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On the use of common random numbers in activity-based
travel demand modeling for scenario comparison
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ABSTRACT
Activity-based travel demand models provide a high level of detail
when modeling complex travel behavior. Since stochastic
simulation is used, however, this high level may induce large
random fluctuations in the output, necessitating many model
reruns to produce reliable output. This may become prohibitive
in terms of computation time when comparing travel behavior
between multiple scenarios, in which case each scenario requires
its own simulation. To alleviate this issue, we study the use of
common random numbers, which is a technique that reuses the
same random numbers for choices made by travelers between
scenarios. This ensures that any observed difference in output
across scenarios cannot be attributed to mutual differences in
drawn random numbers, eliminating an important source of
random fluctuation. We demonstrate by a numerical study that
common random numbers can greatly reduce the number of
runs needed, and thus also the required computation time, to
obtain reliable output.
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1. Introduction

In this paper, we study an efficient simulation method to compare the travel demand
behavior under different traffic scenarios by means of activity-based travel demand mod-
eling (ABM). Owing to its flexibility, robustness and high level of detail, ABM offers a
highly suitable methodology to model complex travel behavior. In travel demand simu-
lation, for each individual, ABM predicts what, where (destination), when (time) and for
how long (duration) travel activities are conducted as well as which mode chain of trans-
port is involved (Rasouli and Timmermans 2012). To achieve this high level of detail, an
ABM may for example consist of different discrete choice models which successively
make choices on e.g. destinations, time, duration, and mode. In most cases, these
models adopt a simulation approach that makes choices based on (pseudo-)random
numbers. The variability caused by the generation of these random numbers however
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trigger random fluctuations in the output of the ABM (Vovsha, Donnelly, and Gupta
2008), also referred to as simulation error. This may cause the activity-based model to
have to be rerun many times in order to get reliable results, which may not be feasible
due to the excessive simulation effort required.

As mentioned above, ABM models travel behavior at a high level of detail, and thus
provides output at a very low level of aggregation. In the literature, multiple studies
have shown that the lower the level of aggregation of a model’s output is, the more pro-
found the issue of variability/simulation error becomes, underlining the fact that this is
especially a complication for ABM. Indeed, while Veldhuisen, Timmermans, and Kapoen
(2000) concluded that in the context of their RAMBLAS framework, a microsimulation
model, the simulation error is negligible when studying the output at a highly aggregated
level, Castiglione, Freedman, and Bradley (2003) confirmed this finding based on a case
study on the travel demand in San Francisco but with the remark that simulation error
becomes problematic when there are many choice alternatives or when some of these
alternatives are very rare. To quantify these effects, Bao et al. (2015) used FEATHERS,
a rule-based model, to determine the minimum number of runs required to obtain
enough ‘confidence’ at different aggregation levels, i.e. the minimum number of runs
required so that the output is sufficiently reliable. The results of this work indicate
that the lower the aggregation level is of the desired output, the more model runs are
required. We also mention (Horni, Charypar, and Axhausen 2011), where the random
variability over multiple runs of MATSim is studied by analyzing travel demand on
specific road links in a traffic network. The authors concluded that there is relatively
little variability when regarding daily volumes, but that variability is significant when
considering hourly volumes. This is in line with the fact that the lower the aggregation
level of the results is, the more variability becomes an issue. It is worth noting that in
traffic modeling, travel demand models and travel assignment models are often used
in an alternating way, so that unreliable results in travel demand have direct ramifications
for travel assignment. These ramifications have been studied in e.g. Vovsha, Donnelly,
and Gupta (2008), Horni, Charypar, and Axhausen (2011) and Bekhor, Kheifits, and
Sorani (2014).

While the studies mentioned above are mainly focusing on the model output of a
single traffic scenario, the issue of simulation error is even more profound when compar-
ing multiple traffic scenarios for the purpose of quantifying the difference between them.
Especially when the actual difference between scenarios is not very large, much compu-
tation time may have to be spent to produce a reliable output for each of the scenarios,
before any conclusion can be drawn regarding the difference. In this context it should be
noted that when differences between scenarios are small, this does not necessarily mean
that such differences are by definition irrelevant. For example, even when a certain scen-
ario leads to only a 2% increase in the number of trips undertaken, in the regime of a
highly loaded network this may have a significant impact on the level of congestion.
In this paper, we discuss techniques to control the simulation-error issue in this
multi-scenario context. More particularly, we study the use of the technique of
common random numbers (CRN) to overcome the problem of requiring too many simu-
lation runs to reliably estimate the simulation error. CRN is a celebrated technique stem-
ming from the stochastic simulation community that attempts to induce a positive
correlation between the outputs of different scenarios. It does so by using the same

2 H. ZHOU ET AL.



generated pseudo-random numbers for the same purposes across the simulation of
different scenarios. When doing this, the observed difference in the model output for
the different scenarios can then not be attributed to the fact that random numbers
across scenarios differ, which is one of the sources of simulation error. This increases
the likelihood that any difference in observed model output is a result of the intrinsically
different features of the scenarios. This means that the number of required simulation
runs will decrease, and as a result it induces less required computation time. For a
more detailed explanation on CRN, see Glasserman and Yao (1992) and Section 9.7 of
Ross (2013). In the context of activity-based travel demand modeling, the use of CRN
in has been suggested before in e.g. Vovsha, Donnelly, and Gupta (2008) and has been
implemented in CEMDAP (Pinjari et al. 2008) and MATSim (Horni, Nagel, and Axhau-
sen 2016). As a result, we are not the first to implement CRN in an ABM. However, to the
best of our knowledge, there has been no quantitative study on the added value of CRN in
terms of required numbers of runs and computation time savings. This paper seeks to fill
that gap. More particularly, in the rest of this paper, we aim to show how computation
times can be shortened drastically by using CRN.

