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1. Introduction
In lowland rivers, bed morphological processes at spatial scales much larger than the water depth are generally 
slower than hydrodynamic processes. The morphological changes on river reaches of tens of kilometers or more 
typically develop over a period of years to centuries, which is here referred to as the engineering timescale. 
The engineering timescale is relevant from a perspective of planning river interventions and operational river 
management, which is often focused on navigability, flood prevention and nature conservation. In the long term, 
the riverbed develops toward a (quasi) equilibrium situation. De Vries (1975) introduced a morphological times-
cale for the development of longitudinal riverbed profiles. He and others (e.g., Church & Ferguson, 2015; Dade 
& Friend, 1998) showed that larger lowland rivers may take 10 3–10 5 years to adapt to permanent changes, for 

Abstract Sustainable river management can be supported by models predicting long-term morphological 
developments. Even for one-dimensional morphological models, run times can be up to several days for 
simulations over multiple decades. Alternatively, analytical tools yield metrics that allow estimation of 
migration celerity and damping of bed waves, which have potential for being used as rapid assessment tools 
to explore future morphological developments. We evaluate the use of analytical relations based on linear 
stability analyses of the St. Venant-Exner equations, which apply to bed waves with spatial scales much 
larger than the water depth. With a one-dimensional numerical morphological model, we assess the validity 
range of the analytical approach. The comparison shows that the propagation of small bed perturbations is 
well-described by the analytical approach. For Froude numbers over 0.3, diffusion becomes important and bed 
perturbation celerities reduce in time. A spatial-mode linear stability analysis predicts an upper limit for the 
bed perturbation celerity. For longer and higher bed perturbations, the dimensions relative to the water depth 
and the backwater  curve length determine whether the analytical approach yields realistic results. For higher 
bed wave amplitudes, non-linearity becomes important. For Froude numbers ≤0.3, the celerity of bed waves is 
increasingly underestimated by the analytical approach. The degree of underestimation is proportional to the 
ratio of bed wave amplitude to water depth and the Froude number. For Froude numbers exceeding 0.3, the net 
impact on the celerity depends on the balance between the decrease due to damping and the increase due to 
non-linear interaction.

Plain Language Summary The riverbed responds to climate change and human interventions 
such as engineering works and dredging. A pit resulting from dredging, for example, typically moves in a 
downstream direction through the river, like a wave in the bed elevation. These waves move much slower than 
water waves, which is why structures like groynes and embankments in the Rhine and Meuse Rivers still cause 
long-term riverbed erosion. For proper river management, understanding the development of the riverbed over 
shorter and longer timescales is paramount. Numerical models are often used to simulate these changes, but 
simulations for multiple decades can last several days. Therefore, more efficient alternatives are of interest. We 
developed a theoretical approach to assess the propagation and damping of bed waves from a simple equation. 
The results have been compared to numerical model runs. The results are valid for low bed waves and river 
reaches with gentle bed slopes. When bed slopes increase, the approach overestimates the propagation of 
low bed waves. For the Dutch Meuse River, the approach is promising for the mildly sloped Sand Meuse, but 
overestimates bed wave celerities on longer timescales for the steeper Border Meuse upstream.
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Key Points:
•  Rapid assessment metrics from 

linear stability analysis predict 
the propagation of low bed waves 
provided that Fr ≤ 0.3

•  For Fr > 0.3 bed waves are more 
diffusive and migrate slower in time 
than predicted from linear stability 
analysis

•  Linear stability analysis results can 
validate numerical models, which in 
turn may verify the validity range of 
the former
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example, at the downstream boundary. Here, we focus on the prediction of development of the riverbed in reaches 
of tens of kilometers of length or more in the coming century, as a consequence of changes in sediment supply 
or river geometry and the hydrological regime. These changes can be the result of, for instance, sediment nour-
ishments, dredging activities or river widening measures. We evaluate if and how analytical relations, resulting 
from linear stability analysis of the governing equations, can be used for morphodynamic prediction, based on a 
comparison with high-complexity numerical model results.

Several techniques are available for assessment of the long-term (quasi-) equilibrium riverbed profiles. Arkesteijn 
et al. (2019) developed a method to predict the quasi-equilibrium channel bed profile in the backwater region 
of a river, as well as its dynamics. The method is efficient, as the transient phase does not have to be computed. 
At engineering timescales, the development of sediment transport and bed level change in time is particularly 
relevant, which cannot be readily inferred from a (quasi) equilibrium state. The run time of numerical morpho-
logical models simulating the initial response at engineering timescales is still long. Even for one-dimensional 
models, where parameters and variables are averaged over the cross-section, a single simulation for a river reach 
of a hundred kilometers and several decades may take hours, or even days. To address uncertainty of model input 
and to evaluate the consequences of climate change projections, multiple simulations are required, necessitating 
a stochastic or probabilistic approach (e.g., Van Vuren et al., 2005). Many techniques are being developed to 
speed up morphological simulations. Besides improvement of numerical solvers, efforts to improve model effi-
ciency are focused on the development of a morphological acceleration factor (e.g., Carraro et al., 2018; Lesser 
et al., 2004), the reduction of spin-up time (e.g., Yossef et al., 2008), and simplification of governing equations 
such as the quasi-steady approach first introduced by De Vries (1965). Arkesteijn et al. (2021) used the distinction 
of timescales from Arkesteijn et al. (2019) to set up a rapid numerical method that determines the mean transient 
channel response under stochastic controls.

Analytical solutions for reduced-complexity model equations offer potential to be used as rapid assessment meth-
ods. Linear stability analyses provide such solutions, based on the assumption of infinitesimal perturbations of 
the riverbed and the flow. However, little is known about the extent to which these analytical solutions are valid 
when the assumption of infinitesimal perturbations fails. Linear stability analyses of river morphodynamics have 
been performed extensively during the last five decades. Colombini (2022) provides an overview of stability anal-
yses related to bars, dunes and antidunes, ripples, and to transverse or oblique bed forms like sand ridges or diago-
nal dunes. James (2006) refers to bed waves for all these changes in bed elevation during aggradation-degradation 
cycles. The governing equations in linear stability analyses differ for bed wave scales smaller or larger than the 
water depth.

Kennedy  (1963), Kennedy  (1969), and Nakagawa and Tsujimoto  (1980) showed that small-scale periodic 
bedforms result from an instability phenomenon caused by a phase lag between bed geometry and local rates 
of sediment transport. As a consequence, for subcritical conditions, a linear stability analysis of the governing 
Saint-Venant equations in combination with an Exner equation (including an equilibrium sediment transport 
predictor) does not show an instability that would explain the development of ripples and dunes (Balmforth & 
Provenzale, 2001; Charru, 2011). Various researchers have studied how non-equilibrium sediment transport can 
explain the initiation of bedforms. Nakagawa and Tsujimoto (1984) used the Eulerian interpretation of a stochas-
tic model for bed load transport (Nakagawa & Tsujimoto, 1980) in a linear stability analysis, to explain the early 
stage of bedform development. Bohorquez and Ancey  (2015), Bohorquez and Ancey  (2016), and Bohorquez 
et al. (2019) incorporate a non-equilibrium sediment transport formulation in the Exner equation, to account for 
particle diffusion. Including diffusion captures the net effect of the irregular movement of particles inherent to 
the stochastic nature of bedload sediment transport, and development of bedforms at small spatial and tempo-
ral scales (Ancey & Heyman, 2014; Furbish, Haff, et  al.,  2012; Furbish, Roseberry,  et  al., 2012; Lajeunesse 
et al., 2010, 2018; Martínez-Aranda et al., 2019; Roseberry et al., 2012). For this reason, existing linear stability 
analyses adopting the classical Exner equation do not yield tools for morphodynamic prediction of ripples and 
dunes.

