proof of this theorem. When the lower bound
is reached, the relationship between input and output can be written as YYY = f (XXX)+
ε, ε ∼ N (0,KKK). ŶYY = f (XXX) theoretically can be precisely modelled by an unbiased
estimator and N (0,KKK) is the inherent randomness that cannot be explained out or
reduced. This lower bound is not as tight as the one in theorem 1 because MSE and
DCM measures ignore the structural information of output distribution. But it still
gives a limit on any model’s capability. The room of improvement for modelling can
only be smaller than the gap to this limit.

Another point is that the n×n covariance matrix of YYY = (y1,y2, ...yn) is hard to learn.
A probabilistic model generally assumes the prior form of each marginal distribution
p(yi). So a better choice is estimating H(yi|XXX) for each component and obtaining a
series of variance limits, (σ2

1 ,σ
2
2 , ... ,σ

2
n ). Their relationship is given by the following

formula:

detKKK = detSSS
n

∏
i=1

σ
2
i ≤

n

∏
i=1

σ
2
i (3.13)

where SSS is the correlation matrix. detSSS ≤ 1 and detSSS = 1 if and only if all components
of (y1,y2, ... ,yn) are independent. Most deterministic models use MSE as the loss
function, the corresponding lower bound is:

E[MSE]≥ 1
n

n

∑
i=1

σ
2
i (3.14)
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To quantify the correlation in a multistep prediction, we can use the concept of condi-
tional mutual information:

I(y1,y2, ...,yn | XXX) =
n

∑
i=1

H(yi|XXX)−H(YYY |XXX) (3.15)

This is a non-negative quantity. It equals to 0 if and only if all components (y1,y2, ...,yn)
are independent.

In summary, we have theoretically shown the lower bound of the expectation of NLL
for probabilistic models and the expectation of MSE/DCM for deterministic models.
If we do not consider the numerical difficulties in entropy estimation, these two lim-
its are in-principle applicable to all traffic scenarios described by a set of observable
quantities without any prerequisites. Conditional entropy is the core concept bridging
them. Estimating conditional entropy requires applying expectation in a subset of input
space. Next, we will describe how to split the entire dataset into subsets and how to
formulate conditional entropy as a function of space and time.

3.3.2 Spatio-temporal correlations

The spatio-temporal evolution of a traffic quantity on a road network with N links or
sensors can be written as a N-dimensional time series. Assume that we collected D
days of data, the dataset is noted as {XXXd,t}. Here d is the day index and t is time-
of-day. X i

d,t is the observed value on day d, time of day t, and link i. Considering
the quasi-periodical tendency of traffic phenomena, we assume that this multivariate
time series has cyclostationarity, which means: (1) For any m and p, the conditional
entropy H(XXXd,t:t+p |XXXd,t−m:t) changes periodically every 24 h; (2) and it is Lipschitz
continuous. The first point says that conditional entropy is time-of-day-dependent.
And the second point allows inducing a hyperparameter called smoothing window δ .
We estimate a conditional entropy from all samples in the interval [t −δ , t +δ ) (from
all days) to represent the conditional entropy at t. This smoothing window increases
estimation accuracy by including more samples and it also smooths the resulting curve.
For example, we prepare the following input-output set to estimate H(XXX t:t+p |XXX t−m:t):

{(XXXd,τ−m:τ ,XXXd,τ:τ+p) | d ∈ D and τ ∈ [t −δ , t +δ )} (3.16)

However, directly estimating H(XXX t:t+p |XXX t−m:t) is difficult when N is large. So the
strategy of “divide and conquer” is used to further decompose the subset. We induce
the assumption of localized spatial correlation. Notice the fact that any kinetic waves
can only move bidirectionally along the road with a speed lower than a maximum
positive value cr. Not all components in XXX t−m:t can influence the prediction of one
sensor XXX i

t:t+p. We can therefore draw a spreading cone from the latest vertex X i
t+p−1

in the spatio-temporal graph. The semi-vertex angle satisfies tanθ = dl/dt = cr. All
points outside this cone are independent of XXX i

t:t+p because their impact cannot reach
location i in the next p steps. By combining cyclostationarity and localized spatial
correlations, the subset for location i is:
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{(XXX i,input
d,τ−m:τ ,XXX

i
d,τ:τ+p) | d ∈ D and τ ∈ [t −δ , t +δ )} (3.17)

XXX i,input
d,τ−m:τ = {X j

d,s | |r( j, i)| ≤ cr(τ + p− s)∆t and s ∈ [τ −m,τ)} (3.18)

where r( j, i) is the directional spatial distance between two positions. r( j, i) is positive
if j locates at the upstream of i. ∆t is the time interval. XXX i,input

d,τ−m:τ is a collection of all
points in the spreading cone.

Figure 3.1: Illustration of localized spatial correlation: an example of input-output
pairs. The dash-dot line triangle is the spreading cone; Sub-areas are marked by differ-
ent colors.

In practice, not all points in a spreading cone contain effective information. For further
simplification, a spreading cone can be divided into several sub-areas (Fig.3.1):

(1) self: only the past traffic states of the target position itself.

(2) upstream cone: self plus the data points that locate upstream of the target loca-
tion in the spreading cone.

(3) downstream cone: self plus the downstream data points in the cone.

(4) up/downstream edge: self plus the data points that are close enough to the
up/downstream surface of the cone.

Theoretically, the predictability of self should be the lowest while the others are all
higher because self considers all links independently. By comparing the limits of up-
stream cone and downstream cone, we can determine that this quantity is dominated
by the information from upstream, downstream, both, or neither. If results show that
the prediction mainly depends on, for instance, upstream traffic states, we next com-
pare the limits of upstream cone and upstream edge to check the possibility of further
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simplification. Notice that we do not try to carefully tune cr because this is hard in
practice. But choosing an estimated upper bound of propagation speed is much easier.

For univariate traffic series forecasting, which is a simpler case without spatial corre-
lations, only cyclostationarity needs to be considered. (3.16) can be directly used.

In summary, given a time-of-day t, a location index i (only for multivariate series),
time interval ∆t, observation range m, prediction horizon p, smoothing window δ ,
then this input-output sample set can be prepared by the procedure above. Therefore,
conditional entropy estimated from this set represents the predictability at time-of-day
t and location i. Now we need a proper entropy estimator.

3.3.3 k-p nearest neighbours entropy estimator

Estimating differential entropy from given finite numbers of samples is a challenging
topic. Entropy estimators can be roughly categorized into two groups: parametric and
non-parametric approaches. For parametric estimators, the PDF’s form is assumed to
be known so its parameters can be learnt from the samples. However, this assumption
is too strong. In most real-world cases an “a priori” known form is impractical. Con-
sequently, non-parametric approaches have been proposed, such as embedding/non-
uniform embedding estimator (Faes et al., 2011) and k-nearest neighbours estimator
(Wang et al., 2009). In this study, we choose the k-p nearest neighbours estimator pro-
posed by Lombardi & Pant (2016). Compared to the k-nearest-neighbours (kNN) esti-
mator, the core innovation of kpN is that the uniform distribution for k-nearest samples
is replaced by a fast decaying normal distribution whose parameters are determined
by larger p-nearest neighbours. We emphasize one fact: most traffic patterns tend to
fall into several clusters and there are few rare patterns located between them. This
property has been shown by some studies on congestion pattern recognition and clas-
sification (Lopez et al., 2017; Krishnakumari et al., 2017; Nguyen et al., 2019). So the
PDF should have several peaks for these clusters and its value should be low between
them. In this case, kNN estimator will overestimate the entropy. kpN can mitigate this
structural error.

The algorithm is given in Algo.3.1. This estimator needs to calculate one Gaussian
distribution and one corresponding integral:

g(xxx) = exp [−1
2
(xxx−µµµ)T

ΣΣΣ
−1(xxx−µµµ)] (3.19)

G(xxx) =
∫
B(xxx,ε)

g(xxx)dxxx (3.20)

The major drawback of kpN estimator is the relatively higher computational complex-
ity to calculate (3.20). As pointed out in Lombardi & Pant (2016), this process can
be accelerated by using the method proposed in Cunningham et al. (2011). The kpN
estimator is naturally parallel. Using GPU and multi-cores can significantly reduce the
running time. For an input-output set, kpN estimator gives the entropy of input and the
joint entropy of input-output, their difference is the estimated conditional entropy (see
Eq. (3.2)).
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Algorithm 3.1 kpN entropy estimator, from Lombardi & Pant (2016)
Input:

XXXN×d , N observation samples of dimension d random variables
k, number of nearest neighbours to calculate local probability mass
p, number of nearest neighbours to calculate statistical quantities

Output:
Ĥ(X), estimation of entropy

Calculate C = ϕ(N)−ϕ(k) (ϕ is digamma function)
for each sample XXX i do

Find p nearest neighbors {XXX}p
i based-on Chebyshev distance

Find the distance between XXX i and its k-th nearest neighbor, noted as εi
Calculate mean µµµ i, covariance matrix ΣΣΣi, and det(ΣΣΣi) from {XXX}p

i
Calculate the neighborhood containing k−1 nearest neighbors B(XXX i) =XXX i±εieee
Calculate gi in Eq.3.19
Calculate the integral Gi in Eq3.20

end for
Calculate Ĥ(X) =C+E[lnGi]−E[lngi]

In summary, this section explains the theoretical basis of the proposed method. Both
spatial and temporal factors are considered to split the entire dataset into a series of
subsets. Conditional entropy is estimated from these subsets by kpN estimator. Then
theorem 1 and 2 give two different metrics of predictability that depends on locations
and time of day.

3.4 Experiment

The proposed method will be tested by using real-world datasets in this section. All
data used in this paper are provided by National Data Warehouse for Traffic Informa-
tion (NDW, Netherlands).

3.4.1 Data description

The major counter-clockwise ring freeway around Rotterdam (The Netherlands) is se-
lected as a case study (shown in Fig.3.2). Average speed V and vehicular flow Q
per lane are recorded by 201 loop detectors that are not uniformly distributed. Car-
riageway averaging and the Adaptive Smoothing Methods (ASM) (Kawata & Minami,
1984; Treiber & Helbing, 2003) is used to estimate continuous smoothed spatiotempo-
ral maps of carriageway averaged speeds and flows. The calculation process explicitly
considers kinematic wave theory and a wave speed estimator is employed to estimate
critical parameters. The ASM is used to fill the missing data (about 3%) and to project
V and Q onto uniform spatial-temporal grids. The implementation details can be found
in Schreiter et al. (2010a). In this section, we study the limit of predictability of the
processed dataset. The data stream starts at 5:00 AM and ends at 24:00 PM every
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day. Considering that holidays and weekends have very different traffic patterns, we
only prepared 233 workdays of data from the year of 2018. Two representative traffic
forecasting tasks are formulated:

• Univariate accumulation forecasting: We aim to predict the total number of
vehicles running on the target network (the so-called accumulation, noted as Nt).
Nt can represent how busy the highway is (on average). It is an index of traffic
demand. This is a typical univariate time series forecasting task. The ASM
firstly maps non-uniform speed and flow data onto a 0.1km×30s uniform grid,
accumulation is estimated by:

Nt = l
L

∑
i=1

ni ×
Qi

t

V i
t

(3.21)

where L is the number of uniform links; l = 0.1km is the length of link (spatial
resolution); ni is the number of lanes on each link. Then Nt is aggregated every
5 min by averaging to form a time series.

• Multivariate speed forecasting: We aim to predict speed evolution on the ring
freeway in the near future. Speed describes when and where congestion emerges,
evolves, and dissipates. Similarly, ASM firstly maps V onto a 0.1km × 30s
uniform grid, then the processed data is aggregated every 1.2km and 4min by
averaging. So the entire ring freeway is divided into 35 uniform links. The
processed dataset forms a 35-D time series. This is a typical network-level traffic
forecasting task.

Figure 3.2: The counter-clockwise ring freeway around Rotterdam.

3.4.2 Predictive models

For accumulation forecasting, we select three baseline deterministic models: (1) k-
neareast neighbours (KNN): the similarity metric is Euclidean distance and the weight
of averaging is inverse of the distance. The optimal number of neighbours is chosen
by cross-validation. (2) FCNN: a fully-connected feed-forward neural network with 5
hidden layers activated by sigmoid function. The numbers of hidden units are sequen-
tially 64, 128, 256, 128, 64. (3) LSTM (Gers et al., 1999): a long-short term memory
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(LSTM) encoder-decoder model with 128 hidden units is used for multistep forecast-
ing. We also construct a simple FCNN probabilistic model with 3 hidden layers. Each
hidden layer contains 128 units.

For multivariate speed forecasting, three baseline deterministic models are selected:
(1) KNN: the similarity metric is Euclidean distance and the weight of averaging is the
inverse of it. The optimal number of neighbours is searched by cross-validation. (2)
DCRNN: (Li et al., 2018) is one of the state-of-the-art network-level traffic forecasting
models that employ diffusion convolution and GRU cells to capture spatio-temporal
features. (3) STGCN: (Yu et al., 2017) is another state-of-the-art speed prediction
model that has a fully convolutional structure. Here we use the variant, STGCN(cheb),
proposed in the paper. Similarly, we propose an STGCN-like probabilistic model with
U-Net-like skip connections (Ronneberger et al., 2015). The model details can be
found in the appendix.

For probabilistic models, we pose 3 different uni-modal prior distributions:

• Gaussian: We assume that the marginal distribution of each component of out-
put is Gaussian. The joint distribution is a multivariate Normal distribution. The
last layer outputs the mean and variance (µ,σ2) of each component.

• Beta distribution: The marginal distribution of each component of output is a
beta distribution B(α,β ) with α > 1 and β > 1. So the joint distribution is a
Dirichlet distribution. The last layer outputs the mode ω = (α − 1)/(α +β −
2), ω ∈ (0,1) and the concentration κ = α +β , κ ∈ (2,+∞). In this way, the
distribution is uni-modal with a finite mode.

• Inverse-Gamma distribution: The marginal distribution of each component is
an Inverse-Gamma distribution Γ−1(α,β ) with α > 2 and β > 0 (to ensure that
variance exists). The joint distribution is an Inverse-Wishart distribution. The
last layer outputs mean µ = β/(α −1) and β of each component.

MSE is chosen as the loss function to train deterministic models and NLL is used to
train probabilistic models. The dataset is split into a training set (70%), a validation
set (10%), and a test set (20%). Early stopping on the validation set is used to mitigate
over-fitting. For those models using recurrent encoder-decoder structure, the teacher
forcing (Lamb et al., 2016) method is used. Because NLL is scale-relevant, for better
comparing its lower bound, all data are normalized between 0 and 1 by min-max nor-
malization. To get the limit of MSE with the true unit, one simply needs to re-scale the
results.

Restricted by the limited number of samples, we cannot guarantee that the training set
and the test set are drawn from the same independent identical distribution (i.i.d). The
predictive performance in some moments and at some locations MAY occasionally
outperform the estimated lower bound. To avoid this contradiction induced by dataset
shift, we use multi-fold strategy. For each fold, all samples are firstly shuffled and then
re-partitioned into new training/test sets. The training set is used to train the models and
estimate the theoretical lower bounds; the test set is used to compute predictive errors
of baseline models. This process repeats k times and their average predictive accuracy
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is used to validate the proposed predictability metric. k-fold method is equivalent to
creating a compound model that is trained on a dataset that highly possibly contains
all samples. Meanwhile, it can guarantee that estimated predictability does not use
any sample in the test set and the sub-model in each fold has not seen any sample in
the test set either. Therefore, dataset shift can be effectively reduced. For example, if
the split ratio of the training set is 0.7 and k = 10, our speed dataset contains 66405
observations (233 days, 19 hours and 4 minutes interval everyday) for each location,
then the expectation of samples that are not included in all k-folds is 66405× (1−
0.7)10 ≈ 0.39, which is negligible. The estimated lower bound is reliable.

Throughout this section, we choose a fixed smoothing window δ = 20min.

3.4.3 Accumulation forecasting

Fig.3.3 presents the evolution of N(t) from Monday to Friday in a randomly selected
week. It shows clear daily quasi-periodicity. There are two peaks that represent morn-
ing and evening peak hours respectively, but the time and the height of these two peaks
are not exactly the same every day.
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Figure 3.3: The evolution of accumulation from Monday to Friday in a randomly se-
lected week

Now we consider a specific accumulation forecasting task with m = 6 and p = 4
(observe what happened in the past 30 min and predict the accumulation in the next
20 min). In Fig.3.4a, the estimated (average) lower bound of NLL for each predic-
tion step is compared with those probabilistic models using different priors. Inverse-
Gamma distribution is slightly better than the others. In Fig.3.4b, we further compare
the temporal curve of the estimated limit with the best Inverse-Gamma approximation
for each prediction step. This probabilistic model’s NLL is indeed above the estimated
limit almost everywhere. The similar temporal tendencies validate the cyclostationar-
ity assumption. Generally speaking, accumulation time series is more uncertain during
peak hours, especially during evening peak hours. The gap between the model’s curve
and the limit curve is the additional model uncertainty induced by Inverse-Gamma
prior and model abstraction. The gap is significantly bigger for longer-term prediction.
But for short-term prediction like 5 min-10 min horizon, Inverse-Gamma distribution
is an acceptable prior.
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Figure 3.4: (a) Comparison between the average lower bound of NLL and the perfor-
mances of probabilistic models for each prediction step; (b) Comparison between the
lower bound of NLL and the performances of the probabilistic model using Inverse-
Gamma prior for each prediction step, along time axis. Averaging the lower bound
curves in (b) gives the corresponding 4 points (black-square) in (a)
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Figure 3.5: (a) relationship between observation range and multistep NLL limit, p = 4;
(b) Relationship between prediction horizon and RMSE limit of each prediction step,
m = 6.

Fig.3.5 quantifies the influence of observation range and prediction horizon. In Fig.3.5a,
the prediction horizon is fixed as 20 min and input range changes from 10 min to
80 min. With the increasing of observation range, the joint conditional entropy of mul-
tistep prediction (H(YYY |XXX)) goes down, which means predictability increases because
more effective information is given. Fig.3.5b shows that the RMSE limit of each step
increases fast with the prediction horizon. The difference is more significant during
peak hours. For example, at around 17:30 PM, the RMSE limit increases from 60
vehicles to a maximum of 160 vehicles in 20 min. This result implies that accurate
long-term prediction is theoretically impossible without inducing more data.
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Figure 3.6: (a) comparison between the lower bound of DCM and deterministic mod-
els’ performances; (b) conditional mutual information for 4-step predictions.

Fig.3.6 presents more analysis. Fig.3.6a compares the estimated lower bound of DCM
and the DCMs of deterministic models. Here we show the 2n-th root of DCM so the
unit is consistent with the original data. DCMs of the three models are indeed above
the estimated limit and their forms are also similar to the lower bound curve. Aver-
agely speaking, LSTM has the best predictive accuracy. According to theorem 2, the
room of improvement for modelling cannot be larger than the gap. Fig.3.6b shows
the conditional mutual information of four-step predictions. The positive value proves
that multistep predictions are temporally strongly-correlated. This correlation is even
stronger during peak hours. Temporal correlation also makes longer-term prediction
more difficult. The errors made on early steps may severely enlarge long-term predic-
tive errors, especially in peak hours. This phenomenon is consistent with Fig.3.5b.

In summary, we have shown that the proposed metrics of predictability are reason-
able for univariate accumulation forecasting. Next, we will analyze multivariate speed
prediction.

3.4.4 Multivariate speed forecasting

Different from univariate accumulation prediction, to implement spatial correlations in
network-level speed forecasting, we need to induce a hyper-parameter, the upper bound
of kinetic wave spreading speed cr. Low-speed congestion prediction is the core of
speed forecasting. Traffic flow theory tells that the maximum back-propagation speed
of stop-and-go waves on highways is lower than 20 kmh−1 (Schreiter et al., 2010b).
This value is quite stable and almost the same everywhere. To explore the minimum
input set in the spreading cone, we select a short segment that is frequently congested
on the west of the ring freeway and test 4 sub-areas, self, upstream cone, downstream
cone, downstream edge. For simplification, we fix the observation window m = 6
(24 min) and only calculate the lower bound of RMSE for 1-step prediction. The results
are presented in Fig.3.7. The curve of self is the highest because inputs contain the
least effective information. All sensors are considered independent from each other
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in self. The upstream cone curve is slightly lower than self but the downstream cone
curve is significantly lower than self. This means that the past traffic states of upstream
links contain very little effective information. But downstream links have much more
useful information for accurate predictions. Because the back-propagation of stop-
and-go kinetic waves is important in congestion forecasting. Further, by comparing
downstream cone and downstream edge, we conclude that all upstream links in the
spreading cone contain effective information since the downstream edge curve locates
between self and downstream cone. It indicates that the back-propagation speed of
information may not be a constant, or it is not a constant close to cr.
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Figure 3.7: The lower bound of RMSE for different input sets: m = 6 and p = 1

The analysis above points out that the minimum effective input for speed forecasting is
downstream semi-cone. All the following results are calculated based on this input set.

We first consider a forecasting task with m = 6 and p = 1. The result is shown in
Fig.3.8. The lower bounds for other m and p have similar spatio-temporal distributions
but different magnitudes (similar to what has been shown in Fig.3.5). Temporally, there
exist two less predictable peak hours: morning (7:00 AM – 9:00 AM) and evening
(16:00 PM – 19:00 PM). Evening peak hour is even more uncertain. Spatially, there
are two less predictable segments, one locates between 0 km-5 km and the other one is
between 25 km-35 km. Between 35 km-40 km there is a highly predictable band (the
deep blue areas). Because the speed limit is lower there (shown in Fig.3.2).