The contributions of this work can be summarized as follows. First, we demonstrate
how to implement CRN in an activity-based travel demand model to compare multiple
scenarios. We do this based on an extension of an activity-based travel demand model,
which was recently developed by the authors Zhou et al. (2020). This extended ABM inte-
grates a tour-based multimodal mode choice component in the activity-based model,
which makes travel mode chain choices on each trip of a tour using a multinomial
probit choice model. We however stress that the technique of CRN can- and in this
paper will - also be applied to all other components of an ABM, also those based on a
multinomial logit choice model, which we will also cover. Secondly, based on this exten-
sion, we demonstrate the potential of CRN when assessing multiple scenarios, in particu-
lar with regard to the question which scenario is more favorable (according to a given
criterion). We do so by analyzing the variability of the difference between the model
output of these scenarios, with and without the implementation of CRN, and we will con-
clude that the implementation of CRN greatly reduces this variability (measured in terms
of the sample variance of the differences). As a result, to obtain reliable output, only a
fraction of the earlier required simulation runs is still needed. For example, we show
that, to keep the width of the confidence intervals of simulated indicators under a
certain level, a reduction of the number of required simulation runs by a factor 100 is
not an exception, which evidently has a drastic effect on the computation time needed.
It turns out that CRN is especially worthwhile when the order of magnitude of the differ-
ences between the scenario outputs is either not too large, in which case traditional
methods are already able to reliably indicate which scenario is favorable in an acceptable
amount of time, or not too small, in which case the scenarios hardly differ in terms of the
indicator studied anyway. We back all the aforementioned claims by studying numerical
results of our extended model based on data of the metropolitan region Rotterdam-The
Hague in The Netherlands stemming from various sources, such as Snelder et al. (2021)
and Van de Werken (2018).

The remainder of this paper is organized as follows. Section 2 explains how CRN can
be incorporated in an activity-based travel demand model. It furthermore introduces
several ways of assessing the impact of CRN, such as by computation of the minimum
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required number of runs in order to keep confidence interval widths limited. In Section 3,
we present the numerical study investigating the potential of CRN, which leads to the
findings mentioned above. Finally, Section 4 presents conclusions and a brief discussion.

2. Method

An activity-based travel demand model makes, based on generated random numbers,
choices at several levels. That is, from the perspective of a traveler, subsequent choices
are made on long-term decisions, number of tours to be undertaken during a day,
number of trips to be undertaken in each tour and finally the start time, duration, desti-
nation and mode of each trip. Since stochasticity is introduced on each of these choice
levels, the final model output may be prone to large random fluctuations, which may
lead to having to rerun the model many times and average the results to obtain reliable
output. To address this issue, the use of CRN may be introduced at any of these levels. To
explain this, we first give a description of the ABM that we use in the remainder of this
paper to demonstrate the impact of CRN. This ABM is an extended model integrated
within ActivitySim (Gali et al. 2008). Then, in Section 2.2, we demonstrate how to
implement CRN at each level. More specifically, Section 2.2.1 describes how CRN is
applied in our extended model based on a multinomial probit choice model, while
Section 2.2.2 explains how CRN is applied in the other components of ActivitySim
mainly using a multinomial logit model. Then, in Section 2.3, we describe several ways
to assess the impact of CRN.

2.1. The activity-based travel demand model

To explain the implementation of CRN into an ABM, we take the extended ABM con-
sidered in our previous work (Zhou et al. 2020) as an example. This ABM makes
choices sequentially through a series different choice components using random utility
maximization theory. The first of these components makes long-term decisions on
work and/or school locations for every individual of the synthesized population. Based
on the output of this component, the next component determines the daily activity
pattern of each individual while taking into account the interaction between the individ-
uals in every single household. The following component then makes decisions for each
individual on the number of tours undertaken, the duration of these tours and the main
travel mode used in each tour. Afterwards, the subsequent component starts to make
more detailed choices, namely on the number of stops to be made in each tour, including
the departure time, duration and destination of each trip resulting as a result from the
stops in the tour. We note that the tours may have a mandatory nature, such as work
and study tours, but there are also non-mandatory tours, which most of the time have
a more leisurely character. For the components mentioned so far, we have used the
implementation of ActivitySim (Gali et al. 2008). The final component used in the
model of Zhou et al. (2020) was however coded by the authors. This component
makes mode choices for every trip undertaken by a traveling individual as part of the
daily activity schedule. While the standard implementation in ActivitySim contains
such a component, our customly coded component also allows for making multimodal
mode choices, i.e. it can be decided that a traveling individual uses multiple modes within
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a single trip. This is an attractive feature when for example considering ‘Mobility as a
Service’ (MaaS). To explain this concept, it is worth noting that we are witnessing the
development of new transport technologies, such as connected vehicles using 5G, level
3, 4 or 5 automatic vehicles, and mobile app-based car-sharing or ride-sharing services.
MaaS combines all these technologies and services, thus offering a tailored mobility
package for individual travelers (see e.g. Jittrapirom et al. 2017 for more background).
Therefore, when a traveler owns a MaaS subscription, this person has access to a
shared car, a shared bike and a shared e-bike. Furthermore, the subscription enables
the use of a shared taxi, minibus or other shared modes which are not used in conven-
tional public transport (such as the bus, tram, metro and train). Finally, we mention that
this component is based on a multinomial probit choice model.

2.2. CRN generation in ABM

In this section, we turn to the implementation of CRN. That is, in Section 2.2.1, we demon-
strate how to implement CRN in a multinomial probit choice model, by taking the cus-
tomly coded multimodal mode choice component as an example. Afterwards, in Section
2.2.2, we show how CRN can be implemented in a multinomial logit choice model,
which is the used model for all the other, original components in the ActivitySim
implementation. It is worth noting that for the numerical study, which we perform in
Section 3, we apply CRN to all components of the model, according to the directions below.

2.2.1. Multinomial probit choice model
As an activity-based travel behavior model, ActivitySim produces random numbers to
make choices on the level of individuals, households, tours and trips. For instance, at
an individual level, random numbers are used to select the individual’s choice on the
location of work or school, while at a trip level, they are used to make choices for trip
duration and destination. To apply CRN, one needs to make sure that across different
scenarios, the same random numbers are used for the same choices, even when the scen-
ario input is different. While ActivitySim incorporates an option to do this on all levels,
implementation of CRN is perhaps best explained based on the extension we performed
in Zhou et al. (2020).