Several studies focus on morphological prediction of bed waves with lengths much larger than the water depth. 
Grijsen and Vreugdenhil (1976) and Ponce and Simons (1977) performed linear stability analyses, starting from 
perturbations in the flow. De Vries (1965) derived characteristic migration celerities of flow and riverbed distur-
bances, and Vreugdenhil  (1982) performed a linear stability analysis of the equations for flow and sediment 
assuming quasi-steady circumstances, which simplifies the analysis. In the latter case, the time derivatives in the 
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governing flow equations were neglected, which was justified by De Vries (1965) for small values of the Froude 
number. Sieben (1996), Lyn and Altinakar (2002), and Lanzoni et al. (2006) elaborated further on this line of 
linear stability analyses, concentrating on mountain rivers and thus transcritical (Froude numbers in the range 
0.8–1.2) and supercritical flow conditions. Lanzoni et al. (2006) also addressed subcritical flow conditions. They 
performed numerical simulations to check the character of the analytical expressions for migration celerities of 
infinitesimal flow and bed waves, without performing a comprehensive quantitative comparison between analyt-
ical and numerical results. They found that the results of the linear stability analyses, in terms of the direction of 
wave propagation (upstream, downstream) and amplification or damping of perturbations, agree with numerical 
simulations for small perturbations. All these studies showed that, in contrast to the studies related to the initiation 
and growth of ripples and dunes, the classical Exner equation with well-known equilibrium sediment transport 
predictors such as Meyer-Peter and Müller (1948) and Engelund and Hansen (1967), proves adequate for linear 
stability analyses of bed waves with lengths larger than the water depth. None of these studies validated quantita-
tively the results of the analysis for non-infinitesimal bed perturbations.

The objective of this paper is to establish and understand the extent to which the results of linear stability analyses 
for bed waves longer than the water depth can be applied as rapid assessment tool for large-scale morphodynamic 
development in lowland rivers under varying discharges, where perturbations in the flow and the riverbed are not 
infinitesimally small. We express the validity range in terms of the Froude number F and relative amplitude of the 
bed waves (ratio of amplitude to water depth). For the numerical simulations, the geometry and hydrology of the 
Meuse River in the Netherlands were adopted as a starting point, where subcritical flow conditions predominate. 
However, the initial and boundary conditions were varied to cover a wide range of subcritical flow conditions.

Our linear stability analysis differs slightly from previous studies in that the length of the perturbations is linked 
to the period of the flood wave. This variable length is introduced through a parameter E, which is further 
explained in Section 2. The analysis, based on linearization of the terms in the governing equations, provides 
relations for migration celerity and damping of flow and bed waves. We test a solution that is consistent with the 
spatial-mode analysis of Grijsen and Vreugdenhil (1976), which differs from the temporal-mode analysis (e.g., 
Lanzoni et al., 2006). The analysis shows that the governing parameters agree with other analyses in terms of the 
Froude number, the degree of unsteadiness, the strength of bed friction, the wave length of the bed perturbation 
and the sediment load.

Hereafter, we compare the propagation and damping of bed waves from the stability analysis with results from 
a one-dimensional full-dynamic numerical model with which we simulated low-amplitude perturbations of the 
flow and the riverbed. The initial and boundary conditions of the numerical simulations do not exactly match the 
linear stability analysis, because the latter represents an initial-value problem for an unbounded domain. None-
theless, the numerical results provide a direct comparison to the analytical results. Additionally, simulations with 
larger (longer and higher) flow and bed waves are used to define the range within which the analytical results may 
be used as a rapid assessment tool for morphological development in lowland rivers. Although the spatial-mode 
analysis forms the starting point of the paper, a comparison with the more frequently applied temporal-mode 
analysis is also performed.

The structure of the remainder of this paper is as follows. Section 2 describes the linear stability analysis, provid-
ing analytical expressions of migration celerity and damping. The same section introduces the numerical model 
ELV and describes the simulations performed. Results of the linear stability analysis, the comparison with 
numerical results and assessment of the validity range of the analytical relations are given in Section 3. Practical 
application of the results, comparison with the temporal-mode analysis and further simplification of the analysis 
are discussed in Section 4.

2. Methods
2.1. Model Equations

We consider unidirectional flow over an erodible bed and assume bed elevation and sediment transport per unit 
width to be averaged over local fluctuations. These local fluctuations may relate to bedforms that are incorporated 
into a roughness parameter. The one-dimensional governing equations describing flow and bed evolution read as:

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
+ 𝜕𝜕

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
+ 𝑔𝑔

𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
+ 𝑔𝑔

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
= −𝑔𝑔

𝜕𝜕2

𝐶𝐶2𝜕
 (1)
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𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
+ 𝜕

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
+ 𝜕𝜕

𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
= 0 (2)

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
+

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
= 0 (3)

𝑠𝑠 = 𝑓𝑓 (𝑢𝑢) (4)

which include the 1D Saint-Venant equations for conservation of mass and momentum of water (Equations 1 
and 2), the continuity equation for sediment (Equation 3) and a capacity-limited sediment transport predictor 
(Equation 4), implicitly assuming small bed slopes. The latter two equations together form the Exner equation. 
Herein:
 t = time (s)
 x = longitudinal co-ordinate (m)
 u = water velocity averaged in a cross-section (m/s)
 h = water depth (m)
 z = bed level (m)
 C = Chézy coefficient for hydraulic roughness (m 1/2/s)
 s = sediment transport per unit of width (bulk volume) (m 2/s)
 g = acceleration due to gravity (m/s 2)

This set of equations is used in dimensional form for engineering practice and form the basis for the linear stabil-
ity analysis and the numerical models applied in this study.

2.2. Linear Stability Analysis

The theory of linear stability analysis provides insight in the physics of flow and sediment transport, and offers 
a first approximation of the celerity of migration and damping (or amplification) of bed perturbations. Table 1 
presents an overview of existing theoretical one-dimensional analyses of river dynamics and morphodynamics 
for perturbations with wave lengths (much) larger than the water depth. The differences in existing analyses relate 
to details of the mathematical problem addressed in the study, and the choice of the normal modes adopted for 

Table 1 
Overview of Existing Theoretical 1D Analyses of Hydrodynamic and Morphodynamic Model Equations in Case of Supra-Bedform Perturbations (Wave 
Length ≫ Water Depth)

Description Equations

Substitution of exponential functions

Boundary conditions Referenceskr ki ωr ωi

Backwater effects HY, ODE – – – – d/s + Δ(z + h) Bélanger (1828)

Flood propagation with temporal damping HY, PDE 2π/L 0 2πc/L −4π 2D/L 2 – Ponce and 
Simons (1977)

Flood propagation with spatial damping HY, PDE 2π/L 1/LD 2πc/L 0 – Grijsen and 
Vreugdenhil (1976)

Propagation of infinitesimal perturbations MO, PDE 2π/L 0 2πc/L 0 – De Vries (1965) and 
De Vries (1966)

Morphodynamic wave and diffusion 
character

MO, PDE 2π/L 0 2πc/L −4π 2D/L 2 – Vreugdenhil (1982) and 
Lanzoni et al. (2006)

Response to downstream water level MO, PDE – – – – d/s + Δ(z + h) De Vries (1973) and 
De Vries (1975)

Aggradation due to sediment overloading MO, PDE – – – – u/s + Δs Ribberink and 
Van der Sande (1985)

Present study MO, PDE 2π/L 1/LD 2πc/L 0 – –

Note. HY, hydrodynamic equations; MO, morphodynamic equations; ODE, ordinary differential equation; PDE, partial differential equations; u/s; upstream; 
d/s; downstream. Solutions proceed directly from boundary conditions, using a Laplace transform of the PDE, or based on substitution of exponential functions 
exp(ikrx − kix − iωrt + ωit) for an infinitely large domain.
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solving the linearized set of equations. Either the wave number k or the wave frequency ω is assumed complex, 
which will be further explained later in this section.

Our linear stability analysis starts by assuming small perturbation of water depth, flow velocity and bed level:
 h = ho + h′
 u = uo + u′
 z = zo + z′

The subscpript o indicates the steady uniform reference situation. The superscript ′ indicates a small perturbation 
to the steady uniform reference situation.