Similar to accumulation forecasting, here we consider a specific speed forecasting task
with m = 6 and p = 4 (observation range is 24 min and prediction horizon is 16 min).
In Fig.3.9, the average lower bound of NLL (over all locations and time-of-day) for
each prediction step is compared with those probabilistic models using different prior
distributions. Their gaps to the limit show that Beta distribution is the best approxima-
tion among the three priors while Gaussian is the worst. Speed is supported between
0 and a maximum limit. In congested areas speed is low so the Gaussian prior may
cause probability leakage: the PDF on the negative axis has no meaning. So the re-
sult implies that the true distribution of speed may be highly skewed. Different from
accumulation forecasting, the model uncertainty here almost does not change with the
prediction horizon. It implies that the true distribution of speed is complex.
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Figure 3.8: The spatio-temporal lower bound of NLL (left) and RMSE (right) for speed
forecasting, m = 6 and p = 1
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Figure 3.9: Comparison between average lower bound of NLL and the performances
of probabilistic models for each prediction step in speed forecasting

Next, we study this spatio-temporal limit of predictability by slicing. We will select
some representative examples. For temporal predictability, we select the link with the
lowest average speed (link-8) and the link with the highest standard variance of speed
(link-32). Their positions are marked in Fig.3.2. For spatial predictability, similarly,
we select the time with the lowest average speed and the highest variance of speed.
They are the same time stamp, 17:30 PM, during evening peak hours. The following
conclusions also hold for most other positions and time-of-day in this case study.

Temporal predictability

Most conclusions obtained from accumulation prediction also hold for network-level
speed forecasting tasks, such as the influence of observation range and prediction hori-
zon. In this subsection, we will not re-show all of them.

Fig.3.10a shows the limit of NLL for each prediction step on link-8. Speed is signifi-
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cantly more uncertain during morning and evening peak hours, but highly predictable
at noon and at night. The lower bound increases with the prediction horizon and the
variation is more significant during peak hours than uncrowded time. The result means
that higher uncertainty will expand quickly with the increasing prediction horizon –
long-term accurate point-estimate prediction in highly-uncertain situations is theoret-
ically impossible if no additional data is provided. In Fig.3.10b the lower bounds are
compared with the NLL of the Beta-prior probabilistic model. Again we observe sim-
ilar forms and uniform gaps (model uncertainty). Cyclostationarity is also a good
assumption in multivariate speed forecasting. The gaps are significant, even in short-
horizon forecasting. This result implies that the output distribution of this frequently
congested link is complex, and cannot be well approximated by a simple uni-modal
prior. In the appendix, another example of link-32 is presented.
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Figure 3.10: (a) the lower bound of NLL for each prediction step on link-8; (b) com-
parison between the NLL lower bounds and the performances of the Beta-prior proba-
bilistic model on link-8.

Fig.3.11a shows the lower bound of RMSE and the predictive errors of different de-
terministic models on link-8. Here the lower bound is equal to the square of the arith-
metic average of marginal variance (see (3.14)). STGCN has the best accuracy among
the three baseline models. Its gap to the lower bound is relatively larger during peak
hours. The gap is even considerable (about 2 kmh−1) during free-flowing time slots
(after 19:30 PM), which is very different from accumulation forecasting. Combining
this result with Fig.3.9 and theorem 2, we infer that approximating speed time series
by a Gaussian process is unreliable. The room of improvement for modelling is much
smaller than the gap shows. Fig.3.11b presents the conditional mutual information. We
see that multistep predictions on link-8 are significantly correlated. The correlation is
stronger during peak hours.

Spatial predictability

In terms of spatial predictability, we are particularly interested in where are the most
uncertain locations and why. In this subsection, we do not repeatedly show the same
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Figure 3.11: Link-8: (a) Comparison between the 4-step RMSE lower bound and the
RMSE of deterministic models; (b) Conditional mutual information.

Figure 3.12: Top: Comparison between the spatial predictability, NLL of Beta prior
model, and the speed evolution ground-truth; Bottom: identify the most unpredictable
positions on the ring freeway.

influence of observation range or prediction horizon but focus on analyzing the spa-
tial distribution of predictability. The observation window is fixed as m = 6 (24 min)
and we only consider one-step prediction. The top left figure in Fig.3.12 presents the
NLL limit (and thus RMSE lower bound) of different locations on the ring freeway at
17:30 PM. This limit is compared with the NLL of the Beta prior model. They show
similar spatial distributions. It proves that localized spatial correlation is a valid as-
sumption in this speed forecasting task. Some positions are highly predictable (like the
segment between 10 km and 18 km) meanwhile the predictability of other positions is
relatively lower (like the two high peaks locate at 5 km and 30 km). The difference is
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significant. The spatial distribution of predictability is further compared with a repre-
sentative speed evolution. The corresponding RMSE lower bound is also projected on
the map to identify what are those highly unpredictable locations.

Fig.3.12 shows that there are three major peaks of the predictability curve and they
represent three different types of uncertain cases: (1) the highest peak on the north
(at 32.4 km) corresponds to one important on-ramp connecting the ring freeway and
the busy urban area around Rotterdam north station. The lack of demand data is the
main reason for low predictability. How many vehicles will enter the ring freeway and
when the on-ramp will be saturated is highly uncertain. (2) The peak on the west (at
4 km) is the exit of an underwater tunnel, which is also one of the major bottlenecks.
The unstable driving behaviours when vehicles leave the tunnel probably cause low
predictability. (3) The other one on the southeast (at 22.4 km) is an off-ramp. Stop-
and-go waves tend to stop spreading here (see the top figure). Predicting how many
vehicles will leave the ring freeway and how long the congestion will last is indeed
highly uncertain. The analysis above identifies the most uncertain locations on this
beltway. These three critical positions determine the macroscopic spreading of traffic
congestion.

In many applications, studying spatial predictability is usually more important than
temporal predictability, especially for data collection and highway traffic control. The
distribution of predictability can help optimise where to install sensors to maximize
performance-cost ratio (Gentili & Mirchandani, 2012; Eisenman et al., 2006). There
are 38 on/off-ramps that connect urban roads or other highways to this target ring
freeway. But we only need to collect more data around the three critical locations
mentioned above. Possible methods include installing more loop detectors, inducing
more types of data (like flow), or adding speed data on adjacent urban roads. For
traffic managers, extra attention should be paid to these highly uncertain locations
because they largely determine the congestion evolution of the entire beltway.

3.4.5 Summary of main findings

In summary, by comparing the estimated lower bound of NLL/MSE/DCM and the real
performances of selected baseline models, the proposed predictability (uncertainty)
metric is validated for both univariate traffic accumulation forecasting and network-
level speed forecasting. Our main findings are summarized as follows:

• In accumulation prediction, Inverse-Gamma distribution is a good prior for short-
term prediction. For speed forecasting, the Beta distribution offers better results.
But there is still a considerable distance to the NLL limit. Specifically, it turns
out that approximating speed evolution as a Gaussian process is unreliable.

• In speed forecasting, the information from downstream dominates the prediction.
Traffic states on upstream links have little influence on the predicted results.
Since we utilize speed data only, this makes sense from a traffic flow perspective.
This correlation is due to queue spill-back.

• Longer observation ranges and shorter prediction horizons can increase pre-
dictability. The proposed approach can quantify this relationship.
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• Multistep predictions are temporally correlated. The correlation is stronger dur-
ing peak hours.

• For probabilistic models, the predictive performance is mainly restricted by im-
proper priors; for deterministic models, the maximum potential room of im-
provement for modelling can be quantified.

3.5 Conclusions and perspectives

In this paper, we proposed an entropy-based method to estimate the limit of predictabil-
ity for both univariate and network-level traffic forecasting. Conditional entropy gives
the optimal lower bound of NLL for the probabilistic model and a lower bound of MSE
and DCM for deterministic models. By considering the spatio-temporal characteristics
of traffic streams, both lower bounds are formulated as functions of space and day-
of-time. Experiments show that cyclostationarity and localized spatial correlations are
reasonable assumptions. Selected models can only approach the estimated theoretical
limit but not cross it in most cases. The influence of observation range and predic-
tion horizon is also clarified and quantified. Longer observation windows can increase
predictability and longer prediction horizons decrease predictability. The most impor-
tant contribution of this paper is that this approach gives an estimate of the boundary
for a wide range of traffic forecasting models. By comparing real performances of
models and the lower bound, we can infer what is the major bottleneck in modelling
and estimate how much potential room remains for modelling. This approach poten-
tially brings more than the discussion above. Here we suggest several relevant research
directions.

First, the major obstacle in probabilistic forecasting is how to model the prior dis-
tribution. Currently, most papers use a simple, uni-modal distribution. But these
priors are not good enough in speed forecasting. To approach the estimated lower
bound, exploring more complex priors, such as mixture models, is necessary and im-
portant. Second, how to formulate macroscopic traffic forecasting problems should
be re-considered. Currently, researchers perhaps focus too much on developing new
sequence-to-sequence models (especially deep learning models) that push predictive
accuracy little by little. But the remaining room of improvement by modelling may
be less than expected. Our results showed that the limit of predictability of one single
traffic quantity (such as speed) drops rapidly with the prediction horizon during peak
hours. To further improve mid-term or long-term predictive accuracy, investing more
in collecting diverse, multi-scale data sources (such as trajectories, OD data, etc.) and
studying how to fuse them in one model are more promising. A third highly interest-
ing research topic is the possibility of using the spatial distribution of predictability to
guide sensor installation. This sensor location problem still needs more investigation.

Finally, we emphasize that the proposed approach can still be improved. Our method
uses a k-fold strategy to mitigate dataset shift and avoid the failure of the i.i.d assump-
tion. However, this is not feasible in practice. There always exist new patterns and
out-of-distribution samples in data streams. How to disentangle this factor and how to
overcome this difficulty needs more research as well.



70 3. The average predictability of macroscopic traffic speed

Acknowledgements

This research is sponsored by the NWO/TTW project MiRRORS with grant agreement
number 16270. We thank them for supporting this study.



Chapter 4

Uncertainty quantification in network
traffic forecasting

The previous chapter addressed the average predictability estimation in a model-free
approach. Now we present a detailed analysis of predictive uncertainty for each sam-
ple when deploying the model in the data stream. The deep-ensemble-based approach
shows that the irreducible randomness mainly restricts the predictability of traffic state
in traffic dynamics instead of the emerging rare cases. The proposed method also ex-
plains that the lack of microscopic driving behavioural data leads to a bifurcated future,
which is the cause of the limited predictability.

This chapter is submitted to a journal (under review).
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ABSTRACT

Uncertainty quantification in living data stream must consider both the inherent ran-
domness in traffic dynamics, the so-called aleatoric uncertainty, and the additional dis-
trust caused by the lack of knowledge in deployment, the epistemic uncertainty. They
together depict how predictable macroscopic traffic is. In this chapter, we use deep
ensembles of probabilistic graph neural networks to estimate both types of uncertainty
in network-level speed forecasting. Experimental results reveal that, although rare con-
gestion patterns always emerge in real-life, the short-term predictability of traffic state
is mainly restricted by the irreducible stochasticity and bi-modality in traffic dynamics
instead of data shortage or imperfect modelling. The future traffic state substantially
bifurcates. We argue that the improvement room for better modelling is limited and
investing in diversifying data types is more important.
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4.1 Introduction

The quality of many travel services and traffic management functions, such as arrival
time estimation (ETA) (Van Lint et al., 2005), real-time route planning (Gehrke & Wo-
jtusiak, 2008; Liebig et al., 2017), and congestion control (Chen et al., 2000), relies on
accurate short-term traffic state forecasting. The application value greatly drives the
development of new models to continuously improve predictive performance. These
methods range from classical traffic-simulation-based approaches (Ben-Akiva et al.,
1998; Qiao et al., 2001; Wang et al., 2006, 2016), regressive and time-series models
(Castro-Neto et al., 2009; Davis & Nihan, 1991), to recently popular deep learning
models (Van Lint et al., 2002; Ma et al., 2017; Li et al., 2017). Currently, machine
learning and deep neural networks (DNNs) are being actively studied and widely ap-
plied for predicting the traffic state of large road networks.

However, like other non-trivial prediction tasks, traffic forecasting is also coupled with
uncertainty. The evolution of traffic state in any road network is not deterministic
but inherently stochastic for any observers. The unavailability of some critical infor-
mation (to agencies performing the forecasting task), such as operational and tactical
driving behaviours and route choices, induces randomness in both supply and demand
dynamics. This limited observability implies that the input and the output of any traf-
fic forecasting model must be formulated as a set of correlated random variables. The
output should be a probability distribution function (PDF) instead of a scalar value. To
develop forecasting models equipped with uncertainty quantification, it is necessary to
clarify what the uncertainty represents and how to model it.

From the perspective of modelling and application, predictive uncertainty is typically
categorized into two parts, the so-called aleatoric uncertainty and epistemic uncer-
tainty (Der Kiureghian & Ditlevsen, 2009; Kendall & Gal, 2017). Aleatoric uncer-
tainty (from alea, Latin for ‘dice’) represents the inherent randomness of a stochastic
process and the measurement error in data collection, which cannot be explained out
by expanding the dataset. This uncertainty draws a lower bound of predictive accuracy
for any models using the same (types of) inputs (Li et al., 2022a). For example, for a
Gaussian process, the variance gives the limit of mean-square-error for any predictors
that give a point estimate. On the other hand, epistemic uncertainty stems from the
abstraction of the used model and the lack of data to learn the output distribution. Take
the same example, the used predictor may be not good enough to model the Gaussian
process or there is not enough data provided to calibrate the parameters (such as mean
and variance). This will induce additional uncertainty. The idea is that—in principle—
epistemic uncertainty can be reduced by expanding the training set, and/or by adding
(supposedly known) sophistication to the applied model.

Uncertainty Quantification (UQ) has been widely studied for many risk-sensitive sys-
tems with partially-observable information, such as nuclear safety (Helton, 1993), hy-
drology (Beck, 1987), meteorology (Deser et al., 2012), etc. If a system is explicitly
simulated through physical models, then all uncertainty pertaining to the parameters,
the model structure, and the data used to calibrate and identify these respectively, can
influence the confidence of the output. Examples in the traffic domain include the wide
heterogeneity of car-following parameters in microscopic traffic simulations (Sharma
et al., 2019) and the distribution of fundamental diagram parameters (e.g. capacity,
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critical density) used in LWR-type models (Li et al., 2012). The output distribution for
predictions using simulation models is typically obtained by simulating the forward
propagation of such ‘errors’ (sources of uncertainty) (van Lint et al., 2012b).

At the other end of the spectrum, many inverse data-driven UQ methods ignore how un-
certainty propagates within the model but directly build the joint probability of input-
output from collected datasets. With the development of deep learning techniques, this
end-to-end approach is getting popular and shows better performance in UQ, but the
cost is low interpretability and poor generalizability. For distinguishing aleatoric and
epistemic uncertainty, the two approaches above are in-principle the same. For each
input, we need to obtain an ensemble of output distributions (Section.4.2 will give a
brief overview) and decompose the total uncertainty (such as entropy, variance, or even
skewness and kurtosis) into explainable (epistemic) and unexplainable (aleatoric) parts
via conditioning (Brillinger, 1969).

Specific to network-level short-term traffic forecasting, we observe that most proposed
models in the literature use those easily-observable macroscopic variables (speed, flow
etc.) as inputs (Ma et al. (2017); Li et al. (2017), etc.) and they specifically focus
on modelling improvement and accuracy comparison. Disentangling input-dependent
aleatoric and epistemic uncertainty can address a critically important but in many cases
ignored question:

How predictable is macroscopic traffic state, and why?

The two types of uncertainty must be considered together to evaluate the ‘predictabil-
ity’. If aleatoric uncertainty dominates, then using better models or collecting more
data of the same type cannot significantly improve the prediction accuracy. Conversely,
epistemic uncertainty can be regarded as a measure of how much predictive accuracy
can still be achieved by better modelling or collecting more data. if epistemic un-
certainty is higher, then investing in modelling techniques and expanding datasets are
worthwhile. In summary, quantifying and comparing these two sources of uncertainty
is informative for whether analysts and scientists should focus on expanding the source
of heterogeneous data, or on more sophisticated modelling techniques.

In this study, we employ probabilistic models and Deep Ensembles (DE) (Lakshmi-
narayanan et al., 2016) to quantify both aleatoric and epistemic uncertainty associated
with network-level, multi-step highway speed forecasting. The major contributions of
this paper are summarized as follows:

• Use a deep ensemble of graph neural networks to quantify aleatoric and epis-
temic uncertainty in highway speed forecasting.

• Reveal that the predictability of traffic speed is mainly restricted by the inherent
randomness of traffic dynamics, especially the bifurcation of long-term traffic
state.

• Conclude that collecting more macroscopic traffic data or developing more com-
plex correlation-based models cannot significantly improve prediction accuracy.
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This paper is organized as follows. We first briefly overview the related works in the
literature in section 4.2. Section 4.3 presents the uncertainty quantification method and
details of the proposed model. In section 4.4 and 4.5, the model is tested on a real-world
highway network and the analysis of the experimental results are presented. Finally,
section 4.6 draws conclusions and proposes several relevant research directions.

4.2 Overview

Quantifying uncertainty in prediction models is an important topic in many domains.
Recently deep neural networks (DNN) are getting popular and show better perfor-
mance. In this subsection, we first summarize those UQ methods using DNNs in
general, and then briefly review UQ methods and their applications in the traffic do-
main.

In principle, the key to quantifying aleatoric and epistemic uncertainty by DNNs is get-
ting an ensemble of diverse output distributions that have close losses. Bayesian neural
networks (BNN) are amongst the most popular methods to this end. However, directly
training a BNN is difficult. For a given training set D , the exact form of the posterior
distribution of model parameters p(θ |D) is intractable. So one has to approximate
it by a variational distribution. Several methods have been developed. Monte-Carlo
dropout (MC-dropout) (Kendall & Gal, 2017) is one of the most widely-used methods.
Dropout layers (Srivastava et al., 2014) is implemented in DNNs and these random
dropouts are also enabled during inference. So we can obtain an ensemble of outputs
by running the same model several times. Extra modification of predictive models
is not required. However, Foong et al. (2019) show that MC-dropout is a relatively
worse approximation for deeper BNNs (compared to shallow models), and not robust
to data set to shift. Other approximation techniques include Markov chain Monte-Carlo
(MCMC) (Kupinski et al., 2003), variational inference (VI) (Swiatkowski et al., 2020),
Taylor-expansion based Laplacian approximation (Ritter et al., 2018), to name a few.

Deep ensembles (Lakshminarayanan et al., 2016) constitute another powerful approach
for both improving predictive accuracy and estimating uncertainty. Specifically, random-
initialization shows surprisingly good performance and robustness (Ovadia et al., 2019),
and achieves on par with the state-of-the-art in many tasks. The high performance of
DE can be interpreted from the perspective of ‘loss landscapes’. Fort et al. (2019) show
that random-initialization DE is able to explore multiple local optima of loss functions
whereas a single optimization trajectory often falls into just one. During inference,
we do not sample weights from one model but get multiple outputs from an ensem-
ble of deterministic models (with different but fixed weights). The major drawbacks
of DE are high computational resource requirements and slow inference speed. Some
techniques like DE distillation (Malinin et al., 2019) are proposed to mitigate these
problems. But to achieve comparable performance, pre-training a DE is still necessary
in these methods.

Recently, some studies try to realize UQ through one deterministic model and one
single forward pass, such as inducing radical-basis function (van Amersfoort et al.,
2020) or deep evidential regression (Amini et al., 2020). But the effectiveness and
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performance of these methods need to be tested on more tasks (Malinin et al., 2020).
For a recent and comprehensive review of uncertainty quantification in deep learning
models, we refer the readers to Abdar et al. (2021).

Specific to traffic state estimation and prediction, uncertainty quantification is fun-
damentally important. One of the most common approaches is using stochastic dif-
ferential equations to predict traffic states (Chu et al., 2011; Tahmasbi & Hashemi,
2013). However, some critical parameters, like the number of incoming vehicles or
the diffusion coefficient in Tahmasbi & Hashemi (2013), are not observable or hard to
calibrate in practice. So many recent studies employ data-driven approaches. A classi-
cal data-driven method is Kalman filter (Liu et al., 2006; Van Hinsbergen et al., 2011),
in which total uncertainty is decomposed into process error and measurement error.
It was applied to quantify predictive uncertainty of univariate flow rates (Guo et al.,
2014), speeds (Guo & Williams, 2010), and travel times (Van Hinsbergen et al., 2011).
Heteroscedastic Gaussian Process (HGP) (Rodrigues & Pereira, 2018) is another data-
driven method to quantify predictive uncertainty. It gives time-varying uncertainty in
large-scale crowd-sourced traffic data, such as speed.

DNN-based UQ methods are also widely used in traffic forecasting. Bayesian neural
networks are used to give confidence intervals of univariate time series, such as travel
time (van Hinsbergen et al., 2009) or traffic flow prediction (Zheng et al., 2006). Graph
neural networks (GNN) extend grid-like convolutional neural networks to graph struc-
tures (Kipf & Welling, 2016) and have been applied to network-level traffic forecast-
ing because road networks can be naturally represented by a graph. In the literature,
many GNN-based traffic forecasting models are proposed and some of them aim at
quantifying predictive uncertainty, such as Bayesian GNN (Fu et al., 2020), deep echo
state networks (McDermott & Wikle, 2019), and ensemble-based approach (Del Ser
et al., 2020; Chen et al., 2021b). However, these papers above focus more on accuracy
benchmarks and only present total uncertainty or confidence level. Aleatoric/epistemic
uncertainties and their influences on traffic forecasting are not deeply discussed.

Different from the papers above, this study focuses on understanding the quantified
predictive uncertainty from a traffic dynamics perspective rather than for just perfor-
mance comparison.