Before explaining how to implement CRN, we therefore first treat the extension in
detail. The extension concerns a customly coded component, which makes multimodal
mode choices at a trip level by combining the access, main and egress modes, while
making sure that the combination of these multimodal modes within a complete tour is
feasible. For example, when dealing with a tour that consists of a home-work trip and
work-home trip, and when the mode used for the outbound trip is the multimodal
mode walk-car-bike (access-main-egress), the component will ensure that not just the
bike as a unimodal mode is used for the inbound trip, since the car needs to be at home
at the end of a tour. The model considers in total 32 feasible multimodal modes (consisting
of access, main and egress modes) based on the following seven modes of transport: walk,
bike, e-bike, car, car-passenger, demand-responsive-transport (DRT) and public transport.
As described in our previous work (Zhou et al. 2020), each of these modes represents a
specific mode category based on speed, weight, vehicle space per person occupied
measured in passenger car units (PCU) and passenger capacity. For instance, ‘bike’
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represents a category of modes which travel at a speed between 5 and 20 km/h, have a
micro-modal nature, come with a vehicle space per person between 0.25 and 0.5 PCU
and have no passenger capacity. As a result, not only the private bike fits this category.
For example, this category also captured the shared bike, even though it may require
some search time unlike the private bike. Whether or not this search time is incurred by
the traveler depends on characteristics of the traveler, for instance concerning ownership
of a MaaS subscription (governing whether shared services are used). Similar notes apply
for the ‘e-bike’ and ‘car’ categories. The ‘car-passenger’ category is self-explanatory, while
the ‘DRT’ category captures taxi services, ride-hailing services, et cetera.

To make choices in this component, a multinomial probit choice model is used. That
is, a utility function is evaluated for each multimodal mode choice for every trip in the
tour. This utility function incorporates two normally distributed error samples: one
error sample is specific to every traveler/mode combination and models the traveler’s
personal mode preference (and is thus considered equal across trips), while the other
error sample is specific to every traveler/mode/trip combination and models other
random effects. Ultimately, the choice for all trip modes in the tour corresponds to the
feasible mode combination with the highest aggregated utility. For the numerical
study in this paper, we adopt the error parameters used in Zhou et al. (2020).

To apply CRN in this additional ABM component, one needs to make sure that across
scenarios the same error samples are used for every traveler/mode combination and every
traveler/mode/trip combination respectively. To make this happen, we use the notion of
initial seeds. Every time the same initial seed is set in a random number generator (RNG),
it will generate the same sequence of random numbers. Therefore, incorporating CRN
for traveler/mode combinations errors can be done by associating with each traveler a
seed. Then, every time a different scenario is considered, the RNG will still generate
the same traveler/mode errors, independent of the actual scenario. For the traveler/
mode/trip errors, this can be done at a trip level: we associate with each trip a seed, so
that each time the trip is considered, the same traveler/model/trip errors are computed.
This way, the errors between scenarios are maximally synchronized. Furthermore, this
strategy has the additional computational advantage that, when a trip is not undertaken
in a certain scenario, the required traveler/mode/trip errors will not be generated either,
saving computation time.

2.2.2. Multinomial logit choice model
The multimodal mode choice component treated above incorporates a multinomial
probit choice model. In travel demand modeling, however, multinomial logit choice
models are also omnipresent. Unlike probit choice models, which assume error terms
to be normally distributed, logit choice models assume error terms to be Gumbel distrib-
uted. By doing this, these models are able to directly assign a probability to each alterna-
tive without having to sample the error terms. A final choice is then made using a single
uniformly distributed random number. We explain how this works through an example.
Suppose there are three alternatives: A, B and C. Furthermore, let us suppose the multi-
nomial logit choice model assigns probabilities 0.5, 0.3 and 0.2 to these alternatives,
respectively. Then, when the single uniform random number happens to be smaller
than 0.5, the choice for alternative A is made, alternative B is chosen when the
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random number is greater or equal to 0.5 and smaller than 0.8, and otherwise, alternative
C will be the choice made.

In travel demand modeling, many choices for a traveling individual may be made this
way within a single simulation experiment. To apply CRN in a multinomial logit choice
model, one cannot reuse error samples between scenarios as before, since there are no
error terms to be sampled anymore. Instead, the variability of results now stems from
the uniformly distributed random numbers. Therefore, in multinomial logit choice
models, when contemplating the same choice between scenarios, CRN will now be
reusing the same uniform random number. For the sole choice mentioned in the previous
paragraph, suppose that the uniform number sample would be 0.663, so that alternative B
is chosen. Furthermore, suppose that as a result of a change in scenario, the probability of
choosing alternative A would increase by 0.1, while the probability of choosing any of the
other two alternatives lowers by 0.05 each. In this new scenario, the ‘probability bound-
aries’ move from 0.5 and 0.8 to 0.6 and 0.85. CRN would however again use the number
0.663, so that again scenario B would be chosen. By using this principle for every choice
generated by a multinomial logit choice model between scenarios, different choices
would only be made as a result of the probability boundaries shifting, making sure that
different output is caused by the a difference in the nature of the scenario.

2.3. Assessing the impact of CRN

We now detail how we will assess the impact of CRN in this section. In particular, we will
regard two scenarios,whichwewill describe inmoredetail in Section3.2, in themetropolitan
region Rotterdam-The Hague (MRDH) in The Netherlands. For this pair of scenarios, we
record the differences of several indicators in each of the following two experiments, adopt-
ing the model parameters from Zhou et al. (2020) (unless specified otherwise):

(1) Base experiment: we run the model 30 times for both scenarios, and we do not apply
CRN.

(2) Inclusion of CRN: we run the model 30 times for both scenarios while using the same
initial seeds, and thus applying CRN.

Note that in our model, each run covers one day of activities. In both experiments, we
opted to observe 30 simulation runs, as this number enables graphical presentation of
all outcomes, while at the same time it allows us to make conclusions regarding the effec-
tiveness of CRN. For any considered indicator, each of these experiments thus leads to 30
differences X1, . . . , X30. These differences are obtained by subtracting the simulated indi-
cator values found under the second scenario from those found under the first scenario.
To assess the impact of CRN, we use several statistical measures. We now proceed to
describe them, after which we remark on the assumptions required to use these measures
and on why these assumptions are satisfied.