Substitution of these expressions for h, u, and z in Equations 1–4, and combining the equations to a single equa-
tion in one of the parameters, yields:

𝜕𝜕2ℎ′

𝜕𝜕𝜕𝜕2
+ 𝑐𝑐

𝜕𝜕2ℎ′

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
−𝐷𝐷

𝜕𝜕3ℎ′

𝜕𝜕𝜕𝜕2𝜕𝜕𝜕𝜕
+𝑀𝑀1

𝜕𝜕3ℎ′

𝜕𝜕𝜕𝜕3
+𝑀𝑀2

𝜕𝜕3ℎ′

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕2
+𝑀𝑀3

𝜕𝜕3ℎ′

𝜕𝜕𝜕𝜕3
= 0 (5)

where:
 c = 1.5uo (m/s)

 𝐴𝐴 𝐴𝐴 =
ℎ𝑜𝑜𝑢𝑢𝑜𝑜

2𝑖𝑖𝑜𝑜

(
1 − 𝐹𝐹 2 +

1

ℎ𝑜𝑜

𝜕𝜕𝜕𝜕 (𝑢𝑢)

𝜕𝜕𝑢𝑢

|||𝑜𝑜

)
 (m 2/s)

 𝐴𝐴 𝐴𝐴1 =
𝑢𝑢𝑜𝑜

2𝑔𝑔𝑔𝑔𝑜𝑜
 (s)

 𝐴𝐴 𝐴𝐴2 =
𝑢𝑢𝑜𝑜

2

𝑔𝑔𝑔𝑔𝑜𝑜
 (m)

 𝐴𝐴 𝐴𝐴3 = −
𝑢𝑢𝑜𝑜

2

2𝑖𝑖𝑜𝑜

𝜕𝜕𝜕𝜕 (𝑢𝑢)

𝜕𝜕𝑢𝑢

|||𝑜𝑜
 (m 3/s 2)

 𝐴𝐴 𝐴𝐴 =
𝑢𝑢

√
𝑔𝑔𝑔

||||𝑜𝑜
 (−)

Similar equations can be obtained for u′ and z′. Equation 5 can be solved analytically by assuming a periodic 
solution for the water depth of the form:

ℎ′
= ℎ𝑜𝑜ℎ̂ × 𝑒𝑒𝑖𝑖(𝑘𝑘𝑘𝑘+𝜔𝜔𝜔𝜔) (6)

where:
 ho = steady uniform water depth (m)
 𝐴𝐴 ℎ̂  = dimensionless depth amplitude function (−)
 k = wave number (m −1)
 ω = frequency (s −1)
 𝐴𝐴 𝐴𝐴 =

√
−1

Two approaches can be adopted to obtain a solution for the perturbed variables (Drazin & Reid, 2004), a temporal-mode 
analysis and a spatial-mode analysis. In the temporal-mode analysis, the frequency ω is assumed complex and the 
wave number is real and equal to 𝐴𝐴 𝐴𝐴𝑟𝑟 =

2𝜋𝜋

𝐿𝐿
 , where L is the wave length. In the spatial-mode analysis, the wave number 

k is assumed complex and the wave frequency ω real and equal to 𝐴𝐴 𝐴𝐴𝑟𝑟 =
2𝜋𝜋

𝑇𝑇
 , where T is the wave period. The complex 

roots, that is, either ω or k, determine the propagation and damping of perturbations in the flow and at the riverbed.

Many of the studies in Table  1 adopted the temporal mode in the analysis, assuming the perturbation wave 

number real 𝐴𝐴

(
𝑘𝑘𝑟𝑟 =

2𝜋𝜋

𝐿𝐿

)
 . Drazin and Reid (2004) describe that the physical properties of spatial modes are closer 

to the instability phenomena observed in most experiments on parallel flow, compared to temporal modes. In 
this study we extend the spatial-mode analysis by Grijsen and Vreugdenhil  (1976). The corresponding waves 
proceeding from a spatial-mode analysis can pragmatically be interpreted as governed by boundary conditions, 
which are important in engineering practice. Strictly speaking, however, this type of linear analysis does not build 
on boundary conditions, but rather on a solution in an unbounded domain. The choice of the period of the proxy 
for the upstream boundary condition, that is, the flow time series, sets the wave length of bed perturbation in the 
river, which is further elaborated in Section 2.3.4. The solution (Equation 6), with known wave period T and thus 
known ωr represents this boundary condition.

Our approach allows a comparison between the results of the linear stability analysis and numerical simulations 
with a discharge time series at the upstream boundary and a bed perturbation as initial condition across the 1D 
model domain.
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In the spatial-mode analysis, the wave number k is complex

𝑘𝑘 = 𝑘𝑘𝑟𝑟 + 𝑖𝑖𝑘𝑘𝑖𝑖 (7)

where kr determines the migration celerity c of the water and bed waves,

𝑐𝑐 = −
𝜔𝜔

𝑘𝑘𝑟𝑟

(m∕s) (8)

and ki determines the damping of water and bed waves

𝐿𝐿𝑑𝑑 =
1

𝑘𝑘𝑖𝑖

(m) (9)

Ld is called the relaxation or damping length over which the amplitude of a wave is damped by a factor e −1. c and 
Ld are the characteristic wave properties. For convenience, the wave number is first made dimensionless.

�̂�𝑘 = �̂�𝑘𝑟𝑟 + 𝑖𝑖�̂�𝑘𝑖𝑖 = 𝑘𝑘𝑘𝑘𝑜𝑜 (−) (10)

in which the characteristic length scale xo is defined as

𝑥𝑥𝑜𝑜 =
𝑄𝑄𝑜𝑜𝑇𝑇

𝐵𝐵𝑜𝑜ℎ𝑜𝑜

= 𝑢𝑢𝑜𝑜𝑇𝑇 (m) (11)

Herein, Qo is the undisturbed flow and Bo the undisturbed width. Substitution of Equation 10 and the solution, 
Equation 6, in Equation 5 leads to a third-order algebraic equation in the dimensionless wave number 𝐴𝐴 �̂�𝑘 :

Ψ

2𝜋𝜋𝜋𝜋 3𝐸𝐸

(
�̂�𝑘
)3

+
1

𝜋𝜋 3𝐸𝐸

(
1 − 𝜋𝜋 2

+ Ψ
)(
�̂�𝑘
)2

−
4𝜋𝜋

𝜋𝜋𝐸𝐸
�̂�𝑘 + 3𝑖𝑖�̂�𝑘 −

4𝜋𝜋2

𝜋𝜋𝐸𝐸
+ 4𝜋𝜋𝑖𝑖 = 0 (12)

with three governing dimensionless parameters; F, Ψ, and E:

Ψ = 𝑛𝑛
𝑠𝑠𝑜𝑜

𝑞𝑞𝑜𝑜
= dimensionless transport parameter (13)

𝐸𝐸 =

√
𝑔𝑔3𝑇𝑇 2

𝐶𝐶4ℎ
(−) (14)

Herein, n is the power in the sediment transport relation s  =  m·u n. The parameter E describes the influ-
ence of unsteadiness and non-uniformity of the flow on a scale larger than the local flow depth. Grijsen and 
Vreugdenhil (1976) introduced this parameter in their analysis of the flow equations and they defined typical 
values of E. For tidal waves, E takes a value of about 10 2 and for flood waves, E ≈ 10 3 − 5 · 10 4. In our analysis 
we deal with the flood wave scale, so values of E are large. In Sections 2.3.4 and 3.3 it is explained that larger 
values for E mean larger values for the wave length of bed perturbations.

The solution of Equation 12 consists of three roots for 𝐴𝐴 �̂�𝑘 . These roots determine the characteristic wave properties 
(migration celerity and damping) of both water and bed waves. Two roots describe damping and propagation of 
water waves and the third root describes the damping and propagation of the bed wave. In subcritical conditions 
the migration celerity of bed waves is much lower than of water waves. Therefore the morphodynamic root can 
easily be identified. The real part of the roots describes the migration celerity of the waves (Equation 15) and the 
imaginary part describes the damping (Equation 16).