4.3 Method

4.3.1 DE-based uncertainty quantification

In Section 4.2, we mentioned that deep ensemble is one of the most robust UQ methods
and explained why from the perspective of loss landscape (Fort et al., 2019). In this
section, we first briefly explain how DE works. Then we introduce what uncertainty
metrics should be used and how uncertainty is quantified in this study.

Assume that a training dataset D = {(xxxs,yyys)}S
s=1 is given. Here XXX and YYY are input and

output variables separately. S is the number of samples. An ensemble of K randomly-
initialized probabilistic models are independently trained by using this dataset, noted
as {Mi}K

i=1. Now for one specific test input xxx∗, each model predicts the probability
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distribution of output so the K models give an ensemble of distributions {pi(yyy∗|XXX =
xxx∗)}K

i=1. We briefly note it as {pi(yyy∗)}K
i=1 from now on.

If the training set includes enough ‘similar’ input samples, they compose a consider-
able part of the total loss function during training. Therefore, the models can well
assimilate the output distribution, regardless of the initialization of parameters. The
ensemble of output distributions is consistent. In this case, we say that the epistemic
uncertainty is low and the estimation of p(yyy∗) is reliable. p(yyy∗) itself represents the
irreducible aleatoric uncertainty. On the other hand, if the test point xxx∗ is a rare sample
that was seldom or almost never observed in training, then these samples contribute
a small part or zero to the training loss, which means models’ behaviours differ a lot
around this rare point due to weaker constraint in training. So the DE will give di-
verse distributions and thus the estimate of p(yyy∗) is unreliable. This is a so-called high
epistemic uncertainty case. Fig.4.1 illustrates these concepts by a simple task, saying
learning the Gaussian relationship p(y|x) =N (µ(x),σ2(x)). The training set contains
more samples in the centre but fewer samples around the boundary. The magnitude of
noise σ2 decays with |x|. x∗ ≈ 0 is a typical low epistemic and high aleatoric uncer-
tainty test point. While x∗ ≈−3.5 has significantly higher epistemic uncertainty due to
the lack of data so we cannot give reliable predictions. In this example, collecting more
data or improving modelling techniques between -2 and 2 cannot increase the predic-
tion accuracy because the endogenous noise is irreducible. But collecting more data
around the borders can significantly reduce epistemic uncertainty and thus improve the
total performance.

Figure 4.1: A 1D example of aleatoric uncertainty and epistemic uncertainty. Here 10
different models are used to learn p(y|x) from the given training data. The left and the
right figure shows two ensembles of predicted distributions at two different test points,
x =−3.5 (left) and x = 0(right)

The discussion above gives a qualitative analysis of the DE-based UQ method. For
quantitative estimation, three questions must be answered:

(1) What metrics should be used to measure uncertainty?

(2) How to quantitatively estimate them?

(3) What prior distributions should be used for a traffic forecasting task?

For the first question, there are two widely-used metrics to represent the uncertainty of
a continuous scalar random variable, variance and differential entropy. For variance
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metrics, if we note (µi,σ
2
i ) as the mean and variance of each distribution in the en-

semble, then the well-known law of total variance decomposes total uncertainty into
epistemic and aleatoric parts as follows (Lakshminarayanan et al., 2016):

Var(y∗) = E(σ2
i )︸ ︷︷ ︸

aleatoric

+Var(µi)︸ ︷︷ ︸
epistemic

(4.1)

On the other side, differential entropy is defined as follows:

H(y∗) =−
∫

Y
p(y∗) ln p(y∗)dy∗ (4.2)

Here p(y∗) is the posterior distribution of output, which can be approximated by the
average distribution of the ensemble (if K is large enough):

p(y∗)≈ 1
K

K

∑
i=1

pi(y∗) (4.3)

Similarly, Malinin et al. (2020) shows that the total entropy can be decomposed into
the following terms:

H(y∗) = E[Hi(y∗)]︸ ︷︷ ︸
aleatoric

+E[DKL(pi(y∗) || p(y∗))]︸ ︷︷ ︸
epistemic

(4.4)

Here Hi(y∗) is the differential entropy of each distribution in the ensemble and
DKL(pi(y∗) || p(y∗)) is the Kullback–Leibler (KL) divergence from each distribution
to the (average) posterior distribution. KL divergence measures the directed ‘distance’
from the first distribution to the second one. It is non-negative. The definition is:

DKL(pi(y∗) || p(y∗)) =
∫

p(y∗)>0
pi(y∗) ln

pi(y∗)
p(y∗)

dy∗ (4.5)

For the second question, Eq.(4.1) and Eq.(4.4) give how to quantify both types of
uncertainty. They have very similar forms. The aleatoric uncertainty is measured by the
average variance or differential entropy of the ensemble distribution, and the epistemic
term measures the diversity of the distribution ensemble by the variance of their mean
values (point estimate) or by their average distance to the posterior distribution. They
are consistent with the example shown in Fig.4.1. However, the epistemic terms in
Eq.(4.1) and Eq.(4.4) have different advantages. Variance is scale-dependent but KL-
divergence is not. Therefore, Eq.(4.1) is suitable for estimating the remaining room of
accuracy improvement and Eq.(4.4) is better for objectively measuring the ‘rareness’
of input.

For the third question, the answer depends on what quantity we want to predict. Since
traffic flow [veh/h] is not a state variable (i.e. low flows may coincide with both free-
flowing traffic and heavy congestion), and density [veh/km] is difficult to measure
directly, speed [km/h] is an appropriate index of congestion. In the literature, there are
two ways to learn the output distributions. The first one is the parametric approach,
which means we assume that the prior distribution can be represented by a small set of
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parameters, such as Gaussian (Yuan et al., 2021; Rodrigues & Pereira, 2018). The sec-
ond way is non-parametric histogram regression (Gu et al., 2021). The output space is
discretized and the model learns the probability that the prediction falls into each inter-
val. Parametric probabilistic models are usually easier to train, but only some simple
priors can be used. The histogram regression method, on the other hand, theoretically
can approximate any distributions. But the training is harder and it requires higher
memory due to a large number of intervals. Generally, the non-parametric approach is
only suitable for those tasks with only one or two scalar outputs, such as microscopic
trajectory forecasting (Gilles et al., 2022) or dense object detection (Lin et al., 2017).

In this study, we explore both approaches. First, the parametric approach is used for
quantifying two types of uncertainty. Here we choose Beta distribution prior due to the
boundness of speed:

b(v;α,β ) =
1

B(α,β )
vα−1(1− v)β−1 (4.6)

where B(α,β ) is a Beta function that normalizes the density function. α > 1 and β > 1
must be satisfied to make sure that the distribution is bounded everywhere. The mean
and variance are:

µ =
α

α +β
(4.7)

σ
2 =

αβ

(α +β )2(α +β +1)
(4.8)

and its differential entropy is given by:

H = lnB(α,β )− (α −1)ψ(α)− (β −1)ψ(β )+(α +β −2)ψ(α +β ) (4.9)

ψ() is the digamma function. For the standard Beta distribution, v is defined between
0 and 1. In practice, we can re-scale it between 0 and the speed limit. To summarize.
the uncertainty quantification process is as follows:

(1) Train an ensemble of probabilistic forecasting models that are randomly initial-
ized.

(2) Calculate the mean, variance, and differential entropy of each output distribution.

(3) The average of the mean values gives the predicted speed.

(4) For variance-based uncertainty metrics, directly use Eq.(4.1).

(5) For entropy-based metrics, first approximate the posterior distribution by Eq.(4.3),
then use numerical methods to calculate the integrals in Eq.(4.5).

We also trained a histogram-regression model to explain what factors restrict pre-
dictability. The speed is discretized into 1 kmh−1 intervals from 0 to the speed limit so
the task is converted to a classification problem. The learnt probability of all classes
(mesh unit) together gives the approximated output distribution.

The discussion above shows the uncertainty quantification method used in this paper.
Next, we will formulate the traffic forecasting problem and introduce the used graph
neural networks.
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4.3.2 Problem formulation

It is difficult to forecast the evolution of congestion patterns solely from speed. On a
spatio-temporal map, a speed drop (congestion) appears suddenly, which is the result of
a mismatch between traffic demand and supply (capacity) on a particular road section.
In practice, we observe that the flow usually goes up about 10-20 min before a speed
drop around an on-ramp (it indicates that probably more vehicles are coming). So we
expect that including flow in input can increase the prediction accuracy.

Given a highway network with N links represented by a graph G . Its adjacency matrix
is noted as AN×N . The time interval between two adjacent observations (δ t) is fixed.
We aim to predict the marginal distribution of speed (V ) at each link i and time stamp
t in the next T steps from the observed speed and flow (Q) in the past P steps. The
problem formulation is modelling the following conditional probability distribution:

pi,t(Vi,t | VP×N ,QP×N ,AN×N) ∀ 1 ≤ i ≤ N; 1 ≤ t ≤ T (4.10)

4.3.3 Model structure

Considering that the output is the probability distribution of multi-step speed, we prefer
using a fully convolutional model instead of an RNN-based model so rolling out flow
predictions in the decoder can be avoided. The proposed model is adopted based on the
attention-based spatial-temporal graph convolutional networks (ASTGCN) proposed
by Guo et al. (2019). This model is mainly composed of stacked spatio-temporal blocks
(ST-block) and residual connections.

One ST-block’s structure is shown in Fig.4.2. It sequentially contains a dynamic graph
convolutional module proposed in Li et al. (2021), a temporal attention layer, a normal
convolutional layer along the time axis, and an extra residual connection. Batch nor-
malization (Santurkar et al., 2018) is applied at the end of each ST-block. The output
shape of every ST-block is (P,N,F). Here F is the feature dimension. 10 ST-blocks are
stacked together to extract spatio-temporal features from inputs. More details of each
layer in the ST-block can be found in the appendix B.

After the stacked ST-blocks, the hidden representation is converted to the desired out-
put shape by an output module. The two different output module structures are shown
in Fig 4.3. For modelling Beta distributions, we learn its mode ω and reduced concen-
tration κ:

κ = α +β −2

ω =
α −1

κ

(4.11)

After applying two normal 2D convolutional layers, the hidden features are split into
h1 and h2, and then they are activated by the following functions to give ω and κ:

ω = sigmoid(h1)

κ = exp(h2 +3)
(4.12)
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Figure 4.2: The structure of the proposed model
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Figure 4.3: The structure of the output module. The left one is for Beta distributions
and the right one is for histogram regression.

Compared to directly learning a and b, this scheme is numerically more stable and
converges faster (similar to the activation strategy used for Gaussian prior. See Kendall
& Gal (2017) for more details). The loss function is negative-log-likelihood (NLL),
defined as follows:

NLL =−∑
i,t

lnb(V label
i,t ;ωi,t ,κi,t) (4.13)
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For histogram regression, assume that the speed is uniformly discretized into C inter-
vals. The output module firstly adjusts the dimension to the desired shape by a 2D
convolutional layer, then cross attention layers (Huang et al., 2019b) map the features
to each interval. Considering that every location in the highway network has its unique
properties, such as the number of lanes, speed limit etc., the cross-attention layer shall
not share parameters among different road links. Otherwise, the model will give sim-
ilar predictions for all locations (the model fails). This non-shared strategy greatly in-
creases the complexity of the model and decreases the speed of training. That is why we
only train one histogram-regression model for interpreting the estimated predictability
instead of training an ensemble of such models for uncertainty quantification.

More details of the cross-attention layer can be found in the appendix B. The final
output is activated by the sigmoid function. Focal loss (Lin et al., 2017) is used to
learn the unbalanced distribution of labels. Here Yp is the ground-truth of class (0 or
1) and Ŷp is the predicted probability of each class.

L =− 1
P ∑

p
(Yp − Ŷp)

2 f (Yp,Ŷp) (4.14)

f (Yp,Ŷp) =

{
lnŶp if Yp = 1
(1−Yp)

4 ln(1− Ŷp) else
(4.15)

4.4 Experiments

In this section, experiments are carried out on a real-world highway network. All data
used in this paper are collected and processed by the Dutch National Data Warehouse
(NDW—www.ndw.nu). The speed and flow data are measured by dual inductive loop
detectors on the freeways. The raw data are aggregated to average speed and average
flow per lane for each loop detector. These loop detectors are not uniformly distributed
on the target network. We then apply the Adaptive Smoothing Method (ASM) (Schre-
iter et al., 2010a) to project the aggregated data onto a uniform grid and to fill in the
missing values. In this study, we use the final processed data.

The highway network around Amsterdam (the Netherlands) is selected as a case study.
The network is shown in Fig.4.4. It consists of 9 highways that connect the Amster-
dam city centre, the surrounding suburban areas, several smaller towns, and Schiphol
international airport. This busy network contains rich and diverse congestion patterns.
All highways are uniformly partitioned into 400m length links, and we consider spe-
cific driving directions only (marked in Fig.4.4), resulting in a network of 193 links
(N = 193). Both speed and flow are aggregated every 4 min by averaging. The ob-
served speed and flow in the past 60 min (P = 15) is used to predict the evolution of
speed in the next 40 min (T = 10).

The data for the entire year of 2018 is chosen as the training set. To focus on predicting
traffic congestion, only congested periods are considered. The data preparation method
is as follows. For one moment t, if any position’s speed is lower than 40 kmh−1 within
(t −20min, t +20min), then this sample is added in the data set. So the prepared data
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Figure 4.4: The selected highway network around Amsterdam. Arrows represent driv-
ing directions. The number of each road is also marked.

set includes highly diverse patterns ranging from pre- to post-congestion scenarios.
Completely free-flowing traffic states are excluded, which makes this prediction task
more challenging but also more valuable for uncertainty estimation. We randomly
select 15% samples from the training set as the validation set. To mimic the real-world
model deployment and continuous data collection environment, two different test sets
are prepared, Mar. 1st - May 31st of 2019 (noted as 2019-test) and Mar. 1st - May
31st of 2022 (noted as 2022-test). 2019-test is before the Covid-19 pandemic and
2022-test is after ending the lockdown measurements in the Netherlands. We expect
that their congestion patterns are somehow different. The number of samples for all
used data sets is listed in Table 4.1. 2022-test has fewer samples than 2019-test

because it has less congestion.

Table 4.1: Number of samples of used datasets

Training Validation 2019-test 2022-test

Nb. of samples 12964 1830 4053 3163

Following the recommendation given in Lakshminarayanan et al. (2016), we train max-
imum of 15 randomly-initialized Beta-based models for uncertainty quantification and
1 histogram-regression model for assimilating true distributions. The input speed and
flow data are normalized by the z-score function for all datasets. Details of experimen-
tal settings and the graph neural networks can be found in the open source code: add
before submission.

4.5 Results and discussion

In this section, we will sequentially present the experimental results of predictive ac-
curacy, aleatoric uncertainty analysis, and epistemic uncertainty analysis. From these
results, we will answer the research question central to this study: how predictable is
macroscopic traffic state, and why.
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4.5.1 Accuracy

Here we consider three widely-used accuracy metrics, mean-absolute-error (MAE,
which is L1 loss), mean-absolute-percentage-error (MAPE), and root-mean-square-
error (RMSE, which is L2 loss):

MAE =
1

T N ∑
i,t
|Vi,t −V̂i,t | (4.16)

MAPE =
1

T N ∑
i,t

|Vi,t −V̂i,t |
Vi,t

(4.17)

RMSE2 =
1

T N ∑
i,t
(Vi,t −V̂i,t)

2 (4.18)

Table.4.2 compares the prediction accuracy of the Beta-prior models used in this study
with the original ASTGCN model that minimizes MSE (one model, not an ensemble).
Overall, They have very close performances. We observe that the accuracy does not im-
prove much for K > 10, which is consistent with the conclusion in Lakshminarayanan
et al. (2016). We emphasize that the focus of this study is quantifying uncertainty
instead of the accuracy benchmark. We do not discuss deeply on the accuracy results.

Table 4.2: Performances of different ensemble sizes on both test sets

Ensemble size K MAE(kmh−1) MAPE(%) RMSE(kmh−1) NLL

2019-test

1 5.95 15.96 11.77 -2.45
3 5.89 16.15 11.57 -2.46
5 5.83 16.27 11.55 -2.48
10 5.77 16.17 11.46 -2.49
15 5.76 16.12 11.46 -2.49
ASTGCN 5.89 16.25 11.31 –

2022-test

1 5.22 15.73 10.80 -2.51
3 5.07 12.15 10.37 -2.59
5 5.02 12.23 10.34 -2.60
10 4.96 12.12 10.25 -2.63
15 4.96 12.15 10.24 -2.64
ASTGCN 4.99 13.05 10.92 –

Before analyzing uncertainty, we need to evaluate how well the distributions are mod-
elled. Here we evaluate the quality of uncertainty quantification by using the standard
proposed in Kendall & Gal (2017). The RMSE-recall curve and calibration plots on the
test set 2019-test are presented in Fig.4.5. Fig.4.5a shows how RMSE improves by
removing those speed predictions with aleatoric or epistemic uncertainty larger than
a percentile threshold. We have two observations here. First, all curves are mono-
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(a) (b)

Figure 4.5: (a) RMSE-Recall curves and (b) calibration plots for different single pre-
dictive steps on 2019-test

tonically decreasing in Fig.4.5a, which means that estimated uncertainty is strongly
correlated with RMSE loss. Second, the curves of epistemic and aleatoric uncertainty
models are very similar for the three selected predictive steps. In other words, if only
one type of uncertainty is explicitly modelled, the model will always attempt to model
the total uncertainty by compensating for the other one. This result is also reported
in Lakshminarayanan et al. (2016). Fig.4.5b further clarifies how well the true dis-
tribution is modelled by Beta priors on average. The x-axis depicts the percentile of
predicted distribution (expected confidence) and the y-axis is the percentage of obser-
vations that are indeed below this percentile (frequency). In the ideal case, the true
distribution is perfectly modelled so the relationship between frequency and expected
confidence should be y = x. In Fig.4.5b, we see that MAE distance to the ideal case
increases with the prediction horizon. But the three curves are all close to the ideal
line. It means that the uncertainty estimation is reliable on average.

The results above prove that the used Beta-prior model can well depict the output dis-
tributions in most cases. Next, we will focus on analyzing aleatoric and epistemic
uncertainty respectively.

4.5.2 Predictability of traffic congestion

Fig.4.6 shows the relationship between two types of uncertainty and prediction horizon.
On average, both epistemic and aleatoric uncertainty, and thus total uncertainty, in-
creases with the prediction horizon on both test sets. For all prediction steps, aleatoric
uncertainty is significantly higher than epistemic uncertainty, which means that the
total predictive error (RMSE) is overwhelmingly determined by the inherent random-
ness of traffic dynamics. The remaining improvement room for better modelling and
expanding the dataset is limited.

Next, we compare different uncertainty metrics. In Fig.4.7, the distributions of two
types of uncertainty measured by entropy metrics and variance metrics on both test
sets are presented. We see that using either variance or differential entropy, the dis-
tributions of aleatoric uncertainty are highly consistent. The 2022-test set has lower
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(a) (b)

Figure 4.6: Relationship between the average aleatoric uncertainty, epistemic un-
certainty, total uncertainty of each predictive step, and the prediction horizon. (a)
2019-test; (b) 2022-test. Notice that uncertainty is measured by σ here.

average aleatoric uncertainty than 2019-test. However, the distributions of epistemic
uncertainty measured by variance or entropy are significantly different. Variance is
scale-dependent so the epistemic uncertainty is positively correlated with the aleatoric
uncertainty. The top right distributions are indeed very similar to those in the top left
figure. There is no significant difference between the distributions of epistemic uncer-
tainty measured by variance for the two test sets. The average epistemic uncertainty
of 2022-test is even slightly lower than 2019-test. But the entropy-based epis-
temic uncertainty metric is scale-independent. The bottom right figure clearly shows
that 2022-test has higher epistemic uncertainty than 2019test (see the two arrows,
they mark the peaks of the two distributions). The difference originates from the fact
that entropy-based metrics consider the diversity of distributions instead of only the
diversity point estimates. For both test sets, most samples locate at the low epistemic
uncertainty end. Only 11 samples are identified as out-of-distribution cases due to
large-scale loop detector failures.

In summary, the analysis above answers the first part of the research question. The
predictability of the macroscopic traffic state (RMSE lower bound) is mainly deter-
mined by the irreducible aleatoric uncertainty. If using variance-based metrics, 2022
and 2019 have almost the same epistemic uncertainty. While using entropy-based met-
rics, we observe a significant shift between the 2019 and 2022 test sets (based on the
2018 training set). This result demonstrates that the variance-based metric can give the
improvement room of RMSE accuracy. In contrast, the entropy-based metric is more
suitable for measuring how ‘rare’ the current traffic state is.

4.5.3 Bi-modality of speed forecasting

This subsection answers the second part of the research question: why is aleatoric un-
certainty so high, and what causes low predictability? The key is using those concepts
in traffic flow theory.

First of all, we visualize the statistical relationship between the estimated aleatoric un-
certainty and the predicted speed. Considering that different locations on the highway
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Figure 4.7: Distributions of prediction uncertainty on two test sets. Left column:
aleatoric uncertainty; right column: epistemic uncertainty; top row: variance metrics;
bottom row: entropy metrics.

network have different fundamental diagrams, it is reasonable to study this relation-
ship for each specific link of the highway network. We manually checked all 193 links.
Three representative examples are given in Fig.4.8. These three links are around three
frequently congested on-ramps (marked on the right figure). The aleatoric uncertainty-
speed relationship has a consistently similar ‘inverse U’ shape. The model gives rela-
tively lower aleatoric uncertainty for both congested (low speed) and free-flowing (high
speed) predictions. Free-flowing prediction is even more certain. However, the inher-
ent randomness is significantly higher around the transition (capacity) state (medium
speed, 50 kmh−1-60 kmh−1), which represents the boundary between congested and
free-flowing areas.