Sample variance S2X : We consider the sample variance of the differences

S2X = 1
29

∑30
i=1

(Xi − �X)2,
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where �X represents the sample mean of the 30 differences. The sample variance, which
equals the square of the sample standard deviation SX of the differences, is a proxy for
the reliability of the results. From a mathematical perspective, it is to be expected that
CRN leads to a smaller sample variance, since the indicators under both scenarios are
now positively correlated. At the same time, the lower the variance of the differences
are compared to the sample mean, the more reliable and representative the results are.
To make the notion of reliability more precise, we build upon the sample variance to
obtain the next two performance measures, in line with e.g. Wunderlich, Vasudevan,
and Wang (2019).

Width of the confidence interval: Using basic statistics, assuming for the moment that
modeling assumptions are correct, the real expected difference between the indicators
corresponding to the two scenarios lies with 95% probability between the numbers
�X − t29,0.975 SX/

���
30

√
and �X + t29,0.975 SX/

���
30

√
, with t29,0.975 ≈ 2.045 representing the

97.5% quantile of the student t-distribution with 29 degrees of freedom. The resulting
interval

�X − t29,0.975
SX���
30

√ , �X + t29,0.975
SX���
30

√
[ ]

(1)

is therefore called the 95% confidence interval (CI). One ideally would like the CI to be as
narrow as possible, which is why the width of the 95%-CI, being 2t29,0.975 SX/

���
30

√
, is a

good proxy for the reliability of the results after 30 simulation runs. We expect CRN
to result in higher reliability, and thus a smaller confidence interval.

Required number of simulation runs: Another approach to assess reliability would be
to pose the question of how many models runs would be minimally required so that the
width of the 95%-CI is smaller than a fraction β of the actual expected difference μ. In
case the actual variance of the difference between the indicators is given by s2, the
width of the 95%-CI based on N runs is given by 2q0.975 s/

���
N

√
, where q0.975 ≈ 1.96 is

the 97.5% quantile of the normal distribution. We are thus looking for the smallest
number N for which 2q0.975 s/

���
N

√ ≤ bm, which is given by

Nmin = 4q20.975s
2

b2m2

⌈ ⌉
.

Since both μ and s2 are unknown parameters, we use �X and S2X to estimate these, yielding
the formula

Nmin = 4q20.975S
2
X

b2�X2

⌈ ⌉
. (2)

It is easily argued that the lower Nmin, the lower the computation time that is required to
obtain reliable output. In line with earlier statements, we generally anticipate the second
experiment with CRN to have a much lowerNmin than the first experiment without CRN.
In the next section, we choose b = 0.2 for reporting the number of Nmin. Thus, the
number reported is the minimum number of simulation runs required so that the
width of the confidence interval does not exceed 20% of the average of the indicator
values found. It is worth noting, however, that, although the value of β will affect the
values of Nmin themselves, the percentual reduction of Nmin as a result of implementing
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CRN is insensitive to the actual value of β considered. This is due to the fact that the
numbers for both the base experiment and the experiment including CRN are calculated
using the same value of β (cf. the denominator of the fraction in (2)).

It should be noted that the three measures discussed above are related. Therefore, in
the following analysis, we may not compute every of these measures for every indicator
that we consider. For example, when CRN decreases the required number of runs signifi-
cantly, one can already conclude that the width of the confidence interval for a fixed
number of runs will also be considerably smaller. Next to these measures, we will at
times also perform a standard double-sided t-test on the differences. More particularly,
for several indicators in the second experiment, we may test the null hypothesis that the
expectation of the differences between scenarios equals zero. Should the t-test not reject
this hypothesis with a confidence level of 95%, we induce that there is not an observed
significant difference between the indicators under both scenarios. We will see that
even though the implementation of CRN in those cases reduces the width of the 95%-
CI and Nmin significantly, the computation times remain infeasibly long.

Remark: The use of the measures introduced above requires several assumptions to be
justified. For example, to have the sample variance form an unbiased estimator of the
actual variance of the distribution of the differences, it should hold that the differences
X1, . . . , X30 are mutually statistically independent. By nature of our experiments, this
is evidently the case. Furthermore, each of our experiments is based on 30 differences,
so that the law of large numbers implies that the sample mean �X and sample variance
S2X are highly accurate estimations of the actual mean μ and variance s2 of the distri-
bution of X1, . . . , X30. Similarly, to use the confidence interval and Nmin as presented
in (1) and (2), respectively, it is required that the sample mean �X is (near-)normally dis-
tributed. Since this sample mean is based on 30 different observations, the central limit
theorem indeed implies the fact that the distribution of the sample mean �X is nearly nor-
mally distributed with mean μ and variance s2. The validity behind the Equations (1) and
(2) are immediate consequences of this fact. In the absence of knowledge on the exact
values of μ and s2, the sample mean �X and sample variance S2x are used in these
equations, because of their known accuracy. For the confidence interval (1), we have
opted to use the quantile t29,0.975 rather than the corresponding quantile of the normal
distribution to make the confidence interval slightly more conservative to offset for the
fact that the sample mean �X is not exactly normally distributed. An exact normal distri-
bution would only be obtained by the sampling of an infinite number of differences,
which is obviously infeasible.

3. Experimental results

In this section, we describe the results obtained from doing the two experiments
described in the previous section. As mentioned before, to perform these experiments,
we apply the model of Zhou et al. (2020) to data for the metropolitan region Rotter-
dam-The Hague (MRDH) in The Netherlands taken from various sources, which are
also described in Zhou et al. (2020). We describe this data in more detail in Section
3.1, and we describe the scenarios considered in Section 3.2. Then, we perform the
first two experiments presented in Section 2.3 using several indicators, namely for the
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average daily number of trips per day and per part of the day (Section 3.3), average travel
distance per traveler per day (Section 3.4), modal split and average travel distance per
mode (Section 3.5). All numbers reported in this section can also be found in Tables 1
and 2. Note that the output presented in these sections is the result of a series of sub-
sequent choice components, involving both multinomial probit models and multinomial
logit choice models. Thus, CRN is applied in each of these components as explained in
Section 2.2.