𝑐𝑐 = −
2𝜋𝜋𝜋𝜋𝑜𝑜

�̂�𝑘𝑟𝑟

 (15)

𝐿𝐿𝑑𝑑 =
𝑢𝑢𝑜𝑜𝑇𝑇

�̂�𝑘𝑖𝑖

=
𝑢𝑢𝑜𝑜𝐸𝐸𝐸𝐸2ℎ1∕2

�̂�𝑘𝑖𝑖𝑔𝑔3∕2
 (16)
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2.3. Numerical Model Simulations

2.3.1. Introduction

To assess the applicability of the results of the linear stability analysis, numerical model simulations are performed. 
As the linear stability analysis is based on infinitesimal perturbations, numerical simulations with such perturba-
tions should agree with the theoretical results, at least for the initial values. Simulations with non-infinitesimal 
perturbations and on longer time scales may or may not agree with results from the linear stability analysis, which 
is here being verified. For this verification we concentrate on the propagation of bed waves. The results for the 
damping of bed waves are presented as well. However, the numerical diffusion of mathematical models may 
hamper a fair comparison with the damping from the linear stability analysis.

2.3.2. Model Description

The numerical modeling code ELV is selected (Chavarrías, Stecca, et  al., 2019), which is a Matlab code for 
modeling morphodynamic processes on a one-dimensional domain. ELV has been successfully applied in various 
studies and proved stable and accurate (Arkesteijn et al., 2019, 2021; Blom et al., 2017; Chavarrías, Arkesteijn, 
& Blom, 2019). ELV solves the full set of Equation 1 through Equation 4 in an uncoupled way, with an implicit 
Preissmann scheme for flow and a first-order forward Euler upwind scheme for morphology. This is called the 
unsteady model. The model can readily be used to test simplified models, in which terms in the Saint-Venant 
equations are neglected. This simplification is planned in a follow-up study, so ELV was chosen at this stage as 
the modeling framework.

A selection of the simulations with ELV was repeated using the extensively tested and widely applied SOBEK-RE 
model. This model with a less diffusive numerical scheme has been developed by Deltares in the Netherlands 
and was validated in numerous studies and applications (Ji et al., 2003). The main objective of validating ELV 
with SOBEK-RE is to verify whether numerical aspects, such as numerical diffusion, may hamper a comparison 
between results of a linear stability analysis and model simulations.

2.3.3. Model Set-Up

For performing simulations that can be compared to results from the linear stability analysis, a one-branch model 
was constructed with characteristics as in Table 2. The geometry is inspired by The Meuse River in the Nether-
lands. However, upper limits of bed slope and grain diameter exceed field values of the Meuse River, to cover also 
larger values of the Froude number F, while keeping the sediment transport constant.

The branch length was chosen long enough to prevent any impact of the model boundaries on the area of inter-
est, that is, the area where a bed perturbation propagates and dampens. It was chosen short enough to allow for 
reasonable simulation times, for a simulation period of 1–3 years. The smallest space step, for the simulations 
with infinitesimal bed perturbations, amounted to 2.5 m (see below). For these simulations with a duration of 
1 year, a branch length of 10 km was selected. For simulations with larger bed perturbations, the space step could 
be enlarged. A branch length of 25 km was selected for 3-year period simulations. For exact comparison with the 

Table 2 
Model Set-Up for Simulation With ELV

Characteristic Value/description

Model length 10–25 km

Channel width (no floodplains) B 100 m

Hydraulic roughness, Chézy value C 40 m 1/2/s

Bed slope ib 0.0001–0.0022

Space step Δx 2.5–25 m

Time step Δt 1–5 s

Sediment transport s Uniform sediment, transport predictor of Engelund and Hansen (1967)

Grain diameter D50 0.002–0.35 m

Upstream boundary conditions Time series for discharge and equilibrium sediment transport

Downstream boundary condition Uniform flow conditions (stage-discharge relation for uniform flow)
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linear stability analysis results, a simple rectangular cross-section with fixed width was adopted. The width of 
100 m was selected arbitrarily. A constant Chézy value of 40 m 1/2/s was adopted, but could be changed if desired. 
Changing the Chézy value, while maintaining the same values for water depth, velocity, Froude number F and 
bed load Ψ, will change the bed slope, D50 and the parameter E. The linear stability analysis demonstrates that 
for small Froude numbers (<0.3) the impact of changes in bed slope, D50 and E on the relative celerity and damp-
ing of bed waves is negligible. This was confirmed by an additional simulation for F = 0.2 and C = 45 m 1/2/s in 
Supporting Information S1 (Barneveld, 2022).

The Froude number F is a key parameter in the linear stability analysis. In this study, we focus on rivers with 
Froude numbers for which decoupling of the equations for flow and sediment transport is possible in numerical 
simulations. De Vries (1973), Morris and Williams (1996), Sieben (1996), Sieben (1999), and Cui et al. (2005) 
show that this is possible if Froude numbers are smaller than 0.7–0.8. In this study, we selected the range of F 
between 0.1 and 0.6 for the numerical simulations. With the selected Chézy value of 40 m 1/2/s, the corresponding 
range in bed slope ib is between 0.0001 and 0.0022. To select the space step, a sensitivity analysis was carried out 
for the model with a length of 25 km and a bed perturbation of 1 km in length. Simulations were carried out for 
Froude numbers of 0.4 and 0.6. The space step was reduced from 100 to 50, 25, and 12.5 m. The time step was 
reduced accordingly, maintaining the Courant–Friedrichs–Lewy or CFL condition below 1, to have sufficient 
numerical accuracy of the simulations. The analysis showed that the difference between a spatial step of 25 and 
12.5 m was negligible, so 25 m was small enough. A second criterion was to schematize the bed perturbation 
with at least 20 grid points. For the simulations performed, the minimum selected space step was therefore 2.5 m.

In the theoretical analysis, the sediment transport and its non-linear response to flow, expressed with the parameter 
n, are important. For a meaningful comparison between theory and numerical simulations, we selected a sediment 
transport predictor with an unequivocal value of n. Many sediment transport predictors are used in engineering 
practice. For this research the frequently used sediment transport predictor of Engelund-Hansen with n = 5 was 
selected (Engelund & Hansen, 1967). This formula for total sediment transport does not account for a threshold of 
motion and is widely used for sand-bed rivers. To ease the comparison between results of the linear stability anal-
ysis and numerical modeling results, we use identical sediment transport formulas for all computations. We apply 
the Engelund-Hansen transport predictor for low and high Froude numbers and for fine as well as coarse bed mate-
rial. The Engelund-Hansen predictor may not be the most appropriate formula for prediction of transport of coarse 
sediments, but is applied while using the value of D50 to reach the desired sediment transport capacity. We assume 
that the comparison between linear stability analysis and numerical modeling based on the non-linear predictor of 
Engelund-Hansen (n = 5) will also be representative when other sediment transport predictors are used.