To explain this inverse-U relationship, we use the trained histogram-regression model
to explicitly show the evolution of the approximated distribution of speed. Fig.4.9
presents an example at link-55. When the prediction horizon is short, the distribution is
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Figure 4.8: Relationships between the predicted speed and aleatoric uncertainty at
three positions around congestion bottlenecks. Here we only visualize the result of
20 min predictions, but the conclusions hold for all prediction horizons.

Figure 4.9: An example of predicted pdfs given by histogram-regression model at link-
55. The red lines are the evolution of the groundtruth (labels).

uni-modal (only one local maximum) and highly concentrated around the label, which
means that it can be well approximated by a Beta distribution. With the increasing
prediction horizon, the variance increases and the distribution gradually show stronger
bi-modality. One mode is the congested state and the other one is the free-flowing state.
When such a bi-modal distribution is approximated by a uni-modal Beta distribution by
minimizing NLL loss, the mean value (predicted point value) will locate at the middle
(50 kmh−1-60 kmh−1, between two local maxima). The result directly interprets the
inverse-U relationship observed in Fig.4.8.

Traffic flow theory explains the observed bi-modality in terms of the statistics of ob-
served traffic states and the underlying explanatory mechanism. Fig.4.10a shows a
typical speed-density relationship with 4-minute aggregate data from a typical loca-
tion upstream of a major congested bottleneck, and a stylized (Smulders) fundamental
diagram (FD) drawn over the data. The data illustrate that one can roughly distinguish
three types of observed traffic states: those related to freely-flowing traffic (speed
interval V1); (highly) congested conditions (speed interval V2) and transient states be-
tween these. Clearly, transient states occur less frequently than either of the other
two states. These statistics make sense. Transient states include passing shock waves
between larger spatio-temporal regions of either free-flowing or congested traffic, in
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which due to acceleration and deceleration average speed is somewhere between V1
and V2. Most prolifically, this effect manifests as back-propagating stop-and-go wave
patterns travelling upstream (often many kilometres). The precise frequency and onset
of such waves are notoriously difficult to predict since they emerge from microscopic
perturbations (e.g. sudden brake actions, cut-ins), which are unpredictable solely from
average flow and speed data.

Another explanation is based on the perspective of capacity drop, as shown in Fig.4.10b.
When congestion occurs, capacity drops from qmax to qc so traffic states may collapse
to either intersected point on the fundamental diagram. The transient state between
them is unstable and seldom observed. But which interval the traffic state will fall
depends on microscopic driving behaviours that cannot be known from macroscopic
data. We refer the readers to Helbing et al. (2009) for comprehensive explanations.

(a) (b)

Figure 4.10: (a) A typical fundamental diagram measured at a location upstream of
a major bottleneck. An approximate (Smulders) speed-density relationship is drawn
over the measurements. Most observations fall into two intervals: free-flow states V1
or (heavily) congested states V2. (b) Fundamental diagram and capacity drop.

We now answer the second part of the question. The long-term predictability (aleatoric
uncertainty) of highway congestion is low because of the impossibility to predict the
precise time/frequency of congested wave patterns from speed and flow data, no matter
what model is used and/or how big the flow/speed data set is. This uncertainty grows
rapidly with the prediction horizon and will cause the bifurcation of future traffic states.

4.6 Conclusion and perspective

In this paper, we use a Deep Ensemble of graph convolution-based neural networks to
quantify aleatoric and epistemic uncertainty in network-level speed forecasting. In this
last section, we will first summarize the main findings and then give several related
research topics.

This study illustrates that, for the case of using a full year of speed and flow data, the
irreducible aleatoric uncertainty is significantly higher than the epistemic uncertainty
in highway speed forecasting, although the test set of 2022 has more rare samples.
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The evolution of speed itself is highly stochastic on highway networks so long-term
congestion has substantially low predictability, given we just consider flow and speed
as inputs. Further analysis shows that the true distribution of predicted speed has sig-
nificant bi-modality, which can be explained by traffic flow theory. This bi-modality
cannot be predicted solely from averaged speed and flow data because they do not have
enough information about the causation of the bifurcation. We also showed that com-
pared to uncertainty-based metrics, entropy-based metrics are better indicators of the
‘rareness’ of samples.

These findings justify the conclusion that neither investment in collecting more ‘rare’
(corner-case) speed and flow data, nor the development of more sophisticated mod-
els will lead to substantial improvement in traffic forecasting, since this may reduce
epistemic uncertainty only. However, we also emphasize this conclusion needs to be
substantiated with empirical evidence on different scales and different types of road
networks.

We close with several ideas for further research. First, enriching the diversity of data
types may be beneficial in reducing aleatoric uncertainty. For example, adding micro-
scopic traffic quantities, such as vehicle trajectory data, may increase the predictability
of congestion because they are the potential causation of the bi-modality of speed.
How to effectively fuse these data from different levels into one predictive framework
is a challenging topic. Second, in this paper, the rareness metric is directly computed
from all predicted points. But in practice, we may be more interested in low-speed
areas. So this definition could be combined with congestion extraction and classifica-
tion techniques, such as Nguyen et al. (2019), to quantitatively study the recurrence of
congestion patterns and have a bird-view of the long-term evolution of traffic. A third
idea pertains to histogram-regression models. This method can also be combined with
deep ensembles to quantify uncertainty. One of the biggest advantages of this model is
that we do not need to assume the prior form of output distribution so the uncertainty
estimation may be more precise. However, this model has higher computational com-
plexity and it is more difficult to train. How to address these challenges also needs
more investigation.

Acknowledgment

This research is sponsored by the NWO/TTW project MiRRORS with grant agreement
number 16270. We thank them for supporting this study.

Disclosure statement

There is no potential conflict of interest reported by the authors.



Chapter 5

Uncertainty quantification in motion
prediction

This chapter extends the previously-established uncertainty quantification method to
the motion forecasting task. Considering the arbitrary road layout and the diverse in-
teraction scenarios, entropy-based metrics are used to represent uncertainty and the
correlation-based deep learning model is replaced by a designed causal model. Exper-
iments show that inducing causal inference significantly improves the generalizability
prediction accuracy. Further analysis points out that the major bottlenecks in trajectory
forecasting are the unknown driving styles, unrecognizable intended directions, and
the lack of domain knowledge of speed-dependent driving behaviours’ heterogeneity.

This chapter is an article submitted to a journal and it has been pre-printed on SSRN:
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4241523
The content is the same as the pre-printed version.
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ABSTRACT

Predicting the trajectories of road agents is fundamental for self-driving cars. Tra-
jectory prediction contains many sources of uncertainty in data and modelling. A
thorough understanding of this uncertainty is crucial in a safety-critical task like auto-
piloting a vehicle. We need to distinguish between the uncertainty caused by partial
observability of all factors that may affect a driver’s near-future decisions, the so-
called aleatoric uncertainty, and the uncertainty of deploying a model in new sce-
narios that are possibly not present in the training set, the so-called epistemic uncer-
tainty. This paper proposes a new framework to systematically quantify both sources
of uncertainty. Specifically, to approximate the spatial distribution of an agent’s fu-
ture position, we propose a 2D histogram-based deep learning model combined with
deep ensemble techniques for measuring both aleatoric and epistemic uncertainty by
entropy-based quantities. The proposed Uncertainty Quantification Network (UQnet)
employs a causal part to enhance its generalizability. Experiments on the INTER-
ACTION dataset show that UQnet significantly improves the generalizability of the
missing rate compared to the previous state-of-the-art. Further analysis shows that high
aleatoric uncertainty cases are mainly caused by heterogeneous driving behaviours and
unknown intended directions. Based on this aleatoric uncertainty component, we es-
timate the lower bounds of mean-square-error and final-displacement-error as indica-
tors for the predictability of trajectories. Furthermore, we use epistemic uncertainty to
identify rare cases in the test set. Our results illustrate that domain knowledge of speed-
dependent driving behaviour is essential for adapting a model from low-speed to high-
speed situations. Our paper contributes to motion forecasting with a new framework,
that recasts this problem in terms of model generalization, and puts forward methods
to quantify the resulting uncertainty.
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5.1 Introduction

5.1.1 Background

Predicting human-driven vehicles’ intentions, behaviours, and trajectories is an essen-
tially important topic for engineers and researchers in many domains (Lefèvre et al.,
2014). For example, in the context of autonomous driving, motion forecasting is in-
dispensable for developing safe and smooth self-driving systems (Yoon et al., 2019).
Accurate and reliable trajectory prediction is critical for motion planning (Wang et al.,
2021). Trajectory prediction is also very important for multi-scale traffic modelling.
Many phenomena in traffic flow originate from microscopic driving behaviours. For
instance, heterogeneous car-following behaviours may cause road capacity drop (Yuan
et al., 2018) and improper lane-changing around an on-ramp can lead to traffic conges-
tion (Daamen et al., 2010; Leclercq et al., 2016). Building a reactive microscopic
traffic simulator from real-world data requires high-quality trajectory prediction in
the forward simulation (Bergamini et al., 2021). Many applications, such as dynamic
traffic signal control (Chen et al., 2020) and collaborative platoon cruising (Hallé &
Chaib-draa, 2005), can benefit from such a reactive simulator, and thus improve the
macroscopic efficiency of traffic networks.

Recently, emerging Artificial Intelligence (AI) techniques and public trajectory datasets,
such as Waymo (Sun et al., 2020), nuScenes (Caesar et al., 2020), Argoverse (Chang
et al., 2019), etc. together stimulate the fast development of trajectory forecasting
(Rudenko et al., 2020). In the literature, numerous Deep Neural Networks (DNN) have
been proposed to continuously improve prediction performance. Significant progress
has been made by applying AI to trajectory-based vehicle motion prediction. We refer
the readers to Huang et al. (2022) for a comprehensive survey.

Although trajectory data are fundamental for motion forecasting, they clearly do not
disclose the full complexity of driving behaviours. First, observed trajectories are just
the final results of the underlying interactions between vehicles and the environment
(including other vehicles). Many important factors, such as driving styles, vehicle char-
acteristics and all the factors that influence these (e.g. turn signals), are not observable
using trajectories alone. Second, there always is a non-zero probability of encounter-
ing rare behaviours (e.g. a risky cut-in) or circumstances (e.g. combination of high
demand and signal malfunctioning) which may lead to different resulting interactions
and thus different trajectories than present in the training data set. The model faces
a much higher risk of getting it wrong in such a situation. Either way, uncertainty
is unavoidable in trajectory-based motion prediction. Ignoring uncertainty will make
the self-driving system unaware of potential danger and thus lead to accidents. Before
quantifying uncertainty, it is necessary to clarify different types of uncertainty and their
special roles in motion prediction.

5.1.2 Uncertainty in motion forecasting

From a modelling perspective, the total predictive uncertainty can be categorized into
two types, aleatoric uncertainty and epistemic uncertainty (Der Kiureghian & Ditlevsen,
2009).
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Aleatoric uncertainty represents the inherent randomness in the collected data and the
underlying process itself. For motion prediction, aleatoric uncertainty has two major
sources. The first one, which we call endogenous interaction uncertainty, is due to the
fact that human drivers do not share all the information needed to predict the intended
future behaviours of all other (relevant) drivers. As a result, they can at best make
an informed guess about the driving strategies of their surrounding drivers before the
interaction starts, and use this guess to for example cooperate or not (Lutteken et al.,
2016). The consequence of this interaction uncertainty is that future trajectories may
be completely different even with similar starting conditions. In a lane-changing case,
for example, the following vehicle on the adjacent lane may yield to the cutting-in
vehicle, or drive more aggressively and force the other driver to abandon the lane-
change (Wang et al., 2015b). The second source of aleatoric uncertainty is due to the
discrepancy between the information perceived by the so-called demonstrators (in this
case the human drivers) and the imitators (sensors that observe these demonstrators), a
problem which is also referred to as sensor shift (Etesami & Geiger, 2020). Restricted
by sensoring methods, imitators do not perceive as much or even the same information
as the demonstrators. For example, if trajectories are collected by drones, important
stimuli such as traffic lights or turn signals are not observable due to the bird-eye-
view position. Without these stimuli, the uncertainty around the predicted future state
is much larger, particularly at decision points on the road (e.g. intersections). Also,
data sets collected by sensors installed on vehicles, such as cameras, Lidar, Radar,
etc, maybe "blind" to relevant signals that can potentially influence the demonstrators’
decisions, for example, sound, glare, in-vehicle information, etc.

In summary, aleatoric uncertainty is the result of limitations in observability, either
from the perspective of demonstrators (the agents whose path we aim to predict) or the
imitators (the sensors partially measuring this path). We cannot distinguish between
these components from data only, and the combined aleatoric uncertainty is thus ir-
reducible, regardless of the size of the data set. The total aleatoric uncertainty can
be understood as a lower bound of predictive accuracy for all models using the same
type(s) of data. Aleatoric uncertainty is therefore also called data uncertainty.

Epistemic uncertainty, or alternatively, knowledge uncertainty, represents the uncer-
tainty that in principle could be reduced to zero with the data available. Nonzero
epistemic uncertainty is due to the "rareness" of the prevailing situation. In the case of
trajectory prediction, it measures whether enough samples have already been seen to
support reliable trajectory prediction. Under many circumstances, road users behave
in similar ways (Makansi et al., 2021), which implies a prediction of this behaviour
can be reliable most of the time. However, rare cases typically pertain to unsafe and
high-risk situations. Finding out these "corner cases" by the prediction model itself is
the key to building an "honest and trustworthy" self-driving system that can clearly tell
what it does not know. Quantifying the "rareness" of these samples is also important
for anomaly detection (Laxhammar & Falkman, 2013), continuous learning (Ebrahimi
et al., 2019), and evaluating the generalizability of a model.

Although aleatoric and epistemic uncertainty quantification (UQ) has already been
widely-studied, especially in combination with deep learning models (Abdar et al.
(2021) provides a comprehensive review), applying it in motion forecasting has rad-
ically different requirements than in many other domains (e.g. traffic prediction).
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First, a driver’s intention is rigorously restricted by arbitrary layouts of road networks.
Therefore, the spatial distribution (of probable trajectories) cannot always be approxi-
mated by simple priors (e.g. a 2D or mixture Gaussian) (Gilles et al., 2021). Second,
the longitudinal and lateral components of 2D coordinates can be strongly correlated,
yielding inflated or deflated uncertainty. If we use the covariance matrix as in classical
UQ approaches, those non-diagonal elements are not intuitively explainable. Further,
if the prediction has strong multi-modality (multiple local maxima), those diagonal
elements are not meaningful either, regardless of the determinant of the covariance
matrix. Fig.5.1 illustrates the problem. The left and right scenarios in Fig.5.1 repre-
sent different layouts (Fork versus T-junction) but exactly the same decision problem
(left or right?) and thus the same degree of uncertainty in motion prediction. How-
ever, the co-variance in x and y (Var(x), Var(y)), and the determinant of the covariance
matrix in the left case (the fork) are all significantly smaller than the right case (the
T-junction). We thus need to find a more reasonable scalar uncertainty metric that
can exclude this artefact due to road layouts, in which the angle of two diverging or
merging roads may inflate or deflate the estimated uncertainty.

Figure 5.1: The spatial probability distribution of the target vehicle’s future position in
two different scenarios. They have different covariance matrices but the same differ-
ential entropy.

Third, we argue that epistemic uncertainty estimation is closely related to domain
adaptation in motion prediction. The aim of quantifying epistemic uncertainty is de-
tecting those rare driving behaviours (represented by trajectories) that have not been
seen in the training set. However, trajectories are strongly correlated with the topology
of lane networks. If the model cannot adapt itself to those unseen test lane networks
by learning the correct causal effects of surrounding road agents, many normal driv-
ing behaviours in new scenarios will be incorrectly recognized as rare samples. This
will lead to significant degradation in both generalization prediction performance (Hu
et al., 2021) and epistemic uncertainty estimation.

In summary, the three points above call for a new approach to UQ for motion planning
that we present in this paper. We propose a suitable uncertainty metric; a new non-
parametric uncertainty quantification method; and an adaptable model to find out true
rare interactions during inference.
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5.1.3 Contributions and outline

Inspired by some recent works on motion prediction (Gu et al., 2021; Gilles et al.,
2021) and UQ method (Malinin & Gales, 2018), we propose a non-parametric ap-
proach to estimate both aleatoric and epistemic uncertainty in human drivers’ trajec-
tory forecasting. Instead of using a set of parameters to assimilate the closed-form
distribution of future positions, our model directly learns a mesh-grid 2D histogram
(a heatmap) to approximate any distribution. This heatmap-based model is combined
with deep ensemble techniques to quantify predictive uncertainty. Scalar entropy-based
quantities are used as metrics. The conditional differential entropy and the mutual
information represent aleatoric and epistemic uncertainty respectively. To make the
estimate of epistemic uncertainty more reliable, a regularization net is added to the
predictor to suppress (control for) spurious correlations so that the model is more ro-
bust in new scenarios. Experiments on the INTERACTION dataset (Zhan et al., 2019)
show that the proposed UQnet method indeed has better generalizability. Based on the
estimated uncertainty, we further analyze the predictability of vehicle trajectories and
illustrate how speed is a key factor in model generalization.

The major contributions of this paper are summarized below:

• Propose a deep-ensemble-based non-parametric approach for quantifying both
aleatoric and epistemic uncertainty measured by entropy quantities in single-
agent trajectory prediction.

• Induce a causal regularization to enhance the generalizability and make the esti-
mated epistemic uncertainty more reliable.

• Use quantified uncertainty for analyzing the predictability of trajectory and de-
tecting out-of-distribution cases. The results further give insights into the role of
speed in model generalization and vehicle interaction.

The paper is organized as follows. We first briefly overview the relevant works in
Section 5.2. Next we introduce the proposed method and the used model UQnet in
Section 5.3 and 5.4. Section 5.5 shows the experimental results and the corresponding
analysis. Finally, we draw our conclusions and give several research directions in the
last section.

5.2 Overview

In this section, we will present a short overview of related studies in the literature and
bring out the distinctiveness of the proposed method.

There are different approaches to predicting vehicle trajectories. One popular approach
is to apply simple physics-model-based methods in combination with (e.g. Kalman fil-
tering, Prevost et al. (2007)), in which typical assumptions such as constant yaw rate
and/or acceleration are made to simplify the problem with prior co-variance structures
that model unobservable deviations (Houenou et al., 2013; Ammoun & Nashashibi,
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2009). These models describe the projected movements in explanatory terms but typi-
cally suffer from limitations in prediction horizons and accuracy (Lefèvre et al., 2014).

On the other hand, recently-popular data-driven models, especially deep-learning mod-
els, directly assimilate the collected data and show better performances in many sce-
narios. For example, Alahi et al. (2016) proposed to model interactions between pedes-
trians with social pooling in a "black-box" way. Here "social" represents the common
scene rules and the influence of neighbour agents. Further studies improve the social
mechanism by inducing generative adversarial networks (Gupta et al., 2018) or consid-
ering multi-agent dynamic features (Zhao et al., 2019). Some studies abstract agents
as nodes, treat pairwise influences as edges, and use graph neural networks to model
the interaction, e.g. (Vemula et al., 2018; Ma et al., 2019). Huang et al. (2019a) fur-
ther seek "post-hoc" interpretation from learnt graph attention weights, saying higher
attention means larger influence. Trajectron++ (Salzmann et al., 2020) developed a
modular and graph-structured recurrent model as the encoding channel to generate
multi-modal predictions from incorporated agent dynamics. VectorNet (Gao et al.,
2020) proposed an alternative vector-based lightweight representation to reduce model
complexity. It has been widely used in many following works (e.g. Liang et al. (2020)).

However, the models above highly rely on independent identical distribution (i.i.d.) as-
sumption. Compared to physical models, correlation-based DNNs are fragile when be-
ing deployed in new environments because of causal confusion (De Haan et al., 2019),
which means the model learns spurious correlations (overfits the problem). Recently
some studies tried to improve DNN’s generalizability by inducing more robust causal
relationships. Chen et al. (2021a) proposed to use counterfactual analysis to alleviate
the spurious (specious) correlation of environmental bias. The plug-in module con-
sistently improves the performance of baseline models. Hu et al. (2021) constructed
a structural causal model (SCM) to learn invariant features across different scenarios,
the so-called causal-based time series domain generalization (CTSDG) model. In Liu
et al. (2022), the input is decomposed into invariant variables, style confounders, and
spurious features in hidden space. By training the model to suppress spurious features,
the robustness was significantly improved. Kumor et al. (2021) came up with a theo-
retical criterion that determines the feasibility of learning a demonstrator’s trajectory
under sensor shift from the perspective of causal models. In brief, combining DNNs
with a causal model is expected to increase both the robustness and the transparency
of data-driven trajectory prediction models.

Additional to limits in generalizability, uncertainty is another important topic in motion
forecasting, but it has not drawn as much attention as developing prediction models.
Arnez et al. (2020) reviewed different UQ approaches that potentially can be used
for autonomous vehicle applications. For example, Makansi et al. (2019) proposed
a sampling-fitting two-stage strategy to learn the mixture Gaussian distribution of a
vehicle’s future position, which can naturally represent aleatoric uncertainty. In Pang
et al. (2021), Bayesian neural network is used to quantify the total uncertainty brought
by weather for trajectory forecasting. Djuric et al. (2020) directly give estimates of
both aleatoric and epistemic uncertainties measured by marginal variance for each
prediction step in vehicle trajectory forecasting. The model was also deployed in a
real-world autonomous vehicle test. Tang et al. (2022) further considers the prediction
uncertainty for safer decision-making and motion planning in high-risk scenarios. The
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authors assume that the predicted position obeys a Gaussian distribution and use Deep
Ensembles to explicitly quantify both aleatoric and epistemic uncertainty measured by
the covariance matrix. The studies above pioneered this domain. They are all paramet-
ric approaches, which means the prior form of spatial distribution must be closed-form
(such as Gaussian, Laplace, or Mixture Density). However, this assumption does not
always hold. For example, vehicles tend to drive along the lane centerlines so the
form of its spatial distribution highly depends on the road layouts and lane connectiv-
ity. Recently, heatmap-based models pave the path to non-parametric UQ. Based on
the vectorized representation, DenseTNT (Gu et al., 2021) converts the 2D regression
problem to a classification task and directly learns the probability that the target vehicle
will appear in each small mesh unit. This method is anchor-free and it can approximate
any 2D distribution. GoHome (Gilles et al., 2021), similarly, generates lane-centralized
heatmap from high-definite maps and trajectories. The authors explicitly point out that
this approach can be used to quantify aleatoric and epistemic uncertainty. In summary,
we believe that there are already enough tools towards more reasonable UQ in motion
prediction.