3.1. Input data

The input data, on which the numerical experiments are based, include information on
the population and land use as well as level-of-service data on travel times, distances and
travel costs for each conceivable origin-destination trip pair in the MRDH area. This area
covers the cities of Delft, Pijnacker, Nootdorp and Zoetermeer, being located between the
two major cities of Rotterdam and The Hague. These data origin from various sources,
which can be found in Zhou et al. (2020).

The population data that we use for this area have been synthesized in Snelder et al.
(2021). The dataset consists of 278,698 individuals, making up 131,466 households. For
our simulation, we randomly selected 10% of these households to base our simulation on,
for the purposes of reducing the computational burden. Since these households are ran-
domly selected, they form an unbiased representation of the population. As a result,
hardly any impact is expected on the absolute values of the performance indicators.
Within the selected households, 18% of the population is younger than 15 years old,
14% is between 15 (inclusive) and 25 years old, 26% is between 25 (inclusive) and 45,
27% is between 45 (inclusive) and 65 and finally, 15% of the population is older than
or equal to 65 years old. For each individual, the synthesized data contains information
on the home location, household composition, gender, whether the individual possesses
a driving license and/or a student subscription for free public transport, level of edu-
cation, income, migration background, types of owned bikes and/or vehicles, as well
as urbanization level (which specifies the address density in the direct area of the individ-
ual’s residence).

Concerning land use, the input data contains per traffic analysis zone information on
the number of places of employment (offices, shops, etc.), number of education places,
area (in m2) and the average parking costs per hour.

3.2. Scenario descriptions

For the numerical study, we focus on the impact of Mobility as a Service on travel
demand. To assess this impact, in the experiments we consider the following two scen-
arios, differing in terms of the adoption level of MaaS:

(1) In the first scenario, to be referred to as ‘partial MaaS’, 10% of the people younger
than 15 or older than 65 have a MaaS subscription, while 20% of the remaining
population also has a MaaS subscription. As a result, 16.5% of the overall population
has a MaaS subscription.

(2) In the second scenario, ‘full MaaS’, 100% of the population has a MaaS subscription.

10 H. ZHOU ET AL.



The main goal is to quantitatively assess the difference between both scenarios in
terms of several indicators.

Table 1. Sample means and sample variances of the indicator differences between both scenarios.

Name

No-CRN Sample
mean of the
difference

CRN Sample mean
of the difference

No-CRN Sample
variance of the

difference
CRN Sample variance
of the difference

Daily number of trips 0.007 0.012 2.7× 10−4 8.8× 10−6

Daily number of trips
,15 years

0.047 0.0382 1.3× 10−2 1.6× 10−5

Daily number of trips
15–25 years

0.009 0.0152 2.6× 10−3 2.8× 10−5

Daily number of trips
25–45 years

−0.01 0.0087 9.6× 10−4 3.7× 10−5

Daily number of trips
45–65 years

−0.0008 0.00086 1.2× 10−3 2.2× 10−5

Daily number of trips
.= 65 years

0.0035 0.0055 1.4× 10−3 4.9× 10−5

Total trips in the
morning peak

20 10 25,856 442

Total trips in the
evening peak

15 29 31,014 1137

Total trips in the rest
of day

161 297 153,169 5304

Travel distance per
person

1.70 1.74 0.067 0.006

Travel distance ,15
years

3.73 3.54 0.035 0.044

Travel distance 15–25
years

1.42 1.21 0.488 0.0156

Travel distance 25–45
years

1.25 1.57 0.333 0.0201

Travel distance 45–65
years

1.17 1.23 0.404 0.0299

Travel distance
.= 65 years

1.35 1.35 0.287 0.0286

Travel distance by
bike

0.29 0.29 0.001 0.0004

Travel distance by car −0.38 −0.34 0.027 0.019
Travel distance by car-
passenger

−1.66 −1.67 0.046 0.015

Travel distance by
DRT

−4.1 −4.0 0.096 0.046

Travel distance by
ebike

−0.67 −0.67 0.002 0.002

Travel distance by
walk

0.14 0.14 0.0002 0.0001

Travel distance by
public transport

−2.1 −2.1 0.269 0.063

Travel distance by
multimodal modes

0.59 0.59 0.116 0.09

Trips by bike −553 −493 96,503 39,332
Trips by car −6766 −6706 38,698 16,885
Trips by car-passenger −1815 −1820 11,781 6405
Trips by DRT −2193 −2206 10,582 6221
Trips by ebike 2901 2934 12,208 8155
Trips by walk 1852 1854 31,704 12,617
Trips by public
transport

466 475 11,319 3190

Trips by multimodal
modes

6305 6298 15,261 6786
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3.3. Average daily number of trips

The first indicator that we study is the average number of trips undertaken by a traveler
during a day, which illustrates the impact of CRN particularly well. We first consider the
number of daily trips for all age classes mentioned in Section 3.1 together. We then also
regard results at a more detailed level, which distinguishes between the different age
classes of the population.

3.3.1. Daily number of trips for all age classes combined
The study of the average number of trips undertaken by a traveler during a day turns out
to illustrate the beneficial effects of CRN remarkably well. Figure 1(a) presents the
average numbers of daily trips undertaken by a traveler in 30 different simulation runs
for each of the two scenarios independently, using the base experiment where no CRN
is applied. Although the mean value of the blue plot (i.e.partial MaaS) appears to be
smaller than that of the orange plot (full MaaS), basing firm conclusions on this figure
would be hard. Indeed, the sample variance of the difference of the left-hand figure,
having value 0.00027, is still significant compared to the average of these differences,
bearing the value of 0.007. In Figure 1(b), we plot the same quantities based on the
same number of runs, but this time we do apply CRN, and thus introduce positive cor-
relation. We consider the same simulation output as before for partial MaaS (and hence

Table 2. Confidence interval widths of the indicator differences between both scenarios, as well as the
required number of runs Nmin to obtain reliable estimates.
Name No-CRN Width of CI CRN Width of CI No-CRN Nmin CRN Nmin