For subcritical flow, conditions are needed at the upstream boundary for flow and sediment transport. As the 
objective of the simulations is to simulate the migration of bed waves in the time-space domain, we schematize 
the bed wave as a perturbation of the bed. At the upstream boundary, an equilibrium sediment transport load is 
imposed, which means that the sediment load fed to the model equals the sediment transport capacity for the 
actual discharge at the first calculation point. This guarantees a stable riverbed in the upstream part of the model. 
To perturb the flow, a boundary condition is imposed composed of a base flow magnitude, a peak flow magni-
tude, and a wave period T. The linear stability analysis is based on a sinusoidal shape of perturbations, but in our 
numerical simulations we adopt a more natural shape of the hydrodynamic wave, based on the Dimensionless 
Unit Hydrograph (DUH) method. By doing so, the application in engineering practices can be better assessed, 
and we verified that the impact of this choice on the results is negligible. The relation for discharge Q, based on 
the gamma relation for the DUH method, reads (USDA, 2007):

𝑄𝑄 = 𝑄𝑄𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 + (𝑄𝑄𝑝𝑝 −𝑄𝑄𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏)𝑏𝑏
𝑚𝑚

[
𝑡𝑡

𝑡𝑡𝑝𝑝

]𝑚𝑚⎡
⎢
⎢
⎣
𝑏𝑏

(

−𝑚𝑚

(
𝑡𝑡

𝑡𝑡𝑝𝑝

))
⎤
⎥
⎥
⎦

 (17)

with:
 Qp = peak discharge (m 3/s)
 Qbase = base discharge (m 3/s)
 e = Euler's number equal to 2.7183
 m = gamma equation shape factor (−)
 𝐴𝐴
𝑡𝑡

𝑡𝑡𝑝𝑝
  = ratio of the time of DUH coordinate to time to peak of the DUH
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With values of m = 15 and tp = 20 days, we generate a discharge time series at the upstream boundary with 
repeating flood waves of an approximate duration of 25 days (T), interrupted by periods of approximately 20 days 
with base flow. Figure 1 shows an example for a flood wave with a base flow of 500 m 3/s and a peak discharge 
of 1,500 m 3/s, characteristic of the Meuse River in the Netherlands. Simulations with small perturbations of the 
base flow are performed as well (see Table 3 in Section 2.3.4).

The wave period T of 25 days determines the parameter E in the governing equation of the linear stability analysis 
(Equations 12 and 14). Depending on the Froude number, E varies between 15,000 and 30,000 (for F = 0.6). 
At the downstream boundary, one condition for the flow is required, for which the water level corresponding to 
normal flow is chosen.

2.3.4. Performed Simulations

Governing parameters in the linear stability analysis are F, E, and Ψ. We are interested in the validity of the theo-
retically derived migration celerities for lowland rivers with Froude numbers up to 0.6 and hydrological condi-
tions and sediment load characteristic for such environments. The parameter E is determined by the wave period 
of the flood wave, which we set at 25 days in a 45 days time domain. For the dimensionless transport parameter 
Ψ we adopted a value of 5.15 ⋅ 10 −5. Increasing the Froude number under conditions of constant Ψ means that 
the grain size increases.

First, we performed numerical simulations with small perturbations of the flow and the riverbed. We derived 
consistent combinations of the upstream boundary condition for flow and initial conditions for the bed pertur-
bation. The wave period of the flow boundary condition determines the parameter E. With selected values of F 
and Ψ, the roots for the dimensionless wave number 𝐴𝐴 �̂�𝑘 (Equation 10) can be determined, providing the migration 
celerity of the bed wave (Equation 15). Equation 8 and ω (= 𝐴𝐴

2𝜋𝜋

𝑇𝑇
 ), which is known, determine the value of kr, which 

sets the wave length L of the bed wave (using 𝐴𝐴 𝐴𝐴𝑟𝑟 =
2𝜋𝜋

𝐿𝐿
 ). In this way, wave lengths of the bed perturbation of 107 m 

(F = 0.1) to 446 m (F = 0.6) were derived.

Figure 1. Sample flood wave boundary condition.

Table 3 
Numerical Simulations Performed to Validate Results From the Linear Stability Analysis

Set Qbase a (m 3/s) Qtop b (m 3/s) Height c (m) Length d (m) Run duration (yr) Comment

1 500 505 0.005 Matching to flow (107–446 m) 1 Base set

2 500 505 0.005 3,000 3 Long bed wave

3 500 1,500 0.1–0.5 3,000 3 Large flow and bed waves

 aBase flow boundary condition.  bPeak flow boundary condition.  cHeight bed perturbation (bed wave).  dWave length bed perturbation (bed wave).
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To assess the validity of the results of the linear stability analysis for these infinitesimal perturbations at t = 0, as 
well as for larger perturbations and for larger time scales (up to 3 years), a more elaborate set of simulations was 
performed, as summarized in Table 3.

3. Results
3.1. Migration Celerity Inferred From Linear Stability Analysis

The migration celerity of flow and bed waves follows from Equation 15. For the bed waves, the dimensionless 
relative celerity is analyzed, which reads:

𝑐𝑐𝑟𝑟𝑟𝑟𝑟𝑟 =
𝑐𝑐

𝑢𝑢𝑜𝑜
= −

2𝜋𝜋

�̂�𝑘𝑟𝑟

 (18)

Figure 2 shows the results of this relative celerity for various combinations of E, F, and Ψ. Figure 2 shows that 
for values of Ψ equal to or below 1 ⋅ 10 −5, the results are insensitive to E when Froude numbers are below 0.6. 
The results for different values of E are very similar for these conditions. When sediment transport increases, the 
parameter E becomes more important. When E increases, the relative celerity decreases and may (especially for 
larger values of Ψ) even decrease with increasing Froude numbers. This is due to the increasing diffusive charac-
ter of bed waves, causing a decrease in the migration celerity of bed perturbations when Froude numbers increase. 
This has previously been described by Lisle et al. (2001) and Lanzoni et al. (2006), and will be elaborated on in 
Section 3.2.

Figure 3 illustrates a Ψ value typical for lowland rivers, such as the River Meuse in the Netherlands. This case is 
used for the comparison with the numerical results in the next section.

3.2. Numerical Modeling Results

From the simulations with a hydraulic upstream boundary condition and initial perturbation of the riverbed, the 
propagation of this bed perturbation was simulated for 3 consecutive periods of 45 days. In each period, a flood 
wave of 25 days occurred (Figure 1). The period of 45 days was selected by taking the Meuse River in the Nether-
lands as an example, where the annual sediment transport is known to be mainly concentrated in a period of this 
duration, normally in the winter season.

Figures 4 and 5 give examples of the propagation of the initial perturbation of the riverbed for Froude numbers of 
0.2 and 0.6, respectively. The figures show that for F = 0.2 the bed perturbation clearly translates in downstream 
direction, while damping takes place. For F = 0.6 translation is small and diffusion of the bed perturbation in 
time dominates.

Figure 2. Relative celerity of bed waves in the linear stability analysis.
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The differences in translation for different Froude numbers have been studied further by analyzing the migration 
celerity of the bed perturbations during the initial stage of the simulations. Again, a simulation period of 45 days 
was chosen for this analysis. Results for F between 0.2 and 0.6 are presented in Figures 6 and 7, respectively, 
showing the migration celerity of the crest of a bed perturbation in time. Figure 6 shows that for F = 0.2 the bed 
perturbation migrates at a constant speed. For F = 0.6 (Figure 7) the speed of the bed perturbation is more than 
halved in the 45 days of simulation.

The results of the ELV simulations for higher Froude numbers, F = 0.4 and 0.6, were tested with the one-dimensional 
numerical model SOBEK-RE. The simulations with SOBEK-RE, with identical boundary conditions, setting of 
numerical parameters and time and space step, showed a similar diffusive character of bed perturbations for high 
Froude numbers. This supports the results of the ELV simulations.

Lisle et al. (2001) studied translation and diffusion for gravel-bed rivers. They based their analysis on the MPM 
(Meyer-Peter & Müller, 1948) bed load transport predictor, but results provide general aspects of wave behavior 
for other transport predictors as well. They present the following equation separating terms associated with trans-
lation of bed perturbations from those associated with diffusion.

Figure 3. Relative celerity of bed waves in the linear stability analysis for Ψ = 5.15 ⋅ 10 −5.

Figure 4. Simulated relative bed level (relative to bed slope) of a bed wave for F = 0.2. The space step in this simulation 
was 25 m.

 19447973, 2023, 3, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022W

R
033281 by T

u D
elft, W

iley O
nline L

ibrary on [06/04/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Water Resources Research

BARNEVELD ET AL.