From the overview above, we find there are two key gaps in the literature. First, most
papers use a variance/covariance matrix to quantify uncertainty, which is not reason-
able for a 2D distribution with multiple local maxima (multi-modal). Second, domain
adaptation and uncertainty quantification are regarded as two separate topics. We ar-
gue that they are highly entangled, especially for quantifying epistemic uncertainty.
Our method tries to overcome the first drawback by using entropy-based metrics for
heatmap outputs and to bridge the second gap by inducing causation in deep-learning
models.

5.3 Method

This section describes the proposed method in detail. We will sequentially introduce
the 2D histogram and Deep-Ensemble-based uncertainty quantification method and
how to combine this technique with Granger causality.

5.3.1 Uncertainty quantification

Suppose that the input and the output of a model are two random variables, respectively
noted as XXX and YYY . The training dataset contains N collected input-output samples,
noted as DN = {(xxxi,yyyi)}N

i=1. DN is used to train a prediction model with inner random
variables ΘΘΘ ∼ pΘ(θθθ), noted as pY (yyy) = M (xxx,θθθ). Now given a test input xxx∗, we aim
to quantify the uncertainty of the output distribution pY (yyy|XXX = xxx∗) (briefly denoted as
p(yyy∗) and the specific random variable is noted as YYY ∗ from now on). In this study we
use differential entropy H(YYY ∗), which is a scalar metric, to represent the total prediction
uncertainty. It is defined by:

H(YYY ∗) =−
∫
Y

p(yyy∗) ln p(yyy∗)dyyy∗ (5.1)
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For the multi-modal distributions shown in Fig.5.1, the two local maxima are separated
by road boundaries so apparently both cases have the same entropy. This metric can
exclude the influence of road layouts. The unit of differential entropy is "nats". Amini
et al. Amini et al. (2020) derive that the total entropy can be decomposed into the
following terms:

H(YYY ∗) = EpΘ(θθθ)[H(YYY ∗|Θ = θθθ)]︸ ︷︷ ︸
aleatoric

+EpΘ(θθθ)[DKL(p(yyy∗|Θ = θθθ) || p(yyy∗))]︸ ︷︷ ︸
epistemic

(5.2)

Here p(yyy∗) is the posterior distribution marginalized by θθθ , given as follows:

p(yyy∗) = EpΘ(θθθ)[p(yyy
∗|Θ = θθθ)] (5.3)

And DKL(p||q) is the Kullback-Leibler divergence that measures the directed "dis-
tance" from distribution p to q, which is non-negative. The definition is:

DKL(p(yyy∗|Θ = θθθ) || p(yyy∗)) =
∫
Y

p(yyy∗|Θ = θθθ) ln
p(yyy∗|Θ = θθθ)

p(yyy∗)
dyyy∗ (5.4)

So Eq.(5.2) can be interpreted as follows. The first aleatoric term is the conditional
entropy that measures the average entropy (uncertainty) across an ensemble of distri-
butions. While the second epistemic term is the mutual information that measures the
average distance from each distribution to the average (posterior) distribution, which
reflects how diverse the ensemble of distributions are. During inference, if the model
has already seen similar inputs enough times in training, then the output distributions
will be consistent for different model parameters θθθ . If the input is a rare or new case,
different θθθ will give diverse distributions because it contributes little or even zero to
the training loss. This can be illustrated by the simple 1D example in Fig.5.2. Differ-
ent models will give consistent predictions at x = 0 but diverse outputs at x = −3.5.
Here we also point out one special property: Different from covariance measures, the
epistemic term in (5.2) is scale-independent. It is independent of the mean or vari-
ance of each distribution, which makes it naturally convenient to represent "rareness"
objectively.

The discussion above shows the principle of UQ, that is learning pΘ(θθθ) that gives
consistent predictions when enough samples are provided but diverse outputs for rare
samples. The existing methods in the literature include Bayesian neural networks,
Monte-Carlo dropout (Kendall & Gal, 2017), and Deep Ensemble (DE) (Lakshmi-
narayanan et al., 2017), etc. Among these UQ methods, the deep ensemble is still the
most robust approach and it is state-of-the-art in many uncertainty quantification tasks
(e.g. monocular depth estimation, Poggi et al. (2020)). An ensemble of randomly-
initialized models are trained independently. During inference, the input is passed into
the trained models in parallel to get their corresponding output distributions. Fort et al.
(2019) interpret the advantage of DE from the perspective of loss landscape. The au-
thors show that deep ensembles can explore different local minima of the loss while
other methods usually fall into only one. In this study, we also choose the deep ensem-
ble strategy.

Most studies in the literature assume that the prior form of the output distribution can
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Figure 5.2: A 1D example of aleatoric and epistemic uncertainty. Here we learn y =
f (x) from noisy data. Both the magnitude of noise and the number of samples are
higher in the middle but decay with |x|.

be described by a set of parameters γγγ = M (xxx∗,θθθ), such as mean µµµ and covariance
ΣΣΣ for Gaussian (Makansi et al., 2019), or concentration ααα for Dirichlet distribution,
etc. However, the output distribution can be much more complex due to arbitrary road
layouts. To alleviate this restriction, we directly approximate a 2D spatial distribution
by a mesh-grid heatmap Ŷ̂ŶY h×w = M (xxx∗,θθθ). The value at a pixel Ŷi, j represents the
probability that the vehicle will be present within that specific square. So the regres-
sion problem is converted to a dense multi-class classification problem. An ensemble
of N models give N 2D distributions {Ŷ̂ŶY n}N

n=1 for one input xxx∗. Then the posterior
distribution p(yyy∗) can be approximated by the element-wise average distribution:

p(yyy∗)≈YYY m =
1
N

N

∑
n=1

Ŷ̂ŶY n (5.5)

And the conditional differential entropy of each heatmap can be approximated by (here
x and y are coordinates):

Hn =−
∫
X ,Y

Ŷn(x,y) lnŶn(x,y)dxdy (5.6)

The KL divergence between each distribution to the posterior distribution can be ap-
proximated by:

DKL(Ŷ̂ŶY n||YYY m) =
∫
S

Ŷn(s) ln
Ŷn(s)
Ym(s)

ds (5.7)

Where S is the non-zero support set of YYY m (to avoid 0 division). Therefore, according
to (5.2), the aleatoric term can be approximated by the average of conditional differen-
tial entropy:

EpΘ(θθθ)[H(YYY ∗|Θ = θθθ)]≈ 1
N

N

∑
n=1

Hn (5.8)
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And the epistemic term can be approximated by the average of KL divergence:

EpΘ(θθθ)[DKL(p(yyy∗|Θ = θθθ) || p(yyy∗))]≈ 1
N

N

∑
n=1

DKL(YYY n||YYY m) (5.9)

In summary, (5.8) and (5.9) give the estimates of aleatoric and epistemic uncertainty
from deep ensembles respectively. For the 2D integrals in (5.6) and (5.7), we use
Simpson’s rule to calculate them numerically. We refer the readers to Cruz-Uribe &
Neugebauer (2002) for the approximation error bound of this method. Besides the
numerical error of integral, the accuracy of epistemic term estimation (5.9) largely
depends on the size of deep ensembles N. If N is not large enough, the absolute error
can be high due to the bad approximation of (5.5). However, if we are only interested
in the relative rareness of samples, this approach works well with a smaller ensemble
size.

5.3.2 Causal regularization

The UQ method introduced above completely ignores what assumptions are used in
the model. Considering XXX and YYY as two correlated random variables works well when
the identical independent distribution assumption holds but becomes fragile for out-of-
distribution (OOD) samples. This is especially problematic for model generalization
and epistemic uncertainty quantification. Specific to microscopic traffic modelling,
the input XXX can be decomposed into three variables:

(1) MMM: Maps information, including the geometries of lanes and their connectivity,
traffic rules, etc.

(2) EEE: The observed trajectory of the target vehicle.

(3) SSS: The observed trajectories of the surrounding agents (including vehicles and
pedestrians).

One of the most significant spurious correlations is between MMM and SSS (shown in Fig.
5.3a). For example, in the training scenario shown in Fig.5.3b, a driver simply follows
the surrounding vehicles OR follows the lane centerline work perfectly fine most of the
time. This may cause severe over-fitting to the scenario biases. When deploying the
trained model in a new merging where two roads are not parallel, this correlation does
not exist anymore. For the specific case on the right figure, we observed that different
deep learning models will give two separate groups of predictions: follow the other
vehicles (off-road black star) or follow the lane (in-road green star). It means that the
DE will unreasonably identify this case as "rare". In Bahari et al. (2022), the authors
also show that most state-of-the-art motion forecasting models can be confused by new
road layouts and give off-road outputs.

Inducing causation is one plausible way to improve generalizability. Because MMM, EEE,
and SSS are given for each specific prediction, we formulate the relationship as Granger
causality (Granger, 1980). We say the variable "Granger-causes" YYY if involving this
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(a)

(b)

Figure 5.3: (a) The causal model of trajectory prediction. Solid lines are causation
and dotted lines are spurious correlations. (b) In the training set scenario, the driving
direction and the average traffic flow are highly correlated. But the correlation does
not hold in the test scenario so a correlation-based model may fail.

variable can improve the prediction accuracy of YYY (or equivalently reducing the uncer-
tainty of YYY ). Maps information and the past trajectory of the target vehicle must be
given otherwise we can predict nothing. So here we only consider the causal effect
of SSS. We induce an additional regularization net which only takes MMM and EEE as inputs,
noted as Ỹ̃ỸY = Mrg(MMM,EEE|MMM). The output of the normal predictor net (including SSS) is
noted as Ŷ̂ŶY . The causal effect of inducing SSS should make the output distribution (1)
equally or more concentrated and (2) stay within the drivable area given by excluding
surrounding agents. Mathematically we can quantify and punish the causal effect by:

argminL1(Ŷ̂ŶY 01,min(Ŷ̂ŶY 01,Ỹ̃ỸY 01)) (5.10)

L1 is L1 norm, and the subscript "01" means re-normalizing the initial distribution lin-
early between 0 and 1. min here is the element-wise minimum. The objective function
in (5.10) measures how much probability of Ŷ̂ŶY is "leaked" from Ỹ̃ỸY .

Another problem is that the training dataset is not balanced. The "leakage" is nearly
0 for most training samples. Only some sparse driving behaviours, such as lane-
changing, U-turning, or waiting before an intersection area may break the correlation
between SSS and MMM. We need to increase the contributions of these samples to the to-
tal loss. Assume that the loss function between the ground-truth and the prediction is
L(Ŷ̂ŶY ,YYY ). We apply a prediction-dependent weight for each specific sample. The weight
increases with the effect given in (5.10). So the total loss function is constructed as
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follows (λ is a positive constant):

Ltotal(Ỹ̃ỸY ,Ŷ̂ŶY ,YYY ) = (1+λL1(Ŷ̂ŶY 01,min(Ŷ̂ŶY 01,Ỹ̃ỸY 01))︸ ︷︷ ︸
regularization

) L(Ŷ̂ŶY ,YYY )︸ ︷︷ ︸
predictor loss

+ L(Ỹ̃ỸY ,YYY )︸ ︷︷ ︸
regularization loss

(5.11)

Now we give an intuitive explanation of the regularization term. L(Ỹ̃ỸY ,YYY ) trains the
regularization net independently. Without information about surrounding agents, the
regularization net is encouraged to explore the "reachable area" Ỹ̃ỸY . If the output of the
predictor is within this reachable area, then the regularization term (5.10) is 0, which
means this is a normal case. When Ŷ̂ŶY is partly or completely out of the reachable area,
the regularization term will assign a higher weight to L(Ŷ̂ŶY ,YYY ). In this way, we expect
that the model can focus more on those sparse cases and better learn the influences
from maps and surrounding vehicles.

In summary, the proposed method employs heatmap-based deep ensembles to quantify
predictive uncertainty. A regularization net and a causation-based regularization term
are added to enhance the model’s adaptability. Next, we will present the structure of
the proposed model.

5.4 UQnet model

Training an ensemble of deep-learning-based motion forecasting models is time-consuming.
Running the inference also requires higher memory and a longer time. Therefore, fast
and lightweight models are preferred. In this study, we use the representation proposed
in VectorNet (Gao et al., 2020). VectorNet abstracts map elements (such as lane center-
lines, crosswalks, etc.) and agents’ trajectories into splines. Each spline is represented
by a series of end-to-head connected vectors. Compared with other representation
methods, such as rasterized images, this vector-based representation significantly re-
duces the input size but preserves the most important factors in motion forecasting.

The backbone of our predictor is constructed based on DenseTNT (Gu et al., 2021).
Its structure is shown in Fig.5.4. The predictor and the counterfactual net share the
same sub-graph neural networks (encoder) to extract features from each spline sep-
arately. Then we added a laneGCN-like (Liang et al., 2020) graph attention module
(Lane-Attention) to explicitly learn the connectivity of roads. The basic idea is that
upstream/downstream, left/right adjacent lanes have different influences on the central
lane. We use an attention-based module instead of the parameter-fixed laneGCN mod-
ule proposed in Liang et al. (2020) so the influence of one lane on another depends
on their own features as well. Meanwhile, a multi-layer perceptron (MLP) is used to
convert each coordinate (xt ,yt) to hidden representation HHHC. The extracted hidden rep-
resentations of maps elements (HHHM), coordinates (HHHC), and trajectories (HHHE for target
vehicle, HHHS for surrounding agents) are passed into the predictor and the regularization
net.

The regularization net decoder was constructed based on the proposed causal rela-
tionship. A cross-attention layer (Map2Target) passes map information to the target
vehicle. Then another cross attention layer (Feature2Pos) generates the probability
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Figure 5.4: Model structure of UQnet

density of each location from the concatenated output of Map2Target layer. In the
predictor decoder, stacked multi-head self-attention graph layers are employed to learn
the interactions among these splines. At least two layers are needed to learn their state-
dependent dynamic relationships. Then the same decoder used in DenseTNT (Gu et al.,
2021) generates the prediction heatmap Ŷ̂ŶY . For more details, we refer to the appendix
C and the open source code 1. For convenience, we name our model as Uncertainty

1https://github.com/RomainLITUD/UQnet-arxiv/
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Quantification networks (UQnet).

UQnet uses Focal loss (Lin et al., 2017) as L() to measure the error between the
ground-truth and the predicted distribution. It is defined as follows:

Lfl(Ŷ̂ŶY ,YYY ) =− 1
P ∑

p
(Yp − Ŷp)

2 f (Yp,Ŷp) (5.12)

f (Yp,Ŷp) =

{
lnŶp if Yp = 1
(1−Yp)

4 ln(1− Ŷp) else
(5.13)

Focal loss can well address imbalanced samples. The ground-truth label is constructed
by the objection detection technique proposed in Zhou et al. (2019) and also used in
GoHome (Gilles et al., 2021). For example, if the ground-truth location is (xg,yg). We
add an extra Gaussian noise εεε . Its mean is the ground-truth location and the covariance
matrix has the form σ2

ε III. For every pixel Yi, j of the heatmap with centre coordinate
(xc,yc), its probability is determined as follows:

Yi, j =
1

2πσ2
ε

exp [−
(xc − xg)

2 +(yc − yg)
2

2σ2
ε

] (5.14)

This method increases the number of non-zero pixels in the heatmap and thus can
significantly accelerate the training process. However, it also induces extra errors. In
this study, we choose σε = 0.7m so the Gaussian roughly covers the average length of a
car. It also means that we manually increase the mean-square-error (MSE) by 0.49 m2

and the lower bound of differential entropy is the entropy of this white noise, around
2.12. We need to correct this in uncertainty estimation. Replacing L in (5.11) by (5.12),
we have the total loss function to train UQnet. The value of λ depends on the size of
the output heatmap and its spatial resolution. In inference, the regularization net can be
removed and we only keep the predictor. The lanescore module in DenseTNT decoder
is also used to increase the convergence speed, but we do not consider lanescore in
inference or uncertainty quantification.

5.5 Evaluation

In this section, the proposed method will be evaluated on the open INTERACTION
(Zhan et al., 2019) dataset. INTERACTION collects trajectories of road agents by
drones in diverse urban traffic scenarios and high-definite maps are also provided. In
the INTERPRET single-agent track prediction challenge, all agents’ trajectories in the
past 1 s are provided to predict the track of the target vehicle in the next 3 s. The data
providers split all these cases into three groups. The training set contains 47584 cases
in 12 scenarios. The validation set has 11794 cases from the same scenarios. The
test set has 22644 cases and around 30% of them are collected from new scenarios to
measure the generalizability of the model. For fairness, labels of the test set are not
provided.

For each case, all trajectories of agents and lane splines are centred to the target vehi-
cle’s current position and re-oriented according to its driving direction (y-axis points at



106 5. Uncertainty quantification in motion prediction

the yaw angle). Each lane’s centerline is evenly split into 5 head-to-end vectors along
the driving direction. Each centerline vector has 8 features, fff i = [xsxsxs,xxxe, j,c, l,w]. The
first two are positions of start and end points. The integer j is the order of the vector.
We also incorporate lane-level features. c ∈ {0,1} represents whether this lane inter-
sects with another non-connected lane. w is 1/2 width of the lane, ranging from 1.5 m
to 4.5 m and l is the total length of the lane. For trajectory vectors we use the similar
representation fff a = [xsxsxs,xxxe,vvv,agent_type, t]. vvv is the average speed between 2 sequential
timestamps. The integer agent type can be a vehicle (1) or pedestrian/cyclist (-1) and
t is the timestamp. From the description above we can construct the input for UQnet.
For example, if the current case has nm lanes and na agents, Then the maps input is
MMM ∈ Rnm×5×8 and the trajectories input is TTT ∈ Rna×9×8. To generate the heatmap, we
consider a rectangle area around the target vehicle that covers y ∈ [−12m,75m] and
x ∈ [−23m,23m]. In training, we set the spatial resolution to 1 m so the coordinate
input has the shape (46× 87,2). During training and validation, the target vehicle is
randomly selected among all vehicles that have complete 4 s records.

UQnet learns the spatial distribution of the last position after 3 s. We can use different
sampling strategies to get predicted positions from the heatmap. The models on the
leader board are ranked by Missing Rate (MR) so here we use a naive local-maximum
sampling strategy (Gilles et al., 2021) to greedily generate the most possible k final
positions (k = 6 for the INTERPRET challenge). MR is calculated as follows. If the
predicted final position of the target agent is out of a given lateral or longitudinal area
of the ground truth, it is "missed". MR measures how many percentage of predictions
are missed. The lateral threshold is 1 m and the longitudinal threshold is a piece-wise
function depending on the velocity of the target agent at the current moment:

th(v) =


1 v < 1.4ms−1

1+ v−1.4
11−1.4 1.4ms−1 ≤ v ≤ 11ms−1

2 v > 11ms−1

An MLP with 1 hidden layer completes the trajectory from the predicted last position.
For uncertainty quantification, according to the empirical suggestion given in Kendall
& Gal (2017), 7 randomly-initialized UQnets are trained in parallel (5-10 models are
proper choices). Then the method proposed in section 5.1 is used to quantify epistemic
and aleatoric uncertainty.

Table.5.1 compares the MR of UQnet with other models on the leader board 2. Here
UQnet is the performance of the first model (not the best one). UQnet (predictor
only) does not use the causal regularization term. We see that the generalizability MR
is significantly improved from the previous-best 11.07% to 6.86% (an improvement
of 38%) and the overall MR is reduced from 4.91% to 3.64% (an improvement of
26%). UQnet’s regular MR reaches the average level. If the causal regularization is
not used, the regular MR is slightly better but the generalizability MR drops a lot.
These results support that inducing the regularization term indeed largely improves
the generalizability of the predictor. Next, we will focus on analysing the estimated
uncertainty.

2http://challenge.interaction-dataset.com/leader-board
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Table 5.1: Comparison with other models (Missing Rate, %)

Model Regular MR Generalizability MR Overall MR

UQnet 1.96 6.86 3.64
UQnet (predictor only) 1.84 10.31 4.75

GoHOMEGilles et al. (2021) 1.37 11.68 4.91
Multimodal Transformer 2.00 11.07 5.11
HDGTJia et al. (2022) 1.42 13.47 5.56
DenseTNTGu et al. (2021) 2.80 12.00 5.96

5.5.1 Precision-recall analysis

We first show the precision-recall curve for both aleatoric and epistemic uncertainty
on the validation set. Here the precision is represented by hitting rate HR (HR=1-MR)
and log-likelihood (LL). We only sample 2 positions from the heatmap to calculate
HR2%. Fig.5.5 shows how precision improves by preserving those cases with aleatoric
or epistemic uncertainty lower than a specific threshold. For example, in Fig.5.5a, a
point on the aleatoric uncertainty curve (the red line) at the 0.2 percentile depicts the
hitting rate, considering the samples with the lowest 20% aleatoric uncertainty only.
We see that the estimated uncertainty is negatively correlated with precision, which
means the estimated uncertainty can indeed reflect the prediction confidence (Kendall
& Gal, 2017).