Daily number of trips 0.012 0.0022 2042 23
Daily number of trips ,15 years 0.027 0.003 221 4
Daily number of trips 15–25 years 0.038 0.004 12384 47
Daily number of trips 25–45 years 0.023 0.0045 3383 188
Daily number of trips 45–65 years 0.026 0.0035 698,551 11,487
Daily number of trips .= 65 years 0.028 0.0052 42,613 629
Total trips in the morning peak 120 15.7 24,999 1780
Total trips in the evening peak 132 25.2 51,343 510
Total trips in the rest of day 292 54.4 2278 23
Travel distance per person 0.193 0.057 9 1
Travel distance ,15 years 0.441 0.157 10 1
Travel distance 15–25 years 0.522 0.093 93 4
Travel distance 25–45 years 0.431 0.106 82 3
Travel distance 45–65 years 0.474 0.129 114 8
Travel distance .= 65 years 0.400 0.126 60 6
Travel distance by bike 0.02 0.02 5 2
Travel distance by car 0.12 0.1 74 65
Travel distance by car-passenger 0.16 0.09 7 2
Travel distance by DRT 0.23 0.16 3 2
Travel distance by ebike 0.04 0.03 3 2
Travel distance by walk 0.01 0.01 4 3
Travel distance by public transport 0.39 0.19 24 6
Travel distance by multimodal modes 0.25 0.22 127 101
Trips by bike 232 148 121 62
Trips by car 147 97 1 1
Trips by car-passenger 81 60 2 1
Trips by DRT 77 59 1 1
Trips by ebike 83 67 1 1
Trips by walk 133 84 4 2
Trips by public transport 79 42 20 6
Trips by multimodal modes 92 62 1 1
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obtain the same blue plot), but unlike before, we use the exact same error samples for the
simulation of the average number of daily trips for full MaaS, leading to a different
orange plot. The effect is clear: the level of variability observed in both plots is similar
to that of the base experiment, but the plots move almost parallel and do not intersect
anymore as a result of the synchronization. Specifically, the figure shows that the differ-
ences between the simulated number of trips are roughly constant. This is also illustrated
by the fact that, although the average difference in the right-hand picture is 0.012 (which
is similar to the average in the left-hand picture as expected), the sample variance of the
differences in the right-hand picture now is only around the order of 8.8× 10−6, confi-
rming the fact that CRN offers a lot more reliability.

Figure 1 confirms that by applying CRN the variability of simulated indicator value
differences reduces dramatically, as these differences can now solely arise as a result of
different scenarios. Therefore, one can nowmuch more comfortably draw the conclusion
that MaaS will probably lead to more trips per day per traveler. Indeed, if we deploy a t-
test as explained in Section 2.3 on the 30 differences of the values plotted on Figure 1(b),
it rejects the null hypothesis that the expected number of trips per traveler per day are
equal under both scenarios. This supports such a conclusion, which can be explained
by the fact that a MaaS subscription makes traveling more accessible and flexible, and
therefore more attractive. If we were to deploy a t-test on the 30 differences of Figure
1(a), however, the t-test would not reject, which is in line with the fact that Figure 1
(b) sketches a more reliable picture.

To quantify the impact of CRN in practical terms, computation of Nmin as provided in
Section 2.3 leads to 2042 runs for the base experiment, while the inclusion of CRN brings
this number down to 23. This means that, to obtain a confidence interval for the indicator
difference that has a width less than 20% of the actual expected difference, the minimally
required number of runs (and thus the minimally required computation time) is reduced
by almost 99% when using CRN. Again, this shows the beneficial impact of CRN on
numerical experiments.

3.3.2. Daily number of trips per age class
We now regard the daily number of traveler trips for all different age classes separately.
The age class covering travelers between 15 and 25 years old sketches a similar picture as

Figure 1. Average daily numbers of trips per traveler in 30 simulation runs. (a) Base experiment and
(b) Inclusion of CRN.
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that of the aggregated level combining all age classes. That is, in the absence of CRN, it is
hard to identify the influence of the varying natures of the scenarios on the difference of
the average number of trips undertaken by a traveler based on 30 simulation runs, as
shown in Figure 2(c).

In contrast, Figure 2(d), which includes CRN, again clearly shows that the possession
of a MaaS subscription increases the traveling activity of young travelers. This is probably
because MaaS provides convenient travel modes to do more activities. We obtain similar
findings when regarding the age classes representing travelers younger than 15 years old,
travelers between 25 and 45 years old, and travelers older than 65 years old, see Figure 2
(a,b,e,f,i,j). For each of these age classes, the double-sided t-test applied on the 30
observed differences rejects the null hypothesis that the expected difference in the
number of trips undertaken by a traveler equals zero, and Nmin in all of these four age
classes is reduced by over 94% due to the use of CRN.

The age class concerning the population between 45 and 65 years old, however, shows
an additional effect. For this case, Figure 2(g) again shows much more variability in the
differences than Figure 2(h), in which the two plots are rather parallel to one another.
However, even in the latter figure, the plots intersect a lot, so that no reliable conclusions
can be drawn on which of the two scenarios leads to more trips in this age class. Indeed,
the sample variance of the observed differences equals 0.000022, while the average of
these differences only equals 0.00086 (see Table 1). As a result, the variability of the differ-
ences based on these 30 runs is still too large to produce a reliable conclusion. These
findings are confirmed by performing a t-test, which does not at all reject the null
hypothesis that there is no difference in indicator value between the two scenarios.

This is not to say that CRN in this case bears no effect. Indeed, the width of the 95%-CI
based on the 30 runs reduces from 0.026 to 0.0035. While the latter number is still very
large (relative to the quantity we wish to estimate, that is), the reduction is significant.
Similarly, we find that by implementation of CRN, Nmin is reduced from 698,551 to
11,487, yielding a decrease of required runs of about 98%. Yet, performing 11,487 simu-
lation runs is prohibitive in terms of computation time. The conclusion to be drawn here
is that CRN still is very effective, but that, at the same time, the actual difference between
scenarios in this case is so small, that the effect of using CRN is too small to allow for a
feasible computation time. This being said, one may wonder how important this unfea-
sible simulation would be, as the conclusion could be drawn that the difference between
the two scenarios for this age class is negligible anyway. Intuitively, this is not surprising
when considering the fact that most activities undertaken by these individuals are man-
datory, since relatively a large number of trips undertaken by this age class is work-
related. In other words, having a MaaS subscription may alter the travel mode used,
but in the absence of such a subscription, no trips will be dropped in this age class.