10.1029/2022WR033281

12 of 22

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
=

𝐾𝐾𝐾𝐾𝐾𝐾
1∕2

𝑓𝑓

𝑅𝑅𝑠𝑠(1 − 𝑝𝑝)

[
𝜕𝜕𝜕𝜕2

𝜕𝜕𝜕𝜕2
+

(
𝜕𝜕

𝜕𝜕𝜕𝜕

(
1 − 𝐹𝐹 2

)𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

)
+ . . . .

]
 (19)

where K is an empirical constant in the MPM equation, q is the unit water discharge, p is the bed porosity and 
Rs is the submerged specific gravity of sediment. The unspecified terms within the brackets are non-uniform 
flow terms, which are small for F < 1. The first term within the brackets expresses the rate of wave diffusion. 
The second term expresses the rate of translation. The term 1-F 2 clearly indicates that translation decreases with 
increasing F. For those cases, diffusion dominates. Physically, this means that diffusion becomes more important 
when the dimensions of bed perturbations (i.e., height and wave length) become significant compared to the 
flow characteristics (i.e., the water depth and the length of backwater curve). This explains that for large Froude 
numbers, with smaller water depth and shorter backwater curves (i.e., Figure 5), diffusion of a bed wave is larger 
than for conditions with small Froude numbers (i.e., Figure 4). It is also in agreement with the reduced relative 
celerities in Figure 2 for larger values of E and F. Section 3.3 considers how diffusion changes the results from 
the linear stability analysis.

Figure 5. Simulated relative bed level (relative to bed slope) of a bed wave for F = 0.6. The space step in this simulation 
was 25 m.

Figure 6. Simulated migration celerity cb of the peak of the bed wave in first year for F = 0.2.
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Lisle et al. (2001) also refer to a well-documented example for the Navarro River in California in 1995 (Sutherland 
et  al.,  2002). Landslide material that entered the steep gravel-bed river (bed slope of 0.0028), formed a bed 
wave that dispersed upstream and downstream and mostly disappeared within a few years with no measurable 
translation.

3.3. Comparison Between Linear Stability Analysis Results and Numerical Simulations

The results from the numerical simulations are compared with the results from the linear stability analysis in 
Figure 8. The figure shows that for both values of Ψ results of the linear stability analysis and numerical simu-
lations agree for infinitesimal perturbations with a wave length coupled to the value of E, at t = 0 (+markers; 
Perturbations theory, t = 0 yr). The numerical results are in good agreement with the area delimited by the lines 
for E = 10,000 (F = 0.1) and E = 30,000 (F = 0.6). When the wave length of bed perturbations increases to 
3,000 m (open box markers; Perturbations long, t = 0 yr) the simulated initial migration celerities decrease for 
Froude numbers of 0.4 and higher. This is due to the increased diffusive character of the bed wave, as explained 
in the previous section. The linear stability analysis captures this. As already mentioned in Sections 2.2 and 2.3.4, 
the period of the upstream boundary condition and the wave length of bed perturbation in the river are coupled in 
the linear stability analysis. This means that the parameter E and wave length L are coupled, which is manifest as 
a relation in Figure 9. For moderate Froude numbers, up to 0.3, this relation is close to linear. For higher Froude 
numbers, the increase in parameter E accelerates with increasing wave length L.

For Ψ = 5.15 ⋅ 10 −5 the validity range of the results of the linear stability analysis was assessed further. By choos-
ing a wave length of 3,000 m, the parameter E increases to 350,000–500,000 for the range of Froude numbers 
considered. Figure 8 shows that for Froude numbers under 0.3 the impact of longer bed perturbations on the 
migration celerity is small, as the dependence on E is small. The simulated migration celerities of bed perturba-
tions are fairly constant in time (Figure 6) and agree with results from the linear stability analysis. For Froude 
numbers up to and including 0.6, the linear stability analysis still predicts the initial migration celerities quite 
accurately when adopting E = 500,000. For Froude numbers of 0.4 and higher the diffusive character is such that 
the wave length in time increases (Figure 5), the value of E increases (Figure 9) and the migration celerity thus 
decreases. The migration celerity from the linear stability analysis is an upper limit, and the deviation from the 

Figure 7. Simulated migration celerity cb of the peak of the bed wave in first year for F = 0.6.

 19447973, 2023, 3, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022W

R
033281 by T

u D
elft, W

iley O
nline L

ibrary on [06/04/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Water Resources Research

BARNEVELD ET AL.

10.1029/2022WR033281

14 of 22

real migration celerity increases in time (x markers; Perturbations long, t = 3 yr). This decrease in time is clearly 
shown in Figure 7.

When the flow variations and perturbations in the bed are large (in height and length), the deviations between 
linear stability analysis and numerical results increase. The open circle markers (Perturbations large&long, 
t = 3 yr) in Figure 8 represent simulations with a peak of the flood wave of 1,500 m 3/s (base flow = 500 m 3/s) 
and bed waves of 50 cm for F = 0.1–0.4 and 10 cm for F = 0.5–0.6. Under those conditions, the relative celer-
ities increase compared to the simulations with small perturbations in the bed profile and the flow. This can be 
explained by the value of Ψ, which increases when the discharge in the simulations increases. Figure 10 shows the 
simulation results with large perturbations of Figure 8 (open circles), together with results from the linear stability 
in which values of Ψ are based on the average sediment transports during the simulation (filled circle markers). 
The increase of values for Ψ brings results from the linear stability analysis and numerical simulations closer, 
especially for moderate Froude numbers (F = 0.1–0.3). However, the relative celerities in this range of Froude 

Figure 9. Relation between wave length L and parameter E in the linear stability analysis for Ψ = 5.15 ⋅ 10 −5.

Figure 8. Comparison between relative celerities of bed perturbations from linear stability analysis (lines) and numerical 
simulations (markers) for Ψ = 2 ⋅ 10 −4 and Ψ = 5.15 ⋅ 10 −5.
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numbers are still underestimated by the linear stability analysis. The increased non-linear effects due to the larger 
perturbations of the flow and the riverbed are responsible for this and, as expected, not reproduced by the linear 
stability analysis. This is further elaborated upon in the next section and in Figure 14.

3.4. Damping of Bed Waves

From the linear stability analysis (Equation 16) and the numerical simulations, the damping length or relaxation 
length of bed waves can be derived. From the conditions and simulation related to Ψ = 5.15 ⋅ 10 −5 (Figure 8) the 
results for the damping are presented in Figure 11. For the infinitesimal and relatively short bed waves (+marker, 
Perturbations theory), the simulations show much more damping for Froude numbers up to 0.4. For longer and 
higher bed waves, the results from the linear stability analysis and numerical simulations show better agreement 
(values of E are in the range of 350,000 to 500,000).

4. Discussion
4.1. Linear Stability Analysis Versus Numerical Modeling

Strictly speaking, the mathematical problems solved by the linear stability analysis and numerical computation 
are not equivalent. The linear stability analysis solves an initial-value problem, whereas the numerical computa-
tion requires an initial condition and boundary conditions. Moreover, the flood waves used as boundary condi-
tions in the numerical computations deviate from the harmonic functions assumed in the linear stability analysis. 
We have assumed that this does not seriously alter key characteristics such as migration celerity and damping.