(a) (b)

Figure 5.5: Precision-Recall curve on the test set: (a) Hitting rate and (b) log-likelihood

Next, we will analyse aleatoric and epistemic uncertainty in detail. To facilitate the
discussion below, now we split the validation set and the test set into the following
three groups:

1 Validation set: All samples in the validation set are from exactly the same sce-
narios of the training set, including mergings, intersections, and roundabouts. It
serves as a baseline.



108 5. Uncertainty quantification in motion prediction

2 In-Distribution (ID) test cases: Those test cases that are collected from the
same scenarios as the training set and validation set.

3 Out-of-Distribution (OOD) test cases: Those test cases that are collected from
new scenarios, including completely new types of scenarios, e.g. diverging.

5.5.2 Aleatoric uncertainty and predictability

The distributions of estimated aleatoric uncertainty with added Gaussian noise for
the three subgroups are shown in Fig.5.6a. They have similar shapes that are highly
concentrated around 2.5 nats and the value is always higher than H(εεε) = 2.12 due
to the added noise. We must rectify this estimation error. Unfortunately, although
the added noise εεε is independent of the prediction, differential entropy is not lin-
early additive. Note the rectified random variable of position as Ŷ̂ŶY r = Ŷ̂ŶY − εεε , then
H(Ŷ̂ŶY r) ̸= H(Ŷ̂ŶY )−H(εεε). We must find a roundabout to correct this. Aleatoric uncer-
tainty is closely related to the concept of the "limit of predictability", which can be
represented by the lower bound of accuracy for any model. In our previous study we
show that the aleatoric uncertainty measured by conditional entropy gives the lower
bound of negative-log-likelihood (NLL) and from that, we can further derive the limit
of MSE (Li et al., 2022a):

MSE2 = detΣΣΣ ≥ 1
(2πe)2 e2H (5.15)

MSE is linear and additive for independent random variables. So we can use (5.15) to
derive the lower bound of MSE for the rectified prediction:

MSElb(Ŷ̂ŶY r) = MSElb(Ŷ̂ŶY )−σ
2
ε =

eH(Ŷ̂ŶY )

2πe
−0.49 (5.16)

Now we can use the formula above to convert entropy measures to MSElb (noted as
σ2

lb), or its square root RMSElb, to represent rectified aleatoric uncertainty equiva-
lently. The results are shown in Fig.5.6b. The peak now locates at around 0.5 m. It
is necessary to clarify that the σ2

lb is different from prediction MSE. For the two cases
shown in Fig.5.1, they have the same σ2

lb derived from the conditional entropy but (b)’s
prediction MSE is apparently higher.

In most trajectory forecasting tasks, people prefer to use final-displacement-error (FDE),
which is the euclidean distance. For given σ2

lb, 2D symmetric Laplace distribution min-
imizes the L2 norm (Eltoft et al., 2006) (for 1 sampled prediction), noted as pL(x,y|µµµ =
000,ΣΣΣ = σ2

lbIII). However, multivariate Laplace distribution contains the modified Bessel
function of the second kind. Its mean-absolute-deviation does not have a closed form.
So we can only estimate the lower bound of FDE by numerically calculating the fol-
lowing integral:

FDElb =
∫ √

x2 + y2 · pL(x,y|000,σ2
lbIII)dxdy (5.17)

The estimated lower bound of average FDE on the validation set is compared with
the performances of some models in Fig.5.7. It measures the limit of predictability
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from a different angle. However, we emphasize that the analysis of predictability is
for a single prediction. In practice, we generally sample multiple predictions for safer
motion planning. This strategy can significantly increase the coverage of outputs.

(a) (b)

Figure 5.6: Distributions of aleatoric uncertainty for three different groups. (a) Differ-
ential entropy metric with Gaussian noise; (b) Denoised rectified RMSE lower bound
metric
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Figure 5.7: The estimated lower bound of FDE for one prediction and FDEs of HEAT-
I-R Mo et al. (2021), ReCoG Mo et al. (2020) and GoHome Gilles et al. (2021). All
metrics are evaluated on the validation set.

Fig.5.8 shows three cases that have low epistemic uncertainty but high aleatoric un-
certainty. Recall that low epistemic uncertainty means that the predicted heatmap is
reliable and these cases are common. They represent three different types of missing
information. Case-(a) has strong bi-modality due to the lack of turn signal. In the real
world, the driver is expected to flash the left turn signal or do nothing. One modality
would disappear. The high aleatoric uncertainty is caused by the special bird-view of
the drone. In case-(b), the target vehicle is predicted to do a U-turn following a large
vehicle. The heterogeneity of this steering manoeuvre itself is high. It highly depends
on the driver’s unknown proficiency. In case-(c), the target vehicle is driving at a high
speed (79.2 kmh−1) and the leading car on its adjacent lane is significantly slower
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(a)
(b)
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(46.8 kmh−1). Their gross longitudinal distance headway is about 21.5 m. We expect
that the target vehicle will approach or even overtake the left neighbour in the next 3 s.
The interaction uncertainty is high. The same acceleration will always yield the same
speed difference. However, the higher the initial speed is, the bigger the difference of
position becomes. The aleatoric uncertainty of case-(a) can be reduced by adding turn
signals, but adding sensors cannot help case-(b) and (c).

5.5.3 Epistemic uncertainty and rareness

Fig.5.9 presents the distributions of epistemic uncertainty. Different from Fig.5.6,
OOD’s distribution is significantly different from the other two groups. The pro-
posed method identifies more samples from new diverging/off-ramp scenarios as "new
cases". But even in OOD, most samples locate at the low-epistemic end.

Figure 5.9: The distributions of epistemic uncertainty

We found that most of these "rare cases" are from one specific scenario: the target ve-
hicle is approaching the diverging decision point at a very high speed. Fig.5.10a shows
one example. We see that the spatial distribution disperses in a larger area because
different models in the ensemble give inconsistent predictions. Some predictions are
even off-road. The result is reasonable because the training set does not contain any
diverging/off-ramp scenario. Although our model can effectively adapt to same-type
scenarios, it cannot be generalized to a completely new situation. Fig.5.10b shows
another rare case. The target vehicle stops on the right-most lane but its leading and
following vehicles are still moving. It is reasonable to infer that this is a rare abnormal
case.

One may argue that, since intersections and roundabouts are composed of similar di-
verging and merging sub-structures, the model might also be applied to (on/off) ramps.
However, the difference in operational speeds prohibits this generalisation. When the
speed is low (congested), epistemic uncertainty is small because the surrounding ve-
hicles’ influences are more important than geometry (the map elements). The target
vehicle’s choices are largely restricted. However, when the speed is high, driving be-
haviours are completely different. Human drivers will tend to keep long-distance head-
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(a) (b)

Figure 5.10: Two examples of high epistemic cases. Um is the estimated epistemic
uncertainty (nats).

(a)

(b) (c) (d)

Figure 5.11: (a) shows the distribution of the target vehicle’s speed in the training set.
(b) (c) and (d) show both the speed distribution and the scatter density plots of speed-
epistemic uncertainty relationships for different groups

ways and make faster and more determined decisions to avoid collision (Toledo et al.,
2009) because the braking distance is proportional to the square of speed. Fig.5.11
directly shows the relationship between the speed and epistemic uncertainty. The val-
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idation set and ID groups have very similar speed distributions (like the training set).
Most of the samples are low-speed cases. There are not many cases where the target
vehicle’s speed is higher than 10 ms−1. While the average speed of the OOD group
is significantly higher. Speed and epistemic uncertainty are positively correlated for
OOD. Especially, those cases with speed higher than 20 ms−1 have significantly higher
epistemic uncertainty. INTERPRET challenge splits the training set, the in-distribution
test set, and the generalizability test set by scenario types, but the difference in speed
is ignored and not balanced. However, pure data-driven models are not likely to be
generalizable from low-speed to high-speed cases because their driving behaviours are
substantially different. For example, the experiments in Huang et al. (2018) show that
the intra-driver heterogeneity of car-following behaviours under high-speed situations
is significantly higher than in low-speed situations. When the speed is high, even the
same driver shows very different behaviours in keeping distance headways in repeated
runs. Adding such extra domain knowledge established by traffic researchers is the key
to further improving the generalizability.

Below we summarize the major findings in this section as follows:

• UQnet has good prediction performance. Compared with other correlation-
based models, it has better generalizability due to the added causal regulariza-
tion.

• The proposed heatmap-based UQ method gives estimates of both aleatoric and
epistemic uncertainties.

• In this context,

– Aleatoric uncertainty can be understood as a (reasonable) limit of pre-
dictability for any motion forecasting model.

– Epistemic uncertainty is representative of new or rare interaction cases in
the test set.

• Our results demonstrate that one of the major obstacles of domain generalization
for motion forecasting is properly encoding the speed-dependency of the (causal)
relationships between variables.

5.6 Conclusion and perspective

In this paper, we proposed a novel non-parametric spatial uncertainty quantification
method. UQnet ensembles can give accurate predictions and reasonable measures of
aleatoric and epistemic uncertainty. From aleatoric uncertainty, we estimate the lower
bound of final-displacement error, which can measure the limit of predictability for
trajectories. On the other hand, epistemic uncertainty can quantitatively identify which
cases have not been seen in training. The main difficulty to improve models’ general-
ization capabilities lies in improved modelling speed-dependent driving behaviours.

We offer two more tentative conclusions. First, we observed that aleatoric uncertainty
is inherently high in many situations and our results seem to suggest that current AI
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models already harness the maximum value in commonly available trajectory data
sets. In other words, using trajectory data and maps information only, more model
sophistication is not likely to significantly improve the prediction performance for in-
distribution situations. Combining and fusing more (different) data sources offers a
more promising path to better predictions. For example, adding turn signals (blinkers)
may effectively reduce much of the (aleatoric) interaction uncertainty. Second, our re-
sults support the idea that data-driven models should be combined with extra domain
knowledge to gain better generalizability. A key example is the notion that operational
speed matters for which of the available data (e.g. geometry versus surrounding vehi-
cle kinematics) are most informative for motion prediction, and thus for the uncertainty
associated with that prediction.

Finally, an important avenue for further research is the idea that epistemic uncertainty
could be used as a tool to recognise rare events in training sets. Instead of collecting as
much data as possible to improve generalisation, one could rather focus on collecting
sufficiently representative and heterogeneous data sets, in combination with applying
adaptive learning techniques. This enables models to exploit continuous and guided
online learning.
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Chapter 6

Conclusions and perspectives

This section presents the conclusions and perspectives. The answers to the research
questions and the main findings will be presented in Section 6.1. Then the overall
conclusion will be given in section 6.2. Sections 6.3 and 6.4 respectively discuss the
implications to science and to practice. Outlooks and future research directions related
to this thesis will also be discussed.
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6.1 Key findings

First of all, we present the answer to each individual research question posed in Section
1.3. Under each question, we first give a short take-out answer and then elaborate on
the detailed response.

Question 1: For macroscopic highway networks, how to build a deep-learning-
based traffic forecasting model that can provide post-hoc, causation-like inter-
pretations on spatial associations?

The key is combining the domain knowledge from traffic flow theory with the data-
driven learning paradigm. A deep-learning model must adhere to physical constraints.

In chapter 2, we built such a "grey-box" deep-learning model that can give both ac-
curate network-level traffic predictions and explainable spatial associations. Two key
points are highlighted in this study. First, the structure of the proposed dynamic graph
convolutional (DGC) module allows us to explicitly model the directional propagation
of spilling-back stop-and-go waves in a highway network. Second, the hyperparame-
ters of DGC must be carefully tuned. More specifically, we found that "deeper" (more
layers) graph neural networks do not necessarily mean "better" in traffic forecasting.
"Deeper" means that each link can retrieve the information from farther locations. Due
to the repeating feature of stop-and-go waves in traffic congestion, such a wider range
may mislead the model to learn spurious correlations between the current link and an-
other location, even if that location physically cannot have any influence on the current
link. Therefore, both the accuracy of new congestion patterns and the interpretability
of the model will degrade. This is the so-called "causal confusion".

To avoid causal confusion, one has to manually set the receptive field. We theoreti-
cally discussed and experimentally demonstrated that there exists an optimal range of
the receptive field, which is between the time interval times the speed of stop-and-
go waves (∆t × v) and the two times of it (2∆t × v). A wider information reception
will make the model confused about which stop-and-go wave causes the next step of
congestion, while a smaller reception field definitely fails to see the incoming con-
gestion. In this way, the designed DGC can learn causation-like influences instead of
just correlations among a set of highway links. Experiments on real-world highway
networks around Rotterdam and Amsterdam demonstrate that the model indeed suc-
cessfully gives explainable spatial associations. The visualization shows that DGC be-
haves very similarly to solving an LWR-like partial differential equation. The role of a
restricted receptive field here is the same as the well-known Courant–Friedrichs–Lewy
(CFL) condition in the explicit finite-element method. When congestion happens, the
model will identify whether the current position is a standing bottleneck (like at an
on-ramp) or a simple corridor. For congestion bottlenecks, the model will focus more
on the central link to predict whether the congestion bottleneck will continue. If the
location is on a corridor, then the model will look ahead to the downstream direction
for estimating whether the nearest stop-and-go wave can reach the current location in
the short future.

In summary, both designing the structure of the model and tuning its hyper-parameters
must consider the scientifically established traffic flow theory. Otherwise, unrestricted
information flow hinders users from seeking interpretations. These findings are not
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directly related to uncertainty quantification itself but the methods and models used in
the following chapters must be established according to the proposed principles.

Question 2: Given a dataset that is large and representative enough, what are
the model-free, theoretical lower bounds of predictive accuracy for probabilistic
models and deterministic models respectively?

The conditional differential entropy gives the lower bound of negative-log-likelihood
(NLL) for probabilistic forecasting models, and the variance of a Gaussian distribution
that has the same entropy as the NLL gives the lower bound of mean-square-error
(MSE) for deterministic forecasting models.

In chapter 3, we theoretically prove that the conditional differential entropy poses the
limit of NLL for any models that predict the probability distribution of the output. Then
the well-known discrete form of Fano’s theorem was extended to a continuous form.
The corresponding inequality gives the lower bound of MSE for deterministic forecast-
ing models. These are "hard boundaries" for any models using the same dataset. We
can use them to represent the average predictability of a traffic quantity before diving
into model construction.

Question 3: How to directly estimate the spatial-temporal distribution of pre-
dictability of traffic speed before building any forecasting models?

The key is using the spatio-temporal properties of traffic dynamics to partition the
dataset into a series of time-of-the-day and location-related subsets. After reducing
the dimensionality, we can use a numerical entropy estimator and the theorems to
estimate the limit of predictability.

We need to combine the spatio-temporal associations given in chapter 2 with the the-
orems proved in chapter 3. Traffic flow and traffic congestion on the highway have
two special properties. Spatially they are localized due to the limited spreading speed
of congestion and temporally they are cyclo-stationary because of the underlying fluc-
tuated day-to-day demand patterns. Therefore, the entire dataset is partitioned based
on the propagation of congestion and time of the day so the dimensionality can be
dramatically reduced. Practically, we employed the k-p nearest neighbour (kpN) algo-
rithm to estimate these lower bounds directly from data points. Experiments showed
that the obtained limit of predictability seems reliable for both macroscopic production
prediction and congestion prediction. The results reveal that many traffic forecasting
models are approaching the limit. Investing in the collection of diverse data types and
multi-modal data fusion is more valuable than developing more sophisticated mod-
elling techniques. Further, our approach is able to find out the most uncertain time
slots (peak hours) and locations on a highway network. These locations are generally
on ramps or tunnels around Rotterdam.

Question 4: How to estimate the aleatoric and epistemic uncertainty of each spe-
cific prediction for highway networks?

Training an ensemble of probabilistic traffic forecasting models and both types of un-
certainty for each prediction can be estimated from the corresponding ensemble of
output distributions.



118 6. Conclusions and perspectives

In chapter 4, we address the uncertainty encountered when deploying a traffic speed
forecasting model and expanding the dataset continuously. The Deep Ensemble (DE) is
employed to estimate both types of uncertainty. The basic idea is "voting" by randomly-
initialized models. Diverse results mean high epistemic uncertainty. For each input,
the DE gives a set of probability distributions. The average distribution can potentially
represent the aleatoric uncertainty while the "inconsistency" of distributions (can be
measured by both mutual information or the variance of mean values) gives an estimate
of epistemic uncertainty. Experiments showed that Beta-prior is a good approximation
on average and this approach can indeed give reliable uncertainty quantification. We
also compared two metrics of uncertainty, variance and entropy. We conclude that the
entropy metric is more suitable for quantifying the rareness of the input sample.

Question 5: If the answer to question 4 suggests the predictability of highway
traffic patterns is limited. What explains this limited predictability?

Due to the lack of demand data and microscopic driving behaviours, the bi-modality
of future traffic state is substantially unpredictable.

In chapter 4, we found that, although there is a significant dataset shift from the year
2019 to 2022 (before and after Covid-19), aleatoric uncertainty is still overwhelmingly
higher than epistemic uncertainty and this irreducible inherent randomness increases
rapidly with the prediction horizon. This result means that the predictability of macro-
scopic traffic state in real-world deployment is mainly restricted by the limited ob-
servable data types instead of imperfect modelling or the shortage of data (of the same
type). Further, the proposed histogram-regression model directly demonstrates why the
long-term predictability is low. Due to the capacity drop, traffic flow generally rapidly
jumps between congested and free-flowing status and forms stop-and-go waves. The
predicted distribution of speed is bi-modal. The true causation of this phenomenon lies
in the very microscopic driving behaviours and traffic demand, which are impossible
to be accurately predicted solely from speed and flow measurements.

Question 6: In microscopic trajectory forecasting, how to give reasonable spa-
tial uncertainty measurements that can remove the influence of arbitrary road
layout?

Using 2D-histogram to approximate the true distribution and using the entropy-based
uncertainty metrics.

In chapter 5, we show that using the 2D histogram representation and the entropy-
based metric together can give reasonable estimates of spatial uncertainty in motion
prediction. They do not need any assumptions on the form of lane centerlines. Entropy-
based uncertainty metrics are more meaningful than covariance-based metrics because
they are scale-independent and can rule out the influence of road layout (like the angle
of merging). It is consistent with the decision-making process in a naturalistic driving
environment.

Question 7: In the urban driving environment, how to build a generalizable mo-
tion forecasting model that can give both reliable predictions and uncertainty es-
timation in new scenarios?
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Inducing causal mechanism can significantly improve both the generalizability pre-
diction accuracy and the reliability of epistemic uncertainty estimation. Adding extra
knowledge on speed-dependent driving behaviours is indispensable for further improv-
ing the generalizability.

In chapter 5, we argue and demonstrate that exploring the causal effect instead of just
correlation in a data-driven approach is the key to improving both the generalizability
and the reliability of uncertainty quantification. The proposed UQnet model employs
a causal regularization module to enhance its adaptability to new interaction scenar-
ios. Experiments on the INTERPRET open challenge show that the causation-based
module significantly improves the predictive accuracy in new test scenarios and thus
the corresponding epistemic uncertainty estimation is also more robust. Analysis of
aleatoric uncertainty demonstrates that low predictability cases can be caused by the
lack of intended direction (which can be indicated by turning signals) or the unknown
driving style of the human driver. The previous one can be reduced by adding new sig-
nals but the latter one cannot. Epistemic uncertainty comparison of the in-distribution
test set and out-of-distribution test set shows that low-speed driving behaviours are
radically different from high-speed situations. We conclude that splitting the dataset
only according to the road topology of interaction scenarios is not a proper choice for
testing the generalizability of trajectory forecasting models. The training set should
cover a certain amount of data in both high-speed and low-speed ends.

6.2 Overall conclusion

To summarize, this thesis achieves three things. First, we developed a systematic un-
certainty quantification approach for traffic modelling and prediction that considers the
"three pillars". Second, we complete the modelling-data collection cycle mentioned in
the introductory chapter. Third, we quantified the influence of data collection and
modelling on the limit of predictability for traffic forecasting on different levels, and
illustrate that the current bottleneck of trajectory prediction and traffic state prediction
is the limited diversity of data sources. Next, we will elaborate on them respectively.

• Insights on uncertainty quantification: The three pillars of uncertainty quan-
tification are closely related to each other. Both variance/covariance or entropy
can be used for quantifying aleatoric and epistemic uncertainty via conditional
decomposition. Variance/covariance metrics are good choices for uni-modal
distributions and point-estimate models. In contrast, entropy-based metrics are
proper for multi-modal or multi-dimensional distributions (such as trajectories)
and probabilistic predictors. For the quantification method, the proposed model-
free approach can give a trustworthy estimate of the average limit of predictabil-
ity. Considering the maximum speed of information propagation on the spatial-
temporal map can significantly reduce computational complexity. As for input-
specific uncertainty, the deep ensemble has already been proven to be an efficient
and robust method. From a different angle of view, the parametric representa-
tion suits variance/covariance metrics and shows advantages in inference speed.
Non-parametric representation, on the other hand, naturally fits entropy metrics.
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It has better accuracy but also suffers from large computational complexity and
memory requirements. However, the modelling strategy of the UQ approach,
must be considered when the available datasets allow building a causation-based
model. The significant improvement of generalizability error of UQnet shows
that both accuracy and the quality of uncertainty estimation can benefit from
this.

• Insights on continuous data collection: This thesis builds a protocol for "ini-
tial dataset–modelling and deployment–continuous data collection" based on un-
certainty quantification. The major conclusion here is that we should focus on
finding "valuable data" instead of "big data" in the traffic domain. Most samples
in the living data stream are repeating low-value data. Putting all data we can
access in the database is a waste of money and time. We provide an effective
approach to finding those valuable rare samples from a large dataset.