Other related indicators are the daily number of trips during the morning peak,
evening peak and the rest of the day. These are reported on in Tables 1 and 2 and also
show a significant effect of CRN on required runtime.

3.4. Average travel distance per traveler

The next indicator that we consider is the average travel distance covered by a traveler
within a day in kilometers. When performing the base experiment and the experiment
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Figure 2. Average daily numbers of trips per traveler with an age , 15 years ((a) and (b)), ≥ 15 and
, 25 years ((c) and (d)),≥ 25 and, 45 years ((e) and (f)),≥ 45 and, 65 years ((g) and (h)), and≥ 65
years ((i) and (j)) in 30 simulation runs. (a) Base experiment. (b) Inclusion of CRN. (c) Base experiment.
(d) Inclusion of CRN. (e) Base experiment. (f) Inclusion of CRN. (g) Base experiment. (h) Inclusion of
CRN. (i) Base experiment and (j) Inclusion of CRN.
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including CRN for all travelers, we obtain Figure 3. Again, the effect of CRN is clear as the
differences in the right-hand picture are more constant than in the left-hand picture, and
thus more firm conclusions can be drawn. However, one may argue that also based on the
left-hand picture, although the blue and orange plot are less parallel than the right-hand
picture, one can comfortably conclude that the more MaaS is available to travelers, the
more they will travel in terms of distance covered.

The fact that the left-hand picture already is rather informative is due to the fact that
the difference between the two scenarios is relatively large. In fact, it is so large, that the
variability of the differences in the left-hand picture (the sample variance of the differ-
ences is 0.067) does not outweigh the actual difference (the sample mean of the differ-
ences is 1.7. Still, CRN has a substantial effect on computational complexity in this
case. The widths of the 95%-CIs of the differences observed for the 30 runs of Figure
3(a,b) are 0.193 and 0.057, respectively, the latter thus offering a much higher level of
reliability. Similarly, the value Nmin for the base experiment would be 9, while this
number equals 1 for the experiment which incorporates CRN. Therefore, although
one may argue that CRN is not needed for this indicator, still a substantial amount of
computation time can be saved when doing batch experiments. Tables 1 and 2 also
report on the travel distance per traveler in the separate age classes considered in
Section 3.3.2. These separate age classes show similar effects as the aggregate observations
mentioned here.

3.5. Modal split

Finally, we inspect the so-called ‘modal split’ for travelers used. That is, we regard the
(differences in) the percentage of trips that are undertaken by each mode (between scen-
arios). As mentioned in Section 2.2, next to the seven unimodal modes (walk, bike, e-
bike, car, car-passenger, demand-responsive transport and public transport), we also
consider 25 multimodal mode alternatives made up of a combination of single modes.
In Figure 4 differences in mode use between the partial MaaS scenario and the full
MaaS scenario are plotted. Each bar corresponds to one of the 30 simulation runs and
represents the difference observed in the percentage of trips undertaken with the corre-
sponding mode (‘full MaaS minus partial MaaS’). For the purposes of this section, we

Figure 3. Average daily travel distance per traveler in kilometers in 30 simulation runs. (a) Base exper-
iment and (b) Inclusion of CRN.
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have combined all 25 multimodal modes in a single category ‘multimodal’. Figure 4(a)
shows the results observed in the base experiment, while Figure 4(b) shows them for
the experiment including CRN.

As expected, the figures show that when moving from a partial MaaS to a full MaaS
scenario, the e-bike and multimodal modes gain in popularity at the cost of the car
modes and demand-responsive transport. In particular, in Figure 4(b), the share of the
car mode dropped by 7.8% on average, while the e-bike was used in an additional
3.4% of the trips. Moreover, in an additional 7.3% of the trips on average, multimodal
modes were chosen. Also the bike mode became less popular, which can be explained
as follows. When travelers for example choose to use a personal bike for an outbound
trip of a tour, typically it also needs to be chosen for an inbound trip. However, with
access to MaaS, many more mode options are considered for use in each of the trips.
As a result, if one of those modes is much more favorable than the bike for an
inbound trip, then this also has automatic ramifications for the mode choice of the out-
bound trip, making the choice for the bike less obvious. The modes of walking and public
transport do not have this issue, making them slightly more popular at the expense of the
bike. The astute reader, however, will note that the effects impacting the bike mode
should also impact the e-bike mode. However, for the e-bike mode, these effects are
offset by the fact that a MaaS subscription makes the e-bike more popular.

What is intriguing is that Figure 4(a,b) hardly present mutually differing pictures, like
in the previous sections. Indeed, in both the base experiment and the experiment includ-
ing CRN, Nmin is very small, almost never exceeding ten simulation runs for any mode.
The only exception to this is the bike mode in the base experiment, for which Nmin = 121
which is indeed confirmed by the fact that the ‘bike bars’ in Figure 4(a) show a lot of
variability.

The reason for this is that in this case variability of results is not so much an issue as it
was in Sections 3.3 and 3.4. As mentioned in Section 2.2, mode choice is dictated by a
multinomial probit choice model, and in many of these modes, the error terms only
have a small impact on the ultimate mode choice. That is, the variability caused by the
error terms in general is a lot smaller than the actual difference in ’observed utility’
between the modes. As a result, the variability of the error terms do not have a lot of

Figure 4. The difference in modal split between two scenarios: a positive value means that mode use
is higher for the full Maas scenario than for the partial MaaS scenario. Each bar corresponds to one of
the 30 simulation runs and represents the difference observed in the percentage of trips using the
corresponding mode. (a) Base experiment and (b) Inclusion of CRN.
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impact on e.g. whether or not the car is chosen. Since a similar effect also plays for the full
MaaS scenario, the variability of the random number generation cannot trigger large
fluctuations in terms of which modes are chosen. As a result, one cannot hope for a
large impact of CRN in terms of Nmin either. An exception to this is the bike mode,
where the variability of the errors actually does impact the utilities of the bike modes
enough to cause changes in the ultimate mode choice. Since variability is thus more of
an issue here, CRN indeed has a larger impact.