The predictive value of the analytical approach is large when the diffusive character of bed waves is small, 
which appears to be related to the Froude number. For Froude numbers up to 0.3, diffusion of bed perturbations 
is normally small and migration celerities derived from the linear stability analysis are representative, even on 
longer time scales. This agrees with a threshold of F equal to 0.4 for translation in uniform sediment found by 
Lisle  (2007). When dimensions of the bed perturbations increase compared to the depth and the backwater 
length, the diffusive character of bed waves increases. Nonetheless, linear stability analysis can still provide a 
good estimate of the initial migration celerity of bed perturbations. However, as the wave length of a bed pertur-
bation grows in time, the appropriate parameter to be selected in the linear stability analysis also changes. The 
initial choice of the parameters overestimates the migration celerity of bed perturbations in time when the Froude 
number exceeds 0.3. The importance of the Froude number and relative dimensions of the bed perturbations 

Figure 10. Relative celerity of large bed perturbations: linear stability analysis results based on initial sediment transport 
(solid lines) and based on average sediment transport during the simulations (filled circles), compared to the numerical results 
(open circles). Values of Ψ increase up to 7.0 − 7.5 ⋅ 10 −5.
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confirms results from Lisle et al. (2001) and the theoretical analysis by Vreugdenhil (1982). The diffusion coeffi-
cient D, defined by Vreugdenhil (1982) as D = 𝐴𝐴

1

3
𝐶𝐶2Ψℎ2∕𝑢𝑢 , the wave number k and the migration celerity c deter-

mine how diffusive the system is. Therefore, the Péclet number P = cL/D (where L is the wave-length) is relevant, 
which can be considered as the ratio of advection to the rate of diffusion. For high values of P, the system behaves 
as a pure diffusion equation and, vice versa, as a pure convection equation when P is small. Of course, the wave 
length of a convective wave can grow in time and diffusion will increase. Importantly, the Froude number F and 
Péclet number P are related. For high Froude numbers, backwater curves are short. The wave length of bed waves 
thus becomes relatively long, compared to the backwater curve.

In the domain where analytical models represent the exact solution, they can be used to verify the discretization 
approach and solution method in numerical models. For infinitesimal and matching perturbations of flow and 
the riverbed (Section 2.3.4), the analytical approach provides the exact solution of initial migration celerity and 
damping of water and bed waves. This provides valuable validation material for any one-dimensional modeling 
system, to test whether the processes are correctly implemented, the numerical scheme is appropriate and the 
numerical parameters and time and space step are properly selected.

Figure 11 shows that for the shorter bed waves of 107 m (F = 0.1) to 446 m (F = 0.6) (Section 2.3.4), damping 
in the numerical simulations exceeds the damping of the linear stability analysis when F ≤ 0.4. For longer bed 
waves, linear stability analysis and numerical results agree much better. In the supplementary material it is shown 
that the damping length from the spatial-mode analysis and from the temporal-mode analysis match well in this 
range of the Froude number, and the choice of mode does not explain the deviations as found. The explanation 
could be related to numerical diffusion in ELV for shorter bed waves, which could be a subject of future study.

4.2. Further Simplification of the Linear Stability Analysis

G. Seminara (pers. comm., 2021) proposed that a more simple analytical expression for the relative celerity of 
bed waves may be possible, given that two of the determining parameters in the analysis are either very small (Ψ) 
or very large (E). As this insight was not published previously, we elaborated this further. When we expand the 
solution for the dimensionless wave number as

�̂�𝑘 =
�̂�𝑘−1

Ψ
+ �̂�𝑘0 + �̂�𝑘1Ψ + . . . , (20)

we express E in terms of Ψ assuming that

Figure 11. Comparison between damping of bed perturbations from linear stability analysis (lines) and numerical 
simulations (markers) for Ψ = 5.15 ⋅ 10 −5. “Perturbations theory” represent infinitesimal perturbations with a wave length 
coupled to the value of E. For the other simulations the wave length increased to 3,000 m, while for “Perturbations large & 
long, Qwave” the bed wave amplitude increased and a flood wave was applied.
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𝐸𝐸 =
𝐸𝐸0

Ψ
 (21)

and we stop at the leading order, Equation 12 can be written as:
(
�̂�𝑘−1

)2
+ 2𝜋𝜋

(
1 − 𝐹𝐹 2

)
�̂�𝑘−1 + 6𝑖𝑖𝜋𝜋𝐹𝐹 3𝐸𝐸𝑜𝑜 = 0 (22)

The solution reads:

�̂�𝑘−1 = 𝜋𝜋
(
1 − 𝐹𝐹 2

)
[

−1 ±

√

1 − 𝑖𝑖
6

𝜋𝜋

𝐸𝐸𝑜𝑜𝐹𝐹 3

(1 − 𝐹𝐹 2)
2

]

 (23)

With Equation 18, the relative celerity for the bed wave can be assessed again. Combining this with Figure 2 
yields Figure 12. The results are almost identical, meaning that Equation 23 indeed can be used for lowland 
rivers.

4.3. Spatial-Mode and Temporal-Mode Linear Stability Analyses

In our analysis so far, we performed a spatial-mode analysis because it fits more closely to boundary-value prob-
lems solved by numerical models. A temporal-mode analysis is briefly elaborated upon for comparison. In the 
temporal-mode analysis, Equation 12 transforms into an equation for the dimensionless complex frequency 𝐴𝐴 𝐴𝐴𝐴 .

𝐹𝐹 2
(�̂�𝜔)

3
+
(
2𝑖𝑖 − 2�̂�𝐿𝐹𝐹 2

)
(�̂�𝜔)

2
+

(
−3�̂�𝐿𝑖𝑖 −

(
�̂�𝐿
)2(

1 − 𝐹𝐹 2
+ Ψ

))
�̂�𝜔 +

(
�̂�𝐿
)3
Ψ = 0 (24)

where:
 L = wave length of disturbance (m)
 𝐴𝐴 𝐴𝐴𝑜𝑜 =

ℎ𝑜𝑜

𝑖𝑖𝑜𝑜
 (m)

 𝐴𝐴 �̂�𝐿 = 2𝜋𝜋
𝐿𝐿𝑜𝑜

𝐿𝐿
 (−)

 𝐴𝐴 𝐴𝐴𝐴 = 𝐴𝐴𝐴𝑟𝑟 + 𝑖𝑖 𝐴𝐴𝐴𝑖𝑖  = dimensionless complex frequency

Herein, 𝐴𝐴 𝐴𝐴𝐴𝑖𝑖 determines the damping of water and bed waves:

𝐿𝐿𝑑𝑑 = −
𝑐𝑐

�̂�𝜔𝑖𝑖
 (25)

Figure 12. Relative celerity of bed waves: comparison of simplified results (black dotted line, Equation 23) with original 
results of Figure 2.
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and 𝐴𝐴 𝐴𝐴𝐴𝑟𝑟 determines the migration celerity of the water and bed waves, according to:

𝑐𝑐 =
𝑐𝑐

𝑢𝑢𝑜𝑜
=

𝐿𝐿

𝑇𝑇

𝑢𝑢𝑜𝑜
=

�̂�𝜔𝑟𝑟

�̂�𝑘
. (26)

Solving Equation 24 again provides the roots determining propagation and damping of disturbances of flow and 
at the bed. The character of this equation agrees with the derivation of Lanzoni et al. (2006) (their Equation 14).

Figure 13 presents the results of the linear stability analyses adopting spatial and temporal modes, as well as the 
simulated results. Both spatial-mode and temporal-mode analyses accurately predict the initial migration celeri-
ties of infinitesimal bed perturbations. For longer bed perturbations (L = 3,000 m) both approaches are accurate 
for Froude numbers up to and including F = 0.3. For larger Froude numbers, the spatial-mode analysis excellently 
represents the initial migration celerities and provides an upper limit for the subsequent migration celerities of 
bed perturbations. The temporal-mode analysis gives somewhat smaller migration celerities, matching better to 
the migration celerities that occur later in the simulation. Therefore, the temporal mode proves more suitable for 
longer-term prediction of bed disturbance celerities.

4.4. How Small Can a Small Disturbance Be?

For small and moderate Froude numbers (F ≤ 0.3), the linear stability analysis provides a good first estimate for 
small perturbations, but underestimates the migration celerities when bed waves become larger, and non-linearity 
and diffusion increase (see Figure 10). Figure 14 shows an example of the ratio of the migration celerity of a 
bed wave from numerical simulations and migration celerity from the linear stability analysis, based on spatial 
modes. A value of 1 on the vertical axis means a perfect match. The horizontal axis shows the relative amplitude 
of the bed wave, which is defined as the ratio between the amplitude of the bed wave and the undisturbed water 
depth. For a bed wave of 1 m high and a water depth of 4 m, the multiplication factor is almost 4 for the initial 
migration celerity, and halves after 3 years. The multiplication factor shows an almost linear relation with relative 
wave amplitude for the initial value of the migration celerity, and this relation flattens for longer simulation times. 
G. Seminara (pers. comm.) suggested that, due to the quasi-linear dependence of the multiplication factor on the 
relative amplitude, a weakly nonlinear analysis might be successful in extending theoretical predictions beyond 
the linear approximation. Indeed, this could be worth considering.