• Insights on the predictability of traffic: The quantitative results in this the-
sis give the predictability of multi-level traffic systems. For macroscopic high-
way state prediction, although there is a diverse range of congestion patterns
and new patterns always emerge in model deployment, the inherent stochasticity
of the traffic stream caused by the limited observability of demand and driv-
ing behaviours makes the predictability drops fast with time. This is the major
bottleneck of traffic state prediction. For microscopic trajectory and intention
forecasting, we found that the exposed intended direction is the most important
factor for reducing the interaction uncertainty. For scenario generalization prob-
lems, the speed is as important as scenario types, otherwise collecting more data
cannot enhance the transferability and the predictability of the motion forecast-
ing model.

We believe that these conclusions are valuable for rethinking the model-data relation-
ship in the traffic modelling domain.

6.3 Implications for practice

The methods developed in this thesis are dedicated to making traffic prediction models
more reliable and explainable. The most important implication for practice is that:

Researchers in public and commercial organisations should (and now can) evaluate
explicitly whether they should invest in models, data or both.

In practice, collecting data is costly. For example, road authorities need to install many
loop detectors to monitor the traffic state of a large highway network; autonomous
driving companies and laboratories employ people to drive a vehicle equipped with
expensive sensors or use drones to collect microscopic trajectory data. On the other
hand, constructing models that use the available data at hand is relatively cheaper. In
the short term, we often see a great performance improvement. But then defeating
the state-of-the-art model will be more and more difficult. We will face the diminish-
ing of marginal utility. We emphasize that obsessing over neither expanding datasets
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nor developing more complex modelling techniques without quantitative guidance can
always bring the expected return.

For macroscopic traffic networks, the one-sentence implication is “stop investing in
developing more complex forecasting models that only use average speed, density, or
flow data under i.i.d. assumption for only improving prediction accuracy”. Although
continuously collecting diverse congestion patterns is useful for many other studies and
applications, such as getting insights about the regularity of city- or nation-level traffic
supply, accuracy improvement is not one of them. In chapters 3 and 4 we quantify
and analyze the limit of predictability. The results showed that the widely-studies deep
learning models are already approaching this estimated limit. Further reducing the ac-
curacy by 0.1% hardly matters. Meanwhile, we do believe that traffic forecasting is still
an attractive and valuable research topic. However, more attention should be paid to
the following directions. (1) Improving the interpretability of models. As discussed in
chapter 2, there is a possibility to combine data-driven traffic forecasting models with
traffic flow theory. We can find a balance point between accuracy and transparency.
(2) Enhancing the transferability of prediction models. Although macroscopic traf-
fic congestion patterns depend on road network topology, demand, and travel choices,
there exist some shared common features. For example, in chapter 2 we show that the
speed of the back-propagating stop-and-go waves is a constant always everywhere. Ex-
tracting these invariant features from several datasets may increase the adaptability of
a model and thus reduce the training and deployment cost. (3) Traffic forecasting must
be combined with traffic control because they are sequentially inherent. Therefore,
accuracy is not the only requirement of traffic forecasting. A good model must allow
some key operations, such as running forward simulation, what-if analysis, counterfac-
tual analysis, etc. The directions above need more investment.

For microscopic trajectory and driving behaviour modelling and forecasting, due to
the fast development of autonomous driving vehicles, this domain is drawing more at-
tention. Here we give two implications for practice. First, different from traffic state
forecasting, accuracy is always critically important because it is closely related to safety
issues. Besides those downstream tasks (prediction, motion planning, interaction strat-
egy, etc.), perception is still the main source of uncertainty. Trajectories of road agents
are relatively easier to be obtained so we see that commercial companies and research
institutes launched many open motion-prediction challenges based on trajectory data
and map information. But with the lack of some information in the perception module,
no-collision prediction is almost impossible. For example, in chapter 5 we mentioned
that showing a driver’s intention to others is the key to reducing interaction risk and
one of the most common approaches is flashing the turn signal. However, we still do
not have a reliable dataset of this type of signal. There are two reasons. The first one
is that using the pure computer-vision method to recognize turning signals is still an
open issue. Complex urban light environments (especially during the night) and di-
verse car turn signals make recognition very difficult. Second, although these signals
can be easily obtained from vehicle manufacturers, almost all companies refuse to pro-
vide them due to privacy issues and competition concerns. This barrier causes further
problems for connected vehicles. Here we recommend learning from the aviation in-
dustry. Governments and companies should develop standards for data-sharing among
different manufacturers and the privacy protection of drivers. The shared and flowing
data can significantly accelerate the development of this domain.
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Second, autonomous driving is currently an AI-dominating field (and we do think that
it should be), but contributions from traditional vehicle and traffic engineering can-
not be ignored. In chapter 5, we discovered that the INTERACTION dataset does
not consider the role of speed in-vehicle interaction for splitting in-distribution and
out-of-distribution test sets. This will weaken the generalizability of the model. Close
cooperation between AI researchers and traffic engineers can avoid this kind of "round-
abouts".

6.4 Implications for science and recommendations

Modelling (whatever phenomena) is one of the most important branches in traffic and
transportation studies. The most important implication for the science is that our re-
sults suggest that quantifying the uncertainty of model outcomes is as important as
modelling itself. Like many other domains, traffic modelling is also currently heavily
influenced by emerging AI techniques. We must keep in mind that these methods are
hammers and pincers in our toolkit. When one of them can be used to solve a problem
or address an issue, we use it, not vice versa.

Here we list several recommendations for related future research topics based on this
thesis.

• Causation-based modelling:
For a long time, simulation-based methods and data-driven methods are regarded
as two different worlds by many people. The simulation-based method is crit-
icized for its huge human effort requirement, unrealistic abstraction, and rel-
atively poor performances in real-world cases. On the other side, data-driven
methods, especially deep-learning models, has unsatisfactory generalizability,
low interpretability, and high fragility to new scenarios. However, the recently-
emerging tendency to combine causality discovery and causal inference with
machine learning brings new possibilities. Both old and new domains can po-
tentially bring together the advantages of both approaches.

• Multi-modal data fusion:
Diversifying the data types and sources is critically important for increasing the
possible predictability of traffic and implementing causation in data-driven mod-
els. However, how to fuse these multi-modal data forms together in a single
framework is challenging. For example, in macroscopic traffic modelling, how
to efficiently implement trajectory data and traffic demand in the predictor de-
serves more investigation. The difficulty is that these datasets are on different
scales. For autonomous vehicles, multi-modal data may include trajectories, map
information, videos recorded by cameras, point clouds sensored by Lidar/Radar,
or even sound signals. Utilizing these types of data to better model human-driven
vehicles and other road users’ behaviours is crucial. Learning from those multi-
modal models in the AI domain, such as CLIP (Li et al., 2022c) may give some
clues.
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• Sensor network optimization:
Besides inducing multi-modal data, another cheaper and more practical solution
is optimizing the way that we are currently using for data collection. For exam-
ple, the proposed method in chapter 3 can identify the least predictable locations
on a highway network. Then installing more loop detectors at these locations
may be helpful. Or conversely, given a fixed number of detectors (same invest-
ment), how should these detectors be distributed in a road network to maximize
the potential predictability? Developing a numerical scheme to optimize this can
reduce the cost of data collection.

• What-if analysis and traffic control:
The ultimate goal of traffic prediction is for supporting traffic control. In prac-
tice, we need to predict several possible futures and prepare their corresponding
management plans. In chapter 4, the histogram-regression model is able to pre-
dict the bifurcation of future traffic states. Based on this result, it is possible to do
the “what-if” analysis. We can consider the most and the least severe congestion
that may happen in the short future and then study how to mitigate them.

• Continuous learning and elastic models:
Another great challenge that one may encounter in model deployment is the re-
usability of forecasting models. Currently, with the increasing size of data, most
models need to be completely re-calibrated on the newest dataset. This leads to
huge time and money costs. We need to develop a more adjustable model that
can continue learning from the on-live data stream without re-training. There are
two possible directions. The first one is dataset distillation. Instead of blindly
expanding the dataset, we use uncertainty quantification to extract the most valu-
able samples and maintain a much smaller “core dataset”. The size of this core
dataset will increase much slower than the original dataset because the occur-
rence of rare samples is low in practice. So the re-training cost can be reduced.
The second way is using the online-learning and continuous learning techniques
in the AI community. How to apply them in the traffic domain needs more ex-
ploration.

• Safety assessment of autonomous vehicles:
For trajectory forecasting and autonomous vehicles, the non-parametric UQnet
proposed in chapter 5 is useful for assessing safety and conflict probability.
Safety assessment is closely related to prediction problems. All safety or col-
lision indicators, such as time-to-collision (TTC) and deceleration-rate-to-avoid-
collision (DRAC), are based on some simplified assumptions on the target ve-
hicle’s future positions. The output of UQnet is the probability distribution of a
vehicle’s future position. If we apply it to all road users in a case, then we can
calculate the probability that the distance between two vehicles is smaller than a
specific threshold. This can be a more accurate safety indicator. However, how
to validate it needs to be studied.
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Appendix A

Details about the speed forecasting
probabilistic model

We built one DNN-based probabilistic speed forecasting model based-on STGCN and
U-net (Ronneberger et al., 2015). U-net shows competitive performances in many com-
puter vision tasks and it is state-of-the-art in some pixel-wise uncertainty estimation
dataset, such as NYU-depth 1. The model is composed of similar spatio-temporal con-
volutional module proposed in STGCN (Yu et al., 2017) and skip connections. The
last layer output parameters of the assumed prior distributions. The model structure is
shown below.

Figure A.1: Structure of the speed forecasting probabilistic model. Here m is the
observation length and N is the number of road links.

Here we show another example of the NLL lower bound on link-32.

1https://cs.nyu.edu/ silberman/datasets/nyu_depth_v2.html
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Figure A.2: (a) the lower bound of NLL for each prediction step on link-32; (b) compar-
ison between the NLL lower bounds and the performances of Beta-prior probabilistic
model.
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Detailed structure of the
Beta-regression graph neural networks

The input tensor is concatenated speed and flow at N links in the past P time steps, so
the input shape is (P,N,2). We firstly present the details of one ST-block. The first
module in a ST-block is the dynamic graph convolutional (DGC) module proposed in
Li et al. (2021). It learns input-dependent kernels instead of static kernels for applying
graph convolution. We refer the readers to the paper for more details. This DGC mod-
ule has two hyperparameters, output dimension Fout and the order of adjacent matrix
k. The DGC module is applied to every time steps. We briefly note it as:

HHH(P,N,Fout) = DGC(XXX (P,N,Fin);k,Fout) (B.1)

The temporal attention layer is a global attention layer along the time axis, it does not
have any hyper-parameters and the output has the same shape as input. We note the
input XXX (P,N,Fin) and its transpose XXXT

(P,Fin,N), then the layer writes:

QQQ =XXXTWWW q,KKK =XXXWWW k,VVV =XXXWWW v (B.2)

HHH = softmax(WWW cQQQKKKT )VVV (B.3)

The trainable parameters are WWW q ∈ RFin×N×N , WWW k ∈ RFin , WWW v ∈ RFin×Fin , WWW c ∈ RP×P.
Then the output HHH has the same shape as XXX . We briefly noted the process above as:

HHH(P,N,Fout=Fin) = TA(XXX (P,N,Fin)) (B.4)

The two temporal convolutional layers share the same hyperparameters, the length of
the kernel L. Their number of channels are the same as input and the zero-padding
is used then these two layers do not change the tensor shapes. The activation, batch
normalization, and residual connection are shown in Fig.4.2.

In summary, one ST-block has only three hyperparameters, k,Fout ,L. In this study we
choose k = 5,Fout = 64,L = 5. After applying 10 ST-blocks the output has the shape
(P,N,Fout = 64).

The output module for learning Beta distribution is easy to understand. Next we present
the cross-attention layer used in the histogram-regression module. The input tensor’s
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shape is XXXT,N,Fin . The speed range is uniformly discretized into C intervals, noted as
VVVC,1. Considering that different locations have different numbers of lanes and speed
limits, the cross attention to each interval should be location-dependent. So the query
speed tensor VVV must be duplicated N times, noted as ZZZN,C,1. Then the cross-attention
layer writes:

QQQ = ZZZWWW q,KKK =XXXWWW k (B.5)

HHH =QQQKKKT (B.6)

The trainable parameters are WWW q ∈ R1×Fin and WWW q ∈ RFin×Fin . Then the output tensor
has the shape (T,N,C).
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Detailed structure of the proposed
UQnet

Many layers in UQnet are graph self-attention layers or cross-attention layers (Velick-
ovic et al., 2017). We start from the more general cross-attention layer. Assume that
we have a query input XXX1 ∈ Rna×da and a feature input XXX2 ∈ Rnb×db , and an adjacency
matrix representing the connectivity AAA ∈ Rna×nb then the output of a cross-attention
layer is:

QQQ =XXX1WWW q,KKK =XXX2WWW k,VVV =XXX2WWW v (C.1)

HHH = softmax(
QQQKKKT −1e7 × (1−AAA)√

dh
)VVV (C.2)

where WWW q ∈ Rda×dh , WWW k,WWW v ∈ Rdb×dh are trainable parameters, the output is HHH ∈
Rda×dh . It can also be extended to multi-head attention layers by, for example, con-
catenating. We briefly note such a cross-attention layer with m attention heads as
HHH = Attention(XXX1,XXX2,AAA,dh,m). If XXX1 =XXX2, the cross-attention layer becomes a graph
self-attention layer, briefly noted as HHH = SelfAttention(AAA,dh,m). The input of UQnet
includes (the shape of each tensor is also given):

1. TTT (26,9,8): trajectories of all agents in the selected rectangle. The first one is
the target vehicle.

2. MMM(55,5,8): map elements within the same range.

3. FFF(N,2): coordinates of a mesh-grid. N depends on the resolution of the 2D-
histogram. It can be different during training and inference.

4. AAA(81,81): adjacency matrix that controls connectivity and information flow di-
rections. It may vary in different layers according to the requirements. In this
paper we need the following adjacency matrices:

(a) JJJ, matrix of ones.

(b) AAAa, all agents and lanes are connected bi-directionally.

(c) AAAl/r/p/ f , each lane only receive information from their left, right, previous,
or following lanes and itself.
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(d) AAAt , all lanes are connected bi-directionally among them and only passes
information to the target vehicle.

The encoder and decoder structures is shown in Fig.C.1 and Fig.C.2. The DenseTNT
decoder is given in DenseTNT (Gu et al., 2021). We refer the readers to their paper
and the open-source code for more details.

Figure C.1: The encoder structure of UQnet
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Figure C.2: The decoder structure of UQnet
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Summary

Observing, modelling, predicting, and understanding the dynamics of traffic systems
on different levels is one of the most critical topics in the transport and planning do-
main. At the macroscopic scale, traffic congestion is the central problem that impacts
all aspects of society. Traffic congestion costs valuable travel time, extra fuel consump-
tion, and frustration in daily life. Traffic congestion is not always avoidable but accu-
rate predictions of traffic conditions in a road network are useful for road users. For
example, drivers can make faster and safer route choices based on the estimated time
of arrival and the predicted congestion evolution. Reliable traffic forecasting also pro-
vides essential information for real-time traffic control systems and the development of
long-term sustainable mobility systems. On the other hand, on the microscopic level,
modelling the interaction between road users and predicting their behaviours is draw-
ing more and more attention due to the increasing popularity of autonomous driving.
Accurately anticipating other agents’ decisions is indispensable for a safe and smooth
autopilot system. This actively-studied domain has become the focus of many scholars
from academia and engineers from industry.

Recently, with the fast development of sensing technology, data-driven models, par-
ticularly using Artificial Intelligence (AI) techniques, have become one of the most
popular approaches in the traffic forecasting domain. The macroscopic traffic state is
generally monitored by installed sensors, e,g, loop-detectors, and described by the cor-
responding derived variables, such as traffic flow, density, and average speed. These
data greatly enrich our understanding of large-scale traffic congestion patterns. Mi-
croscopic trajectory data collection involves the wide application of drones and in-car
sensors, e.g. cameras, GPS, Lidar, and radar. These tools allow perceiving real-time
trajectories of surrounding agents and localizing map information. The booming of
"big data" greatly stimulates the fast iteration of increasingly accurate AI models. In
academia, AI-based traffic forecasting and trajectory prediction model has already
become the mainstream. These AI models show impressive performances for those
larger-scale and more complex forecasting tasks.

However, this "data+AI" paradigm also exposes its weaknesses in practice. Low inter-
pretability and unsatisfactory reliability are the most concerning issues. The "black-
box" property of neural networks and the fragility of correlation-based AI in new sce-
narios hinder further applications in the real world. Additionally, improving the accu-
racy of traffic forecasting is becoming more and more difficult. Hence two questions
naturally arise: How predictable is traffic on different levels? Are we close enough to
the limit of predictability? The answers to these questions can put endless performance
benchmarks into perspective and indicate what is the most valuable research direction
in the future.
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This thesis addresses the issue of the predictability of traffic systems on different levels
of scale by proposing a systematic approach for quantifying the predictive uncertainty
from different sources in AI models. Additionally, the interpretability and the gener-
alizability of the used deep learning models are also improved. The thesis provides a
comprehensive and quantitative evaluation of the predictability of traffic.

The scientific gaps addressed in this thesis are categorized into 4 intertwined parts.
First, we improve the interpretability of deep-learning-based traffic forecasting mod-
els by designing a novel dynamic module that explicitly learns state-dependent spatial
associations among road links. This provides insights into how to combine a data-
driven model with explainable traffic flow theory. The obtained principles of model
design will be used in the following uncertainty quantification methods. Second, we
estimate the average limit of predictability of macroscopic traffic quantities for dif-
ferent types of forecasting models. The predictability here is measured by the lower
bound of various predictive errors. We first theoretically prove these lower bounds and
then use a numerical scheme to directly estimate them from the given dataset. This
part provides a set of model-free tools to evaluate whether increasing model sophisti-
cation is worthwhile in terms of additional gains in accuracy. In the third part, based
on a set of practical requirements, we propose a method for estimating two types of
input-specific predictive uncertainty metrics in macroscopic traffic state forecasting.
The two types of uncertainty metrics represent respectively the inherent randomness in
traffic dynamics and the rareness of congestion patterns. The results provide insights
into how inherently predictable traffic is, how frequently rare patterns happen, and why
macroscopic predictability is limited. These conclusions are essential for continuous
data collection. The final part extends the previous uncertainty quantification method
to the microscopic motion prediction problem. We demonstrate that embedding causal
effects significantly enhances the robustness of the motion prediction model in new
interaction scenarios. We also found that exposing intended directions to other road
users is the key to reducing predictive uncertainty and domain knowledge of driving
behaviours is indispensable for generalizable AI models. The 4 parts will be discussed
individually below.

Learn dynamic spatial associations by designed deep learning models

The spatial association between links in a road network is a key factor in classical
traffic flow models. For example, the discrete form of a spatial operator describes
how the current state of one link influences the future state of another link. This
"influence" is generally state-dependent (dynamic), localized (there is a limit of the
spreading speed), and asymmetric (influences from upstream and downstream links are
different). However, deep neural networks assimilate the spatial association from the
dataset in an implicit and global way, which hinders us from seeking interpretations.
To address this issue, we design a dynamic module that aims to explicitly learn the
spatial dependencies and implement it in a deep learning framework. The experiments
on real-world highway networks show that the proposed method can indeed give both
accurate short-term predictions and explainable spatial associations that are consistent
with traffic flow theory. We especially demonstrate that this spatial association is
causation-like. Deeper neural networks with improper hyperparameters cannot give
clear propagating stop-and-go waves due to causal confusion. These conclusions are
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important for the model design in uncertainty quantification.

Estimate the average limit of predictability for macroscopic traffic variables

Modelling is not the only important respect of macroscopic traffic forecasting. The
available amount and types of data also restrict how accurately the traffic can be pre-
dicted. Due to the limited observability of those critical factors that potentially drive
the change of traffic condition, e.g. detailed traffic demand patterns, route choices,
driving behaviours around on-ramps, and weather, traffic dynamics shows significant
stochasticity. We need a method to quantitatively link the stochasticity to the limit
(lower bound) of predictive accuracy.

This thesis addresses this issue from both theoretical and practical perspectives. We
first mathematically prove a lower bound of accuracy for any deterministic forecasting
models and any probabilistic forecasting models, respectively. The key concept that we
use is the so-called conditional differential entropy and developing a numerical scheme
to estimate it is necessary. In practice, directly estimating conditional entropy from a
multivariate time series is challenging due to the curse of dimensionality. To mitigate
this problem, the spatial-temporal features obtained from the first part of this thesis
are used to partition the entire dataset into time-of-day and location-related subsets.
By using this technique, the dimensionality is dramatically reduced and directly esti-
mating the limit of predictive accuracy is possible. We show that, for network-level
traffic production and traffic speed forecasting, the current deep learning models are
approaching the estimated theoretical limit in short term. This approach is also infor-
mative of the most uncertain time periods in one day and the most uncertain locations
in a highway network. This proposed method provides a tool to evaluate whether the
given dataset can potentially fulfil the accuracy requirement, and also insights into the
spatial-temporal distribution of predictability. The latter one is informative for traffic
control practitioners.

Estimate the inherent stochasticity and the rareness of the current traffic state

In this part, we comprehensively analyze the "predictability" of macroscopic traffic by
quantifying both the inherent stochasticity of traffic dynamics and the occurrence of
rare congestion patterns. The existing ensemble learning method is applied to traffic
speed forecasting problems. The experimental results show that, although rare or new
congestion patterns always emerge in the data stream, the predictability of speed is
mainly restricted by the inherent stochasticity of traffic dynamics. By directly assim-
ilating the evolution of predicted speed distribution, we further demonstrate that the
predictability drops rapidly with the prediction horizon due to the bifurcation of future
traffic state. This bi-modality causes high and irreducible uncertainty and it can be
explained by the capacity drop in traffic flow theory.