In Tables 1 and 2, we also report on the difference in average travel distance per travel
mode between the two scenarios. These show similar impacts of CRN as the modal split.

In summary, these findings show that when variability of pseudo-random number
generation is not a problem, there is not much to solve for CRN either. As a result,
the use of CRN overall does not have as much a dramatic impact as it had in the previous
sections. That said, this does not mean that CRN does not have any merit at all. For
example, the width of the computed 95%-CI in the percentage difference of trips that
are taken with the car is reduced by 33.9% after implementation of CRN, which adds
to the reliability of simulation results. As a final remark considering the modal split, it
is reasonable that one would argue that, for the purposes of correct modeling, the var-
iance parameters of the normal distributions underlying the error terms should have
been estimated differently (i.e. taken to be a bit larger), so that error terms will have a
larger influence on the mode choice. In that case, the variability of the errors will increase,
and as a result, we expect the impact of CRN to be larger as well.

4. Conclusions and discussion

In this paper, we have considered the use of CRN in the context of activity-based travel
demand modeling. More particularly, in this paper we showed how this technique can be
applied to effectively simulate the impact of scenario changes to any indicator. By making
sure that between scenarios the exact same pseudo-random numbers are used for the
same purposes, any difference in output can in all likelihood be attributed to the
change in scenarios. As a result, the variability of the simulated differences is much
smaller, and therefore less simulation runs and less computation time is required to
perform a simulation study with a meaningful output.

After we explained how CRN can be implemented in an activity-based travel demand
model, we set out to demonstrate the potential of CRN in practice by studying the impact
of MaaS on travel demand in the Metropolitan region Rotterdam-The Hague. In particu-
lar, we studied the question of whether a scenario in which the complete population has a
MaaS subscription yields different indicators than the scenario in which only a small part
of the population has such a subscription. We found that the implementation of CRN
yields a computationally very efficient tool to answer this question in the affirmative:
when everybody has a MaaS subscription, travelers will travel more, and use different
(possibly multimodal) modes. That is, by implementing CRN in all components, such
conclusions can be reliably drawn using up to 99% less simulation runs than the conven-
tional setting without CRN. In a similar vein, when we compute the 95%-CI of a certain
indicator difference based on a fixed number of runs, a simulation setting with CRN typi-
cally comes with a much smaller interval than a setting without. This shows that CRN can
shorten the computation times required drastically, especially when considering the
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complete sequence of choice models/components in an ABM. It should be noted that it is
not guaranteed that every scenario and indicator may lead to similar (or higher) amounts
of speedup as (than) reported in this paper. Even in those cases, however, it is beneficial
to implement CRN, because it will always lead to some amount of speedup, while the
implementation efforts required are low.

By comparing various indicators, we also found that CRN is especially worthy of
implementation when the differences between scenarios are moderate. In case they are
very large, CRN still reduces computational complexity, but conventional simulation
methods already can provide conclusions in reasonable time. In contrast, when differ-
ences are very small so that they are hardly observable, even though CRN reduces com-
putational complexity also in this case, the setting with CRN still requires too many runs
in order to decide which of the scenarios scores better. In such a setting, however, one can
say that the difference in the nature of the scenarios hardly has an impact on the
indicators.

Finally, we showed that the impact of CRN is related to the degree at which the varia-
bility of generated random numbers can cause random fluctuations in the model output.
We saw that when this cannot occur to a large extent, CRN cannot be expected to yield up
to 99% less required simulation runs as reported above.

In general, while in theory reliable results can still be had without the implementation
of CRN by making sure that enough runs are performed, in practice the number of runs
required may be practically infeasible. As can be deduced from Table 2, CRN may bring
down the number of required runs to a manageable level, therefore enabling compu-
tational studies which might otherwise be impossible to perform. Since the implementa-
tional effort required for CRN is modest, and the required number of runs is guaranteed
to come down, we therefore advocate the use of CRN when interested in indicator
changes as a result from adopting different scenarios.

We now discuss opportunities for further research. Some of these opportunities
concern the scenarios considered in this study. That is, we have considered the impact
of CRN based on two scenarios that mainly differed in the penetration rate of MaaS sub-
scription. The actual penetration rates considered, as well as other parameters, are chosen
to reflect current and future reality as much as possible and are based on expert judge-
ment. However, the scenarios might possibly be tuned to match reality even better, which
is a topic for further study. Moreover, it would be possible to choose other scenarios to
study the impact of CRN. That is, while CRN is guaranteed to lead to some level of
speedup, the question of which characteristics of a scenario enable the obtained
speedup levels of this paper and beyond, is another fruitful direction to pursue. In our
subsequent work (Zhou et al. 2022), which is entirely devoted to a case study in the
MRDH region, CRN is also used in other scenarios for other indicators having
different measures such as different parking price, in-vehicle time of a specified travel
mode.

Furthermore, it would be worth studying the potential of other variance reduction
techniques developed in the stochastic simulation literature in the context of travel mod-
eling. For example, we believe that the results in this paper may be further improved by
implementing advanced sampling techniques such as hypercube sampling.

Next, we mention that, in this study, we have mostly focused on reducing simulation
error by the introduction of CRN. However, there also exist other sources of error. That
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is, the results obtained in this study for the MRDH region may be biased as a result of for
instance inaccuracies in the estimation of certain parameters and the used structure for
the utility functions, even though they have been selected according to expert judgement.
While these inaccuracies in principle do not impact the conclusion of this paper regard-
ing the impact of CRN, they yield many opportunities for further research. In this regard,
it is also important to refer to our follow-up work (Zhou et al. 2022), which is devoted to
a case study in the MRDH region.

The final venue of further research that we highlight can be found in the direction of
travel assignment models. Since this study only focused on the travel demand, any
change of level-of-service output such as travel time of trips is not considered. This
would require a connection of the current travel demand model with a travel assignment
model. When this connection would be made, the impact of CRN on the whole model
chain could be considered. Given the results in this paper, we would expect that CRN
also has great potential when considering the complete model chain.
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