The relations derived from Figure 14 could be used as a first pass for the correction factor of the migration celerity 
of the linear stability analysis, although it is based on simulations for one Froude number only, and general appli-
cability has not yet been proven. The impact of a flood wave as upstream boundary (Figure 1) is shown by the open 
squares in Figure 14. The impact is negligible at t = 0 because the discharge is equal to the undisturbed discharge 

Figure 13. Migration celerities according to the linear stability analysis based on spatial and temporal modes for short and 
long bed waves, compared to simulated results.
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and therefore water depth and flow velocity assume the undisturbed values. After 3 years, the overall migration 
celerity increased compared to the initial migration celerity, due to higher flow velocities and sediment transport 
rates during flood periods. For realistic flood wave conditions, the appropriate choice of the parameters E, F, and 
Ψ therefore becomes less straightforward, even more so when flood waves dampen in the downstream direction.

4.5. Application to Field Data

In the Dutch main rivers, morphological changes are ongoing due to historical works and changes of many kinds. 
New plans are being developed and climate is changing. To assess the impact on riverbed morphology, long-term 
predictions are required. The linear stability analysis allows for a rapid assessment of how fast bed waves, induced 
by changed boundary conditions or measures, travel through the river, and indicate when they may cause prob-
lems and require management efforts at downstream locations. The Meuse River is used as an example for assess-
ment of the applicability. In the downstream part of the river, where the bed slope is small and multiple weirs have 
been implemented, Froude numbers are moderate (on average 0.2 or lower), even during floods. In the upstream 
part of the Dutch Meuse River, referred to as the Common Meuse, slopes are 5 times higher, the river is free flow-
ing, and the Froude numbers can take a value of up to 0.5, or locally even higher. This means that the analytically 
derived bed wave migration celerity will be an overestimation in the Common Meuse, because diffusion is high 
and wave lengths of bed waves are important (reflected in values of E). These wave lengths will change in time. 
In the downstream part of the Meuse River, bed waves have a translating character and the linear stability analysis 
provides a good estimate of the migration celerity of low-amplitude bed waves with various wave lengths.

For the Meuse River insufficient data were available to check the results of the linear stability analyses. Two 
other cases were selected for which field data on celerities of bed waves are available: the Fraser River in Canada 
and the Waal River in the Netherlands. The complete analyses for both rivers are presented in Supporting Infor-
mation S1. Along the Fraser River, gold mining between 1858 and 1909 added large amounts of sediment to the 
river's natural sediment load. Ferguson et al. (2015) and Nelson and Church (2012) reconstructed the impact of 
the additional sediment supplies on the morphodynamics. Nelson and Church (2012) estimated that the annual 
travel distance of placer mining sediment was most likely 3.1 km in the Fraser River between Marguerite and 
Hope. The linear stability analyses are based on an average bed slope of 0.001, a Froude number at mean annual 
flood in the range 0.45–0.56 and an annual bed material load of 700,000 m 3. According to both spatial mode and 

Figure 14. Ratio between simulated perturbation migration celerities and corresponding migration celerities from linear 
stability analysis as a function of bed wave amplitude to water depth ratio for F = 0.2.
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temporal mode analyses, the propagation celerity is in the range of 2.25–3.3 km/yr, which matches the most likely 
celerity according to Nelson and Church (2012).

The Waal River in the Netherlands is the main branch of the Rhine delta. The geometry of the riverbed of the Waal 
River has been monitored every 2 weeks by multibeam surveys in the period from 2005 to 2020. These surveys 
provide detailed information on the propagation of bed waves. Gensen and Van Denderen (2022) performed a 
wavelet analysis on the 2 weekly measurements to filter out bed waves with lengths between 300 and 4,000 m. 
On the relatively straight Middle Waal section, the celerity of these bed waves appeared to be 1.1–1.4 km/yr. 
The linear stability analyses are based on data from Van Denderen and Van Hoek  (2022) and Paarlberg and 
Schippers (2020) (average bed slope of 0.0001, Froude number equal to 0.15) and Frings et al. (2019) (annual 
bed material load of 3,33,333 m 3). Based on the flow conditions at the average river discharge for the period 
2005–2021, the spatial mode and temporal mode analysis provide a propagation celerity of 1,222 m/yr, which is 
within the range of the measured values reported by Gensen and Van Denderen (2022).

5. Conclusions
A spatial-mode linear stability analysis was performed of the one-dimensional Saint-Venant-Exner equations, 
with a focus on subcritical flow with Froude numbers F up to 0.6 and riverbed waves with wave lengths larger 
than the water depth. The linear stability analysis has yielded explicit relations to estimate migration celerities 
and damping lengths of flow and bed perturbations. The results were compared to numerical model simulations 
with ELV, which in turn were verified by several additional model runs with SOBEK-RE. The comparison shows 
that migration celerities from the linear stability analysis and numerical results agree well for infinitesimal pertur-
bations at t = 0. Regarding the initial response of these infinitesimal perturbations of the flow and morphology, 
the linear stability analysis can be used to validate numerical modeling codes.

For Froude numbers exceeding 0.3, bed waves show an increasingly diffusive character, where wave length 
increases and migration celerities decrease in time. For these conditions, the linear stability analysis based on 
spatial modes provides an upper limit of the migration celerity of bed perturbations. A temporal-mode linear 
stability analysis proves more suitable for longer-term prediction of the migration celerity. When perturbations 
are higher or longer, attaining dimensions that are significant compared to water depth or the length of the back-
water curve, non-linear processes prevail and the diffusive character gains strength. For Froude numbers up to 
0.3, the theoretical migration celerities are a good estimate for perturbations even for longer periods of devel-
opment, as long as the amplitudes of the bed waves are smaller than about 5% of the depth. When perturbations 
have larger amplitudes, the linear stability analysis underestimates the initial migration celerity by 50% or more, 
which is why a correction factor is required. This correction factor is shown to be exponentially dependent on the 
relative amplitude (the amplitude to water depth ratio). Application of a correction would extend the applicability 
range of the linear stability analysis as a rapid assessment tool, but this needs a broader validation.

For Froude numbers of 0.4 and higher, the diffusive character causes an overestimation of the bed wave migration 
celerities by the linear stability analysis in the longer term, especially in case of the spatial-mode analysis. At the 
same time, non-linearity causes an underestimation by the linear stability analysis. The net impact of diffusion 
depends on the balance of these two effects, and is likely dependent on the value of the Froude number. As an 
example, the linear stability analysis may be used as a rapid assessment tool for bed waves up to 0.5 m high in 
the lower part of the River Meuse, referred to as the Sand Meuse. In the upstream steeper part of the river, the 
Common Meuse, the Froude numbers are higher, diffusion is larger and the linear stability analysis based on 
spatial modes loses predictive power, especially when longer periods of development are considered.

The linear stability analyses were applied to the Fraser River in Canada and Waal River in the Netherlands. This 
shows that even when Froude numbers are as high as 0.56 the propagation celerities of bed waves can be assessed 
realistically when average flow conditions and annual sediment loads are known.

Data Availability Statement
Numerical simulations have been carried out with the numerical modeling package ELV. ELV is available in the 
open access repository of the Open Earth Tools managed by Deltares: https://svn.oss.deltares.nl/repos/opene-
arthtools/trunk/matlab/applications/ELV. For the simulations we used the version at Revision 16973 from Thurs-
day 17 December 2020 11:20:54. The input and (reworked) output of the simulations with ELV, presented in 
Figures 8, 10, 11, and 13, are available through Barneveld (2022).
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