Quantify the uncertainty in motion prediction by a generalizable method

Different from macroscopic traffic forecasting, the output of a motion prediction task is
not a scalar but a 2D coordinate. Additionally, the 2D spatial distribution is restricted
by arbitrary road layouts. Currently, the major driving force of motion prediction is
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the relevant applications in autonomous vehicles. An autonomous vehicle is expected
to accurately anticipate other road users’ intentions when facing diverse scenarios that
have not been seen in the training set. Therefore, the motion prediction model should
be able to identify rare behaviours and adapt itself to new scenarios. This is important
for safety issues.

Based on these requirements, this thesis extends the scalar uncertainty quantification
method to a 2D plane. The output spatial distribution is directly approximated by a
non-parametric histogram instead of a simple prior. The causal effect of surrounding
agents is considered by a cascade strategy so the model is better generalizable to new
scenarios. We demonstrate that this approach can find those rare driving behaviours
and the uncertainty of interaction is mainly caused by the unknown intended direc-
tion (indicated by the turning signal) and driving styles. We also found that the AI
model cannot learn how to adapt low-speed driving behaviours to high-speed cases
because the domain knowledge tells us that the heterogeneity of behaviours increases
with speed. Based on these observations, we suggest that diversifying the perception
is the key to safer and smoother motion prediction and planning.

Conclusion and perspective

In summary, this thesis addresses two major issues: How predictable are traffic dynam-
ics on different levels? How to quantify uncertainty in traffic forecasting, and use this
to improve data collection and modelling? We answer these two research questions by
proposing a systematic approach for quantifying predictive uncertainty in macroscopic
traffic state prediction and microscopic trajectory prediction.

For the first question of predictability, we conclude that for both network-level traffic
state prediction and motion prediction, the limit of predictability is mainly restricted by
the irreducible randomness caused by the limited perception data types. Currently, AI
models are approaching this limit. A significant improvement in predictive accuracy
is not going to happen unless we diversify the available data types. For macroscopic
traffic, this might be trajectory or demand data. In the context of autonomous vehicles,
recognizing the turning signal is important. For the second question, we conclude that
most data in traffic systems are high-recurring. This thesis establishes a quantitative
method to recognize those rare, high-value samples from large datasets based on es-
timated uncertainty. The domain knowledge on traffic flow and driving behaviours
cannot be ignored in building models and quantifying the uncertainty.

The findings and methods proposed in this thesis have several important implications
for practice. One major implication is that understanding predictability limits, supports
better decision-making in terms of what to invest in: more model sophistication, more
(diverse) data collection, or both (or neither). More specifically, for macroscopic traf-
fic forecasting, speed, flow, and density data must be combined with the trajectory data
and the demand data to break the accuracy bottleneck. For motion prediction, learn-
ing how to recognize the intention exposed by other drivers or directly communicate
with other vehicles via connection is more valuable than developing more sophisticated
predictive control algorithms.

From the discussion above, we close the summary by proposing several research direc-
tions. First, due to the importance of diversifying data sources, how to fuse different
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data types needs more investigation in the traffic domain. Second, how implementing
human knowledge represented by causal graphs into AI models is a promising solution
that can potentially improve both the interpretability and the robustness of AI models.
Third, how to continuously improve a model’s performance without re-training after
collecting enough rare samples is critical for processing the long-term data streams. We
believe that answering these questions can pave the path to more application-oriented
traffic prediction systems.





Samenvatting

Het observeren, modelleren, voorspellen en begrijpen van de dynamiek van verkeers-
systemen op verschillende niveaus is een van de meest kritische onderwerpen in het
vervoers- en planningsdomein. Op macroscopische schaal is verkeersopstopping het
centrale probleem dat gevolgen heeft voor alle aspecten van de samenleving. Ver-
keersopstoppingen kosten kostbare reistijd, extra brandstofverbruik en frustratie in het
dagelijks leven. Verkeersopstoppingen zijn niet altijd te vermijden, maar nauwkeu-
rige voorspellingen van de verkeersomstandigheden in een wegennet zijn nuttig voor
weggebruikers. Zo kunnen automobilisten snellere en veiligere routekeuzes maken op
basis van de geschatte aankomsttijd en de voorspelde congestie-evolutie. Betrouwbare
verkeersprognoses bieden ook essentiële informatie voor realtime verkeersregelsyste-
men en de ontwikkeling van duurzame mobiliteitssystemen op de lange termijn. Aan
de andere kant, op microscopisch niveau, krijgt het modelleren van de interactie tussen
weggebruikers en het voorspellen van hun gedrag steeds meer aandacht door de toene-
mende populariteit van autonoom rijden. Nauwkeurig anticiperen op de beslissingen
van andere agenten is onmisbaar voor een veilig en soepel stuurautomaatsysteem. Dit
actief bestudeerde domein is de focus geworden van veel wetenschappers uit de acade-
mische wereld en ingenieurs uit de industrie.

Onlangs, met de snelle ontwikkeling van detectietechnologie, zijn gegevensgestuurde
modellen, met name met behulp van kunstmatige intelligentie (AI) -technieken, een
van de meest populaire benaderingen geworden op het gebied van verkeersprognoses.
De macroscopische verkeerstoestand wordt over het algemeen bewaakt door geı̈n- stal-
leerde sensoren, bijv. lusdetectoren, en beschreven door de overeenkomstige afgeleide
variabelen, zoals verkeersstroom, dichtheid en gemiddelde snelheid. Deze gegevens
verrijken ons begrip van grootschalige verkeerscongestiepatronen enorm. Het verza-
melen van microscopische trajectgegevens omvat de brede toepassing van drones en
sensoren in de auto, b.v. camera’s, GPS, Lidar en radar. Met deze tools kunnen
realtime trajecten van omringende agenten worden waargenomen en kaartinformatie
worden gelokaliseerd. De opkomst van "big data" stimuleert in hoge mate de snelle
iteratie van steeds nauwkeurigere AI-modellen. In de academische wereld zijn op AI
gebaseerde verkeersprognoses en trajectvoorspellingsmodellen al de mainstream ge-
worden. Deze AI-modellen laten indrukwekkende prestaties zien voor die grotere en
complexere prognosetaken.

Dit "data+AI"-paradigma legt echter ook zijn zwakke punten in de praktijk bloot. Lage
interpreteerbaarheid en onbevredigende betrouwbaarheid zijn de meest zorgwekkende
problemen. De "black-box"-eigenschap van neurale netwerken en de kwetsbaarheid
van op correlatie gebaseerde AI in nieuwe scenario’s belemmeren verdere toepassin-
gen in de echte wereld. Bovendien wordt het steeds moeilijker om de nauwkeurigheid
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van verkeersprognoses te verbeteren. Daarom rijzen er natuurlijk twee vragen: Hoe
voorspelbaar is het verkeer op verschillende niveaus? Zitten we dicht genoeg bij de
grens van voorspelbaarheid? De antwoorden op deze vragen kunnen eindeloze pres-
tatiebenchmarks in perspectief plaatsen en aangeven wat de meest waardevolle onder-
zoeksrichting in de toekomst is.

Dit proefschrift behandelt de kwestie van de voorspelbaarheid van verkeerssystemen
op verschillende schaalniveaus door een systematische benadering voor te stellen voor
het kwantificeren van de voorspellende onzekerheid van verschillende bronnen in AI-
modellen. Daarnaast zijn ook de interpreteerbaarheid en de generaliseerbaarheid van
de gebruikte deep learning-modellen verbeterd. Het proefschrift geeft een uitgebreide
en kwantitatieve evaluatie van de voorspelbaarheid van verkeer.

De wetenschappelijke hiaten die in dit proefschrift worden behandeld, zijn onderver-
deeld in 4 met elkaar verweven delen. Ten eerste verbeteren we de interpreteerbaarheid
van op deep learning gebaseerde verkeersvoorspellingsmodellen door een nieuwe dy-
namische module te ontwerpen die expliciet toestandsafhankelijke ruimtelijke associa-
ties tussen wegverbindingen leert. Dit geeft inzicht in hoe een datagedreven model te
combineren met verklaarbare verkeersstroomtheorie. De verkregen principes van mo-
delontwerp zullen worden gebruikt in de volgende onzekerheidskwantificatiemetho-
den. Ten tweede schatten we de gemiddelde voorspelbaarheidslimiet van macrosco-
pische verkeershoeveelheden voor verschillende soorten voorspellingsmodellen. De
voorspelbaarheid wordt hier gemeten door de ondergrens van verschillende voorspel-
lende fouten. We bewijzen deze ondergrenzen eerst theoretisch en gebruiken vervol-
gens een numeriek schema om ze rechtstreeks te schatten op basis van de gegeven
dataset. Dit deel biedt een set modelvrije tools om te evalueren of het vergroten van
de verfijning van het model de moeite waard is in termen van extra winst in nauwkeu-
righeid. In het derde deel, op basis van een reeks praktische vereisten, stellen we een
methode voor voor het schatten van twee soorten input-specifieke voorspellende on-
zekerheidsmetrieken in macroscopische voorspelling van verkeerstoestanden. De twee
soorten onzekerheidsmetrieken vertegenwoordigen respectievelijk de inherente wille-
keur in verkeersdynamiek en de zeldzaamheid van congestiepatronen. De resultaten
geven inzicht in hoe inherent voorspelbaar verkeer is, hoe vaak zeldzame patronen
voorkomen en waarom macroscopische voorspelbaarheid beperkt is. Deze conclusies
zijn essentieel voor continue gegevensverzameling. Het laatste deel breidt de eerdere
onzekerheidskwantificatiemethode uit tot het microscopische bewegingsvoorspellings-
probleem. We laten zien dat het inbedden van causale effecten de robuustheid van het
bewegingsvoorspellingsmodel in nieuwe interactiescenario’s aanzienlijk verbetert. We
ontdekten ook dat het blootleggen van de beoogde aanwijzingen aan andere weggebrui-
kers de sleutel is tot het verminderen van voorspellende onzekerheid en domeinkennis
van rijgedrag is onmisbaar voor generaliseerbare AI-modellen. Hieronder worden de 4
delen afzonderlijk besproken.

Leer dynamische ruimtelijke associaties door ontworpen deep learning-modellen

Modellering is niet het enige belangrijke aspect van macroscopische verkeersprogno-
ses. De beschikbare hoeveelheid en soorten gegevens beperken ook hoe nauwkeurig
het verkeer kan worden voorspeld. Vanwege de beperkte waarneembaarheid van die
kritieke factoren die mogelijk de verandering van verkeerssituatie veroorzaken, b.v. ge-
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detailleerde verkeersvraagpatronen, routekeuzes, rijgedrag rond opritten en het weer,
verkeersdynamiek vertoont aanzienlijke stochastiek. We hebben een methode nodig
om de stochasticiteit kwantitatief te koppelen aan de limiet (ondergrens) van voorspel-
lende nauwkeurigheid.

Dit proefschrift behandelt dit probleem vanuit zowel theoretische als praktische per-
spectieven. We bewijzen eerst wiskundig een ondergrens van nauwkeurigheid voor
respectievelijk deterministische voorspellingsmodellen en alle probabilistische voor-
spellingsmodellen. Het sleutelconcept dat we gebruiken is de zogenaamde voorwaar-
delijke differentiële entropie en het ontwikkelen van een numeriek schema om het te
schatten is noodzakelijk. In de praktijk is het direct schatten van voorwaardelijke entro-
pie uit een multivariate tijdreeks een uitdaging vanwege de vloek van dimensionaliteit.
Om dit probleem op te lossen, worden de ruimtelijk-temporele kenmerken verkregen
uit het eerste deel van dit proefschrift gebruikt om de gehele dataset op te delen in tijd-
gebonden en locatiegerelateerde subsets. Door deze techniek te gebruiken, wordt de di-
mensionaliteit drastisch verminderd en is het mogelijk om de limiet van voorspellende
nauwkeurigheid direct in te schatten. We laten zien dat, voor verkeersproductie op net-
werkniveau en voorspelling van verkeerssnelheid, de huidige deep learning-modellen
op korte termijn de geschatte theoretische limiet naderen. Deze benadering is ook infor-
matief voor de meest onzekere tijdsperioden op één dag en de meest onzekere locaties
in een wegennet. Deze voorgestelde methode biedt een hulpmiddel om te evalueren of
de gegeven dataset mogelijk aan de nauwkeurigheidseis kan voldoen, en ook inzicht in
de ruimtelijk-temporele verdeling van voorspelbaarheid. De laatste is informatief voor
verkeersregelaars.

Schat de gemiddelde voorspelbaarheidslimiet voor macroscopische verkeersvari-
abelen

Modellering is niet het enige belangrijke aspect van macroscopische verkeersprogno-
ses. De beschikbare hoeveelheid en soorten gegevens beperken ook hoe nauwkeurig
het verkeer kan worden voorspeld. Vanwege de beperkte waarneembaarheid van die
kritieke factoren die mogelijk de verandering van verkeerssituatie veroorzaken, b.v. ge-
detailleerde verkeersvraagpatronen, routekeuzes, rijgedrag rond opritten en het weer,
verkeersdynamiek vertoont aanzienlijke stochastiek. We hebben een methode nodig
om de stochasticiteit kwantitatief te koppelen aan de limiet (ondergrens) van voorspel-
lende nauwkeurigheid.

Dit proefschrift behandelt dit probleem vanuit zowel theoretische als praktische per-
spectieven. We bewijzen eerst wiskundig een ondergrens van nauwkeurigheid voor
respectievelijk deterministische voorspellingsmodellen en alle probabilistische voor-
spellingsmodellen. Het sleutelconcept dat we gebruiken is de zogenaamde voorwaar-
delijke differentiële entropie en het ontwikkelen van een numeriek schema om het te
schatten is noodzakelijk. In de praktijk is het direct schatten van voorwaardelijke entro-
pie uit een multivariate tijdreeks een uitdaging vanwege de vloek van dimensionaliteit.
Om dit probleem op te lossen, worden de ruimtelijk-temporele kenmerken verkregen
uit het eerste deel van dit proefschrift gebruikt om de gehele dataset op te delen in tijd-
gebonden en locatiegerelateerde subsets. Door deze techniek te gebruiken, wordt de di-
mensionaliteit drastisch verminderd en is het mogelijk om de limiet van voorspellende
nauwkeurigheid direct in te schatten. We laten zien dat, voor verkeersproductie op net-
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werkniveau en voorspelling van verkeerssnelheid, de huidige deep learning-modellen
op korte termijn de geschatte theoretische limiet naderen. Deze benadering is ook infor-
matief voor de meest onzekere tijdsperioden op één dag en de meest onzekere locaties
in een wegennet. Deze voorgestelde methode biedt een hulpmiddel om te evalueren of
de gegeven dataset mogelijk aan de nauwkeurigheidseis kan voldoen, en ook inzicht in
de ruimtelijk-temporele verdeling van voorspelbaarheid. De laatste is informatief voor
verkeersregelaars.

Schat de inherente stochastiek en de zeldzaamheid van de huidige verkeerstoe-
stand

In dit deel analyseren we uitgebreid de "voorspelbaarheid" van macroscopisch verkeer
door zowel de inherente stochasticiteit van verkeersdynamiek als het optreden van zeld-
zame congestiepatronen te kwantificeren. De bestaande ensembleleermethode wordt
toegepast op problemen met het voorspellen van verkeerssnelheid. De experimentele
resultaten laten zien dat, hoewel er altijd zeldzame of nieuwe congestiepatronen in de
datastroom naar voren komen, de voorspelbaarheid van snelheid voornamelijk wordt
beperkt door de inherente stochasticiteit van de verkeersdynamiek. Door de evolutie
van de voorspelde snelheidsverdeling direct te assimileren, tonen we verder aan dat
de voorspelbaarheid snel daalt met de voorspellingshorizon als gevolg van de split-
sing van de toekomstige verkeerstoestand. Deze bimodaliteit veroorzaakt een hoge en
onherleidbare onzekerheid en kan worden verklaard door de capaciteitsdaling in de
verkeersstroomtheorie.

Kwantificeer de onzekerheid in bewegingsvoorspelling met een generaliseerbare
methode

Anders dan macroscopische verkeersprognoses, is de uitvoer van een bewegingsvoor-
spellingstaak geen scalaire maar een 2D-coördinaat. Bovendien wordt de ruimtelijke
verdeling in 2D beperkt door willekeurige weglay-outs. Momenteel zijn de belang-
rijkste drijvende kracht achter bewegingsvoorspelling de relevante toepassingen in au-
tonome voertuigen. Van een autonoom voertuig wordt verwacht dat het nauwkeu-
rig anticipeert op de intenties van andere weggebruikers wanneer het geconfronteerd
wordt met verschillende scenario’s die niet in de trainingsset zijn gezien. Daarom moet
het bewegingsvoorspellingsmodel in staat zijn om zeldzaam gedrag te identificeren en
zichzelf aan te passen aan nieuwe scenario’s. Dit is belangrijk voor veiligheidskwes-
ties.

Op basis van deze vereisten breidt dit proefschrift de methode voor het kwantifice-
ren van scalaire onzekerheid uit naar een 2D-vlak. De ruimtelijke verdeling van de
output wordt direct benaderd door een niet-parametrisch histogram in plaats van een
eenvoudige prior. Het causale effect van omringende agentia wordt beschouwd door
een cascadestrategie, zodat het model beter generaliseerbaar is naar nieuwe scenario’s.
We laten zien dat deze aanpak die zeldzame rijgedragingen kan vinden en dat de on-
zekerheid van interactie voornamelijk wordt veroorzaakt door de onbekende beoogde
richting (aangegeven door de richtingaanwijzer) en rijstijlen. We ontdekten ook dat het
AI-model niet kan leren hoe het rijgedrag op lage snelheid kan worden aangepast aan
gevallen met hoge snelheid, omdat de domeinkennis ons vertelt dat de heterogeniteit
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van gedrag toeneemt met de snelheid. Op basis van deze observaties stellen we voor
dat het diversifiëren van de perceptie de sleutel is tot veiligere en soepelere bewegings-
voorspelling en planning.

Conclusie en perspectief

Samengevat behandelt dit proefschrift twee belangrijke kwesties: Hoe voorspelbaar is
de verkeersdynamiek op verschillende niveaus? Hoe de onzekerheid in verkeersprog-
noses kwantificeren en deze gebruiken om de gegevensverzameling en -modellering
te verbeteren? We beantwoorden deze twee onderzoeksvragen door een systemati-
sche benadering voor te stellen voor het kwantificeren van voorspellende onzekerheid
in macroscopische voorspelling van verkeerstoestanden en microscopische baanvoor-
spelling.

Voor de eerste vraag naar voorspelbaarheid concluderen we dat voor zowel de voor-
spelling van de verkeerstoestand op netwerkniveau als de bewegingsvoorspelling, de
limiet van voorspelbaarheid voornamelijk wordt beperkt door de onherleidbare wil-
lekeur die wordt veroorzaakt door de beperkte perceptiegegevenstypen. Momenteel
naderen AI-modellen deze limiet. Een significante verbetering van de voorspellende
nauwkeurigheid zal niet plaatsvinden tenzij we de beschikbare gegevenstypen diver-
sifiëren. Voor macroscopisch verkeer kunnen dit traject- of vraaggegevens zijn. In de
context van autonome voertuigen is het herkennen van de richtingaanwijzer belang-
rijk. Voor de tweede vraag concluderen we dat de meeste data in verkeerssystemen
hoogrecurrent zijn. Dit proefschrift stelt een kwantitatieve methode vast om die zeld-
zame, hoogwaardige monsters uit grote datasets te herkennen op basis van geschatte
onzekerheid. De domeinkennis over verkeersafwikkeling en rijgedrag kan niet worden
genegeerd bij het bouwen van modellen en het kwantificeren van de onzekerheid.

De bevindingen en methoden die in dit proefschrift worden voorgesteld, hebben ver-
schillende belangrijke implicaties voor de praktijk. Een belangrijke implicatie is dat
het begrijpen van voorspelbaarheidslimieten een betere besluitvorming ondersteunt in
termen van waarin te investeren: meer modelverfijning, meer (diverse) gegevensverza-
meling, of beide (of geen van beide). Meer specifiek, voor macroscopische verkeers-
prognoses moeten snelheids-, stroom- en dichtheidsgegevens worden gecombineerd
met de trajectgegevens en de vraaggegevens om de nauwkeurigheidsknelpunt te door-
breken. Voor bewegingsvoorspelling is het waardevoller om te leren hoe de intentie
van andere bestuurders te herkennen of rechtstreeks met andere voertuigen te com-
municeren via verbinding, dan het ontwikkelen van meer geavanceerde voorspellende
besturingsalgoritmen.

Uit de bovenstaande discussie sluiten we de samenvatting af met een aantal onder-
zoeksrichtingen. Ten eerste, vanwege het belang van diversificatie van gegevensbron-
nen, is meer onderzoek nodig in het verkeersdomein hoe verschillende gegevenstypen
kunnen worden samengevoegd. Ten tweede, hoe het implementeren van menselijke
kennis, weergegeven door causale grafieken in AI-modellen, een veelbelovende op-
lossing is die zowel de interpreteerbaarheid als de robuustheid van AI-modellen kan
verbeteren. Ten derde, hoe de prestaties van een model continu kunnen worden verbe-
terd zonder opnieuw te trainen nadat voldoende zeldzame monsters zijn verzameld, is
van cruciaal belang voor het verwerken van de gegevensstromen op de lange termijn.
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Wij zijn van mening dat het beantwoorden van deze vragen de weg kan effenen naar
meer toepassingsgerichte verkeersvoorspellingssystemen.
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